Science.gov

Sample records for amorphous semiconductors doped

  1. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  2. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  3. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  4. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  5. Doped semiconductors and other solar energy materials

    NASA Astrophysics Data System (ADS)

    Williamson, D. L.

    1988-02-01

    A review is presented of recent applications of Mössbauer spectroscopy that focus on determining the fate of doped impurities in semiconductors, primarily GaAs, Ga1-xAlxAs and Si. Other solar energy materials and processes which are discussed include amorphous Si∶H-based alloys, chalcopyrites, transparent conducting oxides, photochemical processing via semiconductor powders in electrolytes, mirror making, and plant photosynthesis.

  6. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  7. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  8. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  9. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  10. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  11. Amorphous Semiconductor Thin Films, an Introduction

    SciTech Connect

    Martin, Peter M.

    2003-12-01

    The field of amorphous semiconductors is so large that I cannot do it justice, but I hope this short column gives you some insight into the properties and materials available, and the issues involved.

  12. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  13. (Magnetic properties of doped semiconductors)

    SciTech Connect

    Not Available

    1990-01-01

    Research continued on the transport behavior of doped semiconductors on both sides of the metal-insulator transition, and the approach to the transition from both the insulating and the metallic side. Work is described on magneto resistance of a series of metallic Si:B samples and CdSe. (CBS)

  14. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann–Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  15. Boron doping a semiconductor particle

    SciTech Connect

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  16. Boron doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  17. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  18. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  19. Phosphorous doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  20. Lucky drift impact ionization in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Rowlands, J. A.; Baranovskii, S. D.; Tanioka, Kenkichi

    2004-08-01

    The review of avalanche multiplication experiments clearly confirms the existence of the impact ionization effect in this class of semiconductors. The semilogarithmic plot of the impact ionization coefficient (α) versus the reciprocal field (1/F) for holes in a-Se and electrons in a-Se and a-Si :H places the avalanche multiplication phenomena in amorphous semiconductors at much higher fields than those typically reported for crystalline semiconductors with comparable bandgaps. Furthermore, in contrast to well established concepts for crystalline semiconductors, the impact ionization coefficient in a-Se increases with increasing temperature. The McKenzie and Burt [S. McKenzie and M. G. Burt, J. Phys. C 19, 1959 (1986)] version of Ridley's lucky drift (LD) model [B. K. Ridley, J. Phys. C 16, 3373 (1988)] has been applied to impact ionization coefficient versus field data for holes and electrons in a-Se and electrons in a-Si :H. We have extracted the electron impact ionization coefficient versus field (αe vs F) data for a-Si :H from the multiplication versus F and photocurrent versus F data recently reported by M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys.41, 2552 (2002). Provided that one accepts the basic assumption of the Ridley LD model that the momentum relaxation rate is faster than the energy relaxation rate, the model can satisfactorily account for impact ionization in amorphous semiconductors even with ionizing excitation across the bandgap, EI=Eg. If λ is the mean free path associated with momentum relaxing collisions and λE is the energy relaxation length associated with energy relaxing collisions, than the LD model requires λE>λ. The application of the LD model with energy and field independent λE to a-Se leads to ionization threshold energies EI that are quite small, less than Eg/2, and requires the possible but improbable ionization of localized states. By making λE=λE(E ,F) energy and field dependent, we were

  1. Charge injection in doped organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hosseini, A. R.; Wong, Man Hoi; Shen, Yulong; Malliaras, George G.

    2005-01-01

    The influence of doping on the process of charge injection from a metal electrode into a model organic semiconductor is investigated. The contact resistance, which is the relevant figure-of-merit, is found to decrease dramatically upon doping beyond what is expected from theory and seen in crystalline semiconductors. This phenomenon is understood in terms of broadening of the transport manifold in the organic semiconductor, induced by the dopants.

  2. Method for measuring the drift mobility in doped semiconductors

    DOEpatents

    Crandall, Richard S.

    1982-01-01

    A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorous. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells.

  3. Method for measuring the drift mobility in doped semiconductors

    DOEpatents

    Crandall, R.S.

    1982-03-09

    A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorus. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells. 10 figs.

  4. Significant improvement in electronic properties of transparent amorphous indium zinc oxide through yttrium doping

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yu, Zhigen; Huang, Yanhua; Xia, Yijie; Lai, Weng Soon; Gong, Hao

    2014-04-01

    One big challenge in transparent conducting oxides (TCOs) is to achieve high conductivity and mobility at a low processing temperature. Although optimized conductivity has been achieved in indium zinc oxide (IZO) without doping, it is still interesting to find whether doping can improve conductivity of IZO further. In this paper, we report a low processing temperature achievement of high conductivity and mobility of IZO through yttrium (Y) doping. We found that with different Y doping levels, room temperature fabricated amorphous IZO (a-IZO) samples can be controlled to exhibit either metallic or semiconductor characteristics. Y2O3 is demonstrated to be an effective doping source to achieve conductivity 300% higher than the non-doped IZO sample. Anomalously improved mobility of certain Y2O3-doped IZO samples compared with the non-doped IZO sample is found and analyzed. Besides, a low-temperature resistivity anomaly (semiconductor metal transition) phenomenon is observed and discussed.

  5. Charge carrier generation in photosensitive amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Barabash, Y.; Kharkyanen, V.; Zabolotny, M.; Zabolotnaya, T.

    2006-05-01

    Thermalization process in photosensitive amorphous molecular semiconductors are theoretically considered from standpoint of their parameters, namely: thermalization time, thermalization length. The heat electron formed in consequence of absorption of the light quantum by semiconductor molecules loses his surplus energy in the time of inelastic interaction with neighbouring atoms. The results of theoretical predictions are confirmed by the experimental ones obtained for a number of molecular semiconductors (anthracene, pentacene, PVC, PEPC).

  6. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  7. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  8. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  9. Method of depositing wide bandgap amorphous semiconductor materials

    DOEpatents

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  10. Characterization of Amorphous Zinc Tin Oxide Semiconductors

    SciTech Connect

    Rajachidambaram, Jaana Saranya; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Varga, Tamas; Flynn, Brendan T.; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2012-06-12

    Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and post annealing conditions on film structure, composition, surface contamination, and thin film transistor (TFT) device performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. We found that the bulk Zn:Sn ratio of the sputter deposited films were slightly tin rich compared to the composition of the ceramic sputter target, and there was a significant depletion of zinc at the surface. X-ray photoelectron spectroscopy also indicated that residual surface contamination depended strongly on the sample post-annealing conditions where water, carbonate and hydroxyl species were absorbed to the surface. Electrical characterization of ZTO films, using TFT test structures, indicated that mobilities as high as 17 cm2/Vs could be obtained for depletion mode devices.

  11. Method of doping organic semiconductors

    DOEpatents

    Kloc, Christian Leo; Ramirez, Arthur Penn; So, Woo-Young

    2012-02-28

    A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.

  12. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  13. Optical and thermal properties of doped semiconductor

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Yacoubi, N.

    2008-01-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.

  14. Ultrafast processes in semiconductor doped glasses

    NASA Astrophysics Data System (ADS)

    Brito Cruz, Carlos H.; Cesar, Carlos Lenz; Barbosa, Luis Carlos; de Paula, Ana M.; Tsuda, Sérgio

    1997-02-01

    We review studies of resonant and nonresonant ultrafast optical processes in semiconductor doped glasses, made at the University of Campinas. First we discuss measurements done in CdTe quantum-dots in glass, excited resonantly. In this case we observe a fast recombination, that depends on the size of the quantum-dot. For the smallest dots, with 3.2 nm average radius, the recovery time constant was found to be 360 fs. Then we describe the observation of the Optical Stark shift in CdSxSe1-x semiconductor-doped glass (SDG) excited under nonresonant below gap condition and probed with femtosecond optical pulses. An ultrafast and pure light-induced shift of the band edge is observed. For a pump intensity of 3 GW/cm2 the band shifts by 11 meV. The response of the shift tracks the profile of the pumping pulse.

  15. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  16. Stability of amorphous metal films on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Perepezko, J. H.; Wiley, J. D.

    In the culmination of work which began in June 1984, goals of this research have been as follows: Investigation of the stability of amorphous alloy films during diffusion and interdiffusion treatments. The atomic transport measurements will be conducted by a combination of RBS and AES techniques as explained in earlier reports. X-ray diffraction and transmission electron microscopy will be used for structural examination. Investigation of the electrical behavior of amorphous metal/semiconductor contacts, including both the interfacial electrical (Schottky barrier and Ohmic) behavior and the stability of the amorphous metallization against current-induced degradation by electromigration. Fundamental studies of the electromigration process itself will be conducted in this broader context. Examination of structural relaxation during post-depression annealing will also take place.

  17. Chemical vapor deposition of amorphous semiconductor films. Final subcontract report

    SciTech Connect

    Rocheleau, R.E.

    1984-12-01

    Chemical vapor deposition (CVD) from higher order silanes has been studied for fabricating amorphous hydrogenated silicon thin-film solar cells. Intrinsic and doped a-Si:H films were deposited in a reduced-pressure, tubular-flow reactor, using disilane feed-gas. Conditions for depositing intrinsic films at growth rates up to 10 A/s were identified. Electrical and optical properties, including dark conductivity, photoconductivity, activation energy, optical absorption, band-gap and sub-band-gap absorption properties of CVD intrinsic material were characterized. Parameter space for depositing intrinsic and doped films, suitable for device analysis, was identified.

  18. Doped semiconductor nanoparticles synthesized in gas-phase plasmas

    NASA Astrophysics Data System (ADS)

    Pereira, R. N.; Almeida, A. J.

    2015-08-01

    Crystalline nanoparticles (NPs) of semiconductor materials have been attracting huge research interest due to their potential use in future applications like photovoltaics and bioimaging. The important role that intentional impurity doping plays in semiconductor technology has ignited a great deal of research effort aiming at synthesizing semiconductor NPs doped with foreign impurities and at understanding their physical and chemical properties. In this respect, plasma-grown semiconductor NPs doped in situ during synthesis have been key in studies of doped NPs. This article presents a review of the advances in understanding the properties of doped semiconductor NPs synthesized by means of plasma methods and the role played by these NPs for our current understanding of doped NPs and the general behavior of doping in nanoscale materials.

  19. Magnetoresistance Phenomena in a Variety of Amorphous Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Mutch, Michael; Westley, David; Lenahan, Patrick; Semiconductor Spectroscopy Lab at Penn State University Team

    We report on near zero-field magnetoresistance (MR) phenomena in a variety of amorphous semiconductors and insulators. We utilize electrically detected magnetic resonance (EDMR) measurements at multiple fields and frequencies to complement MR measurements. EDMR, the electrically detected analog of electron paramagnetic resonance (EPR), provides both information about the chemical nature and energy levels of point defects involved. Semiconductors in this study include a-BC:H, a-C:H, diamond-like carbon (DLC), and a-Si:H. Insulators include a-SiN:H, a-SiOC:H, a-SiCN:H. In hydrogenated amorphous systems, near featureless EPR and EDMR spectra are often difficult to analyze. We utilize multiple field and frequency EDMR results including ultra-low field/frequency (ν = 85 MHz, B = 3 mT) EDMR measurements to provide insight into defect chemistry in these systems. We have also made EDMR and MR conditions over a wide range of metal/semiconductor heterojunction and metal/insulator/semiconductor biasing conditions. By comparing variable bias measurements with band diagrams, we gain an elementary understanding of defect energy levels. We believe our results will be of significant importance for understanding defect mediated spin-dependent transport in these systems. The authors would like to thanks Dr. Sean King of Intel Corporation for the provision of samples.

  20. Novel silane and disilane precursors to amorphous semiconductors: Final subcontract report, May 1988

    SciTech Connect

    Pernisz, U.C.; Sharp, K.G.

    1988-09-01

    This Final Report describes the preparation and characterization of amorphous fluorohydrogenated silicon thin films. The novel approach in this study lies in the use of fluorinated silanes as film precursors. The advantages of this method are well defined initial ratios of hydrogen and fluorine to silicon and greatly reduced hazards in the handling of the gas. Fluorine derivatives of both silane and disilane were synthesized. Both glow discharge (or plasma-enhanced CVD) and thermal (CVD) methods were employed to prepare amorphous silicon on glass and silicon wafers. The electrical characterization of the material prepared from difluorosilane showed that the a-Si:H:F films obtained are of solar-grade semiconductor quality and can be doped to p- and n-type materials with diborane and phosphine. 29 refs., 24 figs., 10 tabs.

  1. Density driven structural transformations in amorphous semiconductor clathrates

    SciTech Connect

    Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; Molaison, Jamie J.; Sales, Brian C.; Honkimaeki, Veijo

    2015-01-16

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with the consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.

  2. Density driven structural transformations in amorphous semiconductor clathrates

    DOE PAGESBeta

    Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; Molaison, Jamie J.; Sales, Brian C.; Honkimaeki, Veijo

    2015-01-16

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less

  3. Theoretical studies of electronic band-tail states, Anderson transition and surfaces of amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun

    In this dissertation, we study the Anderson transition within the electronic band tail states, and amorphous surfaces. The disorder induced band tail states is one of the unique character of amorphous semiconductors. Because of the proximity to the Fermi level, the nature of these band tail states is of obvious interest to theory of doping and transport. The study of amorphous solid surface is also an interesting area for theory. It is possible to have some major rearrangements near surfaces of amorphous solids (the amorphous analog of surface reconstruction), and the local bonding environment could be dramatically different from that of bulk. The study of the surfaces can also help people toward understanding the growth mechanism. First, electronic band tail states of amorphous silicon and amorphous diamond were studied based on the large (4096 atom) and realistic structural models. To solve the large tight-binding Hamiltonian matrices, we used two order N methods: the maximum entropy method for computing the total densities of states, and the modified Lanczos techniques for computing the individual energy eigenstates in the band gap regions. The DC conductivity was estimated with the Kubo formula. Next, the structural and electronic properties of the surfaces of tetrahedral amorphous carbon (ta-C) were also studied with a first-principles, local basis LDA technique. We reported two structural models made under different conditions, and examined the transition of the local bonding environment from the bulk to the surface. In the study of band tail states, we observe that Anderson (local-to-extended) transition within the band states proceeds by "cluster proliferation". We interpret the nature of band tail states in terms of a "resonant cluster model" through which one can qualitatively understand the evolution of the states from midgap toward the mobility edges. In the study of ta-C surfaces, we observe that nearly 50% surface atoms are threefold coordinated and

  4. Anomalous hopping conduction in nanocrystalline/amorphous composites and amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Kakalios, James; Bodurtha, Kent

    Composite nanostructured materials consisting of nanocrystals (nc) embedded within a thin film amorphous matrix can exhibit novel opto-electronic properties. Composite films are synthesized in a dual-chamber co-deposition PECVD system capable of producing nanocrystals of material A and embedding then within a thin film matrix of material B. Electronic conduction in composite thin films of hydrogenated amorphous silicon (a-Si:H) containing nc-germanium or nc-silicon inclusions, as well as in undoped a-Si:H, does not follow an Arrhenius temperature dependence, but rather is better described by an anomalous hopping expression (exp[-(To/T)3/4) , as determined from the ``reduced activation energy'' proposed by Zabrodskii and Shlimak. This temperature dependence has been observed in other thin film resistive materials, such as ultra-thin disordered films of Ag, Bi, Pb and Pd; carbon-black polymer composites; and weakly coupled Au and ZnO quantum dot arrays. There is presently no accepted theoretical understanding of this expression. The concept of a mobility edge, accepted for over four decades, appears to not be necessary to account for charge transport in amorphous semiconductors. Supported by NSF-DMR and the Minnesota Nano Center.

  5. Bi-Se doped with Cu, p-type semiconductor

    SciTech Connect

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  6. Plasma Deposition of Doped Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1985-01-01

    Pair of reports present further experimental details of investigation of plasma deposition of films of phosphorous-doped amosphous silicon. Probe measurements of electrical resistance of deposited films indicated films not uniform. In general, it appeared that resistance decreased with film thickness.

  7. Synthesis and characterization of P-doped amorphous and nanocrystalline Si

    SciTech Connect

    Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi; Browning, Nigel D.; Kauzlarich, Susan M.

    2013-07-01

    Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi0.99P0.01, with an excess of NH4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si) material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.

  8. Doping-induced suppression of dislocation formation in semiconductors

    SciTech Connect

    Walukiewicz, W.

    1989-04-15

    A mechanism explaining suppression of dislocation formation in doped semiconductors is proposed. The mechanism is based on the recently introduced concept of amphoteric native defects. It is shown that supersaturation of vacancylike defects depends on the Fermi energy and thus also on the doping level. The calculated dependence of supersaturation on the doping level quantitatively accounts for experimentally observed trends in dislocation suppression in GaAs and InP.

  9. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    SciTech Connect

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  10. Strain-induced photoconductivity in thin films of Co doped amorphous carbon.

    PubMed

    Jiang, Y C; Gao, J

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg(1/3)Nb(2/3)O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  11. Strain-induced photoconductivity in thin films of Co doped amorphous carbon

    PubMed Central

    Jiang, Y. C.; Gao, J.

    2014-01-01

    Traditionally, strain effect was mainly considered in the materials with periodic lattice structure, and was thought to be very weak in amorphous semiconductors. Here, we investigate the effects of strain in films of cobalt-doped amorphous carbon (Co-C) grown on 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 (PMN-PT) substrates. The electric transport properties of the Co-C films were effectively modulated by the piezoelectric substrates. Moreover, we observed, for the first time, strain-induced photoconductivity in such an amorphous semiconductor. Without strain, no photoconductivity was observed. When subjected to strain, the Co-C films exhibited significant photoconductivity under illumination by a 532-nm monochromatic light. A strain-modified photoconductivity theory was developed to elucidate the possible mechanism of this remarkable phenomenon. The good agreement between the theoretical and experimental results indicates that strain-induced photoconductivity may derive from modulation of the band structure via the strain effect. PMID:25338641

  12. Optical evidence for quantization in transparent amorphous oxide semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Abe, Katsumi; Nomura, Kenji; Kamiya, Toshio; Hosono, Hideo

    2012-08-01

    We fabricated transparent amorphous oxide semiconductor superlattices composed of In-Ga-Zn-O (a-IGZO) well layers and Ga2O3 (a-Ga2O3) barrier layers, and investigated their optical absorption properties to examine energy quantization in the a-IGZO well layer. The Tauc gap of a-IGZO well layers monotonically increases with decreasing well thickness at ≤5 nm. The thickness dependence of the Tauc gap is quantitatively explained by a Krönig-Penny model employing a conduction band offset of 1.2 eV between the a-IGZO and the a-Ga2O3, and the effective masses of 0.35m0 for the a-IGZO well layer and 0.5m0 for the a-Ga2O3 barrier layer, where m0 is the electron rest mass. This result demonstrates the quantization in the a-IGZO well layer. The phase relaxation length of the a-IGZO is estimated to be larger than 3.5 nm.

  13. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  14. Nontraditional Amorphous Oxide Semiconductor Thin-Film Transistor Fabrication

    NASA Astrophysics Data System (ADS)

    Sundholm, Eric Steven

    Fabrication techniques and process integration considerations for amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this dissertation. Within this theme three primary areas of focus are pursued. The first focus involves formulating a general framework for assessing passivation. Avoiding formation of an undesirable backside accumulation layer in an AOS bottom-gate TFT is accomplished by (i) choosing a passivation layer in which the charge neutrality level is aligned with (ideal case) or higher in energy than that of the semiconductor channel layer charge neutrality level, and (ii) depositing the passivation layer in such a manner that a negligible density of oxygen vacancies are present at the channel-passivation layer interface. Two AOS TFT passivation schemes are explored. Sputter-deposited zinc tin silicon oxide (ZTSO) appears promising for suppressing the effects of negative bias illumination stress (NBIS) with respect to ZTO and IGZO TFTs. Solution-deposited silicon dioxide is used as a barrier layer to subsequent PECVD silicon dioxide deposition, yielding ZTO TFT transfer curves showing that the dual-layer passivation process does not significantly alter ZTO TFT electrical characteristics. The second focus involves creating an adaptable back-end process compatible with flexible substrates. A detailed list of possible via formation techniques is presented with particular focus on non-traditional and adaptable techniques. Two of the discussed methods, “hydrophobic surface treatment”and “printed local insulator,” are demonstrated and proven effective. The third focus is printing AOS TFT channel layers in order to create an adaptable and additive front-end integrated circuit fabrication scheme. Printed zinc indium aluminum oxide (ZIAO) and indium gallium zinc oxide (IGZO) channel layers are demonstrated using a SonoPlot piezoelectric printing system. Finally, challenges associated with printing electronic

  15. Novel silane and disilane precursors to amorphous semiconductors. Annual report, 1 April 1985-31 March 1986

    SciTech Connect

    Pernisz, U.; Sharp, K.

    1986-08-01

    This report describes the preparation and characterization of amorphous fluorohydrogenated silicon thin films. The novel approach lies in the use of fluorinated silanes as film precursors. This method has the advantages of well-defined initial ratios of hydrogen and fluorine and a greatly reduced hazards in the handling of the gas. Fluorine derivatives of both silane and disilane were synthesized. A conventional method, glow discharge (or plasma-enhanced chemical vapor deposition), was employed to prepare amorphous silicon on glass and Si wafers. The electrical characterization of the material prepared from difluorosilane (the main precursor during the contract period covered in this report) showed that the a-Si:H:F films obtained are of solar-grade semiconductor quality and can be doped to p- and n-type material with diborane and phosphine.

  16. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    SciTech Connect

    Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul

    2013-07-20

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentration in porous semiconductor thin films.

  17. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    NASA Astrophysics Data System (ADS)

    Ahn, Jaehyun; Chou, Harry; Koh, Donghyi; Kim, Taegon; Roy, Anupam; Song, Jonghan; Banerjee, Sanjay K.

    2016-03-01

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiOx) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration of 1.4 × 1018 cm-3. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.

  18. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  19. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  20. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  1. Spinodal nanodecomposition in semiconductors doped with transition metals

    NASA Astrophysics Data System (ADS)

    Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, Pham Nam; Katayama-Yoshida, H.

    2015-10-01

    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, codoping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear in the form of either nanodots (the dairiseki phase) or nanocolumns (the konbu phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.

  2. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  3. Carrier scattering by native defects in heavily doped semiconductors

    SciTech Connect

    Walukiewicz, W. Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA )

    1990-05-15

    Calculations of the effect of charged native defects on carrier mobility in semiconductors are presented. The concentrations of native defects are calculated within the framework of the recently proposed amphoteric-native-defect model. The model provides a simple rule for identification of semiconductor systems in which defect scattering is important. It is shown that native-defect scattering is a dominant mechanism limiting electron mobilities in heavily doped {ital n}-type GaAs. It is also shown that native defects do not play any significant role in {ital p}-type GaAs.

  4. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  5. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, S.

    2006-02-01

    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as σxySJ/σxySS˜(ℏ/τ)/ɛF, with τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc˜10-3-10-4, where σs(c) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)]SCIEAS0036-807510.1126/science.1105514 in n-doped 3D GaAs system.

  6. Magnetism in dilute iron doped YN semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Dwievdi, Shalini; Sharma, Yamini

    2016-05-01

    The full potential linearized augmented plane-wave (FP-LAPW) scheme of computation is used to explore the electronic and magnetic properties of Fe doped into YN. Band structure calculations show that YN is a semicon ductor with a narrow indirect band gap of 0.08 eV along D-X direction. Optical properties such as reflectivity, absorption coefficient are reported and are discussed on the basis of corresponding electronic structure. Spin polarized results indicate that the ground state of Y1-xFexN (x=0.06, 0.12, 0.25) is ferromagnetic with a high moment on Fe-atom and zero moment on Y and N atoms, except in the case of 25 % doping. A discussion of the transport properties of YN and Y1-xFexN is given in order to get insights of the Fe substitution effects.

  7. Transport in two-dimensional modulation-doped semiconductor structures

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.; Kodiyalam, S.; Pfeiffer, L. N.; West, K. W.

    2015-05-01

    We develop a theory for the maximum achievable mobility in modulation-doped 2D GaAs-AlGaAs semiconductor structures by considering the momentum scattering of the 2D carriers by the remote ionized dopants, which must invariably be present in order to create the 2D electron gas at the GaAs-AlGaAs interface. The minimal model, assuming first-order Born scattering by random quenched remote dopant ions as the only scattering mechanism, gives a mobility much lower (by a factor of 3 or more) than that observed experimentally in many ultrahigh-mobility modulation-doped 2D systems, establishing convincingly that the model of uncorrelated scattering by independent random remote quenched dopant ions is often unable to describe the physical system quantitively. We theoretically establish that the consideration of spatial correlations in the remote dopant distribution can enhance the mobility by (up to) several orders of magnitudes in experimental samples. The precise calculation of the carrier mobility in ultrapure modulation-doped 2D semiconductor structures thus depends crucially on the unknown spatial correlations among the dopant ions in the doping layer which may manifest sample to sample variations even for nominally identical sample parameters (i.e., density, well width, etc.), depending on the details of the modulation-doping growth conditions.

  8. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. PMID:26618885

  9. Metal-insulator transition in films of doped semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Reich, K. V.; Kramer, Nicolaas J.; Fu, Han; Kortshagen, Uwe R.; Shklovskii, B. I.

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  10. Nonlinear switching in semiconductor (CdSSe) doped glass

    NASA Astrophysics Data System (ADS)

    Sergio Bezerra Sombra, A.

    1993-10-01

    Optical nonlinear switching due to increasing absorption has been observed in a nondegenerate pump and probe experiment in Semiconductor (CdSSe) Doped Glass (SDG). With the proper choice of the parameters, like modulation frequency and light intensity, one hundred percent modulation in a probe laser induced by a strong pump laser was obtained at room temperature. Two nonlinear regimes were observed, with saturated pump absorption being dominant at high pump power.

  11. Chemical vapor deposition of boron-doped hydrogenated amorphous silicon

    SciTech Connect

    Ellis F.B. Jr.; Delahoy, A.E.

    1985-07-15

    Deposition conditions and film properties for a variety of boron-doped hydrogenated amorphous silicon films and silicon-carbon films produced by chemical vapor deposition (CVD) are discussed. Deposition gases include monosilane, disilane, trisilane, and acetylene. Two types of optically wide band-gap p layers are obtained. One of these window p layers (without carbon) has been extensively tested in photovoltaic devices. Remarkably, this p layer can be deposited between about 200 to 300 /sup 0/C. A typical open circuit voltage in an all CVD p-i-n device is 0.70--0.72 V, and in a hybrid device where the i and n layers are deposited by glow discharge, 0.8--0.83 V.

  12. FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    SciTech Connect

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

    2007-01-01

    We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

  13. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  14. Symmetry induced semimetal-semiconductor transition in doped graphene

    PubMed Central

    Sirikumara, Hansika I.; Putz, Erika; Al-Abboodi, Mohammed; Jayasekera, Thushari

    2016-01-01

    Substitutional chemical doping is one way of introducing an electronic bandgap in otherwise semimetallic graphene. A small change in dopant arrangement can convert graphene from a semiconducting to a semimetallic state. Based on ab initio Density Functional Theory calculations, we discuss the electron structure of BN-doped graphene with Bravais and non-Bravais lattice-type defect patterns, identifying semiconducting/semimetallic configurations. Semimetallic behavior of graphene with non-Bravais lattice-type defect patterns can be explained by a phase cancellation in the scattering amplitude. Our investigation reveals for the first time that the symmetry of defect islands and the periodicity of defect modulation limit the phase cancellation which controls the semimetal-semiconductor transition in doped graphene. PMID:26781061

  15. Symmetry induced semimetal-semiconductor transition in doped graphene.

    PubMed

    Sirikumara, Hansika I; Putz, Erika; Al-Abboodi, Mohammed; Jayasekera, Thushari

    2016-01-01

    Substitutional chemical doping is one way of introducing an electronic bandgap in otherwise semimetallic graphene. A small change in dopant arrangement can convert graphene from a semiconducting to a semimetallic state. Based on ab initio Density Functional Theory calculations, we discuss the electron structure of BN-doped graphene with Bravais and non-Bravais lattice-type defect patterns, identifying semiconducting/semimetallic configurations. Semimetallic behavior of graphene with non-Bravais lattice-type defect patterns can be explained by a phase cancellation in the scattering amplitude. Our investigation reveals for the first time that the symmetry of defect islands and the periodicity of defect modulation limit the phase cancellation which controls the semimetal-semiconductor transition in doped graphene. PMID:26781061

  16. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  17. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  18. Charge storage characteristics and tunneling mechanism of amorphous Ge-doped HfOx films

    NASA Astrophysics Data System (ADS)

    Qiu, X. Y.; Zhang, S. Y.; Zhang, T.; Wang, R. X.; Li, L. T.; Zhang, Y.; Dai, J. Y.

    2016-09-01

    Amorphous Ge-doped HfOx films have been deposited on p-Si(100) substrates by means of RF magnetron sputtering. Microstructural investigations reveal the partial oxidation of doped Ge atoms in the amorphous HfOx matrix and the existence of HfSiOx interfacial layer. Capacitance-voltage hysteresis of the Ag-/Ge-doped HfOx/Si/Ag memory capacitor exhibits a memory window of 3.15 V which can maintain for >5 × 104 cycles. Current-voltage characteristics reveal that Poole-Frenkel tunneling is responsible for electron transport in the Ge-doped HfOx film.

  19. Optimal doping control of magnetic semiconductors via subsurfactant epitaxy

    SciTech Connect

    Zeng, Changgan; Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F; Weitering, Harm H

    2008-02-01

    Dilute magnetic semiconductors (DMS) with high ferromagnetic ordering temperatures (T{sub c}) have vast potential for advancing spin-based electronics or 'spintronics'. To date, achieving high-T{sub c} DMS typically required doping levels of order 5%. Such high doping levels inevitably compromise the structural homogeneity and carrier mobility of the DMS. Here, we establish 'subsurfactant epitaxy' as a novel kinetic pathway for synthesizing Mn-doped germanium with T{sub c} much higher than room temperature, at dramatically reduced doping levels. This is accomplished by optimal control of the diffusion kinetics of the dopant atoms near the growth front in two separate deposition steps. The first involves a submonolayer dose of Mn on Ge(100) at low temperature, which populates subsurface interstitial sites with Mn while suppressing lateral Mn diffusion and clustering. The second step involves epitaxial growth of Ge at elevated temperature, taking advantage of the strong floating ability of the interstitial Mn dopants towards the newly defined subsurface sites at the growth front. Most remarkably, the Mn dopants trapped inside the film are uniformly distributed at substitutional sites, and the resulting film exhibits ferromagnetism above 400 K at the nominal doping level of only 0.2%.

  20. Conductivity (ac and dc) in III-V amorphous semiconductors and chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Hauser, J. J.

    1985-02-01

    Variable-range hopping, as evidenced by a resistivity proportional to exp(T-1/4), has been induced in many III-V amorphous semiconductors (InSb, AlSb, and GaAs) and even in chalcogenide glasses (As2Te3, As2Te3-xSex, and GeTe) by depositing films at 77 K. It is therefore remarkable that the same procedure failed to generate variable-range hopping in GaSb, which is one of the less ionic III-V semiconductors. Besides differences in the dc conductivity, there are also different behaviors in the ac conductivity of amorphous semiconductors. The low-temperature ac conductivity of all amorphous semiconductors is proportional to ωsTn with s~=1 and n<1, which is consistent with a model of correlated barrier hopping of electron pairs between paired and random defects. However, in the case of a-SiO2 and a-GeSe2 one finds, in addition, that the capacitance obeys the scaling relation C=A ln(Tω-1), which would suggest a conduction mechanism by tunneling relaxation. Furthermore, this scaling relation cannot be fitted to the data for a-As2Te3, a-InSb, and a-GaSb although the functional dependence of C on T and ω are similar.

  1. Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings

    NASA Astrophysics Data System (ADS)

    Wills, Andrew Wilke

    Semiconductor nanocrystals are an intriguing class of materials because of their size-tunable properties. This makes them promising for future optoelectronic devices such as solar cells and light emitting diodes. Realization of these devices, however, requires precise control of the flow of electricity through the particles. In bulk semiconductors, this is achieved by using materials with few unintentional defects, then intentionally adding particular defects or dopants to alter the semiconductor's electronic properties. In contrast, the addition of electrically active dopants has scarcely been demonstrated in semiconductor nanocrystals, and charge transport is hindered by the barrier of electron hopping between particles. The goal of this thesis, therefore, is to discover new methods to control charge transport in nanocrystals. It divides into three major thrusts: 1) the investigation of the doping process in semiconductor nanocrystals, 2) the invention of new synthetic methods to incorporate electrically active dopants into semiconductor nanocrystals, and 3) the invention of a new nanocrystal surface coating that aids processing of nanocrystals into devices but can be removed to enhance charge transport between particles. The first objective is achieved by the comparison of four different precursors that have been used to dope Mn into nanocrystals. Experiments show that dimethylmanganese incorporates efficiently into ZnSe nanocrystals while other precursors are less efficient and sometimes lower the quality of the nanocrystals produced. The second goal is met by the application of a core-shell synthetic strategy to the incorporation of non-isovalent impurities (Al and In) into CdSe nanocrystals. By separating the three steps of nucleation, dopant binding, and growth, each step can be optimized so that doping is achieved and high quality particles are produced. Detailed characterization shows dopant incorporation and local environment, while transistor

  2. N-doping of organic semiconductors by bis-metallosandwich compounds

    DOEpatents

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  3. Amorphous Semiconductor Nanowires Created by Site-Specific Heteroatom Substitution with Significantly Enhanced Photoelectrochemical Performance.

    PubMed

    He, Ting; Zu, Lianhai; Zhang, Yan; Mao, Chengliang; Xu, Xiaoxiang; Yang, Jinhu; Yang, Shihe

    2016-08-23

    Semiconductor nanowires that have been extensively studied are typically in a crystalline phase. Much less studied are amorphous semiconductor nanowires due to the difficulty for their synthesis, despite a set of characteristics desirable for photoelectric devices, such as higher surface area, higher surface activity, and higher light harvesting. In this work of combined experiment and computation, taking Zn2GeO4 (ZGO) as an example, we propose a site-specific heteroatom substitution strategy through a solution-phase ions-alternative-deposition route to prepare amorphous/crystalline Si-incorporated ZGO nanowires with tunable band structures. The substitution of Si atoms for the Zn or Ge atoms distorts the bonding network to a different extent, leading to the formation of amorphous Zn1.7Si0.3GeO4 (ZSGO) or crystalline Zn2(GeO4)0.88(SiO4)0.12 (ZGSO) nanowires, respectively, with different bandgaps. The amorphous ZSGO nanowire arrays exhibit significantly enhanced performance in photoelectrochemical water splitting, such as higher and more stable photocurrent, and faster photoresponse and recovery, relative to crystalline ZGSO and ZGO nanowires in this work, as well as ZGO photocatalysts reported previously. The remarkable performance highlights the advantages of the ZSGO amorphous nanowires for photoelectric devices, such as higher light harvesting capability, faster charge separation, lower charge recombination, and higher surface catalytic activity. PMID:27494205

  4. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-01

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response. PMID:27295453

  5. High gain photoconductive semiconductor switch having tailored doping profile zones

    SciTech Connect

    Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.

    2001-01-01

    A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

  6. All-optical switching in semiconductor-doped nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Donkor, Eric

    1999-11-01

    Optical switching devices that can perform at picosecond to femtosecond speeds are on demand because of interest to develop multi-gigabit, multi-user, optical networks. Two fundamental design issues are the choice of nonlinear material as the active medium for the switch and the switching architecture. Wave guide based switches designed with silica fiber have demonstrated ultra-fast switching up to femtosecond speeds. Figure 1 shows the switching speed versus power-length product for different types of materials. At the two extremes are rare-earth doped, and silica. Rare-earth doped materials have the smallest power-length product of about 10 W-cm, but also have the least switching speed. At the other extreme, silica has the fastest switching speed of 1013 Hz but also has the largest power-length product of 6 kW-cm. Semiconductor-doped glasses (SDG) and metal-doped glasses appear to have a good compromise between switching speed and power-length product. There is therefore interest to research such optical materials, and novel switching architectures that can simultaneously down-scale device geometry, and power requirements for switching.

  7. Leakage current in high-purity germanium detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Q.; Amman, M.; Vetter, K.

    2015-03-01

    Amorphous semiconductor electrical contacts on high-purity Ge radiation detectors have become a valuable technology because they are simple to fabricate, result in thin dead layers, block both electron and hole injection, and can readily be finely segmented as needed for applications requiring imaging or particle tracking. Though significant numbers of detectors have been successfully produced for a variety of applications using the amorphous semiconductor contact technology, there remains a need to better understand the dependence of performance characteristics, particularly leakage current, on the fabrication process parameters so that the performance can be better optimized. To this end, we have performed a systematic study of leakage current on RF-sputter-deposited amorphous-Ge (a-Ge) and amorphous-Si (a-Si) contacts as a function of process and operational parameters including sputter gas pressure and composition, number of detector temperature cycles, and time spent at room temperature. The study focused primarily on the current resulting from electron injection at the contact. Significant findings from the study include that a-Si produces lower electron injection than a-Ge, the time the detector spends at room temperature rather than the number of temperature cycles experienced by the detector is the primary factor associated with leakage current change when the detector is warmed, and the time stability of the a-Ge contact depends on the sputter gas pressure with a higher pressure producing more stable characteristics.

  8. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  9. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  10. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOEpatents

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  11. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  12. Multiscale approach to the electronic structure of doped semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-02-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. Here, we present a multiscale technique that fully addresses these difficulties. It is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. These augment a slab comprising "pseudoatoms" possessing a fractional nuclear charge matching the bulk doping concentration. Self-consistency is reached by imposing charge conservation and Fermi level equilibration between the bulk, treated semiclassically, and the electronic states of the slab, which are treated quantum-mechanically. The method, called CREST—the charge-reservoir electrostatic sheet technique—can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. Specifically, we show that CREST successfully predicts scenarios spanning the range from no to full Fermi level pinning. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic "clean-cleaved" Si(111) surface and its semiconducting (2 ×1 ) reconstructions.

  13. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGESBeta

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  14. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  15. Semiconductor-doped liquid-core optical fiber.

    PubMed

    Hreibi, Ali; Gérôme, Frédéric; Auguste, Jean-Louis; Zhang, Yu; Yu, William W; Blondy, Jean-Marc

    2011-05-01

    A semiconductor liquid-core optical fiber has been made by simply filling the hollow core of a capillary waveguide with nanoparticles suspended in toluene media. Under a low continuous optical power excitation at 532 nm, the emission of PbSe particles was clearly demonstrated in the infrared region and then partially maintained in the core of the fiber by the total internal reflection mechanism. Finally, due to the guided propagation, which results in multiple absorption effects, a linear shift of the emission peak toward longer wavelengths was observed (~0.32 nm/cm). As a proof of concept, this original demonstration of visible-to-infrared conversion could lead to the development of active fibered devices at wavelengths not covered by the conventional rare-earth ion doping. PMID:21540972

  16. n-type conductivity in Si-doped amorphous AlN: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-04-01

    We report the electronic structure and topology of a heavily Si-doped amorphous aluminium nitride (Al37.5Si12.5N50) using ab initio simulations. The amorphous Al37.5Si12.5N50 system is found to be structurally similar to pure amorphous aluminium nitride. It has an average coordination number of about 3.9 and exhibits a small amount of Si-Si homopolar bonds. The formation of Si-Al bonds is not very favourable. Electronic structure calculations reveal that the Si doping has a negligible effect on the band gap width but causes delocalization of the valence band tail states and a shift of the Fermi level towards the conduction band. Thus, amorphous Al37.5Si12.5N50 alloys show n-type conductivity.

  17. Structural and electronic properties of amorphous ternary and quaternary oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Sanders, K. Nocona; Khanal, Rabi; Medvedeva, Julia E.

    Amorphous structures of several multi-cation wide-bandgap oxides (In-Ga-Zn-O, In-Sc-O, In-Y-O, and In-La-O) were obtained via first-principles molecular dynamics liquid-quench approach using different cooling rates and different oxygen and metal compositions. A detailed comparison of the structural properties, namely, the distribution of metal-oxygen (M-O) and metal-metal (M-M) distances, bond angles, and coordination, allows us to determine how the MO polyhedra network is affected by the crystalline-to-amorphous transition. Furthermore, the role of oxygen non-stoichiometry in defect formation is investigated. Specifically, local structural defects associated with severe distortions in the metal-oxygen polyhedra, such as under-coordinated metal and oxygen atoms, or M-M bonds, appear in the electronic band structure of amorphous oxides. Both carrier-generating defects and carrier trapping/scattering defects are identified. The results help determine the optimal composition and preparation conditions (i.e., oxygen partial pressure, deposition temperature) in order to achieve the desired properties of the technologically-appealing amorphous oxide semiconductors. NSF-MRSEC.

