Science.gov

Sample records for amphibian metamorphosis assay

  1. Thyroid Histopathology Assessments for the Amphibian Metamorphosis Assay to Detect Thyroid-active Substances

    EPA Science Inventory

    In support of an Organization for Economic Cooperation and Development (OECD) Amphibian Metamorphosis Assay (AMA) Test Guideline for the detection of substances that interact with the hypothalamic-pituitary-thyroid axis, a document was developed that provides a standardized appro...

  2. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay

    PubMed Central

    Miyata, Kaori; Ose, Keiko

    2012-01-01

    There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach. PMID:22481853

  3. The phylogeny of amphibian metamorphosis.

    PubMed

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined. PMID:16351859

  4. The Metamorphosis of Amphibian Toxicogenomics

    PubMed Central

    Helbing, Caren C.

    2012-01-01

    Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070

  5. The metamorphosis of amphibian toxicogenomics.

    PubMed

    Helbing, Caren C

    2012-01-01

    Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070

  6. Effects of freshwater petroleum contamination on amphibian hatching and metamorphosis

    SciTech Connect

    Mahaney, P.A. . Dept. of Zoology)

    1994-02-01

    This study examined the effects of freshwater petroleum contamination on amphibian reproduction. The primary objectives were to assess the potential environmental and physiological impacts of runoff petroleum products on amphibians, using the green tree frog (Hyla cinerea) as a target species and engine crankcase oil as a contaminant. Egg hatching success, tadpole growth, and successful metamorphosis were measured in four concentrations of oil. The effects of oil on food source was also studied. Hatching success was not measurably influenced by the presence of oil. Tadpole and alga growth were negatively associated with the presence of oil. No tadpoles from the high concentration of oil treatments successfully metamorphosed.

  7. Preliminary validation of a short-term morphological assay to evaluate adverse effects on amphibian metamorphosis and thyroid function using Xenopus laevis.

    PubMed

    Fort, D J; Rogers, R L; Morgan, L A; Miller, M F; Clark, P A; White, J A; Paul, R R; Stover, E L

    2000-01-01

    Short-term static-renewal studies were performed on Xenopus laevis embryos with 16 selected test materials from day 50 (stage 60) to day 64 (stage 66) (14-day test) to evaluate effects on tail resorption and thyroid function. Of the 16 test materials, nine were found to inhibit significantly the rate of tail resorption, four were found to stimulate metamorphosis and three had no appreciable effect on the rate of metamorphosis. In an effort to determine if the morphological effects observed were related to alteration in thyroid activity, measurement of triiodothyronine (T3) in the test organisms and coadministration studies using thyroxine (agonist) or propylthiouracil (antagonist) were performed based on the morphological response noted during tail resorption. Of the nine compounds found to inhibit the rate of tail resorption, six were found to reduce the levels of T3. In each case, the inhibitory response could be at least partially alleviated by the co-administration of thyroxine. Larvae exposed to the four stimulatory agents had somewhat elevated levels of T3 and were responsive to propylthiouracil antagonism. These results suggest that 12 of the 14 compounds tested in this study that altered the rate of tail resorption did so via the thyroid axis. Overall, the X. laevis model appeared to be a suitable system for evaluating the impact of environmental agents and chemical products on thyroid function. PMID:11139173

  8. Visual implant elastomer mark retention through metamorphosis in amphibian larvae

    USGS Publications Warehouse

    Grant, E.H.C.

    2008-01-01

    Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark?recapture studies, with particular application to studies of larval amphibians.

  9. Visual implant elastomer mark retention through metamorphosis in amphibian larvae

    USGS Publications Warehouse

    Grant, E.H.C.

    2008-01-01

    Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark-recapture studies, with particular application to studies of larval amphibians.

  10. Amphibian Metamorphosis: A Sensitive Life Stage to Chemical and Non-chemical Stressors

    EPA Science Inventory

    Amphibian metamorphosis is a dynamic period of post-embryonic development which transforms the larval anuran into the juvenile. The body structure is remodeled through a variety of processes which may be perturbed by exposure to chemicals as well as other environmental stressors....

  11. Involvement of Glucocorticoids in the Reorganization of the Amphibian Immune System at Metamorphosis

    PubMed Central

    Barker, Katherine S.; Davis, A. Tray

    1997-01-01

    In recent years, integrative animal biologists and behavioral scientists have begun to understand the complex interactions between the immune system and the neuroendocrine system. Amphibian metamorphosis offers a unique opportunity to study dramatic hormone-driven changes in the immune system in a compressed time frame. In the South African clawed frog, Xenopus laevis, the larval pattern of immunity is distinct from that of the adult, and metamorphosis marks the transition from one pattern to the other. Climax of metamorphosis is characterized by significant elevations in thyroid hormones, glucocorticoid hormones, and the pituitary hormones, prolactin and growth hormone. Previously, we and others have shown that elevated levels of unbound glucocorticoid hormones found at climax of metamorphosis are associated with a natural decline in lymphocyte numbers, lymphocyte viability, and mitogen-induced proliferation. Here we present evidence that the mechanism for loss of lymphocytes at metamorphosis is glucocorticoid-induced apoptosis. Inhibition of lymphocyte function and loss of lymphocytes in the thymus and spleen are reversible by in vitro or in vivo treatment with the glucocorticoid receptor antagonist, RU486, whereas the mineralocorticoid receptor antagonist, RU26752, is poorly effective. These observations support the hypothesis that loss of larval lymphocytes and changes in lymphocyte function are due to elevated concentrations of glucocorticoids that remove unnecessary lymphocytes to allow for development of immunological tolerance to the new adult-specific antigens that appear as a result of metamorphosis. PMID:9587715

  12. Metamorphosis of two amphibian species after chronic cadmium exposure in outdoor aquatic mesocosms

    USGS Publications Warehouse

    James, S.M.; Little, E.E.; Semlitsch, R.D.

    2005-01-01

    Amphibian larvae at contaminated sites may experience an alteration of metamorphic traits and survival compared to amphibians in uncontaminated conditions. Effects of chronic cadmium (Cd) exposure on the metamorphosis of American toads (Bufo americanus) and southern leopard frogs (Rana sphenocephala) were determined. The two species were reared separately from shortly after hatching through metamorphosis in outdoor mesocosms (1,325-L polyethylene cattle tanks) that simulated natural ponds and enhanced environmental realism relative to the laboratory. Both species exhibited a decrease in survival with increasing initial nominal aqueous Cd concentration. Cadmium treatment did not influence mass at metamorphosis for either species when survival was included as a covariate, but increased the age at metamorphosis for the American toads. The whole body Cd content of metamorphs increased with aqueous Cd treatment level for both species, and the American toads tended to possess more elevated residues. Cadmium quickly partitioned out of the water column and accumulated in and altered the abundance of the tadpoles' diet. Cadmium-contaminated sites may produce fewer metamorphs, and those that survive will metamorphose later and contain Cd. Interspecific differences in the response variables illustrate the importance of testing multiple species when assessing risk. ?? 2005 SETAC.

  13. Transition of chytrid fungus infection from mouthparts to hind limbs during amphibian metamorphosis.

    PubMed

    McMahon, Taegan A; Rohr, Jason R

    2015-03-01

    The chytrid fungus, Batrachochytrium dendrobatidis (Bd), is implicated in worldwide amphibian declines. Bd has been shown to qualitatively transition from the mouthparts of tadpoles to the hindlimbs during metamorphosis, but we lack evidence of consistency in the timing of this transition across amphibian species. We also do not have predictive functions for the abundance of Bd in mouthparts and limbs as tadpoles develop or for the relationship between keratin and Bd abundance. Hence, researchers presently have little guidance on where to sample developing amphibians to maximize Bd detection, which could affect the accuracy of prevalence and abundance estimates for this deadly pathogen. Here, we show consistency in the timing of the transition of Bd from mouthparts to hind limbs across two frog species (Osteopilus septentrionalis and Mixophyes fasciolatus). Keratin and Bd simultaneously declined from the mouthparts starting at approximately Gosner stage 40. However, keratin on the hindlimbs began to appear at approximately stage 38 but, on average, Bd was not detectable on the hindlimbs until approximately stage 40, suggesting a lag between keratin and Bd arrival. Predictive functions for the relationships between developmental stage and keratin and developmental stage and Bd for mouthparts and hind limbs are provided so that researchers can optimize sampling designs and minimize erroneous conclusions associated with missing Bd infections or misestimating Bd abundance. PMID:25384612

  14. Optimization, validation and efficacy of the phytohaemagglutinin inflammation assay for use in ecoimmunological studies of amphibians

    PubMed Central

    Clulow, Simon; Harris, Merrilee; Mahony, Michael J.

    2015-01-01

    that metamorphosis does not prevent phenotypic carry-over of larval stress to the adult phenotype. This assay provides an effective tool for understanding the role of global environmental change in the amphibian extinction crisis. PMID:27293727

  15. DEVELOPMENT OF AN AMPHIBIAN METAMORPHOSIS MODEL FOR DETECTING THYROID AXIS DISRUPTION

    EPA Science Inventory

    Metamorphosis in Xenopus laevis represents an elaborate process of post-embryonic development which is thyroid hormone (TH) dependent. The development of a functional thyroid axis and the responses of tissues to different TH concentrations are well defined in this species, provid...

  16. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence.

    PubMed

    Medina, Daniel; Garner, Trenton W J; Carrascal, Luis María; Bosch, Jaime

    2015-12-01

    Highly virulent pathogens that cause host population declines confront the risk of fade-out, but if pathogen transmission dynamics are age-structured, pathogens can persist. Among other features of amphibian biology, variable larval developmental rates generate age-structured larval populations, which in theory can facilitate pathogen persistence. We investigated this possibility empirically in a population of Salamandra salamandra in Spain affected by Batrachochytrium dendrobatidis (Bd) at breeding sites that lacked alternative amphibian hosts. None of the adults presented infection by Bd. However, for the larvae, while environmental heterogeneity was the most important predictor of infection, the effect on infection dynamics was mediated by transmission from overwintered larvae to new larval recruits, which occurred only in permanent larval habitats. We suggest that interannual Bd maintenance in a host population that experiences mass mortality associated with infection can occur without an environmental reservoir or direct involvement of an alternative host in our study system. However the 2 aquatic habitat types that support intraspecific reservoirs, permanent streams and ponds, are not ideal habitats for long-term Bd maintenance, either due to poor transmission probability or low host survival, respectively. While intraspecific pathogen maintenance due to larval plasticity might be possible at our study sites, this transmission pattern is not without significant risk to the pathogen. The availability of alternative hosts nearby does indicate that permanent Bd fade-out is unlikely. PMID:26648101

  17. Amphibians.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Describes some of the characteristics of amphibians. Contains teaching activities ranging from a "frog sing-along" to lessons on amphibian adaptations, and night hikes to identify frog calls. Includes reproducible handouts to be used with the activities, and a quiz. (TW)

  18. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.

    PubMed

    Pickford, Daniel B

    2010-11-01

    In order to minimize risks to human and environmental health, chemical safety assessment programs are being reinforced with toxicity tests more specifically designed for detecting endocrine disrupters. This includes the necessity to detect thyroid-disrupting chemicals, which may operate through a variety of modes of action, and have potential to impair neurological development in humans, with resulting deficits of individual and social potential. Mindful of these concerns, the consensus favors in vivo models for both hazard characterization (testing) and hazard identification (screening) steps, in order to minimize false negatives. Owing to its obligate dependence on thyroid hormones, it has been proposed that amphibian metamorphosis be used as a generalized vertebrate model for thyroid function in screening batteries for detection of thyroid disrupters. However, it seems unlikely that such an assay would ever fully replace in vivo mammalian assays currently being validated for human health risk assessment: in its current form the amphibian metamorphosis screening assay would not provide capacity for reliably detecting other modes of endocrine-disrupting activity. Conversely, several candidate mammalian screening assays appear to offer robust capacity to detect a variety of modes of endocrine-disrupting activity, including thyroid activity. To assess whether omission of an amphibian metamorphosis assay from an in vivo screening battery would generate false negatives, the response of amphibian and mammalian assays to a variety known thyroid disrupters, as reported in peer-reviewed literature or government agency reports, was critically reviewed. Of the chemicals investigated from the literature selected (41), more had been tested in mammalian studies with thyroid-relevant endpoints (32) than in amphibian assays with appropriate windows of exposure and developmental endpoints (27). One chemical (methoxychlor) was reported to exhibit thyroid activity in an appropriate

  19. Examination of an amphibian-based assay using the larvae of Xenopus laevis and Ambystoma mexicanum.

    PubMed

    Saka, Masahiro

    2003-05-01

    Semistatic acute toxicity tests of amphibian larvae (Xenopus laevis and Ambystoma mexicanum) were conducted at different developmental stages and by different methods to establish a simple amphibian-based assay. Test substance was pentachlorophenol sodium salt (PCP-Na). The endpoint was mortality and the 24-, 48-, 72-, and 96-h LC50 values were calculated by probit analysis. Interspecific differences in larval responses were not clear. Larval sensitivity tended to increase with larval age. Newly hatched larvae were most resistant to PCP-Na. During the tests of well-developed larvae, concentrations of dissolved oxygen and PCP-Na in the test solutions greatly dropped owing to uptake by the larvae. Therefore, middle-developed (2-week-old) larvae were most suitable for the test. Toxicity tests for volatile substances would be also possible using 2-week-old larvae in closed vessels. Test individuals should be kept individually to avoid the effects of poisonous skin secretions released from dead larvae. PMID:12706392

  20. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.

    PubMed

    Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip

    2014-01-01

    We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements. PMID:24169791

  1. Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations.

    PubMed

    Shi, Huahong; Zhu, Pan; Guo, Suzhen

    2014-05-01

    Tributyltin (TBT), a well known endocrine disruptor, has high teratogenicity to embryos of amphibian (Xenopus tropicalis). An amphibian metamorphosis assay (AMA) and a complete AMA (CAMA) were conducted for TBT. In AMA, the body weight, the snout-to-vent length and the hind limb length of X. laevis tadpoles were decreased in tributyltin chloride (TBTCl; 12.5-200 ng/L) treatment groups after 7 days exposure. TBT greatly retarded the development of tadpoles, decreased the number of follicle and induced thyroid follicle cell hyperplasia after 19 days exposure. In CAMA, 10 and 100 ng/L TBTCl led to various malformations of gonad, including intersex, segmental aplasia and multiple ovary cavities of X. laevis following exposure from stages 46 to stage 66. The sex ratio was male-biased in TBT treatment groups. These results suggest that TBT delayed the metamorphosis, inhibited the growth of tadpoles and disrupted the gonadal differentiation of X. laevis at environmentally relevant concentrations. PMID:22903176

  2. Are fish and standardized FETAX assays protective enough for amphibians? A case study on Xenopus laevis larvae assay with biologically active substances present in livestock wastes.

    PubMed

    Martini, Federica; Tarazona, José V; Pablos, M Victoria

    2012-01-01

    Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim) and essential metals (zinc, copper, manganese, and selenium) that may be found in livestock wastes were used for the larvae exposure. Lethal (LC(50)) and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians. PMID:22629159

  3. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    PubMed Central

    Martini, Federica; Tarazona, José V.; Pablos, M. Victoria

    2012-01-01

    Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim) and essential metals (zinc, copper, manganese, and selenium) that may be found in livestock wastes were used for the larvae exposure. Lethal (LC50) and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians. PMID:22629159

  4. Validation of the sperm chromatin dispersion (SCD) test in the amphibian Xenopus laevis using in situ nick translation and comet assay.

    PubMed

    Pollock, K; Gosálvez, J; Arroyo, F; López-Fernández, C; Guille, M; Noble, A; Johnston, S D

    2015-11-01

    The integrity of sperm DNA is becoming increasingly recognised as an important parameter of semen quality, but there are no published reports of this procedure for any amphibian. The primary aim of this study was to apply a modified sperm chromatin dispersion (SCD) test (Halomax) to an amphibian sperm model (African clawed frog; Xenopus laevis) and to validate the assay against in situ nick translation (ISNT) and the double-comet assay procedure. Inactivated spermatozoa were collected from fresh testes (n=3). Sperm DNA fragmentation (SDF) for each sperm sample was conducted immediately following activation (T0) and again after 1h (T1) and 24h (T24) of incubation at room temperature in order to produce a range of spermatozoa with differing levels of DNA damage. The SCD procedure resulted in the production of three nuclear morphotypes; amphibian sperm morphotype 1 (ASM-1) and ASM-2 showed no evidence of DNA damage, whereas ASM-3 spermatozoa were highly fragmented with large halos of dispersed DNA fragments and a reduced nuclear core. ISNT confirmed that ASM-3 nuclei contained damaged DNA. There was a significant correlation (r=0.9613) between the levels of ASM-3 detected by the SCD test and SDF revealed by the double-comet assay. PMID:25482041

  5. The origins and evolution of vertebrate metamorphosis.

    PubMed

    Laudet, Vincent

    2011-09-27

    Metamorphosis, classically defined as a spectacular post-embryonic transition, is well exemplified by the transformation of a tadpole into a frog. It implies the appearance of new body parts (such as the limbs), the resorption of larval features (such as the tail) and the remodelling of many organs (such as the skin or the intestine). In vertebrates, metamorphosis has been well characterized in anuran amphibians, where thyroid hormones orchestrate the intricate and seemingly contradictory changes observed at the cellular and tissue levels. Thyroid hormones control a complex hierarchical cascade of target genes via binding to specific receptors, TRα and TRβ, ligand-activated transcription factors belonging to the nuclear receptor superfamily. Metamorphosis is actually widespread in the vertebrates, though quite diverse in the way it manifests in a particular species. Furthermore, evolutionary and ecological variations of this key event, from paedomorphosis to direct development, provide an excellent illustration of how tinkering with a control pathway can lead to divergent life histories. The study of invertebrate chordates has also shed light on the origin of metamorphosis. The available data suggest that post-embryonic remodelling governed by thyroid hormones is an ancestral feature of chordates. According to this view, metamorphosis of the anurans is an extreme example of a widespread life history transition. PMID:21959163

  6. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis

    PubMed Central

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-01-01

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis. PMID:27254593

  7. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis.

    PubMed

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-01-01

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis. PMID:27254593

  8. ELASTICITY ANALYSIS OF AMPHIBIAN LIFE HISTORIES

    EPA Science Inventory

    By comparing life history parameters (e.g., age at metamorphosis, age at sexual maturation, egg number, longevity) and phenology of different species, we gain valuable insight into why growth rates differ across populations. Although the demography of most amphibians is lacking, ...

  9. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity

    PubMed Central

    Stier, Adrian C.; Michonneau, François; Smith, Matthew D.; Pasch, Bret; Maden, Malcolm

    2014-01-01

    Abstract While most tetrapods are unable to regenerate severed body parts, amphibians display a remarkable ability to regenerate an array of structures. Frogs can regenerate appendages as larva, but they lose this ability around metamorphosis. In contrast, salamanders regenerate appendages as larva, juveniles, and adults. However, the extent to which fundamental traits (e.g., metamorphosis, body size, aging, etc.) restrict regenerative ability remains contentious. Here we utilize the ability of normally paedomorphic adult axolotls (Ambystoma mexicanum) to undergo induced metamorphosis by thyroxine exposure to test how metamorphosis and body size affects regeneration in age‐matched paedomorphic and metamorphic individuals. We show that body size does not affect regeneration in adult axolotls, but metamorphosis causes a twofold reduction in regeneration rate, and lead to carpal and digit malformations. Furthermore, we find evidence that metamorphic blastemal cells may take longer to traverse the cell cycle and display a lower proliferative rate. This study identifies the axolotl as a powerful system to study how metamorphosis restricts regeneration independently of developmental stage, body size, and age; and more broadly how metamorphosis affects tissue‐specific changes.

