Science.gov

Sample records for amphibia forms voltage-dependent

  1. Voltage Dependence of a Neuromodulator-Activated Ionic Current123

    PubMed Central

    2016-01-01

    Abstract The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca2+, but that, in conditions of low Ca2+, calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca2+/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR. PMID:27257619

  2. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae): Morphological Evolution And Homoplasy

    PubMed Central

    Darda, David M.; Wake, David B.

    2015-01-01

    Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work. PMID:26060996

  3. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae): Morphological Evolution And Homoplasy.

    PubMed

    Darda, David M; Wake, David B

    2015-01-01

    Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work. PMID:26060996

  4. Voltage-dependent sodium channels in an invertebrate striated muscle.

    PubMed

    Schwartz, L M; Stühmer, W

    1984-08-01

    Striated skeletal muscles from the planktonic arrowworm Sagitta elegans (phylum Chaetognatha) were voltage-clamped. The muscles displayed classical voltage-dependent sodium channels that (i) showed peak transient currents when the membrane was depolarized 90 millivolts from rest, (ii) opened rapidly with peak currents flowing within 0.4 milliseconds at 4 degrees C, (iii) showed voltage-dependent inactivation with 50 percent inactivation at +25 millivolts from rest, and (iv) were blocked by 500 nanomolar tetrodotoxin. PMID:6330898

  5. Noncompetitive, Voltage-Dependent NMDA Receptor Antagonism by Hydrophobic Anions

    PubMed Central

    Linsenbardt, Andrew J.; Chisari, Mariangela; Yu, Andrew; Shu, Hong-Jin; Zorumski, Charles F.

    2013-01-01

    NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABAA receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC50 of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists. PMID:23144238

  6. Voltage-dependent conformational changes in connexin channels✩

    PubMed Central

    Bargiello, Thaddeus A.; Tang, Qingxiu; Oh, Seunghoon; Kwon, Taekyung

    2011-01-01

    Channels formed by connexins display two distinct types of voltage-dependent gating, termed Vj- or fast-gating and loop- or slow-gating. Recent studies, using metal bridge formation and chemical cross-linking have identified a region within the channel pore that contributes to the formation of the loop-gate permeability barrier. The conformational changes are remarkably large, reducing the channel pore diameter from 15 to 20 Å to less than 4 Å. Surprisingly, the largest conformational change occurs in the most stable region of the channel pore, the 310 or parahelix formed by amino acids in the 42–51 segment. The data provide a set of positional constraints that can be used to model the structure of the loop-gate closed state. Less is known about the conformation of the Vj-gate closed state. There appear to be two different mechanisms; one in which conformational changes in channel structure are linked to a voltage sensor contained in the N-terminus of Cx26 and Cx32 and a second in which the C-terminus of Cx43 and Cx40 may act either as a gating particle to block the channel pore or alternatively to stabilize the closed state. The later mechanismutilizes the same domains as implicated in effecting pH gating of Cx43 channels. It is unclear if the two Vj-gating mechanisms are related or if they represent different gating mechanisms that operate separately in different subsets of connexin channels. A model of the Vj-closed state of Cx26 hemichannel that is based on the X-ray structure of Cx26 and electron crystallographic structures of a Cx26 mutation suggests that the permeability barrier for Vj-gating is formed exclusively by the N-terminus, but recent information suggests that this conformation may not represent a voltage-closed state. Closed state models are considered from a thermodynamic perspective based on information from the 3.5 Å Cx26 crystal structure and molecular dynamics (MD) simulations. The applications of computational and experimental methods to

  7. [Superfamily of voltage dependent K+ channels: structure, functions and pathology].

    PubMed

    Kodirov, S A; Zhuravlev, V L; Safonova, T A; Kurilova, L S; Krutetskaia, Z I

    2010-01-01

    In this review the recent studies related to the voltage dependent K+ channels are discussed. During the last 15 years the molecular cloning revealed a large number of alpha-subunits of voltage dependent K+ channels. This approach enabled to elucidate the properties of different types of channels and, in particular, characteristics of such structural elements as auxiliary subunits. These subunits are mainly responsible for the ionic permeability features of alpha-subunits. There are several cytoplasmic and membrane-associated auxiliary subunits such as beta-subunits, minK (minimal K+ channel peptide), MiRP (minK-related peptide), KChAP (K+ channel-associated protein), KChIP (K+ channel-interacting protein) and NCS (neuronal calcium sensor). PMID:21105359

  8. Voltage-dependent conductances in Limulus ventral photoreceptors

    PubMed Central

    1982-01-01

    The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons. PMID:7057161

  9. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.

    PubMed

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  10. Voltage-dependent amplification of synaptic inputs in respiratory motoneurones.

    PubMed

    Enríquez Denton, M; Wienecke, J; Zhang, M; Hultborn, H; Kirkwood, P A

    2012-07-01

    The role of persistent inward currents (PICs) in cat respiratory motoneurones (phrenic inspiratory and thoracic expiratory) was investigated by studying the voltage-dependent amplification of central respiratory drive potentials (CRDPs), recorded intracellularly, with action potentials blocked with the local anaesthetic derivative, QX-314. Decerebrate unanaesthetized or barbiturate-anaesthetized preparations were used. In expiratory motoneurones, plateau potentials were observed in the decerebrates, but not under anaesthesia. For phrenic motoneurones, no plateau potentials were observed in either state (except in one motoneurone after the abolition of the respiratory drive by means of a medullary lesion), but all motoneurones showed voltage-dependent amplification of the CRDPs, over a wide range of membrane potentials, too wide to result mainly from PIC activation. The measurements of the amplification were restricted to the phase of excitation, thus excluding the inhibitory phase. Amplification was found to be greatest for the smallest CRDPs in the lowest resistance motoneurones and was reduced or abolished following intracellular injection of the NMDA channel blocker, MK-801. Plateau potentials were readily evoked in non-phrenic cervical motoneurones in the same (decerebrate) preparations. We conclude that the voltage-dependent amplification of synaptic excitation in phrenic motoneurones is mainly the result of NMDA channel modulation rather than the activation of Ca2+ channel mediated PICs, despite phrenic motoneurones being strongly immunohistochemically labelled for CaV1.3 channels. The differential PIC activation in different motoneurones, all of which are CaV1.3 positive, leads us to postulate that the descending modulation of PICs is more selective than has hitherto been believed. PMID:22495582

  11. Voltage-dependent ferromagnetic resonance in epitaxial multiferroic nanocomposites

    NASA Astrophysics Data System (ADS)

    Benatmane, Nadjib; Crane, S. P.; Zavaliche, F.; Ramesh, R.; Clinton, T. W.

    2010-02-01

    We demonstrate electrical control of the ferromagnetic resonance (FMR) in multiferroic nanostructures. A series of heteroepitaxial BiFeO3-NiFe2O4 nanocomposites of varying thickness are characterized using a microwave probe with magnetic and electric sensitivity. We apply an electric field to a sample and observe voltage-driven shifts in the FMR frequency, reflecting a change in magnetic anisotropy. The voltage dependence of the FMR linewidths is even more pronounced, indicating the electric polarization can induce relatively large magnetic nonuniformity in the material. These characteristics may lead to a class of rf filters where both frequency and bandwidth are electrically tunable.

  12. Cumulative Activation of Voltage-Dependent KVS-1 Potassium Channels

    PubMed Central

    Rojas, Patricio; Garst-Orozco, Jonathan; Baban, Beravan; de Santiago-Castillo, Jose Antonio; Covarrubias, Manuel; Salkoff, Lawrence

    2008-01-01

    In this study, we reveal the existence of a novel use-dependent phenomenon in potassium channels, which we refer to as cumulative activation (CA). CA consists of an increase in current amplitude in response to repetitive depolarizing step pulses to the same potential. CA persists for up to 20 s and is similar to a phenomenon called “voltage-dependent facilitation” observed in some calcium channels. The KVS-1 K+ channel, which exhibits CA, is a rapidly activating and inactivating voltage-dependent potassium channel expressed in chemosensory and other neurons of Caenorhabditis elegans. It is unusual in being most closely related to the Shab (Kv2) family of potassium channels, which typically behave like delayed rectifier K+ channels in other species. The magnitude of CA depends on the frequency, voltage, and duration of the depolarizing step pulse. CA also radically changes the activation and inactivation kinetics of the channel, suggesting that the channel may undergo a physical modification in a use-dependent manner; thus, a model that closely simulates the behavior of the channel postulates the existence of two populations of channels, unmodified and modified. Use-dependent changes in the behavior of potassium channels, such as CA observed in KVS-1, could be involved in functional mechanisms of cellular plasticity such as synaptic depression that represent the cellular basis of learning and memory. PMID:18199775

  13. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    PubMed Central

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  14. Effects of besipirdine at the voltage-dependent sodium channel.

    PubMed Central

    Tang, L.; Smith, C. P.; Huger, F. P.; Kongsamut, S.

    1995-01-01

    1. Besipirdine (HP 749) is a compound undergoing clinical trials for efficacy in treating Alzheimer's disease. Among other pharmacological effects, besipirdine inhibits voltage-dependent sodium and potassium channels. This paper presents a pharmacological study of the interaction of besipirdine with voltage-dependent sodium channels. 2. Besipirdine inhibited [3H]-batrachotoxin binding (IC50 = 5.5 +/- 0.2 microM) in a rat brain vesicular preparation and concentration-dependently inhibited veratridine (25 microM)-stimulated increases in intracellular free sodium ([Na+]i) and calcium ([Ca2+]i) in primary cultured cortical neurones of rat. 3. Besipirdine (30-100 microM) concentration-dependently inhibited (up to 100%) veratridine-stimulated release of [3H]-noradrenaline (NA) from rat cortical slices. 4. When examined in greater detail, besipirdine was found to inhibit [3H]-batrachotoxin binding in vesicular membranes competitively. However, when examined in rat brain synaptosomes, we found that the antagonism by besipirdine was not competitive; that is, the maximal stimulation of [Ca2+]i induced by veratridine decreased with increasing concentrations of besipirdine. 5. These results show that besipirdine is an inhibitor of voltage-sensitive sodium channels and appears to bind to a site close to the batrachotoxin/veratridine binding site. PMID:8581286

  15. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

    PubMed

    Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos

    2016-07-22

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. PMID:27143357

  16. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  17. Neuronal excitability: voltage-dependent currents and synaptic transmission.

    PubMed

    Rutecki, P A

    1992-04-01

    Neuronal membrane excitability and the synaptic connections among neurons produce behavior and cognition. The intracellular compartment of neurons is negatively charged relative to the extracellular space, and this charge, as well as current flow, is produced by ions. From the perspective of charged ions, the lipid bilayer of the neuronal membrane acts as a capacitor, and transmembrane glycoprotein pores or channels act as resistors. The open and closed states of ionic channels determine the membrane potential. At equilibrium, the lowest resistance or greatest permeability is for potassium, and the resting membrane potential is close to the equilibrium potential for potassium. When a channel is opened, permeable ions diffuse down their electrochemical gradients and the membrane potential is changed. Channels are gated (opened or closed) by voltage, neurotransmitters, and second messengers. The neuron integrates synaptic potentials produced by transmitter-gated channel activity and either generates a subthreshold potential, or a suprathreshold depolarization that generates an action potential or a burst of action potentials. Action potential generation is mediated by a large, brief sodium influx that is followed by activation of a voltage-dependent potassium eflux. The pattern of action potential firing is dependent on the interaction of a repertoire of voltage-dependent ion conductances. The action potential is the main signaling mechanism to activate synaptic transmission at axon terminals. Synaptic transmission is graded depending on the amount of calcium entering the presynaptic terminal. The number of action potentials, or the shape of the action potential, will determine the amount of calcium entering the terminal and the efficacy of synaptic transmission. Presynaptic ion channels may also be controlled by neurotransmitters or modulators and affect synaptic transmission by altering the amount of calcium influx. PMID:1375602

  18. Importance of the Voltage Dependence of Cardiac Na/K ATPase Isozymes.

    PubMed

    Stanley, Christopher M; Gagnon, Dominique G; Bernal, Adam; Meyer, Dylan J; Rosenthal, Joshua J; Artigas, Pablo

    2015-11-01

    Cardiac cells express more than one isoform of the Na, K-ATPase (NKA), the heteromeric enzyme that creates the Na(+) and K(+) gradients across the plasmalemma. Cardiac isozymes contain one catalytic α-subunit isoform (α1, α2, or α3) associated with an auxiliary β-subunit isoform (β1 or β2). Past studies using biochemical approaches have revealed minor kinetic differences between isozymes formed by different α-β isoform combinations; these results make it difficult to understand the physiological requirement for multiple isoforms. In intact cells, however, NKA enzymes operate in a more complex environment, which includes a substantial transmembrane potential. We evaluated the voltage dependence of human cardiac NKA isozymes expressed in Xenopus oocytes, and of native NKA isozymes in rat ventricular myocytes, using normal mammalian physiological concentrations of Na(+)o and K(+)o. We demonstrate that although α1 and α3 pumps are functional at all physiologically relevant voltages, α2β1 pumps and α2β2 pumps are inhibited by ∼75% and ∼95%, respectively, at resting membrane potentials, and only activate appreciably upon depolarization. Furthermore, phospholemman (FXYD1) inhibits pump function without significantly altering the pump's voltage dependence. Our observations provide a simple explanation for the physiological relevance of the α2 subunit (∼20% of total α subunits in rat ventricle): they act as a reserve and are recruited into action for extra pumping during the long-lasting cardiac action potential, where most of the Na(+) entry occurs. This strong voltage dependence of α2 pumps also helps explain how cardiotonic steroids, which block NKA pumps, can be a beneficial treatment for heart failure: by only inhibiting the α2 pumps, they selectively reduce NKA activity during the cardiac action potential, leading to an increase in systolic Ca(2+), due to reduced extrusion through the Na/Ca exchanger, without affecting resting Na(+) and Ca(2

  19. Conductance hysteresis in the voltage-dependent anion channel.

    PubMed

    Rappaport, Shay M; Teijido, Oscar; Hoogerheide, David P; Rostovtseva, Tatiana K; Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2015-09-01

    Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths. PMID:26094068

  20. Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae).

    PubMed

    Cartledge, Victoria A; Withers, Philip C; McMaster, Kellie A; Thompson, Graham G; Bradshaw, S Don

    2006-09-01

    Burrowed aestivating frogs of the cocoon-forming species Neobatrachus aquilonius and the non-cocooning species Notaden nichollsi were excavated in the Gibson Desert of central Australia. Their hydration state (osmotic pressure of the plasma and urine) was compared to the moisture content and water potential of the surrounding soil. The non-cocooning N. nichollsi was consistently found in sand dunes. While this sand had favourable water potential properties for buried frogs, the considerable spatial and temporal variation in sand moisture meant that frogs were not always in positive water balance with respect to the surrounding soil. The cocoon-forming N. aquilonius was excavated from two distinct habitat types, a claypan in which frogs had a well-formed cocoon and a dune swale where frogs did not have a cocoon. Cocoons of excavated frogs ranged in thickness from 19.4 microm to 55.61 microm and consisted of 81-229 layers. Cocooned claypan N. aquilonius were nearing exhaustion of their bladder water reserves and had a urine osmolality approaching that of the plasma. By contrast, non-cocooned N. aquilonius from the dune swale were fully hydrated, although soil moisture levels were not as high as calculated to be necessary to maintain water balance. Both species had similar plasma arginine vasotocin (AVT) concentrations ranging from 9.4 to 164 pg ml(-1), except for one cocooned N. aquilonius with a higher concentration of 394 pg ml(-1). For both species, AVT showed no relationship with plasma osmolality over the lower range of plasma osmolalities but was appreciably increased at the highest osmolality recorded. This study provides the first evidence that cocoon formation following burrowing is not obligatory in species that are capable of doing so, but that cocoon formation occurs when soil water conditions are more desiccating than for non-cocooned frogs. PMID:16916967

  1. The voltage dependence of Ih in human myelinated axons

    PubMed Central

    Howells, James; Trevillion, Louise; Bostock, Hugh; Burke, David

    2012-01-01

    HCN channels are responsible for Ih, a voltage-gated inwardly rectifying current activated by hyperpolarization. This current appears to be more active in human sensory axons than motor and may play a role in the determination of threshold. Differences in Ih are likely to be responsible for the high variability in accommodation to hyperpolarization seen in different subjects. The aim of this study was to characterise this current in human axons, both motor and sensory. Recordings of multiple axonal excitability properties were performed in 10 subjects, with a focus on the changes in threshold evoked by longer and stronger hyperpolarizing currents than normally studied. The findings confirm that accommodation to hyperpolarization is greater in sensory than motor axons in all subjects, but the variability between subjects was greater than the modality difference. An existing model of motor axons was modified to take into account the behaviour seen with longer and stronger hyperpolarization, and a mathematical model of human sensory axons was developed based on the data collected. The differences in behaviour of sensory and motor axons and the differences between different subjects are best explained by modulation of the voltage dependence, along with a modest increase of expression of the underlying conductance of Ih. Accommodation to hyperpolarization for the mean sensory data is fitted well with a value of −94.2 mV for the mid-point of activation (V0.5) of Ih as compared to −107.3 mV for the mean motor data. The variation in response to hyperpolarization between subjects is accounted for by varying this parameter for each modality (sensory: −89.2 to −104.2 mV; motor −87.3 to −127.3 mV). These voltage differences are within the range that has been described for physiological modulation of Ih function. The presence of slowly activated Ih isoforms on both motor and sensory axons was suggested by modelling a large internodal leak current and a masking of

  2. Precipitation-Induced Voltage-Dependent Ion Current Fluctuations in Conical Nanopores

    SciTech Connect

    Vlassiouk, Ivan V

    2010-01-01

    Single conically shaped nanopores produce stable ion current fluctuations when in contact with weakly soluble salts, such as calcium hydrogen phosphate (CaHPO{sub 4}) and cobalt hydrogen phosphate (CoHPO{sub 4}). The pore spontaneously switches between high and low conductance states, called open and closed states, respectively. Pore opening and closing are linked to the dynamic formation of the calcium and cobalt precipitates at the small opening of the pore. The probabilities of pore opening and closing are voltage-dependent, and this characteristic of ion current signal is known for biological voltage-gated channels. We show that new types of ion current fluctuations are obtained in conditions at which precipitates of CaHPO{sub 4} and CoHPO{sub 4} can form in the pore at the same time.

  3. Voltage-dependent processes in the electroneutral amino acid exchanger ASCT2

    PubMed Central

    Zander, Catherine B.; Albers, Thomas

    2013-01-01

    Neutral amino acid exchange by the alanine serine cysteine transporter (ASCT)2 was reported to be electroneutral and coupled to the cotransport of one Na+ ion. The cotransported sodium ion carries positive charge. Therefore, it is possible that amino acid exchange is voltage dependent. However, little information is available on the electrical properties of the ASCT2 amino acid transport process. Here, we have used a combination of experimental and computational approaches to determine the details of the amino acid exchange mechanism of ASCT2. The [Na+] dependence of ASCT2-associated currents indicates that the Na+/amino acid stoichiometry is at least 2:1, with at least one sodium ion binding to the amino acid–free apo form of the transporter. When the substrate and two Na+ ions are bound, the valence of the transport domain is +0.81. Consistently, voltage steps applied to ASCT2 in the fully loaded configuration elicit transient currents that decay on a millisecond time scale. Alanine concentration jumps at the extracellular side of the membrane are followed by inwardly directed transient currents, indicative of translocation of net positive charge during exchange. Molecular dynamics simulations are consistent with these results and point to a sequential binding process in which one or two modulatory Na+ ions bind with high affinity to the empty transporter, followed by binding of the amino acid substrate and the subsequent binding of a final Na+ ion. Overall, our results are consistent with voltage-dependent amino acid exchange occurring on a millisecond time scale, the kinetics of which we predict with simulations. Despite some differences, transport mechanism and interaction with Na+ appear to be highly conserved between ASCT2 and the other members of the solute carrier 1 family, which transport acidic amino acids. PMID:23669717

  4. Crystallization and preliminary X-ray crystallographic studies of human voltage-dependent anion channel isoform I (HVDAC1)

    SciTech Connect

    Meins, Thomas; Vonrhein, Clemens; Zeth, Kornelius

    2008-07-01

    The human voltage-dependent anion channel was overproduced in bacteria and refolded with the help of detergents. Extensive screening of crystallization conditions resulted in the first crystals to be obtained of this voltage-dependent anion-channel type. The crystals diffracted to a resolution of 3.6 Å. The major channel by which metabolites can pass through the outer mitochondrial membrane is formed by the voltage-dependent anion-channel (VDAC) family. Functionally, VDAC is involved in the limited exchange of ATP, ADP and small hydrophilic molecules across the outer membrane. Moreover, there is compelling evidence that VDAC isoforms in mammals may act in the cross-talk between mitochondria and the cytoplasm by direct interaction with enzymes involved in energy metabolism and proteins involved in mitochondrial-induced apoptosis. To obtain a high-resolution structure of this channel, human VDAC protein isoform I was overproduced in Escherichia coli. After refolding and testing the correct fold using circular dichroism, a subsequent broad-range screening in different detergents resulted in a variety of crystals which diffracted to 3.5 Å resolution. The crystal lattice belongs to the trigonal space group P321, with unit-cell parameters a = 78.9, c = 165.7 Å and one monomer in the asymmetric unit.

  5. Voltage-Dependent C-Type Inactivation in a Constitutively Open K+ Channel

    PubMed Central

    Panaghie, Gianina; Purtell, Kerry; Tai, Kwok-Keung; Abbott, Geoffrey W.

    2008-01-01

    Most voltage-gated potassium (Kv) channels undergo C-type inactivation during sustained depolarization. The voltage dependence and other mechanistic aspects of this process are debated, and difficult to elucidate because of concomitant voltage-dependent activation. Here, we demonstrate that MinK-KCNQ1 (IKs) channels with an S6-domain mutation, F340W in KCNQ1, exhibit constitutive activation but voltage-dependent C-type inactivation. F340W-IKs inactivation was sensitive to extracellular cation concentration and species, and it altered ion selectivity, suggestive of pore constriction. The rate and extent of F340W-IKs inactivation and recovery from inactivation were voltage-dependent with physiologic intracellular ion concentrations, and in the absence or presence of external K+, with an estimated gating charge, zi, of ∼1. Finally, double-mutant channels with a single S4 charge neutralization (R231A,F340W-IKs) exhibited constitutive C-type inactivation. The results suggest that F340W-IKs channels exhibit voltage-dependent C-type inactivation involving S4, without the necessity for voltage-dependent opening, allosteric coupling to voltage-dependent S6 transitions occurring during channel opening, or voltage-dependent changes in ion occupancy. The data also identify F340 as a critical hub for KCNQ1 gating processes and their modulation by MinK, and present a unique system for further mechanistic studies of the role of coupling of C-type inactivation to S4 movement, without contamination from voltage-dependent activation. PMID:18567635

  6. AmphibiaChina: an online database of Chinese Amphibians.

    PubMed

    Che, Jing; Wang, Kai

    2016-01-18

    AmphibiaChina, an open-access, web-based database, is designed to provide comprehensive and up-to-date information on Chinese amphibians. It offers an integrated module with six major sections. Compared to other known databases including AmphibiaWeb and Amphibian Species of the World, AmphibiaChina has the following new functions: (1) online species identification based on DNA barcode sequences; (2) comparisons and discussions of different major taxonomic systems; and (3) phylogenetic progress on Chinese amphibians. This database offers a window for the world to access available information of Chinese amphibians. AmphibiaChina with its Chinese version can be accessed at http://www.amphibiachina.org. PMID:26828034

  7. AmphibiaChina: an online database of Chinese Amphibians

    PubMed Central

    CHE, Jing; WANG, Kai

    2016-01-01

    AmphibiaChina, an open-access, web-based database, is designed to provide comprehensive and up-to-date information on Chinese amphibians. It offers an integrated module with six major sections. Compared to other known databases including AmphibiaWeb and Amphibian Species of the World, AmphibiaChina has the following new functions: (1) online species identification based on DNA barcode sequences; (2) comparisons and discussions of different major taxonomic systems; and (3) phylogenetic progress on Chinese amphibians. This database offers a window for the world to access available information of Chinese amphibians. AmphibiaChina with its Chinese version can be accessed at http://www.amphibiachina.org. PMID:26828034

  8. Voltage-Dependent Gating in a “Voltage Sensor-Less” Ion Channel

    PubMed Central

    Kurata, Harley T.; Rapedius, Markus; Kleinman, Marc J.; Baukrowitz, Thomas .; Nichols, Colin G.

    2010-01-01

    The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a “ligand-gated” K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels. PMID:20208975

  9. Molecular Dynamics Simulations of the Cx26 Hemichannel: Insights into Voltage-Dependent Loop-Gating

    PubMed Central

    Kwon, Taekyung; Roux, Benoît; Jo, Sunhwan; Klauda, Jeffery B.; Harris, Andrew L.; Bargiello, Thaddeus A.

    2012-01-01

    Loop-gating is one of two voltage-dependent mechanisms that regulate the open probability of connexin channels. The loop-gate permeability barrier is formed by a segment of the first extracellular loop (E1) (the parahelix) and appears to be accompanied by straightening of the bend angle between E1 and the first transmembrane domain (TM1). Here, all-atom molecular dynamics simulations are used to identify and characterize interacting van der Waals and electrostatic networks that stabilize the parahelices and TM1/E1 bend angles of the open Cx26 hemichannel. Dynamic fluctuations in an electrostatic network in each subunit are directly linked to the stability of parahelix structure and TM1/E1 bend angle in adjacent subunits. The electrostatic network includes charged residues that are pore-lining and thus positioned to be voltage sensors. We propose that the transition to the closed state is initiated by voltage-driven disruption of the networks that stabilize the open-state parahelix configuration, allowing the parahelix to protrude into the channel pore to form the loop-gate barrier. Straightening of the TM1/E1 bend appears to be a consequence of the reorganization of the interacting networks that accompany the conformational change of the parahelix. The electrostatic network extends across subunit boundaries, suggesting a concerted gating mechanism. PMID:22455917

  10. Isolation, characterization, and mapping of two mouse mitochondrial voltage-dependent anion channel isoforms

    SciTech Connect

    Sampson, M.J.; Lovell, R.S.; Craigen, W.J.

    1996-04-15

    Voltage-dependent anion channels (VDACs) are small pore-forming channels found in the mitochondrial outer membrane of all eukaryotes. VDACs conduct adenine nucleotides and are the binding sites for several cytosolic enzymes, including the isoforms of hexokinase and glycerol kinase. VDAC binding is developmentally and metabolically regulated and allows the kinases preferential access to mitochondrial ATP. Two human VDAC cDNAs have recently been identified, and a total four VDAC loci have been mapped. Here, the isolation of two mouse VDAC cDNAs (VDAC5 and VDAC6) is described. By Northern analysis the two mouse VDAC isoforms show nearly identical expression patterns, with high levels of expression detected in heart, kidney, brain, and skeletal muscle and lesser levels of expression in all other tissues examined. The only exception is the lack of expression is highest in this tissue. VDAC6 appears to be encoded by more than one transcript. The mouse VDAC5 gene was mapped using an interspecies DNA mapping panel to the proximal region of chromosome 11, and the mouse VDAC6 gene was mapped using a panel to the proximal region of chromosome 14. 37 refs., 3 figs.

  11. Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria.

    PubMed

    Zalk, Ran; Israelson, Adrian; Garty, Erez S; Azoulay-Zohar, Heftsi; Shoshan-Barmatz, Varda

    2005-02-15

    The VDAC (voltage-dependent anion channel) plays a central role in apoptosis, participating in the release of apoptogenic factors including cytochrome c. The mechanisms by which VDAC forms a protein-conducting channel for the passage of cytochrome c are not clear. The present study approaches this problem by addressing the oligomeric status of VDAC and its role in the induction of the permeability transition pore and cytochrome c release. Chemical cross-linking of isolated mitochondria or purified VDAC with five different reagents proved that VDAC exists as dimers, trimers or tetramers. Fluorescence resonance energy transfer between fluorescently labelled VDACs supports the concept of dynamic VDAC oligomerization. Mitochondrial cross-linking prevented both permeability transition pore opening and release of cytochrome c, yet had no effect on electron transport or Ca2+ uptake. Bilayer-reconstituted purified cross-linked VDAC showed decreased conductance and voltage-independent channel activity. In the dithiobis(succinimidyl propionate)-cross-linked VDAC, these channel properties could be reverted to those of the native VDAC by cleavage of the cross-linking. Cross-linking of VDAC reconstituted into liposomes inhibited the release of the proteoliposome-encapsulated cytochrome c. Moreover, encapsulated, but not soluble cytochrome c induced oligomerization of liposome-reconstituted VDAC. Thus the results indicate that VDAC exists in a dynamic equilibrium between dimers and tetramers and suggest that oligomeric VDAC may be involved in mitochondria-mediated apoptosis. PMID:15456403

  12. A Large, Voltage-Dependent Channel, Isolated from Mitochondria by Water-Free Chloroform Extraction

    PubMed Central

    Pavlov, Evgeny; Zakharian, Eleonora; Bladen, Christopher; Diao, Catherine T. M.; Grimbly, Chelsey; Reusch, Rosetta N.; French, Robert J.

    2005-01-01

    We examined ion channels derived from a chloroform extract of isolated, dehydrated rat liver mitochondria. The extraction method was previously used to isolate a channel-forming complex containing poly-3-hydroxybutyrate and calcium polyphosphate from Escherichia coli. This complex is also present in eukaryotic membranes, and is located primarily in mitochondria. Reconstituted channels showed multiple subconductance levels and were voltage-dependent, showing an increased probability of higher conductance states at voltages near zero. In symmetric 150 mM KCl, the maximal conductance of the channel ranged from 350 pS to 750 pS. For voltages >±60 mV, conductance fluctuated in the range of ∼50–∼200 pS. In the presence of a 1:3 gradient of KCl, at pH = 7.4, selectivity periodically switched between different states ranging from weakly anion-selective (Vrev ∼ −15 mV) to ideally cation-selective (Vrev ∼ +29 mV), without a significant change in its conductance. Overall, the diverse, but highly reproducible, channel activity most closely resembled the behavior of the permeability transition pore channel seen in patch-clamp experiments on native mitoplasts. We suggest that the isolated complex may represent the ion-conducting module from the permeability transition pore. PMID:15695627

  13. Calcineurin Controls Voltage-Dependent-Inactivation (VDI) of the Normal and Timothy Cardiac Channels.

    PubMed

    Cohen-Kutner, Moshe; Yahalom, Yfat; Trus, Michael; Atlas, Daphne

    2012-01-01

    Ca(2+)-entry in the heart is tightly controlled by Cav1.2 inactivation, which involves Ca(2+)-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) components. Timothy syndrome, a subtype-form of congenital long-QT syndrome, results from a nearly complete elimination of VDI by the G406R mutation in the α(1)1.2 subunit of Cav1.2. Here, we show that a single (A1929P) or a double mutation (H1926A-H1927A) within the CaN-binding site at the human C-terminal tail of α(1)1.2, accelerate the inactivation rate and enhances VDI of both wt and Timothy channels. These results identify the CaN-binding site as the long-sought VDI-regulatory motif of the cardiac channel. The substantial increase in VDI and the accelerated inactivation caused by the selective inhibitors of CaN, cyclosporine A and FK-506, which act at the same CaN-binding site, further support this conclusion. A reversal of enhanced-sympathetic tone by VDI-enhancing CaN inhibitors could be beneficial for improving Timothy syndrome complications such as long-QT and autism. PMID:22511998

  14. Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors

    PubMed Central

    1982-01-01

    The influence of voltage-dependent conductances on the receptor potential of Limulus ventral photoreceptors was investigated. During prolonged, bright illumination, the receptor potential consists of an initial transient phase followed by a smaller plateau phase. Generally, a spike appears on the rising edge of the transient phase, and often a dip occurs between the transient and plateau. Block of the rapidly inactivating outward current, iA, by 4-aminopyridine eliminates the dip under some conditions. Block of maintained outward current by internal tetraethylammonium increases the height of the plateau phase, but does not eliminate the dip. Block of the voltage-dependent Na+ and Ca2+ current by external Ni2+ eliminates the spike. The voltage-dependent Ca2+ conductance also influences the sensitivity of the photoreceptor to light as indicated by the following evidence: depolarizing voltage- clamp pulses reduce sensitivity to light. This reduction is blocked by removal of external Ca2+ or by block of inward Ca2+ current with Ni2+. The reduction of sensitivity depends on the amplitude of the pulse, reaching a maximum at or approximately +15 mV. The voltage dependence is consistent with the hypothesis that the desensitization results from passive Ca2+ entry through a voltage-dependent conductance. PMID:7057162

  15. The Role of S4 Charges in Voltage-dependent and Voltage-independent KCNQ1 Potassium Channel Complexes

    PubMed Central

    Panaghie, Gianina; Abbott, Geoffrey W.