  18. Carbon doping of III-V compound semiconductors

    SciTech Connect

    Moll, A.J.

    1994-09-01

    Focus of the study is C acceptor doping of GaAs, since C diffusion coefficient is at least one order of magnitude lower than that of other common p-type dopants in GaAs. C ion implantation results in a concentration of free holes in the valence band < 10% of that of the implanted C atoms for doses > 10{sup 14}/cm{sup 2}. Rutherford backscattering, electrical measurements, Raman spectroscopy, and Fourier transform infrared spectroscopy were amonth the techniques used. Ga co-implantation increased the C activation in two steps: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer, reducing the number of compensating native defects. In InP, the behavior of C was different from that in GaAs. C acts as n-type dopant in the In site; however, its incorporation by implantation was difficult to control; experiments using P co-implants were inconsistent. The lattice position of inactive C in GaAs in implanted and epitaxial layers is discussed; evidence for formation of C precipitates in GaAs and InP was found. Correlation of the results with literature on C doping in III-V semiconductors led to a phenomenological description of C in III-V compounds (particularly GaAs): The behavior of C is controlled by the chemical nature of C and the instrinsic Fermi level stabilization energy of the material.

  19. Plasma deposition of amorphous hydrogenated carbon films on III-V semiconductors

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Warner, Joseph D.; Liu, David C.; Alterovitz, Samuel A.

    1988-01-01

    Amorphous hydrogenated carbon films were grown on GaAs, InP and fused silica substrates using plasmas generated from hydrocarbon gases. Methane and n-butane sources were utilized. The effects of flow rate and power density on film growth were investigated. Carbon was the major constituent in the films. The degree of asymmetry at the carbon-semiconductor interface was approximately independent of the power density. Different H-C bonding configurations were detected by the technique of secondary-ion mass spectrometry. Band gaps up to 3 eV were obtained from optical absorption studies. Breakdown strengths as high as 600 MV/m were measured.

  20. Surface passivation of heavily boron or phosphorus doped crystalline silicon utilizing amorphous silicon

    NASA Astrophysics Data System (ADS)

    Carstens, K.; Dahlinger, M.

    2016-05-01

    Excellent surface passivation of heavily boron or phosphorus doped crystalline silicon is presented utilizing undoped hydrogenated amorphous silicon (a-Si:H). For passivating boron doped crystalline silicon surfaces, amorphous silicon needs to be deposited at low temperatures 150°C ≤Tdep≤200°C , leading to a high bandgap. In contrast, low bandgap amorphous silicon causes an inferior surface passivation of highly boron doped crystalline silicon. Boron doping in crystalline silicon leads to a shift of the Fermi energy towards the valence band maximum in the undoped a-Si:H. A simulation, implementing dangling bond defects according to the defect pool model, shows this shift in the undoped a-Si:H passivation to be more pronounced if the a-Si:H has a lower bandgap. Hence, the inferior passivation of boron doped surfaces with low bandgap amorphous silicon stems from a lower silicon-hydrogen bond energy due to this shift of the Fermi energy. Hydrogen effusion and ellipsometry measurements support our interpretation.

  1. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    SciTech Connect

    El-Toni, Ahmed Mohamed . E-mail: el-toni@mail.tagen.tohoku.ac.jp; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-07-12

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles.

  2. Ion implantation induced defect formation and amorphization in the Group IV semiconductors: Diamond, silicon and germanium

    NASA Astrophysics Data System (ADS)

    Hickey, Diane P.

    Silicon, which has been the workhorse of the semiconductor industry for the past several decades, is now being enhanced with other Group IV elements, such as carbon (silicon carbide) and germanium (silicon-germanium strained channels in transistors), to accentuate properties of silicon for various nanoelectronic devices. However, there is little understanding of the relationship between ion implantation and defect evolution in two of the three corners of the Group IV phase diagram. In particular, the rod-like {311} defect is theorized to be unique to the diamond crystal structure elements. Due to its ability to affect dopant diffusion, the {311} defect is well studied in silicon. However, few studies of germanium and none of diamond have analyzed extended defect formation and evolution using transmission electron spectroscopy. Using ion implantation to induce amorphization is a technological process step in Si devices and potentially for diamond nano-electronics. Defects associated with crystal regrowth in Ge and diamond are not well known. My research studies the formation conditions of extended defects and amorphization in carbon and germanium after ion implantation. Ion implantation damage in diamond-cubic single-crystal silicon, germanium and diamond was produced by Si+ implantation at 1 MeV to a dose of 1 x 1014 cm-2 and 1 x 10 15 cm-2. Damage in Si and Ge was produced by Si + implantation at 40 keV to a dose of 1 x 1014 cm-2 and 1 x 1015 cm-2, and amorphizing damage in diamond was produced by Si+ implantation at 1 MeV to a dose of 3 and 7 x 1015 cm-2. All implants were carried out at room temperature. For non-amorphizing implants (1014 Si+ cm-2) into Ge, dot-like defects formed immediately upon implantation and were stable up to temperatures of 650°C. The activation energy of these defects was determined to be approximately 0.2 +/- 0.1 eV. For amorphizing implants (1015 Si+ cm-2) into Ge and upon solid-phase epitaxial regrowth, the same types of defects seen

  3. Compositions of doped, co-doped and tri-doped semiconductor materials

    DOEpatents

    Lynn, Kelvin; Jones, Kelly; Ciampi, Guido

    2011-12-06

    Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.

  4. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  5. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  6. Controlling the stoichiometry and doping of semiconductor materials

    DOEpatents

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  7. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  8. Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film

    SciTech Connect

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-11-10

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.

  9. Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-11-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.

  10. Optical Nonlinearities in Semiconductor Doped Glass Channel Waveguides.

    NASA Astrophysics Data System (ADS)

    Banyai, William Charles

    The nonlinear optical properties of a semiconductor -doped glass (SDG) channel waveguide were measured on a picosecond time-scale; namely, fluence-dependent changes in the absorption and the refractive index as well as the relaxation time of the nonlinearity. Slower, thermally -induced changes in the refractive index were also observed. The saturation of the changes in the absorption and the refractive index with increasing optical fluence is explained using a plasma model with bandfilling as the dominant mechanism. The fast relaxation time of the excited electron-hole plasma (20 ps) is explained using a surface-state recombination model. A figure of merit for a nonlinear directional coupler fabricated in a material with a saturable nonlinear refractive index is presented. The measured nonlinear change in the refractive index of the SDG saturates below the value required to effect fluence-dependent switching in a nonlinear directional coupler. Experiments with a channel-waveguide directional coupler support this prediction. However, absorption switching due to differential saturation of the absorption in the two arms of the directional coupler was observed.

  11. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current–voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current–voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  12. Catalytic doping of phosphorus and boron atoms on hydrogenated amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Seto, Junichi; Ohdaira, Keisuke; Matsumura, Hideki

    2016-04-01

    We investigate the low-temperature doping of phosphorus (P) and boron (B) atoms on hydrogenated amorphous silicon (a-Si:H) films by catalytic doping (Cat-doping). The conductivity of a-Si:H films increases as catalyzer temperature (T cat) increases, and the increase in conductivity is accompanied by a significant reduction in activation energy obtained from the Arrhenius plot of the conductivity. Secondary ion mass spectrometry (SIMS) measurement reveals that Cat-doped P and B atoms exist within ˜10-15 nm from the a-Si:H film surface, indicating that the shallow doping of P and B atoms is realized on a-Si:H films similarly to the case of Cat-doping on crystalline Si (c-Si) wafers. We also confirm no additional film deposition during Cat-doping. These results suggest that decomposed species are effectively doped on a-Si:H films similarly to the case of Cat-doping on c-Si.

  13. Erbium-doped amorphous silicon nitride light emitters for on-chip photonics applications

    NASA Astrophysics Data System (ADS)

    Yerci, Selcuk

    Silicon Photonics is considered as a viable, scalable and cost-effective solution to "the interconnect bottleneck" problem. However, the engineering of complementary metal oxide semiconductor (CMOS) compatible light sources is considered the biggest challenge of silicon photonics. Er-doped silicon-based structures are very promising candidates for 1.54 pm operation. Although Er-doped fiber lasers and amplifiers are available for long-haul communications, the small emission cross section of Er severely limits the applicability to small footprint (˜2.5 cm2) optical chip applications due to the small gain x length product. As a result, engineering strategies to boost emission efficiency and optical gain under both optical and electrical pumping in Er-doped CMOS materials need to be developed. Recently, energy sensitization of Er ions through Si-nanocrystals in Si-rich SiO2 films (Er:SRO) has been demonstrated with excitation cross sections (sigmaexc) of Er ions four-five orders of magnitude larger than sigmaabs. However, this approach suffers from the substantial free carrier losses introduced by Si-nanocrystals and the low fraction of optically active Er ions preventing net optical gain. Hence, novel materials approaches need to be developed. In this thesis, Er-doped amorphous silicon nitride (Er:SiNx) by N2 reactive sputtering is developed as a CMOS compatible platform for light sources operating under both optical and electrical pumping. The origin of visible PL of SiNx is explained by radiative transitions via localized states at the band-tails of SiNx. The efficient energy transfer between the localized band tails states in SiNx and Er ions is discussed and, sigmaexc is quantified. By performing temperature dependent studies, we demonstrated that the energy transfer is phonon-mediated. Er PL intensity and lifetime are optimized in ErSiN x by varying the fabrication parameters and a fundamental trade-off between Er excitation and emission efficiencies is

  14. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    DOE PAGESBeta

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; et al

    2016-01-27

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less

  15. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying

    SciTech Connect

    Korobova, N. Timoshenkov, S.; Almasov, N.; Prikhodko, O.; Tsendin, K.

    2014-10-21

    Structure of amorphous chalcogenide semiconductor glassy As-S-Se films, obtained by high-frequency (HF) ion-plasma sputtering has been investigated. It was shown that the length of the atomic structure medium order and local structure were different from the films obtained by thermal vacuum evaporation. Temperature dependence of dark conductivity, as well as the dependence of the spectral transmittance has been studied. Conductivity value was determined at room temperature. Energy activation conductivity and films optical band gap have been calculated. Temperature and field dependence of the drift mobility of charge carriers in the HF As-S-Se films have been shown. Bipolarity of charge carriers drift mobility has been confirmed. Absence of deep traps for electrons in the As{sub 40}Se{sub 30}S{sub 30} spectrum of localized states for films obtained by HF plasma ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous As{sub 40}Se{sub 30}S{sub 30} films obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

  16. Direct growth of single-crystalline III-V semiconductors on amorphous substrates

    NASA Astrophysics Data System (ADS)

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager, Joel W., III; Chrzan, Daryl C.; Javey, Ali

    2016-01-01

    The III-V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III-V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III-V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III-V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III-V's on application-specific substrates by direct growth.

  17. Electronic structure of intrinsic defects in non-stoichiometric amorphous In-Ga-Zn-O semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Woo Hyun; Chang, Kee Joo

    Amorphous oxide semiconductors, such as amorphous In-Ga-Zn-O (a-IGZO), have attracted much attention because of their use as a channel material in thin-film transistors (TFTs). Despite many advantages such as flexibility, transparency, and high electron mobility, a-IGZO based TFTs suffer from defects which cause the instability of threshold voltage under negative bias illumination stress (NBIS) as well as positive bias stress (PBS). Recently, we have proposed that O-vacancy and O-interstitial defects are responsible for the NBIS and PBS instabilities, respectively. In the previous studies, O-related defects were intentionally introduced in stoichiometric a-IGZO. Since the composition ratio is likely to be deviated from the ideal stoichiometry during fabrication, it is important to understand the electronic structure of non-stoichiometric a-IGZO. Here we perform density functional calculations to investigate the electronic structure of O-related defects in various a-IGZO systems with non-stoichiometric chemical compositions, which are generated through melt-and-quench molecular dynamics simulations. We consder both O-abundant and O-deficient samples and discuss the role of intrinsic defects in the device instability.

  18. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    PubMed Central

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali

    2016-01-01

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257

  19. Direct growth of single-crystalline III-V semiconductors on amorphous substrates.

    PubMed

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager Iii, Joel W; Chrzan, Daryl C; Javey, Ali

    2016-01-01

    The III-V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III-V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III-V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III-V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III-V's on application-specific substrates by direct growth. PMID:26813257

  20. Electrochemical lithium doping of a pentacene molecule semiconductor

    NASA Astrophysics Data System (ADS)

    Fang, Baizeng; Zhou, Haoshen; Honma, Itaru

    2005-06-01

    Li-doped pentacene has been developed by using an electrochemical approach; that is, constant-potential electrolysis. Li-doped pentacene was characterized by Raman spectrometry and x-ray diffraction measurements. Lithium doping introduces a modification of the C-H vibrational modes located at the end of pentacene molecules. A low doping level has been observed for electrochemical synthesis of Li-doped pentacene, and lithium species are supposed to be intercalated between the two-dimensional pentacene layers. The lithium-doped pentacene exhibits a conductivity of ˜6×10-3Scm-1.

  1. Electroless chemical grafting of nitrophenyl groups on n-doped hydrogenated amorphous silicon surfaces.

    PubMed

    Kim, Chulki; Oh, Kiwon; Han, Seunghee; Kim, Kyungkon; Kim, Il Won; Kim, Heesuk

    2014-08-01

    The direct spontaneous grafting of 4-nitrophenyl molecules onto n-doped hydrogenated amorphous silicon (a-Si:H) surfaces without external ultraviolet, thermal, or electrochemical energy was invegtigated. Clean n-doped a-Si:H thin films were dipped in a solution of 4-nitrobenzenediazonium salts (PNBD) in acetonitrile. After the modified surfaces were rinsed, they were analyzed qualitatively and quantitatively by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS and AFM results show that the reaction of an n-doped a-Si:H thin film with PNBD self-terminates without polymerization, after 5 h, and the surface number density of 4-nitrophenyl molecules is 4.2 x 10(15)/cm2. These results demonstrate that the spontaneous grafting of nitrophenyl layers onto n-doped a-Si:H thin films is an attractive pathway toward forming interfaces between a-Si:H and organic layers under ambient conditions. PMID:25936109

  2. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  3. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  4. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    SciTech Connect

    Gelinck, G. H.; Breemen, A. J. J. M. van; Cobb, B.

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  5. Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation.

    PubMed

    Jang, Jun Tae; Park, Jozeph; Ahn, Byung Du; Kim, Dong Myong; Choi, Sung-Jin; Kim, Hyun-Suk; Kim, Dae Hwan

    2015-07-22

    Persistent photoconduction (PPC) is a phenomenon that limits the application of oxide semiconductor thin-film transistors (TFTs) in optical sensor-embedded displays. In the present work, a study on zinc oxynitride (ZnON) semiconductor TFTs based on the combination of experimental results and device simulation is presented. Devices incorporating ZnON semiconductors exhibit negligible PPC effects compared with amorphous In-Ga-Zn-O (a-IGZO) TFTs, and the difference between the two types of materials are examined by monochromatic photonic C-V spectroscopy (MPCVS). The latter method allows the estimation of the density of subgap states in the semiconductor, which may account for the different behavior of ZnON and IGZO materials with respect to illumination and the associated PPC. In the case of a-IGZO TFTs, the oxygen flow rate during the sputter deposition of a-IGZO is found to influence the amount of PPC. Small oxygen flow rates result in pronounced PPC, and large densities of valence band tail (VBT) states are observed in the corresponding devices. This implies a dependence of PPC on the amount of oxygen vacancies (VO). On the other hand, ZnON has a smaller bandgap than a-IGZO and contains a smaller density of VBT states over the entire range of its bandgap energy. Here, the concept of activation energy window (AEW) is introduced to explain the occurrence of PPC effects by photoinduced electron doping, which is likely to be associated with the formation of peroxides in the semiconductor. The analytical methodology presented in this report accounts well for the reduction of PPC in ZnON TFTs, and provides a quantitative tool for the systematic development of phototransistors for optical sensor-embedded interactive displays. PMID:26094854

  6. Structural analysis of a completely amorphous {sup 238}Pu-doped zircon by neutron diffraction.

    SciTech Connect

    Fortner, J. A.; Badyal, Y.; Price, D. C.; Hanchar, J. M.; Weber, W. J.; Materials Science Division; PNNL

    1999-01-01

    The structure of a completely amorphous zircon was determined by time-of-flight neutron diffraction at Argonne's Intense Pulsed Neutron Source (IPNS). The sample of metamict zircon (ZrSiO{sub 4}), initially doped to 8.85 weight percent {sup 238}Pu, had been completely amorphized by alpha-recoil damage since its synthesis in 1981 at the Pacific Northwest National Laboratory (PNNL). The measured diffraction structure factor, S(Q), indicated a completely amorphous sample, with no signs of residual zircon microcrystallinity. The pair distribution function obtained indicated that the structure was that of an oxide glass, retaining the Si-0, Zr-0, and O-O bond lengths of crystalline zircon.

  7. Structural analysis of a completely amorphous {sup 238}Pu-doped zircon by neutron diffraction.

    SciTech Connect

    Fortner, J. A.

    1998-12-16

    The structure of a completely amorphous zircon was determined by time-of-flight neutron diffraction at Argonne's Intense Pulsed Neutron Source (IPNS). The sample of metamict zircon (ZrSiO{sub 4}),initially doped to 8.85 weight percent {sup 238}Pi, had been completely amorphized by alpha-recoil damage since its synthesis in 1981 at the Pacific Northwest National Laboratory (PNNL). The measured diffraction structure factor, S(Q), indicated a completely amorphous sample, with no signs of residual zircon microcrystallinity. The pair distribution function obtained indicated that the structure was that of an oxide glass, retaining the Si-0, Zr-0, and O-O bond lengths of crystalline zircon.

  8. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Rentería-Tapia, V.; Aguilar-Franco, M.

    2011-06-01

    In this work, amorphous and crystalline TiO2 films were synthesized by the sol-gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.

  9. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    SciTech Connect

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S.

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  10. Tin-Doped Inorganic Amorphous Films for Use as Transparent Monolithic Phosphors

    PubMed Central

    Masai, Hirokazu; Miyata, Hiroki; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Kanemitsu, Yoshihiko

    2015-01-01

    Although inorganic crystalline phosphors can exhibit high quantum efficiency, their use in phosphor films has been limited by a reliance on organic binders that have poor durability when exposed to high-power and/or high excitation energy light sources. To address this problem, Sn2+ -doped transparent phosphate films measuring several micrometers in thickness have been successfully prepared through heat treatment and a subsequent single dip-coating process. The resulting monolithic inorganic amorphous film exhibited an internal quantum efficiency of over 60% and can potentially utilize transmitted light. Analysis of the film’s emissivity revealed that its color can be tuned by changing the amount of Mn and Sn added to influence the energy transfer from Sn2+ to Mn2+. It is therefore concluded that amorphous films containing such emission centers can provide a novel and viable alternative to conventional amorphous films containing crystalline phosphors in light-emitting devices. PMID:26061744

  11. Tin-Doped Inorganic Amorphous Films for Use as Transparent Monolithic Phosphors.

    PubMed

    Masai, Hirokazu; Miyata, Hiroki; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Kanemitsu, Yoshihiko

    2015-01-01

    Although inorganic crystalline phosphors can exhibit high quantum efficiency, their use in phosphor films has been limited by a reliance on organic binders that have poor durability when exposed to high-power and/or high excitation energy light sources. To address this problem, Sn(2+)-doped transparent phosphate films measuring several micrometers in thickness have been successfully prepared through heat treatment and a subsequent single dip-coating process. The resulting monolithic inorganic amorphous film exhibited an internal quantum efficiency of over 60% and can potentially utilize transmitted light. Analysis of the film's emissivity revealed that its color can be tuned by changing the amount of Mn and Sn added to influence the energy transfer from Sn(2+) to Mn(2+). It is therefore concluded that amorphous films containing such emission centers can provide a novel and viable alternative to conventional amorphous films containing crystalline phosphors in light-emitting devices. PMID:26061744

  12. Laser induced melting and crystallization of boron doped amorphous silicon

    SciTech Connect

    Nebel, C.E.; Schoeniger, S.; Dahlheimer, B.; Stutzmann, M.

    1997-07-01

    Transient reflectivity experiments have been performed to measure the dynamics of laser-induced melting of amorphous silicon (a-Si) and the crystallization to {micro}c-Si of films with different thicknesses on Corning 7059 glass. The laser-induced melting takes place with a velocity of 13 to 24 m/s, while the solidification is about a factor 10 slower. The crystallization starts at the Si/glass interface and at the surface. In the center of the films Si remains liquid for an extended period of time. The crystallization dynamics point towards an heterogeneous morphology of laser-crystallized Si, where the surface and the interface layers are composed of small grains and the bulk of larger grains.

  13. Kelvin probe force microscopy for characterizing doped semiconductors for future sensor applications in nano- and biotechnology

    NASA Astrophysics Data System (ADS)

    Schmidt, Heidemarie; Habicht, Stefan; Feste, Sebastian; Müller, Anne-Dorothea; Schmidt, Oliver G.

    2013-09-01

    Kelvin probe force microscopy (KPFM) is one of the most promising non-contact electrical nanometrology techniques to characterize doped semiconductors. By applying a recently introduced explanation of measured KPFM signals, we show the applicability of KPFM to determine and control surface-near electrostatic forces in planar doped silicon and in doped silicon nanostructures. Surface-near electrostatic forces may be used for the immobilization of nano- and biomaterials in future sensor applications in nano- and biotechnology. Additionally, the influence of the electrostatic potential distribution in doped semiconductor nanostructures, e.g. in horizontal Si nanowires, and its influence on the surface-near electrostatic forces are discussed. It is explained how drift and diffusion of injected electrons and holes in intrinsic electric fields influence the detected KPFM signal. For example KPFM is successfully employed to locate p+p and n+p junctions along B-doped and As-doped p-Si nanowires, respectively. As an outlook the physical immobilization and the transport of biomaterials above arrays of separately addressable doped semiconductor cells will be discussed.

  14. Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2.

    PubMed

    Ghuman, Kulbir Kaur; Singh, Chandra Veer

    2013-11-27

    Visible light photocatalysts based on doped crystalline forms of titanium dioxide (TiO2) have attracted significant scientific attention in recent decades. Amorphous TiO2, despite many merits over crystalline phases, has not been studied as thoroughly. In this paper, an in-depth analysis of the electronic properties of doped amorphous TiO2 is performed using density functional theory with Hubbard's energy correction (DFT + U). Monodoping with p-type (N) and n-type (Nb) dopants shows appreciable bandgap reduction, but leads to recombination centers due to the presence of uncompensated charges. To resolve this issue, charge compensation via codoping is attempted. The charge compensated codoping not only reduces the bandgap by 0.4 eV but also eliminates the bandgap states present in monodoped systems responsible for charge carrier recombination. Furthermore, the localized tail states present in the aTiO2 system are eliminated to a large extent which leads to a decrease in the charge recombination and an increase in the charge migration. Thus, appropriate doping of amorphous TiO2 may lead to an alternative route for the development of visible light photocatalysts. PMID:24172752

  15. Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2

    NASA Astrophysics Data System (ADS)

    Ghuman, Kulbir Kaur; Veer Singh, Chandra

    2013-11-01

    Visible light photocatalysts based on doped crystalline forms of titanium dioxide (TiO2) have attracted significant scientific attention in recent decades. Amorphous TiO2, despite many merits over crystalline phases, has not been studied as thoroughly. In this paper, an in-depth analysis of the electronic properties of doped amorphous TiO2 is performed using density functional theory with Hubbard’s energy correction (DFT + U). Monodoping with p-type (N) and n-type (Nb) dopants shows appreciable bandgap reduction, but leads to recombination centers due to the presence of uncompensated charges. To resolve this issue, charge compensation via codoping is attempted. The charge compensated codoping not only reduces the bandgap by 0.4 eV but also eliminates the bandgap states present in monodoped systems responsible for charge carrier recombination. Furthermore, the localized tail states present in the aTiO2 system are eliminated to a large extent which leads to a decrease in the charge recombination and an increase in the charge migration. Thus, appropriate doping of amorphous TiO2 may lead to an alternative route for the development of visible light photocatalysts.

  16. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-05-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga1-x,Fex)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  17. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    SciTech Connect

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V.

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  18. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    PubMed

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi

  19. Pulsed laser ablation growth and doping of epitaxial compound semiconductor films

    SciTech Connect

    Lowndes, D.H.; Rouleau, C.M.; Geohegan, D.B.; Budai, J.D.; Poker, D.B.; Puretzky, A.A.; Strauss, M.A.; Pedraza, A.J.; Park, J.W.

    1995-12-01

    Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam assisted surface and/or gas-phase reactions. In this paper the authors describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II-VI, I-III-VI, and column-III nitride materials grown recently in this and other laboratories.

  20. Inverted xerographic depletion discharge mechanism for the dark decay of electrostatic surface potential on amorphous semiconductors

    SciTech Connect

    Kasap, S.O.

    1988-07-01

    Recently, the xerographic depletion discharge (XDD) model has been applied extensively to chemically modified a-Se, a-Se/sub 1/..sqrt../sub x/Te/sub x/ alloys, and a-As/sub 2/Se/sub 3/ as well as to a-Si:H films to study the nature of charge carrier generation from deep mobility gap states which control the dark decay of the electrostatic surface potential on a corona charged amorphous semiconductor. In the normal XDD model, the dark discharge involves bulk thermal generation of a mobile carrier of the same sign as the surface charge and its subsequent sweep out from the sample leaving behind an ionized center of opposite charge. It is shown that an ''inverted depletion discharge'' mechanism, which involves the thermal generation of a mobile charge carrier of the opposite sign to the surface charge and its subsequent drift to the surface and the resulting surface charge neutralization there, results in a dark discharge rate which has identical features as the normal XDD mechanism. In the normal XDD mechanism, the neutral region develops after the depletion time from the grounded electrode, whereas in the inverted XDD mechanism the neutral region grows from the surface. Furthermore, during inverted depletion discharge the surface charge is actually dissipated by neutralization, whereas in the normal depletion discharge model there is no such requirement over the time scale of the experiment. It is concluded that xerographic dark decay experiments alone cannot determine the sign of the thermally generated mobile carrier and that of the bulk space charge. Chemically modified amorphous selenium case is discussed as an example of surface potential decay resulting from bulk space-charge buildup.

  1. Controlling ferromagnetism of (In,Fe)As semiconductors by electron doping

    SciTech Connect

    Dang Vu, Nguyen; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori

    2014-02-21

    Based on experimental results, using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method and Monte Carlo simulation, we study the mechanism of ferromagnetic behavior of (In,Fe)As. We show that with doped Be atoms occupying in interstitial sites, chemical pair interactions between atoms and magnetic exchange interactions between Fe atoms change due to electron concentration. Therefore, by controlling the doping process, magnetic behavior of (In,Fe)As is controlled and ferromagnetism is observed in this semiconductor.

  2. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  3. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  4. Oxygen deficiency and Sn doping of amorphous Ga2O3

    NASA Astrophysics Data System (ADS)

    Heinemann, M. D.; Berry, J.; Teeter, G.; Unold, T.; Ginley, D.

    2016-01-01

    The potential of effectively n-type doping Ga2O3 considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaOx is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaOx thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence on the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaOx layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaOx as an electron transport layer in Cu(In,Ga)Se2 and in Cu2O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.

  5. Nonlinear optical transmission of an integrated optical bent coupler in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Guntau, Matthias; Possner, Torsten; Braeuer, Andreas H.; Dannberg, Peter

    1991-08-01

    A technology for monomode slab and strip waveguide fabrication in semiconductor-doped glasses (SDG) is presented. On this basis, directional couplers consisting of both parallel (DC) and bent (BC) couplers of strip waveguides were realized. The optically linear and nonlinear behavior of these devices is described.

  6. Second harmonic generation in ion-exchanged waveguides of semiconductor microcrystallite-doped glasses

    NASA Astrophysics Data System (ADS)

    MacDonald, R. L.; Driscoll, T. J.; Lawandy, N. M.

    1991-09-01

    The first observations of optically encoded secondary harmonic generation in waveguides written in semiconductor doped glasses (SDGs) is reported. This new property should extend the usefulness of SDG to integrated optical systems where switching as well as frequency doubling may be required. The first ion-exchanged waveguide fabrication in potassium-based glasses is also reported.

  7. Chalcogenide amorphous nanoparticles doped poly (methyl methacrylate) with high nonlinearity for optical waveguide

    NASA Astrophysics Data System (ADS)

    Xue, Xiaojie; Nagasaka, Kenshiro; Cheng, Tonglei; Deng, Dinghuan; Zhang, Lei; Liu, Lai; Suzuki, Takenobu; Ohishi, Yasutake

    2015-03-01

    Nonlinear optical polymers show promising potential applications in photonics, for example, electro-optical devices. Poly (methyl methacrylate) (PMMA) is widely used in optical waveguides, integrated optics and optical fibers. However, PMMA has not been used for nonlinear optical waveguides since it has a low nonlinear refractive index. We successfully prepared chalcogenide amorphous nanoparticles doped PMMA that had a high nonlinearity. The As3S7 bulk glass was dissolved in propylamine to form a cluster solution. Then the As3S7/propylamine solution was added into methyl methacrylate (MMA) containing photoinitiator Irgacure 184 about 0.5 wt%. After well mixing the As3S7 nanoparticle doped MMA was transparent. Under the irradiation by a 365 nm UV lamp, As3S7 nanoparticles doped PMMA was obtained with yellow color. The third-order nonlinear optical susceptibility of As3S7 nanoparticles doped PMMA was investigated. An optical waveguide array based on the As3S7 nanoparticles doped PMMA composite of high nonlinearity was fabricated.

  8. Chemical vapor deposition of amorphous semiconductor films. Semiannual report, 1 May 1983-31 October 1984

    SciTech Connect

    Not Available

    1984-03-01

    This report presents an analysis of intrinsic and phosphorus-doped n-type amorphous silicon films deposited by LPCVD from disilane in a laminar flow tubular reactor. These films were analyzed using SIMs, ESR measurements, optical absorption, and conductivity in light and dark. CVD deposited i layers were used to make platinum Schottky barrier devices and hybrid cells utilizing glow discharge deposited layers in both the ITO/nip/Mo and ITO/pin/Mo configurations. The highest efficiency of hybrid cells with the ITO/ni(CVD)/p(GD)/Mo structure was approximately 1.5%. The highest efficiencies were obtained with thin i layers. The highest efficiency for the ITO/p(GD)/in(CVD)/Mo configuration was 4.0%. A chemical model was developed describing the gas phase reactions and film growth; the model quantitatively describes the effluent composition when the measured growth rate is input. Kinetic rate expressions and constants for growth from higher silanes are being determined for a wide range of reaction conditions.

  9. Chemical vapor deposition of amorphous semiconductor films. Semiannual report, 1 May 1984-31 October 1984

    SciTech Connect

    Baron, B.N.; Rocheleau, R.E.; Hegedus, S.S.

    1985-06-01

    This report describes the results of research done by the Institute of Energy Conversion for the Solar Energy Research Institute in 1984 on high-efficiency, stable, amorphous silicon solar cells, fabricated by chemical vapor deposition (CVD) from disilane at high growth rates. The kinetics of CVD with higher order silanes were modelled for a tubular reactor with static substrates. A gas-phase reaction network was adopted, based on published silylene insertion and decomposition pathways. Mass balances for hydrogen and all saturated silanes through octasilane were derived. Boron-doped a-Si:H p-layers were deposited by CVD at 200/sup 0/ to 250/sup 0/C. Band gap and conductivity depended strongly on the diborane fraction in the feed gas, independent of substrate temperature. The effects of intrinsic layer deposition temperature and growth rate on material properties and device performance were studied. Cell parameters of p-i-n cells were correlated with i-layer deposition temperature and growth rate. Fill factor and short-circuit current depended on deposition conditions, while open-circuit voltage did not. Effects of diborane additions to the feed gas during i-layer deposition were studied. Experimental evidence and calculations indicate high resistance at the back contact.

  10. Spectroscopy of Charge Carriers and Traps in Field-Doped Organic Semiconductors

    SciTech Connect

    Zhu, Xiaoyang; Frisbie, C Daniel

    2012-08-13

    This research project aims to achieve quantitative and molecular level understanding of charge carriers and traps in field-doped organic semiconductors via in situ optical absorption spectroscopy, in conjunction with time-resolved electrical measurements. During the funding period, we have made major progress in three general areas: (1) probed charge injection at the interface between a polymeric semiconductor and a polymer electrolyte dielectric and developed a thermodynamic model to quantitatively describe the transition from electrostatic to electrochemical doping; (2) developed vibrational Stark effect to probe electric field at buried organic semiconductor interfaces; (3) used displacement current measurement (DCM) to study charge transport at organic/dielectric interfaces and charge injection at metal/organic interfaces.

  11. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    SciTech Connect

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-10-21

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  12. Low-Temperature Solution Processing of Amorphous Metal Oxide Semiconductors for High-Performance Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Hennek, Jonathan W.

    The growing field of large-area flexible electronics presents the need for amorphous materials with electrical performances superior to amorphous hydrogenated silicon (a-Si:H). Metal oxide semiconductors show great promise in thin film transistors (TFTs) due to their high electron mobility (micro, 1--100 cm2V-1s-1), mechanical flexibility, and electrical stability. However, most oxide semiconductor fabrication still relies on expensive, inflexible and energy intensive vacuum deposition methods. To overcome these limitations, my thesis work has focused on developing low-temperature solution processing routes to functional metal oxide materials. In Chapter 2, we demonstrate an optimized "ink" and printing process for inkjet patterning of amorphous indium gallium zinc oxide (a-IGZO) and investigate the effects of device structure on derived electron mobility. Bottom-gate top-contact (BGTC) TFTs are fabricated and shown to exhibit electron mobilities comparable to a-Si:H. Furthermore, a record micro of 2.5 cm 2V-1s-1 is demonstrated for bottom-gate bottom-contact (BGBC) TFTs. The mechanism underlying such impressive performance is investigated using transmission line techniques, and it is shown that the semiconductor-source/drain electrode interface contact resistance is nearly an order of magnitude lower for BGBC transistors versus BGTC devices. In Chapter 3, we report the implementation of amorphous indium yttrium oxide (a-IYO) as a TFT semiconductor for the first time. Amorphous and polycrystalline IYO films are grown via a low-temperature solution process utilizing exothermic "combustion" precursors. Precursor transformation and the IYO films are analyzed by DTA, TGA, XRD, AFM, XPS, and optical transmission, revealing efficient conversion to the metal-oxide lattice, and smooth, transparent films. a-IYO TFTs fabricated with a hybrid nanodielectric exhibit impressive electron mobilities of 7.3 cm2V-1s-1 (Tanneal = 300 °C) and 5.0 cm2V-1s -1 (Tanneal = 250 °C) for 2

  13. Characteristics of Cu-doped amorphous NiO thin films formed by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sato, Kazuya; Kim, Sangcheol; Komuro, Shuji; Zhao, Xinwei

    2016-06-01

    Transparent conducting Cu-doped NiO thin films were deposited on quartz glass substrates by radio frequency magnetron spattering. The fabricated thin films were all in amorphous phase. A relatively high transmittance of 73% was achieved. The density ratio of Ni3+/(Ni2+ + Ni3+) ions in the films decreased with increasing O2 gas pressure in the fabrication chamber, which caused a decrease in the carrier concentration of the films. The increasing pressure also led to the increase in Hall mobility. By controlling the chamber pressure and substrate temperature, p-type transparent conducting NiO films with reasonable electrical properties were obtained.

  14. Optical constants of amorphous, transparent titanium-doped tungsten oxide thin films.

    PubMed

    Ramana, C V; Baghmar, Gaurav; Rubio, Ernesto J; Hernandez, Manuel J

    2013-06-12

    We report on the optical constants and their dispersion profiles determined from spectroscopic ellipsometry (SE) analysis of the 20%-titanium (Ti) doped of tungsten oxide (WO3) thin films grown by sputter-deposition. The Ti-doped WO3 films grown in a wide range of temperatures (25-500 °C) are amorphous and optically transparent. SE data indicates that there is no significant interdiffusion at the film-substrate interface for a W-Ti oxide film growth of ~90 nm. The index refraction (n) at λ = 550 nm vary in the range of 2.17-2.31 with a gradual increase in growth temperature. A correlation between the growth conditions and optical constants is discussed. PMID:23682744

  15. Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Yang, Jun; Zheng, Jianyun; Liang, Yongmin; Liu, Weimin

    2011-09-01

    Silicon (Si) and aluminum (Al) co-doped amorphous carbon films ((Si, Al)-C:H) were deposited on Si and stainless steel substrates by radio frequency (13.56 MHz) magnetron sputtering. The Al and Si were found to jointly regulate the hybridized carbon bonds. Mechanical properties of the films were detected by nano-indention and scratch tests. The nano-indention results revealed that all the samples exhibited good elastic recovery rate, among which the highest one was beyond 84%. Besides co-regulating the hybridizations of carbon, the co-doped Si and Al also had a common regulation on the mechanical and tribological properties. Especially, the film containing 1.6 at. % of Si and 0.9 at. % of Al showed a super-low friction (< 0.01) and a superior wear resistance in ambient air.

  16. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO{sub 2}/Si

    SciTech Connect

    Ma Ming; Xue Qingzhong; Chen Huijuan; Zhou Xiaoyan; Xia Dan; Lv Cheng; Xie Jie

    2010-08-09

    The Pd doped amorphous carbon (a-C:Pd) films were deposited on n-Si substrates with or without a native SiO{sub 2} layer using magnetron sputtering. The photovoltaic characteristics of the a-C:Pd/SiO{sub 2}/Si and a-C:Pd/Si junctions were studied. It is found that under light illumination of 15 mW/cm{sup 2} at room temperature, the a-C:Pd/SiO{sub 2}/Si solar cell fabricated at 350 deg. C has a high power conversion efficiency of 4.7%, which is much better than the a-C/Si junctions reported before. The enhanced conversion efficiency is ascribed to the Pd doping and the increase in sp{sup 2}-bonded carbon clusters in the carbon film caused by the high temperature deposition.

  17. Colossal positive magnetoresistance in a doped nearly magnetic semiconductor

    SciTech Connect

    Hu, R.; Thomas, K.; Lee, Y.; Vogt, T.; Choi, E.; Mitrovic, V.; Hermann, R.; Grandjean, F.; Canfield, P.; Kim, J.; Goldman, A.; Petrovic, C.

    2008-02-27

    We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb{sub 2}, a nearly magnetic or 'Kondo' semiconductor with 3d ions. We discuss the contribution of orbital MR and quantum interference to the enhanced magnetic field response of electrical resistivity.

  18. Doping-assisted defect control in compound semiconductors

    DOEpatents

    Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell

    2006-07-11

    The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.

  19. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.

    PubMed

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca I; Kleider, Jean-Paul; Yao, Fei; Hee Lee, Young

    2016-10-12

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n‑ or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq(-1) to 1260 Ω sq(-1) for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm(2) V(-1) s(-1) indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications. PMID:27506254

  20. Role of lone-pair electrons in Sb-doped amorphous InGaZnO4: Suppression of the hole-induced lattice instability

    NASA Astrophysics Data System (ADS)

    Nahm, Ho-Hyun; Kim, Yong-Sung

    2013-04-01

    Transparent amorphous oxide semiconductors (TAOS's) are of practical importance for applications including oxide electronics and displays. Here we show the lone-pair s-electrons incorporated by for example Sb-doping can suppress the hole-induced lattice instability, which has been a major obstacle to commercial application of the TAOS-based thin film transistors. The Sb(III)-O spσ* hybridization in the top-most valence states makes the lone-pair s-electrons to capture the excited holes, the Sb(V)O6 octahedral bonding configuration by which formed is easily dissociated into the stable lone-pair Sb(III) state by recapturing conduction electrons.

  1. Molecular semiconductor-doped insulator (MSDI) heterojunctions as new transducers for chemical sensors

    NASA Astrophysics Data System (ADS)

    Bouvet, M.; Parra, V.; Suisse, J.-M.