  10. Interactive shape metamorphosis

    NASA Technical Reports Server (NTRS)

    Chen, David T.; State, Andrei; Banks, David

    1994-01-01

    A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.

  11. Amphibian macrophage development and antiviral defenses.

    PubMed

    Grayfer, Leon; Robert, Jacques

    2016-05-01

    Macrophage lineage cells represent the cornerstone of vertebrate physiology and immune defenses. In turn, comparative studies using non-mammalian animal models have revealed that evolutionarily distinct species have adopted diverse molecular and physiological strategies for controlling macrophage development and functions. Notably, amphibian species present a rich array of physiological and environmental adaptations, not to mention the peculiarity of metamorphosis from larval to adult stages of development, involving drastic transformation and differentiation of multiple new tissues. Thus it is not surprising that different amphibian species and their respective tadpole and adult stages have adopted unique hematopoietic strategies. Accordingly and in order to establish a more comprehensive view of these processes, here we review the hematopoietic and monopoietic strategies observed across amphibians, describe the present understanding of the molecular mechanisms driving amphibian, an in particular Xenopus laevis macrophage development and functional polarization, and discuss the roles of macrophage-lineage cells during ranavirus infections. PMID:26705159

  12. Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration, using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (Mutatox and Ames tests).

    PubMed

    Mouchet, F; Gauthier, L; Mailhes, C; Jourdain, M J; Ferrier, V; Triffault, G; Devaux, A

    2006-02-15

    The management of contaminated soils and wastes is a matter of considerable human concern. The present study evaluates the genotoxic potential of aqueous extracts of two soils (leachates) and of bottom ash resulting from municipal solid waste incineration (MSWIBA percolate), using amphibian larvae (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic aromatic hydrocarbons and metals. MSWIBA was predominantly contaminated by metals. Two genotoxic endpoints were analysed in circulating erythrocytes taken from larvae: clastogenic and/or aneugenic effects (micronucleus induction) after 12 days of exposure and DNA-strand-breaking potency (comet assay) after 1 and 12 days of exposure. In addition, in vitro bacterial assays (Mutatox and Ames tests) were carried out and the results were compared with those of the amphibian test. Physicochemical analyses were also taken into account. Results obtained with the amphibians established the genotoxicity of the aqueous extracts and the comet assay revealed that they were genotoxic from the first day of exposure. The latter test could thus be considered as a genotoxicity-screening tool. Although genotoxicity persisted after 12 days' exposure, DNA damage decreased overall between days 1 and 12 in the MSWIBA percolate, in contrast to the soil leachates. Bacterial tests detected genotoxicity only for the leachate of soil A (Mutatox). The results confirm the ecotoxicological relevance of the amphibian model and underscore the importance of bioassays, as a complement to physico-chemical data, for risk evaluation. PMID:16442436

  13. Artificial Metamorphosis: Evolutionary Design of Transforming, Soft-Bodied Robots.

    PubMed

    Joachimczak, Michał; Suzuki, Reiji; Arita, Takaya

    2016-01-01

    We show how the concept of metamorphosis, together with a biologically inspired model of multicellular development, can be used to evolve soft-bodied robots that are adapted to two very different tasks, such as being able to move in an aquatic and in a terrestrial environment. Each evolved solution defines two pairs of morphologies and controllers, together with a process of transforming one pair into the other. Animats develop from a single cell and grow through cellular divisions and deaths until they reach an initial larval form adapted to a first environment. To obtain the adult form adapted to a second environment, the larva undergoes metamorphosis, during which new cells are added or removed and its controller is modified. Importantly, our approach assumes nothing about what morphologies or methods of locomotion are preferred. Instead, it successfully searches the vast space of possible designs and comes up with complex, surprising, lifelike solutions that are reminiscent of amphibian metamorphosis. We analyze obtained solutions and investigate whether the morphological changes during metamorphosis are indeed adaptive. We then compare the effectiveness of three different types of selective pressures used to evolve metamorphic individuals. Finally, we investigate potential advantages of using metamorphosis to automatically produce soft-bodied designs by comparing the performance of metamorphic individuals with their specialized counterparts and designs that are robust to both environments. PMID:27139940

  14. Calcific Metamorphosis: A Review

    PubMed Central

    Siddiqui, Shoaib Haider; Mohamed, Ahmed Nabil

    2016-01-01

    Dental trauma to the permanent dentition can lead to clinical complications and its management may considerably challenge a practitioner. The incidence of pulp canal obliteration following dental trauma has been reported to be approximately 4 – 24%. Attempting to locate canals following calcific metamorphosis and negotiating it to full working length may lead to iatrogenic errors such as fractured instrument and perforation. This review article describes the possible etiology of Calcific Metamorphosis, its clinical and radiographic features as well as its management. PMID:27610067

  15. Effects of the amphibian chytrid fungus and four insecticides on Pacific treefrogs (Pseudacris regilla)

    USGS Publications Warehouse

    Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary

    2012-01-01

    Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.

  16. Effects of an insecticide on amphibians in large-scale experimental ponds

    USGS Publications Warehouse

    Boone, M.D.; Semlitsch, R.D.; Fairchild, J.F.; Rothermel, B.B.

    2004-01-01

    We examined the effects of the insecticide carbaryl on larval amphibian communities in large-scale experimental ponds. Tadpoles of two anurans, Woodhouse's toad (Bufo woodhousii) and southern leopard Frog (Rana sphenocephala), were reared in ponds (800 m3 volume) to determine the effects of tadpole density and carbaryl exposure on mass at metamorphosis and on time and survival to metamorphosis. Exposure to carbaryl significantly affected toads at metamorphosis, but not leopard frogs. Carbaryl exposure nearly doubled toad survival compared to controls; this effect may be attributable to an indirect effect of earbaryl increasing algal food resources. The competitive environment (i.e., density) and carbaryl exposure significantly affected the trade-off between mass and time to metamorphosis for toads. Our study is the first to demonstrate that in pond communities where predation and competition may be strong, short-lived insecticides can significantly alter the community dynamics of amphibians.

  17. Ontogenetic loss of phenotypic plasticity of age at metamorphosis in tadpoles

    SciTech Connect

    Hensley, F.R. )

    1993-12-01

    Amphibian larvae exhibit phenotypic plasticity in size at metamorphosis and duration of the larval period. I used Pseudacris crucifer tadpoles to test two models for predicting tadpole age and size at metamorphosis under changing environmental conditions. The Wilbur-Collins model states that metamorphosis is initiated as a function of a tadpole's size and relative growth rate, and predicts that changes in growth rate throughout the larval period affect age and size at metamorphosis. An alternative model, the fixed-rate model, states that age at metamorphosis is fixed early in larval life, and subsequent changes in growth rate will have no effect on the length of the larval period. My results confirm that food supplies affect both age and size at metamorphosis, but developmental rates became fixed at approximately Gosner (1960) stages 35-37. Neither model completely predicted these results. I suggest that the generally accepted Wilbur-Collins model is improved by incorporating a point of fixed developmental timing. Growth trajectories predicted from this modified model fit the results of this study better than trajectories based on either of the original models. The results of this study suggests a constraint that limits the simultaneous optimization of age and size at metamorphosis. 32 refs., 5 figs., 1 tab.

  18. Amphibian parathyroids: morphological and functional aspects.

    PubMed

    Srivastav, A K; Das, V K; Das, S; Sasayama, Y; Suzuki, N

    1995-10-01

    Amphibians living partially or totally in a terrestrial environment are the first tetrapods to possess parathyroid glands. Purely aquatic amphibians and amphibian larvae lack these endocrine glands. The parathyroids develop at the time of metamorphosis. The parathyroid glands in caecilians consist of a single cell type, that of urodeles may be composed of basal (supporting) cells and suprabasal (chief) cells, and that of anurans of small and large chief cells. Parathyroid glands of caecilians and anurans lack connective tissue, blood vessels, and nerves. The parathyroid cells become activated in response to decreased blood calcium concentration and undergo changes indicating increased parathyroid hormone secretion. Increased blood calcium concentration suppresses secretory activity. Usually, parathyroidectomy elicits hypocalcemia in most amphibians. Such operations have no effect in lower urodeles. Parathyroid hormone administration provokes hypercalcemia in most amphibians. The parathyroids of caecilians have not been studied in detail. The urodeles and anurans exhibit seasonal changes in the parathyroid glands. These changes may be initiated by environmental stimuli such as light, temperature, or alterations in blood calcium levels caused by natural hibernation. PMID:8580512

  19. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  20. Amphibian Bioacoustics

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, Jakob

    Anuran amphibians (frogs and toads) of most of the 3,500 species that exist today are highly vocal animals. In most frogs, males will spend considerable energy on calling and incur sizeable predation risks and the females’ detection and localization of the calls of conspecific males is often a prerequisite for successful mating. Therefore, acoustic communication is evidently evolutionarily important in the anurans, and their auditory system is probably shaped by the selective pressures associated with production, detection and localization of the communication calls.

  1. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma)

    PubMed Central

    Page, Robert B; Voss, Stephen R; Samuels, Amy K; Smith, Jeramiah J; Putta, Srikrishna; Beachy, Christopher K

    2008-01-01

    Background Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Results Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively. Conclusion We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis. PMID:18267027

  2. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis.

    PubMed

    Cothran, Rickey D; Gervasi, Stephanie S; Murray, Cindy; French, Beverly J; Bradley, Paul W; Urbina, Jenny; Blaustein, Andrew R; Relyea, Rick A

    2015-01-01

    Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates. PMID:27293690

  3. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis

    PubMed Central

    Cothran, Rickey D.; Gervasi, Stephanie S.; Murray, Cindy; French, Beverly J.; Bradley, Paul W.; Urbina, Jenny; Blaustein, Andrew R.; Relyea, Rick A.

    2015-01-01

    Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates. PMID:27293690

  4. Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data.

    PubMed

    Weltje, Lennart; Simpson, Peter; Gross, Melanie; Crane, Mark; Wheeler, James R

    2013-04-01

    The relative sensitivity of amphibians to chemicals in the environment, including plant protection product active substances, is the subject of ongoing scientific debate. The objective of this study was to compare systematically the relative sensitivity of amphibians and fish to chemicals. Acute and chronic toxicity data were obtained from the U.S. Environmental Protection Agency (U.S. EPA) ECOTOX database and were supplemented with data from the scientific and regulatory literature. The overall outcome is that fish and amphibian toxicity data are highly correlated and that fish are more sensitive (both acute and chronic) than amphibians. In terms of acute sensitivity, amphibians were between 10- and 100-fold more sensitive than fish for only four of 55 chemicals and more than 100-fold more sensitive for only two chemicals. However, a detailed inspection of these cases showed a similar acute sensitivity of fish and amphibians. Chronic toxicity data for fish were available for 52 chemicals. Amphibians were between 10- and 100-fold more sensitive than fish for only two substances (carbaryl and dexamethasone) and greater than 100-fold more sensitive for only a single chemical (sodium perchlorate). The comparison for carbaryl was subsequently determined to be unreliable and that for sodium perchlorate is a potential artifact of the exposure medium. Only a substance such as dexamethasone, which interferes with a specific aspect of amphibian metamorphosis, might not be detected using fish tests. However, several other compounds known to influence amphibian metamorphosis were included in the analysis, and these did not affect amphibians disproportionately. These analyses suggest that additional amphibian testing is not necessary during chemical risk assessment. PMID:23381988

  5. Here today, gone tomorrow: Short-term retention of pesticide-induced tolerance in amphibians.

    PubMed

    Jones, Devin K; Relyea, Rick A

    2015-10-01

    Pesticide use has led to the ubiquitous contamination of natural habitats, which has inadvertently increased pesticide tolerance in target and nontarget species. Historically, increased pesticide tolerance has been attributed to natural selection for tolerance among individuals of affected populations. Recent research, however, has discovered that pesticide tolerance can be increased through phenotypic plasticity. Although induced pesticide tolerance may benefit organisms experiencing contaminated systems, little is known about its occurrence in vertebrates, its retention through ontogeny, or potential life history tradeoffs. Using time-to-death assays at 2 distinct developmental windows, the authors discovered that gray treefrog (Hyla versicolor) tadpoles exposed to sublethal concentrations (0 mg a.i./L, 0.5 mg a.i./L, and 1.0 mg a.i./L) of the insecticide Sevin® (carbaryl) early in life increased their pesticide tolerance to a lethal carbaryl concentration 5 d after sublethal exposure. However, this increased tolerance was not retained later in ontogeny (23 d post-sublethal exposure). Moreover, no indication was found of pesticide-induced treefrogs experiencing life-history tradeoffs in terms of survival to metamorphosis, mass, or snout-vent length. Gray treefrogs are only the second vertebrate species and the second amphibian family to exhibit pesticide-induced tolerance after sublethal exposure. The authors' data suggest that the ability to induce increased pesticide tolerance may play a critical role in amphibian survival in contaminated ecosystems. However, future work is needed to test the occurrence of inducible pesticide tolerance among numerous amphibian populations worldwide. PMID:25940070

  6. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  7. Smads and insect hemimetabolan metamorphosis.

    PubMed

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. PMID:27452629

  8. Vertebral development and amphibian evolution.

    PubMed

    Carroll, R L; Kuntz, A; Albright, K

    1999-01-01

    Amphibians provide an unparalleled opportunity to integrate studies of development and evolution through the investigation of the fossil record of larval stages. The pattern of vertebral development in modern frogs strongly resembles that of Paleozoic labyrinthodonts in the great delay in the ossification of the vertebrae, with the centra forming much later than the neural arches. Slow ossification of the trunk vertebrae in frogs and the absence of ossification in the tail facilitate the rapid loss of the tail during metamorphosis, and may reflect retention of the pattern in their specific Paleozoic ancestors. Salamanders and caecilians ossify their centra at a much earlier stage than frogs, which resembles the condition in Paleozoic lepospondyls. The clearly distinct patterns and rates of vertebral development may indicate phylogenetic separation between the ultimate ancestors of frogs and those of salamanders and caecilians within the early radiation of ancestral tetrapods. This divergence may date from the Lower Carboniferous. Comparison with the molecular regulation of vertebral development described in modern mammals and birds suggests that the rapid chondrification of the centra in salamanders relative to that of frogs may result from the earlier migration of sclerotomal cells expressing Pax1 to the area surrounding the notochord. PMID:11324019

  9. Surgery in Amphibians.

    PubMed

    Chai, Norin

    2016-01-01

    Amphibian surgery has been especially described in research. Since the last decade, interest for captive amphibians has increased, so have the indications for surgical intervention. Clinicians should not hesitate to advocate such manipulations. Amphibian surgeries have no overwhelming obstacles. These patients heal well and tolerate blood loss more than higher vertebrates. Most procedures described in reptiles (mostly lizards) can be undertaken in most amphibians if equipment can be matched to the patients' size. In general, the most difficult aspect would be the provision of adequate anesthesia. PMID:26611925

  10. Effects of copper on growth, metamorphosis and endocrine disruption of Bufo gargarizans larvae.

    PubMed

    Wang, Chao; Liang, Gang; Chai, Lihong; Wang, Hongyuan

    2016-01-01

    Chinese toad (Bufo gargarizans) tadpoles were exposed to copper (1, 6.4, 32 and 64μgL(-1) copper) from the beginning of larval period through completion of metamorphosis. We examined the effects of chronic copper exposure on mortality, growth, time to metamorphosis, tail resorption time, body size at the metamorphic climax (Gs 42) and completion of metamorphosis (Gs 46) and thyroid gland histology. In addition, type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. Our result showed that 6.4-64μgL(-1) copper concentration increased the mortality and inhibited the growth of B. gargarizans tadpoles. In addition, significant reduction in size at Gs 42 and a time delay to Gs 42 were observed at 6.4-64μgL(-1) copper treatments. Moreover, histological examinations have clearly revealed that 64μgL(-1) copper caused follicular cell hyperplasia in thyroid gland. According to real-time PCR results, exposure to 32 and 64μgL(-1) copper significantly up-regulated mRNA expression of Dio3, but down-regulated mRNA expression of TRα and TRβ mRNA level. We concluded that copper delayed amphibian metamorphosis through changing mRNA expression of Dio3, TRα and TRβ, which suggests that copper might have the endocrine-disrupting effect. PMID:26587739

  11. A Qualitative Meta-Analysis Reveals Consistent Effects of Atrazine on Freshwater Fish and Amphibians

    PubMed Central

    Rohr, Jason R.; McCoy, Krista A.

    2010-01-01

    Objective The biological effects of the herbicide atrazine on freshwater vertebrates are highly controversial. In an effort to resolve the controversy, we conducted a qualitative meta-analysis on the effects of ecologically relevant atrazine concentrations on amphibian and fish survival, behavior, metamorphic traits, infections, and immune, endocrine, and reproductive systems. Data sources We used published, peer-reviewed research and applied strict quality criteria for inclusion of studies in the meta-analysis. Data synthesis We found little evidence that atrazine consistently caused direct mortality of fish or amphibians, but we found evidence that it can have indirect and sublethal effects. The relationship between atrazine concentration and timing of amphibian metamorphosis was regularly nonmonotonic, indicating that atrazine can both accelerate and delay metamorphosis. Atrazine reduced size at or near metamorphosis in 15 of 17 studies and 14 of 14 species. Atrazine elevated amphibian and fish activity in 12 of 13 studies, reduced antipredator behaviors in 6 of 7 studies, and reduced olfactory abilities for fish but not for amphibians. Atrazine was associated with a reduction in 33 of 43 immune function end points and with an increase in 13 of 16 infection end points. Atrazine altered at least one aspect of gonadal morphology in 7 of 10 studies and consistently affected gonadal function, altering spermatogenesis in 2 of 2 studies and sex hormone concentrations in 6 of 7 studies. Atrazine did not affect vitellogenin in 5 studies and increased aromatase in only 1 of 6 studies. Effects of atrazine on fish and amphibian reproductive success, sex ratios, gene frequencies, populations, and communities remain uncertain. Conclusions Although there is much left to learn about the effects of atrazine, we identified several consistent effects of atrazine that must be weighed against any of its benefits and the costs and benefits of alternatives to atrazine use. PMID

  12. Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood

    PubMed Central

    RINGLER, EVA; MANGIONE, ROSANNA; RINGLER, MAX

    2015-01-01

    Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark–recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark–recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve ‘Les Nouragues’ in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution. PMID:25388775

  13. Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood.