    2007-01-01

    Voltage-gated potassium (Kv) channels extend their functional repertoire by coassembling with MinK-related peptides (MiRPs). MinK slows the activation of channels formed with KCNQ1 α subunits to generate the voltage-dependent IKs channel in human heart; MiRP1 and MiRP2 remove the voltage dependence of KCNQ1 to generate potassium “leak” currents in gastrointestinal epithelia. Other Kv α subunits interact with MiRP1 and MiRP2 but without loss of voltage dependence; the mechanism for this disparity is unknown. Here, sequence alignments revealed that the voltage-sensing S4 domain of KCNQ1 bears lower net charge (+3) than that of any other eukaryotic voltage-gated ion channel. We therefore examined the role of KCNQ1 S4 charges in channel activation using alanine-scanning mutagenesis and two-electrode voltage clamp. Alanine replacement of R231, at the N-terminal side of S4, produced constitutive activation in homomeric KCNQ1 channels, a phenomenon not observed with previous single amino acid substitutions in S4 of other channels. Homomeric KCNQ4 channels were also made constitutively active by mutagenesis to mimic the S4 charge balance of R231A-KCNQ1. Loss of single S4 charges at positions R231 or R237 produced constitutively active MinK-KCNQ1 channels and increased the constitutively active component of MiRP2-KCNQ1 currents. Charge addition to the CO2H-terminal half of S4 eliminated constitutive activation in MiRP2-KCNQ1 channels, whereas removal of homologous charges from KCNQ4 S4 produced constitutively active MiRP2-KCNQ4 channels. The results demonstrate that the unique S4 charge paucity of KCNQ1 facilitates its unique conversion to a leak channel by ancillary subunits such as MiRP2. PMID:17227916

  16. On the voltage-dependent Ca2+ block of serotonin 5-HT3 receptors: a critical role of intracellular phosphates

    PubMed Central

    Noam, Yoav; Wadman, Wytse J; van Hooft, Johannes A

    2008-01-01

    Natively expressed serotonin 5-HT3 receptors typically possess a negative-slope conductance region in their I–V curve, due to a voltage-dependent block by external Ca2+ ions. However, in almost all studies performed with heterologously expressed 5-HT3 receptors, this feature was not observed. Here we show that mere addition of ATP to the pipette solution is sufficient to reliably observe a voltage-dependent block in homomeric (h5-HT3A) and heteromeric (h5-HT3AB) receptors expressed in HEK293 cells. A similar block was observed with a plethora of molecules containing a phosphate moiety, thus excluding a role of phosphorylation. A substitution of three arginines in the intracellular vestibule of 5-HT3A with their counterpart residues from the 5-HT3B subunit (RRR-QDA) was previously shown to dramatically increase single channel conductance. We find this mutant to have a linear I–V curve that is unaffected by the presence of ATP, with a fractional Ca2+ current (Pf%) that is reduced (1.8 ± 0.2%) compared to that of the homomeric receptor (4.1 ± 0.2%), and similar to that of the heteromeric form (2.0 ± 0.3%). Moreover, whereas ATP decreased the Pf% of the homomeric receptor, this was not observed with the RRR-QDA mutant. Finally, ATP was found to be critical for voltage-dependent channel block also in hippocampal interneurons that natively express 5-HT3 receptors. Taken together, our results indicate a novel mechanism by which ATP, and similar molecules, modulate 5-HT3 receptors via interactions with the intracellular vestibule of the receptor. PMID:18566001

  17. Voltage-Dependent K+-Channel in Protoplasmic Droplets of Chara corallina1

    PubMed Central

    Homblé, Fabrice; Ferrier, Jack M.; Dainty, Jack

    1987-01-01

    Passive transport of potassium through the plasma membrane of a protoplasmic droplet isolated from large internodal cells of Chara corallina Klein ex Willd., em, R.D.W. has been investigated using the patchclamp technique. When the membrane is hyperpolarized the conductance of a single K+-channel is of the order of magnitude of 100 picoSiemens and is reduced by tetraethylammonium chloride. Its open time is voltage dependent. This voltage-dependent K+-channel displays rectifying properties. The channel density is about 0.1 channel per square micrometer of membrane. When the membrane is depolarized the conductance of a single channel is of the order of magnitude of 30 picoSiemens and is insensitive to tetraethylammonium chloride. These results suggest that K+-channels are incorporated in the plasma membrane during membranogenesis of a protoplasmic droplet. They constitute further evidence for the existence of voltage-dependent K+-channels in plant cells. PMID:16665215

  18. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    SciTech Connect

    Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  19. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-05-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  20. Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore.

    PubMed

    Zhou, Z; Hu, S; Hwang, T C

    2001-04-15

    1. Fast flickery block of the cystic fibrosis transmembrane conductance regulator (CFTR) was studied with cell-attached and whole-cell patch-clamp recordings from mouse NIH3T3 cells stably expressing a mutant CFTR channel, K1250A-CFTR. This mutant CFTR channel, once open, can stay open for minutes. Within a prolonged opening, the kinetics of fast flickery closures can be readily quantified. 2. Flickering block of K1250A-CFTR channels was voltage dependent since the open probability within an opening burst decreased as the membrane was hyperpolarized. 3. Mean open time (tau(o)) and mean closed time (tau(c)), obtained from single-channel kinetic analysis, were corrected for missed events. Our data show that corrected tau(c) was voltage dependent while corrected tau(o) exhibited little voltage dependence. Results from whole-cell current relaxation upon voltage jump further indicate that tau(c) at a membrane potential of -100 mV was at least 10-fold longer than that at +100 mV. 4. tau(c), but not tau(o), was sensitive to external permeant anions. After complete replacement of external Cl(-) with impermeant anions, tau(c) showed little voltage dependence and approximated a value observed under strong hyperpolarization in the presence of high external permeant anions. These results suggest that the resident time of the blocker is prolonged by conditions (i.e. hyperpolarization or the absence of external permeant anions) that deplete Cl(-) in the CFTR pore. 5. Results from macroscopic current noise analysis of both wild-type CFTR and K1250A-CFTR channels further confirm the voltage dependence and Cl(-) sensitivity of the fast flickery block observed with single-channel analysis. 6. We conclude that the voltage dependence of the flickery block in CFTR is mainly due to the voltage-dependent occupancy of an anion-binding site in the channel pore by trans-anions. The blocker acquires a voltage-dependent off rate through an electrostatic interaction with Cl(-) in the pore

  1. Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore

    PubMed Central

    Zhou, Zhen; Hu, Shenghui; Hwang, Tzyh-Chang

    2001-01-01

    Fast flickery block of the cystic fibrosis transmembrane conductance regulator (CFTR) was studied with cell-attached and whole-cell patch-clamp recordings from mouse NIH3T3 cells stably expressing a mutant CFTR channel, K1250A-CFTR. This mutant CFTR channel, once open, can stay open for minutes. Within a prolonged opening, the kinetics of fast flickery closures can be readily quantified. Flickering block of K1250A-CFTR channels was voltage dependent since the open probability within an opening burst decreased as the membrane was hyperpolarized. Mean open time (τo) and mean closed time (τc), obtained from single-channel kinetic analysis, were corrected for missed events. Our data show that corrected τc was voltage dependent while corrected τo exhibited little voltage dependence. Results from whole-cell current relaxation upon voltage jump further indicate that τc at a membrane potential of -100 mV was at least 10-fold longer than that at +100 mV. τc, but not τo, was sensitive to external permeant anions. After complete replacement of external Cl− with impermeant anions, τc showed little voltage dependence and approximated a value observed under strong hyperpolarization in the presence of high external permeant anions. These results suggest that the resident time of the blocker is prolonged by conditions (i.e. hyperpolarization or the absence of external permeant anions) that deplete Cl− in the CFTR pore. Results from macroscopic current noise analysis of both wild-type CFTR and K1250A-CFTR channels further confirm the voltage dependence and Cl− sensitivity of the fast flickery block observed with single-channel analysis. We conclude that the voltage dependence of the flickery block in CFTR is mainly due to the voltage-dependent occupancy of an anion-binding site in the channel pore by trans-anions. The blocker acquires a voltage-dependent off rate through an electrostatic interaction with Cl− in the pore. PMID:11306662

  2. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane

    SciTech Connect

    Lee,S.; Lee, A.; Chen, J.; MacKinnon, R.; Chin, W.

    2005-01-01

    Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K{sup +} channel KvAP, in complex with monoclonal Fv fragments (3.9 Angstroms) and without antibody fragments (8 Angstroms). We also studied KvAP with disulfide cross-bridges in lipid membranes. Analyzing these data in the context of the crystal structure of Kv1.2 and EPR data on KvAP we reach the following conclusions: (i) KvAP is similar in structure to Kv1.2 with a very modest difference in the orientation of its voltage sensor; (ii) mAb fragments are not the source of non-native conformations of KvAP in crystal structures; (iii) because KvAP contains separate loosely adherent domains, a lipid membrane is required to maintain their correct relative orientations, and (iv) the model of KvAP is consistent with the proposal of voltage sensing through the movement of an arginine-containing helix-turn-helix element at the protein-lipid interface.

  3. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane

    PubMed Central

    Lee, Seok-Yong; Lee, Alice; Chen, Jiayun; MacKinnon, Roderick

    2005-01-01

    Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K+ channel KvAP, in complex with monoclonal Fv fragments (3.9 Å) and without antibody fragments (8 Å). We also studied KvAP with disulfide cross-bridges in lipid membranes. Analyzing these data in the context of the crystal structure of Kv1.2 and EPR data on KvAP we reach the following conclusions: (i) KvAP is similar in structure to Kv1.2 with a very modest difference in the orientation of its voltage sensor; (ii) mAb fragments are not the source of non-native conformations of KvAP in crystal structures; (iii) because KvAP contains separate loosely adherent domains, a lipid membrane is required to maintain their correct relative orientations, and (iv) the model of KvAP is consistent with the proposal of voltage sensing through the movement of an arginine-containing helix-turn-helix element at the protein-lipid interface. PMID:16223877

  4. Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels

    PubMed Central

    Peixoto-Neves, Dieniffer; Leal-Cardoso, Jose Henrique; Jaggar, Jonathan H.

    2014-01-01

    Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K+) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca2+) currents, when using Ba2+ as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca2+ currents involved pore block, a hyperpolarizing shift ( ~−10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivaiton rate. In summary, our data indicate that eugenol dilates cerebral arteries via multi-modal inhibition of voltage-dependent Ca2+ channels. PMID:24921632

  5. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    SciTech Connect

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe; Clare, Jeffrey J.; Debanne, Dominique; Alcaraz, Gisele

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  6. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox.

    PubMed Central

    Dionne, V E; Stevens, C F

    1975-01-01

    1. End-plate currents produced by nerve-released acetylcholine and iontophoretically applied acetylcholine and carbachol have been recorded from voltage-clamped frog cutaneous pectoris neuromuscular junctions made visible with Nomarski differential interference contrast optics. 2. The effectiveness of agonists - that is, the end-plate conductance change produced by a given dose-has been determined as a function of post-junctional membrane potential. 3. As the post-junctional membrane potential is made more negative, nerve-released acetylcholine becomes less effective whereas iontophoretically-applied agonists become more effective. 4. This voltage dependence of agonist effectiveness is mediated neither by end-plate current iontophoresis of agonist into the cleft nor through electric field effects on the esterase. 5. Influences of membrane potential on the opening and closing of end-plate channel gates can account quantitatively for the voltage-dependent effectiveness of both nerve-released and iontophoretically applied agonist. PMID:1081139

  7. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  8. Atomic Structure of a Voltage-Dependent K+ Channel in a Lipid Membrane-Like Environment

    SciTech Connect

    Long,S.; Tao, X.; Campbell, E.; MacKinnon, R.

    2007-01-01

    Voltage-dependent K+ (Kv) channels repolarize the action potential in neurons and muscle. This type of channel is gated directly by membrane voltage through protein domains known as voltage sensors, which are molecular voltmeters that read the membrane voltage and regulate the pore. Here we describe the structure of a chimaeric voltage-dependent K+ channel, which we call the 'paddle-chimaera channel', in which the voltage-sensor paddle has been transferred from Kv2.1 to Kv1.2. Crystallized in complex with lipids, the complete structure at 2.4 Angstroms resolution reveals the pore and voltage sensors embedded in a membrane-like arrangement of lipid molecules. The detailed structure, which can be compared directly to a large body of functional data, explains charge stabilization within the membrane and suggests a mechanism for voltage-sensor movements and pore gating.

  9. Electrophysiological characterization of voltage-dependent calcium currents and TRPV4 currents in human pulmonary fibroblasts.

    PubMed

    Rahman, Mozibur; Mukherjee, Subhendu; Sheng, Wei; Nilius, Bernd; Janssen, Luke J

    2016-04-01

    We have presented indirect evidence of a key role for voltage-dependent Ca(2+) currents in TGFβ-induced synthetic function in human pulmonary fibroblast (HPF), as well as in bleomycin-induced pulmonary fibrosis in mice. Others, however, have provided indirect evidence for transient receptor potential vanilloid 4 (TRPV4) channels in both of those effects. Unfortunately, definitive electrophysiological descriptions of both currents in HPFs have been entirely lacking. In this study, we provide the first direct electrophysiological and pharmacological evidence of the currents in HPFs at rest and during overnight stimulation with TGFβ. These currents include a Ca(2+)-dependent K(+) current, a TRPV4 current, a chloride current, and an L-type voltage-dependent Ca(2+) current. Evidence for the TRPV4 current include activation of a large-conductance change by two putatively TRPV4-selective agonists (4α-phorbol-12,13-didecanoate; GSK1016790A), with a reversal potential near 0 mV, partial sensitivity to two different TRPV4-selective blockers (RN1734; HC067047), and partial reduction following removal of external Na(+) Substantial reduction of the evoked current was seen following the coapplication of RN1734, DIDS, and niflumic acid, suggesting that a chloride current is also involved. The voltage-dependent Ca(2+) current is found to be "L-type" in nature, as indicated by the voltage and time dependence of its activation, deactivation, and inactivation properties, and by its pharmacology (sensitivity to replacement with barium and inhibition by nifedipine, verapamil, or mibefradil). We also found that overnight treatment with TGFβ evoked a periodic current (inward at negative holding potentials, with reversal potential near 0 mV), which is sufficient to trigger the voltage-dependent Ca(2+) currents and, thereby, account for the rhythmic Ca(2+) oscillations, which we have described previously in these cells. PMID:26851262

  10. Voltage-dependent potassium currents in developing neurones from quail mesencephalic neural crest.

    PubMed Central

    Bader, C R; Bertrand, D; Dupin, E

    1985-01-01

    Neurones in explants cultured from quail mesencephalic neural crest were studied at different stages of their development using the voltage-clamp technique. A voltage-dependent outward current activated by membrane depolarization was identified as a potassium current by the sensitivity of its reversal potential to extracellular potassium. The voltage-dependent potassium current is made up of two components which differ in their sensitivity to 4-aminopyridine (4-AP) and tetraethylammonium (TEA). The component most sensitive to 4-AP has fast activation kinetics and inactivates quickly at sustained depolarized voltages. By analogy with a current described in other preparations, this current was called IA. The component most sensitive to TEA has slower activation kinetics and inactivates more slowly at sustained depolarized voltages. This current was called IK. IA and IK were already present in neurones cultured for 24 h. The ratio between the peak of IK and that of IA increased significantly between 24 h and 4 days in culture. This means that the two components of the voltage-dependent potassium current follow a different time course during development. Images Plate 1 PMID:2414432

  11. Voltage dependence of Hodgkin-Huxley rate functions for a multistage K+ channel voltage sensor within a membrane

    NASA Astrophysics Data System (ADS)

    Vaccaro, S. R.

    2014-11-01

    The activation of a K+channel sensor in two sequential stages during a voltage clamp may be described as the translocation of a Brownian particle in an energy landscape with two large barriers between states. A solution of the Smoluchowski equation for a square-well approximation to the potential function of the S4 voltage sensor satisfies a master equation and has two frequencies that may be determined from the forward and backward rate functions. When the higher-frequency terms have small amplitude, the solution reduces to the relaxation of a rate equation, where the derived two-state rate functions are dependent on the relative magnitude of the forward rates (α and γ ) and the backward rates (β and δ ) for each stage. In particular, the voltage dependence of the Hodgkin-Huxley rate functions for a K+channel may be derived by assuming that the rate functions of the first stage are large relative to those of the second stage—α ≫γ and β ≫δ . For a Shaker IR K+ channel, the first forward and backward transitions are rate limiting (α <γ and δ ≪β ), and for an activation process with either two or three stages, the derived two-state rate functions also have a voltage dependence that is of a similar form to that determined for the squid axon. The potential variation generated by the interaction between a two-stage K+ ion channel and a noninactivating Na+ ion channel is determined by the master equation for K+channel activation and the ionic current equation when the Na+channel activation time is small, and if β ≪δ and α ≪γ , the system may exhibit a small amplitude oscillation between spikes, or mixed-mode oscillation, in which the slow closed state modulates the K+ ion channel conductance in the membrane.

  12. Sperm morphology of salamandrids (Amphibia, Urodela): implications for phylogeny and fertilization biology.

    PubMed

    Selmi, M G; Brizzi, R; Bigliardi, E

    1997-12-01

    Mature spermatozoa belonging to four salamander species, Salamandrina terdigitata, Triturus alpestris, Triturus carnifex and Triturus vulgaris, have been investigated by electron microscopy. The sperm ultrastructure of these species was compared with that of previously examined urodeles (36 species and 20 genera) and with that of anurans and caecilians. Many phylogenetic considerations may be inferred as a consequence of comparative spermatology. Urodela appears to be a monophyletic order characterized by three sperm synapomorphies: the acrosomal barb, nuclear ridge and marginal filament. Cryptobranchoidea are confirmed to form a monophyletic suborder having two synapomorphic characters: absence of mitochondria in the tail, and cylindrical shape of the tail axial rod. Within the family Salamandridae, sperm morphology confirms the phylogenetic distance between Salamandrina and Triturus, as already pointed out on the basis of molecular and morphological characters. The very complex ultrastructure of spermatozoa confirms a previous opinion that internal fertilization is the ancestral condition of the Amphibia. PMID:18627832

  13. Novel consequences of voltage-dependence to G-protein-coupled P2Y1 receptors

    PubMed Central

    Gurung, I S; Martinez-Pinna, J; Mahaut-Smith, M P

    2008-01-01

    Background and purpose: Emerging evidence suggests that activation of G-protein-coupled receptors (GPCRs) can be directly regulated by membrane voltage. However, the physiological and pharmacological relevance of this effect remains unclear. We have further examined this phenomenon for P2Y1 receptors in the non-excitable megakaryocyte using a range of agonists and antagonists. Experimental approach: Simultaneous whole-cell patch clamp and fura-2 fluorescence recordings of rat megakaryocytes, which lack voltage-gated Ca2+ influx, were used to examine the voltage-dependence of P2Y1 receptor-evoked IP3-dependent Ca2+ mobilization. Results: Depolarization transiently and repeatedly enhanced P2Y1 receptor-evoked Ca2+ mobilization across a wide concentration range of both weak, partial and full, potent agonists. Moreover, the amplitude of the depolarization-evoked [Ca2+]i increase displayed an inverse relationship with agonist concentration, such that the greatest potentiating effect of voltage was observed at near-threshold levels of agonist. Unexpectedly, depolarization also stimulated an [Ca2+]i increase in the absence of agonist during exposure to the competitive antagonists A3P5PS and MRS2179, or the allosteric enhancer 2,2′-pyridylisatogen tosylate. A further effect of some antagonists, particularly suramin, was to enhance the depolarization-evoked Ca2+ responses during co-application of an agonist. Of several P2Y1 receptor inhibitors, only SCH202676, which has a proposed allosteric mechanism of action, could block ADP-induced voltage-dependent Ca2+ release. Conclusions and implications: The ability of depolarization to potentiate GPCRs at near-threshold agonist concentrations represents a novel mechanism for coincidence detection. Furthermore, the induction and enhancement of voltage-dependent GPCR responses by antagonists has implications for the design of therapeutic compounds. PMID:18414379

  14. Single voltage-dependent potassium channels in rat peripheral nerve membrane.

    PubMed Central

    Safronov, B V; Kampe, K; Vogel, W

    1993-01-01

    1. Voltage-dependent potassium channels were investigated in rat axonal membrane by means of the patch-clamp recording technique. Three different types of channels (F, I and S) have been characterized on the basis of their single-channel conductance, activation, deactivation and inactivation properties. 2. The fast (F) channels were activated smoothly at potentials (E) between -50 and 50 mV (E50 = 4.6 mV). They had a conductance of 55 pS for inward current and 30 pS for outward current in solutions containing 155 mM K+ (high K+) on both sides of the membrane at 21-23 degrees C. The F-channels demonstrated the fastest deactivation, within 1-2 ms, and inactivated in a few hundreds of milliseconds. The time constant of inactivation was 143 ms at E = +40 mV. 3. The intermediate (I) channels activated steeply between E = -70 and -50 mV (E50 = -64.2 mv) and had a single-channel conductance of 33 pS for inward and 18 ps for outward currents. The I-channels deactivated with intermediate kinetics with the time constants of 20.4 ms and 10.1 ms at E = -80 mV and E = -100 mV, respectively. Complete inactivation of the channels developed over tens of seconds. The time constant of inactivation was 7.4 s at E = +40 mV. 4. The slow (S) channels were active at potentials positive to -90 mV. Their conductance was 10 pS for inward currents. The time constant of activation of the S-channels was strongly potential dependent. At a holding potential of -100 mV the channels deactivated during a long time interval between 30 ms and 1 s, producing long-lasting tail currents. The mean time constant of deactivation for S-channels was 129 ms. 5. The conductances of F- and I-channels measured under normal physiological conditions (Ringer solution in bath) were 17 and 10 pS, respectively. 6. Tetraethylammonium (TEA), the classic blocker of potassium channels, suppressed F-, I- and S-channels. It gradually reduced the apparent amplitude of unitary currents in a dose-dependent manner with IC50

  15. Two Separate Interfaces between the Voltage Sensor and Pore Are Required for the Function of Voltage-Dependent K+ Channels

    PubMed Central

    MacKinnon, Roderick

    2009-01-01

    Voltage-dependent K+ (Kv) channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved across the interface between voltage sensor and pore according to statistical coupling analysis of 360 Kv channel sequences. A first co-evolved interface is formed by the S4-S5 linkers (one from each of four voltage sensors), which form a cuff surrounding the S6-lined pore opening at the intracellular surface. The crystal structure and published mutational studies support the hypothesis that the S4-S5 linkers convert voltage-sensor motions directly into gate opening and closing. A second co-evolved interface forms a small contact surface between S1 of the voltage sensor and the pore helix near the extracellular surface. We demonstrate through mutagenesis that this interface is necessary for the function and/or structure of two different Kv channels. This second interface is well positioned to act as a second anchor point between the voltage sensor and the pore, thus allowing efficient transmission of conformational changes to the pore's gate. PMID:19260762

  16. Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery.

    PubMed Central

    Linial, M; Ilouz, N; Parnas, H

    1997-01-01

    1. Release of neurotransmitter into the synaptic cleft is the last step in the chain of molecular events following the arrival of an action potential at the nerve terminal. The neurotransmitter exerts negative feedback on its own release. This inhibition would be most effective if exerted on the first step in this chain of events, i.e. a step that is mediated by membrane depolarization. Indeed, in numerous studies feedback inhibition was found to be voltage dependent. 2. The purpose of this study is to investigate whether the mechanism underlying feedback inhibition of transmitter release resides in interaction between the presynaptic autoreceptors and the exocytic apparatus, specifically the soluble NSF-attachment protein receptor (SNARE) complex. 3. Using rat synaptosomes we show that the muscarinic ACh autoreceptor (mAChR) is an integral component of the exocytic machinery. It interacts with syntaxin, synaptosomal-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein (VAMP) and synaptotagmin as shown using both cross-linking and immunoprecipitation. 4. The interaction between mAChRs and both syntaxin and SNAP-25 is modulated by depolarization levels; binding is maximal at resting potential and disassembly occurs at higher depolarization. 5. This voltage-dependent interaction of mAChRs with the secretory core complex appears suitable for controlling the rapid, synchronous neurotransmitter release at nerve terminals. Images Figure 2 Figure 3 PMID:9365901

  17. Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel

    PubMed Central

    Sun, Jianxin; Liao, James K.

    2002-01-01

    Endothelium-derived nitric oxide (NO) is an important regulator of vascular function. NO is produced by endothelial NO synthase (eNOS) whose function is modulated, in part, by specific protein interactions. By coimmunoprecipitation experiments followed by MS analyses, we identified a human voltage-dependent anion/cation channel or porin as a binding partner of eNOS. The interaction between porin and eNOS was demonstrated by coimmunoprecipitation studies in nontransfected human endothelial cells and Cos-7 cells transiently transfected with eNOS and porin cDNAs. In vitro binding studies with glutathione S-transferase–porin indicated that porin binds directly to eNOS and that this interaction augmented eNOS activity. The calcium ionophore, A23187, and bradykinin, which are known to activate eNOS, markedly increased porin–eNOS interaction, suggesting a potential role of intracellular Ca2+ in mediating this interaction. Theses results indicate that the interaction between a voltage-dependent membrane channel and eNOS may be important for regulating eNOS activity. PMID:12228731

  18. Inferred motions of the S3a helix during voltage-dependent K+ channel gating

    PubMed Central

    Banerjee, Anirban; MacKinnon, Roderick

    2010-01-01

    The gating of voltage-dependent potassium channels is controlled by conformational changes in voltage sensor domains. Previous studies have shown that the S1 and the S2 helices of the voltage sensor are static with respect to motion across the membrane, while the voltage sensor paddle consisting of the C-terminal half of S3 (S3b) and the charge-bearing S4, is mobile. The mobile component is attached to S1 and S2 via the S2-S3 turn and the N-terminal half of S3 (S3a). In this study we analyze KvAP, an archaebacterial voltage-dependent potassium channel, to study the mobility with respect to translation across the membrane of S3a. We utilize an assay based on attachment of tethered biotin and its site-specific accessibility to avidin. Our results reveal that the S3a helix does not move appreciably across the membrane in association with gating. The static behavior of S3a constrains the conformations available to the voltage sensor when it closes and suggests that a set of negative counter charges within the membrane's inner leaflet remains intact in the closed conformation. PMID:18632115

  19. Mechanistic basis for low threshold mechanosensitivity in voltage-dependent K+ channels

    PubMed Central

    Schmidt, Daniel; del Mármol, Josefina; MacKinnon, Roderick

    2012-01-01

    Living cells respond to mechanical forces applied to their outer membrane through processes referred to as “mechanosensation”. Faced with hypotonic shock, to circumvent cell lysis, bacteria open large solute-passing channels to reduce the osmotic pressure gradient. In the vascular beds of vertebrate animals blood flow is regulated directly through mechanical distention-induced opening of stretch-activated channels in smooth muscle cells. Touch sensation is thought to originate in mechanically sensitive ion channels in nerve endings, and hearing in mechanically sensitive ion channels located in specialized cells of the ear. While the ubiquity of mechanosensation in living cells is evident, the ion channels underlying the transduction events in vertebrate animals have remained elusive. Here we demonstrate through electrophysiological recordings that voltage-dependent K+ (Kv) channels exhibit exquisite sensitivity to small (physiologically relevant in magnitude) mechanical perturbations of the cell membrane. The demonstrated mechanosensitivity is quantitatively consistent with membrane tension acting on a late-opening transition through stabilization of a dilated pore. This effect causes a shift in the voltage range over which Kv channels open as well as an increase in the maximum open probability. This mechanically induced shift could allow Kv channels and perhaps other voltage-dependent ion channels to play a role in mechanosensation. PMID:22675122

  20. Do Voltage-Dependent K^+ Channels Require Ca2+? A Critical Test Employing a Heterologous Expression System

    NASA Astrophysics Data System (ADS)

    Armstrong, Clay M.; Miller, Christopher

    1990-10-01

    Removal of Ca2+ from the solution bathing neurons is known in many cases to alter the gating properties of voltage-dependent K^+ channels and to induce a large, nonselective "leak" conductance. We used a heterologous expression system to test whether the leak conductance observed in neurons is mediated by voltage-dependent K^+ channels in an altered, debased conformation. Voltage-dependent K^+ channels were expressed in an insect cell line infected with a recombinant baculovirus carrying the cDNA for Drosophila Shaker "A-type" K^+ channels. These expressed channels respond to low Ca2+ identically to voltage-dependent K^+ channels in native neuronal membranes; upon removal of external Ca2+, Shaker K^+ currents disappear and are replaced by a steady, nonselective leak conductance. However, control cells devoid of Shaker channels were free of any voltage-dependent conductances and did not generate a leak when external Ca2+ was removed. These results show that Ca2+ is essential for proper function of voltage-dependent K^+ channels and is required to stabilize the native conformations of these membrane proteins.

  1. Sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition

    SciTech Connect

    Feller, D.J.; Talvenheimo, J.A.; Catterall, W.A.

    1985-09-25

    Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated SSNa influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Binding of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which (Na+)out/(Na+)in is varied by changing (Na+)in or (Na+)out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.

  2. Voltage-dependent ionic currents in dissociated paratracheal ganglion cells of the rat.

    PubMed Central

    Aibara, K; Ebihara, S; Akaike, N

    1992-01-01

    1. Conventional whole-cell voltage-clamp technique was used to study the electrophysiological and pharmacological properties of voltage-dependent Na+, K+ and Ca2+ channels in parasympathetic neurones enzymatically dissociated from the paratracheal ganglia of rat trachea. The voltage-dependent Na+, K+ and Ca2+ currents (INa, IK and ICa) were separated by the use of ion subtraction and pharmacological treatments. 2. INa was activated by a step depolarization more positive than -50 mV and fully activated at positive potentials more than +10 mV. The inactivation phase of INa consisted of fast and slow exponential components (tau if and tau is, respectively). The tau if and tau is were voltage dependent and decreased with a more positive step pulse. 3. The time course for recovery of INa from the complete inactivation exhibited two exponential processes. 4. The reversal potential of INa was equal to the Na+ equilibrium potential (ENa) and resembled a simple Na+ electrode depending only on external Na+ concentration. 5. Tetrodotoxin (TTX) reduced INa without affecting the current kinetics in a concentration-dependent manner, and the concentration of half-maximal inhibition (IC50) was 6 x 10(-9) M. There was no TTX-resistant component of INa in any of the cells tested. 6. Scorpion toxin increased the peak amplitude of INa and prolonged the inactivation phase in a time- and concentration-dependent manner. In the presence of toxin, both tau is and the fractional contribution of the slow current component to total INa increased concentration dependently. 7. High-threshold (L-type) ICa was activated by a step depolarization more positive than -30 mV and reached a peak at near 0 mV in the external solution with 2.5 mM Ca2+. The current was inactivated to only a small extent (< 10%) during 100 ms of depolarizing step pulse. There was no low-threshold (T-type) ICa in this preparation. 8. The maximum ICa in individual current-voltage (I-V) relationships was saturated by an

  3. Functional model of metabolite gating by human voltage-dependent anion channel 2.

    PubMed

    Bauer, Andras J; Gieschler, Simone; Lemberg, Kathryn M; McDermott, Ann E; Stockwell, Brent R

    2011-05-01

    Voltage-dependent anion channels (VDACs) are critical regulators of outer mitochondrial membrane permeability in eukaryotic cells. VDACs have also been postulated to regulate cell death mechanisms. Erastin, a small molecule quinazolinone that is selectively lethal to tumor cells expressing mutant RAS, has previously been reported as a ligand for hVDAC2. While significant efforts have been made to elucidate the structure and function of hVDAC1, structural and functional characterization of hVDAC2 remains lacking. Here, we present an in vitro system that provides a platform for both functional and structural investigation of hVDAC2 and its small molecule modulator, erastin. Using this system, we found that erastin increases permeability of VDAC2 liposomes to NADH in a manner that requires the amino-terminal region of VDAC2. Furthermore, we confirmed that this VDAC2-lipsome sample is folded using solid-state NMR. PMID:21425834

  4. Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin

    PubMed Central

    Ozawa, Shin-ichiro; Kimura, Tomomi; Nozaki, Tomohiro; Harada, Hitomi; Shimada, Ichio; Osawa, Masanori

    2015-01-01

    Voltage-dependent K+ (Kv) channels play crucial roles in nerve and muscle action potentials. Voltage-sensing domains (VSDs) of Kv channels sense changes in the transmembrane potential, regulating the K+-permeability across the membrane. Gating modifier toxins, which have been used for the functional analyses of Kv channels, inhibit Kv channels by binding to VSD. However, the structural basis for the inhibition remains elusive. Here, fluorescence and NMR analyses of the interaction between VSD derived from KvAP channel and its gating modifier toxin, VSTx1, indicate that VSTx1 recognizes VSD under depolarized condition. We identified the VSD-binding residues of VSTx1 and their proximal residues of VSD by the cross-saturation (CS) and amino acid selective CS experiments, which enabled to build a docking model of the complex. These results provide structural basis for the specific binding and inhibition of Kv channels by gating modifier toxins. PMID:26382304

  5. Frequency and voltage dependence of series resistance in a solar cell

    NASA Astrophysics Data System (ADS)

    Ogle, Alexander; Cox, Thaddeus; Heath, Jennifer

    While admittance measurements of solar cells are typically conducted in reverse or at zero bias, and analyzed using the depletion approximation, the operating point of the solar cell is in forward bias, and the series resistance is often estimated using IV curves with a high forward current. In this mode, the device is no longer in the depletion regime, and the large number of injected minority carriers alter the transport properties significantly. In our Cu(In,Ga)Se2 devices, we measure negative values of capacitance at high forward bias, which may be linked to injected minority carriers and carrier transport limitations, although our calculations of capacitance may also be influenced by series resistance. In this study, we compare ac and dc measurements of voltage dependent series resistance to try to better understand the negative capacitance signal.