    2011-12-01

    This article describes a new principle of transduction involving an heterojunction between a Molecular Semiconductor and a Doped Insulator (MSDI). Herein, we report on an MSDI-based sensor featuring an heterojunction between a lutetium bisphthalocyanine (LuPc2), which acts as Molecular Semiconductor (MS) and a thin film of Doped Insulator (DI) made of substituted or fluorinated copper phthalocyanine (CuFnPc, where n = 0, 8, 16). Previously, we reported the peculiar effect of the heterojunction on the MSDI's electronic behavior, suggesting this device as a new kind of transducer for gas chemosensing. Indeed, of particular significance was the key role of modulator played by the nature of the doped insulator sub-layer. While the MS thin film remains the only layer of the sensor exposed to gas atmosphere, the DI's ability to tune the electronic characteristics of the organic heterojunction allows it to drastically affect the nature of the effective charge carriers. In particular, an increase in fluorination of the doped insulator can cause an inversion of the LuPc2 response toward electron accepting (ozone, ppb level) or donating (ammonia, ppm level) gases. The present work focuses on the structural, electronic and electrical properties of the MSDI heterojunction, which have been studied by UV-vis spectroscopy, atomic force microscopy, current-voltage measurements and chemical doping, in order to shed some light on this phenomenon. The unique ambipolar nature of LuPc2 is suggested to be the main property responsible for the MSDI's unique behavior.

  2. The doping of the polyimide alignment layer by semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Galin, I. F.; Gavrish, E. O.; Vakulin, D. A.

    2013-08-01

    We investigated the electro-optic properties of nematic liquid crystal cells oriented by polyimide (PI) layer doped with 3.5 nm semiconductor quantum dots (QDs) CdSe/ZnS at concentrations of 0.05 and 0.1 wt. %. It is shown that doping PI orienting layer by QDs reduces the permittivity and the phase delay, as well as increases the electrical resistance of the cells. Also we observed deceleration of liquid crystal (LC) optical response caused by the screening effect of the orienting layer.

  3. Diamond Film Gas Sensors for Leak Detection of Semiconductor Doping Gases

    NASA Astrophysics Data System (ADS)

    Hayashi, Kazushi; Yokota, Yoshihiro; Tachibana, Takeshi; Miyata, Koichi; Kobashi, Koji; Fukunaga, Tetsuya; Takada, Tadashi

    2000-01-01

    Gas sensors for leak detection of toxic semiconductor doping gases such as PH3, B2H6, and AsH3 were fabricated using diamond films. The sensors have a double-layered structure composed of undoped and B-doped polycrystalline diamond layers with Pt electrodes. The relative changes in the resistance of the sensors were typically 10-20% for 0.2 ppm PH3 in air, and the highest value was over 100%. It was concluded that the diamond film gas sensors fabricated in the present work would be practically applicable as compact solid-state sensors with an advantage over the conventional aqueous electrolyte sensors.

  4. Ferromagnetism in Dilute Magnetic Semiconductors through Defect Engineering: Li-Doped ZnO

    NASA Astrophysics Data System (ADS)

    Yi, J. B.; Lim, C. C.; Xing, G. Z.; Fan, H. M.; van, L. H.; Huang, S. L.; Yang, K. S.; Huang, X. L.; Qin, X. B.; Wang, B. Y.; Wu, T.; Wang, L.; Zhang, H. T.; Gao, X. Y.; Liu, T.; Wee, A. T. S.; Feng, Y. P.; Ding, J.

    2010-04-01

    We demonstrate, both theoretically and experimentally, that cation vacancy can be the origin of ferromagnetism in intrinsic dilute magnetic semiconductors. The vacancies can be controlled to tune the ferromagnetism. Using Li-doped ZnO as an example, we found that while Li itself is nonmagnetic, it generates holes in ZnO, and its presence reduces the formation energy of Zn vacancy, and thereby stabilizes the zinc vacancy. Room temperature ferromagnetism with p type conduction was observed in pulsed laser deposited ZnO:Li films with certain doping concentration and oxygen partial pressure.

  5. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO.

    PubMed

    Yi, J B; Lim, C C; Xing, G Z; Fan, H M; Van, L H; Huang, S L; Yang, K S; Huang, X L; Qin, X B; Wang, B Y; Wu, T; Wang, L; Zhang, H T; Gao, X Y; Liu, T; Wee, A T S; Feng, Y P; Ding, J

    2010-04-01

    We demonstrate, both theoretically and experimentally, that cation vacancy can be the origin of ferromagnetism in intrinsic dilute magnetic semiconductors. The vacancies can be controlled to tune the ferromagnetism. Using Li-doped ZnO as an example, we found that while Li itself is nonmagnetic, it generates holes in ZnO, and its presence reduces the formation energy of Zn vacancy, and thereby stabilizes the zinc vacancy. Room temperature ferromagnetism with p type conduction was observed in pulsed laser deposited ZnO:Li films with certain doping concentration and oxygen partial pressure. PMID:20481907

  6. Local structure of amorphous GaN{sub 1-x}As{sub x} semiconductor alloys across the composition range

    SciTech Connect

    Levander, A. X.; Dubon, O. D.; Wu, J.; Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W.; Novikov, S. V.; Foxon, C. T.

    2013-06-28

    Typically only dilute (up to {approx}10%) highly mismatched alloys can be grown due to the large differences in atomic size and electronegativity of the host and the alloying elements. We have overcome the miscibility gap of the GaN{sub 1-x}As{sub x} system using low temperature molecular beam epitaxy. In the intermediate composition range (0.10 < x < 0.75), the resulting alloys are amorphous. To gain a better understanding of the amorphous structure, the local environment of the As and Ga atoms was investigated using extended x-ray absorption fine structure (EXAFS). The EXAFS analysis shows a high concentration of dangling bonds compared to the crystalline binary endpoint compounds of the alloy system. The disorder parameter was larger for amorphous films compared to crystalline references, but comparable with other amorphous semiconductors. By examining the Ga local environment, the dangling bond density and disorder associated with As-related and N-related bonds could be decoupled. The N-related bonds had a lower dangling bond density and lower disorder.

  7. Fabrication and characterization of thermomechanically processed sulfur and boron doped amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Carlson, Lonnie

    Small scale, high power density, reliable, and long-life power supplies would be useful or even critical for space missions or the growing number of microdetectors, microsensors, and miniature vehicles. Alpha or beta particle voltaic devices could satisfy these requirements but have been shown to degrade quickly due to radiation damage. Amorphous carbon (a-C) PN junctions or PIN devices could provide radiation hardness and sufficiently high efficiency. As the range of alpha and beta particles in a-C is ˜20-120microm, much thicker films than are typical are needed to maximize collection of the particle energy. In this work, the fabrication of thermomechanically processed p- and n-type doped a-C films were investigated as a first step in the future development of radiation hard voltaic devices. Boron carbide (B4C) powder was mixed with a-C nanopowders as a possible p-type dopant with sulfur powder utilized as a possible n-type dopant. Doping levels of 2.5at%, 5.0at%, and 10.0at% were investigated for both dopants with films pressed at 109°C over a pressure range of 0.3-5.0GPa. Initial attempts to fabricate rectifying PN junctions and PIN devices was unsuccessful. Bonding properties were characterized using Raman spectroscopy with electronic properties primarily assessed using the van der Pauw method. Undoped a-C and boron-doped films were found to be slightly p-type with sulfur-doped films converting to n-type. All films were found to consist almost entirely of nano-graphitic sp2 rings with only slight changes in disorder at different pressures. Sulfur doped films were less brittle which is indicative of crosslinking. Boron doping did not significantly change the film electronic properties and is not an effective dopant at these temperatures and pressures. Sulfur doping had a greater effect and could likely be utilized as basis for an n-type material in a device. Initial irradiation studies using alpha particles showed that boron and undoped films became more p

  8. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    PubMed

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized. PMID:27552134

  9. Self-assembly of doped semiconductor nanocrystals leading to the formation of highly luminescent nanorods

    NASA Astrophysics Data System (ADS)

    Manzoor, K.; Aditya, V.; Vadera, S. R.; Kumar, N.; Kutty, T. R. N.

    2006-03-01

    Meso-scale self-assembly of doped semiconductor nanocrystals leading to the formation of monocrystalline nanorods showing enhanced photo- and electro-luminescence properties are reported. Polycrystalline ZnS: Cu +-Al 3+ nanoparticles of zinc-blended (cubic) structure with an average size of ˜4 nm were aggregated in aqueous solution and grown into nanorods of length ˜400 nm and aspect ratio ˜12. Transmission electron microscope (TEM) images indicate crystal growth mechanisms involving particle-to-particle oriented-attachment assisted by sulphur-sulphur catenation leading to covalent-linkage. The nanorods exhibit self-assembly dependant luminescence properties such as quenching of the lattice defect-related emissions accompanied by enhancement of dopant-related emission, efficient low-voltage electroluminescence (EL) and super-linear voltage-brightness EL characteristics. This study demonstrates the technological importance of aggregation based self-assembly in doped semiconductor nanosystems.

  10. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers.

    PubMed

    Chen, Feng; Zhu, Ying-Jie; Zhang, Kui-Hua; Wu, Jin; Wang, Ke-Wei; Tang, Qi-Li; Mo, Xiu-Mei

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  11. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers

    PubMed Central

    2011-01-01

    Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres. A high specific surface area of the europium-doped ACP (Eu3+:ACP) porous nanospheres is achieved (126.7 m2/g). PL properties of Eu3+:ACP porous nanospheres are investigated, and the most intense peak at 612 nm is observed at 5 mol% Eu3+ doping. In vitro cytotoxicity experiments indicate that the as-prepared Eu3+:ACP porous nanospheres are biocompatible. In vitro drug release experiments indicate that the ibuprofen-loaded Eu3+:ACP porous nanospheres show a slow and sustained drug release in simulated body fluid. We have found that the cumulative amount of released drug has a linear relationship with the natural logarithm of release time (ln(t)). The Eu3+:ACP porous nanospheres are bioactive, and can transform to hydroxyapatite during drug release. The PL properties of drug-loaded nanocarriers before and after drug release are also investigated. PMID:21711603

  12. Small Reactor for Semiconductor Production by Neutron Transmutation Doping

    SciTech Connect

    Obara, Toru; Hong, Liem Peng

    2010-06-22

    New concept of small size nuclear reactor is proposed for Neutron Transmutation Doping (NTD). The reactor core consists of conventional PWR type fuel elements with light water moderator/coolant unlike conventional research reactors. Graphite reflector is employed for large neutron irradiation volume. Silicon ingots are put into the reflector region for irradiation. Neutronic analysis results show that this concept has possibility to product large amount of silicon ingots which have large diameter. An optimal reactor design and its performance are shown as a result of analysis in the paper.

  13. Electrostatic analysis of n-doped SrTiO3 metal-insulator-semiconductor systems

    NASA Astrophysics Data System (ADS)

    Kamerbeek, A. M.; Banerjee, T.; Hueting, R. J. E.

    2015-12-01

    Electron doped SrTiO3, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO3 systems show reasonably strong rectification even when SrTiO3 is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlOx in between the metal and n-SrTiO3 interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO3) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO3. The non-linear permittivity of n-SrTiO3 leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.

  14. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  15. Effects of molybdenum doping and thermal annealing on the physical properties of amorphous In–Zn–O films

    SciTech Connect

    Liu, Shiu-Jen; Wu, Kuei-Ching; Peng, Kun-Cheng

    2015-06-15

    Highlights: • The effects of Mo doping and thermal annealing on a-IZO films were studied. • The carrier mobility of Mo-doped a-IZO films was enhanced by thermal annealing. • The optical bandgap of a-IZO films was unaffected by Mo doping. • Ferromagnetism was observed in Mo-doped a-IZO films after annealing. - Abstract: Amorphous In–Zn–O (a-IZO) films doped with Mo were prepared on glass substrates by using magnetron co-sputtering technique. The Mo concentration was controlled by varying the sputtering power applied on the Mo target. The effects of Mo doping and thermal annealing on the electrical, optical and magnetic properties of the a-IZO films were studied. The electrical properties of a-IZO films were found to be strongly affected by Mo doping and thermal annealing. The optical transmission near the absorption edge of a-IZO films is enhanced by Mo doping due to the decrease in reflection. The optical bandgap estimated to be 3.2 eV of a-IZO films is unaffected by Mo doping and thermal annealing. Moreover, some of Mo-doped films exhibit room-temperature ferromagnetism after annealing.

  16. Comparison of Magnetic Property of Cu-, Al-, and Li-DOPED ZnO Dilute Magnetic Semiconductor Thin Films

    NASA Astrophysics Data System (ADS)

    van, L. H.; Ding, J.; Hong, M. H.; Fan, Z. C.; Wang, L.

    The properties of Cu-, Al-, and Li-doped ZnO dilute magnetic semiconductor (DMS) have been analyzed and compared. Zincite with wurtzite structures have been synthesized successfully on SiO2 (101) and SiO2 (110) substrates in both the Cu-ZnO and Li-ZnO DMS. The highly textured ZnO (002) peaks were able to form in the Cu-ZnO system at 400°C. However, it formed at even much lower temperature in the Li-ZnO system, that is only 25°C. ZnO (002) peaks in both systems were formed without any impurity phases. However, no crystalline structure is synthesized in the Al-ZnO system. The thin films formed are amorphous. The structural and related magnetic properties of the films were analyzed by XRD, AFM, and VSM. The films were found to be at their highest magnetism at the value of 3.1 emu/cm3 for Co-ZnO and 2.5 emu/cm3 for Li-ZnO, synthesized at 400°C, and under 1 × 10-4 Torr oxygen partial pressure.

  17. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    SciTech Connect

    Morales-Masis, M. Ding, L.; Dauzou, F.; Jeangros, Q.; Hessler-Wyser, A.; Nicolay, S.; Ballif, C.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  18. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Morales-Masis, M.; Ding, L.; Dauzou, F.; Jeangros, Q.; Hessler-Wyser, A.; Nicolay, S.; Ballif, C.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2)-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  19. First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5.

    PubMed

    Caravati, S; Colleoni, D; Mazzarello, R; Kühne, T D; Krack, M; Bernasconi, M; Parrinello, M

    2011-07-01

    We investigated the structural, electronic and vibrational properties of amorphous and cubic Ge(2)Sb(2)Te(5) doped with N at 4.2 at.% by means of large scale ab initio simulations. Nitrogen can be incorporated in molecular form in both the crystalline and amorphous phases at a moderate energy cost. In contrast, insertion of N in the atomic form is very energetically costly in the crystalline phase, though it is still possible in the amorphous phase. These results support the suggestion that N segregates at the grain boundaries during the crystallization of the amorphous phase, resulting in a reduction in size of the crystalline grains and an increased crystallization temperature. PMID:21673401

  20. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  1. Transition metal doped semiconductor quantum dots: Optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem

    We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.

  2. Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries.

    PubMed

    Zhang, Chao; Wang, Xi; Liang, Qifeng; Liu, Xizheng; Weng, Qunhong; Liu, Jiangwei; Yang, Yijun; Dai, Zhonghua; Ding, Kejian; Bando, Yoshio; Tang, Jie; Golberg, Dmitri

    2016-03-01

    As the most promising anode material for sodium-ion batteries (SIBs), elemental phosphorus (P) has recently gained a lot of interest due to its extraordinary theoretical capacity of 2596 mAh/g. The main drawback of a P anode is its low conductivity and rapid structural degradation caused by the enormous volume expansion (>490%) during cycling. Here, we redesigned the anode structure by using an innovative methodology to fabricate flexible paper made of nitrogen-doped graphene and amorphous phosphorus that effectively tackles this problem. The restructured anode exhibits an ultrastable cyclic performance and excellent rate capability (809 mAh/g at 1500 mA/g). The excellent structural integrity of the novel anode was further visualized during cycling by using in situ experiments inside a high-resolution transmission electron microscope (HRTEM), and the associated sodiation/desodiation mechanism was also thoroughly investigated. Finally, density functional theory (DFT) calculations confirmed that the N-doped graphene not only contributes to an increase in capacity for sodium storage but also is beneficial in regards to improved rate performance of the anode. PMID:26928163

  3. Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications

    PubMed Central

    Lee, Juwon; Subramaniam, Nagarajan Ganapathi; Agnieszka Kowalik, Iwona; Nisar, Jawad; Lee, Jaechul; Kwon, Younghae; Lee, Jaechoon; Kang, Taewon; Peng, Xiangyang; Arvanitis, Dimitri; Ahuja, Rajeev

    2015-01-01

    The article presents, using Bi doped ZnO, an example of a heavy ion doped oxide semiconductor, highlighting a novel p-symmetry interaction of the electronic states to stabilize ferromagnetism. The study includes both ab initio theory and experiments, which yield clear evidence for above room temperature ferromagnetism. ZnBixO1−x thin films are grown using the pulsed laser deposition technique. The room temperature ferromagnetism finds its origin in the holes introduced by the Bi doping and the p-p coupling between Bi and the host atoms. A sizeable magnetic moment is measured by means of x-ray magnetic circular dichroism at the O K-edge, probing directly the spin polarization of the O(2p) states. This result is in agreement with the theoretical predictions and inductive magnetometry measurements. Ab initio calculations of the electronic and magnetic structure of ZnBixO1−x at various doping levels allow to trace the origin of the ferromagnetic character of this material. It appears, that the spin-orbit energy of the heavy ion Bi stabilizes the ferromagnetic phase. Thus, ZnBixO1−x doped with a heavy non-ferromagnetic element, such as Bi, is a credible example of a candidate material for a new class of compounds for spintronics applications, based on the spin polarization of the p states. PMID:26592564

  4. Manipulable GMR Effect in a δ-Doped Magnetically Confined Semiconductor Heterostructure

    NASA Astrophysics Data System (ADS)

    Jiang, Ya-Qing; Lu, Mao-Wang; Huang, Xin-Hong; Yang, Shi-Peng; Tang, Qiang

    2016-06-01

    A giant magnetoresistance (GMR) device formed by depositing two parallel nanosized ferromagnetic strips on top of a semiconductor heterostructure has been proposed theoretically (Zhai et al. in Phys Rev B 66:125305, 2002). For the sake of manipulating its performance, we introduce a tunable δ-potential into this device with the help of atomic-layer doping techniques such as molecular beam epitaxy (MBE) or metal-organic chemical-vapor deposition. We investigate theoretically the impact of such δ-doping on the magnetoresistance ratio (MR) of the GMR device. We find that, although the δ-doping is embedded in the device, a considerable GMR effect still exists due to the significant difference in electronic transmission between parallel (P) and antiparallel (AP) configurations. Moreover, the calculated results show that the MR of the GMR device varies sensitively with the weight and/or position of the δ-doping. Thus, the GMR device can be controlled by changing the δ-doping to obtain an adjustable GMR device for magnetoelectronics applications.

  5. Stabilization of Ferromagnetic States by Electron Doping in ZnO-Based Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2001-03-01

    In order to investigate functionality of ZnO as a diluted magnetic semiconductor (DMS), we had studied the magnetism in ZnO doped with 3d transition metal atoms (TM) and showed that it was also a candidate for a new functional magnetic material [1]. In this paper, we develop our previous work and give detailed materials design with ZnO-based DMS based on ab initio calculations. The electronic structure of a TM-doped ZnO was calculated within the local density approximation by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation. Total energies of Zn_1-xTM^\\uparrow_xO and Zn_1-xTM^\\uparrow_x/2TM^downarrow_x/2O, where up and down arrows mean the directions of respective atomic magnetic moments, were compared and appearance of the ferromagnetism was discussed. Effects of carrier doping to these systems were also considered. It was found that their magnetic states were controllable by changing the carrier density. In particular, ferromagnetic states were stabilized by electron doping in the case of Fe, Co or Ni doped ZnO. From the point of practical applications, it is favorable feature to realize high Curie temperature ferromagnet, because n-type ZnO is easily available. [1] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39 (2000) L555.

  6. Power and length requirements for all-optical switching in semiconductor-doped glass waveguides

    NASA Astrophysics Data System (ADS)

    Mayweather, Derek T.; Digonnet, Michel J. F.; Pantell, Richard H.; Shaw, H. J.

    1994-10-01

    We present a theoretical model that computes the nonlinear index (n2) of semiconductor- doped glasses (SDG), based on the material's properties, and predicts the power and length requirements, as well as the optimum operating wavelengths, for an all-optical SDG waveguide switch. The main conclusions are that (1) n2 depends strongly on pump intensity, which partly explains the large disparity in reported values of n2, (2) the pump and signal wavelengths should be in specific and different ranges to minimize switching power and signal loss, (3) for CdSSe- and CdTe-doped glasses, n2 is relatively small, and the switching power requirement for these two SDGs is consequently quite high (2 - 16 W). We provide evidence that this weak nonlinearity, compared to that of similar semiconductors in bulk, is due to the strong nonradiative recombination of carriers arising from the small size of the semiconductor microcrystallites. Projections indicate that the switching power would be reduced by up to three orders of magnitude by increasing the microcrystallite size, thus producing a slower (ns) but more power-efficient switch.

  7. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances.

    PubMed

    Cheng, Hefeng; Wen, Meicheng; Ma, Xiangchao; Kuwahara, Yasutaka; Mori, Kohsuke; Dai, Ying; Huang, Baibiao; Yamashita, Hiromi

    2016-07-27

    Heavily doped semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals; however, controlled manipulation of their surface plasmon bands toward short wavelengths, especially in the visible light spectrum, still remains a challenge. Here we demonstrate that hydrogen doped given MoO3 and WO3 via a facile H-spillover approach, namely, hydrogen bronzes, exhibit strong localized surface plasmon resonances in the visible light region. Through variation of their stoichiometric compositions, tunable plasmon resonances could be observed in a wide range, which hinge upon the reduction temperatures, metal species, the nature and the size of metal oxide supports in the synthetic H2 reduction process as well as oxidation treatment in the postsynthetic process. Density functional theory calculations unravel that the intercalation of hydrogen atoms into the given host structures yields appreciable delocalized electrons, enabling their plasmonic properties. The plasmonic hybrids show potentials in heterogeneous catalysis, in which visible light irradiation enhanced catalytic performance toward p-nitrophenol reduction relative to dark condition. Our findings provide direct evidence for achieving plasmon resonances in hydrogen doped metal oxide semiconductors, and may allow large-scale applications with low-price and earth-abundant elements. PMID:27384437

  8. Effects of nitrogen doping on the electrical conductivity and optical absorption of ultrananocrystalline diamond/hydrogenated amorphous carbon films prepared by coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Zkria, Abdelrahman; Katamune, Yūki; Yoshitake, Tsuyoshi

    2016-07-01

    3 at. % nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were synthesized by coaxial arc plasma deposition. Optically, the films possess large absorption coefficients of more than 105 cm‑1 at photon energies from 3 to 5 eV. The optical band gap was estimated to be 1.28 eV. This value is smaller than that of undoped films, which might be attributable to increased sp2 fractions. The temperature dependence of the electrical conductivity implies that carrier transport follows a hopping conduction model. Heterojunctions with p-type Si substrates exhibited a typical rectifying action. From the capacitance–voltage characteristics that evidently indicated the expansion of a depletion region into the film side, the built-in potential and carrier concentration were estimated to be 0.51 eV and 7.5 × 1016 cm‑3, respectively. It was experimentally demonstrated that nitrogen-doped UNCD/a-C:H films are applicable as an n-type semiconductor.

  9. Rare Earth Doped Semiconductors and Materials Research Society Symposium Proceedings, Volume 301

    NASA Astrophysics Data System (ADS)

    Ballance, John

    1994-02-01

    The properties of rare earth ions in solids were studied in detail for decades, but until recently this work was restricted to dominantly ionic hosts such as fluorides and oxides, and to a lesser extent to more covalently bonded hosts, such as tetrahedral 2-6 semiconductors. The idea of rare earth elements incorporated into covalent semiconductors such as GaAs and Si may be traced to a short communication in 1963 by R.L. Bell (J. Appl. Phys. 34, 1563 (1963)) proposing a dc-pumped rare earth laser. At about the same time, three unpublished technical reports appeared as a result of U.S. Department of Defense sponsored research in rare earth doped Si, GaAs, and InP to fabricate LED's. Attempts by other researchers to identify sharp 4f specific emissions in these hosts essentially failed.

  10. Development of transition-metal doped copper oxide and zinc oxide dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Ivill, Mathew P.

    The field of spintronics has recently attracted much attention because of its potential to provide new functionalities and enhanced performance in conventional electronic devices. Oxide materials provide a convenient platform to study the spin-based functionality in host semiconducting material. Recent theoretical treatments predict that wide band-gap semiconductors, including ZnO, can exhibit high temperature ferromagnetic ordering when doped with transition metals. This work focused on the possibility of using wide band-gap oxide semiconductors as potential spintronic materials. The structure, magnetic, and electronic transport properties of transition-metal doped ZnO and Cu 2O were investigated. Mn and Co were used as transition metal dopants. Thin films of these materials were fabricated using pulsed laser deposition (PLD). The Mn solubility in Cu2O was found to be small and the precipitation of Mn-oxides was favored at high growth temperatures. Phase pure Mn-doped Cu2O samples were found to be non-magnetic. Samples were p-type with carrier concentrations on the order of 1014-10 16 cm-3. The effects of carrier concentration on the magnetic properties of Mn-doped ZnO were studied using Sn and P as electronic codopants. Sn acts as an n-type dopant providing extra electrons to the ZnO. P acts as a p-type dopant that supplies excess holes to compensate the native electron concentration in ZnO. The electron concentration was decreased using P, but the films remained n-type. An inverse correlation was found between the ferromagnetism and the electron concentration; the ferromagnetic coupling between Mn spins increased with decreasing electron concentration. The nature of ferromagnetism in Co-doped ZnO was also investigated. Ferromagnetism was found in films deposited at 400°C in vacuum, while films deposited in oxygen or at higher temperatures were non-magnetic. Films deposited under vacuum had rather high electron concentrations and were presumably doped with

  11. Controlled electrical doping of organic semiconductors: a combined intra- and intermolecular perspective from first principles.

    PubMed

    Joo, Bora; Kim, Eung-Gun

    2016-07-21

    The process of introducing extra charge carriers into organic semiconductors, or simply molecular doping, takes place via intermolecular charge transfer from the donor to the acceptor molecule. Using density functional theory calculations on diverse donor-acceptor pairs, we show that there are two modes of charge transfer; in one, charge transfer is controlled by the sign and in the other, by the magnitude of the donor HOMO-acceptor LUMO level offset. Despite doping being an intermolecular process, the identification of the transfer modes requires a full account of intramolecular geometric changes during charge transfer. We further show that the degree of charge transfer can be represented entirely by the reorganization energy, a common measure of geometric changes, of either the donor or the acceptor. PMID:27314750

  12. Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p-i-n solar cells

    SciTech Connect

    Lee, C.H.; Lim, K.S.

    1998-01-01

    A boron-doped hydrogenated amorphous diamondlike carbon (a-DLC:H) was prepared using a mercury-sensitized photochemical vapor deposition (photo-CVD) method. The source gases were B{sub 2}H{sub 6} and C{sub 2}H{sub 4}. By increasing the boron doping ratio (B{sub 2}H{sub 6}/C{sub 2}H{sub 4}) from 0 to 12000 ppm, the dark conductivity increased from {approximately}10{sup {minus}9} to {approximately}10{sup {minus}7} S/cm. A boron-doped a-DLC:H with an energy band gap of 3.8 eV and a dark conductivity of 1.3{times}10{sup {minus}8} S/cm was obtained at a doping ratio of 3600 ppm. By using this film, amorphous silicon (a-Si) solar cells with a novel p-a-DLC:H/p-a-SiC double p-layer structure were fabricated using the photo-CVD method and the cell photovoltaic characteristics were investigated as a function of a-DLC:H layer thickness. The open circuit voltage increased from 0.766 V for the conventional cell with a 40-{Angstrom}-thick p-a-SiC to 0.865 V for the cell with a p-a-DLC:H (15 {Angstrom})/p-a-SiC (40 {Angstrom}) double p-layer structure. The thin ({lt}15 {Angstrom}) p-a-DLC:H layer proved to be an excellent hole emitter as a wide band gap window layer. {copyright} {ital 1998 American Institute of Physics.}

  13. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors.

    PubMed

    Png, Rui-Qi; Ang, Mervin C Y; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K H

    2016-01-01

    The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π-π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine-fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355

  14. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.; THORNTON,R.L.; DONALDSON,R.D.

    1999-12-17

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible with virtually infinite expected lifetime at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approx}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs, unlike a switch with conventional contacts. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  15. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    Baca, A.G.; Brown, D.J.; Donaldson, R.D.; Helgeson, W.D.; Hjalmarson, H.P.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Thornton, R.L.; Zutavern, F.J.

    1999-08-05

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  16. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects

    NASA Astrophysics Data System (ADS)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2015-11-01

    We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced

  17. Study on Solid-Phase Crystallization of Amorphized Vanadium-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiro; Chiba, Hiroshi; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-04-01

    The effects of post-annealing and film thickness on the solid-phase crystallization (SPC) of amorphized vanadium-doped ZnO (VZO) thin films were investigated. The 2-500-nm-thick VZO (V of about 4 at.%) thin films were deposited on a c-face sapphire substrate at room temperature by RF magnetron sputtering and subsequently were annealed at an annealing temperature (T A) from 700°C to 900°C in a nitrogen atmosphere. From in-plane x-ray diffraction (XRD) measurements, the as-deposited VZO film had a faint in-plane orientation at the initial stage of deposition. However, the ZnO(100) XRD intensity weakened with increasing film thickness and no diffraction peak was seen over 35-nm thick. That is, the pseudo-amorphous film was fabricated. By annealing the 100-nm-thick VZO film over 700°C, the sixfold symmetry appeared. The ZnO(100) XRD intensity increased sharply at a T A of 800°C and was saturated at a higher T A. The c axis orientation reached a peak at a T A of 800°C according to the ZnO(002) XRD intensity. Concerning the effect of film thickness in the case of T A = 800°C, both the in-plane and c axis orientation improved up to 100-nm thick and deteriorated over it. At a T A ≥ 850°C or film thickness ≥200 nm, where the c axis orientation was deteriorated, the secondary phase-like Zn3V2O8 was formed. As a result, it is found that the careful selection of the T A and film thickness is necessary to avoid the formation of secondary phase-like Zn3V2O8 to fabricate the high-quality buffer layer via SPC.

  18. Theoretical and experimental investigations of superconductivity. Amorphous semiconductors, superconductivity and magnetism

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.

    1973-01-01

    The research activities from 1 March 1963 to 28 February 1973 are summarized. Major lectures are listed along with publications on superconductivity, superfluidity, electronic structures and Fermi surfaces of metals, optical spectra of solids, electronic structure of insulators and semiconductors, theory of magnetic metals, physics of surfaces, structures of metals, and molecular physics.

  19. Ab initio search for novel bipolar magnetic semiconductors: Layered YZnAsO doped with Fe and Mn

    NASA Astrophysics Data System (ADS)

    Bannikov, V. V.; Ivanovskii, A. L.

    2013-02-01

    Very recently, the newest class of spintronic materials, where reversible spin polarization can be controlled by applying gate voltage: so-called bipolar magnetic semiconductors (Xingxing Li et al., arXiv:1208.1355) was proposed. In this work, a novel way to creation of bipolar magnetic semiconductors by doping of non-magnetic semiconducting 1111 phases with magnetic d n < 10 atoms is discussed using ab initio calculations of layered YZnAsO doped with Fe and Mn. In addition, more complex materials with several spectral intervals with opposite 100% spin polarization where multiple gate-controlled spin-polarization can be expected are proposed.

  20. A structurally-controllable spin filter in a δ-doped magnetically modulated semiconductor nanostructure with zero average magnetic field

    NASA Astrophysics Data System (ADS)

    Shen, Li-Hua; Ma, Wen-Yue; Zhang, Gui-Lian; Yang, Shi-Peng

    2015-07-01

    We report on a theoretical investigation of spin-polarized transport in a δ-doped magnetically modulated semiconductor nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe on the top of a semiconductor heterostructure and by using the atomic layer doping technique such as molecular beam epitaxy (MBE). It is shown that although such a nanostructure has a zero average magnetic filed, a sizable spin polarization exists due to the Zeeman splitting mechanism. It is also shown that the degree of spin polarization varies sensitively with the weight and/or position of the δ-doping. Therefore, one can conveniently tailor the behaviour of the spin-polarized electron by tuning the δ -doping, and such a device can be employed as a controllable spin filter for spintronics.

  1. Femtosecond Dynamics and Nonlinear Effects of Electron-Hole Plasma in Semiconductor Doped Glasses.

    NASA Astrophysics Data System (ADS)

    Olbright, Gregory Richard

    The following is a comprehensive study of transient and steady-state nonlinear optical properties of semiconductor microcrystals embedded in a glass matrix (semiconductor doped glass). Transient thermal effects which give rise to longitudinal excitation discontinuities (i.e., kinks) that arise from partial sample switching in increasing absorption optical bistability are observed in a doped glass. The transient thermal effects occur on time scales of a few hundred milliseconds. Femtosecond and nanosecond laser pulses are employed to measure time-resolved and steady-state transmission and differential transmission spectra. The measured spectra reveal several beautiful effects which are attributed to the many-particle effects of electron-hole plasma. The spectra reveal: bandgap renormalization, broadening of the tail states and screening of the continuum states, state filling (spectral hole burning), thermalization of nonthermal carrier population distributions, band filling due to carrier relaxation of the thermal and nonthermal distributions, direct electron-hole recombination and long lived (>>100 ps) tail states which are attributed to electron trapping. Absorption edge dynamics discussed in this dissertation span 15 orders of magnitude.

  2. Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals.

    PubMed

    Yang, Heesun; Santra, Swadeshmukul; Holloway, Paul H

    2005-09-01

    Luminescent Mn-doped II-VI semiconductor nanocrystals have been intensively investigated over the last ten years. Several semiconductor host materials such as ZnS, CdS, and ZnSe have been used for Mn-doped nanocrystals with different synthetic routes and surface passivation. Beyond studies of their fundamental properties including photoluminescence and size, these luminescent nanocrystals have now been tested for practical applications such as electroluminescent displays and biological labeling agents (biomarkers). Here, we first review ZnS:Mn, CdS:Mn/ZnS core/shell, and ZnSe:Mn nanocrystal systems in terms of their synthetic chemistries and photoluminescent properties. Second, based on ZnS:Mn and CdS:Mn/ZnS core/shell nanocrystals as electroluminescent components, direct current electroluminescent devices having a hybrid organic/inorganic multilayer structure are reviewed. Highly luminescent and photostable CdS:Mn/ZnS nanocrystals can further be used as the luminescent biomarkers and some preliminary results are also discussed here. PMID:16193951

  3. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    NASA Astrophysics Data System (ADS)

    Shukur, M. F.; Ibrahim, F. M.; Majid, N. A.; Ithnin, R.; Kadir, M. F. Z.

    2013-08-01

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10-4 S cm-1. Further conductivity enhancement to (9.56 ± 1.19) × 10-4 S cm-1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch-30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, ɛi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch-30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model.

  4. Moessbauer studies of two-electron centers with negative correlation energy in crystalline and amorphous semiconductors

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Seregin, P. P.

    2012-01-15

    The results of the study of donor U{sup -}-centers of tin and germanium in lead chalcogenides by Moessbauer emission spectroscopy are discussed. The published data regarding the identification of amphoteric U{sup -}-centers of tin in glassy binary arsenic and germanium chalcogenides using Moessbauer emission spectroscopy, and in multicomponent chalcogenide glasses using Moessbauer absorption spectroscopy are considered. Published data concerning the identification of two-atom U{sup -}-centers of copper in lattices of semimetal copper oxides by Moessbauer emission spectroscopy are analyzed. The published data on the detection of spatial inhomogeneity of the Bose-Einstein condensate in superconducting semiconductors and semimetal compounds, and on the existence of the correlation between the electron density in lattice sites and the superconducting transition temperature are presented. The principal possibility of using Moessbauer U{sup -}-centers as a tool for studying the Bose-Einstein condensation of electron pairs during the superconducting phase transition in semiconductors and semimetals is considered.

  5. Optically Encoded Second-Harmonic Generation in Semiconductor Microcrystallite-Doped Glass: Physics and Applications.

    NASA Astrophysics Data System (ADS)

    MacDonald, Robert Lawrence

    Semiconductor microcrystallite-doped glasses (SDG) are presented as a new class of materials for optically encoded second harmonic generation. The encoding and readout behavior of SDG is compared with that observed in homogeneous glass. An encoding model for SDG, based on directional trapping of electrons at the semiconductor-glass interface, is developed and shown to be consistent with the observed behavior and with known properties of SDG. Measured optical erasure rates of the encoded SDG provide evidence for the microscopic details of the encoding, and above bandgap erasure is used to observe charge screening in the semiconductor nanocrystals. Quantum confinement effects are observed in the intensity dependence of the encoding efficiency. Ion -exchanged ridge and channel waveguides in SDG are fabricated and encoded with as little as 2 mW average power. The measured readout wavelength dependence in bulk homogeneous glass is consistent with encoding of a chi ^{(2)} grating having a period slightly shifted from that required for quasi-phasematched second harmonic generation at the encoded wavelength. Multiple wavelength encoding is demonstrated and proposed as a new technique for optical storage and readout of information.

  6. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis. PMID:22738117

  7. Dielectric response of doped organic semiconductor devices: P3HT:PCBM solar cells

    NASA Astrophysics Data System (ADS)

    Armbruster, Oskar; Lungenschmied, Christoph; Bauer, Siegfried

    2011-08-01

    We introduce a model to account for the dielectric response of doped organic semiconductor devices. In addition to the phenomena observed for undoped devices, mobile charge carriers created by doping can alter the dielectric function of the organic material and hence the dielectric response of the devices. These extrinsic charges may be trapped and contribute to the capacitance on re-emission. We directly model the real part of the dielectric function based on this phenomenon. The imaginary part is obtained via the application of the Kramers-Kronig transformation. We use oxygen-doped poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester- (P3HT:PCBM) based organic solar cells as a model system to test our approach and hence contribute to the understanding of oxygen-induced degradation in these devices. We fit our equations to the measured dielectric data and compare it to Debye relaxation as well as two widely used equivalent circuit models. Together with the device resistance determined from the steady-state current-voltage characteristic around 0V an excellent agreement between the experimental data and our model is achieved for both the real and the imaginary part of the dielectric function over a frequency range covering five orders of magnitude. Unlike the Debye relaxation model or the equivalent circuit approach, our model yields important device parameters such as the dopant concentration.

  8. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals.

    PubMed

    Zhai, You; Shim, Moonsub

    2015-12-01

    Annealing or growth at high temperatures for an extended period of time is considered detrimental for most synthetic strategies for high-quality Mn-doped II-VI semiconductor nanocrystals. It can lead to the broadening of size distribution and, more importantly, to the loss of dopants. Here, we examine how ripening can be beneficial to doping in a simple "heat-up" approach, where high dopant concentrations can be achieved. We discuss the interplay of the loss of dopants, Ostwald ripening, and the clustering of Mn near the surface during nanocrystal growth. Smaller nanocrystals in a reaction batch, on average, exhibit higher undesirable band-edge photoluminescence (PL) and lower desirable dopant PL. The optimization of dopant loss and the removal of such smaller undesirable nanocrystals through Ostwald ripening along with surface exchange/passivation to remove Mn clustering lead to high Mn PL quantum yields (45 to 55 %) for ZnSxSe1-x, ZnS, CdS, and CdSxSe1-x host nanocrystals. These results provide an improved understanding of the doping process in a simple and potentially scalable synthetic strategy for achieving "pure" and bright dopant emission. PMID:26510444

  9. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhai, You; Shim, Moonsub

    2015-10-01

    Annealing or growth at high temperatures for an extended period of time is considered detrimental for most synthetic strategies for high-quality Mn-doped II-VI semiconductor nanocrystals. It can lead to the broadening of size distribution and, more importantly, to the loss of dopants. Here, we examine how ripening can be beneficial to doping in a simple "heat-up" approach, where high dopant concentrations can be achieved. We discuss the interplay of the loss of dopants, Ostwald ripening, and the clustering of Mn near the surface during nanocrystal growth. Smaller nanocrystals in a reaction batch, on average, exhibit higher undesirable band-edge photoluminescence (PL) and lower desirable dopant PL. The optimization of dopant loss and the removal of such smaller undesirable nanocrystals through Ostwald ripening along with surface exchange/passivation to remove Mn clustering lead to high Mn PL quantum yields (45 to 55 %) for ZnSxSe1-x, ZnS, CdS, and CdSxSe1-x host nanocrystals. These results provide an improved understanding of the doping process in a simple and potentially scalable synthetic strategy for achieving "pure" and bright dopant emission.