    PubMed

    Ringler, Eva; Mangione, Rosanna; Ringler, Max

    2015-07-01

    Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark-recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark-recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve 'Les Nouragues' in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution. PMID:25388775

  14. Metamorphosis in a Silurian barnacle

    PubMed Central

    Briggs, Derek E.G; Sutton, Mark D; Siveter, David J; Siveter, Derek J

    2005-01-01

    Exceptionally preserved fossils from the Wenlock Series (Silurian) of Herefordshire, UK, provide unique evidence of metamorphosis from free-swimming cyprid larva to attached juvenile in a Palaeozoic barnacle. The larva had large brush-like anterior limbs. The juvenile shows the head transformed into a stalk and the development of the primordial condition of five mineralized plates within the carapace. The discovery of a cyprid larva indicates that crown group cirripedes had evolved by the Silurian. PMID:16243697

  15. A role for Taiman in insect metamorphosis.

    PubMed

    Lozano, Jesus; Kayukawa, Takumi; Shinoda, Tetsuro; Belles, Xavier

    2014-10-01

    Recent studies in vitro have reported that the Methoprene-tolerant (Met) and Taiman (Tai) complex is the functional receptor of juvenile hormone (JH). Experiments in vivo of Met depletion have confirmed this factor's role in JH signal transduction, however, there is no equivalent data regarding Tai because its depletion in larval or nymphal stages of the beetle Tribolium castaneum and the bug Pyrrhocoris apterus results in 100% mortality. We have discovered that the cockroach Blattella germanica possesses four Tai isoforms resulting from the combination of two indels in the C-terminal region of the sequence. The presence of one equivalent indel-1 in Tai sequences in T. castaneum and other species suggests that Tai isoforms may be common in insects. Concomitant depletion of all four Tai isoforms in B. germanica resulted in 100% mortality, but when only the insertion 1 (IN-1) isoforms were depleted, mortality was significantly reduced and about half of the specimens experienced precocious adult development. This shows that Tai isoforms containing IN-1 are involved in transducing the JH signal that represses metamorphosis. Reporter assays indicated that both T. castaneum Tai isoforms, one that contains the IN-1 and another that does not (DEL-1) activated a JH response element (kJHRE) in Krüppel homolog 1 in conjunction with Met and JH. The results indicate that Tai is involved in the molecular mechanisms that repress metamorphosis, at least in B. germanica, and highlight the importance of distinguishing Tai isoforms when studying the functions of this transcription factor in development and other processes. PMID:25356827

  16. A Role for Taiman in Insect Metamorphosis

    PubMed Central

    Lozano, Jesus; Kayukawa, Takumi; Shinoda, Tetsuro; Belles, Xavier

    2014-01-01

    Recent studies in vitro have reported that the Methoprene-tolerant (Met) and Taiman (Tai) complex is the functional receptor of juvenile hormone (JH). Experiments in vivo of Met depletion have confirmed this factor's role in JH signal transduction, however, there is no equivalent data regarding Tai because its depletion in larval or nymphal stages of the beetle Tribolium castaneum and the bug Pyrrhocoris apterus results in 100% mortality. We have discovered that the cockroach Blattella germanica possesses four Tai isoforms resulting from the combination of two indels in the C-terminal region of the sequence. The presence of one equivalent indel-1 in Tai sequences in T. castaneum and other species suggests that Tai isoforms may be common in insects. Concomitant depletion of all four Tai isoforms in B. germanica resulted in 100% mortality, but when only the insertion 1 (IN-1) isoforms were depleted, mortality was significantly reduced and about half of the specimens experienced precocious adult development. This shows that Tai isoforms containing IN-1 are involved in transducing the JH signal that represses metamorphosis. Reporter assays indicated that both T. castaneum Tai isoforms, one that contains the IN-1 and another that does not (DEL-1) activated a JH response element (kJHRE) in Krüppel homolog 1 in conjunction with Met and JH. The results indicate that Tai is involved in the molecular mechanisms that repress metamorphosis, at least in B. germanica, and highlight the importance of distinguishing Tai isoforms when studying the functions of this transcription factor in development and other processes. PMID:25356827

  17. Fetal adaptations for viviparity in amphibians.

    PubMed

    Wake, Marvalee H

    2015-08-01

    Live-bearing has evolved in all three orders of amphibians--frogs, salamanders, and caecilians. Developing young may be either yolk dependent, or maternal nutrients may be supplied after yolk is resorbed, depending on the species. Among frogs, embryos in two distantly related lineages develop in the skin of the maternal parents' backs; they are born either as advanced larvae or fully metamorphosed froglets, depending on the species. In other frogs, and in salamanders and caecilians, viviparity is intraoviductal; one lineage of salamanders includes species that are yolk dependent and born either as larvae or metamorphs, or that practice cannibalism and are born as metamorphs. Live-bearing caecilians all, so far as is known, exhaust yolk before hatching and mothers provide nutrients during the rest of the relatively long gestation period. The developing young that have maternal nutrition have a number of heterochronic changes, such as precocious development of the feeding apparatus and the gut. Furthermore, several of the fetal adaptations, such as a specialized dentition and a prolonged metamorphosis, are homoplasious and present in members of two or all three of the amphibian orders. At the same time, we know little about the developmental and functional bases for fetal adaptations, and less about the factors that drive their evolution and facilitate their maintenance. PMID:24643944

  18. Introducing Environmental Toxicology in Instructional Labs: The Use of a Modified Amphibian Developmental Toxicity Assay to Support Inquiry-Based Student Projects

    ERIC Educational Resources Information Center

    Sauterer, Roger; Rayburn, James R.

    2012-01-01

    Introducing students to the process of scientific inquiry is a major goal of high school and college labs. Environmental toxins are of great concern and public interest. Modifications of a vertebrate developmental toxicity assay using the frog Xenopus laevis can support student-initiated toxicology experiments that are relevant to humans. Teams of…

  19. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  20. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations

    PubMed Central

    2015-01-01

    Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to

  1. Atrazine Contamination in Water and the Impact on Amphibian Populations: A Bioassay That Measures Water Quality

    NASA Astrophysics Data System (ADS)

    Hayes, T. B.

    2001-12-01

    In recent laboratory studies, we showed that atrazine, a common herbicide, can inhibit metamorphosis, produce hermaphrodites, and inhibit male development in amphibians. In part, these effects are due to a decrease in androgen levels. These effects occur at ecologically relevant low doses (0.1 ppb), and the effective levels are below the current drinking level standard and below contaminant levels found even in rainfall in some areas. Thus, the impact of this widespread compound on free-ranging amphibians is a concern. We undertook a large-scale study to examine atrazine levels in a variety of habitats (temporary pools, rivers, lakes and ponds, and field runoff) across the US where atrazine is used and areas that report no atrazine use. Also, we collected amphibians at each site to examine them for developmental abnormalities. These ongoing studies will help determine the extent of atrazine contamination and its potential impact on amphibian populations. The concern for atrazine's impact is increased, because the mechanism through which the compound produces this effect (inhibition of androgen production) is commonly observed in fish, reptiles and mammals in addition to amphibians, although amphibians appear to sensitive at much lower doses. Thus, effects on amphibians may indicate a much broader impact.

  2. The amphibian skin-associated microbiome across species, space and life history stages.

    PubMed

    Kueneman, Jordan G; Parfrey, Laura Wegener; Woodhams, Douglas C; Archer, Holly M; Knight, Rob; McKenzie, Valerie J

    2014-03-01

    Skin-associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high-throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian-associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance. PMID:24171949

  3. Methods for Evaluating Wetland Condition #12: Using Amphibians in Bioassessments of Wetlands

    USGS Publications Warehouse

    Sparling, D.W.; Richter, K.O.; Calhoun, A.; Micacchion, M.

    2001-01-01

    Because amphibians have both aquatic and terrestrial life stages they can serve in a unique way among vertebrates as sources of information for bioassessments of both wetlands and surrounding habitats. Although there are many data gaps in our knowledge about the habitat requirements and ecology of many amphibian species, it is apparent that community composition, presence and frequency of abnormalities, various mensural characteristics (e.g. snout vent length divided by body weight) and laboratory diagnostics (e.g. cholinesterase activity, blood chemistry) can be used in developing metrics for an index of biotic integrity. In addition, potential metrics can be derived from the various life stages that most amphibians experience such as egg clusters; embryonic development and hatching rates; tadpole growth, development, and survival; progress and success of metamorphosis; and breeding behavior and presence of adults. It is important, however, to focus on regional biodiversity and species assemblages of amphibians in the development of metrics rather than to strive for broadscale application of common metrics. This report discusses the procedures of developing an index of biotic integrity based on amphibians, explains potential pitfalls in using amphibians in bioassessments, and demonstrates where more research is needed to enhance the use of amphibians in evaluating wetland conditions.

  4. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  5. AMPHIBIAN POPULATION DYNAMICS

    EPA Science Inventory

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  6. Vikers Viking Amphibian - biplane

    NASA Technical Reports Server (NTRS)

    1924-01-01

    Vikers Viking Amphibian - biplane: Initially procured in 1921 by the U.S. Navy during their studies of foreign designs, the Vickers Viking IV became NACA 17 during its short period of study at Langley.

  7. The cost of metamorphosis in flatfishes

    NASA Astrophysics Data System (ADS)

    Geffen, A. J.; van der Veer, H. W.; Nash, R. D. M.

    2007-07-01

    Flatfish development includes a unique physical metamorphosis with morphological and physiological changes associated with eye migration, a 90° rotation in posture and asymmetrical pigmentation. Flatfish larvae also undergo settlement, a behavioural and ecological change associated with a transition from a pelagic to a benthic existence. These processes are often assumed to be critical in determining recruitment in flatfish, through their impact on feeding, growth and survival. The timing of metamorphosis in relation to settlement varies between different flatfish species and this suggests that growth and development are not closely coupled. Existing information on feeding, growth and survival during metamorphosis and settlement is reviewed. Growth during metamorphosis is reduced in some but not all species. Despite the profound internal and external changes, there are no indications that the process of metamorphosis results in an increased mortality or that it might affect recruitment in flatfishes.

  8. Understanding of the impact of chemicals on amphibians: a meta-analytic review

    PubMed Central

    Egea-Serrano, Andrés; Relyea, Rick A; Tejedo, Miguel; Torralva, Mar

    2012-01-01

    Many studies have assessed the impact of different pollutants on amphibians across a variety of experimental venues (laboratory, mesocosm, and enclosure conditions). Past reviews, using vote-counting methods, have described pollution as one of the major threats faced by amphibians. However, vote-counting methods lack strong statistical power, do not permit one to determine the magnitudes of effects, and do not compare responses among predefined groups. To address these challenges, we conducted a meta-analysis of experimental studies that measured the effects of different chemical pollutants (nitrogenous and phosphorous compounds, pesticides, road deicers, heavy metals, and other wastewater contaminants) at environmentally relevant concentrations on amphibian survival, mass, time to hatching, time to metamorphosis, and frequency of abnormalities. The overall effect size of pollutant exposure was a medium decrease in amphibian survival and mass and a large increase in abnormality frequency. This translates to a 14.3% decrease in survival, a 7.5% decrease in mass, and a 535% increase in abnormality frequency across all studies. In contrast, we found no overall effect of pollutants on time to hatching and time to metamorphosis. We also found that effect sizes differed among experimental venues and among types of pollutants, but we only detected weak differences among amphibian families. These results suggest that variation in sensitivity to contaminants is generally independent of phylogeny. Some publication bias (i.e., selective reporting) was detected, but only for mass and the interaction effect size among stressors. We conclude that the overall impact of pollution on amphibians is moderately to largely negative. This implies that pollutants at environmentally relevant concentrations pose an important threat to amphibians and may play a role in their present global decline. PMID:22957147

  9. Amphibian biology and husbandry.

    PubMed

    Pough, F Harvey

    2007-01-01

    Extant amphibians comprise three lineages-- salamanders (Urodela or Caudata), frogs and toads (Anura), and caecilians (Gymnophiona, Apoda, or Caecilia)--which contain more than 6,000 species. Fewer than a dozen species of amphibians are commonly maintained in laboratory colonies, and the husbandry requirements for the vast majority of amphibians are poorly known. For these species, a review of basic characteristics of amphibian biology supplemented by inferences drawn from the morphological and physiological characteristics of the species in question provides a basis for decisions about housing and feeding. Amphibians are ectotherms, and their skin is permeable to water, ions, and respiratory gases. Most species are secretive and, in many cases, nocturnal. The essential characteristics of their environment include appropriate levels of humidity, temperature, and lighting as well as retreat sites. Terrestrial and arboreal species require moist substrates, water dishes, and high relative humidity. Because temperature requirements for most species are poorly known, it is advisable to use a temperature mosaic that will allow an animal to find an appropriate temperature within its cage. Photoperiod may affect physiology and behavior (especially reproduction and hibernation), and although the importance of ultraviolet light for calcium metabolism by amphibians is not yet known, ecological observations suggest that it might be important for some species of frogs. Some amphibians are territorial, and some use olfactory cues to mark their territory and to recognize other individuals of their species. All amphibians are carnivorous as adults, and the feeding response of many species is elicited by the movement of prey. Diets should include a mixture of prey species, and it may be advisable to load prey with vitamins and minerals. PMID:17592184

  10. Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis.

    PubMed

    Groner, Maya L; Rollins-Smith, Louise A; Reinert, Laura K; Hempel, John; Bier, Mark E; Relyea, Rick A

    2014-02-01

    Recent hypotheses suggest that immunosuppression, resulting from altered environmental conditions, may contribute to the increased incidence of amphibian disease around the world. Antimicrobial peptides (AMPs) in amphibian skin are an important innate immune defense against fungal, viral and bacterial pathogens. Their release is tightly coupled with release of the stress hormone noradrenaline (norepinephrine). During metamorphosis, AMPs may constitute the primary immune response in the skin of some species because acquired immune functions are temporarily suppressed in order to prevent autoimmunity against new adult antigens. Suppression of AMPs during this transitional stage may impact disease rates. We exposed leopard frog tadpoles (Lithobates pipiens) to a factorial combination of competitor and caged-predator environments and measured their development, growth and production of hydrophobic skin peptides after metamorphosis. In the absence of predator cues, or if the exposure to predator cues was late in ontogeny, competition caused more than a 250% increase in mass-standardized hydrophobic skin peptides. Predator cues caused a decrease in mass-standardized hydrophobic skin peptides when the exposure was late in ontogeny under low competition, but otherwise had no effect. Liquid chromatography tandem mass spectrometry of the skin peptides showed that they include six AMPs in the brevinin and temporin families and at least three of these peptides are previously uncharacterized. Both of these peptide families have previously been shown to inhibit harmful microbes including Batrachochytrium dendrobatidis, the fungal pathogen associated with global amphibian declines. Our study shows that amphibians may be able to adjust their skin peptide defenses in response to stressors that are experienced early in ontogeny and that these effects extend through an important life-history transition. PMID:24115058

  11. Distortion of frontal bones results from cell apoptosis by the mechanical force from the up-migrating eye during metamorphosis in Paralichthys olivaceus.

    PubMed

    Sun, Mingyan; Wei, Fen; Li, Hui; Xu, Juan; Chen, Xinye; Gong, Xiaoling; Tian, Yongsheng; Chen, Songlin; Bao, Baolong

    2015-05-01

    Craniofacial remodeling during flatfish metamorphosis, including eye migration, is perhaps the most striking example of asymmetric postembryonic development in the vertebrate world. The asymmetry of the cranium mainly results from distortion of the frontal bones, which depends on eye migration during metamorphosis. However, it is unclear how the up-migrating eye causes distortion of the frontal bones. In this study, we first show that distortion of the frontal bones during metamorphosis in Paralichthys olivaceus is the result of cell apoptosis, rather than cell autophagy or cell proliferation. Secondly, we report that cell apoptosis in the frontal bones is induced by the mechanical force transferred from the up-migrating eye. The mechanical force from the up-migrating eye signals through FAK to downstream molecules that are integrated into the BMP-2 signal pathway. Finally, it is shown that cell apoptosis in the frontal bones is activated by the intrinsic mitochondrial pathway; the extrinsic death receptor is not involved in this process. Moreover, cell apoptosis in frontal bones is not induced directly by thyroid hormones, which are thought to mediate metamorphosis in flatfishes and directly mediate cell apoptosis during amphibian metamorphosis. These findings help identify the major signaling route used during regulation of frontal bone distortion during metamorphosis in flatfish, and indicate that the asymmetry of the cranium, or at least the distortion of frontal bones, is the result of rather than the reason underlying eye migration. PMID:25622577

  12. Adaptive colouration in amphibians.

    PubMed

    Rudh, Andreas; Qvarnström, Anna

    2013-01-01

    Amphibians, i.e. salamanders, frogs and caecilians show a wide range of bright colours in combination with contrasting patterns. There is variation among species, populations and also within species and populations. Furthermore, individuals often change colours during developmental stages or in response to environmental factors. This extraordinary variation means that there are excellent opportunities to test hypotheses of the adaptive significance of colours using amphibian species as models. We review the present view of functions of colouration in amphibians with the main focus on relatively unexplored topics. Variation in colouration has been found to play a role in thermoregulation, UV protection, predator avoidance and sexual signalling. However, many proposed cases of adaptive functions of colouration in amphibians remain virtually scientifically unexplored and surprisingly few genes influencing pigmentation or patterning have been detected. We would like to especially encourage more studies that take advantage of recent developments in measurement of visual properties of several possible signalling receivers (e.g. predators, competitors or mates). Future investigations on interactions between behaviour, ecology and vision have the potential to challenge our current view of the adaptive function of colouration in amphibians. PMID:23664831

  13. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  14. Metamorphosis

    ERIC Educational Resources Information Center

    Balch, Stephen H.

    2012-01-01

    One thing history's torrent appears to be sweeping away is, ironically, the study of its most productive wellspring, Western civilization. "The Vanishing West", a report the National Association of Scholars released in May 2011, documents the extent of this vanishing. The traditional Western civilization survey requirement, commonplace only…

  15. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314

  16. Using Bacterial Extract along with Differential Gene Expression in Acropora millepora Larvae to Decouple the Processes of Attachment and Metamorphosis

    PubMed Central

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A.; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L.; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0–2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues

  17. Interaction between perchlorate and iodine in the metamorphosis of Hyla versicolor

    USGS Publications Warehouse

    Sparling, D.; Harvey, G.; Nzengung, V.

    2003-01-01

    Perchlorate (ClO4-) is a water-soluble, inorganic anion that is often combined with ammonium, potassium or other cations for use in industry and agriculture. Ammonium perchlorate, for example, is a potent oxidizer and is used in various military applications including rocket fuel. It has also been found in an historically widely used fertilizer, Chilean nitrate and in other fertilizers. It has been found in ground and surface waters of over 30 states and is considered a human health risk. Because of its similar atomic radius and volume, perchlorate competes with iodide for thyroid uptake and storage and thereby inhibits production of thyroid hormones. Amphibians may be particularly affected by perchlorate because they rely on the thyroid for metamorphosis. This study exposed early larval Hyla versicolor to concentrations of perchlorate ranging from 2.2 to 50 ppm to determine the effects of perchlorate on a native amphibian. In addition, three controls, 0 perchlorate, 0 perchlorate with 0.10 ppm iodide (C + I) and 50 ppm perchlorate + 0.10 ppm iodide (50 + I) were tested. Mortality (< 11% with all treatments) and growth appeared to be unaffected by perchlorate. Inhibition of development started with 2.2 ppm perchlorate and little or no development occurred at 22.9 ppm and above. This inhibition was particularly apparent at the latter stages of development including hindlimb formation and metamorphosis. The estimated EC50 for total inhibition of metamorphosis at 70 days of treatment was 3.63 ppm. There was no evidence of inhibition of development with the 50 + I, C + I, or controls, indicating that the presence of small concentrations of iodide could counter the effects of perchlorate. When tadpoles that had been inhibited by perchlorate were subsequently treated with iodide, development through prometamorphosis progressed but mortality was very high.