  6. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells

    PubMed Central

    Rela, Lorena; Piantanida, Ana Paula; Bordey, Angelique; Greer, Charles A.

    2015-01-01

    The olfactory nerve is permissive for axon growth throughout life. This has been attributed in part to the olfactory ensheathing glial cells that encompass the olfactory sensory neuron fascicles. Olfactory ensheathing cells also promote axon growth in vitro and when transplanted in vivo to sites of injury. The mechanisms involved remain largely unidentified owing in part to the limited knowledge of the physiological properties of ensheathing cells. Glial cells rely for many functions on the properties of the potassium channels expressed; however, those expressed in ensheathing cells are unknown. Here we show that olfactory ensheathing cells express voltage-dependent potassium currents compatible with inward rectifier (Kir) and delayed rectifier (KDR) channels. Together with gap junction coupling, these contribute to the heterogeneity of membrane properties observed in olfactory ensheathing cells. The relevance of K+ currents expressed by ensheathing cells is discussed in relation to plasticity of the olfactory nerve. PMID:25856239

  7. Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane.

    PubMed

    Ge, Lin; Villinger, Saskia; Mari, Stefania A; Giller, Karin; Griesinger, Christian; Becker, Stefan; Müller, Daniel J; Zweckstetter, Markus

    2016-04-01

    The voltage-dependent anion channel (VDAC) regulates the flux of metabolites and ions across the outer mitochondrial membrane. Regulation of ion flow involves conformational transitions in VDAC, but the nature of these changes has not been resolved to date. By combining single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca(2+), a key regulator of metabolism and apoptosis, considerably decreases the barrel's conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel. PMID:27021164

  8. Functional Model of Metabolite Gating by Human Voltage-Dependent Anion Channel 2

    PubMed Central

    2011-01-01

    Voltage-dependent anion channels (VDACs) are critical regulators of outer mitochondrial membrane permeability in eukaryotic cells. VDACs have also been postulated to regulate cell death mechanisms. Erastin, a small molecule quinazolinone that is selectively lethal to tumor cells expressing mutant RAS, has previously been reported as a ligand for hVDAC2. While significant efforts have been made to elucidate the structure and function of hVDAC1, structural and functional characterization of hVDAC2 remains lacking. Here, we present an in vitro system that provides a platform for both functional and structural investigation of hVDAC2 and its small molecule modulator, erastin. Using this system, we found that erastin increases permeability of VDAC2 liposomes to NADH in a manner that requires the amino-terminal region of VDAC2. Furthermore, we confirmed that this VDAC2-lipsome sample is folded using solid-state NMR. PMID:21425834

  9. A voltage-dependent chloride channel fine-tunes photosynthesis in plants.

    PubMed

    Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K; Pfeil, Bernard E; Johansson, Oskar N; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn

    2016-01-01

    In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl(-)) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl(-) channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227

  10. A voltage-dependent chloride channel fine-tunes photosynthesis in plants

    PubMed Central

    Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K.; Pfeil, Bernard E.; Johansson, Oskar N.; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn

    2016-01-01

    In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227

  11. Mechanism of voltage-dependent gating in skeletal muscle chloride channels.

    PubMed Central

    Fahlke, C; Rosenbohm, A; Mitrovic, N; George, A L; Rüdel, R

    1996-01-01

    Voltage-dependent gating was investigated in a recombinant human skeletal muscle Cl- channel, hCIC-1, heterologously expressed in human embryonic kidney (HEK-293) cells. Gating was found to be mediated by two qualitatively distinct processes. One gating step operates on a microsecond time scale and involves the rapid rearrangement of two identical intramembranous voltage sensors, each consisting of a single titratable residue. The second process occurs on a millisecond time scale and is due to a blocking-unblocking reaction mediated by a cytoplasmic gate that interacts with the ion pore of the channel. These results illustrate a rather simple structural basis for voltage sensing that has evolved in skeletal muscle Cl- channels and provides evidence for the existence of a cytoplasmic gating mechanism in an anion channel analogous to the "ball and chain" mechanism of voltage-gated cation channels. Images FIGURE 3 PMID:8842208

  12. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel

    NASA Astrophysics Data System (ADS)

    Long, Stephen B.; Campbell, Ernest B.; MacKinnon, Roderick

    2005-08-01

    Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase β subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and β subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the β subunit.

  13. Distinct Populations of HCN Pacemaker Channels Produce Voltage-dependent and Voltage-independent Currents

    PubMed Central

    Proenza, Catherine; Yellen, Gary

    2006-01-01

    Hyperpolarization-activated HCN pacemaker channels are critical for the generation of spontaneous activity and the regulation of excitability in the heart and in many types of neurons. These channels produce both a voltage-dependent current (Ih) and a voltage-independent current (Iinst or VIC). In this study, we explored the molecular basis of the voltage-independent current. We found that for the spHCN isoform, VIC averaged ∼4% of the maximum HCN conductance that could be activated by hyperpolarization. Cyclic AMP increased the voltage-independent current in spHCN to ∼8% of maximum. In HCN2, VIC was ∼2% of the maximal current, and was little affected by cAMP. VIC in both spHCN and HCN2 was blocked rapidly both by ZD7288 (an HCN channel blocker that is thought to bind in the conduction pore) and by application of Cd2+ to channels containing an introduced cysteine in the pore (spHCN-464C or HCN2-436C). These results suggest that VIC flows through the main conduction pathway, down the central axis of the protein. We suspected that VIC simply represented a nonzero limiting open probability for HCN channels at positive voltages. Surprisingly, we found instead that the spHCN channels carrying VIC were not in rapid equilibrium with the channels carrying the voltage-dependent current, because they could be blocked independently; a single application of blocker at a depolarized potential essentially eliminated VIC with little change in Ih. Thus, VIC appears to be produced by a distinct population of HCN channels. This voltage-independent current could contribute significantly to the role of HCN channels in neurons and myocytes; VIC flowing through the channels at physiological potentials would tend to promote excitability by accelerating both depolarization and repolarization. PMID:16446506

  14. Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes.

    PubMed

    Lee, Jun-Ho; Jeong, Sang Min; Kim, Jong-Hoon; Lee, Byung-Hwan; Yoon, In-Soo; Lee, Joon-Hee; Choi, Sun-Hye; Lee, Sang-Mok; Park, Yong-Sun; Lee, Jung-Ha; Kim, Sung Soo; Kim, Hyoung-Chun; Lee, Boo-Yong; Nah, Seung-Yeol

    2006-02-28

    In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent Ca(2+) channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned Ca(2+) channel subtypes such as alpha(1C) (L)-, alpha(1B) (N)-, alpha(1A) (P/Q)-, a1E (R)- and a1G (T) have not been identified. Here, we used the two-microelectrode volt-age clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on Ba(2+) currents (IBa) in Xenopus oocytes expressing five different Ca(2+) channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the a1G-type. Of the various ginsenosides, Rb(1), Rc, Re, Rf, Rg(1), Rg(3), and Rh(2), ginsenoside Rg(3) also inhibited all five channel subtypes and ginsenoside Rh(2) had most effect on the a1C- and a1E-type Ca(2+) channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the a(1G)-type of Ca(2+) channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. Rg(3), Rh(2), and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the alpha(1B)- and alpha(1A)-types. These results reveal that Rg(3), Rh(2) and CK are the major inhibitors of Ca(2+) channels in Panax ginseng, and that they show some Ca(2+) channel selectivity. PMID:16511347

  15. Crystallization and preliminary X-ray crystallographic studies of human voltage-dependent anion channel isoform I (HVDAC1)

    PubMed Central

    Meins, Thomas; Vonrhein, Clemens; Zeth, Kornelius

    2008-01-01

    The major channel by which metabolites can pass through the outer mitochondrial membrane is formed by the voltage-dependent anion-channel (VDAC) family. Functionally, VDAC is involved in the limited exchange of ATP, ADP and small hydrophilic molecules across the outer membrane. Moreover, there is compelling evidence that VDAC isoforms in mammals may act in the cross-talk between mitochondria and the cytoplasm by direct interaction with enzymes involved in energy metabolism and proteins involved in mitochondrial-induced apoptosis. To obtain a high-resolution structure of this channel, human VDAC protein isoform I was overproduced in Escherichia coli. After refolding and testing the correct fold using circular dichroism, a subsequent broad-range screening in different detergents resulted in a variety of crystals which diffracted to 3.5 Å resolution. The crystal lattice belongs to the trigonal space group P321, with unit-cell parameters a = 78.9, c = 165.7 Å and one monomer in the asymmetric unit. PMID:18607100

  16. Voltage Dependence of Proton Pumping by Bacteriorhodopsin Mutants with Altered Lifetime of the M Intermediate

    PubMed Central

    Geibel, Sven; Lörinczi, Èva; Bamberg, Ernst; Friedrich, Thomas

    2013-01-01

    The light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum is tightly regulated by the [H+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L) or stabilized (D96N, D96G) M intermediate in response to green light (to probe H+ pumping) and blue laser flashes (to probe accumulation/decay of M). These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri) shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating that Schiff base

  17. Structure and expression of mouse mitochondrial voltage dependent anion channel genes

    SciTech Connect

    Craigen, W.J.; Lovell, R.S.; Sampson, M.J.

    1994-09-01

    Voltage dependent anion channels (VDACs) are small abundant proteins of the outer mitochondrial membrane that interact with the adenine nucleotide translocater and bind glycerol kinase and hexokinase. Kinase binding is developmentally regulated, tissue specific, and increased in various tumor cell lines. VDACs are also components of the peripheral benzodiazepine receptor and GABA{sub A} receptor. Two human VDAC cDNAs have previously been reported, and expression of these isoforms appears ubiquitous. Genomic Southern analysis suggests the presence of other as yet uncharacterised VDAC genes. To study VDAC function in a mammal more amenable to experimental manipulation, we have isolated three mouse VDAC genes by cDNA cloning from a mouse brain cDNA library. DNA sequencing of the cDNAs shows that they share 65-75% amino acid identity. Northern analysis indicates that MVDAC1 is expressed most highly in kidney, heart, and brain. Using an MVDAC3 3{prime} untranslated exon as a probe, three distinct transcripts can be detected. The gene structure for MVDAC3 and MVDAC2 has been completed and suggests that the VDAC isoforms did not arise by gene duplication and divergence. The intron/exon boundaries are not conserved between MVDAC1 and MVDAC3, and MVDAC2 appears to be encoded by a single intronless gene.

  18. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons.

    PubMed Central

    Liebovitch, L S; Sullivan, J M

    1987-01-01

    The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and the kinetic rate constants connecting these states are constant. In the alternative fractal model the spontaneous fluctuations of the channel protein at many different time scales are represented by a kinetic rate constant k = At1-D, where A is the kinetic setpoint and D the fractal dimension. Single-channel currents were recorded at 146 mM external K+ from an inwardly rectifying, 120 pS, K+ selective, voltage-sensitive channel in cultured mouse hippocampal neurons. The kinetics of these channels were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimensions were approximately 2 for the closed times and approximately 1 for the open times and did not depend on voltage. For both the open and closed times the logarithm of the kinetic setpoint was found to be proportional to the applied voltage, which indicates that the gating of this channel involves the net inward movement of approximately one negative charge when this channel opens. Thus, the open and closed times and the voltage dependence of the gating of this channel are well described by the fractal model. PMID:2447974

  19. Voltage dependent anion channel is redistributed during Japanese encephalitis virus infection of insect cells.

    PubMed

    Fongsaran, Chanida; Phaonakrop, Narumon; Roytrakul, Sittiruk; Thepparit, Chutima; Kuadkitkan, Atichat; Smith, Duncan R

    2014-01-01

    Despite the availability of an effective vaccine, Japanese encephalitis remains a significant cause of morbidity and mortality in many parts of Asia. Japanese encephalitis is caused by the Japanese encephalitis virus (JEV), a mosquito transmitted flavivirus. Many of the details of the virus replication cycle in mosquito cells remain unknown. This study sought to determine whether GRP78, a well-characterized flavivirus E protein interacting protein, interacted with JEV E protein in insect cells, and whether this interaction was mediated at the cell surface. GRP78 was shown to interact with JEV E protein by coimmunoprecipitation, and was additionally shown to interact with voltage dependent anion protein (VDAC) through the same methodology. Antibody inhibition experiments showed that neither GRP78 nor VDAC played a role in JEV internalization to insect cells. Interestingly, VDAC was shown to be significantly relocalized in response to JEV infection, and significant levels of colocalization between VDAC and GRP78 and VDAC and ribosomal L28 protein were seen in JEV infected but not uninfected cells. This is the first report of relocalization of VDAC in response to JEV infection and suggests that this may be a part of the JEV replication strategy in insect cells. PMID:25126612

  20. Voltage-dependent anion channel (VDAC-1) is required for olfactory sensing in Caenorhabditis elegans.

    PubMed

    Uozumi, Takayuki; Hamakawa, Masayuki; Deno, Yu-Ki; Nakajo, Nobushige; Hirotsu, Takaaki

    2015-10-01

    The Ras-MAP kinase signaling pathway plays important roles for the olfactory reception in olfactory neurons in Caenorhabditis elegans. However, given the absence of phosphorylation targets of MAPK in the olfactory neurons, the mechanism by which this pathway regulates olfactory function is unknown. Here, we used proteomic screening to identify the mitochondrial voltage-dependent anion channel VDAC-1 as a candidate target molecule of MAPK in the olfactory system of C. elegans. We found that Amphid Wing "C" (AWC) olfactory neuron-specific knockdown of vdac-1 caused severe defects in chemotaxis toward AWC-sensed odorants. We generated a new vdac-1 mutant using the CRISPR-Cas9 system, with this mutant also showing decreased chemotaxis toward odorants. This defect was rescued by AWC-specific expression of vdac-1, indicating that functions of VDAC-1 in AWC neurons are essential for normal olfactory reception in C. elegans. We observed that AWC-specific RNAi of vdac-1 reduced AWC calcium responses to odorant stimuli and caused a decrease in the quantity of mitochondria in the sensory cilia. Behavioral abnormalities in vdac-1 knockdown animals might therefore be due to reduction of AWC response, which might be caused by loss of mitochondria in the cilia. Here, we showed that the function of VDAC-1 is regulated by phosphorylation and identified Thr175 as the potential phosphorylation site of MAP kinase. PMID:26223767

  1. Voltage-dependent potassium currents in cochlear hair cells of the embryonic chick.

    PubMed

    Griguer, C; Fuchs, P A

    1996-01-01

    1. Hair cells were isolated from apical and basal regions of the embryonic chick's cochlea. Outward potassium currents were recorded using whole cell tight-seal voltage clamp. 2. Outward currents in basal hair cells activated and inactivated rapidly. The average time to half-maximum at 0 mV was 2.9 ms. The time constant of inactivation at 0 mV was 71 ms. Boltzmann fits to conductance-voltage curves gave an average half-activation voltage of -36 mV, and steady-state inactivation was half-maximal at -62 mV. 3. Potassium currents in apical hair cells had slower kinetics, with a time to half-maximum of 6.7 ms and an inactivation time constant of 242 ms at + 10 mV. The half-activation voltage derived from Boltzmann fits was -16 mV and that for inactivation was -43 mV. 4. With respect to kinetic and voltage-dependent properties, the rapidly and slowly activating potassium currents of embryonic cells were similar to the rapidly inactivating "A" current of mature short hair cells and to the delayed rectifier of mature tall hair cells. However, unlike the adult currents, the embryonic currents did not show differential sensitivities to tetraethylammonium chloride and 4-aminopyridine. As early as the tenth day of embryogenesis, hair cells at the apical and basal extremes of the cochlea produced functionally distinct voltage-gated potassium currents. PMID:8822574

  2. Modulation of the voltage-dependent anion channel of mitochondria by elaidic acid.

    PubMed

    Tewari, Debanjan; Bera, Amal Kanti

    2016-08-26

    Dietary trans fatty acids (TFAs) are known to increase the risk of cardiovascular diseases by altering plasma lipid profile and activating various inflammatory signaling pathways. Here we show that elaidic acid (EA), the most abundant TFA in diet, alters the electrophysiological properties of voltage-dependent anion channel (VDAC) of mitochondria. Purified bovine brain VDAC, when incorporated in the planar lipid bilayer (PLB) composed of 1,2-diphytanoyl-sn-glycero-3 phosphatidyl choline (DPhPC) and EA in a 9 to 1 ratio (wt/wt), exhibited complete closing events at different voltages. The closing events were observed at even -10 mV, a voltage at which VDAC usually remains fully open all the time. Additionally, the voltage sensitivity of VDAC was lost in presence of EA; the channel conductance did not decrease with increasing voltages. In identical experimental conditions, membrane containing oleic acid (OA), the cis isomer of EA did not produce any such effect. We propose that EA possibly exerts its adverse effect by modulating VDAC. PMID:27318085

  3. A calcium- and voltage-dependent cation channel in the tonoplast of Saccharomyces cerevisiae

    SciTech Connect

    Bertl, A.; Slayman, C.L. )

    1990-05-01

    Ion channels have been studied in the tonoplast of Saccharomyces cerevisiae by means of patch-recording techniques. The main type of channel seen thus far in excised membrane patches is a cation channel having an open-channel conductance of {approx}120 pS (in 100 mM KCl) and relative permeabilities of 1:1:0.1, for K{sup +}:Na{sup +}:Cl{sup {minus}}. Channel open probability is strongly voltage-dependent, being highest at large negative voltages (i.e., >70 mV, cytoplasm negative to the vacuole). Current-voltage (I-V) curves obtained by averaging individual channel currents over a long time (1-2 min) show marked rectification and agree well with steady-state I-V curves from whole-vacuole records. Channel opening is also strongly regulated by cytoplasmic Ca{sup ++}: openings are rare at or below 0.1 {mu}M Ca{sup ++}, but increase sigmoidally with Ca{sup ++} concentrations above 1 {mu}M, to reach a maximal open probability of {approx}0.5 at 2-5 mM free Ca{sup ++}.

  4. Balanced ionotropic receptor dynamics support signal estimation via voltage-dependent membrane noise.

    PubMed

    Marcoux, Curtis M; Clarke, Stephen E; Nesse, William H; Longtin, Andre; Maler, Leonard

    2016-01-01

    Encoding behaviorally relevant stimuli in a noisy background is critical for animals to survive in their natural environment. We identify core biophysical and synaptic mechanisms that permit the encoding of low-frequency signals in pyramidal neurons of the weakly electric fish Apteronotus leptorhynchus, an animal that can accurately encode even miniscule amplitude modulations of its self-generated electric field. We demonstrate that slow NMDA receptor (NMDA-R)-mediated excitatory postsynaptic potentials (EPSPs) are able to summate over many interspike intervals (ISIs) of the primary electrosensory afferents (EAs), effectively eliminating the baseline EA ISI correlations from the pyramidal cell input. Together with a dynamic balance of NMDA-R and GABA-A-R currents, this permits stimulus-evoked changes in EA spiking to be transmitted efficiently to target electrosensory lobe (ELL) pyramidal cells, for encoding low-frequency signals. Interestingly, AMPA-R activity is depressed and appears to play a negligible role in the generation of action potentials. Instead, we hypothesize that cell-intrinsic voltage-dependent membrane noise supports the encoding of perithreshold sensory input; this noise drives a significant proportion of pyramidal cell spikes. Together, these mechanisms may be sufficient for the ELL to encode signals near the threshold of behavioral detection. PMID:26561607

  5. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons.

    PubMed

    Liebovitch, L S; Sullivan, J M

    1987-12-01

    The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and the kinetic rate constants connecting these states are constant. In the alternative fractal model the spontaneous fluctuations of the channel protein at many different time scales are represented by a kinetic rate constant k = At1-D, where A is the kinetic setpoint and D the fractal dimension. Single-channel currents were recorded at 146 mM external K+ from an inwardly rectifying, 120 pS, K+ selective, voltage-sensitive channel in cultured mouse hippocampal neurons. The kinetics of these channels were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimensions were approximately 2 for the closed times and approximately 1 for the open times and did not depend on voltage. For both the open and closed times the logarithm of the kinetic setpoint was found to be proportional to the applied voltage, which indicates that the gating of this channel involves the net inward movement of approximately one negative charge when this channel opens. Thus, the open and closed times and the voltage dependence of the gating of this channel are well described by the fractal model. PMID:2447974

  6. Clustering of voltage-dependent sodium channels on axons depends on Schwann cell contact.

    PubMed

    Joe, E H; Angelides, K

    1992-03-26

    In myelinated nerves, segregation of voltage-dependent sodium channels to nodes of Ranvier is crucial for saltatory conduction along axons. As sodium channels associate and colocalize with ankyrin at nodes of Ranvier, one possibility is that sodium channels are recruited and immobilized at axonal sites which are specified by the subaxolemmal cytoskeleton, independent of glial cell contact. Alternatively, segregation of channels at distinct sites along the axon may depend on glial cell contact. To resolve this question, we have examined the distribution of sodium channels, ankyrin and spectrin in myelination-competent cocultures of sensory neurons and Schwann cells by immunofluorescence, using sodium channel-, ankyrin- and spectrin-specific antibodies. In the absence of Schwann cells, sodium channels, ankyrin and spectrin are homogeneously distributed on sensory axons. When Schwann cells are introduced into these cultures, the distribution of sodium channels dramatically changes so that channel clusters on axons are abundant, but ankyrin and spectrin remain homogeneously distributed. Addition of latex beads or Schwann cell membranes does not induce channel clustering. Our results suggest that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to organize and maintain channel distribution during differentiation of myelinated axons. PMID:1312680

  7. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC).

    PubMed

    Noskov, Sergei Yu; Rostovtseva, Tatiana K; Chamberlin, Adam C; Teijido, Oscar; Jiang, Wei; Bezrukov, Sergey M

    2016-07-01

    Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large β-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26940625

  8. Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging.

    PubMed Central

    Kerr, D S; Campbell, L W; Thibault, O; Landfield, P W

    1992-01-01

    Glucocorticoids (GCs) activate several biochemical/molecular processes in the hippocampus through two receptor types. In addition, GCs influence cognitive behaviors and hippocampal neural activity and can also increase the rate of aging-dependent cell loss in the hippocampus. However, the ionic mechanisms through which GCs modulate hippocampal neuronal function are not well understood. We report here direct evidence that activation of cytosolic steroid receptors, specifically of the type II GC receptor, can enhance voltage-dependent Ca2+ conductances in brain neurons. Ca2+ current was assessed by current-clamp measures of Ca2+ action potentials and by sharp electrode voltage-clamp analyses of voltage-sensitive currents in cesium-, tetrodotoxin-, and tetraethylammonium-treated CA1 neurons in hippocampal slices. Both Ca2+ action potentials and voltage-activated Ca2+ currents (N- and L-like) were increased by 2-hr exposure to the synthetic GC receptor agonist, RU 28362. This effect of RU 28362 was blocked by coincubation with cycloheximide, indicating that the GC receptor-Ca2+ channel interaction depends on de novo protein synthesis. Dysregulated calcium homeostasis is also viewed as a candidate mechanism in brain aging. Thus, present results are consistent with the hypothesis that excessive GC-receptor activation and resultant increased Ca2+ influx may be two sequential phases of a brain-aging process that results initially in impairment of function and eventually in neuronal loss. PMID:1528857

  9. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth.

    PubMed

    Gackière, Florian; Warnier, Marine; Katsogiannou, Maria; Derouiche, Sandra; Delcourt, Philippe; Dewailly, Etienne; Slomianny, Christian; Humez, Sandrine; Prevarskaya, Natalia; Roudbaraki, Morad; Mariot, Pascal

    2013-01-01

    It is strongly suspected that potassium (K(+)) channels are involved in various aspects of prostate cancer development, such as cell growth. However, the molecular nature of those K(+) channels implicated in prostate cancer cell proliferation and the mechanisms through which they control proliferation are still unknown. This study uses pharmacological, biophysical and molecular approaches to show that the main voltage-dependent K(+) current in prostate cancer LNCaP cells is carried by large-conductance BK channels. Indeed, most of the voltage-dependent current was inhibited by inhibitors of BK channels (paxillin and iberiotoxin) and by siRNA targeting BK channels. In addition, we reveal that BK channels constitute the main K(+) channel family involved in setting the resting membrane potential in LNCaP cells at around -40 mV. This consequently promotes a constitutive calcium entry through T-type Cav3.2 calcium channels. We demonstrate, using single-channel recording, confocal imaging and co-immunoprecipitation approaches, that both channels form macromolecular complexes. Finally, using flow cytometry cell cycle measurements, cell survival assays and Ki67 immunofluorescent staining, we show that both BK and Cav3.2 channels participate in the proliferation of prostate cancer cells. PMID:24143281

  10. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    PubMed

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities. PMID:25084457

  11. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    PubMed

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. PMID:26542804

  12. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane

    PubMed Central

    Schmidt, Daniel; MacKinnon, Roderick

    2008-01-01

    Voltage-dependent K+ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K+ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane. PMID:19050073

  13. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence.

    PubMed

    Cox, D H; Dunlap, K

    1994-08-01

    We have studied the inactivation of high-voltage-activated (HVA), omega-conotoxin-sensitive, N-type Ca2+ current in embryonic chick dorsal root ganglion (DRG) neurons. Voltage steps from -80 to 0 mV produced inward Ca2+ currents that inactivated in a biphasic manner and were fit well with the sum of two exponentials (with time constants of approximately 100 ms and > 1 s). As reported previously, upon depolarization of the holding potential to -40 mV, N current amplitude was significantly reduced and the rapid phase of inactivation all but eliminated (Nowycky, M. C., A. P. Fox, and R. W. Tsien. 1985. Nature. 316:440-443; Fox, A. P., M. C. Nowycky, and R. W. Tsien. 1987a. Journal of Physiology. 394:149-172; Swandulla, D., and C. M. Armstrong. 1988. Journal of General Physiology. 92:197-218; Plummer, M. R., D. E. Logothetis, and P. Hess. 1989. Neuron. 2:1453-1463; Regan, L. J., D. W. Sah, and B. P. Bean. 1991. Neuron. 6:269-280; Cox, D. H., and K. Dunlap. 1992. Journal of Neuroscience. 12:906-914). Such kinetic properties might be explained by a model in which N channels inactivate by both fast and slow voltage-dependent processes. Alternatively, kinetic models of Ca-dependent inactivation suggest that the biphasic kinetics and holding-potential-dependence of N current inactivation could be due to a combination of Ca-dependent and slow voltage-dependent inactivation mechanisms. To distinguish between these possibilities we have performed several experiments to test for the presence of Ca-dependent inactivation. Three lines of evidence suggest that N channels inactivate in a Ca-dependent manner. (a) The total extent of inactivation increased 50%, and the ratio of rapid to slow inactivation increased approximately twofold when the concentration of the Ca2+ buffer, EGTA, in the patch pipette was reduced from 10 to 0.1 mM. (b) With low intracellular EGTA concentrations (0.1 mM), the ratio of rapid to slow inactivation was additionally increased when the extracellular Ca2

  14. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.

    PubMed

    Ishida, Itzel G; Rangel-Yescas, Gisela E; Carrasco-Zanini, Julia; Islas, León D

    2015-04-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13-14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker's, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  15. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  16. Inhibition of a neuronal voltage-dependent chloride channel by the type II pyrethroid, deltamethrin.

    PubMed

    Forshaw, P J; Lister, T; Ray, D E

    1993-02-01

    Following the previous finding that the Type II pyrethroid, deltamethrin, increased membrane resistance in peripheral nerve and muscle in a chloride-dependent manner, the action of deltamethrin on neuronal voltage-dependent chloride channels was assessed using inside-out patches from NIE-115 neuroblastoma cells. These were bathed in symmetrical solutions, containing 149 mM chloride and the membrane potential stepped from 0 mV to voltages ranging from +/- 10 to 80 mV for 2 or 5 sec. Active patches contained large conductance channels (343 +/- 11 pS, n = 8), which inactivated relatively slowly during the voltage step and could be resolved into a number of substates. The channels were confirmed as being chloride specific on the basis of substitution experiments with isethionate and pharmacological blockade by 9-anthracene carboxylic acid (9-ACA). Within 20 min of adding deltamethrin (2 microM) to the bath solution, open channel probability (Po) fell from 0.50 +/- 0.06 to 0.24 +/- 0.04 (n = 11) a highly significant result. Glycerinformal solvent alone (0.1% v/v) caused a non-significant rise to 0.65 +/- 0.09 (n = 4). The decreased open channel probability after deltamethrin was due to an increased incidence of both the closed channel state and low conductance substates. In addition, deltamethrin frequently caused flickering between substrates similar to that seen after 9-ACA. Deltamethrin did not change single channel conductance, current-voltage relationship or time-dependent channel inactivation, but decreased open channel probability over the complete range of membrane voltage tested.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8383811

  17. Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration.