  10. Recovering doping profiles in semiconductor devices with the Boltzmann-Poisson model

    NASA Astrophysics Data System (ADS)

    Cheng, Yingda; Gamba, Irene M.; Ren, Kui

    2011-05-01

    We investigate numerically an inverse problem related to the Boltzmann-Poisson system of equations for transport of electrons in semiconductor devices. The objective of the (ill-posed) inverse problem is to recover the doping profile of a device, presented as a source function in the mathematical model, from its current-voltage characteristics. To reduce the degree of ill-posedness of the inverse problem, we proposed to parameterize the unknown doping profile function to limit the number of unknowns in the inverse problem. We showed by numerical examples that the reconstruction of a few low moments of the doping profile is possible when relatively accurate time-dependent or time-independent measurements are available, even though the later reconstruction is less accurate than the former. We also compare reconstructions from the Boltzmann-Poisson (BP) model to those from the classical drift-diffusion-Poisson (DDP) model, assuming that measurements are generated with the BP model. We show that the two type of reconstructions can be significantly different in regimes where drift-diffusion-Poisson equation fails to model the physics accurately. However, when noise presented in measured data is high, no difference in the reconstructions can be observed.

  11. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bullock, J.; Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-01

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n+ and p+ surfaces are passivated with SiO2/a-Si:H and Al2O3/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n+) contacts, with SiO2 thicknesses of ˜1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρc of ˜3 mΩ cm2 and a recombination current density J0c of ˜40 fA/cm2. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p+) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  12. Far tails of the density of states in amorphous organic semiconductors

    SciTech Connect

    Novikov, S. V.

    2015-10-28

    Far tails of the density of state (DOS) are calculated for the simple models of organic amorphous material, the model of dipolar glass and model of quadrupolar glass. It was found that in both models far tails are non-Gaussian. In the dipolar glass model, the DOS is symmetric around zero energy, while for the model of quadrupolar glass, the DOS is generally asymmetric and its asymmetry is directly related to the particular geometry of quadrupoles. Far tails of the DOS are relevant for the quasi-equilibrium transport of the charge carriers at low temperature. Asymmetry of DOS in quadrupolar glasses means a principal inequivalence of the random energy landscape for the transport of electrons and holes. Possible effect of the non-Gaussian shape of the far tails of the DOS on the temperature dependence of carrier drift mobility is discussed.

  13. Properties of insulator-semiconductor interfaces in amorphous silicon solar cell structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Hara, T.; Arimoto, S.; Ohno, H.; Sawada, T.

    Properties of amorphous silicon surfaces passivated by anodic and plasma CVD dielectrics are investigated, using MIS structures. Detailed MIS C-V and isothermal capacitance spectroscopy (ICTS) measurements were made. In order to analyze the observed extremely complicated behavior, theoretical MIS C-V curves are calculated on the basis of a rigorous admittance analysis. Contrary to the usual assumption that interface states do not play a major role in a-Si surfaces as compared with the bulk gap states, it is shown for the first time that the electrical characteristics of interfaces are controlled predominantly by the interface states and not by the bulk gap states. Interface states have the tendency to pin the surface Fermi level at 0.4 eV from the conduction band edge.

  14. Strain-induced programmable half-metal and spin-gapless semiconductor in an edge-doped boron nitride nanoribbon

    NASA Astrophysics Data System (ADS)

    Zhu, Shuze; Li, Teng

    2016-03-01

    The search for half-metals and spin-gapless semiconductors has attracted extensive attention in material design for spintronics. Existing progress in such a search often requires peculiar atomistic lattice configuration and also lacks active control of the resulting electronic properties. Here we reveal that a boron nitride nanoribbon with a carbon-doped edge can be made a half-metal or a spin-gapless semiconductor in a programmable fashion. The mechanical strain serves as the on/off switches for functions of half-metal and spin-gapless semiconductor to occur. Our findings shed light on how the edge doping combined with strain engineering can affect electronic properties of two-dimensional materials.

  15. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    NASA Astrophysics Data System (ADS)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  16. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ∼1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρ{sub c} of ∼3 mΩ cm{sup 2} and a recombination current density J{sub 0c} of ∼40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  17. P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering

    NASA Astrophysics Data System (ADS)

    Ohmura, Y.; Takahashi, M.; Suzuki, M.; Sakamoto, N.; Meguro, T.

    2001-12-01

    B has been successfully doped into the hydrogenated amorphous Si films without using explosive and/or toxic gases SiH 4 or B 2H 6 by reactive radio-frequency co-sputtering. The target used for co-sputtering was a composite target composed of a B-doped Si wafer and B chips attached on the Si wafer with silver powder bond. The maximum area fraction of B chips used was 0.11. Argon and hydrogen pressures were 5×10 -3 and 5×10 -4 Torr, respectively. Substrates were kept at 200°C or 250°C during sputtering. The maximum B concentration in the film obtained was 2×10 19 cm -3 from secondary ion mass spectroscopy measurement. Films with resistivity of 10 4-10 5 Ω cm were obtained, which was low for the above acceptor concentration, compared with other group III impurities doping, indicating the high doping efficiency of B. A heterostructure, which was prepared by co-sputtering these B-doped films on an n-type crystalline Si, shows a good rectification characteristic. A small photovoltaic effect is also observed.

  18. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers

    DOE PAGESBeta

    Campione, Salvatore; Kim, Iltai; de Ceglia, Domenico; Keeler, Gordon A.; Luk, Ting S.

    2016-01-01

    Here, we investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathwaymore » to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission.« less

  19. Metal-semiconductor-metal UV photodetector based on Ga doped ZnO/graphene interface

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Noh, Youngwook; Polat, Kinyas; Kemal Okyay, Ali; Lee, Dongjin

    2015-12-01

    Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) based on Ga doped ZnO (ZnO:Ga)/graphene is presented in this work. A low dark current of 8.68 nA was demonstrated at a bias of 1 V and a large photo to dark contrast ratio of more than four orders of magnitude was observed. MSM PD exhibited a room temperature responsivity of 48.37 A/W at wavelength of 350 nm and UV-to-visible rejection ratio of about three orders of magnitude. A large photo-to-dark contrast and UV-to-visible rejection ratio suggests the enhancement in the PD performance which is attributed to the existence of a surface plasmon effect at the interface of the ZnO:Ga and underlying graphene layer.

  20. Superresolution Structure Optical Disk with Semiconductor-Doped Glass Mask Layer Containing CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeh, Tung‑Ti; Wang, Jr‑Hau; Hsieh, Tsung‑Eong; Shieh, Han‑Ping D.

    2006-02-01

    In this work, we demonstrate a distinct superresolution phenomenon and signal properties of an optical disk with a semiconductor-doped glass (SDG) mask layer containing CdSe nanoparticles. It was found that the 69 nm marks could be consistently retrieved at reading power (Pr) = 4 mW with carrier-to-noise ratio (CNR) = 13.56 dB. The signals were clearly resolved with CNRs nearly equal to 40 dB at Pr=4 mW when the recorded marks were larger than 100 nm. The cyclability test indicated that the CdSe-SiO2 SDG layer might serve as a stable and reliable optical mask layer in 105 readout cycles.

  1. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers.

    PubMed

    Campione, Salvatore; Kim, Iltai; de Ceglia, Domenico; Keeler, Gordon A; Luk, Ting S

    2016-08-01

    We investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathway to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission. PMID:27505841

  2. Emergence of competing magnetic interactions induced by Ge doping in the semiconductor FeGa3

    NASA Astrophysics Data System (ADS)

    Alvarez-Quiceno, J. C.; Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A.; Dalpian, G. M.; Osorio-Guillén, J. M.

    2016-07-01

    FeGa3 is an unusual intermetallic semiconductor that presents intriguing magnetic responses to the tuning of its electronic properties. When doped with Ge, the system evolves from diamagnetic to paramagnetic to ferromagnetic ground states that are not well understood. In this work, we have performed a joint theoretical and experimental study of FeGa3 -xGex using density functional theory and magnetic susceptibility measurements. For low Ge concentrations we observe the formation of localized moments on some Fe atoms and, as the dopant concentration increases, a more delocalized magnetic behavior emerges. The magnetic configuration strongly depends on the dopant distribution, leading even to the appearance of antiferromagnetic interactions in certain configurations.

  3. Sb-doped SrTiO3 transparent semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Chen, F.; Dai, S. Y.; Zhao, T.; Lu, H. B.; Cui, D. F.; Zhou, Y. L.; Chen, Z. H.; Yang, G. Z.

    2001-03-01

    Optically transparent Sb-doped SrTiO3 thin films with a transmittance higher than 95% in most of the visible region have been grown on SrTiO3 (001) substrate by pulsed laser deposition. The films behave as an n-type semiconductor between 10 K and room temperature. The carrier concentration and mobility of the films at room temperature are ˜5.8×1017cm-3 and ˜6.4 cm2/V s, respectively. X-ray photoelectron spectroscopy measurement reveals that the delocalized electrons from the Sb dopants give rise to deep impurity levels within the band gap of the parent compound, which are responsible for the electrical conduction observed. The wide band gap and low density of states in the conduction band account for transparency of the films.

  4. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers

    SciTech Connect

    Campione, Salvatore; Kim, Iltai; de Ceglia, Domenico; Keeler, Gordon A.; Luk, Ting S.

    2016-01-01

    Here, we investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathway to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission.

  5. Photochemical hole-burning study of 1,4-dihydroxyanthraquinone doped in amorphous silica prepared by alcoholate method

    NASA Astrophysics Data System (ADS)

    Tani, T.; Namikawa, H.; Arai, K.; Makishima, A.

    1985-11-01

    The preparation of 1,4-dihydroxyanthraquinone, an amorphous silica doped with organic dye molecules, is described. The amorphous structure of this system is studied using photochemical hole burning (PHB), and the results are reported together with absorption and fluorescence spectra measured at room temperature. The PHB results for this material are compared with those for alcoholic organic glass, and mechanisms which dominate the temperature dependence of the holewidth are discussed. The introduction of various organic molecules into inorganic oxide glasses may provide a new field in material science. These materials are promising for various optical and optoelectronic applications, including PHB memory, due to the rigidity and stability of the glassy matrices preserving the function of the organic molecules. These materials may also be highly significant for molecular electronic materials.

  6. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility.

    PubMed

    Malasi, A; Taz, H; Farah, A; Patel, M; Lawrie, B; Pooser, R; Baddorf, A; Duscher, G; Kalyanaraman, R

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 10(4) S/m) and Hall mobility (>30 cm(2)/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  7. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    NASA Astrophysics Data System (ADS)

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  8. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGESBeta

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergentmore » semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  9. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    PubMed Central

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  10. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    SciTech Connect

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  11. Carriers-mediated ferromagnetic enhancement in Al-doped ZnMnO dilute magnetic semiconductors

    SciTech Connect

    Saleem, Murtaza; Siddiqi, Saadat A.; Atiq, Shahid; Anwar, M. Sabieh; Hussain, Irshad; Alam, Shahzad

    2011-11-15

    Nano-crystalline Zn{sub 0.95-x}Mn{sub 0.05}Al{sub x}O (x = 0, 0.05, 0.10) dilute magnetic semiconductors (DMS) were synthesized by sol-gel derived auto-combustion. X-ray diffraction (XRD) analysis shows that the samples have pure wurtzite structure typical of ZnO without the formation of secondary phases or impurity. Crystallite sizes were approximated by Scherrer formula while surface morphology and grain sizes were measured by field emission scanning electron microscopy. Incorporation of Mn and Al into the ZnO structure was confirmed by energy-dispersive X-ray analysis. Temperature dependent electrical resistivity measurements showed a decreasing trend with the doping of Al in ZnMnO, which is attributable to the enhancement of free carriers. Vibrating sample magnetometer studies confirmed the presence of ferromagnetic behavior at room temperature. The results indicate that Al doping results in significant variation in the concentration of free carriers and correspondingly the carrier-mediated magnetization and room temperature ferromagnetic behavior, showing promise for practical applications. We attribute the enhanced saturation magnetization and electrical conductivity to the exchange interaction mediated by free electrons.

  12. A multi-scale approach to the electronic structure of doped semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-03-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. We present a multi-scale technique that addresses these difficulties. It is based on the introduction of excess charge, mimicking free charge carriers from the SCR, along with a fixed sheet of counter-charge mimicking the SCR-related field. Self-consistency is obtained by imposing charge conservation and Fermi level equilibration between the bulk, treated semi-classically, and the electronic states of the slab/surface, which are treated quantum-mechanically. The method, called CREST - the Charge-Reservoir Electrostatic Sheet Technique - can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic clean-cleaved Si(111) surface and its semiconducting (2x1) reconstructions.

  13. Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor.

    PubMed

    Wu, Hongxing; Shi, Fenghua; Chen, Yihang

    2016-09-01

    We show that perfect absorption of terahertz wave can be achieved in a compact system where an ultrathin film of lossless dielectric is coated on a doped semiconductor substrate. Due to the nontrivial reflection phase shift at the interface between the two media, strong resonant behavior and the concomitant antireflection occur at wavelengths that are much larger than the thickness of the dielectric film, resulting in strong absorption of the incident wave in a wide frequency range. Using this mechanism, we design a broadband terahertz absorber by coating a Ge film on a highly doped GaAs substrate. We show that such a system not only has a perfect absorption peak, but also exhibits high absorptance (over 0.9) within a fractional bandwidth of over 20%. By varying the free carrier density in the GaAs substrate, the central frequency of the absorption band can be tuned from 1.79 to 2.69 THz. In addition, the absorption performance of the proposed system is shown to be insensitive to both incident angle and polarization. Our results offer a low-cost way for the design of absorption-based THz devices. PMID:27607670

  14. Investigating the thermal stability of electron transport properties in modulation-doped semiconductor heterostructure systems

    NASA Astrophysics Data System (ADS)

    Pilgrim, Ian; Scannell, Billy; See, Andrew; Montgomery, Rick; Morse, Peter; Fairbanks, Matt; Marlow, Colleen; Linke, Heiner; Farrer, Ian; Ritchie, David; Hamilton, Alex; Micolich, Adam; Eaves, Laurence; Taylor, Richard

    2013-03-01

    Since the 1950s, materials scientists have pursued the fabrication of solid-state heterostructure (HS) devices of sufficient purity to replicate electron interference effects originally observed in vacuum. The ultimate goal of HS engineering is to create a semiconductor ``billiard table'' in which electrons travel ballistically in a 2-D plane--that is, with scattering events minimized such that the electron's mean free path exceeds the device size. For the past two decades, the modulation-doped (MD) HS architecture has yielded devices supporting very high electron mobilities. In this architecture, ionized dopants are spatially removed from the plane of the electrons, such that their influence on electron trajectories is felt through presumably negligible small-angle scattering events. However, we observe that thermally induced charge redistribution in the doped layers of AlGaAs/GaAs and GaInAs/InP MD heterostructures significantly alters electron transport dynamics as measured by magnetoconductance fluctuations. This result demonstrates that small-angle scattering plays a far larger role than expected in influencing conduction properties. Funded by the Office of Naval Research, US Air Force, Australian Research Council, and Research Corporation for Science Advancement

  15. Features of conduction mechanisms in n-HfNiSn semiconductor heavily doped with a Rh acceptor impurity

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Stadnyk, Yu. V.; Romaka, V. V.; Hlil, E. K.; Krajovskii, V. Ya.; Horyn, A. M.

    2013-09-15

    The crystal structure and electron-density distribution, as well as the energy, kinetic, and magnetic characteristics of n-HfNiSn intermetallic semiconductor heavily doped with a Rh acceptor impurity in the temperature range T = 80-400 K, in the acceptor-concentration range N{sub A}{sup Rh} Almost-Equal-To 9.5 Multiplication-Sign 10{sup 19}-1.9 Multiplication-Sign 10{sup 21} cm{sup -3} (x = 0.005-0.10), and in magnetic fields H {<=} 10 kG are investigated. It is established that doping is accompanied by a simultaneous decrease in concentration, the elimination of donor-type structural defects (to x Almost-Equal-To 0.02), and an increase in the concentration of acceptor-type structural defects (0 < x {<=} 0.10). The dependence of the degree of semiconductor compensation on temperature is revealed. A model of the spatial arrangement of atoms in HfNi{sub 1-x}Rh{sub x}Sn is proposed, and the results of calculating the electron structure based on this model agree with the results of investigations of the kinetic and magnetic characteristics of the semiconductor. The results are discussed within the context of the Shklovskii-Efros model for a heavily doped and compensated semiconductor.

  16. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  17. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  18. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE PAGESBeta

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  19. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Ting, M.; Yu, K. M.; Sarney, W. L.; Martin, R. W.; Svensson, S. P.; Walukiewicz, W.; Foxon, C. T.

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×1020 cm-3. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×1019 cm-3 and mobilities of ~1 cm2/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  20. Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction.

    PubMed

    Zhang, Xiaoyan; Li, Libo; Guo, Yaxiao; Liu, Dong; You, Tianyan

    2016-06-15

    A novel amorphous flower-like molybdenum sulfides@nitrogen doped carbon nanofibers (MoSx@NCNFs) films are successfully synthesized by combining electrospinning, carbonization and a mild hydrothermal process. NCNFs, as a conductive substrate, can accelerate the electron transfer rate and depress the aggregation of MoSx nanoparticles. The resultant amorphous flower-like MoSx on NCNFs exposes abundant S(2-)/S2(2-) active edge sites which is of great importance for hydrogen evolution reaction (HER) catalytic performance. Electrochemical measurements demonstrate the superior electrocatalytic activity of MoSx@NCNFs toward HER deriving from the synergistic effect between NCNFs and amorphous MoSx. The overpotential is only 137 mV to reach the current density of 10 mA cm(-2) with a Tafel slope of 41 mV decade(-1) at MoSx@NCNFs. Meanwhile, MoSx@NCNFs exhibits satisfactory long-time stability for HER. Noteworthy, the obtained composites show a free-standing structure which can be directly used as electrode materials. This work provides a feasible way to design promising noble-metal free electrocatalysts in the aspect of energy conversion. PMID:27015391

  1. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO2)/TiO2 heterojunction semiconductors with varied Sb doping concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Long; Ma, Wen-Hai; Mao, Yan-Li

    2014-09-01

    In this paper, antimony-doped tin oxide (Sb-SnO2) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO2/TiO2 heterojunction semiconductors were prepared with Sb-SnO2 and TiO2. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO2 and TiO2, Sb-SnO2/TiO2 presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO2 and TiO2 in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO2 and TiO2 were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  2. Direct laser writing of topographic features in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing

  3. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    SciTech Connect

    Kamerbeek, A. M. Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.

  4. Low Temperature Cathodoluminescence Spectroscopy of Amorphous Aluminum Nitride Nanoparticles doped with Erbium, synthesized using Inert Gas Condensation Technique

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha; Wang, Jingzhou; Wojciech, Jadwisienczak; Kordesch, Martin

    2015-03-01

    Free standing Aluminum Nitride Nanoparticles (NPs) doped in situwith Erbium (AlN:Er), ranging from 3-30nm in size, were synthesized using a vapor phase deposition technique known as Inert Gas Condensation (IGC). Amorphous behavior of these NPs was inferred from the wide-angle X-ray spectroscopy studies. Raman spectra analysis for these AlN:Er NPs showed characteristic peaks for A1(TO) and E2(high) phonon modes of AlN. Detailed structural characterization of these Er doped AlN NPs will be carried out using a High-Resolution TEM, results of which will be included in my talk. Low temperature Cathodoluminescence (CL) measurements were carried out for these a-AlN:Er NPs. The corresponding Er+3 ion emission peaks were compared to the CL emission spectra obtained for a-AlN:Er thin films, and for commercially obtained Erbium-Oxide NPs. These spectroscopic results will be discussed in detail. I will also present the CL results obtained for in-air and in-nitrogen atmosphere annealed a-AlN:Er NPs. In addition to this, I will illustrate how these Er doped NPs can be used as nano-scale temperature sensors. The SNOM help provided by Prof. Hugh Richardson is gratefully acknowledged.

  5. Radiative recombination model of degenerate semiconductor and photoluminescence properties of 3C-SiC by P and N doping

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Fang, Xiao-Yong; Li, Ya-Qin; Yin, Ai-Cha; Jin, Hai-Bo; Yuan, Jie; Cao, Mao-Sheng

    2012-08-01

    Based on radiative recombination theory, we have established a recombination model that can be used to calculate photoluminescence (PL) intensity for degenerate semiconductors. Using this model and density functional theory, we calculated photoluminescence excitation (PLE) and PL spectra of intrinsic 3C-SiC, P-doped SiC and N-doped SiC. The violet or near ultraviolet PLE peaks were found to be observed in PLE spectra for Sin-1PCn and SinNCn-1 (n = 4, 8, 12, and 16). Compared to intrinsic 3C-SiC, doped 3C-SiC exhibits higher PL peaks which for P-doped SiC are in the indigo spectral region, near the 3C-SiC's peak, and for N-doped SiC appear in the green. The phenomena are studied through analyses of band structure, carrier concentration, and absorption. For doped 3C-SiC, the PL properties are mainly improved by the band-gap transformation from indirect to direct and the increase in carrier concentration near the Fermi level.

  6. Silicon-doping makes the B12N12 insulator to an n or p-semiconductor

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.; Hashemian, Saeedeh; Yourdkhani, Sirous

    2013-08-01

    Density functional theory (DFT) calculations were performed to investigate the electronic and structural properties of pristine and Si-doped B12N12 fullerene in SiB and SiN models in order to evaluate the influence of Si doping on B12N12 fullerene. The optimized structures, structural parameters, dipole moments, binding energies, energy gaps, Fermi level energies (EFL), work function (Φ), and chemical shifts have been evaluated for the pristine and two Si-doped B12N12 fullerene structures. It was found that the values of energy gap and work function of the SiB and SiN models are decreased, so that the B12N12 insulator converts to an n or p-semiconductor in the SiB and SiN models. Also, a better value of binding energy was obtained for the SiB model in comparison with the SiN model. The evaluation of chemical shifts indicated that the doped Si atom significantly influence on the chemical shifts of the B12N12 fullerene, especially in the SiN model. The doped Si atom could employ an electric field on the B and N atoms of Si-doped B12N12 structures, so that their chemical shifts go to lower fields.

  7. Magnetic properties of first-row element-doped ZnS semiconductors: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Long, Run; English, Niall J.

    2009-09-01

    Based on first-principles calculations, we have investigated the magnetic properties of the first-row element-doped ZnS semiconductors. Calculations reveal that Be, B, and C dopants can induce magnetism while N cannot lead to spin polarization in ZnS. A possible explanation has been rationalized from the elements’ electronegativity and interaction between dopant and host atoms. The total magnetic moments are 2.00, 3.16, and 2.38μB per 2×2×2 supercell for Be, B, and C doping, respectively, and ferromagnetic coupling is generally observed in these cases. The ferromagnetism of Be-, B-, and C-doped ZnS can be explained by hole-mediated s-p or p-p interactions’ coupling mechanisms. The clustering effect was found to be present in Be-, B-, and C-doped ZnS but the degree is more obvious in the former two cases than in the latter case. Analysis revealed that C-doped ZnS displays better potential ferromagnetic behavior than Be- and B-doped ZnS due to its semimetallic characteristics.

  8. Study of the new diluted magnetic semiconductors based on the doping of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Feng, Shan; Li, Linxian; Wang, Shaolei; Li, Yuke

    Diluted magnetic semiconductors(DMSs) have attracted increasing attention because of their potential applications in spintronics. Recently, a series of new bulk DMS materialswere synthesized by doping in the 122 and 1111 phases of iron-based superconductors(Fe-SC), which sheds light on the DMS research[3]. In this report, we have synthesized two systems of 1111 phases of DMSs based on Fe-SC materials (La1-xSrx) (Ag0.925 Mn0.075) SO(x =0, 0.025, 0.05, 0.075 and 0.1) and (Y1-xSrx) (Cu0.925 Mn0.075) SO (x =0, 0.025, 0.05,0.075 and 0.1) by solid state method. The structure and electrical, magnetic and optical properties have been investigated by means of XRD, 4KCCS, MPMS, PL, UV-Vis and Raman technique, respectively. Some interesting phenomena are found (Such as the Curie temperature Tc and band-gap energy Eg change regularly with the dopants additon). The results are helpful to clarify the intrinsic mechanism of the DMSs, and will provide new insights on the fabrication and application of devices based on these materials. This work was supported by the National Science Foundation of China (Grant No 61376094). Li Zhang would like to acknowledge a scholarship Granted by China Scholarship Council (CSC-201408330028)

  9. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    NASA Astrophysics Data System (ADS)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  10. Study of the new diluted magnetic semiconductors based on the doping of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Feng, Shan; Li, Linxian; Wang, Shaolei; Lu, Bin; Li, Yuke

    2015-03-01

    Diluted magnetic semiconductors(DMSs) have attracted increasing attention because of their potential applications in spintronics. Recently, a series of new bulk DMS materialswere synthesized by doping in the 122 and 1111 phases of iron-based superconductors(Fe-SC), which sheds light on the DMS research. In this report, we have synthesized two systems of 1111 phases of DMSs based on Fe-SC materials (La1 - xSrx) (Ag0.925 Mn0.075)SO(x=0, 0.025, 0.05, 0.075 and 0.1) and (Y1 - xSrx) (Cu0.925 Mn0.075) SO (x=0, 0.025, 0.05,0.075 and 0.1) by solid state method. The structure and electrical, magnetic and optical properties have been investigated by means of XRD, 4KCCS, MPMS, PL, UV-Vis and Raman technique, respectively. Some interesting phenomena are found (Such as the Curie temperature Tc and band-gap energy Eg change regularly with the dopants additon). The results are helpful to clarify the intrinsic mechanism of the DMSs, and will provide new insights on the fabrication and application of devices based on these materials. This work was supported by the National Science Foundation of China (Grant No. 61376094). Li Zhang would like to acknowledge a scholarship granted by China Scholarship Council (CSC-201408330028).

  11. Solubility control in dilute magnetic semiconductors by using the co-doping method

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Fujii, Hitoshi; Bergqvist, Lars; Dederichs, Peter H.; Katayama-Yoshida, Hiroshi

    2009-03-01

    To overcome low solubility limit of magnetic impurities in dilute magnetic semiconductors (DMS) and realize room temperature ferromagnetism, we propose a co-doping method to increase solubility of magnetic impurities in DMS [1]. We calculate electronic structure of (Ga, Mn)As, (Ga, Mn)N, (Ga, Cr)N and (Zn, Cr)Te with interstitial impurities, such as Li, Na and Cu, from first-principles by using the Korringa-Kohn- Rostoker coherent potential approximation (KKR-CPA) method. From the total energy results, it is shown that the mixing energy of magnetic impurity becomes negative and the solubility of magnetic impurities is strongly enhanced under the existence of interstitials [1]. In general, the co-dopants compensate hole carriers, thus the system becomes paramagnetic. However, owing to the large diffusivity of these interstitial impurities, we can anneal out the co-dopants after the crystal growth to recover the ferromagnetism. As an example, kinetic Monte Carlo simulations for the diffusion of interstitial co-dopants in DMS will be shown. [1] K. Sato et al., Jpn. J. Appl. Phys. 46 L1120 (2007)

  12. Tailoring p- and n- type semiconductor through site selective oxygen doping in Cu3N: density functional studies

    NASA Astrophysics Data System (ADS)

    Sahoo, Guruprasad; Kashikar, Ravi; Jain, Mahaveer K.; Nanda, B. R. K.

    2016-06-01

    Using ab initio density functional calculations, we have investigated the stability and electronic structure of pure and oxygen doped semiconducting Cu3N. The oxygen can be accommodated in the system without structural instability as the formation energy either decreases when oxygen substitutes nitrogen, or remains nearly same when oxygen occupies the interstitial position. The interstitial oxygen (OI) prefers to stabilize in the unusual charge neutral state and acts as an acceptor to make the system a p-type degenerate semiconductor. In this case the hole pockets are formed by the partially occupied OI-p states. On the other hand, oxygen substituting nitrogen (OS) stabilizes in its usual ‑2 charge state and acts as a donor to make the system an n-type degenerate semiconductor. The electron pockets are formed by the conducting Cu-p states. In the case of mixed doping, holes are gradually compensated by the donor electrons and an intrinsic gap is obtained for {{{Cu}}}3{{{N}}}{1-2{x}}{{{{O}}}{{S}}}2{x}{{{{O}}}{{I}}}{x} stoichiometry. Our calculations predict the nature of doping as well as optical band gap ({{E}{{g}}}{{o}{{p}}{{t}}}) variation in experimentally synthesized copper oxynitride. While interstitial doping contracts the lattice and increases the {{E}{{g}}}{{o}{{p}}{{t}}}, substitutional doping increases both lattice size and {{E}{{g}}}{{o}{{p}}{{t}}}. Mixed doping reduces {{E}{{g}}}{{o}{{p}}{{t}}}. Additionally we show that a rare intra-atomic d–p optical absorption can be realized in the pristine Cu3N as the Fermi level lies in the gap between the Cu-d dominated anti-bonding valence state and Cu-p conducting state.

  13. Numerical study of the structural and vibrational properties of amorphous Ta2O5 and TiO2-doped Ta2O5

    NASA Astrophysics Data System (ADS)

    Damart, T.; Coillet, E.; Tanguy, A.; Rodney, D.

    2016-05-01

    Using classical molecular dynamics simulations, we synthesized amorphous Ta2O5 and amorphous TiO2-doped Ta2O5. We show that Ta2O5 is composed primarily of six-folded Ta atoms forming octahedra that are either organized in chain-like structures or share edges or faces. When Ta2O5 is doped with TiO2, Ti atoms form equally five- and six-folded polyhedra that perturb but do not break the network structure of the glass. Performing a vibrational eigenmode analysis and projecting the eigenmodes on the rocking, stretching, and bending motions of the Ta-2O and Ta-3O bonds, we provide an atomic-scale analysis that substantiates the interpretations of Raman spectra of amorphous Ta2O5. This eigenmode analysis also reveals the key role played by Ti atoms in the 5 to 12 THz range.

  14. Electrodeposition and characterization of Pd nanoparticles doped amorphous hydrogenated carbon films

    NASA Astrophysics Data System (ADS)

    Yu, Yuanlie; Zhang, Junyan

    2009-11-01

    Palladium (0) nanoparticles incorporated hydrogenated amorphous carbon (Pd/a-C:H) films were synthesized on single crystal silicon (100) substrates by electrochemical deposition route using methanol and camphor as carbon source, and Pd nanoparticles as dopant. The characterization results indicate that Pd nanocrystalline particles with diameter in the range of 1-5 nm dispersed in the amorphous carbon matrix. Compared with pure a-C:H films, the introduction of Pd nanoparticles didn't change the structure of carbon films. At the end, the growth mechanism of the Pd/a-C:H composite films was discussed.

  15. Femtosecond laser-induced crystallization of amorphous N-doped Ge{sub 8}Sb{sub 92} films and in situ characterization by coherent phonon spectroscopy

    SciTech Connect

    Li, Zhongyu; Wen, Ting; Lai, Tianshu E-mail: jwzhai@tongji.edu.cn; Hu, Yifeng; Zhai, Jiwei E-mail: jwzhai@tongji.edu.cn

    2015-04-07

    Femtosecond laser-irradiation-induced phase change of amorphous N-doped Ge{sub 8}Sb{sub 92} films is in situ studied by coherent phonon spectroscopy. We have observed that a new coherent optical phonon (COP) mode occurs as laser irradiation fluence reaches certain thresholds, indicating laser-induced phase changes. Additionally, this new phonon mode has also been verified in heat-annealing-crystallized N-doped Ge{sub 8}Sb{sub 92} films, confirming the emergence of laser-irradiation-induced crystallization. By measuring the pump fluence dependence of COP dynamics in laser-crystallized N-doped Ge{sub 8}Sb{sub 92} films, we found that the frequency and lifetime of COP decrease with the increasing of pump fluence, which suggests good crystallinity in laser-crystallized N-doped Ge{sub 8}Sb{sub 92} films. It has also been observed that the crystallization temperature of amorphous N-doped Ge{sub 8}Sb{sub 92} films increases with N-doping content. Our results indicate promising applications of N-doped Ge{sub 8}Sb{sub 92} films in optical phase-change memory devices.

  16. Nickel nano-particle modified nitrogen-doped amorphous hydrogenated diamond-like carbon film for glucose sensing

    SciTech Connect

    Zeng, Aiping; Jin, Chunyan; Cho, Sang-Jin; Seo, Hyun Ook; Kim, Young Dok; Lim, Dong Chan; Kim, Doo Hwan; Hong, Byungyou; Boo, Jin-Hyo

    2012-10-15

    Electrochemical method has been employed in this work to modify nitrogen-doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel nano-particle-modified N-DLC electrodes. The electrochemical behavior of the nickel nano-particle-modified N-DLC electrodes has been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano-particles on the N-DLC surface have been investigated using micro-Raman spectroscopy and atomic force microscopy. The nickel nano-particle-modified N-DLC electrode exhibits a high catalytic activity and low background current. This result shows that the nickel nano-particle deposition on N-DLC surface could be a promising method to fabricate novel electrode materials for glucose sensing.

  17. Moving liquids with light: Photoelectrowetting on semiconductors

    PubMed Central

    Arscott, Steve

    2011-01-01

    By linking semiconductor physics and wetting phenomena a brand new effect termed “photoelectrowetting-on-semiconductors” is demonstrated here for a conducting droplet resting on an insulator-semiconductor stack. Optical generation of carriers in the space-charge region of the underlying semiconductor alters the capacitance of the liquid-insulator-semiconductor stack; the result of this is a modification of the wetting contact angle of the droplet upon illumination using above band gap light. The effect is demonstrated using commercial silicon wafers, both n- and p-type having a doping range spanning four orders of magnitude (6×1014−8×1018 cm−3), coated with a commercial amorphous fluoropolymer insulating film (Teflon®). Impedance measurements confirm that the observations are semiconductor space-charge related effects. The impact of the work could lead to new silicon-based technologies in areas such as Laboratory-on-a-Chip, Microfluidics and Optofluidics. PMID:22355699

  18. Synthesis of doped semiconductor nanostructures using microemulsions and liquid crystals as templates

    NASA Astrophysics Data System (ADS)

    Panzarella, Tracy Heckler

    Semiconductor nanocrystals, also known as quantum dots (QDs), are a relatively new class of materials with unique size-dependent optical properties that enable the use of these materials in a variety of applications, including fluorescent labels for biomolecules, illumination and display technologies and photovoltaics. When the size of the QD is smaller than the mean separation of an optically excited electron-hole pair, or exciton, size-dependent fluorescence is observed as their emission peak shifts to larger wavelengths with increasing size. Doping of QDs with transition metals enables the tuning of their optoelectronic properties, leading to emission wavelengths longer than their bulk emission. The doping of QDs has recently garnered significant attention because it allows for the ability to tune the QD emission without changing its size. Currently, the most common method for synthesizing QDs involves the injection of organometallic precursors into hot coordinating solvents. To obtain monodisperse nanocrystals with this technique, instantaneous injection of the reactants, uniform nucleation over the entire reactor volume and perfect mixing are required. These conditions are difficult to achieve in practice, and even more difficult in a scaled-up reactor system necessary for commercial applications. The use of microemulsions as templates can enable the synthesis of semiconductor nanocrystals of uniform size and shape, and allow for scalability. The template used in this work consists of para-xylene as the continuous phase, water as the dispersed phase, and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO37-PPO56-PEO37) block copolymer as the surfactant, with the reactants dissolved in the aqueous dispersed phase. Microemulsions formed by this technique, exhibit very slow droplet to droplet coalescence kinetics and allow for the growth of particles with narrow size distribution. A microemulsion template was used to synthesize Mn-doped Zn

  19. The effects of heavy doping on the electronic states in semiconductors

    SciTech Connect

    Sernelius, B.E.

    1987-01-01

    The physics of semiconductors is reviewed. Topics included in the discussion are energy of the dopant system (kinetic energy in a many-valley semiconductor, exchange energy in an ellipsoidal Fermi volume, energy in a polar semiconductor), self energy shifts, band-gap narrowing, and piezo experiments. 31 refs., 27 figs.

  20. Transition from half metal to semiconductor in Li doped g-C{sub 4}N{sub 3}

    SciTech Connect

    Hashmi, Arqum; Hu, Tao; Hong, Jisang

    2014-03-28

    We have investigated the structural and magnetic properties of Li doped graphitic carbon nitride (g-C{sub 4}N{sub 3}) using the van der Waals density functional theory. A free standing g-C{sub 4}N{sub 3} was known to show a half metallic state with buckling geometry, but this feature completely disappears in the presence of Li doping. Besides this structural modification, very interestingly, we have obtained that the Li doped g-C{sub 4}N{sub 3} shows dramatic change in its electronic structure. Both ferromagnetic and nonmagnetic states are almost degenerated in one Li atom doped system. However, the transition from half metallic state to semiconductor is observed with further increase of Li concentration and the calculated energy gap is 1.97 eV. We found that Li impurity plays as a donor element and charge transfer from the Li atom to neighboring N atoms induces a band gap. Overall, we have observed that the electronic and magnetic properties of g-C{sub 4}N{sub 3} are substantially modified by Li doping.

  1. Attempt of Deposition of Ag-Doped Amorphous Carbon Film by Ag-Cathode DC Plasma with CH4 Flow.

    PubMed

    Tsubota, Toshiki; Kuratsu, Kazuhiro; Murakami, Naoya; Ohno, Teruhisa

    2015-06-01

    A simple DC plasma apparatus having large Ag cathode with CH4 flow was used for the attempt to prepare Ag-doped amorphous carbon film. As the gaseous source, CH4 and the additive (N2 or Ar) were used for the plasma process. When N2 was the additive, the substrate surfaces after the plasma process were electrical conductor although high electrical resistance. The growth rate of the deposits decreased with increasing the amount of N2, and the deposits contained nitrogen. Although the small amount of silver was detected by XPS, the peak for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. When Ar was the additive, the substrate surfaces after the plasma process were also electrical conductor although high electrical resistance. The growth rate of the deposits was almost independent of the amount of Ar, and the deposits contained no argon. The small XPS peaks for Ag may not be in the carbon deposit but be in interlayer formed at Ar etching process. Both the prepared samples had high antibiotic property. The method of this study could be used for the surface reforming with amorphous carbon coating having electrical conductivity and antibiotic property. PMID:26369089

  2. Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Horyn, A. M.

    2014-12-15

    The crystal and electronic structure and energy and kinetic properties of the n-HfNiSn semiconductor heavily doped with a Ru acceptor impurity are investigated in the temperature and Ru concentration ranges T = 80–400 K and N{sub A}{sup Ru} ≈ 9.5 × 10{sup 19}−5.7 × 10{sup 20} cm{sup −3} (x = 0–0.03), respectively. The mechanism of structural-defect generation is established, which changes the band gap and degree of compensation of the semiconductor and consists in the simultaneous concentration reduction and elimination of donor structural defects by means of the displacement of ∼1% of Ni atoms from the Hf (4a) positions, the generation of acceptor structural defects upon the substitution of Ru atoms for Ni atoms in the 4c positions, and the generation of donor defects in the form of vacancies in the Sn (4b) positions. The calculated electronic structure of HfNi{sub 1−x}Ru{sub x}Sn is consistent with the experiment. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  3. Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped

    SciTech Connect

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Kaczorowski, D.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Kovbasyuk, T. M.