  18. Interaction between perchlorate and iodine in the metamorphosis of Hyla versicolor

    USGS Publications Warehouse

    Sparling, D.W.; Harvey, G.; Nzengung, V.

    2003-01-01

    Perchlorate (ClO4-) is a water-soluble, inorganic anion that is often combined with ammonium, potassium or other cations for use in industry and agriculture. Ammonium perchlorate, for example, is a potent oxidizer and is used in various military applications including rocket fuel. It has also been found in an historically widely used fertilizer, Chilean nitrate and in other fertilizers. It has been found in ground and surface waters of over 30 states and is considered a human health risk. Because of its similar atomic radius and volume, perchlorate competes with iodide for thyroid uptake and storage and thereby inhibits production of thyroid hormones. Amphibians may be particularly affected by perchlorate because they rely on the thyroid for metamorphosis. This study exposed early larval Hyla versicolor to concentrations of perchlorate ranging from 2.2 to 50 ppm to determine the effects of perchlorate on a native amphibian. In addition, three controls, 0 perchlorate, 0 perchlorate with 0.10 ppm iodide (C + I) and 50 ppm perchlorate + 0.10 ppm iodide (50 + I) were tested. Mortality (<11% with all treatments) and growth appeared to be unaffected by perchlorate. Inhibition of development started with 2.2 ppm perchlorate and little or no development occurred at 22.9 ppm and above. This inhibition was particularly apparent at the latter stages of development including hindlimb formation and metamorphosis. The estimated EC50 for total inhibition of metamorphosis at 70 days of treatment was 3.63 ppm. There was no evidence of inhibition of development with the 50 + I, C + I, or controls, indicating that the presence of small concentrations of iodide could counter the effects of perchlorate. When tadpoles that had been inhibited by perchlorate were subsequently treated with iodide, development through prometamorphosis progressed but mortality was very high.

  19. Growth and developmental effects of coal combustion residues on Southern Leopard Frog (Rana sphenocephala) tadpoles exposed throughout metamorphosis

    SciTech Connect

    Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.

    2008-09-15

    The effects of aquatic deposition of coal combustion residues (CCRs) on amphibian life histories have been the focus of many recent studies. In summer 2005, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate (approximately 1 cm deep within plastic bins) and documented effects of sediment type on oral disc condition, as well as time to, mass at, and total body length at key developmental stages, including metamorphosis (Gosner stages (GS) 37, 42, and 46). We found no significant difference in mortality between the two treatments and mortality was relatively low (eight of 48 in the control group and four of 48 in the CCR group). Ninety percent of exposed tadpoles displayed oral disc abnormalities, while no control individuals displayed abnormalities. Tadpoles raised on CCR-contaminated sediment had decreased developmental rates and weighed significantly less at all developmental stages, on average, when compared to controls. The CCR treatment group was also significantly shorter In length than controls at the completion of metamorphosis (GS 46). Collectively, these findings are the most severe sub-lethal effects noted for any amphibian exposed to CCRs to date. More research is needed to understand how these long term effects may contribute to the dynamics of local amphibian populations.

  20. Amphibians of Olympic National Park

    USGS Publications Warehouse

    U.S. Geological Survey

    2000-01-01

    Amphibians evolved from fishes about 360 million years ago and were the first vertebrates adapted to life on land. The word amphibian means "double life." It refers to the life history of many amphibians, which spend part of their life in water and part on land. There are three major groups of amphibians: salamanders, frogs, and toads, and caecilians. Salamanders, frogs, and toads can be found in Olympic National Park (ONP), but caecilians live only in tropical regions. Many amphibians are generalist predators, eating almost any prey they can fit into their mouths.

  1. Effects of temperature, density and food quality on larval growth and metamorphosis in the north African green frog Pelophylax saharicus.

    PubMed

    Bellakhal, Meher; Neveu, André; Fartouna-Bellakhal, Mouna; Missaoui, Hechmi; Aleya, Lotfi

    2014-10-01

    The ectodermic status of Amphibians explains their heavy dependence at ambient temperatures and thus their sensitivity to global warming. Temperature is likely the main factor regulating their physiology by acting on the endocrine system, with consequences on development, growth and size at metamorphosis. All these parameters control survival in the wild and performances in raniculture. This study is, to our knowledge, the first report on the effects of temperature, density and protein level in food on the rearing of the North African green Frog Pelophylax saharicus. Results show that a temperature of 26 °C is optimal for maximum weight gain. The maximum metamorphosis rate is obtained between 24 and 26 °C. The highest yields occur at low densities from 1 to 10 tadpolesl(-1). The best survival rate and accelerated metamorphosis are obtained at a level of 35% protein in food whose impact on food intake and weight gain is low. The maximum weight attained by tadpoles at metamorphosis, however, is obtained with a level of 40% protein. These results justify examination of this species in the light of climate change and suggest new techniques for aquaculture. PMID:25436955

  2. Rainforest: Reptiles and Amphibians

    ERIC Educational Resources Information Center

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  3. Effects of hydroperiod duration on survival, developmental rate, and size at metamorphosis in boreal chorus frog tadpoles (Pseudacris maculata)

    USGS Publications Warehouse

    Amburgey, Staci; Funk, W. Chris; Murphy, Melanie; Muths, Erin

    2012-01-01

    Understanding the relationship between climate-driven habitat conditions and survival is key to preserving biodiversity in the face of rapid climate change. Hydroperiod—the length of time water is in a wetland—is a critical limiting habitat variable for amphibians as larvae must metamorphose before ponds dry. Changes in precipitation and temperature patterns are affecting hydroperiod globally, but the impact of these changes on amphibian persistence is poorly understood. We studied the responses of Boreal Chorus Frog (Pseudacris maculata) tadpoles to simulated hydroperiods (i.e., water level reductions) in the laboratory using individuals collected from ponds spanning a range of natural hydroperiods (Colorado Front Range, USA). To assess the effects of experimental hydroperiod reduction, we measured mortality, time to metamorphosis, and size at metamorphosis. We found that tadpoles grew at rates reflecting the hydroperiods of their native ponds, regardless of experimental treatment. Tadpoles from permanent ponds metamorphosed faster than those from ephemeral ponds across all experimental treatments, a pattern which may represent a predation selection gradient or countergradient variation in developmental rates. Size at metamorphosis did not vary across experimental treatments. Mortality was low overall but varied with pond of origin. Our results suggest that adaptation to local hydroperiod and/or predation and temperature conditions is important in P. maculata. Moreover, the lack of a plastic response to reduced hydroperiods suggests that P. maculata may not be able to metamorphose quickly enough to escape drying ponds. These results have important implications for amphibian persistence in ponds predicted to dry more quickly due to rapid climate change.

  4. Flatfish metamorphosis: a hypothalamic independent process?

    PubMed

    Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M

    2015-03-15

    Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs. PMID:25575457

  5. Amphibian development in microgravity

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1987-01-01

    The results of experiments performed by the U.S. Biosatellites 1 and 2 and the Gemini VIII and XII missions and by the Soviet Salyut and Soyuz missions on the effect of gravity on the development of prefertilized amphibian egg and, in particular, of the vestibular system of amphibian embryo are described. In these experiments, the condition of microgravity was reached only after the prefertilized eggs were in the early stages of first cell division or in the blastula stage. No significant changes were observed in the morphology of the embryos or in the vestibular system of embyos developed, respectively, for 2-5 days or 20 days under conditions of microgravity. Experiments planned for future spaceflights are discussed.

  6. Field Surveys of Amphibian Populations.

    ERIC Educational Resources Information Center

    Brodman, Robert

    2000-01-01

    Describes a course on amphibian research for environmental science majors. Involves students in field studies and introduces them to investigative research. Evaluates the course. (Contains 19 references.) (YDS)

  7. Organizational Metamorphosis in Space Research and Development.

    ERIC Educational Resources Information Center

    Tompkins, Phillip K.

    1978-01-01

    The communicative, and therefore organizational and managerial, aspects of the Marshall Space Flight Center's (MSFC) metamorphosis from Saturn V to Skylab are analyzed. MSFC's consistent successes are attributed to the organization's commitment to communication systems, its technical integrity, and its single-minded purpose. (JMF)

  8. Metamorphosis: Play, Spirituality and the Animal

    ERIC Educational Resources Information Center

    Bone, Jane

    2010-01-01

    Animal- and bird-becoming is an aspect of play as metamorphosis connected to spirituality in early childhood settings. The reconceptualisation of play presented here is supported by research that explored the spiritual experiences of young children in different early childhood contexts. Qualitative case study research carried out in Aotearoa New…

  9. Structural Elements in Franz Kafka's "The Metamorphosis."

    ERIC Educational Resources Information Center

    Johnson, Scott

    1993-01-01

    Notes that Kafka's "The Metamorphosis" is not only a masterpiece of modern literature but also a work that exemplifies many ideas of structural family therapy. Examines how Kafka's novella embodies concepts such as parentified children, enmeshment, intergenerational boundaries, coalitions and triangles, structural dysfunction, and structural…

  10. Effects of depleted uranium on survival, growth, and metamorphosis in the african clawed frog (Xenopus laevis)

    USGS Publications Warehouse

    Mitchell, S.E.; Caldwell, C.A.; Gonzales, G.; Gould, W.R.; Arimoto, R.

    2005-01-01

    Embryos (stage 8-47, Nieuwkoop and Faber) of the African clawed frog (Xenopus laevis) were subjected to water-borne depleted uranium (DU) concentrations that ranged from 4.8 to 77.7 mg/Lusing an acute 96-h frog embryo teratogenesis assay-Xenopus (FETAX). In a chronic 64-d assay, X. laevis (from embryo through metamorphosis; stages 8-66) were subjected to concentrations of DU that ranged from 6.2 to 54.3 mg/L Our results indicate DU is a non teratogenic metal. No effects on mortality, malformations, or growth were observed in the 96-h FETAX with concentrations of DU that ranged from 4.8 to 77.7 mg/L From stage 8 to stage 47, X. laevis tadpoles do not actively feed and the gills are not well developed. Thus, uptake of DU was reduced despite exposure to elevated concentrations. The 64-d assay resulted in no concentration response for either mortality or malformations; however, a delay in metamorphosis was observed in tadpoles subjected to elevated DU concentrations (from 13.1 to 54.3 mg/L) compared to tadpoles in both the well-water control and reference. The delay in metamorphosis was likely due to increasing body burden of DU that ranged from 0.98 to 2.82 mg/kg. Copyright?? Taylor & Francis Inc.

  11. Responses of Mammalian Insectivores, Amphibians, and Reptiles to Broad-Scale Manipulation of Coarse Woody Debris

    SciTech Connect

    McCay, T.S.; Forschler, B.T.; Komoroski, M.J.; Ford, W.M.

    2002-03-10

    Sampled shrews at 9.3 ha plots from logs manually removed and control plots in loblolly pine forests of the Southeastern Coastal Plain. Capture rates of Cryptotis parva were lower at plots from which deadwood was removed whereas capture rates of Blarina cavolinensis and Sorex longirostris did not differ between control and removal plots. Cryptotis may have been most sensitive to removal plots due to low population density, hence poor ability to move into areas of low reproduction. (Second Abstract, p. 37)Presentation of evidence that juvenile amphibians including Ambystomatid salamanders may disperse hundreds of meter from their natal wetlands within the weeks to months following metamorphosis. Data indicates Ambystoma trigrinum metamorphs can take at least six months to disperse and en route use non-polar lipid reserves garnished as larvae. Report suggests a land management regime that allows for both juvenile amphibian dispersal and also the consumptive use of the surrounding landscape.

  12. Amphibian immune defenses against chytridiomycosis: impacts of changing environments.

    PubMed

    Rollins-Smith, Louise A; Ramsey, Jeremy P; Pask, James D; Reinert, Laura K; Woodhams, Douglas C

    2011-10-01

    Eco-immunology is the field of study that attempts to understand the functions of the immune system in the context of the host's environment. Amphibians are currently suffering devastating declines and extinctions in nearly all parts of the world due to the emerging infectious disease chytridiomycosis caused by the chytrid fungus, Batrachochytrium dendrobatidis. Because chytridiomycosis is a skin infection and remains confined to the skin, immune defenses of the skin are critical for survival. Skin defenses include secreted antimicrobial peptides and immunoglobulins as well as antifungal metabolites produced by symbiotic skin bacteria. Low temperatures, toxic chemicals, and stress inhibit the immune system and may impair natural defenses against B. dendrobatidis. Tadpoles' mouth parts can be infected by B. dendrobatidis. Damage to the mouth parts can impair growth, and the affected tadpoles maintain the pathogen in the environment even when adults have dispersed. Newly metamorphosing frogs appear to be especially vulnerable to infection and to the lethal effects of this pathogen because the immune system undergoes a dramatic reorganization at metamorphosis, and postmetamorphic defenses are not yet mature. Here we review our current understanding of amphibian immune defenses against B. dendrobatidis and the ability of the pathogen to resist those defenses. We also briefly review what is known about the impacts of temperature, environmental chemicals, and stress on the host-pathogen interactions and suggest future directions for research. PMID:21816807

  13. Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis.

    PubMed

    Bonett, Ronald M; Hoopfer, Eric D; Denver, Robert J

    2010-09-01

    Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3'-triiodothyronine (T(3)) binding capacity in tadpole tail, and 5' deiodinase activity in tadpole tissues, increasing the generation of T(3) from thyroxine (T(4)). In the present study we investigated CS synergy with TH by analyzing expression of key genes involved in TH and CS signaling using tadpole tail explant cultures, prometamorphic tadpoles, and frog tissue culture cells (XTC-2 and XLT-15). Treatment of tail explants with T(3) at 100 nM, but not at 10 nM caused tail regression. Corticosterone (CORT) at three doses (100, 500 and 3400 nM) had no effect or increased tail size. T(3) at 10 nM plus CORT caused tails to regress similar to 100 nM T(3). Thyroid hormone receptor beta (TRbeta) mRNA was synergistically upregulated by T(3) plus CORT in tail explants, tail and brain in vivo, and tissue culture cells. The activating 5' deiodinase type 2 (D2) mRNA was induced by T(3) and CORT in tail explants and tail in vivo. Thyroid hormone increased expression of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNAs. Our findings support that the synergistic actions of TH and CS in metamorphosis occur at the level of expression of genes for TRbeta and D2, enhancing tissue sensitivity to TH. Concurrently, TH enhances tissue sensitivity to CS by upregulating GR and MR. Environmental stressors can modulate the timing of tadpole metamorphosis in part by CS enhancing the response of tadpole tissues to the actions of TH. PMID:20338173

  14. Pigment cell localizations in anuran ventral skin at climactic metamorphosis.

    PubMed

    Denèfle, J P; Lechaire, J P

    1991-09-01

    In anuran amphibians, the specific color pattern of the skin is expressed after metamorphosis, and its formation involves pigment cell migrations. Pigment cells are differently distributed in the tadpole, larval, and froglet skin. To learn more about their fate during metamorphic climax and in the young froglet, we focused our attention on the different localizations of larval melanophores and iridophores in the ventral skin of Rana esculenta before and during skin homing. Localizations of melanophores and iridophores can be elucidated at the developmental stages suggested by Taylor and Kollros (TK stages). At TK stage II (during early premetamorphosis), large melanophores beneath the larval skin are detected. At TK stage X, dispersed melanophores lie under bundles of muscular striated fibrils near the larval skin; they are also observed at the vascular level. At TK stage XVII (prometamorphosis), melanophores are extended on the inner side of the basement lamellar collagen. At the end of prometamorphosis, iridophores are located with melanophores in the separating space between attached basement collagen and derived basement collagen. At TK stage XX (earlier climax), melanophores and iridophores are detected inside the upper extremities of fractures opened in the derived basement collagen. At TK stage XXIV (later climax), both types of larval pigment cells are observed in the inner extremities of breaks derived from the fractures. During climax, these pigment cells occupy the well-formed breaks. At TK stage XXV in young froglet, the pigment cells remain alone in the breaks formed in the derived basement collagen. Briefly, breaks in the basement lamellar collagen are opened by invading cell processes of mesenchymal cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1750384

  15. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    PubMed

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. PMID:25898842

  16. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone.

    PubMed

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure. PMID:26046527

  17. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone

    PubMed Central

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R.; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure. PMID:26046527

  18. DNA barcoding amphibians and reptiles.

    PubMed

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples. PMID:22684953

  19. Chemosignals, hormones, and amphibian reproduction.

    PubMed

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction. PMID:24945995

  20. Differential patterns of accumulation and depuration of dietary selenium and vanadium during metamorphosis in the Gray Treefrog (Hyla versicolor).

    PubMed

    Rowe, Christopher L; Heyes, Andrew; Hilton, Jessica

    2011-02-01

    Selenium (Se) and vanadium (V) are contaminants commonly found in aquatic systems affected by wastes derived from fossil fuels. To examine their effects on a widely distributed species of amphibian, we exposed gray tree frogs (Hyla versicolor) to Se (as SeO₂) or V (as NaVO₃) in their diet from the early larval period to metamorphosis. Concentrations of Se in Se-enriched food were 1.0 (Se control), 7.5 (Se low), and 32.7 (Se high) μg/g dw. Concentrations of V in V-enriched food were 3.0 (V control), 132.1 (V low), and 485.7 (V high) μg/g dw. Although we observed bioaccumulation of both metals throughout the larval period, no effects on growth, survival, metabolic rate, or lipid content were observed. Se concentrations in tissues did not vary among life stages, neither in Se low nor Se high treatments, such that maximum accumulation had occurred by the mid-larval period. In addition, there was no evidence of depuration of Se in either the Se low or the Se high treatments during metamorphosis. A strikingly different pattern of accumulation and depuration occurred in V-exposed individuals. In treatments V low and V high, maximum body burdens occurred in "premetamorphs" (i.e., animals with developed forelimbs but in which tail resorption had not begun), whereas body burdens in animals having completed metamorphosis were much lower and similar to those in larvae. These results suggest that compared with Se-exposed animals, V-exposed animals were able to depurate a substantial amount of accumulated V during the metamorphic period. In an ecologic context, it appears that amphibians exposed to Se during the larval period may serve as a vector of the metal to terrestrial predators, yet potential transfer of accumulated V to predators would largely be restricted to the aquatic habitat. PMID:20878520

  1. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species. PMID:27327181

  2. Long-term exposure to gold nanoparticles accelerates larval metamorphosis without affecting mass in wood frogs (Lithobates sylvaticus) at environmentally relevant concentrations.