    PubMed

    Rostovtseva, Tatiana K; Sheldon, Kely L; Hassanzadeh, Elnaz; Monge, Claire; Saks, Valdur; Bezrukov, Sergey M; Sackett, Dan L

    2008-12-01

    Regulation of mitochondrial outer membrane (MOM) permeability has dual importance: in normal metabolite and energy exchange between mitochondria and cytoplasm and thus in control of respiration, and in apoptosis by release of apoptogenic factors into the cytosol. However, the mechanism of this regulation, dependent on the voltage-dependent anion channel (VDAC), the major channel of MOM, remains controversial. A long-standing puzzle is that in permeabilized cells, adenine nucleotide translocase (ANT) is less accessible to cytosolic ADP than in isolated mitochondria. We solve this puzzle by finding a missing player in the regulation of MOM permeability: the cytoskeletal protein tubulin. We show that nanomolar concentrations of dimeric tubulin induce voltage-sensitive reversible closure of VDAC reconstituted into planar phospholipid membranes. Tubulin strikingly increases VDAC voltage sensitivity and at physiological salt conditions could induce VDAC closure at <10 mV transmembrane potentials. Experiments with isolated mitochondria confirm these findings. Tubulin added to isolated mitochondria decreases ADP availability to ANT, partially restoring the low MOM permeability (high apparent K(m) for ADP) found in permeabilized cells. Our findings suggest a previously unknown mechanism of regulation of mitochondrial energetics, governed by VDAC and tubulin at the mitochondria-cytosol interface. This tubulin-VDAC interaction requires tubulin anionic C-terminal tail (CTT) peptides. The significance of this interaction may be reflected in the evolutionary conservation of length and anionic charge in CTT throughout eukaryotes, despite wide changes in the exact sequence. Additionally, tubulins that have lost significant length or anionic character are only found in cells that do not have mitochondria. PMID:19033201

  18. Voltage-dependent sodium (NaV) channels in group IV sensory afferents

    PubMed Central

    Elmslie, Keith S

    2016-01-01

    Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex. PMID:27385723

  19. Voltage dependence properties of ballistic spin currents and spin transfer torques in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Chshiev, Mairbek

    2009-03-01

    Interest in spintronics [1] has been strongly accentuated by the discovery of current induced magnetization switching caused by spin transfer torque (STT) [2]. Among the most favorable candidate systems for the realization of STT-based spintronic devices are epitaxial magnetic tunnel junctions (MTJ) [3]. Here we present a systematic study of voltage-induced STT in MTJs and provide an insight into the nature of its voltage behavior by investigating the properties of ballistic spin currents [4,5]. We demonstrate that the band filling has a dramatic impact on voltage dependence properties of both STT components, tunnel magnetoresistance (TMR) as well as on equilibrium interlayer exchange coupling [5]. Both in-plane (Slonczewski) and perpendicular-to-the-plane (field-like) STT components demonstrate a wide range of nontrivial behavior as a function of applied voltage [4,5]. The explanation is given in terms of the spin and charge current dependence on the interplay between evanescent states in the insulator and the Fermi surfaces of the ferromagnetic electrodes comprising the MTJ [5]. In particular we show that in ballistic regime the field-like torque is an even parity function of applied voltage while the parallel torque may exhibit a wide range of behavior [4,5]. Recent experiments [6] are in agreement with these predictions. Calculations are based on the non-equilibrium Green functions technique.[4pt] [1] A. Fert et al, Mat. Sci. Eng. B, 84, 1 (2001); S. A. Wolf, Science, 294, 1488 (2001)[0pt] [2] J. C. Slonczewski, J. Magn. Magn. Mat. 159, L1 (1996); L. Berger, Phys. Rev. B 54, 9353 (1996[0pt] [3] W. H. Butler et al, Phys. Rev. B, 63, 054416 (2001); J. Mathon and A. Umerski, Phys. Rev. B, 63, 220403(R) (2001)[0pt] [4] I. Theodonis et al, Phys. Rev. Lett. 97, 237205 (2006)[0pt] [5] M. Chshiev et al. IEEE Trans. Mag. 44 (11) (2008); A. Kalitsov et al., submitted[0pt] [6] H. Kubota et al, Nature Physics 4, 37 (2008); J. C. Sankey et al, ibid. 4, 67 (2008); A. Deac et

  20. Clustering and mobility of voltage-dependent sodium channels during myelination.

    PubMed

    Joe, E H; Angelides, K J

    1993-07-01

    In myelinated axons, voltage-dependent sodium channels are segregated at high density at nodes of Ranvier (Rosenbluth, 1976; Waxman and Quick, 1978; Black et al., 1990; Elmer et al., 1990), a distribution that is critical for the saltatory conduction of action potentials (Huxley and Stampfli, 1949). The factors that specifically control the organization and immobilization of sodium channels at nodes are unknown. Recently we have reported that segregation of sodium channels on axons is highly dependent on interactions with active Schwann cells and that continuing axon-glial interactions are necessary to maintain sodium channel distribution during differentiation of myelinated nerve (Joe and Angelides, 1992). The specific recruitment of sodium channels at these early stages of myelination and the conspicuous absence of other axon membrane components suggest that the factors governing sodium channel cluster formation show molecular specificity. However, it is not clear whether these clustered sodium channels originate from a redistribution of preexisting diffusely distributed sodium channels. To determine how Schwann cells might regulate sodium channel distribution during myelination we have examined the lateral mobility of fluorescently labeled sodium channels at defined stages of myelination by fluorescence photobleach recovery using tetramethylrhodamine (TmRhd)-labeled Tityus gamma, a sodium channel-specific fluorescent toxin. First, to test whether Schwann cells, in addition to modulating sodium channel distribution, affect the mobility of sodium channels, we cultured dorsal root ganglion neurons in the presence or absence of Schwann cells and monitored sodium channel mobility on cell bodies, axon hillocks, and axons. Even in the absence of Schwann cells, approximately 80% of the sodium channels were immobile on the time scale of the fluorescence photobleach recovery measurement (DL < or equal to 10(-12) cm2/sec), although the remaining fraction of channels are

  1. Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels

    PubMed Central

    Chiara, Federica; Castellaro, Diego; Marin, Oriano; Petronilli, Valeria; Brusilow, William S.; Juhaszova, Magdalena; Sollott, Steven J.; Forte, Michael; Bernardi, Paolo; Rasola, Andrea

    2008-01-01

    Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors. PMID:18350175

  2. Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons

    PubMed Central

    Amarillo, Yimy; De Santiago-Castillo, Jose A; Dougherty, Kevin; Maffie, Jonathon; Kwon, Elaine; Covarrubias, Manuel; Rudy, Bernardo

    2008-01-01

    Kv4 channels mediate most of the somatodendritic subthreshold operating A-type current (ISA) in neurons. This current plays essential roles in the regulation of spike timing, repetitive firing, dendritic integration and plasticity. Neuronal Kv4 channels are thought to be ternary complexes of Kv4 pore-forming subunits and two types of accessory proteins, Kv channel interacting proteins (KChIPs) and the dipeptidyl-peptidase-like proteins (DPPLs) DPPX (DPP6) and DPP10. In heterologous cells, ternary Kv4 channels exhibit inactivation that slows down with increasing depolarization. Here, we compared the voltage dependence of the inactivation rate of channels expressed in heterologous mammalian cells by Kv4.2 proteins with that of channels containing Kv4.2 and KChIP1, Kv4.2 and DPPX-S, or Kv4.2, KChIP1 and DPPX-S, and found that the relation between inactivation rate and membrane potential is distinct for these four conditions. Moreover, recordings from native neurons showed that the inactivation kinetics of the ISA in cerebellar granule neurons has voltage dependence that is remarkably similar to that of ternary Kv4 channels containing KChIP1 and DPPX-S proteins in heterologous cells. The fact that this complex and unique behaviour (among A-type K+ currents) is observed in both the native current and the current expressed in heterologous cells by the ternary complex containing Kv4, DPPX and KChIP proteins supports the hypothesis that somatically recorded native Kv4 channels in neurons include both types of accessory protein. Furthermore, quantitative global kinetic modelling showed that preferential closed-state inactivation and a weakly voltage-dependent opening step can explain the slowing of the inactivation rate with increasing depolarization. Therefore, it is likely that preferential closed-state inactivation is the physiological mechanism that regulates the activity of both ternary Kv4 channel complexes and native ISA-mediating channels. PMID:18276729

  3. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties.

    PubMed Central

    Clark, R B; Giles, W

    1987-01-01

    1. Whole-cell and patch-clamp techniques (Hamill, Marty, Neher, Sakmann & Sigworth, 1981) have been used to make quantitative measurements of the transient inward sodium current (INa) in single cells from bullfrog atrium. This preparation is particularly suitable for the study of INa: (i) the current density is relatively low, (ii) the cells lack a transverse tubule system, (iii) isolated myocytes can be maintained at reduced temperatures (approximately 8-12 degrees C); therefore kinetics can be studied quantitatively. 2. INa was pharmacologically and kinetically isolated from other transmembrane currents by blocking ICa with CdCl2 (0.2-0.5 mM) or LaCl3 (5 x 10(-6) M), and by using only relatively short voltage-clamp depolarizations which did not activate IK (the delayed rectifier). 3. The voltage dependence of INa in bullfrog atrium is similar to that in amphibian node of Ranvier or fast skeletal muscle. The threshold for activation is approximately -50 mV. The peak of the INa vs. membrane potential relation is near -5 to -10 mV. The reversal potential in 'normal' (115 mM-Na+) Ringer solution is +59.0 mV (S.D. +/- 3.4, n = 10). Reduction of external Na+ concentration to one-third of normal resulted in an approximately -27 mV shift of the reversal potential, close to that expected for a highly Na+-selective conductance. 4. Steady-state inactivation of INa (h infinity), measured with a conventional two-pulse voltage-clamp protocol, spanned the membrane potential range from -90 to -50 mV. The potential dependence of h infinity was well described by a single Boltzmann function with half-inactivation at -71 mV and maximum slope of 6.0 mV. 5. Steady-state activation of INa (m infinity) was determined from fits of INa records to a Hodgkin-Huxley model. The potential dependence of m infinity was fitted to a Boltzmann function with half-activation at -33 mV and maximum slope of 9.5 mV. Thus at temperatures around 10 degrees C there was very little overlap of the m infinity

  4. Voltage-dependent currents in isolated single Merkel cells of rats.

    PubMed Central

    Yamashita, Y; Akaike, N; Wakamori, M; Ikeda, I; Ogawa, H

    1992-01-01

    1. Merkel cells were dissociated enzymatically from the footpad epidermis of 10- to 20-day-old rats pretreated with fluorescent dye, quinacrine, for purposes of staining. The fluorescent Merkel cells had an elongated or elliptic shape in situ, yet the dissociated ones were round (7-12 microns in diameter). 2. Electrical recordings were performed in the whole-cell configuration using a conventional patch-clamp technique. The mean resting membrane potential of fluorescent Merkel cells was -54.0 mV, the value being greater than the -26.1 mV of non-fluorescent epidermal cells. No voltage-dependent channel was observed in non-fluorescent cells. 3. The Merkel cells had no Na+ spike in an external standard solution, but tetrodotoxin-resistant long-lasting action potentials were evoked by depolarization with injection of constant currents in an external solution containing Ba2+. 4. In Merkel cells under voltage clamp, depolarizing step pulses (800 ms) from a holding potential (VH) of -80 mV elicited predominantly outward K+ currents composed of transient and sustained components: the former was selectively inhibited by 4-aminopyridine (4-AP), while the latter was inhibited by both tetraethylammonium (TEA) and quinacrine. Quinacrine was more effective and selective than TEA in blocking the sustained K+ current but had no effect on the current at the low concentration (10(-7) or 3 x 10(-6) M) used for staining the Merkel cells. 5. The sustained outward K+ current (IKD) was activated at potentials more positive than -20 or -10 mV at a VH of -50 mV, at which potential the transient outward K+ channel was completely inactivated. The potential for half-inactivation in the steady-state inactivation curve for IKD was -33 mV. 6. The transient outward K+ current (IA) was activated at potentials more positive than -50 mV at a VH of -80 mV. The potential for half-inactivation in the steady-state inactivation curve for IA was -64 mV. 7. When the outward K+ currents were blocked by

  5. A calcium- and voltage-dependent chloride current in developing chick skeletal muscle.

    PubMed Central

    Hume, R I; Thomas, S A

    1989-01-01

    1. Depolarization of embryonic chick myotubes from negative potentials elicits a rapid spike followed by a long-duration after-potential. The ionic basis of the long-duration after-potential was examined by making intracellular recordings from cultured myotubes, and by making whole-cell patch-clamp recordings from myoblasts and myoballs. 2. The peak potential of the long-duration after-potential varied with the chloride gradient, suggesting that a conductance increase to chloride is involved in generating the after-potential. However, a calcium current was also implicated, since lowering the extracellular calcium or replacing extracellular calcium with cobalt abolished the after-potential. 3. When extracellular calcium was replaced with strontium or barium, short-duration spikes similar to calcium spikes were observed, but only strontium was able to support activation of long-duration after-potentials. Intracellular injection of calcium or strontium into myotubes bathed in calcium-free extracellular solutions restored the ability of depolarization to evoke an after-potential. Intracellular injection of magnesium, barium, nickel or cobalt did not restore this ability. These experiments strongly suggested that the long-duration after-potential was due to a calcium- and voltage-activated chloride current. 4. Whole-cell voltage-clamp recordings from myoballs and myoblasts showed that a large chloride conductance could be activated by depolarization when the internal free calcium concentration was buffered at levels greater than 10(-7) M. At 2.5 x 10(-7) M-calcium, the voltage dependence of activation was steepest in the range of -30 to -20 mV and the activation kinetics varied with the membrane potential. The time to half-maximal activation ranged from 0.1 s at positive potentials to greater than 1 s at more negative potentials. The time constant for deactivation was approximately 1 s at -50 mV. No inactivation was observed. 5. The selectivity of the chloride current

  6. The authorships and dates of the specific nomina Megophrys shuichengensis and Pseudohynobius shuichengensis (Amphibia).

    PubMed

    Ohler, Annemarie; Frétey, Thierry; Dubois, Alain

    2015-01-01

    Two amphibian species from China are designated by the specific nomen shuichengensis, which refers to the Shuicheng County (26°34'N, 104°51'E), south of the city of Liupanshui in the province of Guizhou: Megophrys shuichengensis (Amphibia, Anura) and Pseudohynobius shuichengensis (Amphibia, Urodela). The holotypes (holophoronts) of both species were deposited in Department of Biology of the Liupanshui Teachers Higher College (LTHC below). Both species share the particularity of having been described as new twice, at different dates, in different journals and with different authorships. Although this has been acknowledged for the salamander, it has not yet been so for the frog. PMID:26249416

  7. Membrane Tension Accelerates Rate-limiting Voltage-dependent Activation and Slow Inactivation Steps in a Shaker Channel

    PubMed Central

    Laitko, Ulrike; Morris, Catherine E.

    2004-01-01

    A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize

  8. Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel.

    PubMed

    Laitko, Ulrike; Morris, Catherine E

    2004-02-01

    A classical voltage-sensitive channel is tension sensitive--the kinetics of Shaker and S3-S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982-2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193-208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically--normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore

  9. Voltage-dependent Gating Rearrangements in the Intracellular T1–T1 Interface of a K+ Channel

    PubMed Central

    Wang, Guangyu; Covarrubias, Manuel

    2006-01-01

    The intracellular tetramerization domain (T1) of most eukaryotic voltage-gated potassium channels (Kv channels) exists as a “hanging gondola” below the transmembrane regions that directly control activation gating via the electromechanical coupling between the S4 voltage sensor and the main S6 gate. However, much less is known about the putative contribution of the T1 domain to Kv channel gating. This possibility is mechanistically intriguing because the T1–S1 linker connects the T1 domain to the voltage-sensing domain. Previously, we demonstrated that thiol-specific reagents inhibit Kv4.1 channels by reacting in a state-dependent manner with native Zn2+ site thiolate groups in the T1–T1 interface; therefore, we concluded that the T1–T1 interface is functionally active and not protected by Zn2+ (Wang, G., M. Shahidullah, C.A. Rocha, C. Strang, P.J. Pfaffinger, and M. Covarrubias. 2005. J. Gen. Physiol. 126:55–69). Here, we co-expressed Kv4.1 channels and auxiliary subunits (KChIP-1 and DPPX-S) to investigate the state and voltage dependence of the accessibility of MTSET to the three interfacial cysteines in the T1 domain. The results showed that the average MTSET modification rate constant (kMTSET) is dramatically enhanced in the activated state relative to the resting and inactivated states (∼260- and ∼47-fold, respectively). Crucially, under three separate conditions that produce distinct activation profiles, kMTSET is steeply voltage dependent in a manner that is precisely correlated with the peak conductance–voltage relations. These observations strongly suggest that Kv4 channel gating is tightly coupled to voltage-dependent accessibility changes of native T1 cysteines in the intersubunit Zn2+ site. Furthermore, cross-linking of cysteine pairs across the T1–T1 interface induced substantial inhibition of the channel, which supports the functionally dynamic role of T1 in channel gating. Therefore, we conclude that the complex voltage-dependent

  10. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.

    PubMed Central

    Farley, J.; Rudy, B.

    1988-01-01

    K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could

  11. The different meanings of the nomen Amphibia: a correction.

    PubMed

    Dubois, Alain

    2015-01-01

    I recently published a survey of the different meanings of the nomen Amphibia in taxonomic publications since 1758 (Dubois 2015). The 'meaning' of a nomen in zoological nomenclature depends on the system used for the allocation of nomina to taxa, and several such systems can be used (see e.g. Dubois 2006a-b). In the paper at stake, I used the 'orostensional nomenclatural system' (OONS) for class-series nomenclature. In this system, a class-series nomen-i.e., a nomen above the rank superfamily, therefore one whose taxonomic allocation is not regulated by the Code (Anonymous 1999)-applies, in a given classification, to the most inclusive class-series taxon that includes all its originally expressly included nominal genera (conucleogenera) and excludes all its originally expressly excluded nominal genera (alienogenera)-if such a taxon indeed exists in this classification. However, if one a least of the alienogenera is now part of the most inclusive taxon including all the conucleogenera, the nomen cannot be taxonomically allocated and qualifies as an anaptonym in the classification used as reference (Dubois 2006a-b, 2011), although it may not be so under another taxonomic frame. PMID:26250195

  12. Ultrastructure of the mature spermatozoa of caecilians (Amphibia: Gymnophiona).

    PubMed

    Scheltinga, David M; Wilkinson, Mark; Jamieson, Barrie G M; Oommen, Oommen V

    2003-11-01

    The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapomorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, and 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Anura. PMID:14518011

  13. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona).

    PubMed

    Zardoya, R; Meyer, A

    2000-06-01

    The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated. PMID:10835397

  14. Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: Mapping and identification of two new isoforms

    SciTech Connect

    Blachly-Dyson, E.; Forte, M.; Litt, M. ); Baldini, A.; McCabe, E.R.B. )

    1994-03-01

    The voltage-dependent anion channel of the mitochondrial outer membrane (VDAC) is a small, abundant pore-forming protein found in the outer membranes of all eukaryotic mitochondria. The VDAC protein is believed to form the major pathway for movement of adenine nucleotides through the outer membrane and to be the mitochondrial binding site for hexokinase and glycerol kinase. Previous studies have indicated that at least two human VDAC isoforms are expressed. Here, the authors report the mapping of VDAC1 to the X chromosome in the interval Xq13-q21 and VDAC2 to chromosome 21 by polymerase chain reaction and restriction analysis of a human/rodent somatic cell mapping panel. In the process of mapping these genes, they identified and mapped two additional sequences highly homologous to VDAC1. VDAC3 maps to chromosome 12 and VDAC4 maps to chromosome 1. The locations of VDAC1 and VDAC4 have been confirmed by fluorescence in situ hybridization analysis. Future studies will be aimed at defining the specific physiological role of each member of this family of channel proteins. 15 refs., 3 figs., 1 tab.

  15. The structural organization of the kidney of Typhlonectes compressicaudus (Amphibia, Gymnophiona).

    PubMed

    Sakai, T; Billo, R; Kriz, W

    1986-01-01

    The structural organization of the kidney of Typhlonectes compressicaudus (Amphibia, Gymnophiona) was studied by light microscopic (LM) examination of serial paraffin and semithin Epon sections. The kidney is slender and quite long and has a mesonephric segmental construction; the excretory duct (Wolffian duct), running along the lateral side of the kidney, segmentally receives the terminal trunks of the collecting duct system. The nephron has the following parts: renal corpuscle, neck segment, proximal tubule, intermediate segment, distal tubule and connecting tubule. The distal tubule is located in a ventromedial (central) zone of the kidney; all other tubular segments lie in a dorsolateral (peripheral) zone. The renal corpuscles are found at the border between these two zones. The renal corpuscle is very large; its urinary pole faces the peripheral zone. A small proportion of neck segments receive either a nephrostomal duct or a blind branch. The proximal tubule is a thick, highly convoluted tubule. The intermediate segment is ciliated and makes a few coils. The distal tubule is composed of three portions: a highly convoluted part in the central zone, subsequently an attachment site with the renal corpuscle and a short postattachment-part. The connecting tubule and the collecting duct have a heterogeneous epithelium consisting of light and dark cells. The collecting duct is distinguished by dilated intercellular spaces. The Wolffian duct has a pseudostratified epithelium. The present study correlates the course and segmentation of the renal tubule of Typhlonectes. The tubule has three major convolutions. The first occurs in the proximal tubule in the peripheral zone; the second is established by the distal tubule and occurs in the central zone; the third is formed by the connecting tubule and is found in the peripheral zone. PMID:3740458

  16. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1

    PubMed Central

    Lee, Seok-Yong; Letts, James A.; MacKinnon, Roderick

    2008-01-01

    In voltage-gated Na+, K+, and Ca2+ channels, four voltage-sensor domains operate on a central pore domain in response to membrane voltage. In contrast, the voltage-gated proton channel (Hv) contains only a voltage-sensor domain, lacking a separate pore domain. The subunit stoichiometry and organization of Hv has been unknown. Here, we show that human Hv1 forms a dimer in the membrane and define regions that are close to the dimer interface by using cysteine cross-linking. Two dimeric interfaces appear to exist in Hv1, one mediated by S1 and the adjacent extracellular loop, and the other mediated by a putative intracellular coiled-coil domain. It may be significant that Hv1 uses for its dimer interface a surface that corresponds to the interface between the voltage sensor and pore in Kv channels. PMID:18509058

  17. Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells.

    PubMed Central

    Hedrich, R; Busch, H; Raschke, K

    1990-01-01

    Using the patch-clamp technique we discovered that the voltage dependent anion channels in the plasma membrane of guard cells are activated by a rise in cytoplasmic Ca2+ in the presence of nucleotides. Upon activation, these anion channels catalyse anion currents 10-20 times higher than in the inactivated state, thus shifting the plasma membrane from a K+ conducting state to an anion conducting state. Prolonged stimulation by depolarizing voltages results in the inactivation of the anion current (t1/2 = 10-12 s). We suggest that activation of the anion channel by Ca2+ and nucleotides is a key event in the regulation of salt efflux from guard cells during stomatal closure. PMID:1701140

  18. The effects of low calcium on the voltage-dependent conductances involved in tuning of turtle hair cells.

    PubMed

    Art, J J; Fettiplace, R; Wu, Y C

    1993-10-01

    1. The voltage-dependent conductances of turtle cochlear hair cells of known resonant frequency were characterized by tight-seal, whole-cell recording during superfusion with solutions containing normal (2.8 mM) and reduced (0.1-10 microM) Ca2+. 2. In 1 microM Ca2+, the current flowing through the voltage-dependent Ca2+ channels was increased roughly fivefold and had a reversal potential near 0 mV. This observation may be explained by the Ca2+ channels becoming non-selectively permeable to monovalent cations in low-Ca2+ solutions. Lowering the Ca2+ further to 0.1 microM produced little increase in the current. 3. The size of the non-selective current increased systematically with the resonant frequency of the hair cell over the range from 10 to 320 Hz. This suggests that hair cells tuned to higher frequencies contain more voltage-dependent Ca2+ channels. 4. There was a good correlation between the amplitudes of the non-selective current and the K+ current which underlies electrical tuning of these hair cells. The amplitude of the K+ current also increased systematically with resonant frequency. 5. In cells with resonant frequencies between 120 and 320 Hz, the K+ current was completely abolished in 1 microM Ca2+, consistent with prior evidence that this current flows through Ca2+ activated K+ channels. In a majority of cells tuned between 50 and 120 Hz, the K+ current was incompletely blocked in 1 microM Ca2+, but was eliminated in 0.1 microM Ca2+. In all hair cells the K+ current was abolished by 25 mM tetraethylammonium chloride. 6. In cells tuned to 10-20 Hz, the K+ current was not substantially diminished even in 0.1 microM Ca2+, which argues that it may not be Ca2+ activated. 7. In cells tuned to frequencies above 100 Hz, the K+ current could still be evoked by depolarization during superfusion with 10 microM Ca2+. However, its half-activation voltage was shifted to more depolarized levels and its maximum amplitude was systematically reduced with increasing

  19. Selective modulation of cellular voltage-dependent calcium channels by hyperbaric pressure—a suggested HPNS partial mechanism

    PubMed Central

    Aviner, Ben; Gradwohl, Gideon; Mor Aviner, Merav; Levy, Shiri; Grossman, Yoram

    2014-01-01

    Professional deep sea divers experience motor and cognitive impairment, known as High Pressure Neurological Syndrome (HPNS), when exposed to pressures of 100 msw (1.1 MPa) and above, considered to be the result of synaptic transmission alteration. Previous studies have indicated modulation of presynaptic Ca2+ currents at high pressure. We directly measured for the first time pressure effects on the currents of voltage dependent Ca2+ channels (VDCCs) expressed in Xenopus oocytes. Pressure selectivity augmented the current in CaV1.2 and depressed it in CaV3.2 channels. Pressure application also affected the channels' kinetics, such as ƮRise, ƮDecay. Pressure modulation of VDCCs seems to play an important role in generation of HPNS signs and symptoms. PMID:24904281

  20. A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate.

    PubMed Central

    Imtiaz, Mohammad S; Smith, David W; van Helden, Dirk F

    2002-01-01

    A qualitative mathematical model is presented that examines membrane potential feedback on synthesis of inositol 1,4,5-trisphosphate (IP(3)), and its role in generation and modulation of slow waves. Previous experimental studies indicate that slow waves show voltage dependence, and this is likely to result through membrane potential modulation of IP(3). It is proposed that the observed response of the tissue to current pulse, pulse train, and maintained current injection can be explained by changes in IP(3), modulated through a voltage-IP(3) feedback loop. Differences underlying the tissue responses to current injections of opposite polarities are shown to be due to the sequence of events following such currents. Results from this model are consistent with experimental findings and provide further understanding of these experimental observations. Specifically, we find that membrane potential can induce, abolish, and modulate slow wave frequency by altering the excitability of the tissue through the voltage-IP(3) feedback loop. PMID:12324409

  1. Selective modulation of cellular voltage-dependent calcium channels by hyperbaric pressure-a suggested HPNS partial mechanism.

    PubMed

    Aviner, Ben; Gradwohl, Gideon; Mor Aviner, Merav; Levy, Shiri; Grossman, Yoram

    2014-01-01

    Professional deep sea divers experience motor and cognitive impairment, known as High Pressure Neurological Syndrome (HPNS), when exposed to pressures of 100 msw (1.1 MPa) and above, considered to be the result of synaptic transmission alteration. Previous studies have indicated modulation of presynaptic Ca(2+) currents at high pressure. We directly measured for the first time pressure effects on the currents of voltage dependent Ca(2+) channels (VDCCs) expressed in Xenopus oocytes. Pressure selectivity augmented the current in CaV1.2 and depressed it in CaV3.2 channels. Pressure application also affected the channels' kinetics, such as ƮRise, ƮDecay. Pressure modulation of VDCCs seems to play an important role in generation of HPNS signs and symptoms. PMID:24904281

  2. Structure of the voltage-dependent potassium channel is highly conserved from Drosophila to vertebrate central nervous systems.

    PubMed Central

    Baumann, A; Grupe, A; Ackermann, A; Pongs, O

    1988-01-01

    Voltage-sensitive potassium channels are found in vertebrate and invertebrate central nervous systems. We have isolated a rat brain cDNA by cross-hybridization with a probe of the Drosophila Shaker gene complex. Structural conservation of domains of the deduced protein indicate that the rat brain cDNA encodes a voltage-sensitive potassium channel. Of the deduced amino acid sequence, 82% is homologous to the Drosophila Shaker protein indicating that voltage-sensitive potassium channels have been highly conserved during evolution. Selective pressure was highest on sequences facing the intracellular side and on proposed transmembrane segments S4-S6, suggesting that these domains are crucial for voltage-dependent potassium channel function. The corresponding rat mRNA apparently belongs to a family of mRNA molecules which are preferentially expressed in the central nervous system. Images PMID:3191911

  3. Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1

    SciTech Connect

    Chen, Yumay; Gaczynska, Maria; Osmulski, Pawel; Polci, Rosaria; Riley, Daniel J.

    2010-04-09

    VDAC1 is a key component of the mitochondrial permeability transition pore. To initiate apoptosis and certain other forms of cell death, mitochondria become permeable such that cytochrome c and other pre-apoptotic molecules resident inside the mitochondria enter the cytosol and activate apoptotic cascades. We have shown recently that VDAC1 interacts directly with never-in-mitosis A related kinase 1 (Nek1), and that Nek1 phosphorylates VDAC1 on Ser193 to prevent excessive cell death after injury. How this phosphorylation regulates the activity of VDAC1, however, has not yet been reported. Here, we use atomic force microscopy (AFM) and cytochrome c conductance studies to examine the configuration of VDAC1 before and after phosphorylation by Nek1. Wild-type VDAC1 assumes an open configuration, but closes and prevents cytochrome c efflux when phosphorylated by Nek1. A VDAC1-Ser193Ala mutant, which cannot be phosphorylated by Nek1 under identical conditions, remains open and constitutively allows cytochrome c efflux. Conversely, a VDAC1-Ser193Glu mutant, which mimics constitutive phosphorylation by Nek1, remains closed by AFM and prevents cytochrome c leakage in the same liposome assays. Our data provide a mechanism to explain how Nek1 regulates cell death by affecting the opening and closing of VDAC1.

  4. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart.

    PubMed Central

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from the rabbit heart alpha 1 include a shortened N-terminus, a unique C-terminal insertion, and both forms of an alternatively spliced motif IV S3 region. The shortened N-terminus provides optimal access to consensus sequences thought to facilitate translation. Northern blot analysis revealed a single hybridizing mRNA species of 9.4 kb. The gene for the human heart alpha 1 subunit was localized specifically to the distal region of chromosome 12p13. The cloned alpha 1 subunit was expressed in Xenopus oocytes and single-channel analyses revealed native-like pharmacology and channel properties. Images Fig. 3 Fig. 4 Fig. 5 PMID:8392192

  5. A Gating Model for the Archeal Voltage-Dependent K+ Channel KvAP in DPhPC and POPE:POPG decane lipid bilayers

    PubMed Central

    Schmidt, Daniel; Cross, Sam R.; MacKinnon, Roderick

    2009-01-01

    Voltage-dependent K+ (Kv) channels form the basis of the excitability of nerves and muscles. KvAP is a well-characterized archeal Kv channel that has been widely used to investigate many aspects of Kv channel biochemistry, biophysics and structure. In this study a minimal kinetic gating model for KvAP function in two different phospholipid decane bilayers is developed. In most aspects KvAP gating is similar to the well-studied eukaryotic Shaker Kv channel: conformational changes occur within four voltage sensors followed by pore opening. Unlike Shaker, KvAP possesses an inactivated state that is accessible from the pre-open state of the channel. Changing the lipid composition of the membrane influences multiple gating transitions in the model, but most dramatically the rate of recovery from inactivation. Inhibition by the voltage sensor toxin VSTx1 is most easily explained if VSTx1 binds only to the depolarized conformation of the voltage sensor. By delaying the voltage sensor’s return to the hyperpolarized conformation VSTx1 favors the inactivated state of KvAP. PMID:19481093

  6. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative

  7. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels.

    PubMed

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Charreton, Mercedes; Garnery, Lionel; Le Conte, Yves; Chahine, Mohamed; Sandoz, Jean-Christophe; Charnet, Pierre

    2015-03-01

    Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels. PMID:25602183

  8. Voltage-dependent gating of single gap junction channels in an insect cell line.

    PubMed Central

    Bukauskas, F F; Weingart, R

    1994-01-01

    De novo formation of cell pairs was used to examine the gating properties of single gap junction channels. Two separate cells of an insect cell line (clone C6/36, derived from the mosquito Aedes albopictus) were pushed against each other to provoke formation of gap junction channels. A dual voltage-clamp method was used to control the voltage gradient between the cells (Vj) and measure the intercellular current (Ij). The first sign of channel activity was apparent 4.7 min after cell contact. Steady-state coupling reached after 30 min revealed a conductance of 8.7 nS. Channel formation involved no leak between the intra- and extracellular space. The first opening of a newly formed channel was slow (25-28 ms). Each preparation passed through a phase with only one operational gap junction channel. This period was exploited to examine the single channel properties. We found that single channels exhibit several conductance states with different conductances gamma j; a fully open state (gamma j(main state)), several substates (gamma j(substates)), a residual state (gamma j(residual)) and a closed state (gamma j(closed)). The gamma j(main state) was 375 pS, and gamma j(residual) ranged from 30 to 90 pS. The transitions between adjacent substates were 1/7-1/4 of gamma j(main state). Vj had no effect on gamma j(main state), but slightly affected gamma j (residual). The lj transitions involving gamma j(closed) were slow (15-60 ms), whereas those not involving gamma j(closed) were fast (< 2 ms). An increase in Vj led to a decrease in open channel probability. Depolarization of the membrane potential (Vm) increased the incidence of slow transitions leading to gamma j(closed). We conclude that insect gap junctions possess two gates, a fast gate controlled by Vj and giving rise to gamma j(substates) and gamma j(residual), and a slow gate sensitive to Vm and able to close the channel completely. PMID:7524710

  9. A voltage-dependent outward current with fast kinetics in single smooth muscle cells isolated from rabbit portal vein.