    2015-03-15

    The crystal and electronic structures, energy, kinetic, and magnetic characteristics of n-HfNiSn semiconductor heavily doped with a Lu acceptor impurity in the ranges T = 80–400 K and N{sub A}{sup Lu} ≈ 1.9 × 10{sup 20}−1.9 × 10{sup 21} cm{sup −3} (x = 0.01–0.10) at H ≤ 10 kG is studied. The nature of the structural-defect generation mechanism leading to changes in the band gap and the degree of semiconductor compensation is determined. Its essence is the simultaneous reduction and elimination of donor-type structural defects due to the displacement of ∼1% of Ni atoms from the Hf (4a) site, the generation of acceptor-type structural defects by substituting Ni atoms with Lu atoms at the 4c site, and the generation of donor-type defects such as vacancies at the Sn (4b) site. The results of calculations of the electronic structure of Hf{sub 1−x}Lu{sub x}NiSn are in agreement with experimental data. The results are discussed within the model of a heavily doped and compensated Shklovskii-Efros semiconductor.

  4. Surface recombination in doped semiconductors: Effect of light excitation power and of surface passivation

    NASA Astrophysics Data System (ADS)

    Cadiz, F.; Paget, D.; Rowe, A. C. H.; Berkovits, V. L.; Ulin, V. P.; Arscott, S.; Peytavit, E.

    2013-09-01

    For n- and p-type semiconductors doped above the 1016 cm-3 range, simple analytical expressions for the surface recombination velocity S have been obtained as a function of excitation power P and surface state density NT. These predictions are in excellent agreement with measurements on p-type GaAs films, using a novel polarized microluminescence technique. The effect on S of surface passivation is a combination of the changes of three factors, each of which depends on NT: (i) a power-independent factor which is inversely proportional to NT and (ii) two factors which reveal the effect of photovoltage and the shift of the electron surface quasi Fermi level, respectively. In the whole range of accessible excitation powers, these two factors play a significant role so that S always depends on power. Three physical regimes are outlined. In the first regime, illustrated experimentally by the oxidized GaAs surface, S depends on P as a power law of exponent determined by NT. A decrease of S such as the one induced by sulfide passivation is caused by a marginal decrease of NT. In a second regime, as illustrated by GaInP-encapsulated GaAs, because of the reduced value of S, the photoelectron concentration in the subsurface depletion layer can no longer be neglected. Thus, S-1 depends logarithmically on P and very weakly on surface state density. In a third regime, expected at extremely small values of P, the photovoltage is comparable to the thermal energy, and S increases with P and decreases with increasing NT.

  5. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles.

    PubMed

    Li, Hongbo; Qiao, Yunfei; Li, Jing; Fang, Hailin; Fan, Dahe; Wang, Wei

    2016-03-15

    Co-doped ZnO diluted magnetic semiconductor as a novel photoelectric beacon was first constructed for photoelectrochemical (PEC) aptasensor of acetamiprid. The fabricated PEC sensing is based on the specific binding of acetamiprid and its aptamer, which induces the decreasement of enhanced photocurrent produced by the electron donor of quercetin. Co(2+) doping has a beneficial effect in extending the band width of light absorption of ZnO into the visible region and to promote the separation of the photoinduced carriers due to the sp-d exchange interactions existing between the band electrons and the localized d electrons of Co(2+). The fabricated aptasensor was linear with the concentration of acetamiprid in the range of 0.5-800 nmolL(-1) with the detection limit of 0.18 nmolL(-1). The presence of same concentration of other conventional pesticides did not interfere in the detection of acetamiprid and the recovery is between 96.2% and 103.7%. This novel PEC aptasensor has good performances with high sensitivity, good selectivity, low cost and portable features. The strategy of Co-doped ZnO diluted magnetic semiconductor paves a new way to improve the performances of PEC aptasensor. PMID:26436325

  6. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    NASA Astrophysics Data System (ADS)

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-02-01

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013 e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.

  7. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions.

    PubMed

    Dissanayake, D M N M; Ashraf, A; Dwyer, D; Kisslinger, K; Zhang, L; Pang, Y; Efstathiadis, H; Eisaman, M D

    2016-01-01

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10(12) e/cm(2) or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene's properties. Here we demonstrate strong (1.33 × 10(13) e/cm(2)), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 10(13) e/cm(2) when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors. PMID:26867673

  8. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    PubMed Central

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-01-01

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013 e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors. PMID:26867673

  9. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    DOE PAGESBeta

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-02-12

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013more » e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less

  10. Rapid growth of localized nature of carriers in the Kondo semiconductor CeFe2Al10 with nonmagnetic ground state due to small Rh doping

    NASA Astrophysics Data System (ADS)

    Tanida, H.; Nakamura, M.; Sera, M.; Nishioka, T.; Matsumura, M.

    2015-12-01

    We examined the chemical doping effect on the Kondo semiconductor CeFe2Al10 with a nonmagnetic ground state by means of the magnetic susceptibility, specific heat, electrical resistivity, and thermopower. The effect of Ru doping on the ground state is small. On the other hand, by a small amount of Rh doping, the magnetic susceptibility is strongly enhanced along the orthorhombic a axis, and a Curie-Weiss behavior is observed in a wide temperature range. The low-temperature specific heat is also strongly enhanced by the doping, and a metallic ground state is realized at low temperatures. These results suggest the collapse of the spin and charge gap due to the suppression of the c -f hybridization effect. From the results of a crystalline electric field analysis on the magnetic susceptibility of Ce (Fe1 -xRhx )2Al10 , it was revealed that the Rh-doping effect on the c -f hybridization effect is anisotropic, especially for the a axis. Similar doping effects are seen in the Rh-doped CeRu2Al10 , Ir-doped CeOs2Al10 , and Si-doped CeRu2Al10 . From these results, we conclude that the collapse of the spin and charge gap by such an excess electron doping is one of the universal features of the Kondo semiconductor Ce T2Al10 (T = Fe, Ru, and Os).

  11. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    SciTech Connect

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-13

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.

  12. Molecular dynamics study of the mechanical loss in amorphous pure and doped silica

    SciTech Connect

    Hamdan, Rashid; Trinastic, Jonathan P.; Cheng, H. P.

    2014-08-07

    Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions.

  13. Thermodynamic and kinetic studies of laser thermal processing of heavily boron-doped amorphous silicon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Clancy, Paulette; Thompson, Michael O.; Murthy, Cheruvu S.

    2002-09-01

    Laser thermal processing (LTP) has been proposed as a means to avoid unwanted transient enhanced diffusion and deactivation of dopants, especially boron and arsenic, during the formation of ultrashallow junctions. Although experimental studies have been carried out to determine the efficacy of LTP for pure Si and lightly B-doped junctions, the effects of high concentrations of dopants (above 2% B) on the thermodynamic and kinetic properties of the regrown film are unknown. In this study, a classical interatomic potential model [Stillinger-Weber (SW)] is used with a nonequilibrium molecular dynamics computer simulation technique to study the laser thermal processing of heavily B-doped Si in the range 2-10 at. % B. We observe only a small effect of boron concentration on the congruent melting temperature of the B:Si alloy, and thus the narrowing of the "process window" for LTP is predicted to be small. No significant tendency for boron to segregate was observed at either the regrowth front or the buried c-Si interface during fast regrowth. The B-doped region regrew as defect-free crystal with full activation of the boron atoms at low boron concentrations (2%), in good agreement with experiments. As the concentration of boron increased, the number of intrinsic Si defects and boron interstitials in the regrown materials increased, with a minor amount of boron atoms in clusters (<2%). An instability limit for crystal regrowth was observed at around 8%-10% boron atoms during fast regrowth; systems with 10% B showed partial amorphization during regrowth. Comparison with tight-binding quantum mechanical calculations showed that the SW model gives similar diffusivities in the liquid and tendency to cluster, but the lifetimes of the SW clusters are considerably too long (>150 ps, compared to 5 ps in tight binding). The importance of adequate system size is discussed.

  14. The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga{sub 2}SeTe{sub 2} semiconductor alloy

    SciTech Connect

    Abdul-Jabbar, N. M.; Kalkan, B.; MacDowell, A. A.; Huang, G.-Y.; Gronsky, R.; Bourret-Courchesne, E. D.; Wirth, B. D.

    2014-08-04

    We observe that pressure-induced amorphization of Ga{sub 2}SeTe{sub 2} (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 10–11 GPa in contrast to those with aperiodic structures, which amorphize around 7–8 GPa. The result is an instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga{sub 2}SeTe{sub 2} provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This is corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies.

  15. Spin dynamics in p-doped semiconductor nanostructures subject to a magnetic field tilted from the Voigt geometry

    NASA Astrophysics Data System (ADS)

    Korzekwa, K.; Gradl, C.; Kugler, M.; Furthmeier, S.; Griesbeck, M.; Hirmer, M.; Schuh, D.; Wegscheider, W.; Kuhn, T.; Schüller, C.; Korn, T.; Machnikowski, P.

    2013-10-01

    We develop a theoretical description of the spin dynamics of resident holes in a p-doped semiconductor quantum well (QW) subject to a magnetic field slightly tilted from the Voigt geometry. We find the expressions for the signals measured in time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA) experiments and study their behavior for a range of system parameters. We find that an inversion of the RSA peaks can occur for long hole spin dephasing times and tilted magnetic fields. We verify the validity of our theoretical findings by performing a series of TRFR and RSA experiments on a p-modulation doped GaAs/Al0.3Ga0.7As single QW and showing that our model can reproduce experimentally observed signals.

  16. Microstructural and Optical properties of transition metal (Cu) doped ZnO diluted magnetic semiconductor nano thin films fabricated by sol gel method

    NASA Astrophysics Data System (ADS)

    Ozturk, Ozgur; Asikuzun, Elif; Tasci, A. Tolga; Arda, Lutfi; Demirozu Senol, Sevim; Celik, Sukru; Terzioglu, Cabir

    Undoped and Cu (Copper) doped ZnO (Zn1-xCuxO) semiconductor thin films were produced by using sol-gel method. Cu was doped 1%, 2%, 3%, 4% and 5% ratio. Methanol and monoethanolamine (MEA) were used as solvent and stabilizer. In this study, the effect of Cu doping was investigated on microstructural and optical properties of ZnO DMS thin films. XRD, SEM, AFM and UV-VIS spectrometer measurements were performed for the microstructural and optical characterization. XRD, SEM and AFM results were showed that all of Cu doped ZnO based thin films have a hexagonal structure. The grain size of Cu doped ZnO thin films and morphology of surface were changed with increasing Cu doping. The optical transmittance of transition metal (Cu) doped ZnO thin films were decreased with doping. Keywords:Diluted Magnetic Semiconductor (DMS), Thin Film, Cu-doping, Bandgap Energy, ZnO. This research has been supported by the Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KU-BAP-05/2015-12 and the Scientific and Technological Research Council of Turkey (TUBITAK) Project No. 114F259.

  17. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  18. Possible Deviation from the well-known Threshold Behavior of Field-Effect Doping Phenomenon in Extremely Thin Organic Semiconductor Layer

    NASA Astrophysics Data System (ADS)

    Ikegami, Keiichi

    2004-05-01

    Field-effect doping in a metal/insulator/semiconductor/metal four-layer model indicates that the well-known threshold behavior Q\\propto(VG-Vth), where Q is the induced charge and VG and Vth are the bias voltage and its threshold value, respectively, should be realized even when the thickness of the semiconductor layer (ds) is on the 10 nm scale. At the same time, however, this model suggests that the doping phenomenon deviates from this simple threshold behavior when the density of states is small and ds is on the 1 nm scale.

  19. Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications

    PubMed Central

    2015-01-01

    Transition metal doped semiconductor nanocrystals (d-dots) possess fundamentally different emission properties upon photo- or electroexcitation, which render them as unique emitters for special applications. However, in comparison with intrinsic semiconductor nanocrystals, the potential of d-dots has been barely realized, because many of their unique emission properties mostly rely on precise control of their photoluminescence (PL) decay dynamics. Results in this work revealed that it would be possible to obtain bright d-dots with nearly single-exponential PL decay dynamics. By tuning the number of Mn2+ ions per dot from ∼500 to 20 in Mn2+ doped ZnSe nanocrystals (Mn:ZnSe d-dots), the single-exponential PL decay lifetime was continuously tuned from ∼50 to 1000 μs. A synthetic scheme was further developed for uniform and epitaxial growth of thick ZnS shell, ∼7 monolayers. The resulting Mn:ZnSe/ZnS core/shell d-dots were found to be essential for necessary environmental durability of the PL properties, both steady-state and transient ones, for the d-dot emitters. These characteristics combined with intense absorption and high PL quantum yields (70 ± 5%) enabled greatly simplified schemes for various applications of PL lifetime multiplexing using Mn:ZnSe/ZnS core/shell d-dots. PMID:27163024

  20. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Tan, Shao-Yang; Zhai, Teng; Zhang, Rui-Kang; Lu, Dan; Wang, Wei; Ji, Chen

    2015-06-01

    Internal loss is a key internal parameter for high power 1060-nm InGaAs/AlGaAs semiconductor laser. In this paper, we discuss the origin of internal loss of 1060-nm InGaAs/GaAs quantum well (QW) AlGaAs separate confinement heterostructure semiconductor laser, and the method to reduce internal loss. By light doping the n-cladding layer, and stepwise doping the p-cladding layer combined with the expanded waveguide layer, a broad area laser with internal loss of 1/cm is designed and fabricated. Ridge waveguide laser with an output power of 350 mW is obtained. The threshold current and slope efficiency near the threshold current are 20 mA and 0.8 W/A, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274046, 61335009, 61201103, and 61320106013) and the National High Technology Research and Development Program of China (Grant No. 2013AA014202).

  1. Towards p × n transverse thermoelectrics: extreme anisotropic conduction in bulk doped semiconductor thin films via proton implantation

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Koblmüller, G.; Riedl, H.; Grayson, M.

    2016-03-01

    Transverse thermoelectrics promise entirely new strategies for integrated cooling elements for optoelectronics. The recently introduced p × n-type transverse thermoelectric paradigm indicates that the most important step to engineering artificial transverse thermoelectrics is to create alternate p- and n-doped layers with orthogonally oriented anisotropic conductivity. This paper studies an approach to creating extreme anisotropic conductivity in bulk-doped semiconductor thin films via ion implantation. This approach defines an array of parallel conduction channels with photolithographic patterning of an SiO2 mask layer, followed by proton implantation. With a 10 μm channel width and 20 μm pitch, both n-type and p-type Al0.42 Ga0.58As thin films demonstrate a conductivity anisotropy ratio σ /σ⊥ > 104 at room temperature, while the longitudinal resistivity along the channel direction after implantation only increased by a factor of 3.3 ˜ 3.6. This approach can be readily adapted to other semiconductor materials for artificial p × n-type transverse thermoelectrics as other applications.

  2. Optical approach to thermopower and conductivity measurements in thin-film semiconductors

    SciTech Connect

    Dersch, H.; Amer, N.M.

    1984-08-01

    An optical beam deflection technique is applied to measure the Joule and Peltier heat generated by electric currents through thin-film semiconductors. The method yields a spatially resolved conductivity profile and allows the determination of Peltier coefficients. Results obtained on doped hydrogenated amorphous silicon films are presented.

  3. A hybrid of titanium nitride and nitrogen-doped amorphous carbon supported on SiC as a noble metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Jia, Yingdan; Wang, Yanhui; Dong, Liang; Huang, Junjie; Zhang, Yan; Su, Jing; Zang, Jianbing

    2015-02-14

    A novel noble metal-free catalyst, with nitrogen-doped amorphous carbon and titanium nitride particles supported on SiC (NC-TiN/SiC), was synthesized. The NC-TiN/SiC catalyst exhibited excellent oxygen reduction reaction activities as well as superior stability and methanol tolerance. The catalytic activities were attributed to the synergistic effect of TiN and NC. PMID:25574526

  4. Compositing amorphous TiO2 with N-doped carbon as high-rate anode materials for lithium-ion batteries.

    PubMed

    Xiao, Ying; Hu, Changwen; Cao, Minhua

    2014-01-01

    Compositing amorphous TiO2 with nitrogen-doped carbon through Ti-N bonding to form an amorphous TiO2/N-doped carbon hybrid (denoted a-TiO2/C-N) has been achieved by a two-step hydrothermal-calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a-TiO2/C-N hybrid has a surface area as high as 108 m(2) g(-1) and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g(-1) at a current rate of 1 C and a reversible capacity over 156 mA h g(-1) at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2 . This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N-doped carbon. PMID:24347075

  5. Characterization and comparison of lateral amorphous semiconductors with embedded Frisch grid detectors on 0.18μm CMOS processed substrate for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Hristovski, Christos; Goldan, Amir; Majid, Shaikh Hasibul; Wang, Kai; Shafique, Umar; Karim, Karim

    2011-03-01

    An indirect digital x-ray detector is designed, fabricated, and tested. The detector integrates a high speed, low noise CMOS substrate with two types of amorphous semiconductors on the circuit surface. Using a laterally oriented layout a-Si:H or a-Se can be used to coat the CMOS circuit and provide high speed photoresponse to complement the high speed circuits possible on CMOS technology. The circuit also aims to reduce the effect of slow carriers by integrated a Frisch style grid on the photoconductive layer to screen for the slow carriers. Simulations show a uniform photoresponse for photons absorbed on the top layer and an enhanced response when using a Frisch grid. EQE and noise results are presented. Finally, possible applications and improvements to the area of indirect x-ray imaging that are capable of easily being implemented on the substrate are suggested.

  6. Enhanced stability of Bi-doped Ge2Sb2Te5 amorphous films

    NASA Astrophysics Data System (ADS)

    Dyussembayev, S.; Prikhodko, O.; Tsendin, K.; Timoshenkov, S.; Korobova, N.

    2014-09-01

    Although, several reviews have appeared on various physical properties and applications of chalcogenide glasses, there is no thorough study of local atomic structure and its modification for eutectic Ge-Sb-Te alloys doped with Bi. Ge2Sb2Te5 pure and Bi-doped films were deposited by ion-plasma sputtering method of synthesized GTS material on Si (100) and glass substrates coated with a conductive Al layer which was used as a bottom electrode. Current-voltage characteristics of different points of the same samples have been measured. Random distribution of inclusions within the sample made it possible to investigate the dependence of switching and memory effects on the phase composition at a constant value of other parameters. Measurements in the current controlled mode clearly showed that the memory state formation voltage does not depend on current in a wide range. Results indicate that the development of imaging technologies phase memory cells need to pay special attention to the conditions of Ge-Sb-Te film preparation. To increase the number of cycles "write - erase" should be additional prolonged annealing of the synthesized films.

  7. Laser-induced generation of micrometer-sized luminescent patterns on rare-earth-doped amorphous films

    SciTech Connect

    Zanatta, A.R.; Ribeiro, C.T.M.

    2004-12-01

    Room-temperature photoluminescence has been achieved from rare-earth-doped amorphous (a-) GeN films. The samples were prepared by the radio-frequency-sputtering method, and light emission from the rare-earth (RE) centers was obtained after irradiating the films with a highly focused laser beam. As a result of this laser annealing procedure, almost circular holes with approximately 1-{mu}m diameter were produced on the surface of the a-GeN films. The area nearby these holes correspond to crystalline Ge and coincide with the regions, where relatively strong RE-related luminescence takes place. These laser-annealed areas can be easily and conveniently managed in order to generate different microscopic luminescent patterns. Depending on the RE ion employed, visible and near-infrared light emission were obtained from the patterns so produced. The development of these micrometer-sized luminescent centers, as well as their probable mechanisms of excitation-recombination, will be presented and discussed. The importance of the current experimental results to future technological applications such as microdevices, for example, will also be outlined.

  8. Nitrogen-Doped Hollow Amorphous Carbon Spheres@Graphitic Shells Derived from Pitch: New Structure Leads to Robust Lithium Storage.

    PubMed

    Ma, Qingtao; Wang, Luxiang; Xia, Wei; Jia, Dianzeng; Zhao, Zongbin

    2016-02-12

    Nitrogen-doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen-containing groups on NHCS, and the resulting NHCS-O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium-ion batteries. The NHCS-O electrode maintained a reversible specific capacity of 616 mAh g(-1) after 250 cycles at a current rate of 500 mA g(-1) , which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS-O electrode exhibited a reversible capacity of 503 mAh g(-1) at a high current density of 1.5 A g(-1) . The superior electrochemical performance of NHCS-O can be attributed to the hybrid structure, high N and O contents, and rich surface defects. PMID:26751009

  9. Investigation of thermally evaporated high resistive B-doped amorphous selenium alloy films and metal contact studies

    NASA Astrophysics Data System (ADS)

    Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.

  10. Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with µ-Chips

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785

  11. Widely bandgap tunable amorphous Cd–Ga–O oxide semiconductors exhibiting electron mobilities ≥10 cm{sup 2 }V{sup −1 }s{sup −1}

    SciTech Connect

    Yanagi, Hiroshi; Sato, Chiyuki; Kimura, Yota; Suzuki, Issei; Omata, Takahisa; Kamiya, Toshio; Hosono, Hideo

    2015-02-23

    Amorphous oxide semiconductors exhibit large electron mobilities; however, their bandgaps are either too large for solar cells or too small for deep ultraviolet applications depending on the materials system. Herein, we demonstrate that amorphous Cd–Ga–O semiconductors display bandgaps covering the entire 2.5–4.3 eV region while maintaining large electron mobilities ≥10 cm{sup 2 }V{sup −1 }s{sup −1}. The band alignment diagram obtained by ultraviolet photoemission spectroscopy and the bandgap values reveal that these semiconductors form type-II heterojunctions with p-type Cu{sub 2}O, which is suitable for solar cells and solar-blind ultraviolet sensors.

  12. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  13. Effects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane doping on diketopyrrolopyrrole-based, low crystalline, high mobility polymeric semiconductor

    SciTech Connect

    Yoon, Seongwon; Cho, Jangwhan; Chung, Dae Sung; Lee, Han-Koo; Park, Sungmin; Son, Hae Jung

    2015-09-28

    The effects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping on diketopyrrolo-pyrrole-based polymeric semiconductors in terms of charge transport behavior and structural ordering are systematically investigated. Although the energy level offset between the polymeric semiconductor and the F4TCNQ acceptor was not particularly large, ultraviolet photoelectron spectroscopy analyses revealed that a low doping ratio of 1 wt. % is sufficient to tune the energy distance between the Fermi level and the HOMO level, reaching saturation at roughly 5 wt. %, which is further confirmed by the depletion mode measurements of field effect transistors (FETs). Structural analyses using grazing-incidence X-ray diffraction (GIXD) show that the overall degree of edge-on orientation is disturbed by the addition of dopants, with significant influence appearing at high doping ratios (>3 wt. %). The calculated charge carrier mobility from accumulation mode measurements of FETs showed a maximum value of 2 cm{sup 2}/V·s at the optimized doping ratio of 1%, enabled by additional holes in the channel region, which results in a roughly 40% increase relative to the undoped device. Further increases in the doping ratio, however, resulted in worse FET performance, which can be attributed to structural deformation. This result suggests that the electrochemical doping method can be also applied to donor-acceptor copolymers to further enhance their charge transport characteristics, once the optimized doping condition has been established.

  14. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    SciTech Connect

    Heinrich, Martin; Kluska, Sven; Binder, Sebastian; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  15. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  16. General synthesis of manganese-doped II-VI and III-V semiconductor nanowires.

    PubMed

    Radovanovic, Pavle V; Barrelet, Carl J; Gradecak, Silvija; Qian, Fang; Lieber, Charles M

    2005-07-01

    A general approach for the synthesis of manganese-doped II-VI and III-V nanowires based on metal nanocluster-catalyzed chemical vapor deposition has been developed. High-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy studies of Mn-doped CdS, ZnS, and GaN nanowires demonstrate that the nanowires are single-crystal structures and homogeneously doped with controllable concentrations of manganese ions. Photoluminescence measurements of individual Mn-doped CdS and ZnS nanowires show characteristic pseudo-tetrahedral Mn2+ ((4)T1-->(6)A1) transitions that match the corresponding transitions in bulk single-crystal materials well. Photoluminescence studies of Mn-doped GaN nanowires suggest that manganese is incorporated as a neutral (Mn3+) dopant that partially quenches the GaN band-edge emission. The general and controlled synthesis of nanowires doped with magnetic metal ions opens up opportunities for fundamental physical studies and could lead to the development of nanoscale spintronic devices. PMID:16178248

  17. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    PubMed Central

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  18. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror

    NASA Astrophysics Data System (ADS)

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-05-01

    A diode-cladding pumped mid-infrared passively Q-switched Er3+-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail.

  19. Watt-level passively Q-switched heavily Er(3+)-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror.

    PubMed

    Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Huang, Ke; Tao, Mengmeng; Chen, Hongwei; Yi, Aiping; Feng, Guobin; Si, Jinhai

    2016-01-01

    A diode-cladding pumped mid-infrared passively Q-switched Er(3+)-doped ZBLAN fiber laser with an average output power of watt-level based on a semiconductor saturable absorber mirror (SESAM) is demonstrated. Stable pulse train was produced at a slope efficiency of 17.8% with respect to launched pump power. The maximum average power of 1.01 W at a repetition rate of 146.3 kHz was achieved with a corresponding pulse energy of 6.9 μJ, from which the maximum peak power was calculated to be 21.9 W. To the best of our knowledge, the average power and the peak power are the highest in 3 μm region passively Q-switched fiber lasers. The influence of gain fiber length on the operation regime of the fiber laser has been investigated in detail. PMID:27225029

  20. Random lasing characteristics in dye-doped semiconductor CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, L. W.

    2016-01-01

    A new strategy to obtain random lasing from semiconductor CdS nanoparticles is presented. A device is prepared with dye (DCM) solution containing CdS NPs. Good lasing behavior is reached and the multiple light scattering process is responsible for lasing generation. We also manage to show that the lasing modes and output intensity exhibit angular dependence. The result indicates that CdS nanoparticles can be used as ideal microlaser material in future semiconductor laser devices. Supported by the Doctoral Science Research Start-up Funding of GuiZhou Normal University No. 11904-0514162.

  1. Electrical conduction of ion tracks in tetrahedral amorphous carbon: temperature, field and doping dependence and comparison with matrix data

    NASA Astrophysics Data System (ADS)

    Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Amani, J.; Trautmann, C.; Weidinger, A.

    2015-12-01

    This paper gives an extended overview of the electrical properties of ion tracks in hydrogen-free tetrahedral amorphous carbon (ta-C) with a sp3 bond fraction of about 80%. The films were grown by mass selected ion beam deposition of 100 eV 12C+ ions. The ion tracks are generated by irradiation of ta-C films with uranium ions of 1 GeV kinetic energy. Along the ion path a conversion from diamond-like (sp3) carbon to graphite-like (sp2) carbon takes place. Topography and current measurements of individual ion tracks were performed by atomic force microscopy at ambient temperature. The temperature dependence of the electric conductivity was studied between 15 and 390 K by means of 0.28 mm2 large contact pads averaging over about 107 tracks. For each sample and at each temperature the conductivity as a function of the applied electrical field (non-ohmic behaviour) was measured separately and the data were extrapolated to field zero. In this way, the zero-field conductivity was determined independent from the field dependence. In spite of large differences in the absolute values, the temperature dependence of the zero-field conductivities is found to be very similar in shape for all samples. The conductivities follow a {T}-{1/4} law up to temperatures slightly below room temperature. At higher temperatures a transport mechanism based on over-barrier hopping dominates with an activation energy of about 220 meV for tracks and 260 meV for the ta-C matrix. The field dependence measurements show that the deviation of the I-V characteristics from ohmic behaviour decreases with increasing zero-field conductivity. We also tested Cu-doped ta-C samples and found that they conduct significantly better than pure ta-C. However, the doping also increases the zero-field conductivity resulting in a weaker contrast between the track and matrix. The data are interpreted within the so-called ‘barrier model’ where the electrons are assumed to move fairly freely in well-conducting sp2

  2. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  3. Reduction of tail state on boron doped hydrogenated amorphous silicon oxide films prepared at high hydrogen dilution.

    PubMed

    Park, Jinjoo; Iftiquar, S M; Lee, Sunwha; Park, Hyeongsik; Shin, Chonghoon; Jung, Junhee; Lee, Youn-Jung; Balaji, Nagarajan; Yi, Junsin

    2013-12-01

    In this report, we have investigated on the defect state of diborane (B2H6) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiO:H) films prepared using silane (SiH4), hydrogen (H2) and nitrous oxide (N2O) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system with different hydrogen dilutions. The films prepared with higher hydrogen dilution show lower Urbach energy (Eu), lower microstructure (R*), lower short and medium range disorder (omegaTO, Gamma(TO), I(TA)/I(TO), I(LA)/I(TO)), higher dark conductivity (sigma d) and higher refractive index (n) with high optical gap (Eg). Eu decreases from 248 meV to 153 meV, and R* decreases from 0.46 to 0.26, Raman peak omegaTO-TO mode position shifts from 480.24 to 483.28, GammaTO-full width half maximum of omegaTO decreases from 78.16 to 63.87, I(TA)/I(TO)-the ratio of integrated area of TA and TO mode decreases from 0.624 to 0.474, I(LA)/I(TO)-the ratio of integrated area of LA and TO mode deceases from 0.272 to 0.151, sigma d increases from 4.6 x 10(-7) S/cm to 1.1 x 10(-6) S/cm, n increases from 3.70 to 3.86. Reduced Nd, Eu and R* at wide Eg indicates that the films are more useful for solar cell window layer. Applying this layer to a single junction solar cell shows open circuit voltage (Voc) = 0.80 V, short circuit current density (Jsc) = 16.3 mA/cm2, fill factor (FF) = 72%, efficiency (eta) = 9.4%. PMID:24266147

  4. Optical nonlinearity of semiconductor-doped glasses at frequencies below the band gap: the role of free carriers

    NASA Astrophysics Data System (ADS)

    Banfi, Gianpiero; Degiorgio, Vittorio; Tan, Hui Ming

    1995-04-01

    We have studied, through time-resolved degenerate-four-wave mixing, the nonlinear response below the band gap of glasses doped with CdTe and CdS1-xSex nanocrystals by using 30-ps pulses from a Nd:YAG laser in the intensity range 0.4-1.6 GW / cm2. We found that the third-order nonlinearity is overshadowed by a fifth-order one when the band gap of the semiconductor crystallites became smaller than twice the photon energy. The fifth-order response, which is due to the refraction from the free carriers generated by two-photon absorption, does not saturate up to the highest intensity (corresponding to an electron-hole density in the crystallites N \\approximately 1019 cm-3) and decays on a nanosecond time scale. We derive sigma , the ratio between the refractive-index change and N ( sigma =3 - 4 \\times 10-21 cm3 for CdTe nanocrystals) and compare it with the values for bulk semiconductors.

  5. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    SciTech Connect

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa; Svane, Axel; Petit, Leon

    2007-01-01

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.

  6. Electron scattering by native defects in uniformly and modulation doped semiconductor structures

    SciTech Connect

    Walukiewicz, W.

    1989-11-01

    Formation of native defects in GaAs is described in terms of the amphoteric native defect model. It is shown that Fermi energy induced formation of gallium vacancies is responsible for the limitations of maximum free electron concentration in GaAs. The effect of the defects on electron mobility in heavily doped n-GaAs is quantitatively evaluated. Defect scattering explains the abrupt reduction of electron mobility at high doping levels. Also, it is demonstrated that native defects are responsible for the mobility reduction in inverted modulation doped GaAs/AlGaAs heterostructures. The amphoteric defect model also explains a distinct asymmetry in defect formation in n- and p-GaAs. In p-GaAs the Fermi level induced reduction of the defect formation energy is much smaller, and therefore the concentration of the native defects is negligible compared with the hole concentration. 43 refs., 5 figs.

  7. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  8. Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors

    NASA Astrophysics Data System (ADS)

    Cohn, J. L.; Nolas, G. S.; Fessatidis, V.; Metcalf, T. H.; Slack, G. A.

    1999-01-01

    The thermal conductivity of polycrystalline semiconductors with type-I clathrate hydrate crystal structure is reported. Ge clathrates (doped with Sr and/or Eu) exhibit lattice thermal conductivities typical of amorphous materials. Remarkably, this behavior occurs in spite of the well-defined crystalline structure and relatively high electron mobility ( ~100 cm2/V s). The dynamics of dopant ions and their interaction with the polyhedral cages of the structure are a likely source of the strong phonon scattering.

  9. Graphene activating room-temperature ferromagnetic exchange in cobalt-doped ZnO dilute magnetic semiconductor quantum dots.

    PubMed

    Sun, Zhihu; Yang, Xiaoyu; Wang, Chao; Yao, Tao; Cai, Liang; Yan, Wensheng; Jiang, Yong; Hu, Fengchun; He, Jingfu; Pan, Zhiyun; Liu, Qinghua; Wei, Shiqiang

    2014-10-28

    Control over the magnetic interactions in dilute magnetic semiconductor quantum dots (DMSQDs) is a key issue to future development of nanometer-sized integrated "spintronic" devices. However, manipulating the magnetic coupling between impurity ions in DMSQDs remains a great challenge because of the intrinsic quantum confinement effects and self-purification of the quantum dots. Here, we propose a hybrid structure to achieve room-temperature ferromagnetic interactions in DMSQDs, via engineering the density and nature of the energy states at the Fermi level. This idea has been applied to Co-doped ZnO DMSQDs where the growth of a reduced graphene oxide shell around the Zn(0.98)Co(0.02)O core turns the magnetic interactions from paramagnetic to ferromagnetic at room temperature, due to the hybridization of 2p(z) orbitals of graphene and 3d obitals of Co(2+)-oxygen-vacancy complexes. This design may open up a kind of possibility for manipulating the magnetism of doped oxide nanostructures. PMID:25222885

  10. Growth of ferroelectric Li-doped ZnO thin films for metal-ferroelectric-semiconductor FET

    NASA Astrophysics Data System (ADS)

    Dhananjay; Nagaraju, J.; Choudhury, Palash Roy; Krupanidhi, S. B.

    2006-07-01

    A metal-ferroelectric-semiconductor structure has been developed by depositing Li-doped ZnO thin films (Zn1-xLixO, x = 0.25) on p-type Si substrates by the pulsed laser ablation technique. (002) preferential oriented films were deposited at a low growth temperature of 500 °C and 100 mTorr oxygen partial pressure. The dielectric response of the films has been studied over a temperature range 250 373 K. A dielectric anomaly was observed at 360 K. The capacitance voltage characteristics of Ag/Zn0.75Li0.25O/Si exhibited clockwise hysteresis loops with a memory window of 2 V. The films deposited at 100 mTorr pressure show a stable current density and a saturated polarization hysteresis loop with a remanent polarization of 0.09 µC cm-2 and coercive field of 25 kV cm-1. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. Ohmic behaviour was observed at low voltage, while higher voltages induced a bulk space charge. The optical properties of Zn0.75Li0.25O thin films were studied in the wavelength range 300 900 nm. The appearance of ferroelectric nature in Li-doped ZnO films adds an additional dimension to its applications.

  11. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    SciTech Connect

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R.; Rajagopan, S.

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  12. Nitrogen plasma treatment of fluorine-doped tin oxide for enhancement of photo-carrier collection in amorphous Si solar cells

    NASA Astrophysics Data System (ADS)

    Baik, Seung Jae; Lim, Koeng Su

    2011-04-01

    Nitrogen plasma treatment was performed on fluorine-doped tin oxide (SnO2:F) front electrodes, and its impact on the performance of pin type amorphous Si (a-Si) solar cells was investigated. Nitrogen plasma treatment reverses the surface band bending of SnO2:F from accumulation to depletion, thus in turn reversing the band bending of the p type amorphous silicon carbide (p-a-SiC) window layer. The reversal of band bending leads to the collection of carriers generated in p-a-SiC, and quantum efficiency in the short wavelength regime is thereby enhanced. On the other hand, surface depletion of SnO2:F causes a reduction of the diode built-in voltage and increased series resistance, which could degrade the open circuit voltage (Voc) and fill factor (FF), the degradation of which is strongly affected by the deposition time of p-a-SiC.

  13. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hwang, Ah Young; Kim, Sang Tae; Ji, Hyuk; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-01

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm2/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (VTH) of 1.5 V, and ION/OFF ratio of ˜107. A significant improvement in the field-effect mobility (up to ˜33.5 cm2/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, VTH, or ION/OFF ratio due to the presence of a highly ordered microstructure.

  14. Ruthenium Doped ZnO Semiconductor: Synthesis, Characterization and Photodegradation of Azo Dye

    NASA Astrophysics Data System (ADS)

    Aranganayagam, K. R.; Senthilkumaar, S.; Ganapathi Subramaniam, N.; Kang, T. Wang

    2013-04-01

    Ruthenium doped zinc oxide was synthesized by a simple sol-gel method via ultrasonication. The samples were characterized by X-ray diffraction, high resolution scanning electron microscopy (HR-SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive spectroscopy (EDS) and UV-visible spectroscopy techniques and tested for the feasibility as a heterogeneous photocatalyst. The photocatalytic activity of Ru doped ZnO was tested using an azo dye, congo red (CR) in an aqueous solution, as a model compound. For comparison, the photocatalytic activity of pure ZnO was also performed. The parameters studied include the effect of initial CR concentration, photocatalyst weight and charge transfer phenomenon. The observed reaction mechanism was rationalized based on the elementary chemical reaction occurring in the irradiated heterogeneous reaction mixture. Total mineralization of CR was observed for both pure and Ru doped ZnO system. However, the photocatalytic activity of Ru doped ZnO was found to be higher than that of a pure ZnO.

  15. Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.

    2014-06-01

    We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.

  16. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO

    NASA Astrophysics Data System (ADS)

    Fishchuk, I. I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M. M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J.

    2016-05-01

    We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized states and the localized states. The principal advantage of the present model is its ability to describe universally effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one we

  17. N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity.

    PubMed

    Li, Fa-tang; Zhao, Ye; Hao, Ying-juan; Wang, Xiao-jing; Liu, Rui-hong; Zhao, Di-shun; Chen, Dai-mei

    2012-11-15

    Nitrogen-doped Degussa P25 TiO2-amorphous Al2O3 composites were prepared via facile solution combustion. The composites were characterised using X-ray diffraction, high-resolution transmission microscopy, scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, UV-vis light-diffusion reflectance spectrometry (DRS), zeta-potential measurements, and photoluminescence spectroscopy. The DRS results showed that TiO2 and amorphous Al2O3 exhibited absorption in the UV region. However, the Al2O3/TiO2 composite exhibited visible-light absorption, which was attributed to N-doping during high-temperature combustion and to alterations in the electronic structure of Ti species induced by the addition of Al. The optimal molar ratio of TiO2 to Al2O3 was 1.5:1, and this composite exhibited a large specific surface area of 152 m2/g, surface positive charges, and enhanced photocatalytic activity. These characteristics enhanced the degradation rate of anionic methylene orange, which was 43.6 times greater than that of pure P25 TiO2. The high visible-light photocatalytic activity was attributed to synthetic effects between amorphous Al2O3 and TiO2, low recombination efficiency of photo-excited electrons and holes, N-doping, and a large specific surface area. Experiments that involved radical scavengers indicated that OH and O2- were the main reactive species. A potential photocatalytic mechanism was also proposed. PMID:23021102

  18. New material for low-dose brachytherapy seeds: Xe-doped amorphous carbon films with post-growth neutron activated 125I.

    PubMed

    Gonçalves, R G F; Pinheiro, M V B; Lacerda, R G; Ferlauto, A S; Ladeira, L O; Krambrock, K; Leal, A S; Viana, G A; Marques, F C

    2011-01-01

    We report a novel material for use in (125)I brachytherapy that consists of amorphous carbon films grown by ion-beam-assisted deposition and doped with Xe (5 at%) by implantation. Samples of these films grown on Si substrates were irradiated with neutrons in a TRIGA-I nuclear reactor for the production (125)Xe, and latter characterized by gamma spectroscopy. The results indicate that the (124)Xe was efficiently converted into (125)Xe, the precursor of (125)I, and support the activity calculations for a model brachytherapy seed. PMID:20729094

  19. Evolution of the electron acoustic signal as function of doping level in III-V semiconductors

    SciTech Connect

    Bresse, J.F.; Papadopoulo, A.C.

    1988-07-01

    The evolution of the electron acoustic signal has been measured for Be- and Si-doped GaAs and Ga/sub 0.28/Al/sub 0.19/In/sub 0.53/As layers with doping levels from10/sup 17/ to 10/sup 20/ at. cm/sup -3/. The samples have also been analyzed by cathodoluminescence spectroscopy for near-band-edge transition and deep level emission. The results are explained by the reduction of the mean free path of phonons, giving rise to a lattice thermal conductivity decrease. Meanwhile, the electronic part of the thermal conductivity of these compounds is found to be nearly negligible.