    PubMed

    Fong, Peter P; Thompson, Lucas B; Carfagno, Gerardo L F; Sitton, Andrea J

    2016-09-01

    Nanoparticles are environmental contaminants of emerging concern. Exposure to engineered nanoparticles has been shown to have detrimental effects on aquatic organisms. The authors synthesized gold nanoparticles (18.1 ± 3.5 nm) and tested their effects on time to and weight at metamorphosis in wood frog (Lithobates sylvaticus) tadpoles, a species known to be sensitive to environmental stressors. Continuous exposure to all concentrations of gold nanoparticles (0.05 pM, 0.5 pM, and 5 pM in particles) for up to 55 d significantly reduced time to metamorphosis by as much as an average of 3 d (p < 0.05). However, exposure to gold nanoparticles had no effect on tadpole mass at metamorphosis. The approximately 18-nm gold nanoparticles used were metastable in dechlorinated tap water, resulting in a change in surface charge and aggregation over time, leading to negatively charged aggregates that were on the order of 60 nm to 110 nm. Nanoparticle aggregation could exacerbate the effect on time to metamorphosis. To the authors' knowledge, the present study is the first report on the effect of engineered nanoparticles of any kind on life-history variables in an amphibian, a taxonomic group that has been declining globally for at least 25 yr. Environ Toxicol Chem 2016;35:2304-2310. © 2016 SETAC. PMID:26873819

  3. Generalized morphological transformation for describing nonhomotopic object metamorphosis

    NASA Astrophysics Data System (ADS)

    Li, Hua; Liu, Wen-Yu; Zhu, Yaoting; Zhu, Guang-Xi

    2001-09-01

    Metamorphosis or morphing is the process of continuously transforming one object into another, and is popular in computer animation, industrial design, and growth simulation. In this paper, a novel metamorphosis approach is presented for computing continuous shape transformation between polyhedral objects. Metamorphosis can be achieved by decomposing two objects into sets of individual convex sub- objects respectively and constructing the mapping relationship of subsets, this method can solve the metamorphosis problem of two non-homotopic objects (including concave objects and holey objects). The results of object metamorphosis are also discussed in this paper. The experiments show that this method can generate natural, high quality metamorphosis results with simple computation. This method can also be used in font composition and interpolation between two keyframes in 2D and 3D computer animation automatically.

  4. Pesticide Uptake Across the Amphibian Dermis Through Soil and Overspray Exposures.

    PubMed

    Van Meter, Robin J; Glinski, Donna A; Henderson, W Matthew; Garrison, A Wayne; Cyterski, Mike; Purucker, S Thomas

    2015-11-01

    For terrestrial amphibians, accumulation of pesticides through dermal contact is a primary route of exposure in agricultural landscapes and may be contributing to widespread amphibian declines. To show pesticide transfer across the amphibian dermis at permitted label application rates, our study was designed to measure pesticide body burdens after two simulated exposure scenarios. We compared direct exposures, where amphibians were present when spraying occurred, to indirect exposures, where amphibians were exposed to soils after pesticide application. During summer 2012, we reared barking (Hyla gratiosa) and green treefrogs (H. cinerea) through 60-90 days post-metamorphosis at a United States Environmental Protection Agency research laboratory. We tested exposure for 8 h to five pesticide active ingredients (imidacloprid, atrazine, triadimefon, fipronil, or pendimethalin) in glass aquaria lined with soil in the laboratory. We quantified total pesticide body burden and soil concentrations using liquid chromatography-mass spectrometry. All individuals in both treatments had measurable body burdens at the end of the study. A randomized block design analysis of variance (n = 18) showed that body burdens (p = 0.03) and bioconcentration factors (BCFs) (p = 0.01) were significantly greater in the direct overspray treatment relative to the indirect soil spray treatment for both species and tested pesticides. BCFs ranged from 0.1 to 1.16 and from 0.013 to 0.78 in the direct and indirect treatments, respectively. Our study shows dermal uptake for multiple pesticides from both direct spray and indirect soil exposures and provides empirical support for the degree to which terrestrial phase amphibians have higher body burdens after overspray pesticide exposure. PMID:26135301

  5. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus

    PubMed Central

    Buck, Julia C.; Hua, Jessica; Brogan, William R.; Dang, Trang D.; Urbina, Jenny; Bendis, Randall J.; Stoler, Aaron B.; Blaustein, Andrew R.; Relyea, Rick A.

    2015-01-01

    Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result

  6. Sex determination: the amphibian models.

    PubMed

    Eggert, Christophe

    2004-01-01

    We review and discuss current knowledge about sex determination in amphibians. The astonishing wide variety of mechanisms of genotypic sex determination is presented and discussed in an evolutionary context. We recall the natural occurrence of transitory juvenile hermaphroditism in some species. Our present knowledge of the mechanisms of sex determination in amphibians is compared to that in mammals. The influence of epigenetic factors, and especially temperature is highlighted. In amphibians, the influence of temperature on sexual differentiation, that can prevail over genotypic sex determination, remains poorly considered in publications. We suggest that studies on genetic and epigenetic factors of gonadal sex differentiation in amphibians could provide substantial information on the evolutionary process of sex determination mechanisms in current living vertebrates. PMID:15762298

  7. Polarity of the Amphibian Egg

    NASA Technical Reports Server (NTRS)

    Malacinski, G. M.

    1983-01-01

    Amphibian egg polarity and the mechanism which generates the polarity is addressed. Of particular concern is the question of whether the activation rotation which responds to gravity is a prerequisite for normal development.

  8. Batrachochytrium dendrobatidis prevalence and haplotypes in domestic and imported pet amphibians in Japan.

    PubMed

    Tamukai, Kenichi; Une, Yumi; Tominaga, Atsushi; Suzuki, Kazutaka; Goka, Koichi

    2014-05-13

    The international trade in amphibians is believed to have increased the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen responsible for chytridiomycosis, which has caused a rapid decline in amphibian populations worldwide. We surveyed amphibians imported into Japan and those held in captivity for a long period or bred in Japan to clarify the Bd infection status. Samples were taken from 820 individuals of 109 amphibian species between 2008 and 2011 and were analyzed by a nested-PCR assay. Bd prevalence in imported amphibians was 10.3% (58/561), while it was 6.9% (18/259) in those in private collections and commercially bred amphibians in Japan. We identified the genotypes of this fungus using partial DNA sequences of the internal transcribed spacer (ITS) region. Sequencing of PCR products of all 76 Bd-positive samples revealed 11 haplotypes of the Bd ITS region. Haplotype A (DNA Data Bank of Japan accession number AB435211) was found in 90% (52/58) of imported amphibians. The results show that Bd is currently entering Japan via the international trade in exotic amphibians as pets, suggesting that the trade has indeed played a major role in the spread of Bd. PMID:24991744

  9. Interpreting in vivo Effects of Thyroid Synthesis Inhibitors through the Lens of in vitro and ex vivo Assays

    EPA Science Inventory

    The US EPA has been charged to evaluate chemicals for their ability to disrupt endocrine pathways including estrogen, androgen, and thyroid hormone. Amphibian metamorphosis, which is regulated by thyroid hormone, is an ideal model system for investigating disruption of the thyroi...

  10. Changes in gelsolin expression during ascidian metamorphosis.

    PubMed

    Ohtsuka, Y; Okamura, Y; Obinata, T

    2001-05-01

    Gelsolin is an actin regulatory protein that is expressed in a wide variety of tissues and is especially abundant in muscle and blood cells. The role of gelsolin during structural reorganization of the body, such as during metamorphosis or regeneration, is poorly understood. We analyzed changes in gelsolin expression during ascidian embryogenesis and metamorphosis using nucleic acid probes and a monoclonal antibody (AS23) specific for ascidian gelsolin; our results indicated that gelsolin is maternally provided and that its de novo gene transcription is initiated during the neurula stage. In the larva, gelsolin was detectable in specific types of nerve cells, i.e. the adhesive papillae, motor neurons and epidermal sensory neurons. During metamorphosis, the expression of gelsolin changes markedly: the expression is suppressed in nerve tissues after tail resorption but is induced in mesodermal tissues. Gelsolin accumulated in mesenchyme cells until the onset of tail resorption, and following tail resorption, these cells migrated to the tunic and differentiated into tunic cells with many fine processes. Migration of the mesenchyme cells into the tunic was completely inhibited by treatment with cytochalasin B. Gelsolin was colocalized with actin in tunic cells, suggesting that it is involved in the rearrangement of actin filaments during cell locomotion or morphogenesis. PMID:11455440

  11. North American amphibians: distribution and diversity

    USGS Publications Warehouse

    : Green, David M., (Edited By); Weir, Linda A.; Casper, Gary S.; Lannoo, Michael

    2014-01-01

    Some 300 species of amphibians inhabit North America. The past two decades have seen an enormous growth in interest about amphibians and an increased intensity of scientific research into their fascinating biology and continent-wide distribution. This atlas presents the spectacular diversity of North American amphibians in a geographic context. It covers all formally recognized amphibian species found in the United States and Canada, many of which are endangered or threatened with extinction. Illustrated with maps and photos, the species accounts provide current information about distribution, habitat, and conservation. Researchers, professional herpetologists, and anyone intrigued by amphibians will value North American Amphibians as a guide and reference.

  12. Metamorphosis of a scleractinian coral in response to microbial biofilms.

    PubMed

    Webster, Nicole S; Smith, Luke D; Heyward, Andrew J; Watts, Joy E M; Webb, Richard I; Blackall, Linda L; Negri, Andrew P

    2004-02-01

    Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no

  13. Why Does Amphibian Chytrid (Batrachochytrium dendrobatidis) Not Occur Everywhere? An Exploratory Study in Missouri Ponds

    PubMed Central

    Strauss, Alex; Smith, Kevin G.

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, “Why does Bd not occur in all apparently suitable habitats?” Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations. PMID:24086681

  14. Active metabolism of thyroid hormone during metamorphosis of amphioxus.

    PubMed

    Paris, Mathilde; Hillenweck, Anne; Bertrand, Stéphanie; Delous, Georges; Escriva, Hector; Zalko, Daniel; Cravedi, Jean-Pierre; Laudet, Vincent

    2010-07-01

    Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage. PMID:21558188

  15. Life-history evolution: at the origins of metamorphosis.

    PubMed

    Holstein, Thomas W; Laudet, Vincent

    2014-02-17

    Metamorphosis is a widespread life history strategy of animals but apart from some model organisms it is poorly characterized. A recent study of moon jellies highlights the similarities and differences between the various types of metamorphosis and illuminates its molecular determinants. PMID:24556439

  16. Climate warming mediates negative impacts of rapid pond drying for three amphibian species.

    PubMed

    O'Regan, Sacha M; Palen, Wendy J; Anderson, Sean C

    2014-04-01

    Anthropogenic climate change will present both opportunities and challenges for pool-breeding amphibians. Increased water temperature and accelerated drying may directly affect larval growth, development, and survival, yet the combined effects of these processes on larvae with future climate change remain poorly understood. Increased surface temperatures are projected to warm water and decrease water inputs, leading to earlier and faster wetland drying. So it is often assumed that larvae will experience negative synergistic impacts with combined warming and drying. However, an alternative hypothesis is that warming-induced increases in metabolic rate and aquatic resource availability might compensate for faster drying rates, generating antagonistic larval responses. We conducted a mesocosm experiment to test the individual and interactive effects of pool permanency (permanent vs. temporary) and water temperature (ambient vs. (+) -3 degrees C) on three anurans with fast-to-slow larval development rates (Great Basin spadefoot [Spea intermontana], Pacific chorus frog [Pseudacris regilla], and northern red-legged frog [Rana aurora]). We found that although tadpoles in warmed pools reached metamorphosis 15-17 days earlier, they did so with little cost (< 2 mm) to size, likely due to greater periphyton growth in warmed pools easing drying-induced resource competition. Warming and drying combined to act antagonistically on early growth (P = 0.06) and survival (P = 0.06), meaning the combined impact was less than the sum of the individual impacts. Warming and drying acted additively on time to and size at metamorphosis. These nonsynergistic impacts may result from cotolerance of larvae to warming and drying, as well as warming helping to offset negative impacts of drying. Our results indicate that combined pool warming and drying may not always be harmful for larval amphibians. However, they also demonstrate that antagonistic responses are difficult to predict, which poses

  17. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    EPA Science Inventory

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  18. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  19. Perturbation of Organogenesis by the Herbicide Atrazine in the Amphibian Xenopus laevis

    PubMed Central

    Lenkowski, Jenny R.; Reed, J. Michael; Deininger, Lisa; McLaughlin, Kelly A.

    2008-01-01

    Background Exposure to anthropogenic chemicals during development can disrupt the morphogenesis of organ systems. Use of the herbicide atrazine has been debated in recent years because of its implicated, but poorly characterized, effects on vertebrates. Previous studies primarily examined the effects of atrazine exposure during metamorphosis or early developmental stages of amphibians. Objectives We sought to identify and characterize the susceptibility during the often-overlooked developmental stage of organ morphogenesis. Methods We used a static renewal experimental treatment to investigate the effects of 10, 25, and 35 mg/L atrazine from early organ morphogenesis through the onset of tadpole feeding in the aquatic amphibian model system, Xenopus laevis. We quantified malformations of the body axis, heart, and intestine, as well as apoptosis in the midbrain and pronephric kidney. Results We found a significant dose-dependent increase in the percentage of atrazine-exposed tadpoles with malformations of multiple tissues including the main body axis, circulatory system, kidney, and digestive system. Incidence of apoptotic cells also increased in the both midbrain and kidney of atrazine-exposed tadpoles. Conclusions Our results demonstrate that acute atrazine exposure (10–35 mg/L for ≤ 48 hr) during early organ morphogenesis disrupts proper organ development in an amphibian model system. The concurrent atrazine-induced apoptosis in the pronephric kidney and midbrain begins to elucidate a mechanism by which atrazine may disrupt developmental processes in nontarget organisms. PMID:18288322

  20. Ecotoxicology of Amphibians and Reptiles

    USGS Publications Warehouse

    2000-01-01

    For many years, ecological research on amphibians and reptiles has lagged behind that of other vertebrates such as fishes, birds, and mammals, despite the known importance of these animals in their environments. The lack of study has been particularly acute in the he area of ecotoxicology where the number of published scientific papers is a fraction of that found for the other vertebrate classes. Recently, scientists have become aware of severe crises among amphibian populations, including unexplained and sudden extinctions, worldwide declines, and hideous malformations. In many of these instances, contaminants have been listed as probable contributors. Data on the effects of contaminants on reptiles are so depauperate that even the most elementary interpretations are difficult. This state-of-the-science review and synthesis of amphibian and reptile ecotoxicology demonstrates the inter-relationships among distribution, ecology, physiology, and contaminant exposure, and interprets these topics as they pertain to comparative toxicity, population declines, malformations, and risk assessment . In this way, the book identifies and serves as a basis for the most pressing research needs in the coming years. The editors have invited 27 other internationally respected experts to examine the state of existing data in specific areas, interpret it in light of current problems, and identify research gaps and needs. Through its emphasis on recent research, extensive reviews and synthesis, Ecotoxicology of Amphibians and Reptiles will remain a definitive reference work well into the new century.

  1. METAPOPULATION DYNAMICS AND AMPHIBIAN CONSERVATION

    EPA Science Inventory

    In many respects, amphibian spatial dynamics resemble classical metapopulation models, where subpopulations in breeding ponds blink in and out of existance and where extinction and colonization rates are functions of pond spatial arrangement. This "ponds-as-patches" view of amphi...

  2. Multiple overseas dispersal in amphibians.

    PubMed Central

    Vences, Miguel; Vieites, David R; Glaw, Frank; Brinkmann, Henner; Kosuch, Joachim; Veith, Michael; Meyer, Axel

    2003-01-01

    Amphibians are thought to be unable to disperse over ocean barriers because they do not tolerate the osmotic stress of salt water. Their distribution patterns have therefore generally been explained by vicariance biogeography. Here, we present compelling evidence for overseas dispersal of frogs in the Indian Ocean region based on the discovery of two endemic species on Mayotte. This island belongs to the Comoro archipelago, which is entirely volcanic and surrounded by sea depths of more than 3500 m. This constitutes the first observation of endemic amphibians on oceanic islands that did not have any past physical contact to other land masses. The two species of frogs had previously been thought to be nonendemic and introduced from Madagascar, but clearly represent new species based on their morphological and genetic differentiation. They belong to the genera Mantidactylus and Boophis in the family Mantellidae that is otherwise restricted to Madagascar, and are distinguished by morphology and mitochondrial and nuclear DNA sequences from mantellid species occurring in Madagascar. This discovery permits us to update and test molecular clocks for frogs distributed in this region. The new calibrations are in agreement with previous rate estimates and indicate two further Cenozoic transmarine dispersal events that had previously been interpreted as vicariance: hyperoliid frogs from Africa to Madagascar (Heterixalus) and from Madagascar to the Seychelles islands (Tachycnemis). Our results provide the strongest evidence so far that overseas dispersal of amphibians exists and is no rare exception, although vicariance certainly retains much of its importance in explaining amphibian biogeography. PMID:14667332

  3. Ecopathology of Ranaviruses Infecting Amphibians

    PubMed Central

    Miller, Debra; Gray, Matthew; Storfer, Andrew

    2011-01-01

    Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs. PMID:22163349

  4. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs. PMID:26611041

  5. Exposure to coal combustion residues during metamorphosis elevates corticosterone content and adversely affects oral morphology, growth, and development in Rana sphenocephala

    SciTech Connect

    Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.

    2009-01-15

    Coal combustion residues (CCRs) are documented to negatively impact oral morphology, growth, and development in larval amphibians. It is currently unclear what physiological mechanisms may mediate these effects. Corticosterone, a glucocorticoid hormone, is a likely mediator because when administered exogenously it, like CCRs, also negatively influences oral morphology, growth, and development in larval amphibians. In an attempt to identify if corticosterone mediates these effects, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate and documented effects of sediment type on whole body corticosterone, oral morphology, and time to and mass at key metamorphic stages. Coal combustion residue treated tadpoles contained significantly more corticosterone than controls throughout metamorphosis. However, significantly more oral abnormalities occurred early in metamorphosis when differences in corticosterone levels between treatments were minimal. Overall, CCR-treated tadpoles took significantly more time to transition between key stages and gained less mass between stages than controls, but these differences between treatments decreased during later stages when corticosterone differences between treatments were greatest. Our results suggest endogenous increase in corticosterone content and its influence on oral morphology, growth and development is more complex than previously thought.

  6. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    PubMed Central

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  7. Effects of polychlorinated biphenyl 126 on green frog (Rana clamitans) and leopard frog (Rana pipiens) hatching success, development, and metamorphosis

    SciTech Connect

    Rosenshield, M.L.; Jofre, M.B.; Karasov, W.H.

    1999-11-01

    Although increasing evidence links plana chlorinated hydrocarbons, such as polychlorinated biphenyls (PCBs), to decreases in survival and reproduction of fish, mammals, and birds near Green Bay, Wisconsin, and the Great Lakes, USA, relatively little is known of their bioaccumulation or of their possible effects in amphibians. The authors exposed embryos and larvae of two ranid species commonly occurring in the Green Bay ecosystem, the green frog (Rana clamitans) and the leopard frog (Rana pipiens), to PCB 126, a model coplanar PCB compound. Nominal concentrations ranged from 0.005 to 50 {micro}g/L, and exposure lasted through metamorphosis. Tissue concentrations of PCB 126 in tadpoles that did not metamorphose by the end of the experiment ranged from 1.2 to 9,600 ng/g wet mass. No significant mortality of embryos occurred before hatching; however, survival of larvae was significantly reduced at the highest concentration for both species. Few deformities were observed, but the incidence of edema was significantly higher in tadpoles exposed to 50 {micro}g/L. Swimming speed and growth of tadpoles was also significantly reduced in this treatment. The percent of tadpoles that reached metamorphosis was significantly lower in green frogs at the highest concentration, and no leopard frogs survived past day 47 of the experiment in this treatment. At high concentrations, PCB 126 affected both ranid species; however, sublethal effects were not apparent for the parameters the authors measured at concentrations that occur in water in the Green Bay ecosystem.