    PubMed

    Beech, D J; Bolton, T B

    1989-05-01

    1. Single smooth muscle cells were isolated enzymatically from the rabbit portal vein. They were voltage-clamped at room temperature using the whole-cell configuration of the patch-clamp technique. 2. When cells were bathed in physiological salt solution, depolarization from a holding potential of -70 mV elicited a time-dependent outward current which reached a maximum within 0.2-0.5 s, but when a more negative holding potential was used, an additional outward current could be activated. The current (Ifo) developed rapidly, was transient and seemed to be carried by potassium ions (K+). 3. The steady-state inactivation plot for Ifo was steeply voltage-dependent between -90 and -60 mV, current being 50% inactivated at -78 mV. The activation threshold was around -65 mV. The activation and inactivation kinetics were fast and voltage-dependent. When the test potential was -35 mV, peak current occurred after about 15 ms and the decay was complete within 250 ms. Recovery from inactivation was maximal after 1 s at -100 mV but was about five times slower at -70 mV. 4. The outward current Ifo was blocked completely by 4-aminopyridine (5 mM) or phencyclidine (0.1 mM), but was insensitive to tetraethylammonium ions (32 mM), apamin (0.1 microM), charybdotoxin from the venom of Leiurus quinquestriatus (0.1 microM), toxin-I from the venom of Dendroaspis polylepis (1 microM) or the putative K+ channel opener, cromakalim (10 microM). 5. The steady-state inactivation range and activation threshold, kinetics of activation and inactivation all showed a marked dependence on the concentration of divalent cations in the bathing solution. This effect was consistent with the hypothesis that Ifo was affected by membrane surface potential. The current did not seem to be Ca2+-activated. 6. Ifo closely resembled the A-current which has been described previously in neurones but not in smooth muscle. PMID:2600838

  10. Voltage-dependent photocurrent transients of PTB7:PC70BM solar cells: Experiment and numerical simulation

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Lakhwani, Girish; Greenham, Neil C.; McNeill, Christopher R.

    2013-07-01

    Transient photocurrent measurements on efficient polymer/fullerene solar cells based on a blend of the donor polymer PTB7 with the fullerene acceptor PC70BM are reported. In particular, we examine the light intensity dependence and voltage dependence of the turn-on and turn-off photocurrent dynamics of devices in response to a 200 μs square light pulse. At short circuit, subtle changes in the turn-on and turn-off dynamics are observed consistent with charge-density-dependent transport phenomena. As the working voltage is moved from short circuit to open circuit, we observe the appearance of an initial transient photocurrent peak a few microseconds after turn-on before the device settles to steady state. Furthermore, we observe only a weak dependence of the charge extraction dynamics on the working voltage, with the amount of charge extracted monotonically decreasing as the working voltage is moved from short circuit to open circuit. This collection of features is interpreted with the aid of numerical simulations in terms of charge trapping, with increased trap-assisted recombination closer to open circuit. The operation of devices fabricated with and without the solvent additive di-iodooctane is also compared. Charge trapping features are reduced for optimized devices fabricated with the solvent additive compared to devices fabricated without. The use of the solvent additive di-iodooctane in this system is therefore important in minimizing trap-assisted recombination.

  11. Spexin Enhances Bowel Movement through Activating L-type Voltage-dependent Calcium Channel via Galanin Receptor 2 in Mice

    PubMed Central

    Lin, Cheng-yuan; Zhang, Man; Huang, Tao; Yang, Li-ling; Fu, Hai-bo; Zhao, Ling; Zhong, Linda LD; Mu, Huai-xue; Shi, Xiao-ke; Leung, Christina FP; Fan, Bao-min; Jiang, Miao; Lu, Ai-ping; Zhu, Li-xin; Bian, Zhao-xiang

    2015-01-01

    A novel neuropeptide spexin was found to be broadly expressed in various endocrine and nervous tissues while little is known about its functions. This study investigated the role of spexin in bowel movement and the underlying mechanisms. In functional constipation (FC) patients, serum spexin levels were significantly decreased. Consistently, in starved mice, the mRNA of spexin was significantly decreased in intestine and colon. Spexin injection increased the velocity of carbon powder propulsion in small intestine and decreased the glass beads expulsion time in distal colon in mice. Further, spexin dose-dependently stimulated the intestinal/colonic smooth muscle contraction. Galanin receptor 2 (GALR2) antagonist M871, but not Galanin receptor 3 (GALR3) antagonist SNAP37899, effectively suppressed the stimulatory effects of spexin on intestinal/colonic smooth muscle contraction, which could be eliminated by extracellular [Ca2+] removal and L-type voltage-dependentCa2+ channel (VDCC) inhibitor nifedipine. Besides, spexin dramatically increased the [Ca2+]i in isolated colonic smooth muscle cells. These data indicate that spexin can act on GALR2 receptor to regulate bowel motility by activating L-type VDCC. Our findings provide evidence for important physiological roles of spexin in GI functions. Selective action on spexin pathway might have therapeutic effects on GI diseases with motility disorders. PMID:26160593

  12. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

    PubMed Central

    Al Kury, Lina T; Voitychuk, Oleg I; Yang, Keun-Hang Susan; Thayyullathil, Faisal T; Doroshenko, Petro; Ramez, Ali M; Shuba, Yaroslav M; Galadari, Sehamuddin; Howarth, Frank Christopher; Oz, Murat

    2014-01-01

    BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd. CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation. PMID:24758718

  13. Clinical implication of voltage-dependent anion channel 1 in uterine cervical cancer and its action on cervical cancer cells

    PubMed Central

    Wu, Chih-Hsien; Lin, Yu-Wen; Wu, Tzu-Fan; Ko, Jiunn-Liang; Wang, Po-Hui

    2016-01-01

    Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry were performed to investigate the influence of human nonmetastatic clone 23 type 1 (nm23-H1), a metastasis-associated gene on proteomic alterations in cancer cells of the uterine cervix. It was validated by RT-PCR and Western blot analysis. The expression of voltage-dependent anion channel 1 (VDAC1) was increased in nm23-H1 gene silenced SiHa or CaSki cervical cancer cells. The clinical implication was shown that cervical cancer tissues with positive VDAC1 immunoreactivity exhibited deep stromal invasion (>10 mm in depth) and large tumor size (> 4 cm in diameter). Cervical cancer patients with positive VDAC1 immunoreactivity displayed higher recurrence and poorer overall survival than those with negative VDAC1. Silencing of VDAC1 reduced cell proliferation and migratory ability. Mitochondrial membrane potential was decreased and reactive oxygen species generation was increased in the VDAC1 gene-silenced cervical cancer cells. Cell cycle progression and autophagy were not changed in VDAC1 silencing cells. The cytotoxicity of cisplatin was significantly enhanced by knockdown of cellular VDAC1 and the compounds that interfere with hexokinase binding to VDAC. Therapeutic strategies may be offered using VDAC1 as a target to reduce cell growth and migration, enhance the synergistic therapeutic efficacy of cisplatin and reduce cisplatin dose-limiting toxicity. PMID:26716410

  14. The voltage-dependent K+ channels Kv1.3 and Kv1.5 in human cancer

    PubMed Central

    Comes, Núria; Bielanska, Joanna; Vallejo-Gracia, Albert; Serrano-Albarrás, Antonio; Marruecos, Laura; Gómez, Diana; Soler, Concepció; Condom, Enric; Ramón y Cajal, Santiago; Hernández-Losa, Javier; Ferreres, Joan C.; Felipe, Antonio

    2013-01-01

    Voltage-dependent K+ channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer. PMID:24133455

  15. Paraquat Toxicity Induced by Voltage-dependent Anion Channel 1 Acts as an NADH-dependent Oxidoreductase*

    PubMed Central

    Shimada, Hiroki; Hirai, Kei-Ichi; Simamura, Eriko; Hatta, Toshihisa; Iwakiri, Hiroki; Mizuki, Keiji; Hatta, Taizo; Sawasaki, Tatsuya; Matsunaga, Satoko; Endo, Yaeta; Shimizu, Shigeomi

    2009-01-01

    Paraquat (PQ), a herbicide used worldwide, causes fatal injury to organs upon high dose ingestion. Treatments for PQ poisoning are unreliable, and numerous deaths have been attributed inappropriate usage of the agent. It is generally speculated that a microsomal drug-metabolizing enzyme system is responsible for PQ toxicity. However, recent studies have demonstrated cytotoxicity via mitochondria, and therefore, the cytotoxic mechanism remains controversial. Here, we demonstrated that mitochondrial NADH-dependent PQ reductase containing a voltage-dependent anion channel 1 (VDAC1) is responsible for PQ cytotoxicity. When mitochondria were incubated with NADH and PQ, superoxide anion (O2˙̄) was produced, and the mitochondria ruptured. Outer membrane extract oxidized NADH in a PQ dose-dependent manner, and oxidation was suppressed by VDAC inhibitors. Zymographic analysis revealed the presence of VDAC1 protein in the oxidoreductase, and the direct binding of PQ to VDAC1 was demonstrated using biotinylated PQ. VDAC1-overexpressing cells showed increased O2˙̄ production and cytotoxicity, both of which were suppressed in VDAC1 knockdown cells. These results indicated that a VDAC1-containing mitochondrial system is involved in PQ poisoning. These insights into the mechanism of PQ poisoning not only demonstrated novel physiological functions of VDAC protein, but they may facilitate the development of new therapeutic approaches. PMID:19717555

  16. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins.

    PubMed

    Sabirov, Ravshan Z; Sheiko, Tatiana; Liu, Hongtao; Deng, Defeng; Okada, Yasunobu; Craigen, William J

    2006-01-27

    The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel. PMID:16291750

  17. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  18. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    PubMed

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  19. A novel, voltage-dependent nonselective cation current activated by insulin in guinea pig isolated ventricular myocytes.

    PubMed

    Zhang, Yin Hua; Hancox, Jules C

    2003-04-18

    Insulin regulates cardiac metabolism and function by targeting metabolic proteins or voltage-gated ion channels. This study provides evidence for a novel, voltage-dependent, nonselective cation channel (NSCC) in the heart. Under voltage clamp at 37 degrees C and with major known conductances blocked, insulin (1 nmol/L to 1 micromol/L) activated an outwardly rectifying current (Iinsulin) in guinea pig ventricular myocytes. Iinsulin could be carried by Cs+, K+, Li+, and Na+ ions but not by NMDG+. It was inhibited by the NSCC blockers gadolinium and SKF96365 but not flufenamic acid. Iinsulin was largely blocked by the insulin receptor tyrosine kinase inhibitor HNMPA-(AM)3 and by the phospholipase C inhibitor U73122 but not by its inactive analogue U73433. Staurosporine, a potent blocker of protein kinase C, did not prevent the activation of Iinsulin. Application of an analogue of diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol, mimicked the effect of insulin. This activated an outwardly rectifying NSCC that could be carried by Cs+, K+, Li+, or Na+ and that was blocked by gadolinium but not by flufenamic acid or staurosporine. We conclude that the intracellular pathway leading to activation of this novel cardiac NSCC involves phospholipase C, is protein kinase C-independent, and may depend on direct channel activation by diacylglycerol. PMID:12637365

  20. Characterization and expression analysis of Paralichthys olivaceus voltage-dependent anion channel (VDAC) gene in response to virus infection.

    PubMed

    Lü, Ai-Jun; Dong, Cai-Wen; Du, Chang-Sheng; Zhang, Qi-Ya

    2007-09-01

    Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis. PMID:17467295

  1. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel

    PubMed Central

    Banerjee, Anirban; Lee, Alice; Campbell, Ernest; MacKinnon, Roderick

    2013-01-01

    Pore-blocking toxins inhibit voltage-dependent K+ channels (Kv channels) by plugging the ion-conduction pathway. We have solved the crystal structure of paddle chimera, a Kv channel in complex with charybdotoxin (CTX), a pore-blocking toxin. The toxin binds to the extracellular pore entryway without producing discernable alteration of the selectivity filter structure and is oriented to project its Lys27 into the pore. The most extracellular K+ binding site (S1) is devoid of K+ electron-density when wild-type CTX is bound, but K+ density is present to some extent in a Lys27Met mutant. In crystals with Cs+ replacing K+, S1 electron-density is present even in the presence of Lys27, a finding compatible with the differential effects of Cs+ vs K+ on CTX affinity for the channel. Together, these results show that CTX binds to a K+ channel in a lock and key manner and interacts directly with conducting ions inside the selectivity filter. DOI: http://dx.doi.org/10.7554/eLife.00594.001 PMID:23705070

  2. The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo.

    PubMed

    Alioua, A; Tanaka, Y; Wallner, M; Hofmann, F; Ruth, P; Meera, P; Toro, L

    1998-12-01

    Native large conductance, voltage-dependent, and Ca2+-sensitive K+ channels are activated by cGMP-dependent protein kinase. Two possible mechanisms of kinase action have been proposed: 1) direct phosphorylation of the channel and 2) indirect via PKG-dependent activation of a phosphatase. To scrutinize the first possibility, at the molecular level, we used the human pore-forming alpha-subunit of the Ca2+-sensitive K+ channel, Hslo, and the alpha-isoform of cGMP-dependent protein kinase I. In cell-attached patches of oocytes co-expressing the Hslo channel and the kinase, 8-Br-cGMP significantly increased the macroscopic currents. This increase in current was due to an increase in the channel voltage sensitivity by approximately 20 mV and was reversed by alkaline phosphatase treatment after patch excision. In inside-out patches, however, the effect of purified kinase was negative in 12 of 13 patches. In contrast, and consistent with the intact cell experiments, purified kinase applied to the cytoplasmic side of reconstituted channels increased their open probability. This stimulatory effect was absent when heat-denatured kinase was used. Biochemical experiments show that the purified kinase incorporates gamma-33P into the immunopurified Hslo band of approximately 125 kDa. Furthermore, in vivo phosphorylation largely attenuates this labeling in back-phosphorylation experiments. These results demonstrate that the alpha-subunit of large conductance Ca2+-sensitive K+ channels is substrate for G-Ialpha kinase in vivo and support direct phosphorylation as a mechanism for PKG-Ialpha-induced activation of maxi-K channels. PMID:9830046

  3. Bias voltage dependence of the electron spin depolarization in quantum wires in the quantum Hall regime detected by the resistively detected NMR

    SciTech Connect

    Chida, K.; Yamauchi, Y.; Arakawa, T.; Kobayashi, K.; Ono, T.; Hashisaka, M.; Nakamura, S.; Machida, T.

    2013-12-04

    We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.

  4. Lack of Negatively Charged Residues at the External Mouth of Kir2.2 Channels Enable the Voltage-Dependent Block by External Mg2+

    PubMed Central

    Li, Junwei; Xie, Xiaoxiao; Liu, Jun; Yu, Hui; Zhang, Suhua; Zhan, Yong; Zhang, Hailin; Logothetis, Diomedes E.; An, Hailong

    2014-01-01

    Kir channels display voltage-dependent block by cytosolic cations such as Mg2+ and polyamines that causes inward rectification. In fact, cations can regulate K channel activity from both the extracellular and intracellular sides. Previous studies have provided insight into the up-regulation of Kir channel activity by extracellular K+ concentration. In contrast, extracellular Mg2+ has been found to reduce the amplitude of the single-channel current at milimolar concentrations. However, little is known about the molecular mechanism of Kir channel blockade by external Mg2+ and the relationship between the Mg2+ blockade and activity potentiation by permeant K+ ions. In this study, we applied an interactive approach between theory and experiment. Electrophysiological recordings on Kir2.2 and its mutants were performed by heterologous expression in Xenopus laevis oocytes. Our results confirmed that extracellular Mg2+ could reduce heterologously expressed WT Kir2.2 currents in a voltage dependent manner. The kinetics of inhibition and recovery of Mg2+ exhibit a 3∼4s time constant. Molecular dynamics simulation results revealed a Mg2+ binding site located at the extracellular mouth of Kir2.2 that showed voltage-dependent Mg2+ binding. The mutants, G119D, Q126E and H128D, increased the number of permeant K+ ions and reduced the voltage-dependent blockade of Kir2.2 by extracellular Mg2+. PMID:25350118

  5. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells

    PubMed Central

    Santos, Sonia; Padilla, Karen; Printzenhoff, David; Castle, Neil A.

    2016-01-01

    The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA) binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799) which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N) resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies. PMID:27556810

  6. Alterations of voltage-dependent K(+) channels in the mesenteric artery during the early and chronic phases of diabetes.

    PubMed

    Hong, Da Hye; Li, Hongliang; Kim, Hye Won; Kim, Han Sol; Son, Youn Kyoung; Yang, Se-Ran; Park, Jeong-Ran; Ha, Kwon-Soo; Han, Eun-Taek; Hong, Seok-Ho; Firth, Amy L; Na, Sung Hun; Park, Won Sun

    2016-09-01

    This study investigated the alteration of voltage-dependent K(+) (Kv) channels in mesenteric arterial smooth muscle cells from control (Long-Evans Tokushima Otsuka [LETO]) and diabetic (Otsuka Long-Evans Tokushima Fatty [OLETF]) rats during the early and chronic phases of diabetes. We demonstrated alterations in the mesenteric Kv channels during the early and chronic phase of diabetes using the patch-clamp technique, the arterial tone measurement system, and RT-PCR in Long-Evans Tokushima (LETO; for control) and Otsuka Long-Evans Tokushima Fatty (OLETF; for diabetes) type 2 diabetic model rats. In the early phase of diabetes, the amplitude of mesenteric Kv currents induced by depolarizing pulses was greater in OLETF rats than in LETO rats. The contractile response of the mesenteric artery induced by the Kv inhibitor, 4-aminopyridine (4-AP), was also greater in OLETF rats. The expression of most Kv subtypes- including Kv1.1, Kv1.2, Kv1.4, Kv1.5, Kv1.6, Kv2.1, Kv3.2, Kv4.1, Kv4.3, Kv5.1, Kv6.2, Kv8.1, Kv9.3, and Kv10.1-were increased in mesenteric arterial smooth muscle from OLETF rats compared with LETO rats. However, in the chronic phase of diabetes, the Kv current amplitude did not differ between LETO and OLETF rats. In addition, the 4-AP-induced contractile response of the mesenteric artery and the expression of Kv subtypes did not differ between the two groups. The increased Kv current amplitude and Kv channel-related contractile response were attributable to the increase in Kv channel expression during the early phase of diabetes. The increased Kv current amplitude and Kv channel-related contractile response were reversed during the chronic phase of diabetes. PMID:27218229

  7. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death.

    PubMed Central

    Azoulay-Zohar, Heftsi; Israelson, Adrian; Abu-Hamad, Salah; Shoshan-Barmatz, Varda

    2004-01-01

    In tumour cells, elevated levels of mitochondria-bound isoforms of hexokinase (HK-I and HK-II) result in the evasion of apoptosis, thereby allowing the cells to continue proliferating. The molecular mechanisms by which bound HK promotes cell survival are not yet fully understood. Our studies relying on the purified mitochondrial outer membrane protein VDAC (voltage-dependent anion channel), isolated mitochondria or cells in culture suggested that the anti-apoptotic activity of HK-I occurs via modulation of the mitochondrial phase of apoptosis. In the present paper, a direct interaction of HK-I with bilayer-reconstituted purified VDAC, inducing channel closure, is demonstrated for the first time. Moreover, HK-I prevented the Ca(2+)-dependent opening of the mitochondrial PTP (permeability transition pore) and release of the pro-apoptotic protein cytochrome c. The effects of HK-I on VDAC activity and PTP opening were prevented by the HK reaction product glucose 6-phosphate, a metabolic intermediate in most biosynthetic pathways. Furthermore, glucose 6-phosphate re-opened both the VDAC and the PTP closed by HK-I. The HK-I-mediated effects on VDAC and PTP were not observed using either yeast HK or HK-I lacking the N-terminal hydrophobic peptide responsible for binding to mitochondria, or in the presence of an antibody specific for the N-terminus of HK-I. Finally, HK-I overexpression in leukaemia-derived U-937 or vascular smooth muscle cells protected against staurosporine-induced apoptosis, with a decrease of up to 70% in cell death. These results offer insight into the mechanisms by which bound HK promotes tumour cell survival, and suggests that its overexpression not only ensures supplies of energy and phosphometabolites, but also reflects an anti-apoptotic defence mechanism. PMID:14561215

  8. Effects of hydrogen peroxide on voltage-dependent K+ currents in human cardiac fibroblasts through protein kinase pathways

    PubMed Central

    Bae, Hyemi; Lee, Donghee; Kim, Young-Won; Choi, Jeongyoon; Lee, Hong Jun; Kim, Sang-Wook; Kim, Taeho; Noh, Yun-Hee; Ko, Jae-Hong; Bang, Hyoweon

    2016-01-01

    Human cardiac fibroblasts (HCFs) have various voltage-dependent K+ channels (VDKCs) that can induce apoptosis. Hydrogen peroxide (H2O2) modulates VDKCs and induces oxidative stress, which is the main contributor to cardiac injury and cardiac remodeling. We investigated whether H2O2 could modulate VDKCs in HCFs and induce cell injury through this process. In whole-cell mode patch-clamp recordings, application of H2O2 stimulated Ca2+-activated K+ (KCa) currents but not delayed rectifier K+ or transient outward K+ currents, all of which are VDKCs. H2O2-stimulated KCa currents were blocked by iberiotoxin (IbTX, a large conductance KCa blocker). The H2O2-stimulating effect on large-conductance KCa (BKCa) currents was also blocked by KT5823 (a protein kinase G inhibitor) and 1 H-[1, 2, 4] oxadiazolo-[4, 3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor). In addition, 8-bromo-cyclic guanosine 3', 5'-monophosphate (8-Br-cGMP) stimulated BKCa currents. In contrast, KT5720 and H-89 (protein kinase A inhibitors) did not block the H2O2-stimulating effect on BKCa currents. Using RT-PCR and western blot analysis, three subtypes of KCa channels were detected in HCFs: BKCa channels, small-conductance KCa (SKCa) channels, and intermediate-conductance KCa (IKCa) channels. In the annexin V/propidium iodide assay, apoptotic changes in HCFs increased in response to H2O2, but IbTX decreased H2O2-induced apoptosis. These data suggest that among the VDKCs of HCFs, H2O2 only enhances BKCa currents through the protein kinase G pathway but not the protein kinase A pathway, and is involved in cell injury through BKCa channels. PMID:27162486

  9. Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear.

    PubMed

    Géléoc, Gwenaëlle S G; Risner, Jessica R; Holt, Jeffrey R

    2004-12-01

    How and when sensory hair cells acquire the remarkable ability to detect and transmit mechanical information carried by sound and head movements has not been illuminated. Previously, we defined the onset of mechanotransduction in embryonic hair cells of mouse vestibular organs to be at approximately embryonic day 16 (E16). Here we examine the functional maturation of hair cells in intact sensory epithelia excised from the inner ears of embryonic mice. Hair cells were studied at stages between E14 and postnatal day 2 using the whole-cell, tight-seal recording technique. We tracked the developmental acquisition of four voltage-dependent conductances. We found a delayed rectifier potassium conductance that appeared as early as E14 and grew in amplitude over the subsequent prenatal week. Interestingly, we also found a low-voltage-activated potassium conductance present at E18, approximately 1 week earlier than reported previously. An inward rectifier conductance appeared at approximately E15 and doubled in size over the next few days. We also noted transient expression of a voltage-gated sodium conductance that peaked between E16 and E18 and then declined to near zero at birth. We propose that hair cells undergo a stereotyped developmental pattern of ion channel acquisition and that the precise pattern may underlie other developmental processes such as synaptogenesis and functional differentiation into type I and type II hair cells. In addition, we find that the developmental acquisition of basolateral conductances shapes the hair cell receptor potential and therefore comprises an important step in the signal cascade from mechanotransduction to neurotransmission. PMID:15590931

  10. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding

    PubMed Central

    Lee, Jin Hee; Park, Jin Won; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han

    2016-01-01

    To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK). Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG) uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC)1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH. PMID:27479079

  11. Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense

    PubMed Central

    Li, Yingxiang; Zhang, Linlin; Qu, Tao; Li, Li; Zhang, Guofan

    2016-01-01

    Genomic and transcriptomic studies have revealed a sophisticated and powerful apoptosis regulation network in oyster, highlighting its adaptation to sessile life in a highly stressful intertidal environment. However, the functional molecular basis of apoptosis remains largely unexplored in oysters. In this study, we focused on a representative apoptotic gene encoding voltage-dependent anion channel 2 (VDAC2), a porin that abounds at the mitochondrial outer membrane. This is the first report on the identification and characterization of a VDAC gene in the Pacific oyster, Crassostrea gigas (CgVDAC2). The full length of CgVDAC2 was 1,738 bp with an open reading frame of 843 bp that encoded a protein of 281 amino acids. A four-element eukaryotic porin signature motif, a conserved ATP binding motif, and a VKAKV-like sequence were identified in the predicted CgVDAC2. Expression pattern analysis in different tissues and developmental stages as well as upon infection by ostreid herpesvirus 1 revealed the energy supply-related and immunity-related expression of CgVDAC2. CgVDAC2 was co-localized with mitochondria when it was transiently transfected into HeLa cells. Overexpression of CgVDAC2 in HEK293T cells suppressed the UV irradiation-induced apoptosis by inhibiting the pro-apoptotic function of CgBak. RNA interference induced reduction in CgVDAC2 expression showed a promoted apoptosis level upon UV light irradiation in hemocytes. The yeast two-hybrid system and co-immunoprecipitation assay indicated a direct interaction between CgVDAC2 and the pro-apoptotic protein CgBak. This study revealed the function of VDAC2 in oyster and provided new insights into its involvement in apoptosis modulation and host defense in mollusks. PMID:26727366

  12. Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC).

    PubMed

    Sheldon, Kely L; Gurnev, Philip A; Bezrukov, Sergey M; Sackett, Dan L

    2015-10-30

    It was previously shown that tubulin dimer interaction with the mitochondrial outer membrane protein voltage-dependent anion channel (VDAC) blocks traffic through the channel and reduces oxidative metabolism and that this requires the unstructured anionic C-terminal tail peptides found on both α- and β-tubulin subunits. It was unclear whether the α- and β-tubulin tails contribute equally to VDAC blockade and what effects might be due to sequence variations in these tail peptides or to tubulin post-translational modifications, which mostly occur on the tails. The nature of the contribution of the tubulin body beyond acting as an anchor for the tails had not been clarified either. Here we present peptide-protein chimeras to address these questions. These constructs allow us to easily combine a tail peptide with different proteins or combine different tail peptides with a particular protein. The results show that a single tail grafted to an inert protein is sufficient to produce channel closure similar to that observed with tubulin. We show that the β-tail is more than an order of magnitude more potent than the α-tail and that the lower α-tail activity is largely due to the presence of a terminal tyrosine. Detyrosination activates the α-tail, and activation is reversed by the removal of the glutamic acid penultimate to the tyrosine. Nitration of tyrosine reverses the tyrosine inhibition of binding and even induces prolonged VDAC closures. Our results demonstrate that small changes in sequence or post-translational modification of the unstructured tails of tubulin result in substantial changes in VDAC closure. PMID:26306046

  13. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding.

    PubMed

    Quach, Cung Hoa Thien; Jung, Kyung-Ho; Lee, Jin Hee; Park, Jin Won; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han

    2016-01-01

    To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK). Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG) uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC)1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH. PMID:27479079

  14. Voltage-dependent modulation of single N-Type Ca2+ channel kinetics by receptor agonists in IMR32 cells.

    PubMed Central

    Carabelli, V; Lovallo, M; Magnelli, V; Zucker, H; Carbone, E

    1996-01-01

    The voltage-dependent inhibition of single N-type Ca(2+) channels by noradrenaline (NA) and the delta-opioid agonist D-Pen(2)-D-Pen (5)-enkephalin (DPDPE) was investigated in cell-attached patches of human neuroblastoma IMR32 cells with 100 mM Ba(2+) and 5 microM nifedipine to block L-type channels. In 70% of patches, addition of 20 microM NA + 1 microM DPDPE delayed markedly the first channel openings, causing a four- to fivefold increase of the first latency at +20 mV. The two agonists or NA alone decreased also by 35% the open probability (P(o)), prolonged partially the mean closed time, and increased the number of null sweeps. In contrast, NA + DPDPE had little action on the single-channel conductance (19 versus 19.2 pS) and minor effects on the mean open time. Similarly to macroscopic Ba(2+) currents, the ensemble currents were fast activating at control but slowly activating and depressed with the two agonists. Inhibition of single N-type channels was effectively removed (facilitated) by short and large depolarizations. Facilitatory pre-pulses increased P(o) significantly and decreased fourfold the first latency. Ensemble currents were small and slowly activating before pre-pulses and became threefold larger and fast decaying after facilitation. Our data suggest that slowdown of Ca(2+) channel activation by transmitters is mostly due to delayed transitions from a modified to a normal (facilitated) gating mode. This single-channel gating modulation could be well simulated by a Monte Carlo method using previously proposed kinetic models predicting marked prolongation of first channel openings. Images FIGURE 3 FIGURE 4 FIGURE 7 PMID:9172738

  15. Voltage-dependent modulation of single N-Type Ca2+ channel kinetics by receptor agonists in IMR32 cells.

    PubMed

    Carabelli, V; Lovallo, M; Magnelli, V; Zucker, H; Carbone, E

    1996-05-01

    The voltage-dependent inhibition of single N-type Ca(2+) channels by noradrenaline (NA) and the delta-opioid agonist D-Pen(2)-D-Pen (5)-enkephalin (DPDPE) was investigated in cell-attached patches of human neuroblastoma IMR32 cells with 100 mM Ba(2+) and 5 microM nifedipine to block L-type channels. In 70% of patches, addition of 20 microM NA + 1 microM DPDPE delayed markedly the first channel openings, causing a four- to fivefold increase of the first latency at +20 mV. The two agonists or NA alone decreased also by 35% the open probability (P(o)), prolonged partially the mean closed time, and increased the number of null sweeps. In contrast, NA + DPDPE had little action on the single-channel conductance (19 versus 19.2 pS) and minor effects on the mean open time. Similarly to macroscopic Ba(2+) currents, the ensemble currents were fast activating at control but slowly activating and depressed with the two agonists. Inhibition of single N-type channels was effectively removed (facilitated) by short and large depolarizations. Facilitatory pre-pulses increased P(o) significantly and decreased fourfold the first latency. Ensemble currents were small and slowly activating before pre-pulses and became threefold larger and fast decaying after facilitation. Our data suggest that slowdown of Ca(2+) channel activation by transmitters is mostly due to delayed transitions from a modified to a normal (facilitated) gating mode. This single-channel gating modulation could be well simulated by a Monte Carlo method using previously proposed kinetic models predicting marked prolongation of first channel openings. PMID:9172738

  16. Expression and motor functional roles of voltage-dependent type 7 K(+) channels in the human taenia coli.

    PubMed

    Adduci, Alice; Martire, Maria; Taglialatela, Maurizio; Arena, Vincenzo; Rizzo, Gianluca; Coco, Claudio; Currò, Diego

    2013-12-01

    Voltage-dependent type 7 K(+) (KV7 or KCNQ) channels modulate the excitability of neurons and muscle cells. The aims of the present study were to investigate the motor effects of KV7 channel modulators and the expression of KV7 channels in the human taenia coli. The effects of KV7 channel modulators on the muscle tone of human taenia coli strips were investigated under nonadrenergic non-nitrergic conditions by organ bath studies. Gene expression and tissue localisation of channels were studied by real-time PCR and immunohistochemistry, respectively. Under basal conditions, the KV7 channel blocker XE-991 induced concentration-dependent contractions, with mean EC50 and Emax of 18.7 μM and 30.5% respectively of the maximal bethanechol-induced contraction, respectively. The KV7 channel activators retigabine and flupirtine concentration-dependently relaxed the taenia coli, with mean EC50s of 19.2 μM and 29.9 μM, respectively. Retigabine also relaxed bethanechol-precontracted strips, with maximal relaxations of 79.2% of the bethanecol-induced precontraction. The motor effects induced by the KV7 channel modulators were not affected by tetrodotoxin or ω-conotoxin GVIA. XE-991 greatly reduced retigabine- and flupirtine-induced relaxations. Transcripts encoded by all KCNQ genes were detected in the taenia coli, with KCNQ4 showing the highest expression levels. KV7.4 channels were clearly visualised by immunohistochemistry in colonic epithelium, circular muscle layer and taenia coli. KV7 channels appear to contribute to the resting muscle tone of the human taenia coli. In addition, KV7 channel activators significantly relax the taenia coli. Thus, they could be useful therapeutic relaxant agents for colonic motor disorders. PMID:24120659

  17. Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense.