  20. Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study.

    PubMed

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2016-12-01

    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe, and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn, and Fe impurities show DMS properties, with Ni impurity showing half-metal properties, whereas Sc- and Co-doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to nonmagnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes. PACS numbers: 73.22.-f, 75.50.Pp, 75.75. + a. PMID:26858159

  1. Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3 d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2016-02-01

    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3 d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe, and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn, and Fe impurities show DMS properties, with Ni impurity showing half-metal properties, whereas Sc- and Co-doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to nonmagnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes. PACS numbers: 73.22.-f, 75.50.Pp, 75.75. + a

  2. A study on the properties of C-doped Ge8Sb2Te11 thin films during an amorphous-to-crystalline phase transition

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2016-04-01

    In this work, we evaluated the structural, electrical and optical properties of carbon-doped Ge8Sb2Te11 thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and carbon-doped Ge8Sb2Te11 films of 250 nm in thickness were deposited on p-type Si (100) and glass substrates by using a RF magnetron reactive co-sputtering system at room temperature. The fabricated films were annealed in a furnance in the 0 ~ 400°C temperature range. The structural properties were analyzed by using X-ray diffraction (XRD), and the result showed that the carbon-doped Ge8Sb2Te11 had a face-centeredcubic (fcc) crystalline structure and an increased crystallization temperature ( T c ). An increase in the T c leads to thermal stability in the amorphous state. The optical properties were analyzed by using an UV-Vis-IR spectrophotometer, and the result showed an increase in the optical-energy band gap ( E op ) in the crystalline materials and an increase in the E op difference (Δ E op ), which is a good effect for reducing the noise in the memory device. The electrical properties were analyzed by using a 4-point probe, which showed an increase in the sheet resistance ( R s ) in the amorphous state and the crystalline state, which means a reduced programming current in the memory device.

  3. Optical properties of Mn-doped ZnS semiconductor nanoclusters synthesized by a hydrothermal process

    NASA Astrophysics Data System (ADS)

    Hoa, Tran Thi Quynh; The, Ngo Duc; McVitie, Stephen; Nam, Nguyen Hoang; Vu, Le Van; Canh, Ta Dinh; Long, Nguyen Ngoc

    2011-01-01

    Undoped and Mn-doped ZnS nanoclusters have been synthesized by a hydrothermal approach. Various samples of the ZnS:Mn with 0.5, 1, 3, 10 and 20 at.% Mn dopant have been prepared and characterized using X-ray diffraction, energy-dispersive analysis of X-ray, high resolution electron microscopy, UV-vis diffusion reflection, photoluminescence (PL) and photoluminescence excitation (PLE) measurements. All the prepared ZnS nanoclusters possess cubic sphalerite crystal structure with lattice constant a = 5.408 ± 0.011 Ǻ. The PL spectra of Mn-doped ZnS nanoclusters at room temperature exhibit both the 495 nm blue defect-related emission and the 587 nm orange Mn2+ emission. Furthermore, the blue emission is dominant at low temperatures; meanwhile the orange emission is dominant at room temperature. The Mn2+ ion-related PL can be excited both at energies near the band-edge of ZnS host (the UV region) and at energies corresponding to the Mn2+ ion own excited states (the visible region). An energy schema for the Mn-doped ZnS nanoclusters is proposed to interpret the photoluminescence behaviour.

  4. Defects induced magnetization in B-doped ZnFeO dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Saleem, Murtaza; Sabieh Anwar, M.; Mahmood, Asif; Atiq, Shahid; Ramay, Shahid M.; Siddiqi, Saadat A.

    2015-05-01

    Zn0.95-xFe0.05BxO (x=0, 0.05) nano-particles have been synthesized using a modified chemically derived citrate gel method. X-ray diffraction analysis demonstrates the wurtzite type hexagonal structure belonging to P63mc space group without the presence of any secondary phase in both compositions. The Diffraction analysis shows that Fe2+ and B3+ ions have replaced some of the Zn2+ ions while some occupy un-detectable interstitial and inter-granular positions inside the structure. Scanning electron micrographs obtained using scanning electron microscopy show typical smaller size of particles in B-doped composition. Temperature dependent electrical resistivity analysis shows the semiconducting characteristics of the compositions and that doping of Fe and B up to 10 at% does not change the electrical behavior of the host material. Magnetic measurements display room temperature ferromagnetism in both compositions with enhanced magnetization in B-doped composition associated with defect induced magnetic mechanism belonging to intrinsically augmented interstitial and inter-granular effects.

  5. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    SciTech Connect

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  6. Investigation of the effects of deposition parameters on indium-free transparent amorphous oxide semiconductor thin-film transistors fabricated at low temperatures for flexible electronic applications

    NASA Astrophysics Data System (ADS)

    Alston, Robert; Iyer, Shanthi; Bradley, Tanina; Lewis, Jay; Cunningham, Garry; Forsythe, Eric

    2014-02-01

    Low temperature gallium tin zinc oxide (GSZO) based thin film transistors fabricated on silicon has been investigated as a potential indium free transparent amorphous oxide semiconductor thin film transistor (TAOS TFT) with potential device applications on plastic substrates. A comprehensive and detailed study on the performance of GSZO TFTs has been carried out by studying the effects of processing parameters such as deposition temperature and annealing temperature/duration, as well as the channel thickness with all temperatures held below 150 °C. Variety of characterization techniques, namely Rutherford backscattering (RBS), x-ray photoelectron spectroscopy (XPS) and x-ray reflectivity (XRR) in addition to I-V and C-V measurements were employed to determine the effects of the above parameters on the composition and quality of the channel. Optimized TFT characteristics of ID=3×10-7 A, ION/OFF =2×106, VON ~ -2 V, SS ~ 1 V/dec and μFE = 0.14 cm2/V· s with a ΔVON of 3.3 V under 3 hours electrical stress were produced.

  7. Electrochemical performance of NiO-doped LiFePO4/C cathode materials prepared from amorphous FePO4 · xH2O

    NASA Astrophysics Data System (ADS)

    Mahmud, Iqbal; Kim, Dong-Seob; Ur, Soon-Chul

    2016-05-01

    LiFePO4/C composites are prepared from amorphous FePO4 · xH2O and are modified with NiO (0.0, 0.01, 0.02, 0.03, and 0.04 mol) by using a solid-state reaction process with a spex milling system. The crystalline structure and the morphology of synthesized powders have been characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD patterns indicate a complete solid solution for all the NiO-doped LiFePO4/C composites. The SEM images show that the sizes of the particles produced are distributed in the range of 200 - 300 nm. The electrochemical performances have been evaluated by using an impedance measurement and a galvanostatic charge/discharge test. The initial properties and impedance measurement reveal different improvements for different amounts of NiO doping in LiFePO4/C. A maximum capacity of 158.8 mAh/g at 0.1 C has been achieved LiFePO4/C doped with NiO at 0.01 mol. The present work reveals that the newly processed composite of LiFePO4/C doped with a small amount of NiO may be a promising material for using in a lithium-ion battery.

  8. Ionization sensitization of doping in co-deposited organic semiconductor films

    SciTech Connect

    Shinmura, Yusuke Yamashina, Yohei; Kaji, Toshihiko; Hiramoto, Masahiro

    2014-11-03

    Sensitization of the dopant ionization in co-deposited films of organic semiconductors was found. The ionization rate of cesium carbonate (Cs{sub 2}CO{sub 3}), which acts as a donor dopant in single films of metal-free phthalocyanine (H{sub 2}Pc) and fullerene (C{sub 60}), was increased from 10% to 97% in a H{sub 2}Pc:C{sub 60} co-deposited film. A charge separation superlattice model that includes electron transfer from the conduction band of H{sub 2}Pc to that of C{sub 60}, which increases the rate of dopant ionization, is proposed.

  9. Ionization sensitization of doping in co-deposited organic semiconductor films

    NASA Astrophysics Data System (ADS)

    Shinmura, Yusuke; Yamashina, Yohei; Kaji, Toshihiko; Hiramoto, Masahiro

    2014-11-01

    Sensitization of the dopant ionization in co-deposited films of organic semiconductors was found. The ionization rate of cesium carbonate (Cs2CO3), which acts as a donor dopant in single films of metal-free phthalocyanine (H2Pc) and fullerene (C60), was increased from 10% to 97% in a H2Pc:C60 co-deposited film. A charge separation superlattice model that includes electron transfer from the conduction band of H2Pc to that of C60, which increases the rate of dopant ionization, is proposed.

  10. A position-dependent mass model for the Thomas–Fermi potential: Exact solvability and relation to δ-doped semiconductors

    SciTech Connect

    Schulze-Halberg, Axel; García-Ravelo, Jesús; Pacheco-García, Christian; Juan Peña Gil, José

    2013-06-15

    We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed in closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.

  11. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  12. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  13. Hall mobility in tin iodide perovskite CH{sub 3}NH{sub 3}SnI{sub 3}: Evidence for a doped semiconductor

    SciTech Connect

    Takahashi, Yukari; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Inabe, Tamotsu

    2013-09-15

    CH{sub 3}NH{sub 3}SnI{sub 3} is a metal halide perovskite that shows metallic conductivity over a wide temperature range, although ab initio calculations and optical absorption indicate that its band structure is consistent with that of an intrinsic semiconductor. Hall effect measurements of as-grown crystals give a hole concentration of about 9×10{sup 17} cm{sup −3} with rather high Hall mobility of about 200 cm{sup 2} V{sup −1} s{sup −1} at 250 K. Artificial hole doping enhances the electrical conductivity of the crystals without influencing mobility. These observations indicate that the electronic structure in stoichiometric CH{sub 3}NH{sub 3}SnI{sub 3} can be described as that of an intrinsic semiconductor with a wide valence band. This situation leads to metal-like conduction with even a trace amount of spontaneous hole doping in the as-grown crystal. - Graphical abstract: Hall effect measurements of as-grown CH{sub 3}NH{sub 3}SnI{sub 3} crystals give a hole concentration of about 9×10{sup 17} cm{sup −3}. Artificial hole doping enhances the electrical conductivity of the crystals without influencing mobility, indicating that the electronic structure of CH{sub 3}NH{sub 3}SnI{sub 3} can be described as that of an intrinsic semiconductor with a wide valence band. Display Omitted - Highlights: • Hole concentration in highly conducting CH{sub 3}NH{sub 3}SnI{sub 3} was determined. • Hall mobility was not affected by artificial hole doping. • The electronic structure can be described as that of an intrinsic semiconductor.

  14. Effect of doping and chemical ordering on the optoelectronic properties of complex oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Nayyar, Iffat; Sara, Chamberlin; Kaspar, Tiffany; Govind, Niranjan; Chambers, Scott; Sushko, Peter

    2015-03-01

    Transition metal oxide hematite, α-Fe2O3, is of interest in photovoltaic and photoelectrochemical applications due to its natural abundance, narrow band gap and electrochemical stability. Doping of α-Fe2O3 may lead to conductivity enhancement and band-gap reduction. In this work, we have studied the electronic and optical properties of α-(Fe1-xVx)2 O3(0 <= x <= ~0.5) solid-solution epitaxial thin films using advanced theoretical models employing embedded cluster approach and time-dependent density functional theory. We observe that V doping results in localized, occupied V 3d states which are hybridized with Fe 3d and are located in the midgap of pure α-Fe2O3. The lowest energy transitions for α-(Fe1-xVx)2O3 films are the electronic excitations from these levels to the unoccupied Fe 3d* orbitals, reducing the onset of α-Fe2O3photoconductivity by nearly 1.2 eV. Our calculated optical absorption spectra are in good agreement with the experiment. This insight into the atomic, electronic and spin ordering provides guiding principles for the design of new oxide semiconducting materials for efficient visible light harvesting, thus enabling the technological growth of alternate energy sources for solving the renewable solar energy and photo-chemical organic waste remediation problems.

  15. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  16. Quantum size effects on CdTexS1 - x semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Medeiros Neto, J. A.; Barbosa, L. C.; Cesar, C. L.; Alves, O. L.; Galembeck, F.

    1991-11-01

    We present experimental evidences of quantum confinement in borosilicate glasses with a new microcrystallite CdTexS1-x semiconductor. The microcrystallite sizes are controlled by the heat-treatment time and temperature. Transmission electron microscopy measurements show the microcrystallites average diameters near 55 Å for the sample treated for the longest time. We observe a red shift from 570 to 640 nm in the absorption and photoluminescence spectra as the size increases. These shifts agree with the expected quantum-confined energies, varying from 0.80 to 0.60 eV. The absorption spectra also show a second feature which can be assigned to the second quantum-confined transition.

  17. Structural and Optical properties of Er doped ZnO diluted magnetic semiconductor nano thin films produced by sol gel method

    NASA Astrophysics Data System (ADS)

    Tasci, A. Tolga; Ozturk, Ozgur; Asikuzun, Elif; Arda, Lutfi; Celik, Sukru; Terzioglu, Cabir

    Undoped and Er doped ZnO (Zn1-xErxO) transparent semiconductor thin films were coated using sol-gel method on non-alkali glass. Erbium was doped 1%, 2%, 3%, 4% and 5% ratio. Methanol and monoethanolamine were used as solvent and stabilizer. In this study, the effect of Er doping was examined on the structural and optical properties of ZnO DMS thin films. XRD, SEM and UV-VIS-NIR spectrometer measurements were performed for the structural and optical characterization. XRD results showed that, all of Er doped ZnO thin films have a hexagonal structure. The optical transmittance of rare earth element (Er) doped ZnO thin films were increased. The Er doped ZnO thin films showed high transparency (>84) in the visible region (400-700 nm). This research has been supported by the Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2013-41 and the Scientific and Technological Research Council of Turkey (TUBITAK) Project No. 114F259.

  18. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1‑xMnxTe

    NASA Astrophysics Data System (ADS)

    Kriener, M.; Nakajima, T.; Kaneko, Y.; Kikkawa, A.; Yu, X. Z.; Endo, N.; Kato, K.; Takata, M.; Arima, T.; Tokura, Y.; Taguchi, Y.

    2016-05-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) – is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality.

  19. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon

    NASA Astrophysics Data System (ADS)

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Gao, Yuhan; Ma, Xiangyang; Yang, Deren

    2015-04-01

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO2 (CeO2:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO2:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n+-Si/ITO can tunnel into the conduction band of CeO2 host via defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er3+ ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO2:Er films.

  20. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers

    DOE PAGESBeta

    Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur; Luk, Ting S.

    2016-01-14

    Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes.more » In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.« less

  1. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1−xMnxTe

    PubMed Central

    Kriener, M.; Nakajima, T.; Kaneko, Y.; Kikkawa, A.; Yu, X. Z.; Endo, N.; Kato, K.; Takata, M.; Arima, T.; Tokura, Y.; Taguchi, Y.

    2016-01-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) – is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality. PMID:27160657

  2. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1-xMnxTe.

    PubMed

    Kriener, M; Nakajima, T; Kaneko, Y; Kikkawa, A; Yu, X Z; Endo, N; Kato, K; Takata, M; Arima, T; Tokura, Y; Taguchi, Y

    2016-01-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) - is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality. PMID:27160657

  3. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers

    SciTech Connect

    Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur; Luk, Ting S.

    2016-01-01

    Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes. In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.

  4. S+C+L broadband source based on semiconductor optical amplifiers and erbium-doped fiber for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carrion, L.; Beitel, D.; Lee, K. L.; Jain, A.; Chen, L. R.; Maciejko, R.; Nirmalathas, A.

    2007-06-01

    Broadband sources (BBSs) are commonly used in a wide range of applications in optical communication systems and biophotonics. They are particularly useful tools for Optical Coherence Tomography (OCT), which is a biomedical imaging technique that uses low-coherence light sources. In order to obtain high image quality, we have developed a novel, spectrally-flat S+C+L band source with > 120 nm bandwidth and more than 4 mW output power based on two cascaded semiconductor optical amplifiers (SOA) mixed with an Erbium-doped fiber (EDF) amplifier. Bandwidth and output power improvements are achieved by modifying the former configuration and mixing the EDF with the first SOA before amplification in the second SOA. This configuration results in bandwidth and output power enhancements of up to 146 nm and 8 mW, respectively. The source was then tested in an OCT system. It gives a 10 μm FWHM, low sidelobe OCT autocorrelation trace. Images and OCT autocorrelation traces were compared for the two aforementioned (which two; you mentioned one?) configurations. Images of miscellaneous samples made with the BBS show an image aspect and sharpness that is comparable with more expensive sources such as Ti:Sapphire lasers.

  5. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO{sub 2} films on silicon

    SciTech Connect

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Gao, Yuhan; Ma, Xiangyang Yang, Deren

    2015-04-06

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO{sub 2} (CeO{sub 2}:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO{sub 2}:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n{sup +}-Si/ITO can tunnel into the conduction band of CeO{sub 2} host via defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er{sup 3+} ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO{sub 2}:Er films.

  6. GaInP semiconductor compounds doped with the Sb isovalent impurity

    SciTech Connect

    Skachkov, A. F.

    2015-05-15

    GaInP{sub 1−x}Sb{sub x} layers containing different Sb fractions are produced by metal-organic vaporphase epitaxy on GaAs and Ge substrates. The charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers are measured at room temperature and 77 K. The room-temperature charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers additionally doped with donor and acceptor impurities are measured. The photoluminescence peaks of GaInP{sub 1−x}Sb{sub x} are detected. The influence of the Sb impurity on the band gap and charge-carrier mobility in GaInP is determined.

  7. "Doping" pentacene with sp(2)-phosphorus atoms: towards high performance ambipolar semiconductors.

    PubMed

    Long, Guankui; Yang, Xuan; Chen, Wangqiao; Zhang, Mingtao; Zhao, Yang; Chen, Yongsheng; Zhang, Qichun

    2016-01-28

    Recent research progress in black phosphorus sheets strongly encourages us to employ pentacene as a parent system to systematically investigate how the "doping" of sp(2)-phosphorus atoms onto the backbone of pentacene influences its optical and charge transport properties. Our theoretical investigations proved that increasing the contribution of the pz atomic orbital of the sp(2)-phosphorus to the frontier molecular orbital of phosphapentacenes could significantly decrease both hole and electron reorganization energies and dramatically red-shift the absorption of pentacene. The record smallest hole and electron reorganization energies of 69.80 and 95.74 meV for heteropentacene derivatives were obtained. These results suggest that phosphapentacenes (or phosphaacenes) could be potential promising candidates to achieve both higher and balanced mobilities in organic field effect transistors and realize a better power conversion efficiency in organic photovoltaics. PMID:26743159

  8. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  9. Half-metallic ferromagnetic properties of Cr- and V-doped AlP semiconductors

    NASA Astrophysics Data System (ADS)

    Boutaleb, M.; Doumi, B.; Tadjer, A.; Sayede, A.

    2016-01-01

    Using the full-potential linearized augmented plane-wave (FP-LAPW) calculations with generalized gradient approximation functional (GGA), we investigated the structural, electronic and magnetic properties of the family compounds AlP as ternary diluted semiconductors (DMS)s Al1-x(TM=Cr,V)xP with concentration of 0.25 and 0.125 in zinc blende phase (B3). The interaction of 3d orbital of transition metal with the 3p states of the four phosphorus atoms who occupy the summits of the tetrahedron resulting from SP3 hybridization, stabilize more the phenomena of magnetization by the effect of Zener's p-d exchange. The analyses of electronic and magnetic properties using the total and partial density of state and bands structure show that Al1-xCrxP and Al1-xVxP are spin-polarized with a half-metallic band gap. We seem that these materials will be among the good candidates for spintronic applications.

  10. Optical investigations of noncrystalline semiconductors. [considering silicon and boron films

    NASA Technical Reports Server (NTRS)

    Blum, N. A.; Feldman, C.; Moorjani, K.

    1973-01-01

    Three areas of investigation into the properties of amorphous silicon and boron are reported: (1) optical properties of elemental amorphous semiconductors; (2) Mossbauer studies of disordered systems; and (3) theoretical aspects of disordered semiconductors.

  11. Soft x-ray emission spectra and ferromagnetism in wide-gap doped semiconductors

    NASA Astrophysics Data System (ADS)

    Surkova, T. P.; Galakhov, V. R.; Kurmaev, É. Z.

    2009-01-01

    A study is made of the resonant and nonresonant L x-ray emission spectra of impurities in the semiconducting compounds ZnS:Mn, ZnO:Mn, ZnO:Co, and Co2O:Mn. An analysis of the Mn L2,3 x-ray emission spectra of Zn1-xMnxS (x=0.1-0.3) reveals that the Mn impurities do not form clusters in the ZnS lattice. Studies of the Mn L2,3 spectra and electronic structure of epitaxial films of Zn0.8Mn0.2O annealed at different temperatures show that the cause of the observed suppression of ferromagnetism at T >600°C is segregation of Mn atoms. In this case the Mn atoms occupy both Zn sites and interstitial positions. For Zn1-xCoxO (x =0.02, 0.06, and 0.10) the absence of free carriers that could mediate an exchange interaction between Co ions is established. Mn L2,3 x-ray emission measurements show that in Mn-doped oxides Cu2O synthesized at 650 and 800°C the Mn atoms are found both in interstitial positions and occupy Cu sites, but the configurations of these defects depend on the synthesis temperature. A decrease of the Curie temperature with increasing synthesis temperature may be explained as a manifestation of antiferromagnetic superexchange between substituent Mn atoms via oxygen.

  12. Optical properties of amorphous and crystalline Sb-doped SnO{sub 2} thin films studied with spectroscopic ellipsometry: Optical gap energy and effective mass

    SciTech Connect

    So, Hyeon Seob; Park, Jun-Woo; Jung, Dae Ho; Ko, Kun Hee; Lee, Hosun

    2015-08-28

    We investigated the optical properties of amorphous and crystalline antimony (Sb)-doped tin dioxide (SnO{sub 2}) thin films grown using the co-sputtering deposition method at room temperature. We used undoped and Sb-doped (8 wt. %) SnO{sub 2} targets. Varying the relative power ratio of the two targets, we controlled the Sb-composition of the SnO{sub 2}:Sb thin films up to 2.3 at. % of Sb contents. Through annealing, the as-grown amorphous SnO{sub 2}:Sb thin films were transformed to crystalline thin films. Dielectric functions were obtained from the measured ellipsometry angles, Ψ and Δ, using the Drude and parametric optical constant models. We determined the absorption coefficients and optical gap energies of the SnO{sub 2}:Sb thin films from the dielectric functions. We found increasing optical gap energy with increasing Sb composition. Increases in the Drude tail amplitudes, a signature of free carrier concentrations, were found in annealed, crystalline thin films with increasing Sb composition. The increase in the optical gap energy with increasing Sb composition was mainly attributed to the Burstein-Moss effect. Using Hall effect measurements, we obtained Hall carrier concentrations (N{sub Hall}) and electron Hall mobilities (μ{sub Hall}). The carrier concentrations and mobilities increased from 2.6 × 10{sup 19 }cm{sup −3} and 1.0 cm{sup 2}/(V s) to 2.0 × 10{sup 20 }cm{sup −1} and 7.2 cm{sup 2}/(V s), respectively, with increasing Sb contents. This result suggests that the nominally undoped SnO{sub 2} films are unintentionally n-type doped. Assuming that the N{sub Hall} and optical carrier concentrations (N{sub opt}) were the same, we obtained the effective masses of the SnO{sub 2}:Sb thin films with increasing Sb compositions. The effective masses of the SnO{sub 2}:Sb thin films increased from 0.245 m{sub 0} to 0.4 m{sub 0} with increasing Sb doping contents, and the nonparabolicity of the conduction band was estimated. We

  13. III-VI semiconductors and oxides: Electronic structure, surface morphology, and transition metal doping of gallium selenide, indium selenide, and gallium oxide

    NASA Astrophysics Data System (ADS)

    Lovejoy, Tracy Clark

    The effects of vacancies on the properties of certain III2VI 3 semiconductor compounds are studied with the goal of learning new, interesting physics while laying the groundwork for using these materials in next generation electronic devices. These III-VI materials exhibit intrinsic nanoscale voids or vacancies that order in different ways and impact the electronic structure, dopant incorporation and defect formation. Ga2Se3 and gamma-In2Se3 are tetrahedrally bonded III-VI semiconductors with 1/3 of the cation sites vacant. Lattice matching allows excellent quality growth of Ga2Se 3 on silicon by molecular beam epitaxy. Comparison of our experimental map of the electronic band structure with theory shows proper theoretical treatment of the vacancies is essential to generate the band structure. We use scanning tunneling microscopy and X-ray absorption to study the Mn-doping of Ga2Se3, an intriguing candidate dilute magnetic semiconductor (DMS) system. Thin uniformly doped films of Mn-doped Ga2Se 3 were grown at low concentrations, but thicker or more concentrated films exhibit islands of MnSe. This may limit the applicability of Mn-doped Ga2Se3 as a DMS. gamma-In2Se3 has a large lattice mismatch (˜7%) with silicon, which suggests that thick laminar films of In2Se 3 on silicon should not be possible. However, we find that laminar films can be grown up to at least 6 bilayer thickness, and show that this is due to an unusual Se-first interface with the silicon substrate. beta-Ga2O3 is an optically transparent, III-VI semiconductor that generally exhibits n-type conductivity. We study the electronic structure, magnetic structure, surface termination, and surface morphology of pure, Mn- and Cr-doped beta-Ga2O3 single crystals. Cr3+ and mixed valence Mn2+/3+ occupy the octahedral sites in the structure. Mn incorporation degrades the crystal quality, while Cr does not. We use density functional theory to compute the activation energy of au oxygen vacancy defect, and find

  14. Er3+-Yb3+ co-doped TeO2-PbF2 oxyhalide tellurite glasses for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Chao; Wei, Dong; Chen, Yongsheng; Lu, Jingxiao; Yang, Shi-e.

    2014-04-01

    In this study, we successfully prepared Er3+-Yb3+ co-doped TeO2-PbF2 oxyfluoride tellurite glasses with different Yb3+ concentrations and characterized their upconversion properties. Intense emission bands at 527, 544, and 657 nm corresponded to the Er3+ transitions, and the maximum was obtained at an Yb3+-to-Er3+ molar ratio of 3. When this glass was applied at the back of amorphous silicon solar cells in combination with a rear reflector, a 0.45% improvement in efficiency was obtained under co-excitation of AM1.5 and 400 mW 980 nm laser radiation. Maximum external quantum efficiency and luminescence quantum efficiency of 0.27% and 1.35%, respectively, were achieved at 300 mW excitation.

  15. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    NASA Astrophysics Data System (ADS)

    Kizu, Takio; Aikawa, Shinya; Nabatame, Toshihide; Fujiwara, Akihiko; Ito, Kazuhiro; Takahashi, Makoto; Tsukagoshi, Kazuhito

    2016-07-01

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm2/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (VO) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recovery in turn-on voltage indicates that the dense VO in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.

  16. Effects of phosphorous doping to poly (methylphenyl silane) and fabrication of thin film solar cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Junya; Oku, Takeo; Suzuki, Atsushi; Akiyama, Tsuyoshi; Tokumitsu, Katsuhisa; Yamada, Masahiro; Nakamura, Mika

    2013-04-01

    Effects of phosphorus bromine (PBr3) doping to polysilane were investigated for spin-coating thin films. Phosphorus doped poly (methylphenyl silane) (PMPS) provided n-type semiconductor behavior, which was confirmed by Hall effect measurements. Desorption of phenyl and methyl groups in doped PMPS thin films was observed after annealing at 300 °C from Raman scattering measurements and theoretical calculations. The band gap energy of PMPS was measured to be 3.2 eV. Decrease of photoluminescence intensity of PMPS was observed by phosphorus doping. Microstructures of the doped PMPS thin films were investigated by using X-ray diffraction, which indicated doped PMPS had an amorphous structure after annealing. A solar cell with PMPS(PBr3):poly[3-hexylthiophene] bulk-heterojunction structure was fabricated, and provided a photovoltaic behavior. Formation mechanism and carrier transport mechanism of the doped PMPS thin films were proposed.

  17. Construction of a Semiconductor-Biological Interface for Solar Energy Conversion: p-Doped Silicon/Photosystem I/Zinc Oxide.

    PubMed

    Beam, Jeremiah C; LeBlanc, Gabriel; Gizzie, Evan A; Ivanov, Borislav L; Needell, David R; Shearer, Melinda J; Jennings, G Kane; Lukehart, Charles M; Cliffel, David E

    2015-09-15

    The interface between photoactive biological materials with two distinct semiconducting electrodes is challenging both to develop and analyze. Building off of our previous work using films of photosystem I (PSI) on p-doped silicon, we have deposited a crystalline zinc oxide (ZnO) anode using confined-plume chemical deposition (CPCD). We demonstrate the ability of CPCD to deposit crystalline ZnO without damage to the PSI biomaterial. Using electrochemical techniques, we were able to probe this complex semiconductor-biological interface. Finally, as a proof of concept, a solid-state photovoltaic device consisting of p-doped silicon, PSI, ZnO, and ITO was constructed and evaluated. PMID:26318861

  18. Dispersion of the refractive index of a samarium-doped Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor

    SciTech Connect

    Atayeva, S. U. Mekhtiyeva, S. I.; Isayev, A. I.

    2015-07-15

    The transmission spectrum of a Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor doped with samarium (0.05, 0.1, 0.25, 0.5, and 1 at %) is studied; the Swanepoel method and the single-oscillator model are used to determine the oscillator energy E{sup 0}, dispersion energy E{sup d}, optical width of the band gap E{sup g}, and linear (n) and nonlinear (n{sup 2}) refractive indices. The changes in the values of these parameters as a result of doping are attributed to modification of the local structure and to a change in the concentration of defect states.

  19. Influence of doping (Ti, V, Zr, W) and annealing on the sp{sup 2} carbon structure of amorphous carbon films

    SciTech Connect

    Adelhelm, C.; Balden, M.; Rinke, M.; Stueber, M.

    2009-02-01

    The influence of the transition metal (Ti, V, Zr, W) doping on the carbon matrix nanostructuring during the thin film growth and subsequent annealing is investigated. Pure and metal-doped amorphous carbon films (a-C, a-C:Me) were deposited at room temperature by nonreactive magnetron sputtering. The carbon structure of as-deposited and postannealed (up to 1300 K) samples was analyzed by x-ray diffraction (XRD) and Raman spectroscopy. The existence of graphenelike regions in a-C is concluded from a (10) diffraction peak. A comparison of the XRD and Raman results suggests that XRD probes only the small amount of 2-3 nm large graphenelike regions, whereas the majority of the sp{sup 2} phase is present in smaller distorted aromatic clusters which are probed only by Raman spectroscopy. Annealing leads to an increase in the graphene size and the aromatic cluster size. During the carbon film growth the addition of metals enhances ordering of sp{sup 2} carbon in sixfold aromatic clusters compared to a-C; Ti, and Zr showing the strongest effect, W the lowest. This order qualitatively corresponds with the catalytic activity of the respective carbides found during graphitization of carbide-doped graphites published in the literature. With annealing, carbide crystallite formation and growth occurs in a-C:Me films, which destroys the initial carbon structure, reduces the size of the initially formed aromatic clusters and the differences in carbon structure introduced by different dopants. For high annealing temperatures the carbon structure of a-C:Me films is similar to that of a-C, and is determined only by the annealing temperature.

  20. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  1. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model. PMID:22588584

  2. Rapid thermal chemical vapor deposition of in situ boron-doped polycrystalline silicon-germanium films on silicon dioxide for complimentary-metal-oxide-semiconductor applications

    NASA Astrophysics Data System (ADS)

    Li, V. Z.-Q.; Mirabedini, M. R.; Kuehn, R. T.; Wortman, J. J.; Öztürk, M. C.; Batchelor, D.; Christensen, K.; Maher, D. M.

    1997-12-01

    In situ boron-doped polycrystalline Si1-xGex (x>0.4) films have been formed on the thermally grown oxides in a rapid thermal chemical vapor deposition processor using SiH4-GeH4-B2H6-H2 gas system. Our results showed that in situ boron-doped Si1-xGex films can be directly deposited on the oxide surface, in contrast to the rapid thermal deposition of undoped silicon-germanium (Si1-xGex) films on oxides which is a partially selective process and requires a thin silicon film pre-deposition to form a continuous film. For the in situ boron-doped Si1-xGex films, we observed that with the increase of the germane percentage in the gas source, the Ge content and the deposition rate of the film are increased, while its resistivity is decreased down to 0.66 mΩ cm for a Ge content of 73%. Capacitance-voltage characteristics of p-type metal-oxide-semiconductor capacitors with p+-Si1-xGex gates showed negligible polydepletion effect for a 75 Å gate oxide, indicating that a high doping level of boron at the poly-Si1-xGex/oxide interface was achieved.

  3. Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films

    NASA Astrophysics Data System (ADS)

    Rastogi, A. C.; Lim, S. H.; Desu, S. B.

    2008-07-01

    Transparent p-type Mg doped CuCrO2 wide-band-gap oxide semiconductor thin films were deposited over quartz substrates by chemical spray technique using metallo-organic precursors. Crystalline single phase CuCrO2 delafossite structure was dominant in ≥700 °C argon ambient annealed films but the as-deposited films contained spinel CuCr2O4 mixed phases. X-ray photoelectron Cr 2p spectra show spin-orbit splitting energy ˜9.8 eV consistent with Cr3+ valance state and Cr 2p3/2 resolved peaks show mixed valence state on Cr4+/Cr6+ confirming CuCr0.93Mg0.07O2 compound phase in spray deposited films. The effect of substrate temperature and film thickness on optical, electrical conductivity, and thermoelectric coefficient was investigated. Highly transparent ≥80% CuCr0.93Mg0.07O2 films with direct and indirect optical band gaps of 3.08 and 2.58 eV for 155 nm and 3.14 and 2.79 for 305 nm thin films, respectively, were obtained. Photoluminescence emission bands at 532 and 484 nm interpreted to arise from 3d94s1 and 3d10 Cu+ intraband transitions confirm mixing of Cu 3d, 4s, and 4p with O 2p orbitals necessary for realizing p-type CuCrO2 films. Electrical conductivity of CuCr0.93Mg0.07O2 films ranged 0.6-1 S cm-1 exhibiting activation energies ˜0.11 eV in 300-420 °K and ˜0.23 eV in ≥420 °K regions ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Transparent p-(CuCr1-xMgxO2)/n-(ZnO) heterojunction diodes showing rectifying current-voltage characteristics were fabricated.

  4. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO{sub 2})/TiO{sub 2} heterojunction semiconductors with varied Sb doping concentration

    SciTech Connect

    Zhang, Zhen-Long; Ma, Wen-Hai; Mao, Yan-Li

    2014-09-07

    In this paper, antimony-doped tin oxide (Sb-SnO{sub 2}) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO{sub 2}/TiO{sub 2} heterojunction semiconductors were prepared with Sb-SnO{sub 2} and TiO{sub 2}. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO{sub 2} and TiO{sub 2}, Sb-SnO{sub 2}/TiO{sub 2} presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO{sub 2} and TiO{sub 2} in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO{sub 2} and TiO{sub 2} were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  5. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    NASA Astrophysics Data System (ADS)

    Liu, Hsi-Wen; Chang, Ting-Chang; Tsai, Jyun-Yu; Chen, Ching-En; Liu, Kuan-Ju; Lu, Ying-Hsin; Lin, Chien-Yu; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-04-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  6. Carrier transport properties of the Group-IV ferromagnetic semiconductor Ge{sub 1-x}Fe{sub x} with and without boron doping

    SciTech Connect

    Ban, Yoshisuke Wakabayashi, Yuki; Akiyama, Ryota; Nakane, Ryosho; Tanaka, Masaaki

    2014-09-15

    We have investigated the transport and magnetic properties of group-IV ferromagnetic semiconductor Ge{sub 1-x}Fe{sub x} films (x = 1.0 and 2.3%) with and without boron doping grown by molecular beam epitaxy (MBE). In order to accurately measure the transport properties of 100-nm-thick Ge{sub 1-x}Fe{sub x} films, (001)-oriented silicon-on-insulator (SOI) wafers with an ultra-thin Si body layer (∼5 nm) were used as substrates. Owing to the low Fe content, the hole concentration and mobility in the Ge{sub 1-x}Fe{sub x} films were exactly estimated by Hall measurements because the anomalous Hall effect in these films was found to be negligibly small. By boron doping, we increased the hole concentration in Ge{sub 1-x}Fe{sub x} from ∼10{sup 18} cm{sup −3} to ∼10{sup 20} cm{sup −3} (x = 1.0%) and to ∼10{sup 19} cm{sup −3} (x = 2.3%), but no correlation was observed between the hole concentration and magnetic properties. This result presents a contrast to the hole-induced ferromagnetism in III-V ferromagnetic semiconductors.

  7. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-01

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. PMID:22972420

  8. Gain and refractive index dynamics in p-doped InAs quantum dash semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Komolibus, Katarzyna; Piwonski, Tomasz; Joshi, Siddharth; Chimot, Nicolas; Houlihan, John; Lelarge, Francois; Huyet, Guillaume

    2016-07-01

    The ultrafast carrier dynamics in a p-doped dash-in-a-well structure at 1.5 μm is experimentally investigated. An analysis of the timescales related to carrier relaxation and escape processes as well as the "dynamical" linewidth enhancement factor is presented and compared with results obtained from similar un-doped materials. Intentional p-doping of the active region results in an enhancement of the intermediate timescale of the gain dynamics associated with phonon-assisted electron capture and a reduction of the α-factor due to increased differential gain.

  9. Resonant structures based on amorphous silicon suboxide doped with Er[sup 3+] with silicon nanoclusters for an efficient emission at 1550 nm

    NASA Astrophysics Data System (ADS)

    Figueira, D. S. L.; Mustafa, D.; Tessler, L. R.; Frateschi, N. C.

    We present a resonant approach to enhance 1550nm emission efficiency of amorphous silicon sub-oxide doped with Er3+ (a-SiOx) layers with silicon nanoclusters (Si-NC). Two distinct techniques were combined to provide a structure that allowed increasing approximately 12x the 1550nm emission. First, layers of SiO2 were obtained by conventional wet oxidation and a-SiOx matrix was deposited by reactive RF co-sputtering. Secondly, an extra pump channel (4I15/2 to 4I9/2) of Er3+ was created due to Si-NC formation on the same a-SiOx matrix via a hard annealing at 1150 C. The SiO2 and the a-SiOx thicknesses were designed to support resonances near the pumping wavelength (~500nm), near the Si-NC emission (~800nm) and near the a-SiOx emission (~1550nm) enhancing the optical pumping process.

  10. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    SciTech Connect

    Katamune, Yūki Takeichi, Satoshi; Ohmagari, Shinya; Yoshitake, Tsuyoshi

    2015-11-15

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bonds at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.

  11. High-performance metal-insulator-metal capacitor with Ge-stabilized tetragonal ZrO2/amorphous La-doped ZrO2 dielectric

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsien; Lin, Chia-Chun; Chen, Lun-Lun; Hu, Yao-Chung; Wu, Jia-Rong; Wu, Min-Lin

    2011-01-01

    A Ge-stabilized tetragonal ZrO2 dielectric with a permittivity (κ) value of 36.5 has been obtained by annealing a ZrO2/Ge/ZrO2 laminate at 500 °C and it is a more reliable approach toward stabilizing a tetragonal ZrO2 film. However, metal-insulator-metal (MIM) capacitors with the sole tetragonal ZrO2 film as an insulator achieve a high capacitance density of 27.8 fF/μm2 at the price of a degraded quadratic voltage coefficient of capacitance (VCC) of 81 129 ppm/V2 and unacceptably high leakage current. By capping an amorphous La-doped ZrO2 layer with a κ value of 26.3 to block grain boundaries-induced leakage paths of the crystalline ZrO2 dielectric, high-performance MIM capacitors in terms of a capacitance density of 19.8 fF/μm2, a VCC of 3135 ppm/V2, leakage current of 6.5×10-8 A/cm2 at -1 V, as well as a satisfactory capacitance change of 1.21% after ten-year operation can be realized.

  12. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    SciTech Connect

    Rana, Amit Kumar; Kumar, Yogendra; Arjunan, M.S.; Sen, Somaditya; Shirage, Parasharam M. E-mail: paras.shirage@gmail.com; J, Aneesh; Adarsh, K. V.