  8. Radar image analysis utilizing junctive image metamorphosis

    NASA Astrophysics Data System (ADS)

    Krueger, Peter G.; Gouge, Sally B.; Gouge, Jim O.

    1998-09-01

    A feasibility study was initiated to investigate the ability of algorithms developed for medical sonogram image analysis, to be trained for extraction of cartographic information from synthetic aperture radar imagery. BioComputer Research Inc. has applied proprietary `junctive image metamorphosis' algorithms to cancer cell recognition and identification in ultrasound prostate images. These algorithms have been shown to support automatic radar image feature detection and identification. Training set images were used to develop determinants for representative point, line and area features, which were used on test images to identify and localize the features of interest. The software is computationally conservative; operating on a PC platform in real time. The algorithms are robust; having applicability to be trained for feature recognition on any digital imagery, not just those formed from reflected energy, such as sonograms and radar images. Applications include land mass characterization, feature identification, target recognition, and change detection.

  9. Plasticity of lung development in the amphibian, Xenopus laevis

    PubMed Central

    Rose, Christopher S.; James, Brandon

    2013-01-01

    Summary Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution. PMID:24337117

  10. The Next Decade in Career Counseling: Cocoon Maintenance or Metamorphosis?

    ERIC Educational Resources Information Center

    Parmer, Twinet; Rush, Lee Covington

    2003-01-01

    Articulates the strengths, weaknesses, opportunities, threats, and future vision for career counseling using a cocoon maintenance or metamorphosis metaphor. Concludes with a vision for the future for the discipline and profession of career counseling. (Contains 40 references.) (GCP)

  11. Metamorphosis of the landlocked sea lamprey, Petromyzon marinus

    USGS Publications Warehouse

    Manion, Patrick J.; Stauffer, Thomas M.

    1970-01-01

    The external metamorphosis of the sea lamprey was divided into four stages, based primarily on the condition of the mouth: mouth reduced, mouth fused, mouth enclosed, and mouth elongated. During metamorphosis, the eye enlarged greatly, the snout and mouth region changed from a fleshy hood enclosing a sieve apparatus to a large sucking disc, the nasopore membrane and the branchial area shrank, the branchiopores changed in shape, the general color changed from dark brown and yellow to an intense blue-black dorsally and white ventrally, and the total length increased. Metamorphosis began in early to mid-July and did not take place after August. The duration of external metamorphosis was about 3 months for lampreys transforming under natural conditions. The mean lengths of metamorphosing lampreys from tributaries of lakes Superior and Michigan were 145 and 136 mm, respectively.

  12. Acute toxicity tests and meta-analysis identify gaps in tropical ecotoxicology for amphibians.

    PubMed

    Ghose, Sonia L; Donnelly, Maureen A; Kerby, Jacob; Whitfield, Steven M

    2014-09-01

    Amphibian populations are declining worldwide, particularly in tropical regions where amphibian diversity is highest. Pollutants, including agricultural pesticides, have been identified as a potential contributor to decline, yet toxicological studies of tropical amphibians are very rare. The present study assesses toxic effects on amphibians of 10 commonly used commercial pesticides in tropical agriculture using 2 approaches. First, the authors conducted 8-d toxicity assays with formulations of each pesticide using individually reared red-eyed tree frog (Agalychnis callidryas) tadpoles. Second, they conducted a review of available data for the lethal concentration to kill 50% of test animals from the US Environmental Protection Agency's ECOTOX database to allow comparison with their findings. Lethal concentration estimates from the assays ranged over several orders of magnitude. The nematicides terbufos and ethoprophos and the fungicide chlorothalonil were very highly toxic, with evident effects within an order of magnitude of environmental concentrations. Acute toxicity assays and meta-analysis show that nematicides and fungicides are generally more toxic than herbicides yet receive far less research attention than less toxic herbicides. Given that the tropics have a high diversity of amphibians, the findings emphasize the need for research into the effects of commonly used pesticides in tropical countries and should help guide future ecotoxicological research in tropical regions. PMID:24934557

  13. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.

    PubMed

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis. PMID:26986217

  14. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism

    PubMed Central

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis. PMID:26986217

  15. Female Sexual Arousal in Amphibians

    PubMed Central

    Wilczynski, Walter; Lynch, Kathleen S.

    2010-01-01

    Rather than being a static, species specific trait, reproductive behavior in female amphibians is variable within an individual during the breeding season when females are capable of reproductive activity. Changes in receptivity coincide with changes in circulating estrogen. Estrogen is highest at the point when females are ready to choose a male and lay eggs. At this time female receptivity (her probability of responding to a male vocal signal) is highest and her selectivity among conspecific calls (measured by her probability of responding to a degraded or otherwise usually unattractive male signal) is lowest. These changes occur even though females retain the ability to discriminate different acoustic characteristics of various conspecific calls. After releasing her eggs, female amphibians quickly become less receptive and more choosy in terms of their responses to male sexual advertisement signals. Male vocal signals stimulate both behavior and estrogen changes in amphibian females making mating more probable. The changes in female reproductive behavior are the same as those generally accepted as indicative of a change in female sexual arousal leading to copulation. They are situationally triggered, gated by interactions with males, and decline with the consummation of sexual reproduction with a chosen male. The changes can be triggered by either internal physiological state or by the presence of stimuli presented by males, and the same stimuli change both behavior and physiological (endocrine) state in such a way as to make acceptance of a male more likely. Thus amphibian females demonstrate many of the same general characteristics of changing female sexual state that in mammals indicate sexual arousal. PMID:20816968

  16. Pesticide Mixtures, Endocrine Disruption, and Amphibian Declines: Are We Underestimating the Impact?

    PubMed Central

    Hayes, Tyrone B.; Case, Paola; Chui, Sarah; Chung, Duc; Haeffele, Cathryn; Haston, Kelly; Lee, Melissa; Mai, Vien Phoung; Marjuoa, Youssra; Parker, John; Tsui, Mable

    2006-01-01

    Amphibian populations are declining globally at an alarming rate. Pesticides are among a number of proposed causes for these declines. Although a sizable database examining effects of pesticides on amphibians exists, the vast majority of these studies focus on toxicological effects (lethality, external malformations, etc.) at relatively high doses (parts per million). Very few studies focus on effects such as endocrine disruption at low concentrations. Further, most studies examine exposures to single chemicals only. The present study examined nine pesticides (four herbicides, two fungicides, and three insecticides) used on cornfields in the midwestern United States. Effects of each pesticide alone (0.1 ppb) or in combination were examined. In addition, we also examined atrazine and S-metolachlor combined (0.1 or 10 ppb each) and the commercial formulation Bicep II Magnum, which contains both of these herbicides. These two pesticides were examined in combination because they are persistent throughout the year in the wild. We examined larval growth and development, sex differentiation, and immune function in leopard frogs (Rana pipiens). In a follow-up study, we also examined the effects of the nine-compound mixture on plasma corticosterone levels in male African clawed frogs (Xenopus laevis). Although some of the pesticides individually inhibited larval growth and development, the pesticide mixtures had much greater effects. Larval growth and development were retarded, but most significantly, pesticide mixtures negated or reversed the typically positive correlation between time to metamorphosis and size at metamorphosis observed in controls: exposed larvae that took longer to metamorphose were smaller than their counterparts that metamorphosed earlier. The nine-pesticide mixture also induced damage to the thymus, resulting in immunosuppression and contraction of flavobacterial meningitis. The study in X. laevis revealed that these adverse effects may be due to an

  17. Impending conservation crisis for Southeast Asian amphibians

    PubMed Central

    Rowley, Jodi; Brown, Rafe; Bain, Raoul; Kusrini, Mirza; Inger, Robert; Stuart, Bryan; Wogan, Guin; Thy, Neang; Chan-ard, Tanya; Trung, Cao Tien; Diesmos, Arvin; Iskandar, Djoko T.; Lau, Michael; Ming, Leong Tzi; Makchai, Sunchai; Truong, Nguyen Quang; Phimmachak, Somphouthone

    2010-01-01

    With an understudied amphibian fauna, the highest deforestation rate on the planet and high harvesting pressures, Southeast Asian amphibians are facing a conservation crisis. Owing to the overriding threat of habitat loss, the most critical conservation action required is the identification and strict protection of habitat assessed as having high amphibian species diversity and/or representing distinctive regional amphibian faunas. Long-term population monitoring, enhanced survey efforts, collection of basic biological and ecological information, continued taxonomic research and evaluation of the impact of commercial trade for food, medicine and pets are also needed. Strong involvement of regional stakeholders, students and professionals is essential to accomplish these actions. PMID:20007165

  18. ITRAQ MASS SPECTROMETRIC PROTEOMIC APPLICATIONS FOR IN VIVO TOXICOLOGY STUDIES OF AMPHIBIAN SPECIES: DATA HANDLING AND INTERPRETATION USING PEPTIDE-TAGGING SOFTWARE

    EPA Science Inventory

    This addresses the USEPA's need for a cost effective, non-mammalian screening assay for thyroid axis disrupting chemicals; a multi-endpoint strategy combining molecular and in vivo protocols in an amphibian model is being applied at MED Duluth.

  19. Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus.

    PubMed

    Stockwell, Michelle Pirrie; Storrie, Lachlan James; Pollard, Carla Jean; Clulow, John; Mahony, Michael Joseph

    2015-04-01

    The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock-on effects for community structure. Based on our results, salt may be an effective field-based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms. PMID:25354647

  20. Interactions of an insecticide with competition and pond drying in amphibian communities

    USGS Publications Warehouse

    Boone, M.D.; Semlitsch, R.D.

    2002-01-01

    Amphibian populations are often imbedded in agricultural landscapes. Therefore the potential for contamination of their habitat is considerable. Our study examined the effects of an insecticide (carbaryl, a neurotoxin), on larval amphibian communities experiencing natural stresses of competition for resources, predation, and pond drying. In a set of experimental ponds, tadpoles of three anuran species (southern leopard frog [Rana sphenocephala], plains leopard frog [R. blairi], and the Woodhouse's toad [Bufo woodhousii]) were added to 1000-L ponds containing leaf litter, plankton, two newts (Notophthalmus viridescens), and four overwintered green frog (R. clamitans) tadpoles. We manipulated the overall tadpole density (low or high), pond hydroperiod (constant or drying), and chemical exposure (0, 3.5, 5.0, or 7.0 mg/L carbaryl) of the ponds. We measured mass, time, and survival to metamorphosis to determine treatment effects. Carbaryl positively affected Woodhouse's toad survival, although it had a negligible effect on both leopard frog species. Tadpole density interacted with the chemical treatment: Proportionately more Woodhouse's toads survived to metamorphosis in high-density environments than in low-density or control environments. Greater survival may be an indirect effect of increased algal food resources from carbaryl exposure. Most newts lost mass over the course of the experiment, although ponds with drying hydroperiods and high anuran density were the least favorable environments. Overwintered green frogs exposed to carbaryl had longer larval periods on average than did green frogs in control ponds. Our study demonstrated that even sublethal, short-lived contaminants can alter natural communities in ways that cannot be predicted from simple, one-factor studies.

  1. Effects of acute and chronic acidification on three larval amphibians that breed in temporary ponds

    SciTech Connect

    Rowe, C.L.; Sadinski, W.J.; Dunson, W.A. )

    1992-10-01

    This study explored the effects of acute (7 days) and chronic (4 months) exposure to pH 4.2 on three species of larval amphibians, Ambystoma jeffersonianum, Ambystoma maculatum, and Rana sylvatica. Acute tests were conducted in 24 impermeable enclosures in three temporary ponds. Total dissolved aluminum was higher in acidified enclosures in comparison with controls (pH 4.2, [Al] approximately 10-30 microM and pH greater than 4.7, [Al] approximately 5-15 microM, respectively). Greater mortality of A. jeffersonianum occurred at pH 4.2 than at pH greater than 4.7, whereas survival of A. maculatum and R. sylvatica were unaffected by pH. Mean wet masses of R. sylvatica were significantly lower at pH 4.2 than at pH greater than 4.7, but mean wet masses of surviving A. jeffersonianum and A. maculatum were not influenced by pH. There were no pH-related differences in body sodium concentration in larval R. sylvatica. Chronic acidification of mesocosms to pH 4.2 ([Al] approximately 16 microM) (controls = pH greater than 6, [Al] approximately 0.1 microM) resulted in total mortality of A. jeffersonianum. Survival of A. maculatum and R. sylvatica were not associated with pH, but survival of A. maculatum was low at both pH levels. Time to metamorphosis was longer for R. sylvatica maintained at pH 4.2, but not for A. maculatum. No differences in wet masses at metamorphosis were observed for R. sylvatica or A. maculatum. These results indicate that short and long term acidification of temporary wetlands could dramatically affect amphibians which rely upon them as breeding sites, either by causing mortality or by decreasing growth rates.

  2. Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms

    USGS Publications Warehouse

    Boone, M.D.; James, S.M.

    2003-01-01

    Amphibians developing in wetlands embedded within or near agricultural lands may frequently encounter chemical mixtures. The objectives of our study were to determine the effects that post-application concentrations of an insecticide (carbaryl) and an herbicide (atrazine) have on body mass, development, and survival of two anuran species (southern leopard frog, Rana sphenocephala; American toad, Bufo americanus) and two caudate species (spotted salamander, Ambystoma maculatum; small-mouthed salamander, A. texanum) reared in outdoor cattle tank mesocosms. In one experiment, we manipulated tadpole density (low or high), carbaryl exposure (0, 3.5, 7.0 mg/L), and atrazine exposure (0 or 200 ??g/L) to test for effects on development, mass, and survival of larvae. In a second experiment, we manipulated pond hydroperiod (constant or drying), carbaryl exposure (0 or 5 mg/L), and atrazine exposure (0 or 200 ??g/L) to test for effects on mass, time, and survival to metamorphosis. Salamanders were virtually eliminated in carbaryl treatments, indicating that at realistic levels, this insecticide could cause population declines for salamanders in contaminated habitats. Carbaryl also had negative effects on toad survival. Exposure to atrazine had negative effects on body size, development, and time to metamorphosis in anuran species, which were associated with reduced chlorophyll levels. Both chemicals interacted significantly with density or hydroperiod, indicating that the environmental conditions could influence the impact of a contaminant. A significant atrazine-by-carbaryl interaction resulted in smaller and less developed spotted salamander larvae than in control ponds. Atrazine exposure, however, appeared to moderate negative effects of carbaryl for spotted salamanders. Our research suggests that important changes in the community's food web result from chemical exposure, which influence the susceptibility of amphibian species to contaminants.

  3. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?

    PubMed

    Orton, Frances; Tyler, Charles R

    2015-11-01

    amphibian metamorphosis. Perchlorate has also been shown to induce these effects in wild anuran populations from perchlorate-contaminated environments. Overall, the published data available suggest that some health effects observed in wild anuran populations, most notably intersex, likely have a chemical aetiology; however they derive only from very few anuran species and for a few pesticides at field sites in the USA. To understand better the impacts of EDCs on wild anuran populations, as well as other amphibian groups, assessment of fertility in exposed animals are required. Development of non-destructive biomarkers that are indicative of specific EDC-effect mechanisms are also needed to allow the study of vulnerable populations. This will help to distinguish the effects of EDCs from other environmental and/or genetic influences on development and reproduction. PMID:25335651

  4. A screening assay for thyroid hormone signaling disruption based on thyroid hormone-response gene expression analysis in the frog Pelophylax nigromaculatus.

    PubMed

    Zhang, Yinfeng; Li, Yuanyuan; Qin, Zhanfen; Wang, Huili; Li, Jianzhong

    2015-08-01

    Amphibian metamorphosis provides a wonderful model to study the thyroid hormone (TH) signaling disrupting activity of environmental chemicals, with Xenopus laevis as the most commonly used species. This study aimed to establish a rapid and sensitive screening assay based on TH-response gene expression analysis using Pelophylax nigromaculatus, a native frog species distributed widely in East Asia, especially in China. To achieve this, five candidate TH-response genes that were sensitive to T3 induction were chosen as molecular markers, and T3 induction was determined as 0.2 nmol/L T3 exposure for 48 hr. The developed assay can detect the agonistic activity of T3 with a lowest observed effective concentration of 0.001 nmol/L and EC50 at around 0.118-1.229 nmol/L, exhibiting comparable or higher sensitivity than previously reported assays. We further validated the efficiency of the developed assay by detecting the TH signaling disrupting activity of tetrabromobisphenol A (TBBPA), a known TH signaling disruptor. In accordance with previous reports, we found a weak TH agonistic activity for TBBPA in the absence of T3, whereas a TH antagonistic activity was found for TBBPA at higher concentrations in the presence of T3, showing that the P. nigromaculatus assay is effective for detecting TH signaling disrupting activity. Importantly, we observed non-monotonic dose-dependent disrupting activity of TBBPA in the presence of T3, which is difficult to detect with in vitro reporter gene assays. Overall, the developed P. nigromaculatus assay can be used to screen TH signaling disrupting activity of environmental chemicals with high sensitivity. PMID:26257357

  5. Effects of amphibian chytrid fungus exposure on American toads in the presence of an insecticide.

    PubMed

    Wise, Rayona S; Rumschlag, Samantha L; Boone, Michelle D

    2014-11-01

    Abiotic factors such as pesticides may alter the impact of a pathogen on hosts, which could have implications for host-pathogen interactions and may explain variation in disease outbreaks in nature. In the present laboratory experiment, American toad (Anaxyrus americanus) metamorphs were exposed to the amphibian chytrid fungal pathogen Batrachochytrium dendrobatidis (Bd) and environmentally relevant concentrations of the insecticide malathion to determine whether malathion altered the effects of Bd exposure on growth and survival of toad metamorphs. Exposure to Bd significantly decreased survival over the 51 d of the experiment, suggesting that Bd could reduce recruitment into the terrestrial life stage when exposure occurs at metamorphosis. Malathion did not impact survival, but a 12-h exposure at metamorphosis significantly reduced terrestrial growth. Toads that were exposed to both Bd and malathion showed a nonsignificant trend toward the smallest growth compared with other treatments. The present study suggests that Bd may pose a threat to American toads even though population declines have not been observed for this species; in addition, the presence of both the insecticide malathion and Bd could reduce terrestrial growth, which could have implications for lifetime fitness and suggests that environmental factors could play a role in pathogen impacts in nature. PMID:25099070

  6. Trialkyltin Rexinoid-X Receptor Agonists Selectively Potentiate Thyroid Hormone Induced Programs of Xenopus laevis Metamorphosis.