    PubMed

    Li, Yingxiang; Zhang, Linlin; Qu, Tao; Li, Li; Zhang, Guofan

    2016-01-01

    Genomic and transcriptomic studies have revealed a sophisticated and powerful apoptosis regulation network in oyster, highlighting its adaptation to sessile life in a highly stressful intertidal environment. However, the functional molecular basis of apoptosis remains largely unexplored in oysters. In this study, we focused on a representative apoptotic gene encoding voltage-dependent anion channel 2 (VDAC2), a porin that abounds at the mitochondrial outer membrane. This is the first report on the identification and characterization of a VDAC gene in the Pacific oyster, Crassostrea gigas (CgVDAC2). The full length of CgVDAC2 was 1,738 bp with an open reading frame of 843 bp that encoded a protein of 281 amino acids. A four-element eukaryotic porin signature motif, a conserved ATP binding motif, and a VKAKV-like sequence were identified in the predicted CgVDAC2. Expression pattern analysis in different tissues and developmental stages as well as upon infection by ostreid herpesvirus 1 revealed the energy supply-related and immunity-related expression of CgVDAC2. CgVDAC2 was co-localized with mitochondria when it was transiently transfected into HeLa cells. Overexpression of CgVDAC2 in HEK293T cells suppressed the UV irradiation-induced apoptosis by inhibiting the pro-apoptotic function of CgBak. RNA interference induced reduction in CgVDAC2 expression showed a promoted apoptosis level upon UV light irradiation in hemocytes. The yeast two-hybrid system and co-immunoprecipitation assay indicated a direct interaction between CgVDAC2 and the pro-apoptotic protein CgBak. This study revealed the function of VDAC2 in oyster and provided new insights into its involvement in apoptosis modulation and host defense in mollusks. PMID:26727366

  18. Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina.

    PubMed

    Stella, Salvatore L; Hu, Wanda D; Vila, Alejandro; Brecha, Nicholas C

    2007-04-01

    Endogenous adenosine has already been shown to inhibit transmitter release from the rod synapse by suppressing Ca(2+) influx through voltage-gated Ca(2+) channels. However, it is not clear how adenosine modulates the cone synapse. Cone photoreceptors, like rod photoreceptors, also possess L-type Ca(2+) channels that regulate the release of L-glutamate. To assess the impact of adenosine on Ca(2+) influx though voltage-gated Ca(2+) channels in cone terminals, whole-cell perforated-patch clamp recording and Ca(2+) imaging with fluo-4 were used on isolated cones and salamander retinal slices. Synaptic markers (VAMP and piccolo) and activity-dependent dye labeling revealed that tiger salamander cone terminals contain a broad, vesicle-filled cytoplasmic extension at the base of the somatic compartment, which is unlike rod terminals that contain one or more thin axons, each terminating in a large bulbous synaptic terminal. The spatiotemporal Ca(2+) responses of the cone terminals do not differ significantly from the Ca(2+) responses of the soma or inner segment like that observed in rods. Whole-cell recording of cone I(Ca) and Ca(2+) imaging of synaptic terminals in cones demonstrate that adenosine inhibited both I(Ca) and the depolarization-evoked Ca(2+) increase in cone terminals in a dose-dependent manner from 1 to 50 muM. These results indicate that, as in rods, adenosine's ability to suppress voltage-dependent Ca(2+) channels at the cone synapse will limit the amount of L-glutamate released. Therefore, adenosine has an inhibitory effect on L-glutamate release at the first synapse, which likely favors elevated adenosine levels in the dark or during dark-adapted conditions. PMID:17304584

  19. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.

    PubMed Central

    Carbone, E; Lux, H D; Carabelli, V; Aicardi, G; Zucker, H

    1997-01-01

    between -40 and 0 mV, which was effectively relieved with more positive as well as with negative potentials (KD = 0.7 microM in 120 mM Na+ at -20 mV). In this case, the kinetics of re-block could be resolved and gave rates of entry and exit for Ca2+ of 1.4 x 10(8) M-1 S-1 and 2.95 x 10(2) s-1, respectively. 8. The strong voltage dependence and weak current dependence of HVA channel block by divalent cations and the markedly different KD values of Na+ and Ca2+ current block by Mg2+ can be well described by a previously proposed model for Ca2+ channel permeation based on interactions between the permeating ion and the negative charges forming the high-affinity binding site for Ca2+ inside the pore (Lux, Carbone & Zucker, 1990). PMID:9350613

  20. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.

    PubMed

    Carbone, E; Lux, H D; Carabelli, V; Aicardi, G; Zucker, H

    1997-10-01

    between -40 and 0 mV, which was effectively relieved with more positive as well as with negative potentials (KD = 0.7 microM in 120 mM Na+ at -20 mV). In this case, the kinetics of re-block could be resolved and gave rates of entry and exit for Ca2+ of 1.4 x 10(8) M-1 S-1 and 2.95 x 10(2) s-1, respectively. 8. The strong voltage dependence and weak current dependence of HVA channel block by divalent cations and the markedly different KD values of Na+ and Ca2+ current block by Mg2+ can be well described by a previously proposed model for Ca2+ channel permeation based on interactions between the permeating ion and the negative charges forming the high-affinity binding site for Ca2+ inside the pore (Lux, Carbone & Zucker, 1990). PMID:9350613

  1. Endothelin activates voltage-dependent Ca2+ current by a G protein-dependent mechanism in rabbit cardiac myocytes.

    PubMed Central

    Lauer, M R; Gunn, M D; Clusin, W T

    1992-01-01

    1. Endothelin is a vasoactive peptide released from vascular endothelial cells which has potent cardiac inotropic effects. We examined the effect of endothelin on the verapamil-sensitive Ca2+ current (ICa) in enzymatically dispersed rabbit ventricular myocytes. 2. Using the whole-cell voltage clamp technique with a standard dialysing pipette solution, the application of extracellular endothelin (20 nM) did not increase the peak ICa, but in fact caused a small reversible decline (903 +/- 109 pA without endothelin, 727 +/- 95 pA with endothelin (means +/- S.E.M., n = 14, P less than 0.05)). 3. If GTP (100 microM) was added to the pipette solution, the extracellular application of endothelin (0.2 or 20 nM) caused a large, reproducible increase in peak ICa (871 +/- 85 pA without endothelin, 1230 +/- 110 pA with 20 nM-endothelin (n = 10, P less than 0.05). The endothelin enhancement of ICa occurred after a delay of approximately 3-4 min at room temperature. 4. The GTP requirement for the endothelin effect on ICa suggests that its effect may be mediated through a G protein-dependent pathway. To investigate this further, experiments were performed with pipette solutions containing guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), a GDP analogue which inhibits G protein cycling. With the addition of GDP beta S (0.5-5.0 mM) to the pipette solution (along with 100 microM-GTP), the effect of endothelin on peak ICa was blocked (1062 +/- 86 pA without endothelin, 1170 +/- 134 pA with endothelin (n = 11, P greater than 0.05)). 5. Incubation of myocytes with pertussis toxin (500 ng/ml) prevented the partial ACh-induced reversal of the isoprenolol enhancement of ICa. However, this identical treatment failed to block the endothelin enhancement of the voltage-dependent Ca2+ current (n = 4). 6. Taken together, these results confirm that while the effect of endothelin in rabbit cardiac ventricular myocytes is mediated through a G protein-dependent pathway, the G protein involved is

  2. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates.

    PubMed

    McCarty, N A; McDonough, S; Cohen, B N; Riordan, J R; Davidson, N; Lester, H A

    1993-07-01

    The gene defective in cystic fibrosis encodes a Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is blocked by diphenylamine-2-carboxylate (DPC) when applied extracellularly at millimolar concentrations. We studied the block of CFTR expressed in Xenopus oocytes by DPC or by a closely related molecule, flufenamic acid (FFA). Block of whole-cell CFTR currents by bath-applied DPC or by FFA, both at 200 microM, requires several minutes to reach full effect. Blockade is voltage dependent, suggesting open-channel block: currents at positive potentials are not affected but currents at negative potentials are reduced. The binding site for both drugs senses approximately 40% of the electric field across the membrane, measured from the inside. In single-channel recordings from excised patches without blockers, the conductance was 8.0 +/- 0.4 pS in symmetric 150 mM Cl-. A subconductance state, measuring approximately 60% of the main conductance, was often observed. Bursts to the full open state lasting up to tens of seconds were uninterrupted at depolarizing membrane voltages. At hyperpolarizing voltages, bursts were interrupted by brief closures. Either DPC or FFA (50 microM) applied to the cytoplasmic or extracellular face of the channel led to an increase in flicker at Vm = -100 mV and not at Vm = +100 mV, in agreement with whole-cell experiments. DPC induced a higher frequency of flickers from the cytoplasmic side than the extracellular side. FFA produced longer closures than DPC; the FFA closed time was roughly equal (approximately 1.2 ms) at -100 mV with application from either side. In cell-attached patch recordings with DPC or FFA applied to the bath, there was flickery block at Vm = -100 mV, confirming that the drugs permeate through the membrane to reach the binding site. The data are consistent with the presence of a single binding site for both drugs, reached from either end of the channel. Open-channel block by DPC or FFA may

  3. Phylogenetic relationships linking Duttaphrynus (Amphibia: Anura: Bufonidae) species based on 12S and 16S rDNA sequences.

    PubMed

    Pratihar, Suman; Bhattacharya, Manojit; Deuti, Kaushik

    2016-07-01

    Genus Duttaphrynus (Amphibia: Anura: Bufonidae) is endemic to southwestern and southern China and throughout southern Asia. Duttaphrynus phylogeny was also under debate for many years. 12S and 16S rDNAs help us to elucidate Duttaphrynus phylogeny. PMID:26155970

  4. The Association of Receptor of Activated Protein Kinase C 1(RACK1) with Infectious Bursal Disease Virus Viral Protein VP5 and Voltage-dependent Anion Channel 2 (VDAC2) Inhibits Apoptosis and Enhances Viral Replication*

    PubMed Central

    Lin, Wencheng; Zhang, Zhiqiang; Xu, Zhichao; Wang, Bin; Li, Xiaoqi; Cao, Hong; Wang, Yongqiang; Zheng, Shijun J.

    2015-01-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Our previous report indicates that IBDV VP5 induces apoptosis via interaction with voltage-dependent anion channel 2 (VDAC2). However, the underlying molecular mechanism is still unclear. We report here that receptor of activated protein kinase C 1 (RACK1) interacts with both VDAC2 and VP5 and that they could form a complex. We found that overexpression of RACK1 inhibited IBDV-induced apoptosis in DF-1 cells and that knockdown of RACK1 by small interfering RNA induced apoptosis associated with activation of caspases 9 and 3 and suppressed IBDV growth. These results indicate that RACK1 plays an antiapoptotic role during IBDV infection via interaction with VDAC2 and VP5, suggesting that VP5 sequesters RACK1 and VDAC2 in the apoptosis-inducing process. PMID:25583988

  5. Time-resolved photoluminescence measurements for determining voltage-dependent charge-separation efficiencies of subcells in triple-junction solar cells

    SciTech Connect

    Tex, David M.; Ihara, Toshiyuki; Kanemitsu, Yoshihiko; Akiyama, Hidefumi; Imaizumi, Mitsuru

    2015-01-05

    Conventional external quantum-efficiency measurement of solar cells provides charge-collection efficiency for approximate short-circuit conditions. Because this differs from actual operating voltages, the optimization of high-quality tandem solar cells is especially complicated. Here, we propose a contactless method, which allows for the determination of the voltage dependence of charge-collection efficiency for each subcell independently. By investigating the power dependence of photoluminescence decays, charge-separation and recombination-loss time constants are obtained. The upper limit of the charge-collection efficiencies at the operating points is then obtained by applying the uniform field model. This technique may complement electrical characterization of the voltage dependence of charge collection, since subcells are directly accessible.

  6. Trimebutine maleate has inhibitory effects on the voltage-dependent Ca2+ inward current and other membrane currents in intestinal smooth muscle cells.

    PubMed

    Shimada, T; Kurachi, Y; Terano, A; Hamada, E; Sugimoto, T

    1990-04-01

    We examined effects of trimebutine maleate on the membrane currents of the intestinal smooth muscle cells by using the tight-seal whole cell clamp technique. Trimebutine suppressed the Ba2+ inward current through voltage-dependent Ca2+ channels in a dose-dependent manner. The inhibitory effect of trimebutine on the Ba2+ inward current was not use-dependent. It shifted the steady-state inactivation curve to the left along the voltage axis. Trimebutine also had inhibitory effects on the other membrane currents of the cells, such as the voltage-dependent K+ current, the Ca2(+)-activated oscillating K+ current and the acetylcholine-induced inward current. These relatively non-specific inhibitory effects of trimebutine on the membrane currents may explain, at least in part, the dual actions of the drug on the intestinal smooth muscle contractility, i.e. inhibitory as well as excitatory. PMID:2161373

  7. Cosmocercoides himalayanus sp. nov. (Nematoda, Cosmocercidae) in Duttaphrynus himalayanus (Amphibia, Anura) from Dehradun (Uttarakhand), India.

    PubMed

    Rizvi, Anjum N; Bursey, Charles R

    2014-03-01

    Cosmocercoides himalayanus sp. nov. (Nematoda, Cosmocercidae) from the large intestine of Duttaphrynus himalayanus (Amphibia, Anura) from Dehradun, India is described and illustrated. Cosmocercoides himalayanus sp. nov. represents the 21st species assigned to the genus and the 9th species from the Oriental biogeographical region. Cosmocercoides himalayanus sp. nov. differs from the previously described Oriental species in number and position of rosette papillae; it is the only species possessing 24 or more rosette papillae to have 4 postcloacal papillae. In addition, a list of species assigned to Cosmocercoides is provided; however, C. fotedari Arya, 1992 is removed from the genus and until further study is considered a species inquirenda. PMID:24570052

  8. The telencephalon of Ichthyophis paucisulcus (Amphibia, Gymnophiona (= Caecilia)). A quantitative cytoarchitectonic study.

    PubMed

    Zilles, K; Welsch, U; Schleicher, A

    1981-01-01

    A parcellation of the telencephalon of Ichthyophis paucisulcus (Amphibia, Gymnophiona (= Caecilia) has been performed with a quantitative cytoarchitectonic method. Ten different regions have been delineated and compared with earlier reports on telencephalic regions in anurans, urodeles and caecilians. The most striking difference between the brain of Ichthyophis and other amphibian brains is the high level of morphological differentiation of the accessory olfactory bulb in Ichthyophis and the large extension of this brain region. This feature may be a correlate of the advanced development and the particular structure of Jacobson's organ in this species. PMID:7336818

  9. Voltage-dependent currents and modulation of calcium channel expression in zona fasciculata cells from rat adrenal gland.

    PubMed Central

    Barbara, J G; Takeda, K

    1995-01-01

    2+ current types was unaffected by pre-incubation with 8-bromo-cAMP or forskolin. The protein kinase A antagonist, H89, did not inhibit the ACTH-induced upregulation of T-type Ca2+ currents. 7. It is concluded that the main voltage-dependent currents involved in cell excitability and steroidogenesis in rat adrenal ZF cells are an A-type K+ current and a T-type Ca2+ current. The physiological role and control of expression of L-type Ca2+ channels in rat ZF cells remain less clear. PMID:8576852

  10. Voltage-dependent capacitance behavior and underlying mechanisms in metal-insulator-metal capacitors with Al2O3-ZrO2-SiO2 nano-laminates

    NASA Astrophysics Data System (ADS)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Ding, Shi-Jin

    2016-04-01

    Nano-laminates consisting of high-permittivity dielectrics and SiO2 have been extensively studied for radio frequency metal-insulator-metal (MIM) capacitors because of their superior voltage linearity and low leakage current. However, there are no reports on the capacitance-voltage (C-V) characteristics at a high sweep voltage range. In this work, an interesting variation in the voltage-dependent capacitance that forms a ‘ω’-like shape is demonstrated for the MIM capacitors with Al2O3/ZrO2/SiO2 nano-laminates. As the thickness ratio of the SiO2 film to the total insulator increases to around 0.15, the C-V curve changes from an upward parabolic shape to a ‘ω’ shape. This can be explained based on the competition between the orientation polarization from SiO2 and the electrode polarization from Al2O3 and ZrO2. When the SiO2 film is very thin, the electrode polarization dominates in the MIM capacitor, generating a positive curvature C-V curve. When the thickness of SiO2 is increased, the orientation polarization is enhanced and thus both polarizations are operating in the MIM capacitors. This leads to the appearance of a multiple domain C-V curve containing positive and negative curvatures. Therefore, good consistency between the experimental results and the theoretical simulations is demonstrated. Such voltage-dependent capacitance behavior is not determined by the stack structure of the insulator, measurement frequency and oscillator voltage, but by the thickness ratio of the SiO2 film to the whole insulator. These findings are helpful to engineer MIM capacitors with good voltage linearity.

  11. Rab3 interacting molecule 3 mutations associated with autism alter regulation of voltage-dependent Ca²⁺ channels.

    PubMed

    Takada, Yoshinori; Hirano, Mitsuru; Kiyonaka, Shigeki; Ueda, Yoshifumi; Yamaguchi, Kazuma; Nakahara, Keiko; Mori, Masayuki X; Mori, Yasuo

    2015-09-01

    Autism is a neurodevelopmental psychiatric disorder characterized by impaired reciprocal social interaction, disrupted communication, and restricted and stereotyped patterns of interests. Autism is known to have a strong genetic component. Although mutations in several genes account for only a small proportion of individuals with autism, they provide insight into potential biological mechanisms that underlie autism, such as dysfunction in Ca(2+) signaling, synaptic dysfunction, and abnormal brain connectivity. In autism patients, two mutations have been reported in the Rab3 interacting molecule 3 (RIM3) gene. We have previously demonstrated that RIM3 physically and functionally interacts with voltage-dependent Ca(2+) channels (VDCCs) expressed in neurons via the β subunits, and increases neurotransmitter release. Here, by introducing corresponding autism-associated mutations that replace glutamic acid residue 176 with alanine (E176A) and methionine residue 259 with valine (M259V) into the C2B domain of mouse RIM3, we demonstrate that both mutations partly cancel the suppressive RIM3 effect on voltage-dependent inactivation of Ba(2+) currents through P/Q-type CaV2.1 recombinantly expressed in HEK293 cells. In recombinant N-type CaV2.2 VDCCs, the attenuation of the suppressive RIM3 effect on voltage-dependent inactivation is conserved for M259V but not E176A. Slowing of activation speed of P/Q-type CaV2.1 currents by RIM3 is abolished in E176A, while the physical interaction between RIM3 and β subunits is significantly attenuated in M259V. Moreover, increases by RIM3 in depolarization-induced Ca(2+) influx and acetylcholine release are significantly attenuated by E176A in rat pheochromocytoma PC12 cells. Thus, our data raise the interesting possibility that autism phenotypes are elicited by synaptic dysfunction via altered regulation of presynaptic VDCC function and neurotransmitter release. PMID:26142343

  12. Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

    PubMed Central

    Dizayee, Sara; Kaestner, Sonja; Kuck, Fabian; Hein, Peter; Klein, Christoph; Piekorz, Roland P.; Meszaros, Janos; Matthes, Jan; Nürnberg, Bernd; Herzig, Stefan

    2011-01-01

    Background Two pertussis toxin sensitive Gi proteins, Gi2 and Gi3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous Gi isoforms are functionally distinct. To test for isoform-specific functions of Gi proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). Methods Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gαi2 (Gαi2−/−) or Gαi3 (Gαi3−/−). mRNA levels of Gαi/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gαi and Cavα1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. Results In cardiac tissue from Gαi2−/− mice, Gαi3 mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In Gαi3−/− mouse hearts, Gαi2 mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gαi2−/− mice was lowered (−7.9±0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (−10.7±0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gαi3−/− mice (−14.3±0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gαi2 (but not of Gαi3) and following treatment with pertussis toxin in Gαi3−/−. The pore forming Cavα1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cavα1 and Cavβ2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gαi2. Conclusion Our data provide novel evidence for an isoform-specific modulation of L-VDCC by G

  13. THE VOLTAGE DEPENDENCE OF GATING CURRENTS OF THE NEURONAL CAV3.3 CHANNEL IS DETERMINED BY THE GATING BRAKE IN THE I-II LOOP

    PubMed Central

    Karmažínová, Mária; Baumgart, Joel; Perez-Reyes, Edward; Lacinová, L'ubica

    2012-01-01

    Low-voltage activated CaV3 Ca2+ channels have an activation threshold around −60 mV, which is lower than the activation threshold of other voltage-dependent calcium channels (VDCC). The kinetics of their activation at membrane voltages just above the activation threshold is much slower than the activation kinetics of other VDCCs. It was demonstrated recently that the intracellular loop connecting repeats I and II of all three CaV3 channels contains a so-called “gating brake.” Disruption of this brake yields channels that activate at even more hyperpolarized potentials with significantly accelerated kinetics. We have compared gating of a wild type CaV3.3 channel and a mutated ID12 channel, in which the putative gating brake at the proximal part of the I-II loop was removed. Voltage dependence of the gating current activation was shifted by 34.6 mV towards more hyperpolarized potentials in ID12 channel. Kinetics of the on-charge activation was significantly accelerated, while kinetics of the off-charge was not altered. We conclude that the putative gating brake in I-II loop hinders not only the opening of the conducting pore but also the activating movement of voltage sensing S4 segments, stabilizing the channel in its closed state. PMID:21340458

  14. ELF magnetic fields tuned to ion parametric resonance conditions do not affect TEA-sensitive voltage-dependent outward K(+) currents in a human neural cell line.

    PubMed

    Gavoçi, Entelë; Zironi, Isabella; Remondini, Daniel; Virelli, Angela; Castellani, Gastone; Del Re, Brunella; Giorgi, Gianfranco; Aicardi, Giorgio; Bersani, Ferdinando

    2013-12-01

    Despite the experimental evidence of significant biological effects of extremely low frequency (ELF) magnetic fields (MFs), the underlying mechanisms are still unclear. Among the few mechanisms proposed, of particular interest is the so called "ion parametric resonance (IPR)" hypothesis, frequently referred to as theoretical support for medical applications. We studied the effect of different combinations of static (DC) and alternating (AC) ELF MFs tuned on resonance conditions for potassium (K(+)) on TEA-sensitive voltage-dependent outward K(+) currents in the human neuroblastoma BE(2)C cell line. Currents through the cell membrane were measured by whole-cell patch clamp before, during, and after exposure to MF. No significant changes in K(+) current density were found. This study does not confirm the IPR hypothesis at the level of TEA-sensitive voltage-dependent outward K(+) currents in our experimental conditions. However, this is not a direct disprove of the hypothesis, which should be investigated on other ion channels and at single channel levels also. PMID:23900932

  15. Voltage-dependent gating of the Cx32*43E1 hemichannel: Conformational changes at the channel entrances

    PubMed Central

    Kwon, Taekyung; Tang, Qingxiu

    2013-01-01

    Voltage is an important parameter that regulates the open probability of both intercellular channels (gap junctions) and undocked hemichannels formed by members of the connexin gene family. All connexin channels display two distinct voltage-gating processes, termed loop- or slow-gating and Vj- or fast-gating, which are intrinsic hemichannel properties. Previous studies have established that the loop-gate permeability barrier is formed by a large conformational change that reduces pore diameter in a region of the channel pore located at the border of the first transmembrane domain and first extracellular loop (TM1/E1), the parahelix (residues 42–51). Here, we use cadmium metal bridge formation to measure conformational changes reported by substituted cysteines at loci demarcating the intracellular (E109 and L108) and extracellular (Q56) entrance of hemichannels formed by the Cx32 chimera (Cx32*43E1). The results indicate that the intracellular pore entrance narrows from ∼15 Å to ∼10 Å with loop-gate but not apparently with Vj-gate closure. The extracellular entrance does not appear to undergo large conformational changes with either voltage-gating process. The results presented here combined with previous studies suggest that the loop-gate permeability is essentially focal, in that conformational changes in the parahelix but not the intracellular entrance are sufficient to prevent ion flux. PMID:23319727

  16. A Tight-Seal Whole Cell Study of the Voltage-Dependent Gating Mechanism of K+-Channels of Protoplasmic Droplets of Chara corallina1

    PubMed Central

    Homblé, Fabrice

    1987-01-01

    The biophysical properties of voltage-dependent K+-channels of protoplasmic droplets of Chara corallina Klein ex Willd., em, R.D.W. were investigated using the tight-seal whole cell method. Two potassium currents were observed in voltage-clamp mode and they can be used to explain the transient membrane potential time course observed in current-clamp mode. The K+-channels are identified by the effect of tetraethylammonium chloride which blocks both currents. A two-state, constant dipole moment model is used to fit the voltage-conductance curve. From this model the minimum equivalent gating charge involved in the gating mechanism of K+-channels of Chara can be estimated. PMID:16665457

  17. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum

    PubMed Central

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  18. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum.

    PubMed

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  19. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    SciTech Connect

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John; Garris, Rebekah; Deline, Chris; Silverman, Timothy

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown due to partial-shading degradation.

  20. The Effects of the Selective Serotonin Reuptake Inhibitor Fluvoxamine on Voltage-Dependent K(+) Channels in Rabbit Coronary Arterial Smooth Muscle Cells.

    PubMed

    Hong, Da Hye; Li, Hongliang; Kim, Han Sol; Kim, Hye Won; Shin, Sung Eun; Jung, Won-Kyo; Na, Sung Hun; Choi, Il-Whan; Firth, Amy Leanne; Park, Won Sun; Kim, Dae-Joong

    2015-01-01

    We demonstrated the inhibitory effect of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), on voltage-dependent K(+) (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Fluvoxamine reduced the amplitude of Kv currents in a concentration-dependent manner with an IC50 value of 3.71±1.09 µM and a Hill coefficient of 0.62±0.14. Although fluvoxamine did not significantly affect the steady-state activation curve, it shifted the steady-state inactivation curve toward a more negative potential. Pretreatment with another SSRI, paroxetine, did not affect the basal Kv current and did not alter the inhibitory effect of fluvoxamine on Kv channels. We concluded that fluvoxamine inhibits the Kv current in a concentration-dependent manner and in a closed (inactivated) state of the Kv channels independent of serotonin reuptake inhibition. PMID:26235584

  1. Interactions between dendrotoxin, a blocker of voltage-dependent potassium channels, and charybdotoxin, a blocker of calcium-activated potassium channels, at binding sites on neuronal membranes.

    PubMed

    Harvey, A L; Marshall, D L; De-Allie, F A; Strong, P N

    1989-08-30

    Dendrotoxin I (DpI) from black mamba venom (Dendroaspis polylepis) has high affinity binding sites on rat brain synaptic membranes. Native DpI displaced [125I]-DpI binding with a Ki of 1 x 10(-10) M, and over 90% of specific binding was displaceable. Charybdotoxin isolated from the Israeli scorpion venom (Leiurus quinquestriatus hebraeus), also displaced [125I]-DpI binding, with a Ki of approximately 3 x 10(-9) M, although the displacement curve was shallower than with native DpI. Both toxins are thought to be high affinity blockers of specific K+ currents. Charybdotoxin selectively blocks some types of Ca2+-activated K+ channels, whereas dendrotoxins only block certain voltage-dependent K+ channels. The interaction between the two types of toxin at the DpI binding site is unexpected and may suggest the presence of related binding sites on different K+ channel proteins. PMID:2476127

  2. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.

    PubMed

    Niemeyer, María Isabel; Cid, L Pablo; Yusef, Yamil R; Briones, Rodolfo; Sepúlveda, Francisco V

    2009-04-01

    The ClC transport protein family comprises both Cl(-) ion channel and H(+)/Cl(-) and H(+)/NO(3)(-) exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl(-) passage and in addition serves as a staging post for H(+) exchange. This same conserved glutamate acts as a gate to regulate Cl(-) flow in ClC channels. The activity of ClC-2, a genuine Cl(-) channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than approximately 7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl(-) acts as a voltage-independent modulator, as though regulating the pK(a) of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl(-) efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts. PMID:19153159

  3. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons

    PubMed Central

    Niemeyer, María Isabel; Cid, L Pablo; Yusef, Yamil R; Briones, Rodolfo; Sepúlveda, Francisco V

    2009-01-01

    The ClC transport protein family comprises both Cl− ion channel and H+/Cl− and H+/NO3− exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl− passage and in addition serves as a staging post for H+ exchange. This same conserved glutamate acts as a gate to regulate Cl− flow in ClC channels. The activity of ClC-2, a genuine Cl− channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than ∼7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl− acts as a voltage-independent modulator, as though regulating the pKa of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl− efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts. PMID:19153159

  4. Expansion of Voltage-dependent Na+ Channel Gene Family in Early Tetrapods Coincided with the Emergence of Terrestriality and Increased Brain Complexity

    PubMed Central

    Zakon, Harold H.; Jost, Manda C.; Lu, Ying

    2011-01-01

    Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost–tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input. PMID:21148285

  5. CaBP1 regulates voltage-dependent inactivation and activation of Ca(V)1.2 (L-type) calcium channels.

    PubMed

    Oz, Shimrit; Tsemakhovich, Vladimir; Christel, Carl J; Lee, Amy; Dascal, Nathan

    2011-04-22

    CaBP1 is a Ca(2+)-binding protein that regulates the gating of voltage-gated (Ca(V)) Ca(2+) channels. In the Ca(V)1.2 channel α(1)-subunit (α(1C)), CaBP1 interacts with cytosolic N- and C-terminal domains and blunts Ca(2+)-dependent inactivation. To clarify the role of the α(1C) N-terminal domain in CaBP1 regulation, we compared the effects of CaBP1 on two alternatively spliced variants of α(1C) containing a long or short N-terminal domain. In both isoforms, CaBP1 inhibited Ca(2+)-dependent inactivation but also caused a depolarizing shift in voltage-dependent activation and enhanced voltage-dependent inactivation (VDI). In binding assays, CaBP1 interacted with the distal third of the N-terminal domain in a Ca(2+)-independent manner. This segment is distinct from the previously identified calmodulin-binding site in the N terminus. However, deletion of a segment in the proximal N-terminal domain of both α(1C) isoforms, which spared the CaBP1-binding site, inhibited the effect of CaBP1 on VDI. This result suggests a modular organization of the α(1C) N-terminal domain, with separate determinants for CaBP1 binding and transduction of the effect on VDI. Our findings expand the diversity and mechanisms of Ca(V) channel regulation by CaBP1 and define a novel modulatory function for the initial segment of the N terminus of α(1C). PMID:21383011

  6. Voltage-Dependent Rhythmogenic Property of Respiratory Pre-Bötzinger Complex Glutamatergic, Dbx1-Derived, and Somatostatin-Expressing Neuron Populations Revealed by Graded Optogenetic Inhibition123

    PubMed Central

    Koizumi, Hidehiko; Mosher, Bryan; Tariq, Mohammad F.; Zhang, Ruli

    2016-01-01

    Abstract The rhythm of breathing in mammals, originating within the brainstem pre-Bötzinger complex (pre-BötC), is presumed to be generated by glutamatergic neurons, but this has not been directly demonstrated. Additionally, developmental expression of the transcription factor Dbx1 or expression of the neuropeptide somatostatin (Sst), has been proposed as a marker for the rhythmogenic pre-BötC glutamatergic neurons, but it is unknown whether these other two phenotypically defined neuronal populations are functionally equivalent to glutamatergic neurons with regard to rhythm generation. To address these problems, we comparatively investigated, by optogenetic approaches, the roles of pre-BötC glutamatergic, Dbx1-derived, and Sst-expressing neurons in respiratory rhythm generation in neonatal transgenic mouse medullary slices in vitro and also more intact adult perfused brainstem-spinal cord preparations in situ. We established three different triple-transgenic mouse lines with Cre-driven Archaerhodopsin-3 (Arch) expression selectively in glutamatergic, Dbx1-derived, or Sst-expressing neurons for targeted photoinhibition. In each line, we identified subpopulations of rhythmically active, Arch-expressing pre-BötC inspiratory neurons by whole-cell recordings in medullary slice preparations in vitro, and established that Arch-mediated hyperpolarization of these inspiratory neurons was laser power dependent with equal efficacy. By site- and population-specific graded photoinhibition, we then demonstrated that inspiratory frequency was reduced by each population with the same neuronal voltage-dependent frequency control mechanism in each state of the respiratory network examined. We infer that enough of the rhythmogenic pre-BötC glutamatergic neurons also have the Dbx1 and Sst expression phenotypes, and thus all three phenotypes share the same voltage-dependent frequency control property. PMID:27275007

  7. The effect of Cyclin-dependent kinase 5 on voltage-dependent calcium channels in PC12 cells varies according to channel type and cell differentiation state.