    2015-12-07

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  13. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    NASA Astrophysics Data System (ADS)

    Rana, Amit Kumar; J, Aneesh; Kumar, Yogendra; M. S, Arjunan; Adarsh, K. V.; Sen, Somaditya; Shirage, Parasharam M.

    2015-12-01

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  14. Vertically aligned nanostructures based on Na-doped ZnO nanorods for wide band gap semiconductor memory applications.

    PubMed

    Huang, Jian; Qi, Jing; Li, Zonglin; Liu, Jianlin

    2013-10-01

    Vertically aligned undoped ZnO nanotips, nanotubes and nanorods were synthesized on the top facets of Na-doped ZnO nanorods without catalytic assistance under different growth times in a chemical vapor deposition system. The growth mechanism is discussed. The Na-doped nanorods were grown on a ZnO seed layer on Si. The p-type conductivity of the Na-doped nanorods was studied by temperature-dependent photoluminescence and nanorod back-gated field effect transistor measurements. The undoped nanorods, Na-doped nanorods and undoped seed layer form an n-p-n memory structure. The programming and retention characteristics have been demonstrated. PMID:24013400

  15. Performance enhancement of n-channel inversion type In{sub x}Ga{sub 1-x}As metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer

    SciTech Connect

    Sonnet, A. M.; Hinkle, C. L.; Jivani, M. N.; Chapman, R. A.; Pollack, G. P.; Wallace, R. M.; Vogel, E. M.

    2008-09-22

    Significant enhancement in metal-oxide-semiconductor field effect transistor (MOSFET) transport characteristics is achieved with In{sub x}Ga{sub 1-x}As (x=0.53, x=0.20) channel material using ex situ plasma enhanced chemical vapor deposited amorphous Si layer. In{sub x}Ga{sub 1-x}As MOSFETs (L=2 {mu}m, V{sub gs}-V{sub t}=2.0 V) with Si interlayer show a maximum drain current of 290 mA/mm (x=0.53) and 2 {mu}A/mm (x=0.20), which are much higher compared to devices without a Si interlayer. However, charge pumping measurements show a lower average interface state density near the intrinsic Fermi level for devices without the silicon interlayer indicating that a reduction in the midgap interface state density is not responsible for the improved transport characteristics.

  16. K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Li, Yuke; Zhang, Pan; Jiang, Hao; Luo, Yongkang; Chen, Qian; Feng, Chunmu; Cao, Chao; Dai, Jianhui; Tao, Qian; Cao, Guanghan; Xu, Zhu-An

    2013-12-01

    A bulk diluted magnetic semiconductor was found in the K and Mn co-doped BaCd2As2 system. Different from recently reported tetragonal ThCr2Si2-structured II-II-V based (Ba,K)(Zn,Mn)2As2, the Ba1-yKyCd2-xMnxAs2 system has a hexagonal CaAl2Si2-type structure with the Cd2As2 layer forming a honeycomb-like network. The Mn concentration reaches up to x ˜ 0.4. Magnetization measurements show that the samples undergo ferromagnetic transitions with Curie temperature up to 16 K. With low coercive field of less than 10 Oe and large magnetoresistance of about -70%, the hexagonal structured Ba1-yKyCd2-xMnxAs2 can be served as a promising candidate for spin manipulations.

  17. Magnetic mechanism investigations on K and Mn co-doped diluted magnetic semiconductor (Sr,K)(Zn,Mn)2As2

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Tao; Luo, Shi-Jun; Xiong, Yong-Chen

    2016-06-01

    On the basic of the first-principles calculations with strong-correlated correction, the electronic structures and magnetic properties of a II-II-V based diluted magnetic semiconductor (Sr,K)(Zn,Mn)2As2 are investigated within Perdew-Burke-Ernzerhof generalized gradient approximation. With local spins doped via isovalent (Zn2+, Mn2+) substitutions, Sr(Zn,Mn)2As2 system prefers antiferromagnetic ground state, caused by Mn-Mn superexchange interactions. Via off-stoichiometry (Sr2+, K+) substitutions, holes are introduced into (Sr,K)(Zn,Mn)2As2 system, resulting in the ferromagnetic spin responses for local moments, except for the most nearest neighboring Mn-Mn pair. The ferromagnetism of this diluted magnetic semiconductor originates from the competition between the direct anti-ferromagnetic superexchange interaction and the indirect ferromagnetic coupling mediated by Zener's p - d exchange interaction. Our calculations show that Zener's p - d exchange interaction depends on the location of K dopants. From the investigation on the magnetic properties of Mn clusters, it is found that the reduction of the measured Mn saturation moments is caused by the counteraction of the local moments of the most nearest neighboring Mn-Mn pair.

  18. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  19. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  20. Hydrazine-promoted sequential cation exchange: a novel synthesis method for doped ternary semiconductor nanocrystals with tunable emission.

    PubMed

    Shao, Haibao; Wang, Chunlei; Xu, Shuhong; Jiang, Yuan; Shao, Yujie; Bo, Fan; Wang, Zhuyuan; Cui, Yiping

    2014-01-17

    Using ZnSe nanocrystals (NCs) as starting material, Ag-doped or Cu-doped ZnCdSe ternary NCs were prepared by hydrazine-promoted sequential cation exchange in aqueous media. The composition of the NCs can be flexibly controlled by varying the amount of intermediate Ag or Cu cation addition, thus changing the emission of the ternary NCs while preserving the NC size. According to Vegard's law, the as-prepared ternary NCs possess an alloyed structure. In addition, the ternary NCs obtained have a high quantum yield, strong stability and a broad optical tuning range. PMID:24334495

  1. (Ca,Na)(Zn,Mn){sub 2}As{sub 2}: A new spin and charge doping decoupled diluted ferromagnetic semiconductor

    SciTech Connect

    Zhao, K.; Chen, B. J.; Deng, Z.; Zhao, G. Q.; Zhu, J. L.; Liu, Q. Q.; Wang, X. C.; Han, W.; Frandsen, B.; Liu, L.; Cheung, S.; Uemura, Y. J.; Ning, F. L.; Munsie, T. J. S.; Medina, T.; Luke, G. M.; Carlo, J. P.; Munevar, J.; Zhang, G. M.; Jin, C. Q.

    2014-10-28

    Here, we report the successful synthesis of a spin- and charge-decoupled diluted magnetic semiconductor (DMS) (Ca,Na)(Zn,Mn){sub 2}As{sub 2}, crystallizing into the hexagonal CaAl{sub 2}Si{sub 2} structure. The compound shows a ferromagnetic transition with a Curie temperature up to 33 K with 10% Na doping, which gives rise to carrier density of n{sub p} ∼ 10{sup 20 }cm{sup −3}. The new DMS is a soft magnetic material with H{sub C} < 400 Oe. The anomalous Hall effect is observed below the ferromagnetic ordering temperature. With increasing Mn doping, ferromagnetic order is accompanied by an interaction between the local spin and mobile charge, giving rise to a minimum in resistivity at low temperatures and localizing the conduction electrons. The system provides an ideal platform for studying the interaction of the local spins and conduction electrons.

  2. Electro-plasmonic 2 × 2 channel-routing switch arranged on a thin-Si-doped metal/insulator/semiconductor/metal structure.

    PubMed

    Moazzam, Mostafa Keshavarz; Kaatuzian, Hassan

    2016-01-20

    Plasmonics as a new field of chip-scale technology is the interesting substrate of this study to propose and numerically investigate a metal/insulator/semiconductor/metal (MISM)-structure 2×2 plasmonic routing switch. As a planar subwavelength arrangement, the presented design has two npn-doped side-coupled dual waveguides whose duty is to route the propagating surface plasmon polaritons through the device. Relying on the MISM structure, which has a MOS-like thin-film arrangement of typically 45 nm doped silicon covered by a layer of 8 nm thick HfO(2) gate insulator, the routing configuration is electrically addressed based on the carrier-induced plasma dispersion effects as an external electro-plasmonic switching control. Finite-element-method-conducted electromagnetic simulations are employed to evaluate the switch optical response at telecom wavelength of λ=1550  nm, due to which the balanced operation measure of extinction ratios larger than 10 dB and insertion losses of around -1.8  dB are obtained for both channels of CROSS and STRAIGHT. Compared with other photonic and plasmonic switching counterparts, this configuration, besides its potential for CMOS compatibility, can be utilized as a high-speed compact building block to sustain higher-speed, more miniaturized, and less consuming electro-optic routing/switching protocols toward complicated optical integrated circuits and systems. PMID:26835932

  3. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm(2)/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors.

    PubMed

    Kim, Gyoungsik; Kang, Seok-Ju; Dutta, Gitish K; Han, Young-Kyu; Shin, Tae Joo; Noh, Yong-Young; Yang, Changduk

    2014-07-01

    By considering the qualitative benefits associated with solution rheology and mechanical properties of polymer semiconductors, it is expected that polymer-based electronic devices will soon enter our daily lives as indispensable elements in a myriad of flexible and ultra low-cost flat panel displays. Despite more than a decade of research focused on designing and synthesizing state-of-the-art polymer semiconductors for improving charge transport characteristics, the current mobility values are still not sufficient for many practical applications. The confident mobility in excess of ∼10 cm(2)/V·s is the most important requirement for enabling the realization of the aforementioned near-future products. We report on an easily attainable donor-acceptor (D-A) polymer semiconductor: poly(thienoisoindigo-alt-naphthalene) (PTIIG-Np). An unprecedented mobility of 14.4 cm(2)/V·s, by using PTIIG-Np with a high-k gate dielectric poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)), is achieved from a simple coating processing, which is of a magnitude that is very difficult to obtain with conventional TFTs by means of molecular engineering. This work, therefore, represents a major step toward truly viable plastic electronics. PMID:24915140

  4. Electronic structure and magnetism in some transition metal nitrides: Manganese-doped scandium nitride, dilute magnetic semiconductor and chromium nitride, Mott insulator

    NASA Astrophysics Data System (ADS)

    Herwadkar, Aditi A.

    The thesis presented here deal with calculations of electronic and magnetic properties of transition metal based materials. Electronic structure of Mn-doped ScN: a possible new magnetic semiconductor. We performed fully relaxed full-potential linear muffin-tin orbital method calculations of Mn-doped ScN using a supercell approach. We found that a t2g like defect level exists in the gap and gives rise to a magnetic moment between 2 an 3 muB. Calculations for 64 atom cells with two Mn in 1st-4th neighbor positions indicated a preference for ferromagnetic coupling. By mapping the energy differences on a Heisenberg Hamiltonian and assuming interactions with distant atoms except those in the adjacent unit cells are zero, we extracted the exchange interactions, which were found to be rather large and indicate a Curie temperature above room temperature even for only 3% Mn. Calculations of the miscibility indicated only 1% equilibrium miscibility at typical growth temperatures. However, non-equilibrium growth techniques have shown that in practice mixed alloys up to 26% Mn can be grown. We also studied the effect of n-type doping. Unexpectedly, Mn defects in the negative charge state still have an even larger magnetic moment with an increase in the eg state contribution. Subsequently, we carried out further calculations of the exchange interactions using non-collinear magnetic configurations in which the spin is slowly rotated. It was found that the previous calculations overestimate the J 0 = sumi J0i, i.e. the sum of all interactions connected to a given site, by about 30%. Further studies using the Liechtenstein linear response approach show that the latter is a sum over many long range interactions extending significantly beyond the range of the cells we had used. In this approach the long range interactions are obtained by Fourier transform of the Jij (k) for a mesh of k-points in the supercell. The nearest neighbor interactions are found to be an order of magnitude

  5. Analysis of the structural, electronic and optic properties of Ni doped MgSiP2 semiconductor chalcopyrite compound

    NASA Astrophysics Data System (ADS)

    Kocak, Belgin; Ciftci, Yasemin Oztekin

    2016-03-01

    The structural, electronic band structure and optic properties of the Ni doped MgSiP2 chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard's law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions of Ni doped MgSiP2. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.

  6. Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Shahnawaze Ansari, M.; Alimuddin

    2013-12-01

    Nanoparticles of basic composition Sn1-xCoxO2 (x=0.00, 0.01, 0.03, 0.05 and 0.1) were synthesized through the citrate-gel method and were characterized for structural properties using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the powder samples sintered at 500 °C for 12 h showed single phase rutile type tetragonal structure and the crystallite size decreased as the cobalt content was increased. FT-IR spectrum displayed various bands that came due to fundamental overtones and combination of O-H, Sn-O and Sn-O-Sn entities. The effect of Co doping on the electrical and magnetic properties was studied using dielectric spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The dielectric parameters (ε, tan δ and σac) show their maximum value for 10% Co doping. The dielectric loss shows anomalous behavior with frequency where it exhibits the Debye relaxation. The variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Sn2+ and Sn4+ as well as between Co2+ and Co3+ ions. The complex impedance analysis was used to separate the grain and grain boundary contributions in the system which shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. Hysteresis loops were observed clearly in M-H curves from 0.01 to 0.1% Co doped SnO2 samples. The saturation magnetization of the doped samples increased slightly with increase of Co concentration. However pure SnO2 displayed paramagnetism which vanished at higher values of magnetic field.

  7. Influence of Fe doping on the structural, optical and magnetic properties of ZnS diluted magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Saikia, D.; Raland, RD.; Borah, J. P.

    2016-09-01

    Fe doped ZnS nanoparticles with different concentrations of Fe, synthesized by microwave assisted co-precipitation method have been reported. The incorporation of Fe2+ and Fe3+ ions into ZnS lattice are confirmed by X-ray diffraction (XRD) and Electron Paramagnetic resonance (EPR) study. XRD and High Resolution Transmission electron Microscope (HRTEM) results confirm the phase purity of the samples and indicate a reduction of the particle size with increase in Fe concentration. EDAX analysis confirms the presence of Zn, S and Fe in the samples. A yellow-orange emission peak is observed in Photoluminescence (PL) spectra which exhibits the Characteristic 4T2 (4G)-6A1 (6S) transition of Fe3+ ion. The room temperature magnetic studies as analyzed from M-H curves were investigated from vibrating samples magnetometer (VSM) which shows a weak ferro and superparamagnetic like behavior in 1% and 3% Fe-doped ZnS nanocrystals, whereas; at 10% Fe-doping concentrations, antiferromagnetism behavior is achieved. The ZFC-FC measurement reveals that the blocking temperature of the nanoparticle is above the room temperature.

  8. The contact and photoconductivity characteristics between Co doped amorphous carbon and GaAs: n-type low-resistivity and semi-insulated high-resistivity GaAs

    NASA Astrophysics Data System (ADS)

    Zhai, Zhangyin; Yu, Hualing; Zuo, Fen; Guo, Chunlian; Chen, Guibin; Zhang, Fengming; Wu, Xiaoshan; Gao, Ju

    2016-06-01

    The Co doped amorphous carbon films (a-C:Co), deposited by pulsed laser deposition, show p-n and ohmic contact characteristics with n-type low resistivity GaAs (L-GaAs) and semi-insulated high-resistivity GaAs (S-GaAs). The photosensitivity enhances for a-C:Co/L-GaAs, while inverse decreases for a-C:Co/S-GaAs heterojunction, respectively. Furthermore, the enhanced photosensitivity for the a-C:Co/L-GaAs/Ag heterojunction also shows deposition temperature dependence behavior, and the optimum deposition temperature is around 500 °C.

  9. Back-side readout semiconductor photomultiplier

    SciTech Connect

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  10. Doping Zn(2+) in CuS Nanoflowers into Chemically Homogeneous Zn0.49Cu0.50S1.01 Superlattice Crystal Structure as High-Efficiency n-Type Photoelectric Semiconductors.

    PubMed

    Wang, Peipei; Gao, Yuanhao; Li, Pinjiang; Zhang, Xiaofei; Niu, Helin; Zheng, Zhi

    2016-06-22

    Doping Zn(2+) in CuS nanoflower into chemically homogeneous superlattice crystal structure is proposed to convert p-type CuS semiconductor to an n-type CuS semiconductor for significantly enhanced photoelectric response performance. In this study, the chemically homogeneous Zn-doped CuS nanoflowers (Zn0.06Cu0.94S, Zn0.26Cu0.73S1.01, Zn0.36Cu0.62S1.02, Zn0.49Cu0.50S1.01, Zn0.58Cu0.40S1.02) are synthesized by reacting appropriate amounts of CuCl and Zn(Ac)2·2H2O with sulfur powders in ethanol solvothermal process. By tuning the Zn/Cu atomic ratios to ∼1:1, the chemically homogeneous Zn-doped CuS nanoflowers could be converted to the perfect Zn0.49Cu0.50S1.01 superlattice structure, corresponding to the periodic Cu-S-Zn atom arrangements in the entire crystal lattice, which can induce an effective built-in electric field with n-type semiconductor characteristics to significantly improve the photoelectric response performance, such as the lifetime of photogenerated charge carriers up to 6 × 10(-8)-6 × 10(-4) s with the transient photovoltage (TPV) response intensity to ∼44 mV. This study reveals that the Zn(2+) doping in CuS nanoflowers is a key factor in determining the superlattice structure, semiconductor type, and the dynamic behaviors of charge carriers. PMID:27300016

  11. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. PMID:26025644

  12. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  13. Enhanced Room Temperature Ferromagnetism by Fe Doping in Zn0.96Cu0.04O Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Muthukumaran, S.; Ashokkumar, M.

    2016-02-01

    Zn0.96- x Cu0.04Fe x O (0 ≤ x ≤ 0.04) nanoparticles synthesized via the sol-gel technique had a hexagonal wurtzite ZnO structure without any Fe/Cu-related secondary phases. The crystallite size was reduced from Fe = 0% (23 nm) to Fe = 4% (16 nm) due to the suppression of grain surface growth by foreign impurities. Doping of higher Fe concentrations into Zn-Cu-O suppressed the ultra-violet (UV) emission band and balanced the defect-related visible emissions. The decrease of the UV and green emission intensity ratio ( I UV/ I green) and the UV and blue emission intensity ratio ( I UV/ I blue) in photoluminescence spectra implied an increase of defect states with the increase of Fe concentrations. All the samples showed clear room temperature ferromagnetism. The saturation magnetization was increased by Fe co-doping which was attributed to the interaction between Fe-Fe ions. X-ray photoelectron spectra confirmed the absence of secondary phases like Fe3O4.

  14. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  15. Drift region doping effects on characteristics and reliability of high-voltage n-type metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Chen, Jone F.; Chang, Chun-Po; Liu, Yu Ming; Tsai, Yan-Lin; Hsu, Hao-Tang; Chen, Chih-Yuan; Hwang, Hann-Ping

    2016-01-01

    In this study, off-state breakdown voltage (VBD) and hot-carrier-induced degradation in high-voltage n-type metal-oxide-semiconductor transistors with various BF2 implantation doses in the n- drift region are investigated. Results show that a higher BF2 implantation dose results in a higher VBD but leads to a greater hot-carrier-induced device degradation. Experimental data and technology computer-aided design simulations suggest that the higher VBD is due to the suppression of gate-induced drain current. On the other hand, the greater hot-carrier-induced device degradation can be explained by a lower net donor concentration and a different current-flow path, which is closer to the Si-SiO2 interface.

  16. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  17. Co-propagation of two optical fields in a semiconductor doped dispersion decreasing fiber and modulational instability induced by cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Porsezian, K.

    2016-01-01

    A theoretical study of cross phase modulation (XPM) induced modulational instability (MI) in a semiconductor doped dispersion decreasing fiber (SD-DDF) is presented. The equation is suitably modeled to account for the saturable nonlinearity and dispersion decreasing nature of the fiber. Using linear stability analysis, the exact dispersion relation is obtained and MI analysis is performed. We exclusively analyze the influence of the walk-off effect in the instability spectra of an SD-DDF and an optimum walk-off parameter is identified. The contrasting nature of action of decreasing dispersion and saturating nonlinearity is emphasized, such that the former enhances and the latter suppresses bandwidth. Thus, a suitable combination of the two physical effects can enable one to realize the desired bandwidth profile. MI analysis in the normal dispersion regime is compared with the anomalous counterpart as well as the conventional single pump case and the results are tabulated. Also, our analytical results are compared through direct numerical simulation and the results are documented. Thus, we present a comprehensive study of XPM-MI in an SD-DDF and the influence of various physical effects on the MI dynamics.

  18. Electromagnetically induced grating via coherently driven the n-doped In0.47Ga0.53As semiconductor quantum well nanostructure

    NASA Astrophysics Data System (ADS)

    Naseri, Tayebeh

    2016-06-01

    A new scheme for investigating electromagnetically induced grating (EIG) in the vanishing two-photon absorption condition in a three-level ladder-configuration n-doped semiconductor quantum well is presented. By applying a standing-wave field interacting with the system, the absorption and dispersion of the probe field will change with the spatial periodical modulation. It is shown that the first-order diffraction intensity sensitively depends on the intensity of coupling fields, detuning of applied laser fields and interaction length. Moreover, it can reach its maximum on varying the system parameters. A novel result shows the considerable efficiency of higher order diffractions is significantly improved via relative phase between applied laser fields. Furthermore, it is found that the intensity of the switching and coupling fields can increase the efficiency of the phase grating in the present model. Such a unique feature of the cooperative Electromagnetic Induced Grating may be extended to further develop diffraction based new photonic devices in quantum information networks and new photonic devices in all-optical switching and optical imaging.

  19. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier

    NASA Astrophysics Data System (ADS)

    Li, Ping-Xue; Yao, Yi-Fei; Chi, Jun-Jie; Hu, Hao-Wei; Zhang, Guang-Ju; Liang, Bo-Xing; Zhang, Meng-Meng; Ma, Chun-Mei; Su, Ning

    2016-08-01

    A 980-nm semiconductor saturable absorber mirror (SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 mW and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-mW maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission (ASE) nor harmful oscillation around 1030 nm is observed. Moreover, through a two-stage all-fiber-integrated amplifier, an output power of 740 mW is generated with a pulse width of 200 ps. Project supported by the National Natural Science Foundation of China (Grant No. 61205047).

  20. Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Ansari, M. Shahnawaze; Alimuddin

    2015-01-01

    Nanostructures (NSs) of basic composition Sn1-xFex/2Cox/2O2 with x=0.00, 0.04, 0.06, 0.08 and 0.1 were synthesized by citrate-gel route and characterized to understand their structural, electrical and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase rutile type tetragonal structure. The crystallite sizes calculated by using Williamson Hall were found to decrease with increasing doping level. In addition to the fundamental Raman peaks of rutile SnO2, the other three weak Raman peaks at about 505, 537 and 688 cm-1 were also observed. Field emission scanning electron microscopy studies showed the emergence of structural transformation. Electric properties such as dc electrical resistivity as a function of temperature and ac conductivity as a function of frequency were also studied. The variation of dielectric properties with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general. Hysteresis loops were clearly observed in M-H curves of Fe and Co co-doped SnO2 NSs. However, pure SnO2 nanoparticles (NPs) showed paramagnetic behaviour which vanished at higher values of magnetic field. The grain and grain boundary contribution in the conduction process is estimated through complex impedance plot fitted with non-linear least square (NLLS) approach which shows that the role of grain boundaries increases rapidly as compared to the grain volume with the increase of Fe and Co ions in to system.

  1. Small-angle x-ray scattering studies of microvoids in amorphous-silicon-based semiconductors. Final subcontract report, 1 February 1991--31 January 1994

    SciTech Connect

    Williamson, D.L.; Jone, S.J.; Chen, Y.

    1994-07-01

    This report describes work performed to provide new details of the microstructure for the size scale from about 1 nm to 30 nm in high-quality hydrogenated amorphous-silicon and related alloys prepared by current state-of-the-art deposition methods as well as by new and emerging deposition technologies. The purpose of this work is to help determine the role of microvoids and other density fluctuations in controlling the opto-electronic and photovoltaic properties. The approach involved collaboration with several groups that supplied relevant systematic sets of samples and the associated opto-electronic/photovoltaic data to help address particular issues. The small-angle X-ray scattering (SAXS) technique, as developed during this project, was able to provide microstructural information with a high degree of sensitivity not available from other methods. It is particularly sensitive to microvoids or H-rich microdomains and to the presence of oriented microstructures. The latter is readily associated with columnar-type growth and can even be observed in premature stages not detectable by transmission electron microscopy. Flotation density measurements provided important complementary data. Systematic correlations demonstrated that material with more SAXS-detected microstructure has to-electronic and photovoltaic properties and increased degradation under light soaking. New results related to alloy randomness emerged from our ability to measure the difffuse scattering component of the SAXS.

  2. Combinatorial Discovery and Optimization of the Composition, Doping and Morphology of New Oxide Semiconductors for Efficient Photoelectrochemical Water Splitting

    SciTech Connect

    Parkinson, Bruce A.; Jianghua, He

    2015-01-06

    The increasing need for carbon free energy has focused renewed attention on solar energy conversion. Although photovoltaic cells excel at directly converting of solar energy to electricity, they do not directly produce stored energy or fuels that account for more than 75% of current energy use. Direct photoelectrolysis of water has the advantage of converting solar energy directly to hydrogen, an ideal non-carbon and nonpolluting energy carrier, by replacing both a photovoltaic array and an electrolysis unit with one potentially inexpensive device. Unfortunately no materials are currently known to efficiently photoelectrolyze water that are, efficient, inexpensive and stable under illumination in electrolytes for many years. Nanostructured semiconducting metal oxides could potentially fulfill these requirements, making them the most promising materials for solar water photoelectrolysis, however no oxide semiconductor has yet been discovered with all the required properties. We have developed a simple, high-throughput combinatorial approach to prepare and screen many multi component metal oxides for water photoelectrolysis activity. The approach uses ink jet printing of overlapping patterns of soluble metal oxide precursors onto conductive glass substrates. Subsequent pyrolysis produces metal oxide phases that are screened for photoelectrolysis activity by measuring photocurrents produced by scanning a laser over the printed patterns in aqueous electrolytes. Several promising and unexpected compositions have been identified.

  3. Research on defects and transport in amorphous-silicon-based semiconductors. Final subcontract report, 20 February 1991--19 April 1994

    SciTech Connect

    Schiff, E.A.; Antoniadis, H.; Gu, Q.; Lee, J.K.; Wang, Q.; Zafar, S.

    1994-09-01

    This report describes work on three individual tasks as follows. (1) Electron and hole drift measurements in a-Si{sub 1-x}Ge{sub x}:H and a-Si{sub 1-x}C{sub x}:H p-i-n solar cells. Multijunction solar cells incorporating modified band gap a-Si:H in a triple-junction structure are generally viewed as the most promising avenue for achieving an amorphous silicon-based solar call with 15% stabilized conversion efficiency. The specific objective of this task was to document the mobilities and deep-trapping mobility-lifetime products for electrons and holes in a-Si{sub 1-x}Ge{sub x}:H and a-Si{sub 1-x}C{sub x}:H alloys materials. (2) Electroabsorption measurements and built-in potential (V{sub bi}) in solar cells. V{sub bi} in a p-i-n solar call may be limiting the open-circuit voltage (V{sub oc}) in wide-band-gap cells (E{sub g} > 1.8 eV) currently under investigation as the top cell for 15% triple junction devices. The research addressed four issues that need to be resolved before the method can yield an error less than 0.1 V for V{sub bi}. The details are presented in this report. (3) Defect relaxation and Shockley-Read kinetics in a-Si:H. Quantitative modeling of solar cells is usually based on Shockley-Read kinetics.`` An important assumption of this approach is that the rate of emission of a photocarrier trapped on a defect is independent of quasi-Fermi level location.

  4. Suppression of excess oxygen for environmentally stable amorphous In-Si-O thin-film transistors

    SciTech Connect

    Aikawa, Shinya E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2015-05-11

    We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTs with stable electrical properties.

  5. Direct tunneling through high-κ amorphous HfO{sub 2}: Effects of chemical modification

    SciTech Connect

    Wang, Yin Yu, Zhizhou; Zahid, Ferdows; Wang, Jian; Liu, Lei; Zhu, Yu; Guo, Hong

    2014-07-14

    We report first principles modeling of quantum tunneling through amorphous HfO{sub 2} dielectric layer of metal-oxide-semiconductor (MOS) nanostructures in the form of n-Si/HfO{sub 2}/Al. In particular, we predict that chemically modifying the amorphous HfO{sub 2} barrier by doping N and Al atoms in the middle region—far from the two interfaces of the MOS structure—can reduce the gate-to-channel tunnel leakage by more than one order of magnitude. Several other types of modification are found to enhance tunneling or induce substantial band bending in the Si, both are not desired from leakage point of view. By analyzing transmission coefficients and projected density of states, the microscopic physics of electron traversing the tunnel barrier with or without impurity atoms in the high-κ dielectric is revealed.

  6. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  7. Thin-film transistors based on organic conjugated semiconductors

    NASA Astrophysics Data System (ADS)

    Garnier, Francis

    1998-02-01

    The use of organic semiconductors as active layers in thin-film transistors has raised in the recent years a large interest, both for the fundamental understanding of the charge transport processes in organic materials, and also for the potential applications of these devices in the new field of flexible electronics. Short conjugated oligomers have been shown to possess much higher field-effect mobilities than their parent conjugated polymers. The origin of such increase in the efficiency of charge transport is mainly attributed to the close-packing and long-range structural organization displayed in thin films of conjugated oligomers. The various routes for controlling this organization are described, which allow to realize liquid crystal-like two-dimensional structures for these semiconductors, whose carrier mobility has now become equivalent to that of amorphous silicon. It is also shown that the effect of conjugation length on carrier mobility is not as critical as previously thought, but the associated increase of the band gap energy effects the efficiency of charge injection at the metal/semiconductor interface. This problem can be answered by realizing a local doping of the semiconductor, which allows the injection of charge to operate through an efficient tunneling mechanism. Organic-based thin-film transistors have now become viable devices.

  8. Insights on semiconductor-metal transition in indium-doped zinc oxide from x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Saw, K. G.; Aznan, N. M.; Yam, F. K.; Ng, S. S.; Pung, S. Y.

    2016-07-01

    ZnO thin films doped with various amounts of In impurities were prepared by magnetron sputtering at a substrate temperature of 150°C. The shift in optical bandgap of the In-doped ZnO films is studied as a function of carrier concentration. Nominally doped ZnO films exhibit an increase in the measured optical band gap known as the Burstein-Moss effect. Dominant band gap narrowing is observed with increased doping. XPS and TOFSIMS analyses confirm that In is incorporated in the ZnO material. The In 3d peaks show that no metallic In is present as a result of heavy doping. The XRD phase analysis shows a preferential c-axis growth but a shift of the ZnO (002) peak to lower 2-theta values with increasing FWHM as the carrier concentration increases indicates the decline in the quality of crystallinity. An elongation of the c lattice constant is also observed and is likely to be caused by intersitital In as the amount of In dopants increases. The incorporation of In induces a semiconductor-metal transition between the carrier concentrations of 3.58 - 5.61×1019 cm-3 and structural changes in the ZnO host material.

  9. Pr- and La-doping effects on the magnetic anisotropy in the antiferromagnetic phase of Kondo semiconductor CeRu2Al10

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Okubo, R.; Tanida, H.; Matsumura, T.; Sera, M.; Nishioka, T.; Matsumura, M.; Moriyoshi, C.; Kuroiwa, Y.

    2015-06-01

    We have studied the Pr- and La-doping effects on the magnetic anisotropy in the antiferro-magnetic (AFM) phase of CeRu2Al10 . The crystalline electric field (CEF) splitting in PrRu2Al10 was found to be as large as ˜800 K with a singlet ground state. In Ce1 -xPrxRu2Al10 , the CEF level scheme of the Pr ion is not changed with x . The AFM moment (mAF) is rotated from c to b axis in both systems at xcsr˜0.03 and ˜0.07 for Ln=Pr and La, respectively. As the ionic radius of La and Pr is larger and smaller than that of Ce, respectively, these results indicate that the chemical pressure effect is not associated with the rotation of mAF, but is caused by the suppression of the c -f hybridization originating from the decrease of 4 f electrons of Ce ions by Ce-site substitution. Since a small amount of Pr or La doping changes easily the magnetization easy axis of all the moments on Ce sites, the origin of the magnetic anisotropy is not the local single ion effect but the bandlike effect through the anisotropic c -f hybridization. The magnetic phase diagrams of Ce1 -xLnxRu2Al10 indicate that above xcsr, the AFM order with mAF∥b continues to exist up to xc, which is ˜0.4 and ˜0.6 in Ln=Pr and Ln=La, respectively. This indicates that even in the sample with an AFM transition temperature (T0) near xc, the anisotropic c -f hybridization dominates the AFM order. A large positive transverse magnetoresistance is seen below T0, but a very small one above T0. Together with the results of Hall resistivity and the observation of Shubnikov-de Haas oscillation, we propose that there exist large Fermi surfaces above T0 and small ones below T0. A gap is opened by the AFM order on almost the area of the large Fermi surface, and small Fermi surfaces are constructed below T0, although we do not know the mechanism, which might be specific to the AFM order in Kondo semiconductors. The largest suppression of the magnetic scattering below T0 is observed for the current I ∥a and the

  10. Photoeffects of semiconductor electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Phillips, T. E.; Moorjani, K.; Murphy, J. C.; Poehler, T. O.

    1985-03-01

    Materials based on modified transition metal oxide semiconductors for the photoelectrochemical decomposition of H2O were investigated. Single crystals of TiO2 doped with VO2 were made and it was demonstrated that the bandgap was decreased from 3.03 eV to 1.99 eV. The flatband potential was increased from -1.0 V to 0.25 V. Both effects are attributed to the existence of an empty vanadium d-band located in the TiO2 bandgap. Another approach was taken with FeTiO3-Fe2O3 alloys in the form of amorphous thin films and single crystals, where it was anticipated that the charge-transfer interactions observed in such alloys could be exploited in the materials' photoelectrochemical properties. The effect of FeTiO3 had very little effect on the overall properties of FE2O3 single crystals. On the other hand the effect on the Fe/Ti oxide thin films was quite dramatic. Optical absorption, photoconductivity and photoelectrolytic spectral measurement demonstrate a photometric enhancement at energies above the bandgap for Ti concentrations in the range of 5% to 8%. There is some suggestion that the bandgap has been reduced in this concentration regime. Higher concentrations of Ti result in a change from n-type to p-type. Efficiency and stability of thermally oxidized Fe/Ti oxide films are comparable to single crystal results.

  11. Enhanced cathodoluminescence from an amorphous AlN:holmium phosphor by co-doped Gd{sup +3} for optical devices applications

    SciTech Connect

    Maqbool, Muhammad; Kordesch, Martin E.; Kayani, A.

    2009-05-15

    Sputter-deposited thin films of amorphous AlN:Ho (1 at. %) emits in the green (549 nm) region of the visible spectrum under electron excitation. The addition of Gd (1 at. %) in the film enhances the green emission linearly after thermal activation at 900 deg. C for 40 min in a nitrogen atmosphere. The luminescence enhancement saturates when the gadolinium concentration reaches four times the holmium concentration. The optical bandgap of amorphous AlN is about 210 nm, so that the film is transparent in the ultraviolet, allowing us to observe the ultraviolet emission at 313 nm from Gd. No significant quenching of the Gd emission is observed. Energy dispersive x-ray (EDX) spectra confirm the increasing concentration of Gd. X-ray diffraction (XRD) analysis shows no peaks other than those arising from the Si (111) substrate, confirming that the films are amorphous. The enhanced luminescence can be used to make high-efficiency optical devices.

  12. Dynamic hyperfine interactions in 111In(111Cd)-doped ZnO semiconductor: PAC results supported by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Muñoz, Emiliano L.; Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F. D.; Carbonari, Artur W.; Rentería, Mario

    2012-08-01

    In this work, we present results of Time-Differential γ-γ Perturbed-Angular-Correlations (PAC) experiments performed in 111Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at (111In (EC)→) 111Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Bäverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd2+) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.

  13. Semiconductor P-I-N detector

    SciTech Connect

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  14. Deep-level transient spectroscopy on an amorphous InGaZnO{sub 4} Schottky diode

    SciTech Connect

    Chasin, Adrian Bhoolokam, Ajay; Nag, Manoj; Genoe, Jan; Heremans, Paul; Simoen, Eddy; Gielen, Georges

    2014-02-24

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier electrode and with a molybdenum (Mo) Ohmic contact at the top. The DLTS technique allows to independently measure the energy and spatial distribution of subgap states in the IGZO thin film. The subgap trap concentration has a double exponential distribution as a function energy, with a value of ∼10{sup 19} cm{sup −3} eV{sup −1} at the conduction band edge and a value of ∼10{sup 17} cm{sup −3} eV{sup −1} at an energy of 0.55 eV below the conduction band. Such spectral distribution, however, is not uniform through the semiconductor film. The spatial distribution of subgap states correlates well with the background doping density distribution in the semiconductor, which increases towards the Ohmic Mo contact, suggesting that these two properties share the same physical origin.

  15. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  16. Superparamagnetic behavior of Fe-doped SnO{sub 2} nanoparticles

    SciTech Connect

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-20

    SnO{sub 2} is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO{sub 2} nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO{sub 2} nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO{sub 2}, were investigated. The particle size (1.8–16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO{sub 2} single-phase structure for samples annealed at 1073–1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO{sub 2} is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  17. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    PubMed

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector. PMID:21173817

  18. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS{sub 2} layered semiconductor

    SciTech Connect

    Seyidov, MirHasan Yu. Suleymanov, Rauf A.; Mikailzade, Faik A.; Kargın, Elif Orhan; Odrinsky, Andrei P.

    2015-06-14

    Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles

  19. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS2 layered semiconductor

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Suleymanov, Rauf A.; Mikailzade, Faik A.; Kargın, Elif Orhan; Odrinsky, Andrei P.

    2015-06-01

    Lanthanum-doped high quality TlInS2 (TlInS2:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS2:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS2:La. Thermal treatments of TlInS2:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10-14 cm2, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS2:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10-16 cm2 were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5 deep level defects, are aligned in the

  20. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  1. Processing of insulators and semiconductors

    DOEpatents

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  2. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  3. PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4p-Type Semiconductor in Cells and the Lung

    PubMed Central

    2014-01-01

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the Ec levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of Ev, Ec, and Ef levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4. PMID:24673286

  4. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co₃O₄ p-type semiconductor in cells and the lung.

    PubMed

    Zhang, Haiyuan; Pokhrel, Suman; Ji, Zhaoxia; Meng, Huan; Wang, Xiang; Lin, Sijie; Chang, Chong Hyun; Li, Linjiang; Li, Ruibin; Sun, Bingbing; Wang, Meiying; Liao, Yu-Pei; Liu, Rong; Xia, Tian; Mädler, Lutz; Nel, André E

    2014-04-30

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4. PMID:24673286

  5. Tandem junction amorphous semiconductor photovoltaic cell

    DOEpatents

    Dalal, V.L.

    1983-06-07

    A photovoltaic stack comprising at least two p[sup +]i n[sup +] cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p[sup +]i n[sup +] cells. 3 figs.

  6. Tandem junction amorphous semiconductor photovoltaic cell

    DOEpatents

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.

  7. Method of doping organic semiconductors

    DOEpatents

    Kloc, Christian Leo; Ramirez, Arthur Penn; So, Woo-Young

    2010-10-26

    An apparatus has a crystalline organic semiconducting region that includes polyaromatic molecules. A source electrode and a drain electrode of a field-effect transistor are both in contact with the crystalline organic semiconducting region. A gate electrode of the field-effect transistor is located to affect the conductivity of the crystalline organic semiconducting region between the source and drain electrodes. A dielectric layer of a first dielectric that is substantially impermeable to oxygen is in contact with the crystalline organic semiconducting region. The crystalline organic semiconducting region is located between the dielectric layer and a substrate. The gate electrode is located on the dielectric layer. A portion of the crystalline organic semiconducting region is in contact with a second dielectric via an opening in the dielectric layer. A physical interface is located between the second dielectric and the first dielectric.

  8. Refractive-index change caused by electrons in amorphous AsS and AsSe thin films doped with different metals by photodiffusion

    SciTech Connect

    Nordman, Olli; Nordman, Nina; Pashkevich, Valfrid

    2001-08-01

    The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified. {copyright} 2001 Optical Society of America

  9. Latent ion tracks in amorphous silicon

    SciTech Connect

    Bierschenk, Thomas; Giulian, Raquel; Afra, Boshra; Rodriguez, Matias D; Schauries, D; Mudie, Stephen; Pakarinen, Olli H; Djurabekova, Flyura; Nordlund, Kai; Osmani, Orkhan; Medvedev, Nikita; Rethfield, Baerbel; Ridgway, Mark C; Kluth, Patrick

    2013-01-01

    We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy ion irradiation. An underlying core-shell structure consistent with remnants of a high density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions dier for as-implanted and relaxed Si as attributed to dierent microstructures and melting temperatures. The identication and characterisation of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy ion irradiation in amorphous semiconductors.