    PubMed

    Mengeling, Brenda J; Murk, Albertinka J; Furlow, J David

    2016-07-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the environment prompted us to test whether they could also affect TH signaling. Both trialkyltins induced the integrated luciferase reporter alone and potentiated TH activation at low doses. Trimethyltin, which is not an RXR agonist, did not. We turned to a simple, robust, and specific in vivo model system of TH action: metamorphosis of Xenopus laevis, the African clawed frog. Using a precocious metamorphosis assay, we found that 1nM TBT and TPT, but not trimethyltin, greatly potentiated the effect of TH treatment on resorption phenotypes of the tail, which is lost at metamorphosis, and in the head, which undergoes extensive remodeling including gill loss. Consistent with these responses, TH-induced caspase-3 activation in the tail was enhanced by cotreatment with TBT. Induction of a transgenic reporter gene and endogenous collagenase 3 (mmp13) and fibroblast-activating protein-α (fap) genes were not induced by TBT alone, but TH induction was significantly potentiated by TBT. However, induction of other TH receptor target genes such as TRβ and deiodinase 3 by TH were not affected by TBT cotreatment. These data indicate that trialkyltins that can function as RXR agonists can selectively potentiate gene expression and resultant morphological programs directed by TH signaling in vivo. PMID:27167774

  7. AMPHIBIANS AS BIOINDICATORS OF WETLAND CONDITION

    EPA Science Inventory

    King county has over ten years of data on the distribution and abundance of amphibians in wetlands. Changes in wetland amphibian composition are being analyzed in relationship to physical changes within wetlands and surrounding land-use development and change. In addition to tes...

  8. Variation in the Presence of Anti-Batrachochytrium dendrobatidis Bacteria of Amphibians Across Life Stages and Elevations in Ecuador.

    PubMed

    Bresciano, J C; Salvador, C A; Paz-Y-Miño, C; Parody-Merino, A M; Bosch, J; Woodhams, D C

    2015-06-01

    Amphibian populations are decreasing worldwide due to a variety of factors. In South America, the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to many population declines. The pathogenic effect of Bd on amphibians can be inhibited by specific bacteria present on host skin. This symbiotic association allows some amphibians to resist the development of the disease chytridiomycosis. Here, we aimed (1) to determine for the first time if specific anti-Bd bacteria are present on amphibians in the Andes of Ecuador, (2) to monitor anti-Bd bacteria across developmental stages in a focal amphibian, the Andean marsupial tree frog, Gastrotheca riobambae, that deposits larvae in aquatic habitats, and (3) to compare the Bd presence associated with host assemblages including 10 species at sites ranging in biogeography from Amazonian rainforest (450 masl) to Andes montane rainforest (3200 masl). We sampled and identified skin-associated bacteria of frogs in the field using swabs and a novel methodology of aerobic counting plates, and a combination of morphological, biochemical, and molecular identification techniques. The following anti-Bd bacteria were identified and found to be shared among several hosts at high-elevation sites where Bd was present at a prevalence of 32.5%: Janthinobacterium lividum, Pseudomonas fluorescens, and Serratia sp. Bd were detected in Gastrotheca spp. and not detected in the lowlands (sites below 1000 masl). In G. riobambae, recognized Bd-resistant bacteria start to be present at the metamorphic stage. Overall bacterial abundance was significantly higher post-metamorphosis and on species sampled at lower elevations. Further metagenomic studies are needed to evaluate the roles of host identity, life-history stage, and biogeography of the microbiota and their function in disease resistance. PMID:25669915

  9. Fire and amphibians in North America

    USGS Publications Warehouse

    Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S.

    2003-01-01

    Information on amphibian responses to fire and fuel reduction practices is critically needed due to potential declines of species and the prevalence of new, more intensive fire management practices in North American forests. The goals of this review are to summarize the known and potential effects of fire and fuels management on amphibians and their aquatic habitats, and to identify information gaps to help direct future scientific research. Amphibians as a group are taxonomically and ecologically diverse; in turn, responses to fire and associated habitat alteration are expected to vary widely among species and among geographic regions. Available data suggest that amphibian responses to fire are spatially and temporally variable and incompletely understood. Much of the limited research has addressed short-term (1-3 years) effects of prescribed fire on terrestrial life stages of amphibians in the southeastern United States. Information on the long-term negative effects of fire on amphibians and the importance of fire for maintaining amphibian communities is sparse for the majority of taxa in North America. Given the size and severity of recent wildland fires and the national effort to reduce fuels on federal lands, future studies are needed to examine the effects of these landscape disturbances on amphibians. We encourage studies to address population-level responses of amphibians to fire by examining how different life stages are affected by changes in aquatic, riparian, and upland habitats. Research designs need to be credible and provide information that is relevant for fire managers and those responsible for assessing the potential effects of various fuel reduction alternatives on rare, sensitive, and endangered amphibian species. ?? 2003 Elsevier Science B.V. All rights reserved.

  10. Ecology and pathology of amphibian ranaviruses.

    PubMed

    Gray, Matthew J; Miller, Debra L; Hoverman, Jason T

    2009-12-01

    Mass mortality of amphibians has occurred globally since at least the early 1990s from viral pathogens that are members of the genus Ranavirus, family Iridoviridae. The pathogen infects multiple amphibian hosts, larval and adult cohorts, and may persist in herpetofaunal and osteichthyan reservoirs. Environmental persistence of ranavirus virions outside a host may be several weeks or longer in aquatic systems. Transmission occurs by indirect and direct routes, and includes exposure to contaminated water or soil, casual or direct contact with infected individuals, and ingestion of infected tissue during predation, cannibalism, or necrophagy. Some gross lesions include swelling of the limbs or body, erythema, swollen friable livers, and hemorrhage. Susceptible amphibians usually die from chronic cell death in multiple organs, which can occur within a few days following infection or may take several weeks. Amphibian species differ in their susceptibility to ranaviruses, which may be related to their co-evolutionary history with the pathogen. The occurrence of recent widespread amphibian population die-offs from ranaviruses may be an interaction of suppressed and naïve host immunity, anthropogenic stressors, and novel strain introduction. This review summarizes the ecological research on amphibian ranaviruses, discusses possible drivers of emergence and conservation strategies, and presents ideas for future research directions. We also discuss common pathological signs of ranaviral disease, methods for diagnostic evaluation, and ranavirus surveillance methods. In as much as ranaviral disease is listed as a notifiable disease by the World Organization for Animal Health and is a threat to amphibian survival, we recommend that biosecurity precautions are implemented by nations to reduce the likelihood of transporting ranavirus virions among populations. Biosecurity precautions include disinfecting footwear and equipment that comes in contact with surface water inhabited

  11. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis.

    PubMed

    Johnston, Paul R; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont "conspiracies" as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  12. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis

    PubMed Central

    Johnston, Paul R.; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  13. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade.

    PubMed

    Kolby, Jonathan E; Smith, Kristine M; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P; Skerratt, Lee F

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment. PMID:24599268

  14. First Evidence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong Amphibian Trade

    PubMed Central

    Kolby, Jonathan E.; Smith, Kristine M.; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P.; Skerratt, Lee F.

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong’s trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment. PMID:24599268

  15. NUDC expression during amphibian development.

    PubMed

    Moreau, N; Aumais, J P; Prudhomme, C; Morris, S M; Yu-Lee, L Y

    2001-10-01

    To identify gene products important for gastrulation in the amphibian Pleurodeles waltl, a screen for regional differences in new protein expression at the early gastrula stage was performed. A 45 kDa protein whose synthesis was specific for progenitor endodermal cells was identified. Microsequencing and cDNA cloning showed that P45 is highly homologous to rat NUDC, a protein suggested to play a role in nuclear migration. Although PNUDC can be detected in all regions of the embryo, its de novo synthesis is tightly regulated spatially and temporally throughout oogenesis and embryonic development. New PNUDC synthesis in the progenitor endodermal cells depends on induction by the mesodermal cells in the gastrula. During development, PNUDC is localized in the egg cortical cytoplasm, at the cleavage furrow during the first embryonic division, around the nuclei and cortical regions of bottle cells in the gastrula, and at the basal region of polarized tissues in the developing embryo. These results show for the first time the expression and compartmentalization of PNUDC at distinct stages during amphibian development. PMID:11732844

  16. Sperm storage in caecilian amphibians

    PubMed Central

    2012-01-01

    Background Female sperm storage has evolved independently multiple times among vertebrates to control reproduction in response to the environment. In internally fertilising amphibians, female salamanders store sperm in cloacal spermathecae, whereas among anurans sperm storage in oviducts is known only in tailed frogs. Facilitated through extensive field sampling following historical observations we tested for sperm storing structures in the female urogenital tract of fossorial, tropical caecilian amphibians. Findings In the oviparous Ichthyophis cf. kohtaoensis, aggregated sperm were present in a distinct region of the posterior oviduct but not in the cloaca in six out of seven vitellogenic females prior to oviposition. Spermatozoa were found most abundantly between the mucosal folds. In relation to the reproductive status decreased amounts of sperm were present in gravid females compared to pre-ovulatory females. Sperm were absent in females past oviposition. Conclusions Our findings indicate short-term oviductal sperm storage in the oviparous Ichthyophis cf. kohtaoensis. We assume that in female caecilians exhibiting high levels of parental investment sperm storage has evolved in order to optimally coordinate reproductive events and to increase fitness. PMID:22672478

  17. In situ effects of pesticides on amphibians in the Sierra Nevada.

    PubMed

    Sparling, Donald W; Bickham, John; Cowman, Deborah; Fellers, Gary M; Lacher, Thomas; Matson, Cole W; McConnell, Laura

    2015-03-01

    For more than 20 years, conservationists have agreed that amphibian populations around the world are declining. Results obtained through laboratory or mesocosm studies and measurement of contaminant concentrations in areas experiencing declines have supported a role of contaminants in these declines. The current study examines the effects of contaminant exposure to amphibians in situ in areas actually experiencing declines. Early larval Pseudacris regilla were translocated among Lassen Volcanic, Yosemite and Sequoia National Parks, California, USA and caged in wetlands in 2001 and 2002 until metamorphosis. Twenty contaminants were identified in tadpoles with an average of 1.3-5.9 (maximum = 10) contaminants per animal. Sequoia National Park, which had the greatest variety and concentrations of contaminants in 2001, also had tadpoles that experienced the greatest mortality, slowest developmental rates and lowest cholinesterase activities. Yosemite and Sequoia tadpoles and metamorphs had greater genotoxicity than those in Lassen during 2001, as determined by flow cytometry. In 2001 tadpoles at Yosemite had a significantly higher rate of malformations, characterized as hemimelia (shortened femurs), than those at the other two parks but no significant differences were observed in 2002. Fewer differences in contaminant types and concentrations existed among parks during 2002 compared to 2001. In 2002 Sequoia tadpoles had higher mortality and slower developmental rates but there was no difference among parks in cholinesterase activities. Although concentrations of most contaminants were below known lethal concentrations, simultaneous exposure to multiple chemicals and other stressors may have resulted in lethal and sublethal effects. PMID:25381462

  18. Nutrition and health in amphibian husbandry.

    PubMed

    Ferrie, Gina M; Alford, Vance C; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J; Wilson, Brad; Valdes, Eduardo V

    2014-01-01

    Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists' understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. PMID:25296396

  19. Suitability of amphibians and reptiles for translocation.

    PubMed

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole. PMID:19143783

  20. Nutrition and Health in Amphibian Husbandry

    PubMed Central

    Ferrie, Gina M.; Alford, Vance C.; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S.; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A.; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R.; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P.; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M. Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J.; Wilson, Brad; Valdes, Eduardo V.

    2015-01-01

    Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists’ understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. PMID:25296396

  1. [Perspective on gravitational biology of amphibians].

    PubMed

    Yamashita, Masamichi; Naitoh, Tomio; Wassersug, Richard J

    2002-12-01

    We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians. PMID:12721528

  2. Leaping forward in amphibian health and nutrition.

    PubMed

    Olea-Popelka, Francisco; Ferrie, Gina M; Morris, Cheryl; Pessier, Allan P; Schad, Kristine; Stamper, M Andrew; Gagliardo, Ron; Koutsos, Elizabeth; Valdes, Eduardo V

    2014-01-01

    The Epidemiology Working Group, a subgroup of the participants of the Disney's Animal Kingdom Workshop on "Ex situ Amphibian Medicine and Nutrition," identified a critical need to design and implement approaches that will facilitate the assessment and evaluation of factors impacting amphibian health. In this manuscript, we describe and summarize the outcomes of this workshop with regards (a) the identified gaps in knowledge, (b) identified priorities for closing these gaps, and (c) compile a list of actions to address these priorities. Four general areas of improvement were identified in relation to how measurements are currently being taken to evaluate ex situ amphibian health: nutrition, infectious diseases, husbandry, and integrated biology including genetics and endocrinology. The proposed actions that will be taken in order to address the identified gaps include: (1) identify and quantify major health issues affecting ex situ amphibian populations, (2) identify and coordinate laboratories to conduct analyses using standardized and validated protocols to measure nutritional, infectious diseases, genetic, and hormonal parameters, (3) determine in situ baseline distribution of parameters related to amphibian health, and (4) establish an inter-disciplinary research approach to target specific hypotheses related to amphibian health such as the effects of population genetics (e.g., relatedness, inbreeding) on disease susceptibility, or how environmental parameters are related to chronic stress and hormone production. We think is important to address current gaps in knowledge regarding amphibian health in order to increase the probability to succeed in addressing the issues faced by in situ and ex situ amphibians populations. We are confident that the recommendations provided in this manuscript will facilitate to address these challenges and could have a positive impact in both the health of in situ and ex situ amphibian populations, worldwide. PMID:25279727

  3. Ecotoxicology of organic contaminants to amphibians

    USGS Publications Warehouse

    Sparling, D.W.

    2000-01-01

    The effects of organic contaminants on amphibians are poorly known but of considerable interest. These contaminants include the highly toxic dioxins and furans as well as PCBs, PAHs and organochlorine pesticides. Although these compounds may have lower acute toxicity than dioxins and furans, they have been implicated in several problems associated with genotoxicity, endocrine disruption, malformations and reduced growth. There is evidence that amphibian tadpoles bioaccumulate these organic compounds and may have biological concentrating factors ranging in the hundreds. This chapter reviews what is known about the effects and concentrations of organic contaminants in amphibians and provides recommendations for further research

  4. Cardiovascular physiology and diseases of amphibians.

    PubMed

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered. PMID:19131029

  5. Report of Amphibian Development Group

    NASA Technical Reports Server (NTRS)

    Malacinski, G.

    1985-01-01

    Amphibian and fish embryos are extremely well suited for studies on pattern specification, whereas other systems (e.g., avian or mammalian) might be just as well suited for studies on differentiation or growth. Those distinctions are important for at least two reasons: (1) More precise focus regarding underlying mechanisms is called for when those distinctions are made. That facilitates the formulation of specific models or hypotheses; and (2) stress effects (i.e., the effects of weightlessness on structures (e.g., bones) which normally bear a load) are distinguished as being indirect, in contrast to direct effects of microgravity, which would be expected to act on pattern specification. That is, direct gravity effects are distinguished from indirect stress effects.

  6. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis.

    PubMed

    Simon, Edina; Baranyai, Edina; Braun, Mihály; Fábián, István; Tóthmérész, Béla

    2013-07-01

    Mealworm beetles have been used in numerous experiments as bioindicators. The aim of our experiment was to study the elemental composition in three larvae, pupae and first and second generation adult stages during their life cycle. We selected 180 larvae from a genetically similar population and put them in three groups, in two boxes (60 larvae in each box). Larvae were fed with mashed potato made of the same quality and quantity of potato powder. Then, we selected 10 individuals from each stage to the elemental analysis, using the ICP-OES method. The following elements were analysed in the studied stages: Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Sr and Zn. The results of principal component analysis demonstrated that based on elemental composition, different stages were separated with each other, but in the cases of the three larvae stages, high overlap was found. The results of the GLM ANOVA showed significant differences between the different stages of metamorphosis-based elemental composition. Our results show that the calcium and magnesium were found in a relatively high concentration, while the iron and zinc may be essential elements during the metamorphosis. Our results also show that in insect, the concentration of sodium was higher than in the pupa which may cause by hemolymph. We also demonstrated that the metamorphosis has an effect on the concentration of elements. Our study shows that in the different stages of insects, there are significant changes in the elemental composition of different stages of insects during their metamorphosis. PMID:23695727

  7. Embryonic development and metamorphosis of the scyphozoan Aurelia.

    PubMed

    Yuan, David; Nakanishi, Nagayasu; Jacobs, David K; Hartenstein, Volker

    2008-10-01

    We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of "secondary" gastrulation during early metamorphosis. PMID:18850238

  8. Kafka's Metamorphosis: Transforming the Pre-Graduation Malaise.

    ERIC Educational Resources Information Center

    Thompson, Sheryl

    1998-01-01

    A teacher of an advanced placement English class of over-stressed, over-busy, and rebellious gifted seniors describes how she used Kafka's "Metamorphosis" to help them adjust to this transitional period in their lives while keeping all reading and assignments within the class period. (DB)

  9. Amphibian responses to photoinduced toxicity of PAHs

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1995-12-31

    Amphibians are essential components of many ecosystems, yet little information exists on their sensitivity to environmental stressors. Recent evidence shows amphibian diversity is declining. Others have suggested this decline is a result of increasing ultraviolet (UV) light levels. Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in the aquatic environment and their toxicity is increased in the presence of UV light. Embryos of two frogs (Rana pipiens and Xenopus laevis) were exposed to a PAH, fluoranthene, to evaluate amphibian responses to this common contaminant in the presence of sunlight. Hatching rate and development were measured in field and laboratory exposures at multiple concentrations and varying UV intensities. Hatching rate was relatively unaffected, while newly hatched larvae were sensitive to low (ug/L) concentrations. Response was related to both PAH concentration and UV intensity. Results suggest that PAH contamination in the aquatic environment may contribute to declines in amphibian populations.

  10. Amphibians and Reptiles of Los Alamos County

    SciTech Connect

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  11. Transdermal delivery of corticosterone in terrestrial amphibians.

    PubMed

    Wack, Corina L; Lovern, Matthew B; Woodley, Sarah K

    2010-12-01

    Stressors elicit allostatic responses that allow animals to cope with changing and challenging environments and also cause release of glucocorticoid hormones (GCs). Compared to other vertebrate classes, relatively little is known about amphibian behavioral and physiological responses to GCs. To understand the effects of elevated plasma GCs in amphibians, exogenous application of GCs is necessary, but traditional methods to elevate GCs require handling and/or anesthesia which themselves are stressors. A less invasive alternative successfully used in birds and reptiles utilizes transdermal delivery by applying GCs via a dermal patch. We asked whether dermal patches containing corticosterone (CORT, the main GC in amphibians) would elevate plasma CORT in terrestrial salamanders and frogs. We explored the use of the dermal patch to deliver CORT in an acute, sustained, and repeated manner. Patches adhered well to the amphibians' moist skin and were easily removed to regulate the time course of CORT delivery. Application of CORT treated patches elevated plasma CORT concentrations compared to vehicle patches in all species. Patches delivered physiological levels of plasma CORT in ecologically relevant time frames. Repeated application and removal of CORT patches were used to simulate exposure to repeated stressors. Application of patches did not represent a stressor because plasma CORT concentrations were similar between animals that received vehicle patches and untreated animals. Thus, transdermal delivery of GCs represents a potentially useful tool to better understand amphibian allostatic responses to stressors, and perhaps amphibian population declines. PMID:20850442

  12. Establishing a baseline and faunal history in amphibian monitoring programs: The amphibians of Harris Neck, GA

    USGS Publications Warehouse

    Dodd, C.K., Jr.; Barichivich, W.J.