    PubMed

    Furusawa, Kotaro; Asada, Akiko; Saito, Taro; Hisanaga, Shin-ichi

    2014-08-01

    Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase that plays an important role in the release of neurotransmitter from pre-synaptic terminals triggered by Ca(2+) influx into the pre-synaptic cytoplasm through voltage-dependent Ca(2+) channels (VDCCs). It is reported that Cdk5 regulates L-, P/Q-, or N-type VDCC, but there is conflicting data as to the effect of Cdk5 on VDCC activity. To clarify the mechanisms involved, we examined the role of Cdk5 in regulating the Ca(2+) -channel property of VDCCs, using PC12 cells expressing endogenous, functional L-, P/Q-, and N-type VDCCs. The Ca(2+) influx, induced by membrane depolarization with high K(+) , was monitored with a fluorescent Ca(2+) indicator protein in both undifferentiated and nerve growth factor (NGF)-differentiated PC12 cells. Overall, Ca(2+) influx was increased by expression of Cdk5-p35 in undifferentiated PC12 cells but suppressed in differentiated PC12 cells. Moreover, we found that different VDCCs are distinctly regulated by Cdk5-p35 depending on the differentiation states of PC12 cells. These results indicate that Cdk5-p35 regulates L-, P/Q-, or N-type VDCCs in a cellular context-dependent manner. Calcium (Ca(2+) ) influx through voltage-dependent Ca(2+) channels (VDCCs) triggers neurotransmitter release from pre-synaptic terminal of neurons. The channel activity of VDCCs is regulated by Cdk5-p35, a neuronal Ser/Thr kinase. However, there have been debates about the regulation of VDCCs by Cdk5. Using PC12 cells, we show that Cdk5-p35 regulates VDCCs in a type (L, P/Q, and N) and differentiation-dependent manner. NGF = nerve growth factor. PMID:24766160

  8. Noradrenaline activates a calcium-activated chloride conductance and increases the voltage-dependent calcium current in cultured single cells of rat portal vein.

    PubMed

    Pacaud, P; Loirand, G; Mironneau, C; Mironneau, J

    1989-05-01

    1. Membrane responses were recorded by a patch pipette technique in cultured cells isolated from rat portal vein. Using the whole-cell mode, pressure ejections of noradrenaline evoked depolarization (current clamp) and inward current (voltage clamp) at membrane potentials of -60 to -70 mV. The noradrenaline-induced response was reversibly blocked by prazosin indicating that the response was mediated by alpha 1-adrenoceptors. 2. The ionic mechanism of the noradrenaline-induced inward current was investigated in potassium-free caesium-containing solutions. Alteration of the chloride equilibrium potential produced similar changes in the reversal potential of the noradrenaline-induced current, indicating that noradrenaline opened chloride-selective channels. There was no evidence implicating sodium or calcium as the charge-carrying ion. 3. Caffeine applied in the bathing solution also induced a transient increase in chloride conductance but the noradrenaline-induced response was lost after application of caffeine. This is interpreted to mean that the increase in chloride conductance induced by noradrenaline and caffeine can occur as a consequence of a rise in intracellular calcium concentration depending on release of calcium from the same intracellular stores. 4. In the presence of caffeine, noradrenaline increased both the voltage-dependent calcium and chloride membrane conductances during application of repetitive depolarizing pulses. It is concluded that in isolated cells of the rat portal vein the depolarization in response to noradrenaline is mediated by an increase in chloride conductance depending on both the calcium release from intracellular stores and the increase of the voltage-dependent calcium current. PMID:2470458

  9. Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity.

    PubMed

    Zakon, Harold H; Jost, Manda C; Lu, Ying

    2011-04-01

    Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input. PMID:21148285

  10. Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane.

    PubMed

    Antonenko, Yuri N; Nechaeva, Natalya L; Baksheeva, Victoria E; Rokitskaya, Tatyana I; Plotnikov, Egor Y; Kotova, Elena A; Zorov, Dmitry B

    2015-06-01

    Conjugation to penetrating cations is a general approach for intramitochondrial delivery of physiologically active compounds, supported by a high membrane potential of mitochondria having negative sign on the matrix side. By using fluorescence correlation spectroscopy, we found here that Atto520-biotin, a conjugate of a fluorescent cationic rhodamine-based dye with the membrane-impermeable vitamin biotin, accumulated in energized mitochondria in contrast to biotin-rhodamine 110. The energy-dependent uptake of Atto520-biotin by mitochondria, being slower than that of the conventional mitochondrial dye tetramethyl-rhodamine ethyl ester, was enhanced by the hydrophobic anion tetraphenylborate (TPB). Atto520-biotin also exhibited accumulation in liposomes driven by membrane potential resulting from potassium ion gradient in the presence valinomycin. The induction of electrical current across planar bilayer lipid membrane by Atto520-biotin proved the ability of the compound to permeate through lipid membrane in a cationic form. Atto520-biotin stained mitochondria in a culture of L929 cells, and the staining was enhanced in the presence of TPB. Therefore, the fluorescent Atto520 moiety can serve as a vehicle for intramitochondrial delivery of hydrophilic drugs. Of importance for biotin-streptavidin technology, binding of Atto520-biotin to streptavidin was found to cause quenching of its fluorescence similar to the case of fluorescein-4-biotin. PMID:25753112

  11. A new lungless caecilian (Amphibia: Gymnophiona) from Guyana

    PubMed Central

    Wake, Marvalee H.; Donnelly, Maureen A.

    2010-01-01

    We report the discovery of a single specimen of a small, terrestrial, lungless caecilian, the second known taxon of lungless caecilians. It differs from all other caecilians in lacking open external nares, and from the large aquatic lungless species described by Nussbaum & Wilkinson (Nussbaum, R. A. & Wilkinson, M. 1995 Proc. R. Soc. Lond. B 261, 331–335) in having no significant skull modifications. All modifications are of ‘soft morphology’ (covered external nares and choanae, lung and pulmonary vessel loss, etc.). A new genus and species are described to accommodate this form. Aspects of its skull and visceral morphology are described and considered in terms of the possible life history and evolution of the species, and compared with those of other lungless amphibians. PMID:19923127

  12. A new lungless caecilian (Amphibia: Gymnophiona) from Guyana.

    PubMed

    Wake, Marvalee H; Donnelly, Maureen A

    2010-03-22

    We report the discovery of a single specimen of a small, terrestrial, lungless caecilian, the second known taxon of lungless caecilians. It differs from all other caecilians in lacking open external nares, and from the large aquatic lungless species described by Nussbaum & Wilkinson (Nussbaum, R. A. & Wilkinson, M. 1995 Proc. R. Soc. Lond. B 261, 331-335) in having no significant skull modifications. All modifications are of 'soft morphology' (covered external nares and choanae, lung and pulmonary vessel loss, etc.). A new genus and species are described to accommodate this form. Aspects of its skull and visceral morphology are described and considered in terms of the possible life history and evolution of the species, and compared with those of other lungless amphibians. PMID:19923127

  13. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin

    PubMed Central

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; de Oliveira Alvares, Lucas

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  14. Critical Role for Voltage-Dependent Anion Channel 2 in Infectious Bursal Disease Virus-Induced Apoptosis in Host Cells via Interaction with VP5

    PubMed Central

    Li, Zhonghua; Wang, Yongqiang; Xue, Yanfei; Li, Xiaoqi; Cao, Hong

    2012-01-01

    Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although IBDV-induced host cell apoptosis has been established, the underlying molecular mechanism is still unclear. We report here that IBDV viral protein 5 (VP5) is a major apoptosis inducer in DF-1 cells by interacting with the voltage-dependent anion channel 2 (VDAC2) in the mitochondrion. We found that in DF-1 cells, VP5-induced apoptosis can be completely abolished by 4,4′-diisothiocyanatostibene-2,2′-disulfonic acid (DIDS), an inhibitor of VDAC. Furthermore, knockdown of VDAC2 by small interfering RNA markedly inhibits IBDV-induced apoptosis associated with decreased caspase-9 and -3 activation and cytochrome c release, leading to increased IBDV growth in host cells. Thus, VP5-induced apoptosis during IBDV infection is mediated by interacting with VDAC2, a protein that appears to restrict viral replication via induction of cell death. PMID:22114330

  15. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin.

    PubMed

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; Alvares, Lucas de Oliveira

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca(2+) channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca(2+) influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  16. Stereoselectivity of butylidenephthalide on non-adrenergic prejunctional voltage-dependent Ca(2+) channels in prostatic portion of rat vas deferens.

    PubMed

    Shih, Chung-Hung; Chen, Chi-Ming; Ko, Wun-Chang

    2016-09-01

    The naturally occurring and synthetic butylinenephthalide (Bdph) has two geometric isomers. Z- and E-Bdph were reported to have geometric stereoselectivity for voltage-dependent calcium channels (VDCCs) in guinea-pig ileum. The aim of this study was to investigate whether the binding of Z- and E-Bdph on prejunctional VDCCs of rat vas deferens (RVD) is stereoselective. The twitch responses to electrical field stimulation (EFS, supramaximal voltage, 1 ms, 0.2Hz) were recorded on a polygraph. Z- and E-Bdph concentration-dependently inhibited the twitch responses to EFS in full tissue, prostatic portion and epididymal portion of RVD. The pIC50 value of Z-Bdph was greater than that of E-Bdph in the electrically stimulated prostatic portion of RVD, suggesting that the binding of Bdph on the non-adrenergic prejunctional VDCCs of cell membrane is stereoselective. In the prostatic portion, exogenous Ca(2+) only partially reversed the twitch inhibition by Z-Bdph, but effectively reversed those by Ca(2+) channel blockers, such as verapamil, diltiazem and aspaminol, suggesting that the action mechanisms may be different from those of Ca(2+) channel blockers. K(+) channel blockers, such as tetraethylammonium (TEA) and 4-aminopyridine (4-AP), may prolong duration of action potential to allow greater Ca(2+) entry and induced more release of transmitters. Therefore both blockers via their prejunctional actions reversed the twitch inhibition induced by Z-Bdph in all preparations of RVD by a non-specific antagonism. PMID:27238973

  17. Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels.

    PubMed

    Simson, Päivo; Jepihhina, Natalja; Laasmaa, Martin; Peterson, Pearu; Birkedal, Rikke; Vendelin, Marko

    2016-08-01

    Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes. PMID:27261153

  18. Distinct roles of L- and T-type voltage-dependent Ca2+ channels in regulation of lymphatic vessel contractile activity

    PubMed Central

    Lee, Stewart; Roizes, Simon; von der Weid, Pierre-Yves

    2014-01-01

    Lymph drainage maintains tissue fluid homeostasis and facilitates immune response. It is promoted by phasic contractions of collecting lymphatic vessels through which lymph is propelled back into the blood circulation. This rhythmic contractile activity (i.e. lymphatic pumping) increases in rate with increase in luminal pressure and relies on activation of nifedipine-sensitive voltage-dependent Ca2+ channels (VDCCs). Despite their importance, these channels have not been characterized in lymphatic vessels. We used pressure- and wire-myography as well as intracellular microelectrode electrophysiology to characterize the pharmacological and electrophysiological properties of L-type and T-type VDCCs in rat mesenteric lymphatic vessels and evaluated their particular role in the regulation of lymphatic pumping by stretch. We complemented our study with PCR and confocal immunofluorescence imaging to investigate the expression and localization of these channels in lymphatic vessels. Our data suggest a delineating role of VDCCs in stretch-induced lymphatic vessel contractions, as the stretch-induced increase in force of lymphatic vessel contractions was significantly attenuated in the presence of L-type VDCC blockers nifedipine and diltiazem, while the stretch-induced increase in contraction frequency was significantly decreased by the T-type VDCC blockers mibefradil and nickel. The latter effect was correlated with a hyperpolarization. We propose that activation of T-type VDCCs depolarizes membrane potential, regulating the frequency of lymphatic contractions via opening of L-type VDCCs, which drive the strength of contractions. PMID:25326448

  19. Cisapride, a selective serotonin 5-HT4-receptor agonist, inhibits voltage-dependent K(+) channels in rabbit coronary arterial smooth muscle cells.

    PubMed

    Kim, Hye Won; Li, Hongliang; Kim, Han Sol; Shin, Sung Eun; Jung, Won-Kyo; Ha, Kwon-Soo; Han, Eun-Taek; Hong, Seok-Ho; Choi, Il-Whan; Park, Won Sun

    2016-09-23

    We investigated the effect of cisapride, a selective serotonin 5-HT4-receptor agonist, on voltage-dependent K(+) (Kv) channels using freshly isolated smooth muscle cells from the coronary arteries of rabbits. The amplitude of Kv currents was reduced by cisapride in a concentration-dependent manner, with an IC50 value of 6.77 ± 6.01 μM and a Hill coefficient of 0.51 ± 0.18. The application of cisapride shifted the steady-state inactivation curve toward a more negative potential, but had no significant effect on the steady-state activation curve. This suggested that cisapride inhibited the Kv channel in a closed state by changing the voltage sensitivity of Kv channels. The application of another selective serotonin 5-HT4-receptor agonist, prucalopride, did not affect the basal Kv current and did not alter the inhibitory effect of cisapride on Kv channels. From these results, we concluded that cisapride inhibited vascular Kv current in a concentration-dependent manner by shifting the steady-state inactivation curve, independent of its own function as a selective serotonin 5-HT4-receptor agonist. PMID:27569285

  20. Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca2+ Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lu, Cheng Wei; Lin, Tzu Yu; Huang, Shu Kuei; Wang, Su Jane

    2016-01-01

    The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity. PMID:27347934

  1. REST levels affect the functional expression of voltage dependent calcium channels and the migratory activity in immortalized GnRH neurons.

    PubMed

    Antoniotti, Susanna; Ruffinatti, Federico Alessandro; Torriano, Simona; Luganini, Anna; D'Alessandro, Rosalba; Lovisolo, Davide

    2016-08-26

    The repressor element-1 silencing transcription factor (REST) has emerged as a key controller of neuronal differentiation and has been shown to play a critical role in the expression of the neuronal phenotype; however, much has still to be learned about its role at specific developmental stages and about the functional targets affected. Among these targets, calcium signaling mechanisms are critically dependent on the developmental stage and their full expression is a hallmark of the mature, functional neuron. We have analyzed the role played by REST in GN11 cells, an immortalized cell line derived from gonadotropin hormone releasing hormone (GnRH) neurons at an early developmental stage, electrically non-excitable and with a strong migratory activity. We show for the first time that functional voltage-dependent calcium channels are expressed in wild type GN11 cells; down-regulation of REST by a silencing approach shifts these cells towards a more differentiated phenotype, increasing the functional expression of P/Q-type channels and reducing their migratory potential. PMID:27349310

  2. α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease*

    PubMed Central

    Rostovtseva, Tatiana K.; Gurnev, Philip A.; Protchenko, Olga; Hoogerheide, David P.; Yap, Thai Leong; Philpott, Caroline C.; Lee, Jennifer C.; Bezrukov, Sergey M.

    2015-01-01

    Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies. PMID:26055708

  3. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation

    PubMed Central

    Hemara-Wahanui, Ariana; Berjukow, Stanislav; Hope, Carolyn I.; Dearden, Peter K.; Wu, Shu-Biao; Wilson-Wheeler, Jane; Sharp, Dianne M.; Lundon-Treweek, Patricia; Clover, Gillian M.; Hoda, Jean-Charles; Striessnig, Jörg; Marksteiner, Rainer; Hering, Steffen; Maw, Marion A.

    2005-01-01

    Light stimuli produce graded hyperpolarizations of the photoreceptor plasma membrane and an associated decrease in a voltagegated calcium channel conductance that mediates release of glutamate neurotransmitter. The Cav1.4 channel is thought to be involved in this process. The CACNA1F gene encodes the poreforming subunit of the Cav1.4 channel and various mutations in CACNA1F cause X-linked incomplete congenital stationary night blindness (CSNB2). The molecular mechanism of the pathology underlying the CSNB2 phenotype remains to be established. Recent clinical investigations of a New Zealand family found a severe visual disorder that has some clinical similarities to, but is clearly distinct from, CSNB2. Here, we report investigations into the molecular mechanism of the pathology of this condition. Molecular genetic analyses identified a previously undescribed nucleotide substitution in CACNA1F that is predicted to encode an isoleucine to threonine substitution at CACNA1F residue 745. The I745T CACNA1F allele produced a remarkable approximately –30-mV shift in the voltage dependence of Cav1.4 channel activation and significantly slower inactivation kinetics in an expression system. These findings imply that substitution of this wild-type residue in transmembrane segment IIS6 may have decreased the energy required to open the channel. Collectively, these findings suggest that a gain-of-function mechanism involving increased Cav1.4 channel activity is likely to cause the unusual phenotype. PMID:15897456

  4. The class III anti-arrhythmic agent, amiodarone, inhibits voltage-dependent K(+) channels in rabbit coronary arterial smooth muscle cells.

    PubMed

    Li, Hongliang; Kim, Han Sol; Kim, Hye Won; Shin, Sung Eun; Jung, Won-Kyo; Ha, Kwon-Soo; Han, Eun-Taek; Hong, Seok-Ho; Firth, Amy L; Bae, Young Min; Choi, Il-Whan; Park, Won Sun

    2016-07-01

    We examined the inhibitory effect of amiodarone, a class III anti-arrhythmic agent, on voltage-dependent K(+) (Kv) currents in freshly isolated rabbit coronary arterial smooth muscle cells, using a whole-cell patch clamp technique. Amiodarone inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC50) value of 3.9 ± 1.44 μM and a Hill coefficient of 0.45 ± 0.14. Amiodarone did not have a significant effect on the steady-state activation of Kv channels, but shifted the inactivation current toward a more negative potential. Application of consecutive pulses progressively augmented the amiodarone-induced Kv channel inhibition. Another class III anti-arrhythmic agent, dofetilide, did not inhibit the Kv current or change the inhibitory effect of amiodarone on Kv channels. Therefore, these results strongly suggest that amiodarone inhibits Kv currents in a concentration- and state-dependent manner. PMID:27030392

  5. Modeling and measurement of vesicle pools at the cone ribbon synapse: Changes in release probability are solely responsible for voltage-dependent changes in release.

    PubMed

    Thoreson, Wallace B; Van Hook, Matthew J; Parmelee, Caitlyn; Curto, Carina

    2016-01-01

    Postsynaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca(2+) entry alter postsynaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial postsynaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca(2+) spread by lowering Ca(2+) buffering or applying BayK8644 did not increase PSCs evoked with strong test steps, showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability. PMID:26541100

  6. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin.

    PubMed

    Field, Mark J; Cox, Peter J; Stott, Emma; Melrose, Heather; Offord, James; Su, Ti-Zhi; Bramwell, Steve; Corradini, Laura; England, Steven; Winks, Joanna; Kinloch, Ross A; Hendrich, Jan; Dolphin, Annette C; Webb, Tony; Williams, Dic

    2006-11-14

    Neuropathic pain is a debilitating condition affecting millions of people around the world and is defined as pain that follows a lesion or dysfunction of the nervous system. This type of pain is difficult to treat, but the novel compounds pregabalin (Lyrica) and gabapentin (Neurontin) have proven clinical efficacy. Unlike traditional analgesics such as nonsteroidal antiinflammatory drugs or narcotics, these agents have no frank antiinflammatory actions and no effect on physiological pain. Although extensive preclinical studies have led to a number of suggestions, until recently their mechanism of action has not been clearly defined. Here, we describe studies on the analgesic effects of pregabalin in a mutant mouse containing a single-point mutation within the gene encoding a specific auxiliary subunit protein (alpha2-delta-1) of voltage-dependent calcium channels. The mice demonstrate normal pain phenotypes and typical responses to other analgesic drugs. We show that the mutation leads to a significant reduction in the binding affinity of pregabalin in the brain and spinal cord and the loss of its analgesic efficacy. These studies show conclusively that the analgesic actions of pregabalin are mediated through the alpha2-delta-1 subunit of voltage-gated calcium channels and establish this subunit as a therapeutic target for pain control. PMID:17088553

  7. Voltage-Dependent Charge Storage in Cladded Zn0.56Cd0.44Se Quantum Dot MOS Capacitors for Multibit Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, J.; Lingalugari, M.; Al-Amoody, F.; Jain, F.

    2013-11-01

    As conventional memories approach scaling limitations, new storage methods must be utilized to increase Si yield and produce higher on-chip memory density. Use of II-VI Zn0.56Cd0.44Se quantum dots (QDs) is compatible with epitaxial gate insulators such as ZnS-ZnMgS. Voltage-dependent charging effects in cladded Zn0.56Cd0.44Se QDs are presented in a conventional metal-oxide-semiconductor capacitor structure. Charge storage capabilities in Si and ZnMgS QDs have been reported by various researchers; this work is focused on II-VI material Zn0.56Cd0.44Se QDs nucleated using photoassisted microwave plasma metalorganic chemical vapor deposition. Using capacitance-voltage hysteresis characterization, the multistep charging and discharging capabilities of the QDs at room temperature are presented. Three charging states are presented within a 10 V charging voltage range. These characteristics exemplify discrete charge states in the QD layer, perfect for multibit, QD-functionalized high-density memory applications. Multiple charge states with low operating voltage provide device characteristics that can be used for multibit storage by allowing varying charges to be stored in a QD layer based on the applied "write" voltage.

  8. Modulation of Human Mitochondrial Voltage-dependent Anion Channel 2 (hVDAC-2) Structural Stability by Cysteine-assisted Barrel-lipid Interactions*

    PubMed Central

    Maurya, Svetlana Rajkumar; Mahalakshmi, Radhakrishnan

    2013-01-01

    Human mitochondrial voltage-dependent anion channel 2 (hVDAC-2), the most predominant isoform seen in brain mitochondria, is not only crucial for cell survival but is also implicated in Alzheimer disease. The abundance of cysteines in this isoform is particularly fascinating, as hVDAC-1 cysteines have no associated functional role. We report a detailed biophysical examination of a Cys-less mutant of hVDAC-2, and its behavioral comparison with the wild type protein. Our findings suggest that cysteine mutation results in the formation of a better barrel at the expense of weakened protein-lipid interactions. The wild type protein displays stronger lipid association, despite being less structured. A reversal in behavior of both proteins is observed in the case of chemical denaturation, with the Cys-less mutant exhibiting lowered unfolding free energies. In bicellar systems comprising 14-C phosphocholines, we observe that protein-lipid interactions are weakened in both constructs, resulting in barrel structure destabilization. Our biochemical and biophysical studies together reveal key structural roles for the cysteine residues. We find that minor conformational variations in local residues are sufficient to define the membrane protein dynamics in hVDAC-2. Such subtle sequence variations contribute to differential stability of VDACs and may have implications in their in vivo regulation and recycling. PMID:23873934

  9. A new species of Odorrana (Amphibia: Anura: Ranidae) from Vietnam.

    PubMed

    Pham, Cuong The; Nguyen, Truong Quang; Le, Minh Duc; Bonkowski, Michael; Ziegler, Thomas

    2016-01-01

    A new species of Odorrana is described from the karst forests in northeastern Vietnam based on morphological differences and molecular divergence. Morphologically, the new species is distinguishable from its congeners on the basis of a combination of the following diagnostic characters: (1) size large (SVL 85.9-91.6 mm in males, 108.7-110.1 mm in females); (2) head longer than wide; (3) vomerine teeth present; (4) external vocal sacs absent; (5) snout short (SL/SVL 0.16-0.17); (6) tympanum large (TD/ED 0.70 in males, 0.68 in females); (7) dorsal surface of head and anterior part of body smooth, posterior part of body and flanks with small tubercles; (8) supratympanic fold present; (9) dorsolateral fold absent; (10) webbing formula I0-0II0-0III0-1/2IV1/2-0V; (11) in life, dorsum green with dark brown spots; (12) flanks greyish brown with dark brown spots; (13) throat and chest grey, underside of limbs with large dark brown spots, edged in white, forming a network. In the phylogenetic analyses, the new species is unambiguously nested within the O. andersonii group, and placed as the sister taxon to O. wuchuanensis. PMID:27394273

  10. [Enzyme histochemical study of the brain of Chthonerpeton indistinctum (Gymnophiona, Amphibia)].

    PubMed

    Welsch, U; Tan, S H

    1979-01-01

    In the brain of the Caecilian species Chthonerpeton indistinctum the following enzymes have been demonstrated by means of histochemical techniques: acid phosphatase, alpha-naphthylacetate esterase, acetylcholin esterase. Acid phosphatase occurs in the cytoplasm of the neurons in 4 different types of localization. Its activity in the ventral parts of the brain is markedly higher than in the dorsal ones. Of particularly high activity are: the motor neurons in the tegmentum, the nucleus mesencephali trigemini, individual large neurons in the marginal zone of the grey matter of the telencephalon, which seems to be a special character of the Caecilians among the Amphibia. The ependyma exhibits local differences in respect of acid phosphatase activity. alpha-Naphthylacetate esterase marks in particular the secretory neurons of the hypothalamus, the large perikarya of the nucleus mesencephali trigemini and the motor neurons of the tegmentum. In the telencephalon the alpha-naphthylacetate esterase activity corresponds to that of acid phosphatase. Acetylcholin esterase marks--with certain restrictions--cholinergic neurons. These predominate in Chthonerpeton in the caudal parts of the brain. In the telencephalon amygdala, septal area striatum and the mitral cells are of comparatively high activity. The neurosecretory neurons of the hypothalamus are particularly rich in this enzyme. As an anurans the cholinergic fasciculus retroflexus as asymmetric. The tectum opticum is of secondary simplicity and does not exhibit a clearly recognizable stratification. PMID:524986

  11. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.

    PubMed

    Guardiani, Carlo; Scorciapino, Mariano Andrea; Amodeo, Giuseppe Federico; Grdadolnik, Joze; Pappalardo, Giuseppe; De Pinto, Vito; Ceccarelli, Matteo; Casu, Mariano

    2015-09-15

    The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane β-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms. PMID:26303511

  12. Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5

    PubMed Central

    Alekov, Alexi K.

    2015-01-01

    Dent's disease is associated with impaired renal endocytosis and endosomal acidification. It is linked to mutations in the membrane chloride/proton exchanger ClC-5; however, a direct link between localization in the protein and functional phenotype of the mutants has not been established until now. Here, two Dent's disease mutations, G212A and E267A, were investigated using heterologous expression in HEK293T cells, patch-clamp measurements and confocal imaging. WT and mutant ClC-5 exhibited mixed cell membrane and vesicular distribution. Reduced ion currents were measured for both mutants and both exhibited reduced capability to support endosomal acidification. Functionally, mutation G212A was capable of mediating anion/proton antiport but dramatically shifted the activation of ClC-5 toward more depolarized potentials. The shift can be explained by impeded movements of the neighboring gating glutamate Gluext, a residue that confers major part of the voltage dependence of ClC-5 and serves as a gate at the extracellular entrance of the anion transport pathway. Cell surface abundance of E267A was reduced by ~50% but also dramatically increased gating currents were detected for this mutant and accordingly reduced probability to undergoing cycles associated with electrogenic ion transport. Structurally, the gating alternations correlate to the proximity of E267A to the proton glutamate Gluin that serves as intracellular gate in the proton transport pathway and regulates the open probability of ClC-5. Remarkably, two other mammalian isoforms, ClC-3 and ClC-4, also differ from ClC-5 in gating characteristics affected by the here investigated disease-causing mutations. This evolutionary specialization, together with the functional defects arising from mutations G212A and E267A, demonstrate that the complex gating behavior exhibited by most of the mammalian CLC transporters is an important determinant of their cellular function. PMID:26042048

  13. Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus.

    PubMed

    Hopp, Sarah C; Royer, Sarah E; D'Angelo, Heather M; Kaercher, Roxanne M; Fisher, David A; Wenk, Gary L

    2015-03-01

    Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits. Here, we utilized an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose (0.25 μg/h) of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. Rats were treated with either the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. LPS-infused rats had significant motor deficits in the accelerating rotarod task as well as abnormal behavioral agitation in the forced swim task and open field. Corresponding with these behavioral deficits, LPS-infused rats also had significant increases in microglia activation and loss of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra pars compacta (SNpc) and locus coeruleus (LC). Treatment with nimodipine or dantrolene normalized LPS-induced abnormalities in the rotarod and forced swim, restored the number of TH-immunoreactive cells in the LC, and significantly reduced microglia activation in the SNpc. Only nimodipine significantly reduced microglia activation in the LC, and neither drug increased TH immunoreactivity in the SNpc. These findings demonstrate that the Ca(+2) dysregulation in the LC and SN brainstem nuclei is differentially altered by chronic neuroinflammation. Overall, targeting Ca + 2 dysregulation may be an important target for ameliorating neurodegeneration in the SNpc and LC. PMID:25318607

  14. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  15. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels

    PubMed Central

    Chen, Szu-Han; Fu, Ssu-Ju; Huang, Jing-Jia; Tang, Chih-Yung

    2016-01-01

    Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient. PMID:26778656

  16. Magic Angle Spinning Nuclear Magnetic Resonance Characterization of Voltage-Dependent Anion Channel Gating in Two-Dimensional Lipid Crystalline Bilayers

    PubMed Central

    2015-01-01

    The N-terminus of the voltage-dependent anion channel (VDAC) has been proposed to contain the mechanistically important gating helices that modulate channel opening and closing. In this study, we utilize magic angle spinning nuclear magnetic resonance (MAS NMR) to determine the location and structure of the N-terminus for functional channels in lipid bilayers by measuring long-range 13C–13C distances between residues in the N-terminus and other domains of VDAC reconstituted into DMPC lipid bilayers. Our structural studies show that the distance between A14 Cβ in the N-terminal helix and S193 Cβ is ∼4–6 Å. Furthermore, VDAC phosphorylation by a mitochondrial kinase at residue S193 has been claimed to delay mitochondrial cell death by causing a conformational change that closes the channel, and a VDAC-Ser193Glu mutant has been reported to show properties very similar to those of phosphorylated VDAC in a cellular context. We expressed VDAC-S193E and reconstituted it into DMPC lipid bilayers. Two-dimensional 13C–13C correlation experiments showed chemical shift perturbations for residues located in the N-terminus, indicating possible structural perturbations to that region. However, electrophysiological data recorded on VDAC-S193E showed that channel characteristics were identical to those of wild type samples, indicating that phosphorylation of S193 does not directly affect channel gating. The combination of NMR and electrophysiological results allows us to discuss the validity of proposed gating models. PMID:25545271

  17. Pumiliotoxin B binds to a site on the voltage-dependent sodium channel that is allosterically coupled to other binding sites.

    PubMed Central

    Gusovsky, F; Rossignol, D P; McNeal, E T; Daly, J W

    1988-01-01

    Pumiliotoxin B (PTX-B), an alkaloid that has cardiotonic and myotonic activity, increases sodium influx in guinea pig cerebral cortical synaptoneurosomes. In the presence of scorpion venom (Leiurus) or purified alpha-scorpion toxin, the PTX-B-induced sodium influx is enhanced severalfold. PTX-B alone has no effect on sodium flux in N18 neuroblastoma cells but, in the presence of alpha-scorpion toxin, stimulation of sodium influx by PTX-B reaches levels comparable to that attained with the sodium channel activator veratridine. In neuroblastoma LV9 cells, a variant mutant that lacks sodium channels, neither veratridine nor PTX-B induces sodium fluxes in either the presence or absence of alpha-scorpion toxin. In synaptoneurosomes and in N18 cells, the sodium influx induced by the combination of PTX-B and alpha-scorpion toxin is inhibited by tetrodotoxin and local anesthetics. PTX-B does not interact with two of the known toxin sites on the sodium channel, as evidenced by a lack of effect on binding of [3H]saxitoxin or [3H]batrachotoxinin A benzoate to brain synaptoneurosomes. Synergistic effects on sodium influx with alpha-scorpion toxin, beta-scorpion toxin, and brevetoxin indicate that PTX-B does not interact directly with three other toxin sites on the sodium channel. Thus, PTX-B appears to activate sodium influx by interacting with yet another site on the voltage-dependent sodium channel, a site that is coupled allosterically to sites for alpha-scorpion toxin, beta-scorpion toxin, and brevetoxin. PMID:2448797

  18. Charge at the 46th residue of connexin 50 is crucial for the gap-junctional unitary conductance and transjunctional voltage-dependent gating

    PubMed Central

    Tong, Xiaoling; Aoyama, Hiroshi; Tsukihara, Tomitake; Bai, Donglin

    2014-01-01

    Gap-junction (GJ) channels are twice the length of most membrane channels, yet they often have large unitary channel conductance (γj). What factors make this possibly the longest channel so efficient in passing ions are not fully clear. Here we studied the lens connexin (Cx) 50 GJs, which display one of the largest γj and the most sensitive transjunctional voltage-dependent gating (Vj gating) among all GJ channels. Introduction of charged residues into a putative pore-lining domain (the first transmembrane and the first extracellular loop border) drastically altered the apparent γj. Specifically, G46D and G46E increased the Cx50 γj from 201 to 256 and 293 pS, respectively and the G46K channel showed an apparent γj of only 20 pS. G46K also drastically altered Vj gating properties in homotypic G46K and heterotypic Cx50/G46K channels, causing an apparent loss of fast Vj-dependent gating transitions and leaving only loop gating transitions at the single channel current records. Both macroscopic and single channel currents of heterotypic Cx50/G46K channels showed a prominent rectification. Our homology structural models indicate that the pore surface electrostatic potentials are a dictating factor in determining the γj. Our data demonstrate, at the whole GJ channel level, a crucial role of the surface charge properties in the first transmembrane/first extracellular border domain in determining the efficiency of ion permeation and the Vj gating of Cx50 and possibly other GJ channels. PMID:25260631

  19. Relationship of sperm small heat-shock protein 10 and voltage-dependent anion channel 2 with semen freezability in boars.