  10. A study on the crystallization behavior of Sn-doped amorphous Ge2Sb2Te5 by ultraviolet laser radiation

    NASA Astrophysics Data System (ADS)

    Bai, N.; Liu, F. R.; Han, X. X.; Zhu, Z.; Liu, F.; Lin, X.; Sun, N. X.

    2014-10-01

    In this paper, the influence of Sn doping (0%, 8% and 14%) on the crystallization of Ge2Sb2Te5 was studied with the aid of an ultraviolet laser. The XRD analyses revealed that the addition of Sn maintained the NaCl-type structure of Ge2Sb2Te5 after crystallization but expanded the lattice parameter due to the smaller atomic radii of Ge replaced by Sn. Raman peaks (123, 150 and 110 cm-1) moved towards lower wavenumbers (118, 137 and 104 cm-1), which can be explained by the remarkable decrease of the binding energy from Ge-Te to Sn-Te. A remarkable increase in optical contrast from 15% to 40% was observed in the Sn-doped Ge2Sb2Te5 film after crystallization with both the isothermal annealing and laser radiance. While the optical contrast changed little for a fixed volume fraction of Sn-doped sample with the variation of laser fluence which is attributed to the crystallization mechanism induced by laser under different fluences is the same.

  11. Influence of n-doped μc-Si:H back surface field layer with micro growth in crystalline-amorphous silicon heterojunction solar cells.

    PubMed

    Kim, Sangho; Dao, Vinh Ai; Shin, Chonghoon; Balaji, Nagarajan; Yi, Junsin

    2014-12-01

    The back surface field (BSF) plays an important role for the efficiency of the heterojunction intrinsic thin-film (HIT) solar cell. In this paper, the effect of thickness variation in n-type micro crystalline BSF layer was investigated by Raman and spectroscopy ellipsometry. As we increase the crystalline volume fraction (X(c)) from 6% to 59%, the open circuit voltage (V(oc)) increases from 573 to 696 mV with increase in fill factor from 59% to 71%. However, we observed that V(oc) and FF are decreased over 59% X(c) of n-type μc-Si:H BSF layer. It seems that higher X(c) micro layer include lots of defects. The quantum efficiency (QE) measurements were demonstrated on optimized thickness of n-doped micro BSF layer. In the long wavelengths region, the QE slightly increases with increasing the n-type μc-Si:H BSF layer thickness from 10 to 40 nm because of BSF effect, whereas the QE decreases when n-type μc-Si:H BSF layer thickness increases from 40 to 120 nm due to defects in the layer. The performance of heterojunction solar cell device was improved with the optimized thickness on n-doped micro BSF layer the best photo voltage parameters of the device were found to be V(oc) of 696 mV, short-circuit current density of 36.09 mA/cm2 and efficiency of 18.06% at n-doped micro BSF layer thickness of 40 nm. PMID:25971047

  12. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  13. Studies of hydrogenated amorphous silicon

    SciTech Connect

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  14. Nanomoulding with amorphous metals.

    PubMed

    Kumar, Golden; Tang, Hong X; Schroers, Jan

    2009-02-12

    Nanoimprinting promises low-cost fabrication of micro- and nano-devices by embossing features from a hard mould onto thermoplastic materials, typically polymers with low glass transition temperature. The success and proliferation of such methods critically rely on the manufacturing of robust and durable master moulds. Silicon-based moulds are brittle and have limited longevity. Metal moulds are stronger than semiconductors, but patterning of metals on the nanometre scale is limited by their finite grain size. Amorphous metals (metallic glasses) exhibit superior mechanical properties and are intrinsically free from grain size limitations. Here we demonstrate direct nanopatterning of metallic glasses by hot embossing, generating feature sizes as small as 13 nm. After subsequently crystallizing the as-formed metallic glass mould, we show that another amorphous sample of the same alloy can be formed on the crystallized mould. In addition, metallic glass replicas can also be used as moulds for polymers or other metallic glasses with lower softening temperatures. Using this 'spawning' process, we can massively replicate patterned surfaces through direct moulding without using conventional lithography. We anticipate that our findings will catalyse the development of micro- and nanoscale metallic glass applications that capitalize on the outstanding mechanical properties, microstructural homogeneity and isotropy, and ease of thermoplastic forming exhibited by these materials. PMID:19212407

  15. Physics with isotopically controlled semiconductors

    SciTech Connect

    Haller, E. E.

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  16. Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-07-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a distributed feedback semiconductor laser as an intensity mode locker and a tunable optical filter. Very stable optical pulse trains at gigabit repetition rates were generated using harmonica mode locking. The supermode noise was suppressed to 60 dB below the signal level and the root-mean-square timing jitter (0.45 kHz-1 MHz) was found to be about 1% of the pulse duration. A continuous wavelength tuning range of 1.8 nm was achieved by changing the semiconductor laser temperature from 11.4 to 30 °C.

  17. Characterization of Doped Amorphous Silicon Thin Films through the Investigation of Dopant Elements by Glow Discharge Spectrometry. A Correlation of Conductivity and Bandgap Energy Measurements

    PubMed Central

    Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz

    2011-01-01

    The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B2H6 and SiH4 fluxes (B2H6 from 12 sccm to 20 sccm and SiH4 from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples. PMID:21731436

  18. Characterization of doped amorphous silicon thin films through the investigation of dopant elements by glow discharge spectrometry: a correlation of conductivity and bandgap energy measurements.

    PubMed

    Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz

    2011-01-01

    The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B(2)H(6) and SiH(4) fluxes (B(2)H(6) from 12 sccm to 20 sccm and SiH(4) from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples. PMID:21731436

  19. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  20. Amphoteric native defects in semiconductors

    SciTech Connect

    Walukiewicz, W.

    1989-05-22

    We show that a new concept of amphoteric native defects with strongly Fermi level dependent defect formation energy provides the basis for a unified explanation of a large variety of phenomena in semiconductors. Formation of Schottky barriers, particle irradiation induced compensation, doping-induced superlattice intermixing, and limits of free-carrier concentration find for the first time a common simple explanation.

  1. Pressure effect on the magnetism of the diluted magnetic semiconductor (B a1 -xKx ) (Zn1-yM ny ) 2A s2 with independent spin and charge doping

    NASA Astrophysics Data System (ADS)

    Sun, F.; Li, N. N.; Chen, B. J.; Jia, Y. T.; Zhang, L. J.; Li, W. M.; Zhao, G. Q.; Xing, L. Y.; Fabbris, G.; Wang, Y. G.; Deng, Z.; Uemura, Y. J.; Mao, H. K.; Haskel, D.; Yang, W. G.; Jin, C. Q.

    2016-06-01

    We used x-ray magnetic circular dichroism (XMCD) to probe the ferromagnetic properties of As p -symmetric (4 p ) states in the recently synthesized diluted magnetic semiconductor (B a1 -xKx) (Zn1-yM ny) 2A s2 system under ambient- and high-pressure conditions. The As K -edge XMCD signal scales with the sample magnetization (dominated by Mn) and scales with the ferromagnetic ordering temperature T c , and hence it is representative of the bulk magnetization. The XMCD intensity gradually decreases upon compression and vanishes at around 25 GPa, indicating quenching of ferromagnetism at this pressure. Transport measurements show a concomitant increase in conductivity with pressure, leading to a nearly metallic state at about the same pressure where magnetic order collapses. High-pressure x-ray diffraction shows an absence of structural transitions to 40 GPa. The results indicate that the mobility of doped holes, probed by both transport and x-ray absorption spectroscopy (4 p band broadening), is intimately connected with the mechanism of magnetic ordering in this class of compounds and that its control using external pressure provides an alternative route for tuning the magnetic properties in diluted magnetic semiconductor materials.

  2. An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS.

    PubMed

    Zhou, Yansong; Chen, Gang; Yu, Yaoguang; Feng, Yujie; Zheng, Yi; He, Fang; Han, Zhonghui

    2015-01-21

    Reducing the oxidative capacity of holes (h(+)) in the valence band (VB) of ZnS is one of the most effective ways to prevent the photocatalyst from photocorrosion. In this work, ZnS doped only with nitrogen was prepared for the first time by nitriding ZnS powder in an NH3 atmosphere. We demonstrate theoretically and experimentally that the valence band maximum (VBM) rises obviously by N-doping in ZnS, suggesting the reduction of the oxidative capacity of holes (h(+)) in the valence band. The theoretically predicted band structures were further verified by valence band X-ray photoelectron spectroscopy (VB XPS) and Mott-Schottky measurements. The as-prepared N-doped ZnS exhibited an outstanding stable capability for photocatalytic hydrogen evolution from water under simulated sunlight irradiation for 12 h. However, pristine ZnS showed no capability and was seriously photocorroded under the same conditions. PMID:25474654

  3. Unusual Changes in Electronic Band-Edge Energies of the Nanostructured Transparent n-Type Semiconductor Zr-Doped Anatase TiO2 (Ti1-xZrxO2; x < 0.3).

    PubMed

    Mieritz, Daniel G; Renaud, Adèle; Seo, Dong-Kyun

    2016-07-01

    By the establishment of highly controllable synthetic routes, electronic band-edge energies of the n-type transparent semiconductor Zr-doped anatase TiO2 have been studied holistically for the first time up to 30 atom % Zr, employing powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen gas sorption measurements, UV/vis spectroscopies, and Mott-Schottky measurements. The materials were produced through a sol-gel synthetic procedure that ensures good compositional homogeneity of the materials, while introducing nanoporosity in the structure, by achieving a mild calcination condition. Vegard's law was discovered among the homogeneous samples, and correlations were established between the chemical compositions and optical and electronic properties of the materials. Up to 20% Zr doping, the optical energy gap increases to 3.29 eV (vs 3.19 eV for TiO2), and the absolute conduction band-edge energy increases to -3.90 eV (vs -4.14 eV). The energy changes of the conduction band edge are more drastic than what is expected from the average electronegativities of the compounds, which may be due to the unnatural coordination environment around Zr in the anatase phase. PMID:27332108

  4. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    SciTech Connect

    Hanyu, Yuichiro Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kamiya, Toshio; Kumomi, Hideya; Hosono, Hideo

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  5. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  6. Doping efficiency and confinement of donors in embedded and free standing Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Almeida, A. J.; Sugimoto, H.; Fujii, M.; Brandt, M. S.; Stutzmann, M.; Pereira, R. N.

    2016-03-01

    Doping semiconductor nanocrystals (NCs) is a promising way to tailor the optical and electronic behavior of these materials to enable their use in (opto)electronic applications. Yet the practical exploitation of doping requires an understanding of its efficiency, and dependence on external environment, and of the electronic localization of dopant states due to confinement effects. Here, we experimentally probe the efficiency of doping of Si NCs grown in amorphous SiO2 by means of phase segregation method. We estimate a P doping efficiency of these Si NCs of about 30% and from this we infer that most P dopants are incorporated at substitutional sites of the NCs lattice and thus act as donors. We further show that the doping efficiency in Si NCs varies by several orders of magnitude depending on their external environment. Charge traps associated with air molecules adsorbed to the NCs surface give rise to a strong compensation of donors. We observe that this process can be reverted by desorbing the molecules from the NCs surface under vacuum. Moreover, we experimentally assess the confinement energy of isolated donors in Si NCs from the temperature dependence of their magnetic resonance. From this, we provide experimental evidence for the confinement-induced increase of ionization energy of dopants with decreasing NC size previously predicted with ab initio calculations of doped Si NCs.

  7. Molecular approaches to p- and n-nanoscale doping of Ge 1-ySn y semiconductors: Structural, electrical and transport properties

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Tolle, J.; D'Costa, V. R.; Weng, C.; Chizmeshya, A. V. G.; Menendez, J.; Kouvetakis, J.

    2009-08-01

    We report the development of practical doping protocols via designer molecular sources to create n- and p-type doped Ge 1-ySn y layers grown directly upon Si(1 0 0). These materials will have applications in the fabrication of advanced PIN devices that are intended to extend the infrared optical response beyond that of Ge by utilizing the Sn composition as an additional design parameter. Highly controlled and efficient n-doping of single-layer structures is achieved using custom built P(GeH 3) 3 and As(GeH 3) 3, precursors containing preformed Ge-As and Ge-P near-tetrahedral bonding arrangements compatible with the structure of the host Ge-Sn lattice. Facile substitution and complete activation of the P and As atoms at levels ˜10 17-10 19 cm -3 is obtained via in situ depositions at low temperatures (350 °C). Acceptor doping is readily achieved using conventional diborane yielding carrier concentrations between 10 17-10 19 cm -3 under similar growth conditions. Full activation of the as-grown dopant concentrations is demonstrated by combined SIMS and Hall experiments, and corroborated using a contactless spectroscopic ellipsometry approach. RTA processing of the samples leads to a significant increase in carrier mobility comparable to that of bulk Ge containing similar doping levels. The alloy scattering contribution appears to be negligible for electron carrier concentrations beyond 10 19 cm -3 in n-type samples and hole concentrations beyond 10 18 cm -3 in p-type samples. A comparative study using the classical lower-order hydrides PH 3 and AsH 3 produced n-doped films with carrier densities (up to 9 × 10 19 cm -3) similar to those afforded by P(GeH 3) 3 and As(GeH 3) 3. However, early results indicate that the simpler PH 3 and AsH 3 sources yield materials with inferior morphology and microstructure. Calculations of surface energetics using bond enthalpies suggest that the latter massive compounds bind to the surface via strong Ge-Ge bonds and likely act as

  8. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  9. Interfaces in semiconductor/metal radial superlattices

    SciTech Connect

    Deneke, Christoph; Sigle, Wilfried; Eigenthaler, Ulrike; Aken, Peter A. van; Schuetz, Gisela; Schmidt, Oliver G.

    2007-06-25

    Semiconductor/metal radial superlattices are produced by the roll-up of inherently strained InGaAs/Ti/Au as well as InAlGaAs/GaAs/Cr films. Cross sections of the obtained structures are prepared and investigated in detail by diverse transmission electron microscopy as well as microanalysis techniques. Special attention is paid to the interfaces of the semiconductor/metal hybrid superlattice. The study reveals amorphous, noncrystalline layers for the semiconductor/metal as well as for the metal/semiconductor interface. The chemical analysis suggests that the observed interlayers are oxides giving rise to a semiconductor/oxide/metal/oxide superlattice rather than a pure semiconductor/metal superlattice.

  10. Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Schaekers, Marc; Barla, Kathy; Horiguchi, Naoto; Collaert, Nadine; Thean, Aaron Voon-Yew; De Meyer, Kristin

    2016-04-01

    Applying simulations and experiments, this paper systematically compares contact resistivities (ρc) of metal-insulator-semiconductor (MIS) contacts and metal-semiconductor (MS) contacts with various semiconductor doping concentrations (Nd). Compared with the MS contacts, the MIS contacts with the low Schottky barrier height are more beneficial for ρc on semiconductors with low Nd, but this benefit diminishes gradually when Nd increases. With high Nd, we find that even an "ideal" MIS contact with optimized parameters cannot outperform the MS contact. As a result, the MIS contacts mainly apply to devices that use relatively low doped semiconductors, while we need to focus on the MS contacts to meet the sub-1 × 10-8 Ω cm2 ρc requirement for future Complementary Metal-Oxide-Semiconductor (CMOS) technology.

  11. Characteristic Behavior of ESR Linewidth in Cr-doped PbTe-based Diluted Magnetic Semiconductors in the Vicinity of Ferromagnetic Ordering Transition

    NASA Astrophysics Data System (ADS)

    Zvereva, E.; Savelieva, O.; Ibragimov, S.; Slyn'ko, E.; Slyn'ko, V.

    2011-12-01

    Here we report on magnetization (T = 1.8-400 K, B≤7 T) and X-band ESR study (f = 9.1-9.6 GHz, T = 90-450 K) for Pb1-yCryTe ferromagnetic semiconductor and two new PbTe-based semiconductors Pb1-x-ySnxCryTe and Pb1-x-yMgxCryTe in the vicinity of the transition to ferromagnetic state. It was found that these semiconductors demonstrate ferromagnetism at temperatures higher than room temperature. The Curie temperature TC varies in a wide range (150-390 K) depending on the matrix composition and chromium content. In the paramagnetic phase the ESR spectra show a single asymmetrical line of Dysonian shape due to skin effect, typical of conducting materials. Regardless of matrix composition the effective g-factor tends to the saturation value g = 2.08±0.02 and the linewidth is ΔB≈0.08 T at the highest temperature limit. Upon approaching TC from above g-factor slowly increases, while the linewidth falls approximately two times and passes through the minimum at T*≈1.2TC. In the vicinity of TC the ESR parameters show distinct anomalies, which were associated with presence of strong magnetic fluctuation at an onset of FM ordering.

  12. Deposition of Amorphous Silicon and Silicon-Based Dielectrics by Remote Plasma-Enhanced Chemical Vapor Deposition: Application to the Fabrication of Tft's and Mosfet's.

    NASA Astrophysics Data System (ADS)

    Kim, Sang Soo

    1990-01-01

    This thesis discusses the deposition of device quality silicon dioxide (SiO_2), silicon nitride (Si_3N_4 ), and hydrogenated amorphous silicon (a-Si:H) by the remote plasma enhanced chemical vapor deposition (Remote PECVD) technique at low substrate temperature (100 ^circC < T _{rm s} < 450^ circC). An ultra-high-vacuum (UHV) compatible, multi-chamber integrated processing system has been built and used for this study. This system provides: (1) in -situ substrate processing; (2) surface analysis by Auger electron spectroscopy (AES) and reflected high energy electron diffraction (RHEED); and (3) thin film deposition by Remote PECVD. Six issues are addressed: (1) in-situ semiconductor surface cleaning for Si, Ge, GaAs, and CdTe; (2) substrate surface characterization by using RHEED and AES; (3) process gas-substrate interactions (subcutaneous oxidation) occurring during the thin film deposition; (4) the thin film deposition process for silicon-based dielectrics and for doped and intrinsic amorphous silicon; (5) physical properties of the thin films deposited by Remote PECVD using in-situ AES, and ex-situ infrared (ir) spectroscopy and ellipsometry; and (6) electrical performance of thin films in device structures including metal-oxide/or insulator-semiconductor (MOS or MIS) capacitors formed on silicon, and hydrogenated -amorphous silicon thin film transistors (a-Si:H TFT's). Atomically clean semiconductor surfaces are obtained by a remote hydrogen plasma treatment prior to thin film deposition. In the remote PECVD process the process gases are selectively excited, the silane reactant, the source of silicon atoms in the films is never directly plasma excited, and the substrate is also remote from the plasma discharge region. These differences between the remote PECVD process and the conventional direct PECVD process, result in improved control of the insulator stoichiometry, and a reduction in level of chemical impurities such as hydrogen. We find that the

  13. A transparent ultraviolet triggered amorphous selenium p-n junction

    NASA Astrophysics Data System (ADS)

    Saito, Ichitaro; Miyazaki, Wataru; Onishi, Masanori; Kudo, Yuki; Masuzawa, Tomoaki; Yamada, Takatoshi; Koh, Angel; Chua, Daniel; Soga, Kenichi; Overend, Mauro; Aono, Masami; Amaratunga, Gehan A. J.; Okano, Ken

    2011-04-01

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  14. A transparent ultraviolet triggered amorphous selenium p-n junction

    SciTech Connect

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro; Amaratunga, Gehan A. J.; Miyazaki, Wataru; Onishi, Masanori; Masuzawa, Tomoaki; Okano, Ken; Kudo, Yuki; Yamada, Takatoshi; Koh, Angel; Chua, Daniel; Aono, Masami

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  15. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  16. An Innovative Method for Preparing Semiconductor Change Used in Crystal Growth and Shear Cell Diffusion Experiments

    NASA Technical Reports Server (NTRS)

    Anrold, William A.; Matthiesen, David; Benett, Robert J.; Jayne, Douglas T.

    1997-01-01

    An innovative technique for machining semiconductors has been developed. This technique was used to prepare semiconductor charges for crystal growth and shear cell diffusion experiments. The technique allows brittle semiconductor materials to be quickly and accurately machined. Lightly doping the semiconductor material increases the conductivity enough to allow the material to be shaped by an electrical discharge machine (EDM).

  17. High Thermoelectric Performance by Convergence of Bands in IV-VI Semiconductors, Heavily Doped PbTe, and Alloys/Nanocomposites

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.

  18. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  19. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  20. Plasma Deposition of Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  1. Amorphous Insulator Films With Controllable Properties

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Warner, Joseph D.; Liu, David C.; Pouch, John J.

    1987-01-01

    In experiments described in report, amorphous hydrogenated carbon films grown at room temperature by low-frequency plasma deposition, using methane or butane gas. Films have unique array of useful properties; (a) adhere to wide variety of materials; (b) contain only carbon and hydrogen; (c) smooth and free of pinholes; (d) resistant to attack by moisture and chemicals; and (e) have high electric-breakdown strength and electrical resistivity. Two of optical properties and hardness of this film controlled by deposition conditions. Amorphous a-C:H and BN films used for hermetic sealing and protection of optical, electronic, magnetic, or delicate mechanical systems, and for semiconductor field dielectrics.

  2. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  3. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  4. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  5. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  6. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    NASA Technical Reports Server (NTRS)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  7. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A.; Albarghouti, Marwan

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  8. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  9. First-principles and time-differential γ-γ perturbed-angular-correlation spectroscopy study of structural and electronic properties of Ta-doped TiO2 semiconductor

    NASA Astrophysics Data System (ADS)

    Darriba, G. N.; Errico, L. A.; Eversheim, P. D.; Fabricius, G.; Rentería, M.

    2009-03-01

    The, time-differential γ-γ perturbed-angular-correlation (TDPAC) technique using ion-implanted H181f(→T181a) tracers was applied to study the hyperfine interactions of T181a impurities in the rutile structure of TiO2 single crystals. The experiments were performed in air in the temperature range of 300-1273 K, allowing the electric-field-gradient (EFG) tensor characterization (in magnitude, asymmetry, and orientation) at T181a probe atoms located in defect-free cation sites of the structure. The measured EFG is parallel to the [001] crystal axis, as occurs at Ti sites, but normal to the EFG orientation observed at C111d impurities in TiO2 single crystals [L. A. Errico , Phys. Rev. Lett. 89, 055503 (2002)]. In addition, ab initio calculations were performed using the full-potential augmented plane wave plus local orbital method that allow us to treat the electronic structure of the doped system and the atomic relaxations induced by the Ta impurity in a fully self-consistent way. We considered different dilutions of the doped system (using the supercell approach) and studied the electronic properties and structural atomic relaxation dependence on the charge state of the impurity. The accuracy of the calculations and the excellent agreement of the predicted magnitude, asymmetry, and orientation of the EFG tensor with the experimental results enable us to infer the EFG sign, not accessible with conventional TDPAC experiments. The comparison of the measured EFG at Ta sites with experimental and ab initio theoretical results reported in the literature at Cd, Ta, and Ti sites in TiO2 allowed us to obtain a deeper insight on the role played by metal impurities in oxide semiconductors.

  10. Semiconductor processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary thrust of the semiconductor processing is outlined. The purpose is to (1) advance the theoretical basis for bulk growth of elemental and compound semiconductors in single crystal form, and (2) to develop a new experimental approaches by which semiconductor matrices with significantly improved crystalline and chemical perfection can be obtained. The most advanced approaches to silicon crystal growth is studied. The projected research expansion, directed toward the capability of growth of 4 inch diameter silicon crystals was implemented. Both intra and interdepartmental programs are established in the areas of process metallurgy, heat transfer, mass transfer, and systems control. Solutal convection in melt growth systems is also studied.

  11. Thermoelectric performance of granular semiconductors.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Materials Science Division; California State Univ.

    2009-01-01

    We study the effects of doping and confinement on the thermoelectric properties of nanocrystalline semiconductors. We calculate the thermopower and figure of merit for temperatures less than the charging energy. For weakly coupled semiconducting grains it is shown that the figure of merit is optimized for grain sizes of order 5 nm for typical materials, and that its value can be larger than one. Using the similarities between granular semiconductors and electron or Coulomb glasses allows for a quantitative description of inhomogeneous semiconducting thermoelectrics.

  12. Amorphous carbon for photovoltaics

    NASA Astrophysics Data System (ADS)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  13. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  14. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

    1995-06-20

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  15. Pulsed energy synthesis and doping of silicon carbide

    DOEpatents

    Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.

    1995-01-01

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  16. Long-lived emission in Mn doped CdS, ZnS, and ZnSe diluted magnetic semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Proshchenko, Vitaly; Dahnovsky, Yuri

    2015-11-01

    Slow luminescence is studied in Mn doped CdS, ZnS, and ZnSe quantum dots. Because of the high degeneracy of Mn d-orbitals, we employ the multi-determinant SAC-CI computational method to determine the spin-forbidden transition from the 4T1 first excited to 6A1 ground state. We find that the transition energies for each material are in the excellent agreement with the experimental data. The computations reveal that the absorption spectra are independent of the presence of Mn impurities in quantum dots. The calculations show that the Mn impurity levels are located inside the QD gaps and the slow emission energies are independent of QD sizes. These features allow us to conclude that there are two luminescence peaks in the spectrum with fast (the higher energy) and slow (the lower energy) relaxations. In experiments sometimes the fast luminescence band disappears. This effect depends on Mn concentrations and a doping method. For different QD crystal structures the Mn-S (Se) bond lengths can vary. Therefore we find that the slow luminescence energy is very sensitive to a bond length. Indeed if we change the Mn-S bond length by 0.1 Å , the energy increases by 0.2 eV within the calculated range of bond lengths.

  17. Highly Conducting Gallium-Doped ZnO Thin Film as Transparent Schottky Contact for Organic- Semiconductor-Based Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2015-08-01

    Highly conducting and transparent Ga-doped ZnO (GZO) thin films have been grown on transparent substrates at different growth temperatures with Ga content varying from 0.01% to 10%. All films showed pronounced c-axis orientation corresponding to hexagonal wurtzite structure. The minimum resistivity of 4.3 × 10-4 Ω cm was reproducibly obtained in GZO thin film doped with 2% Ga and grown at 600°C. We have further shown that highly conducting transparent GZO thin film can be used as a Schottky contact in copper phthalocyanine (CuPc)-based Schottky diodes. The capacitance-voltage characteristics of the Al/CuPc/Au and GZO/CuPc/Au Schottky diodes show similar built-in potential ( V bi) of 0.98 V, which is close to the difference in work function between Au (5.2 eV) and Al or GZO (4.2 eV), establishing that GZO behaves as a metal electrode with work function similar to Al. Similar values of acceptor concentration (˜1015 cm-3) in CuPc were obtained from the capacitance-voltage characteristics of the Al/CuPc/Au and GZO/CuPc/Au Schottky diodes. These observations indicate the absence of interface states at the metal/organic interface in CuPc-based Schottky diodes.

  18. SEMICONDUCTOR DEVICES Performance optimization of MOS-like carbon nanotube-FETs with realistic source/drain contacts based on electrostatic doping

    NASA Astrophysics Data System (ADS)

    Hailiang, Zhou; Yue, Hao; Minxuan, Zhang

    2010-12-01

    Due to carrier band-to-band-tunneling (BTBT) through channel-source/drain contacts, conventional MOS-like Carbon Nanotube Field Effect Transistors (C-CNFETs) suffer from ambipolar conductance, which deteriorates the device performance greatly. In order to reduce such ambipolar behavior, a novel device structure based on electrostatic doping is proposed and all kinds of source/drain contacting conditions are considered in this paper. The non-equilibrium Green's function (NEGF) formalism based simulation results show that, with proper choice of tuning voltage, such electrostatic doping strategy can not only reduce the ambipolar conductance but also improve the sub-threshold performance, even with source/drain contacts being of Schottky type. And these are both quite desirable in circuit design to reduce the system power and improve the frequency as well. Further study reveals that the performance of the proposed design depends strongly on the choice of tuning voltage value, which should be paid much attention to obtain a proper trade-off between power and speed in application.

  19. Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature.

    PubMed

    Su, Juan; Zou, Xiao-Xin; Zou, Yong-Cun; Li, Guo-Dong; Wang, Pei-Pei; Chen, Jie-Sheng

    2013-05-20

    Semiconductor-based sensors have played an important role in efficient detection of combustible, flammable, and toxic gases, but they usually need to operate at elevated temperatures (200 °C or higher). Although reducing the operation temperature down to room temperature is of practical significance, it is still a huge challenge to fabricate room temperature sensors with a low cost. Here we show a novel "self-doping" strategy to overcome simultaneously both difficulties of "high resistance" and "low reaction rate", which have always been encountered for room-temperature operation of semiconductor-based sensors. In particular, a porous crystalline titania with heavily self-doped Ti(3+) species has been prepared by using a porous amorphous TiO2 and urea as the starting materials. The resulting Ti(3+) self-doped TiO2 material serves as an efficient room-temperature gas-sensing material for specific CO detection with fast response/recovery. The self-dopant (Ti(3+)) in the titania material has proved to decrease the resistance of TiO2 significantly on the one hand and to increase the chemisorbed oxygen species substantially, thus enhancing the surface reaction activity on the other. Such a self-doping concept is anticipated to give a fresh impetus to rational design of room-temperature sensing devices with low costs. PMID:23651218

  20. Amorphous Computing

    NASA Astrophysics Data System (ADS)

    Sussman, Gerald

    2002-03-01

    agents constructed by engineered cells, but we have few ideas for programming them effectively: How can one engineer prespecified, coherent behavior from the cooperation of immense numbers of unreliable parts that are interconnected in unknown, irregular, and time-varying ways? This is the challenge of Amorphous Computing.

  1. Method for making high resistance chromium-free semiconductor substrate body with low resistance active semiconductor layer by surface irradiation

    SciTech Connect

    Kniepkamp, H.

    1984-10-30

    A high resistance semiconductor substrate body with a thin low resistance active semiconductor layer thereon is generated by a method including the steps of subjecting the semiconductor substrate body to neutron bombardment to a degree which produces high resistance in the semiconductor body and whereby doping substances are generated in the substrate body by the thermal neutron bombardment. A thin low resistant active semiconductor layer is then generated on the substrate body by annealing, a surface of the semiconductor substrate body up to a selected depth by laser radiation or electron radiation such that the lattice deterioration which was caused by the neutron bombardment is eliminated but the doping which was generated by the transmutation of elements during neutron bombardment remains. The annealing can be undertaken only in selected regions on the surface of the semiconductor substrate body, thereby facilitating the construction of integrated circuit components thereon.

  2. Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Roberts, J. W.; Chalker, P. R.; Lee, K. B.; Houston, P. A.; Cho, S. J.; Thayne, I. G.; Guiney, I.; Wallis, D.; Humphreys, C. J.

    2016-02-01

    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm-3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm-2 to -6.60 × 1012 cm-2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices.

  3. Ultraviolet Lasers Realized via Electrostatic Doping Method

    PubMed Central

    Liu, X. Y.; Shan, C. X.; Zhu, H.; Li, B. H.; Jiang, M. M.; Yu, S. F.; Shen, D. Z.

    2015-01-01

    P-type doping of wide-bandgap semiconductors has long been a challenging issue for the relatively large activation energy and strong compensation of acceptor states in these materials, which hinders their applications in ultraviolet (UV) optoelectronic devices drastically. Here we show that by employing electrostatic doping method, hole-dominant region can be formed in wide bandgap semiconductors, and UV lasing has been achieved through the external injection of electrons into the hole-dominant region, confirming the applicability of the p-type wide bandgap semiconductors realized via the electrostatic doping method in optoelectronic devices. PMID:26324054

  4. 759  fs pulse generation with Nd3+-doped CNGS ordered crystal based on a semiconductor saturable absorber mirror.

    PubMed

    Li, Jing; Zhang, Xiao-Tong; He, Jing-Liang; Guo, Shiyi; Ning, Jian; Lou, Fei; Zhao, Ruwei; Su, Xian-Cui; Hou, Jia; Zhang, Bai-Tao

    2016-07-10

    A diode-pumped passively continuous wave mode-locked laser at 1064.2 nm based on an ordered Nd:CNGS crystal has been experimentally investigated (for the first time, to our knowledge). Stable mode-locked pulses with a duration of 759 fs were produced at a repetition rate of 43.2 MHz. It is the shortest pulse generation of mode-locked lasers based on Nd3+-doped ordered crystal, as far as we know. A maximum average mode-locked output power of 133 mW was obtained at the absorbed pumped power of 6.7 W, and corresponding single-pulse energy and peak power were determined to be 3.1 nJ and 4.1 kW, respectively. The results indicate that the Nd:CNGS as an ordered crystal is indeed a potential candidate as a femtosecond laser gain medium. PMID:27409324

  5. Write-once memory effects observed in Ga-doped ZnO/organic semiconductor/MoO3/Au structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, Junya; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-03-01

    Electrical switching phenomena in a device configuration of inverted organic light-emitting diodes have been observed. The device structure was Ga-doped ZnO (GZO)/N,N‧-dicarbazolyl-3,5-benzene (m-CP)/MoO3 (10 nm)/Au (50 nm) fabricated by solution coating. The devices are write-once-read-many-times (WORM) memory devices with low switching voltage (<3 V) and long retention time (>700 h). Equivalent circuits in OFF and ON states are determined from the Cole-Cole plots measured by impedance spectroscopy. The switching phenomena and nonvolatile memory behavior are attributable to the formation conductive Au filaments in the m-CP layer of the ON state.

  6. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting

  7. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  8. Growth, characterization, optical and vibrational properties of Sm3+ doped Cd0.8Zn0.2S semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Yellaiah, G.; Hadasa, K.; Nagabhushanam, M.

    2014-01-01

    Undoped and doped polycrystalline Cd0.8Zn0.2S powders with different amounts of samarium (0.01, 0.02, 0.03, 0.04 and 0.05 M) were synthesized by the controlled co-precipitation technique. Effect of the Sm3+ on structural, elemental, optical and vibrational properties of Cd0.8Zn0.2S: Smx samples were investigated. X-ray diffraction (XRD) results showed that the samples prepared were polycrystalline with hexagonal structure. From the XRD patterns, the average crystallite size was calculated it was about 45-90 nm. The band gap of these samples is estimated from the optical absorption studies. The samples showed direct band gap, which varies from 2.52 to 3.18 eV. Fourier transform infrared spectroscopy (FTIR) showed the characteristic vibrational modes of Cd-S and Zn-S in the wave number range 621-821 cm-1. Experimental and XRD densities were calculated and analyzed.

  9. Semiconductor electrodes. 50. Effect of mode of illumination and doping on photoelectrochemical behavior of phthalocyanine films. Technical report 1 Sep 82-1 Aug 83

    SciTech Connect

    Leempoel, P.; Fan, F.F.; Bard, A.J.

    1983-02-25

    The behavior of photoelectrochemical (PEC) cells composed of SnO/sub 2/ or Pt electrodes with coatings of different phthalocyanines (Pc) -H/sub 2/Pc, ZnPc, MgPc, (CuPc, InPc) 1 was investigated. Spectral sensitization at the Sn0/sub 2//Pc interface leads to photooxidation currents, while efficient photoreduction occurs at the Pc/solution interface through bulk generation of charge carriers. The presence of both anodic and cathodic photocurrents leads to different net photocurrent responses for back and front side illumination, especially with thicker films. The efficiency of the reduction process was sensitive to the potential of the redox couple in solution and maximized when E redox was about 0.37V for N/sub 2/Pc, ZnPc and -MgPc. A dramatic improvement of the photoelectrochemical behavior of the coating results from doping with an electron acceptor (e.g.,o-chloranil) and quantum yields as high a s 4.6% were measured for Pt/H/sub 2/Pc electrodes.

  10. Hot Carrier Degradation in Deep Sub-Micron Nitride Spacer Lightly Doped Drain N-Channel Metal-Oxide-Semiconductor Transistors

    NASA Astrophysics Data System (ADS)

    Tsai, Jun-lin; Huang, Kai-ye; Lai, Jinn-horng; Gong, Jeng; Yang, Fu-Jei; Lin, Sun-Yun

    2002-08-01

    Spacer bottom oxide in the nitride spacer lightly doped drain (LDD) device, which is used to prevent huge interfacial states between the nitride and silicon interface, plays an important role in the hot carrier test. Because of the stress due to atomic size mismatch between the nitride spacer and silicon, trap-assisted hot electron tunneling is more significant in a nitride spacer LDD device than in the oxide spacer counterpart. A thicker bottom oxide can eliminate this effect. However, the optimal thickness of the nitride spacer bottom oxide should be varied for different poly-silicon gate structures. The hot carrier stress in a nitride spacer LDD device causes multi-stage degradation under Isub,max stress. It is dominated by electron trapping at the early stage, interfacial state (Nit) creation at the second stage, and self-limiting hot carrier degradation at the final stage. The degradation for Ig,max stress in nitride spacer LDD devices is mostly caused by electrons trapped in the nitride/oxide interface.

  11. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  12. Experimental evidence of homonuclear bonds in amorphous GaN

    SciTech Connect

    Ishimaru, Dr. Manabu; Zhang, Yanwen; Wang, Xuemei; Chu, Wei-Kan; Weber, William J

    2011-01-01

    Although GaN is an important semiconductor material, its amorphous structures are not well understood. Currently, theoretical atomistic structural models which contradict each other, are proposed for the chemical short-range order of amorphous GaN: one characterizes amorphous GaN networks as highly chemically ordered, consisting of heteronuclear Ga-N atomic bonds; and the other predicts the existence of a large number of homonuclear bonds within the first coordination shell. In the present study, we examine amorphous structures of GaN via radial distribution functions obtained by electron diffraction techniques. The experimental results demonstrate that amorphous GaN networks consist of heterononuclear Ga-N bonds, as well as homonuclear Ga-Ga and N-N bonds.

  13. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  14. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    PubMed Central

    Kasap, Safa; Frey, Joel B.; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S.; Rowlands, John A.

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  15. Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors.

    PubMed

    Kasap, Safa; Frey, Joel B; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S; Rowlands, John A

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI(2) and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  16. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei

    2016-01-01

    Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).

  17. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm‑3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K‑1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  18. Is simulated amorphous'' silica really amorphous

    SciTech Connect

    Binggeli, N. , PHB Ecublens, 1015 Lausanne ); Chelikowsky, J.R. )

    1994-07-10

    We have carried out extensive molecular dynamics simulations for the pressure induced amorphization of quartz by means of a classical force-field model. In agreement with earlier simulations, we find that a phase transition occurs within the experimental pressure range of the amorphization. However, in contrast to the interpretation of previous simulations, we demonstrate that the new phase is [ital not] amorphous, since the correlation functions for the equilibrated structure can be shown to be consistent with those of a crystalline phase. In addition, two transformations to ordered structures are found to occur sequentially during the simulations. The first transformation is likely to be related to the recently discovered transition of quartz to an intermediate crystalline phase before its amorphization. The second transformation, instead, yields a compact, octahedrally coordinated Si sublattice. The latter may be an artifact of the pair-potential simulation. [copyright] 1994 American Institute of Physics

  19. Mechanisms of current flow in metal-semiconductor ohmic contacts

    SciTech Connect

    Blank, T. V. Gol'dberg, Yu. A.

    2007-11-15

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.

  20. Materials Science and Technology, Volume 4, Electronic Structure and Properties of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schröter, Wolfgang

    1996-12-01

    This volume spans the field of semiconductor physics, with particular emphasis on concepts relevant to semiconductor technology. From the Contents: Lannoo: Band Theory Applied to Semiconductors. Ulbrich: Optical Properties and Charge Transport. Watkins: Intrinsic Point Defects in Semiconductors. Feichtinger: Deep Centers in Semiconductors. Gösele/Tan: Equilibria, Nonequilibria, Diffusion, and Precipitation. Alexander/Teichler: Dislocations. Thibault/Rouvière/Bourret: Grain Boundaries in Semiconductors. Ourmazd/Hull/Tung: Interfaces. Chang: The Hall Effect in Quantum Wires. Street/Winer: Material Properties of Hydrogenated Amorphous Silicon. Schröter/Seibt/Gilles: High-Temperature Properties of 3d Transition Elements in Silicon.