    PubMed

    Vilagran, Ingrid; Yeste, Marc; Sancho, Sílvia; Casas, Isabel; Rivera del Álamo, Maria M; Bonet, Sergi

    2014-08-01

    Freezability differences between boar ejaculates exist, but there is no useful method to predict the ejaculate freezability before sperm cryopreservation takes place. In this context, the present study sought to determine whether the amounts of small heat-shock protein 10 (also known as outer dense fiber protein 1) (ODF1/HSPB10) and voltage-dependent anion channel 2 (VDAC2) may be used as boar sperm freezability markers. With this aim, 26 boar ejaculates were split into two fractions: one for protein extraction and the other for cryopreservation purposes. Ejaculates were subsequently classified into two groups (good freezability ejaculates [GFE] and poor freezability ejaculates [PFE]) based on viability and sperm motility assessments after 30 and 240 minutes of after thawing. Although the VDAC2 amounts, analyzed through Western blot, were significantly higher (P < 0.01) in GFE (1.15 ± 0.18 density mm(2)) than in PFE (0.16 ± 0.03 density mm(2)), no significant differences were observed in ODF1/HSPB10 between both groups (i.e., 1.97 ± 0.38 density mm(2) in GFE vs. 1.87 ± 1.54 density mm(2) in PFE). In addition, principal component and multiple regression analyses indicated that the component explaining most of the variance (78.41%) in ejaculate freezability at 240 minutes after thawing resulted to be significantly (P < 0.05) correlated with VDAC2 content. This result revealed that the amounts of VDAC2 but not those of ODF1/HSPB10 may be used to predict the freezability of a given boar ejaculate before starting cryopreservation procedures. PMID:24933094

  20. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    SciTech Connect

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won; Jung, Won-Kyo; Na, Sung Hun; Jung, In Duk; Park, Yeong-Min; Choi, Il-Whan; Park, Won Sun

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  1. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction.

    PubMed

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J; Bose, Mahuya; Whittal, Randy M; Bose, Himangshu S

    2015-01-30

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221-229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. PMID:25505173

  2. Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Regulates Steroidogenic Activity via Steroidogenic Acute Regulatory Protein (StAR)-Voltage-dependent Anion Channel 2 (VDAC2) Interaction*

    PubMed Central

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J.; Bose, Mahuya; Whittal, Randy M.; Bose, Himangshu S.

    2015-01-01

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221–229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. PMID:25505173

  3. Magic angle spinning nuclear magnetic resonance characterization of voltage-dependent anion channel gating in two-dimensional lipid crystalline bilayers.

    PubMed

    Eddy, Matthew T; Andreas, Loren; Teijido, Oscar; Su, Yongchao; Clark, Lindsay; Noskov, Sergei Y; Wagner, Gerhard; Rostovtseva, Tatiana K; Griffin, Robert G

    2015-02-01

    The N-terminus of the voltage-dependent anion channel (VDAC) has been proposed to contain the mechanistically important gating helices that modulate channel opening and closing. In this study, we utilize magic angle spinning nuclear magnetic resonance (MAS NMR) to determine the location and structure of the N-terminus for functional channels in lipid bilayers by measuring long-range (13)C-(13)C distances between residues in the N-terminus and other domains of VDAC reconstituted into DMPC lipid bilayers. Our structural studies show that the distance between A14 Cβ in the N-terminal helix and S193 Cβ is ∼4-6 Å. Furthermore, VDAC phosphorylation by a mitochondrial kinase at residue S193 has been claimed to delay mitochondrial cell death by causing a conformational change that closes the channel, and a VDAC-Ser193Glu mutant has been reported to show properties very similar to those of phosphorylated VDAC in a cellular context. We expressed VDAC-S193E and reconstituted it into DMPC lipid bilayers. Two-dimensional (13)C-(13)C correlation experiments showed chemical shift perturbations for residues located in the N-terminus, indicating possible structural perturbations to that region. However, electrophysiological data recorded on VDAC-S193E showed that channel characteristics were identical to those of wild type samples, indicating that phosphorylation of S193 does not directly affect channel gating. The combination of NMR and electrophysiological results allows us to discuss the validity of proposed gating models. PMID:25545271

  4. Cd, Cu, Zn, Se, and metallothioneins in two amphibians, Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia, Anura).

    PubMed

    Dobrovoljc, Katarina; Falnoga, Ingrid; Žnidarič, Magda Tušek; Mazej, Darja; Ščančar, Janez; Bulog, Boris

    2012-12-01

    The accumulation of cadmium, its affinity for metallothioneins (MTs), and its relation to copper, zinc, and selenium were investigated in the experimental mudpuppy Necturus maculosus and the common toad Bufo bufo captured in nature. Specimens of N. maculosus were exposed to waterborne Cd (85 μg/L) for up to 40 days. Exposure resulted in tissue-dependent accumulation of Cd in the order kidney, gills > intestine, liver, brain > pancreas, skin, spleen, and gonads. During the 40-day exposure, concentrations increased close to 1 μg/g in kidneys and gills (0.64-0.95 and 0.52-0.76; n = 4), whereas the levels stayed below 0.5 in liver (0.14-0.29; n = 4) and other organs. Cd exposure was accompanied by an increase of Zn and Cu in kidneys and Zn in skin, while a decrease of Cu was observed in muscles and skin. Cytosol metallothioneins (MTs) were detected as Cu,Zn-thioneins in liver and Zn,Cu-thioneins in gills and kidney, with the presence of Se in all cases. After exposure, Cd binding to MTs was clearly observed in cytosol of gills as Zn,Cu,Cd-thionein and in pellet extract of kidneys as Zn,Cu,Cd-thioneins. The results indicate low Cd storage in liver with almost undetectable Cd in liver MT fractions. In field trapped Bufo bufo (spring and autumn animals), Cd levels were followed in four organs and found to be in the order kidney > liver (0.56-5.0 μg/g >0.03-0.72 μg/g; n = 11, spring and autumn animals), with no detectable Cd in muscle and skin. At the tissue level, high positive correlations between Cd, Cu, and Se were found in liver (all r > 0.80; α = 0.05, n = 5), and between Cd and Se in kidney (r = 0.76; n = 5) of autumn animals, possibly connected with the storage of excess elements in biologically inert forms. In the liver of spring animals, having higher tissue level of Cd than autumn ones, part of the Cd was identified as Cu,Zn,Cd-thioneins with traces of Se. As both species are special in having liver Cu levels higher than

  5. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K+ channels

    PubMed Central

    ZHANG, SHUAI; LIU, BO; FAN, ZAIWEN; WANG, DONG; LIU, YING; LI, JIAN; WANG, NING; LIU, YI; ZHANG, BO

    2016-01-01

    Hypoxic pulmonary hypertension (PH) is a common disease characterized by a disturbance to the balance of apoptosis and cell proliferation in pulmonary artery smooth muscle cells (PASMCs). The anti-apoptotic protein, survivin, has been observed to be upregulated in pulmonary arteries (PAs) of chronic hypoxia-induced PH rats. The present study aimed to investigate the therapeutic potential of sepantronium bromide (YM155), a selective survivin inhibitor, on hypoxic human PASMCs and examine the potential underlying mechanisms. Cultured human PASMCs (HPASMCs) were randomly divided into the following groups: i) Normoxia (N); ii) normoxia + 100 nmol/l YM155 (NY100); iii) hypoxia (H); iv) hypoxia + 1 nmol/l YM155 (HY1); v) hypoxia + 10 nmol/l YM155 (HY10); and hypoxia + 100 nmol/l YM155 (HY100) groups. The cells were exposed to the different conditions for 24 h, according to the group. Cell viability was then determined using a Cell Counting Kit-8 assay, and apoptosis was detected using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. The expression levels of survivin were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunocytochemistry and Western blot analyses. The expression levels of the voltage-dependent K+ (Kv) channels, Kv1.5 and Kv2.1, were measured using RT-qPCR and Western blotting. Cell proliferation in the hypoxic PASMCs was significantly increased by hypoxia, however, apoptosis of the HPASMCs was suppressed, the expression of survivin were upregulated and the expression levels of Kv1.5 and Kv2.1 were downregulated. YM155 treatment ameliorated the hypoxia-induced increase in cell proliferation and expression of survivin in a concentration-dependent manner, increased apoptosis, and increased the expression levels of Kv1.5 and Kv2.1 (P<0.05). By contrast, YM155 treatment in normoxic HPASMCs had no significant effects on proliferation, apop-tosis, or the expression

  6. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K⁺ channels.

    PubMed

    Zhang, Shuai; Liu, Bo; Fan, Zaiwen; Wang, Dong; Liu, Ying; Li, Jian; Wang, Ning; Liu, Yi; Zhang, Bo

    2016-04-01

    Hypoxic pulmonary hypertension (PH) is a common disease characterized by a disturbance to the balance of apoptosis and cell proliferation in pulmonary artery smooth muscle cells (PASMCs). The anti-apoptotic protein, survivin, has been observed to be upregulated in pulmonary arteries (PAs) of chronic hypoxia-induced PH rats. The present study aimed to investigate the therapeutic potential of sepantronium bromide (YM155), a selective survivin inhibitor, on hypoxic human PASMCs and examine the potential underlying mechanisms. Cultured human PASMCs (HPASMCs) were randomly divided into the following groups: i) Normoxia (N); ii) normoxia + 100 nmol/l YM155 (NY100); iii) hypoxia (H); iv) hypoxia + 1 nmol/l YM155 (HY1); v) hypoxia + 10 nmol/l YM155 (HY10); and hypoxia + 100 nmol/l YM155 (HY100) groups. The cells were exposed to the different conditions for 24 h, according to the group. Cell viability was then determined using a Cell Counting Kit‑8 assay, and apoptosis was detected using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. The expression levels of survivin were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunocytochemistry and Western blot analyses. The expression levels of the voltage-dependent K+ (Kv) channels, Kv1.5 and Kv2.1, were measured using RT-qPCR and Western blotting. Cell proliferation in the hypoxic PASMCs was significantly increased by hypoxia, however, apoptosis of the HPASMCs was suppressed, the expression of survivin were upregulated and the expression levels of Kv1.5 and Kv2.1 were downregulated. YM155 treatment ameliorated the hypoxia‑induced increase in cell proliferation and expression of survivin in a concentration‑dependent manner, increased apoptosis, and increased the expression levels of Kv1.5 and Kv2.1 (P<0.05). By contrast, YM155 treatment in normoxic HPASMCs had no significant effects on proliferation, apoptosis, or the expression

  7. Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary.

    PubMed

    Wulfsen, I; Hauber, H P; Schiemann, D; Bauer, C K; Schwarz, J R

    2000-03-01

    The expression of mRNA for voltage-dependent (Kv) and inward-rectifying K channels (Kir) was studied in clonal rat somato-mammotroph cells (GH3/B6 cells) and rat pituitary using reverse transcription-polymerase chain reaction (RT-PCR). In GH3/B6 cells transcripts for 16 different Kv channel alpha-subunits (seven Shaker-related: Kv1.2, Kv1.4, Kv1.5, Kv2.1, Kv3.2, Kv4.1, Kv5.1; six EAG: eag1, erg1, erg2, elk1-elk3; three KCNQ: KCNQ1-KCNQ3) and for five different Kir channel alpha-subunits (Kir1.1, Kir2.3, Kir3.2, Kir3.3, Kir6.2) were found. In addition, transcripts for a short isoform of Kvbeta2 and transcripts for Kvbeta3 subunits were present. In rat pituitary transcripts for 21 different Kv channel alpha-subunits (11 Shaker-related: Kv1.3, Kv1.4, Kv1.6, Kv2.1, Kv2.2, Kv3.2, Kv3.4, Kv4.1, Kv4.2, Kv4.3, Kv6.1; seven EAG: eag1, erg1-erg3, elk1-elk3; three KCNQ: KCNQ1-KCNQ3) and nine Kir channel alpha-subunits (Kir1.1, Kir2.2, Kir3.1-Kir3.4, Kir4.1, Kir6.1, Kir6. 2) were found. In addition, all tested auxiliary subunits (Kvbeta1-Kvbeta3, minK, SUR1, SUR2) are expressed in the pituitary. The results indicate that the macroscopic K currents in GH3/B6 and pituitary cells are presumably mediated by K channels constructed by a larger number of K channel alpha-subunits and auxiliary beta-subunits than previously distinguished electrophysiologically and pharmacologically. PMID:10718922

  8. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects.

    PubMed

    Zvejniece, Liga; Vavers, Edijs; Svalbe, Baiba; Veinberg, Grigory; Rizhanova, Kristina; Liepins, Vilnis; Kalvinsh, Ivars; Dambrova, Maija

    2015-10-01

    Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain

  9. Splice-variant changes of the CaV3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development

    PubMed Central

    David, Laurence S; Garcia, Esperanza; Cain, Stuart M; Thau, Elana M; Tyson, John R

    2010-01-01

    Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2, CaV3.3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression of CaV3.2(−25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (−25) exon variants, (3) in the adult stage of hypertensive rats there is both an increase in overall CaV3.2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form and (4) alternative splicing confers a variant-specific voltage-dependent facilitation of CaV3.2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states. PMID:20699644

  10. Morphometrics of the skeleton of Dermophis mexicanus (Amphibia: Gymnophiona). Part I. The vertebrae, with comparisons to other species.

    PubMed

    Wake, M H

    1980-08-01

    Morphometric analysis of vertebral structure in caecilians (Amphibia: Gymnophiona) is presented. Ontogenetic variation in Dermophis mexicanus is analyzed through the 100+ vertebrae composing the column. Vertebral structure in adult D. mexicanus is compared with that in Ichthyophis glutinosus and Typhlonectes compressicauda. Centra of the atlas, second, tenth, 20th, and 50th vertebrae grow at allometrically different rates in D. mexicanus, though the 20th and 50th are not significantly different. Growth appears significantly slower in several dimensions of anterior and posterior vertebrae relative to midtrunk vertebrae in all three species. Mensural patterns throughout the entire column are similar in the terrestrail burrowers D. mexicanus and I. glutinosus; patterns in the aquatic T. compressicauda differ substantially from those of the burrowing species and are strongly influenced by allometry. Of the 112 D. mexicanus examined, 13.4% had vertebral anomalies, usually fusions. PMID:7452726

  11. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  12. Refined localization of the [alpha][sub 1]-subunit of the skeletal muscle L-type voltage-dependent calcium channel (CACNL1A3) to human chromosome 1q32 by in situ hybridization

    SciTech Connect

    Iles, D.E.; Segers, B.; Wieringa, B.; Weghuis, D.O.; Suijerbuijk, R. ); Mikala, G.; Schwartz, A. )

    1994-02-01

    The authors isolated and partially sequenced a cosmid clone containing the human skeletal muscle L-type voltage-dependent calcium channel gene (CACNL1A3). The cosmid clone, which was also found to contain a novel dinucleotide repeat marker for the CACNL1A3 gene, was used for the chromosomal localization of CACNL1A3 by in situ hybridization. The results refine the localization of CACNL1A3 on the long arm of human chromosome 1 to band q32. 15 refs., 2 figs., 1 tab.

  13. Localization of the gene encoding the [alpha][sub 2]/[delta] subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca[sup 2+] channel to chromosome 7q21-q22 by somatic cell hybrid analysis

    SciTech Connect

    Powers, P.A.; Hogan, K.; Gregg, R.G. ); Scherer, S.W.; Tsui, L.C. Hospital for Sick Children, Ontario )

    1994-01-01

    Activation of voltage-dependent calcium channels (VDCCs) by membrane depolarization triggers key cellular responses such as contraction, secretion, excitation, and electrical signaling. The skeletal muscle L-type VDCC is a heteromultimer complex containing four subunits, [alpha][sub 1],[alpha][sub 2]/[delta],[beta][sub 1], and [gamma]. The [alpha][sub 2]/[delta] subunit, an integral component of the VDCC, appears to modulate the channel kinetics. The [alpha][sub 2]/[delta] gene is expressed in many tissues, including skeletal muscle, brain, heart, and lung, and cDNAs representing the skeletal muscle and brain isoforms have been isolated. DNA sequence comparisons indicate that these cDNAs are encoding by a single gene. 15 refs., 1 fig.

  14. The L-type voltage-dependent calcium channel long-term potentiation is higher in the dorsal compared with the ventral associational/commissural CA3 hippocampal synapses.

    PubMed

    Moschovos, Christos; Papatheodoropoulos, Costas

    2016-05-01

    The diversification between dorsal (DH) and ventral (VH) hippocampus includes the different ability to support NMDA receptor-dependent long-term synaptic potentiation (LTP). In this study, we assessed the ability of associational/commissural connections in the CA3 hippocampal field to show NMDA receptor-independent LTP. We found that high-frequency stimulation under blockade of NMDA receptors induced greater LTP in DH (40.7±8.5%) than in VH (17.1±4.6%). The blocker of L-type voltage-dependent calcium channels (VDCC) nifedipine prevented the induction of LTP. We hypothesize that the different ability for VDCC-LTP between DH and VH might have important implications in the memory-related information processing performed by the circuits of the two hippocampal segments. PMID:26541214

  15. Characterization of the Ca2+-Gated and Voltage-Dependent K+-Channel Slo-1 of Nematodes and Its Interaction with Emodepside

    PubMed Central

    Kulke, Daniel; von Samson-Himmelstjerna, Georg; Miltsch, Sandra M.; Wolstenholme, Adrian J.; Jex, Aaron R.; Gasser, Robin B.; Ballesteros, Cristina; Geary, Timothy G.; Keiser, Jennifer; Townson, Simon; Harder, Achim; Krücken, Jürgen

    2014-01-01

    The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among

  16. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside.

    PubMed

    Kulke, Daniel; von Samson-Himmelstjerna, Georg; Miltsch, Sandra M; Wolstenholme, Adrian J; Jex, Aaron R; Gasser, Robin B; Ballesteros, Cristina; Geary, Timothy G; Keiser, Jennifer; Townson, Simon; Harder, Achim; Krücken, Jürgen

    2014-12-01

    The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among

  17. Chronic hypoxia selectively enhances L- and T-type voltage-dependent Ca2+ channel activity in pulmonary artery by upregulating Cav1.2 and Cav3.2.

    PubMed

    Wan, Jun; Yamamura, Aya; Zimnicka, Adriana M; Voiriot, Guillaume; Smith, Kimberly A; Tang, Haiyang; Ayon, Ramon J; Choudhury, Moumita S R; Ko, Eun A; Wang, Jun; Wang, Chen; Makino, Ayako; Yuan, Jason X-J

    2013-07-15

    Hypoxia-induced pulmonary hypertension (HPH) is characterized by sustained pulmonary vasoconstriction and vascular remodeling, both of which are mediated by pulmonary artery smooth muscle cell (PASMC) contraction and proliferation, respectively. An increase in cytosolic Ca²⁺ concentration ([Ca²⁺]cyt) is a major trigger for pulmonary vasoconstriction and an important stimulus for cell proliferation in PASMCs. Ca²⁺ influx through voltage-dependent Ca²⁺ channels (VDCC) is an important pathway for the regulation of [Ca²⁺]cyt. The potential role for L- and T-type VDCC in the development of HPH is still unclear. Using a hypoxic-induced pulmonary hypertension mouse model, we undertook this study to identify if VDCC in pulmonary artery (PA) are functionally upregulated and determine which type of VDCC are altered in HPH. Mice subjected to chronic hypoxia developed pulmonary hypertension within 4 wk, and high-K⁺- and U-46619-induced contraction of PA was greater in chronic hypoxic mice than that in normoxic control mice. Additionally, we demonstrate that high-K⁺- and U-46619-induced Ca²⁺ influx in PASMC is significantly increased in the hypoxic group. The VDCC activator, Bay K8864, induced greater contraction of the PA of hypoxic mice than in that of normoxic mice in isometric force measurements. L-type and T-type VDCC blockers significantly attenuated absolute contraction of the PA in hypoxic mice. Chronic hypoxia did not increase high-K⁺- and U-46619-induced contraction of mesenteric artery (MA). Compared with MA, PA displayed higher expression of calcium channel voltage-dependent L-type α1C-subunit (Cav1.2) and T-type α1H-subunit (Cav3.2) upon exposure to chronic hypoxia. In conclusion, both L-type and T-type VDCC were functionally upregulated in PA, but not MA, in HPH mice, which could result from selectively increased expression of Cav1.2 and Cav3.2. PMID:23686856

  18. CLONING AND EXPRESSION OF THE TRANSLOCATOR PROTEIN (18 KDA), VOLTAGE-DEPENDENT ANION CHANNEL, AND DIAZEPAM BINDING INHIBITOR IN THE GONAD OF LARGEMOUTH BASS (MICROPTERUS SALMOIDES) ACROSS THE REPRODUCTIVE CYCLE

    PubMed Central

    Doperalski, Nicholas J.; Martyniuk, Christopher J.; Prucha, Melinda S.; Kroll, Kevin J.; Denslow, Nancy D.; Barber, David S.

    2011-01-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. PMID:21600210

  19. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone.

    PubMed

    Manzanares, Dahis; Krick, Stefanie; Baumlin, Nathalie; Dennis, John S; Tyrrell, Jean; Tarran, Robert; Salathe, Matthias

    2015-10-16

    Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca(2+)- and voltage-dependent K(+) (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors. PMID:26338706

  20. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity

    PubMed Central

    Foster, Thomas C.

    2012-01-01

    In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca2+) regulation and Ca2+-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca2+ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca2+ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging. PMID:22307057

  1. Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels

    PubMed Central

    Indriati, Dwi Wahyu; Kamasawa, Naomi; Matsui, Ko; Meredith, Andrea L.; Watanabe, Masahiko; Shigemoto, Ryuichi

    2014-01-01

    P/Q-type voltage-dependent calcium channels play key roles in transmitter release, integration of dendritic signals, generation of dendritic spikes, and gene expression. High intracellular calcium concentration transient produced by these channels is restricted to tens to hundreds of nanometers from the channels. Therefore, precise localization of these channels along the plasma membrane was long sought to decipher how each neuronal cell function is controlled. Here, we analyzed the distribution of Cav2.1 subunit of the P/Q-type channel using highly sensitive SDS-digested freeze-fracture replica labeling in the rat cerebellar Purkinje cells. The labeling efficiency was such that the number of immunogold particles in each parallel fiber active zone was comparable to that of functional channels calculated from previous reports. Two distinct patterns of Cav2.1 distribution, scattered and clustered, were found in Purkinje cells. The scattered Cav2.1 had a somatodendritic gradient with the density of immunogold particles increasing 2.5-fold from soma to distal dendrites. The other population with 74-fold higher density than the scattered particles was found within clusters of intramembrane particles on the P-face of soma and primary dendrites. Both populations of Cav2.1 were found as early as P3 and increased in the second postnatal week to a mature level. Using double immunogold labeling, we found that virtually all of the Cav2.1 clusters were colocalized with two types of calcium-activated potassium channels, BK and SK2, with the nearest neighbor distance of ~40 nm. Calcium nanodomain created by the opening of Cav2.1 channels likely activates the two channels that limit the extent of depolarization. PMID:23426693

  2. Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4).

    PubMed

    Shaltiel, Lior; Paparizos, Christos; Fenske, Stefanie; Hassan, Sami; Gruner, Christian; Rötzer, Katrin; Biel, Martin; Wahl-Schott, Christian A

    2012-10-19

    Cav1.4 L-type Ca(2+) channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca(2+)-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca(2+)-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease. PMID:22936811

  3. Ethanol (EtOH) inhibition of NMDA-activated ion current is not voltage-dependent and EtOH does not interact with other binding sites on the NMDA receptor/ionophore complex

    SciTech Connect

    Lovinger, D.M.; White, G.; Weight, F.F. )

    1990-02-26

    Recent studies indicate that intoxicating concentrations of EtOH inhibit neuronal responses to activation of NMDA-type glutamate receptors. The authors have observed that the potency of different alcohols for inhibiting NMDA-activated ion current in hippocampal neurons increases as a function of increasing hydrophobicity, suggesting that EtOH acts at a hydrophobic site. To further characterize the mechanisms of this effect, the authors examined the voltage-dependence of the EtOH inhibition of NMDA-activated ion current as well as potential interactions of EtOH with other effectors of the NMDA receptor/ionophore complex. The amount of inhibition of peak NMDA-activated current by 50 mM EtOH did not differ over a range of membrane potentials from {minus}60 to +60 mV, and EtOH did not alter the reversal potential of NMDA-activated current. The percent inhibition observed in the presence of 10-100 mM EtOH did not differ with NMDA concentrations from 10-100 {mu}M. The percent inhibition by 50 mM EtOH (30-48%) did not differ in the absence or presence of the channel blockers Mg{sup 2+} (50-500 {mu}M), Zn{sup 2+} (5 and 20 {mu}M) or ketamine (2 and 10 {mu}M), or with increasing concentrations of the NMDA receptor cofactor glycine (0.01-1 {mu}M). These data indicate that: (i) EtOH does not change the ion selectivity of the ionophore, and (ii) EtOH does not appear to interact with previously described binding sites on the NMDA receptor/ionophore complex.

  4. A molecular phylogenetic analysis of the neotropical dart-poison frog genus Phyllobates (Amphibia: Dendrobatidae)

    NASA Astrophysics Data System (ADS)

    Widmer, A.; Lötters, S.; Jungfer, K.-H.

    A phylogenetic analysis of the Neotropical dart-poison frogs, genus Phyllobates, was performed based on mitochondrial cytochrome b sequences. Members of Phyllobates from South and Central America were found to form each an evolutionary lineage. Among the South American lineage, species with uniform dorsal coloration as adults form a derived monophyletic clade.

  5. One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona).

    PubMed

    Wilkinson, Mark; Kupfer, Alexander; Marques-Porto, Rafael; Jeffkins, Hilary; Antoniazzi, Marta M; Jared, Carlos

    2008-08-23

    Maternal dermatophagy, the eating of maternal skin by offspring, is an unusual form of parental investment involving co-evolved specializations of both maternal skin and offspring dentition, which has been recently discovered in an African caecilian amphibian. Here we report the discovery of this form of parental care in a second, distantly related Neotropical species Siphonops annulatus, where it is characterized by the same syndrome of maternal and offspring specializations. The detailed similarities of skin feeding in different caecilian species provide strong evidence of its homology, implying its presence in the last common ancestor of these species. Biogeographic considerations, the separation of Africa and South American land masses and inferred timescales of amphibian diversification all suggest that skin feeding is an ancient form of parental care in caecilians, which has probably persisted in multiple lineages for more than 100 Myr. These inferences support the hypotheses that (i) maternal dermatophagy is widespread in oviparous direct-developing caecilians, and (ii) that viviparous caecilians that feed on the hypertrophied maternal oviduct evolved from skin-feeding ancestors. In addition to skin-feeding, young S. annulatus were observed to congregate around, and imbibe liquid exuded from, the maternal cloacal opening. PMID:18547909

  6. A new species of Microcaecilia Taylor, 1968 (Amphibia: Gymnophiona: Siphonopidae) from Amazonian Brazil.

    PubMed

    Wilkinson, Mark; Antoniazzi, Marta Maria; Jared, Carlos

    2015-01-01

    A new species of siphonopid caecilian, Microcaecilia butantan sp. nov., is described based on four specimens from Belterra, in the State of Pará, Brazil. The new species differs from all other Microcaecilia in having a combination of more than 135 primary annuli and long premaxillary-maxillary tooth series that extend posteriorly beyond the choanae. Some specimens were dug from soil in a cupuaçu (Theobroma grandiflorum) plantation suggesting that this form of agriculture provides an environment suitable for at least some caecilians. PMID:25661220

  7. A New Basal Salamandroid (Amphibia, Urodela) from the Late Jurassic of Qinglong, Hebei Province, China

    PubMed Central

    Jia, Jia; Gao, Ke-Qin

    2016-01-01

    A new salamandroid salamander, Qinglongtriton gangouensis (gen. et sp. nov.), is named and described based on 46 fossil specimens of juveniles and adults collected from the Upper Jurassic (Oxfordian) Tiaojishan Formation cropping out in Hebei Province, China. The new salamander displays several ontogenetically and taxonomically significant features, most prominently the presence of a toothed palatine, toothed coronoid, and a unique pattern of the hyobranchium in adults. Comparative study of the new salamander with previously known fossil and extant salamandroids sheds new light on the early evolution of the Salamandroidea, the most species-diverse clade in the Urodela. Cladistic analysis places the new salamander as the sister taxon to Beiyanerpeton, and the two taxa together form the basalmost clade within the Salamandroidea. Along with recently reported Beiyanerpeton from the same geological formation in the neighboring Liaoning Province, the discovery of Qinglongtriton indicates that morphological disparity had been underway for the salamandroid clade by early Late Jurassic (Oxfordian) time. PMID:27144770

  8. A New Basal Salamandroid (Amphibia, Urodela) from the Late Jurassic of Qinglong, Hebei Province, China.

    PubMed

    Jia, Jia; Gao, Ke-Qin

    2016-01-01

    A new salamandroid salamander, Qinglongtriton gangouensis (gen. et sp. nov.), is named and described based on 46 fossil specimens of juveniles and adults collected from the Upper Jurassic (Oxfordian) Tiaojishan Formation cropping out in Hebei Province, China. The new salamander displays several ontogenetically and taxonomically significant features, most prominently the presence of a toothed palatine, toothed coronoid, and a unique pattern of the hyobranchium in adults. Comparative study of the new salamander with previously known fossil and extant salamandroids sheds new light on the early evolution of the Salamandroidea, the most species-diverse clade in the Urodela. Cladistic analysis places the new salamander as the sister taxon to Beiyanerpeton, and the two taxa together form the basalmost clade within the Salamandroidea. Along with recently reported Beiyanerpeton from the same geological formation in the neighboring Liaoning Province, the discovery of Qinglongtriton indicates that morphological disparity had been underway for the salamandroid clade by early Late Jurassic (Oxfordian) time. PMID:27144770

  9. Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata).

    PubMed

    Matsui, Masafumi; Tominaga, Atsushi; Liu, Wan-zhao; Tanaka-Ueno, Tomoko

    2008-10-01

    The phylogenetic relationships among 46 samples from 27 populations of the Japanese giant salamander, Andriasjaponicus and its congener, A. davidianus from China was investigated, using 3664 bp sequences of the mitochondrial genes NADH1, NADH3, cyt b and CR, partial NADH6 and intervening genes. In phylogenetic trees constructed by MP, ML, and Bayesian methods, the family Cryptobranchidae and the genus Andrias both form monophyletic groups. Japanese A. japonicus and Chinese A. davidianus are sister taxa and can be regarded as separate species despite a small degree of genetic differentiation. Andriasjaponicus is divided into central and western clades, but the phylogenetic relationships within the latter clade are unresolved. As previously reported from allozyme analyses, A. japonicus exhibits little genetic differentiation, in strong contrast to salamanders of the genus Hynobius with which their distributions overlap. This reduced genetic variability in A. japonicus is attributable to a unique mating system of polygyny, delayed sexual maturity, notable longevity, life in a stable aquatic environment, and gigantism, as well as bottleneck effects following habitat fragmentation and extinction of local populations during Quaternary glaciations. The species is thus susceptible to extinction by potential environmental fluctuations, and requires extensive conservation measures. PMID:18723097

  10. [Episodes of adaptive evolution of mitochondrial genome in Asiatic salamanders (Amphibia, Caudata, Hynobiidae)].

    PubMed

    Maliarchuk, B A; Derenko, M V; Denisova, G A

    2014-02-01

    To elucidate the effect of natural selection on the evolution of mitochondrial DNA (mtDNA) in Asiatic salamanders of the family Hynobiidae, nucleotide sequences of 12 protein-coding genes were analyzed. Using a mixed effects model of evolution, it was found that, in spite of the pronounced effect of negative selection on the mtDNA evolution in Hynobiidae (which is typical for the animals in general), two phylogenetic clusters, the West Asian one, represented by the genera Ranodon and Paradactylodon, and North Eurasian one, represented by the genus Salamandrella, were formed under the influence of episodic positive selection. Analysis of protein sequences encoded by the mitochondrial genome also supported the influence of positive selection on the evolution of Hynobiidae at some stages of their cladogenesis. It is suggested that the signatures of adaptive evolution detected in the mtDNA of Hynobiidae were determined by the complex and long-lasting history of their formation, accompanied by adaptation to the changing environment. PMID:25711027