    2007-01-01

    We conducted an intensive inventory of Harris Neck National Wildlife Refuge in coastal Georgia to determine the feasibility of establishing an amphibian monitoring program at this location. Thirteen semi-aquatic amphibian species were identified at 21 locations. Amphibian species richness at Harris Neck was similar to that of nearby barrier islands. The amphibian fauna of Harris Neck has long been affected by human-induced landscape changes, including the inadvertent introduction of tadpoles from distant fish hatcheries and the creation of artificial impoundments. Land-use history provides important information necessary to understand current amphibian distribution, especially when census data are used to establish a baseline from which to monitor future status and trends.

  13. On natural metamorphosis inducers of the cnidarians Hydractinia echinata (Hydrozoa) and Aurelia aurita (Scyphozoa)

    NASA Astrophysics Data System (ADS)

    Kroiher, M.; Berking, S.

    1999-11-01

    Hydractinia echinata and Aurelia aurita produce motile larvae which undergo metamorphosis to sessile polyps when induced by external cues. The polyps are found at restricted sites, A. aurita predominantly on rocks close to the shore, H. echinata on shells inhabited by hermit crabs. It has been argued that the differential distribution of the polyps in their natural environment largely reflects the distribution of the natural metamorphosis-inducing cues. In the case of H. echinata, bacteria of the genus Alteromonas were argued to meet these conditions. We found that almost all substrates collected in the littoral to induce metamorphosis in H. echinata, and several bacterial strains isolated from the sea, including the common E. coli, induce metamorphosis efficiently. In A. aurita metamorphosis may be induced by the water-air interface, whereby metamorphosis precedes (final) settlement.

  14. Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis.

    PubMed

    Becker, Matthew H; Walke, Jenifer B; Murrill, Lindsey; Woodhams, Douglas C; Reinert, Laura K; Rollins-Smith, Louise A; Burzynski, Elizabeth A; Umile, Thomas P; Minbiole, Kevin P C; Belden, Lisa K

    2015-04-01

    The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis. PMID:25737297

  15. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    PubMed

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-01

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. PMID:27453500

  16. ESTIMATING AMPHIBIAN OCCUPANCY RATES IN PONDS UNDER COMPLEX SURVEY DESIGNS

    EPA Science Inventory

    Monitoring the occurrence of specific amphibian species in ponds is one component of the US Geological Survey's Amphibian Monitoring and Research Initiative. Two collaborative studies were conducted in Olympic National Park and southeastern region of Oregon. The number of ponds...

  17. Estimating terrestrial amphibian pesticide body burden through dermal exposure

    EPA Science Inventory

    Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active...

  18. Widespread occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in the southeastern USA

    USGS Publications Warehouse

    Rothermel, Betsie B.; Walls, Susan C.; Mitchell, Joseph C.; Dodd, C. Kenneth, Jr.; Irwin, Lisa K.; Green, David E.; Vazquez, Victoria M.; Petranka, James W.; Stevenson, Dirk J.

    2008-01-01

     From 1999 to 2006, we sampled >1200 amphibians for the fungal pathogen Batrachochytrium dendrobatidis(Bd) at 30 sites in the southeastern USA. Using histological techniques or PCR assays, we detected chytrid infection in 10 species of aquatic-breeding amphibians in 6 states. The prevalence of chytrid infection was 17.8% for samples of postmetamorphic amphibians examined using skin swab-PCR assays (n = 202 samples from 12 species at 4 sites). In this subset of samples, anurans had a much higher prevalence of infection than caudates (39.2% vs. 5.5%, respectively). Mean prevalence in ranid frogs was 40.7%. The only infected salamanders were Notophthalmus viridescens at 3 sites. We found infected amphibians from late winter through late spring and in 1 autumn sample. Although we encountered moribund or dead amphibians at 9 sites, most mortality events were not attributed to Bd. Chytridiomycosis was established as the probable cause of illness or death in fewer than 10 individuals. Our observations suggest a pattern of widespread and subclinical infections. However, because most of the sites in our study were visited only once, we cannot dismiss the possibility that chytridiomycosis is adversely affecting some populations. Furthermore, although there is no evidence of chytrid-associated declines in our region, the presence of this pathogen is cause for concern given global climate change and other stressors. Although presence-absence surveys may still be needed for some taxa, such as bufonids, we recommend that future researchers focus on potential population-level effects at sites where Bd is now known to occur.

  19. Widespread occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in the southeastern USA

    USGS Publications Warehouse

    Rothermel, B.B.; Walls, S.C.; Mitchell, J.C.; Dodd, C.K., Jr.; Irwin, L.K.; Green, D.E.; Vazquez, Victoria M.; Petranka, James W.; Stevenson, Dirk J.

    2008-01-01

    From 1999 to 2006, we sampled >1200 amphibians for the fungal pathogen Batrachochytnum dendrobatidis (Bd) at 30 sites in the southeastern USA. Using histological techniques or PCR assays, we detected chytrid infection in 10 species of aquatic-breeding amphibians in 6 states. The prevalence of chytrid infection was 17.8% for samples of postmetamorphic amphibians examined using skin swab-PCR assays (n = 202 samples from 12 species at 4 sites). In this subset of samples, anurans had a much higher prevalence of infection than caudates (39.2% vs. 5.5%, respectively). Mean prevalence in ranid frogs was 40.7 %. The only infected salamanders were Notophthalmus viridescens at 3 sites. We found infected amphibians from late winter through late spring and in 1 autumn sample. Although we encountered moribund or dead amphibians at 9 sites, most mortality events were not attributed to Bd. Chytridiomycosis was established as the probable cause of illness or death in fewer than 10 individuals. Our observations suggest a pattern of widespread and subclinical infections. However, because most of the sites in our study were visited only once, we cannot dismiss the possibility that chytridiomycosis is adversely affecting some populations. Furthermore, although there is no evidence of chytrid-associated declines in our region, the presence of this pathogen is cause for concern given global climate change and other stressors. Although presence-absence surveys may still be needed for some taxa, such as bufonids, we recommend that future researchers focus on potential population-level effects at sites where Bd is now known to occur. ?? Inter-Research 2008.

  20. Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx.

    PubMed

    Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng

    2016-01-01

    The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated Yorkie(CA) overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm. PMID:27489496

  1. Cartilage on the Move: Cartilage Lineage Tracing During Tadpole Metamorphosis

    PubMed Central

    Kerney, Ryan R.; Brittain, Alison L.; Hall, Brian K.; Buchholz, Daniel R.

    2012-01-01

    The reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage-forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis. Determining the extent to which adult chondrocytes/cartilages are derived from larval chondrocytes during metamorphosis requires new techniques in chondrocyte lineage tracing. We have developed two transgenic systems to label cartilage cells throughout the body with fluorescent proteins. One system strongly labels early tadpole cartilages only. The other system inducibly labels forming cartilages at any developmental stage. We examined cartilages of the skull (viscero- and neurocranium), and identified larval cartilages that either resorb or remodel into adult cartilages. Our data show that the adult otic capsules, tecti anterius and posterius, hyale, and portions of Meckel’s cartilage are derived from larval chondrocytes. Our data also suggest that most adult cartilages form de novo, though we cannot rule out the potential for extreme larval chondrocyte proliferation or de- and re-differentiation, which could dilute our fluorescent protein signal. The transgenic lineage tracing strategies developed here are the first examples of inducible, skeleton-specific, lineage tracing in Xenopus. PMID:23036161

  2. Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx

    PubMed Central

    Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng

    2016-01-01

    The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated YorkieCA overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm. PMID:27489496

  3. Heterochrony in a complex world: disentangling environmental processes of facultative paedomorphosis in an amphibian.

    PubMed

    Denoël, Mathieu; Ficetola, Gentile F

    2014-05-01

    Heterochrony, the change in the rate or timing of development between ancestors and their descendants, plays a major role in evolution. When heterochrony produces polymorphisms, it offers the possibility to test hypotheses that could explain its success across environments. Amphibians are particularly suitable to exploring these questions because they express complex life cycles (i.e. metamorphosis) that have been disrupted by heterochronic processes (paedomorphosis: retention of larval traits in adults). The large phenotypic variation across populations suggests that more complex processes than expected are operating, but they remain to be investigated through multivariate analyses over a large range of natural populations across time. In this study, we compared the likelihood of multiple potential environmental determinants of heterochrony. We gathered data on the proportion of paedomorphic and metamorphic palmate newts (Lissotriton helveticus) across more than 150 populations during 10 years and used an information-theoretic approach to compare the support of multiple potential processes. Six environmental processes jointly explained the proportion of paedomorphs in populations: predation, water availability, dispersal limitation, aquatic breathing, terrestrial habitat suitability and antipredator refuges. Analyses of variation across space and time supported models based on the advantage of paedomorphosis in favourable aquatic habitats. Paedomorphs were favoured in deep ponds, in conditions favourable to aquatic breathing (high oxygen content), with lack of fish and surrounded by suitable terrestrial habitat. Metamorphs were favoured by banks allowing easy dispersal. These results indicate that heterochrony relies on complex processes involving multiple ecological variables and exemplifies why heterochronic patterns occur in contrasted environments. On the other hand, the fast selection of alternative morphs shows that metamorphosis and paedomorphosis

  4. Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum

    SciTech Connect

    Semlitsch, R.D.; Scott, D.E.; Pechmann, J.H.K.

    1988-02-01

    The relationships among timing of metamorphosis, size at metamorphosis, and traits related to adult fitness were studied for 8 yr in the salamander Ambystoma talpoideum at a temporary pond. Among years, the modal time of metamorphosis and mean body size at metamorphosis were positively correlated with the date the pond dried. In years that the pond dried late, one group of larvae metamorphosed well before the pond dried, whereas the other group metamorphosed just before pond drying. Mean body size of late-metamorphosing individuals was not greater than that of individuals metamorphosing early. Early-metamorphosing males and females were larger at first and second reproduction than were late-metamorphosing individuals. Independent of timing of metamorphosis, larger juveniles at metamorphosis were also larger adults at first reproduction. Age at first reproduction for males was not associated with timing of or size at metamorphosis but large early-metamorphosing females reproduced at a younger age than did small early-metamorphosing females. Neither time of metamorphosis nor size at metamorphosis was associated with survival to first reproduction. These results demonstrate a direct relationship between phenotypic variation generated in the larval stage and adult traits closely associated with an individual's fitness.

  5. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.

    PubMed

    Puah, Wee Choo; Wasser, Martin

    2016-03-01

    Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future. PMID:26431669

  6. Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles.

    PubMed

    Lefcort, H; Meguire, R A; Wilson, L H; Ettinger, W F

    1998-10-01

    Amphibian populations appear to be declining around the world. Although there is no single cause, one factor may be pollution from heavy metals. As a result of mining in the Silver Valley of Idaho, heavy metals have been released into habitats containing many species of sensitive organisms, including spotted frogs (Rana luteiventris). While the gross extent of pollution has been well documented, the more subtle behavioral effects of heavy metals such as lead, zinc, and cadmium are less well studied. We tested the effects of heavy metals on the short-term survival (LC50) of spotted frog tadpoles. Compared to single metals, metals presented together were toxic at lower doses. We also raised the tadpoles in outdoor mini-ecosystems containing either a single heavy metal or soil from an EPA Superfund site in the Silver Valley known to be composed of numerous heavy metals. Exposure to Silver Valley soil resulted in delayed metamorphosis. We tested the ability of metal-exposed tadpoles to detect and respond to chemical cues emanating from predacious rainbow trout. We found that high levels of Silver Valley soil, medium levels of zinc, and medium and high levels of lead resulted in a decreased fright response. Low levels of cadmium, zinc, and lead did not cause a significant effect, but low levels of soil did result in a decreased fright response. Heavy metals may alter interactions between tadpoles and their predators. PMID:9732476

  7. Effects of a fungicide formulation on embryo-larval development, metamorphosis, and gonadogenesis of the South American toad Rhinella arenarum.

    PubMed

    Svartz, Gabriela; Meijide, Fernando; Pérez Coll, Cristina

    2016-07-01

    Sublethal toxicity of the formulated fungicide Maxim(®) XL on embryonic, larval and juvenile development of Rhinella arenarum was evaluated by means of standardized bioassays. Maxim(®) XL, one of the most used fungicides in Argentina, is based on a mixture of two active ingredients: Fludioxonil and Metalaxyl-M. Maxim(®) XL exposure induced severe sublethal effects on the embryos, expressed as general underdevelopment, axial flexures, microcephaly, cellular dissociation, abnormal pigmentation, underdeveloped gills, marked edema and wavy tail. As the embryo development advanced, alterations in behavior as spasmodic contractions, general weakness and inanition were observed. Maxim(®) XL did not affect neither the time required to complete metamorphosis nor sex proportions, but gonadal development and differentiation were impaired. Gross gonadal analysis revealed a significant proportion of exposed individuals with underdevelopment of one or both gonads. Histological analysis confirmed that 18% and 10% of the individuals exposed to 0.25 and 2mg/L Maxim(®) XL, respectively, exhibited undifferentiated gonads characterized by a reduced number (or absence) of germ cells. Taking into account the risk evaluation performed by means of Hazard Quotients, this fungicide could be a threat to R. arenarum populations under chronic exposure. This study represents the first evidence of toxic effects exerted by Maxim(®) XL on amphibians. Finally, our findings highlight the properties of this fungicide that might jeopardize non-target living species exposed to it in agricultural environments. PMID:27214195

  8. Design of an Amphibian Exploring Robot

    NASA Astrophysics Data System (ADS)

    Maity, Atanu; Majumder, Somajyoti

    2014-07-01

    To design and develop an amphibian exploring robot capable of operation in constrained mine environment puts a tremendous challenge to the system developers from both scientific and engineering perspective. Very few attempts have been made to fulfil these criteria of versatility in design, communication and control. The CSIR-CMERI developed amphibian subterranean robotic explorer (SR) is capable of moving over fairly rough terrain. It can swim as well as crawl over basin floor effortlessly. It is capable of operating at a maximum depth of 10m and can swim at 1 knot. A number of field trials have been carried out for performance testing of the system to ascertain its capability in underground flooded mine tunnels. This paper presents the insight on the design of an amphibian exploring robot for mine safety and disaster mitigation with special features of low power consumption vis-a-vis high mission time.

  9. Amphibians of the northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Euliss, Ned H.; Lannoo, Michael J.; Mushet, David M.

    1998-01-01

    No cry of alarm has been sounded over the fate of amphibian populations in the northern grasslands of North America, yet huge percentages of prairie wetland habitat have been lost, and the destruction continues. Scarcely 30% of the original mixedgrass prairie remains in Nebraska, South Dakota, and North Dakota (See Table 1 in this chapter). If amphibian populations haven’t declined, why haven’t they? Or, have we simply failed to notice? Amphibians in the northern grasslands evolved in a boom-or-bust environment: species that were unable to survive droughts lasting for years died out long before humans were around to count them. Species we find today are expert at seizing the rare, wet moment to rebuild their populations in preparation for the next dry season. When numbers can change so rapidly, who can say if a species is rare or common? A lot depends on when you look.

  10. Amphibian monitoring in the Atchafalaya Basin

    USGS Publications Warehouse

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  11. Emesis and Space Motion Sickness in Amphibians

    NASA Astrophysics Data System (ADS)

    Naitoh, T.; Yamashita, M.; Izumi-Kurotani, A.; Takabatake, I.; Wassersug, R. J.

    Amphibians possess the ability to vomit in response to a variety of stimuli that provoke emesis in mammals. Pharmacological studies have establish that the ejection of gastric contents and the basic mechanism for vomiting have been phylogenetically conserved among these tetrapods. As part of on-going comparative studies on emesis in vertebrates, we previously documented that some postmetamorphic anurans and salamander larvae experience motion-induced emesis when exposed to the provocative stimulus of parabolic aircraft flight. However, more recent experiments suggest that there are strict conditions for inducing emesis in amphibians exposed to parabolic flight and that amphibians are not as sensitive to this stimulus as mammals. Further studies on emesis in lower vertebrates may help us understand the processes that cause emesis in abnormal gravitational regimes

  12. Microbiota and Mucosal Immunity in Amphibians

    PubMed Central

    Colombo, Bruno M.; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas

    2015-01-01

    We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota. PMID:25821449

  13. Helping Your Local Amphibians (HYLA): An Internet-based Amphibian Course for Educators.

    ERIC Educational Resources Information Center

    Murphy, Tony P.

    2001-01-01

    Introduces an online zoology course that was offered primarily to upper elementary and middle school teachers in which teachers were expected to take action to help the local amphibian population. (Author/YDS)

  14. Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations.

    PubMed Central

    Carey, C; Bryant, C J

    1995-01-01

    Many amphibian populations are declining in a number of geographical locations throughout the world. In most cases, the cause or causes are unknown, but are assumed to result from man-made alterations in the environment. We review existing evidence concerning how environmental xenobiotics could contribute to declines of amphibian populations by impacting growth and development of the young. This paper examines the potential roles of toxicants in: a) affecting the susceptibility of young to disease; b) retarding growth and development of amphibian young; c) affecting the ability of larvae to avoid predation; d) affecting the development of physiological, morphological, or behavioral processes in a manner that subsequently impairs the ability of the young for future reproduction; and e) directly causing mortality of young. These issues are not well studied, and more studies are needed before the roles of environmental xenobiotics in amphibian declines are fully understood. PMID:7556018

  15. The amphibian pathogen Batrachochytrium dendrobatidis detected in a community of stream and wetland amphibians

    USGS Publications Warehouse

    Grant, E.H.C.; Bailey, L.L.; Ware, J.L.; Duncan, K.C.

    2008-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders.

  16. In situ effects of pesticides on amphibians in the Sierra Nevada

    USGS Publications Warehouse

    Sparling, Donald W.; Bickham, John W.; Cowman, Deborah; Fellers, Gary M.; Lacher, Thomas E., Jr.; Matson, Cole W.; McConnell, Laura

    2015-01-01

    For more than 20 years, conservationists have agreed that amphibian populations around the world are declining. Results obtained through laboratory or mesocosm studies and measurement of contaminant concentrations in areas experiencing declines have supported a role of contaminants in these declines. The current study examines the effects of contaminant exposure to amphibians in situ in areas actually experiencing declines. Early larval Pseudacris regilla were translocated among Lassen Volcanic, Yosemite and Sequoia National Parks, California, USA and caged in wetlands in 2001 and 2002 until metamorphosis. Twenty contaminants were identified in tadpoles with an average of 1.3–5.9 (maximum = 10) contaminants per animal. Sequoia National Park, which had the greatest variety and concentrations of contaminants in 2001, also had tadpoles that experienced the greatest mortality, slowest developmental rates and lowest cholinesterase activities. Yosemite and Sequoia tadpoles and metamorphs had greater genotoxicity than those in Lassen during 2001, as determined by flow cytometry. In 2001 tadpoles at Yosemite had a significantly higher rate of malformations, characterized as hemimelia (shortened femurs), than those at the other two parks but no significant differences were observed in 2002. Fewer differences in contaminant types and concentrations existed among parks during 2002 compared to 2001. In 2002 Sequoia tadpoles had higher mortality and slower developmental rates but there was no difference among parks in cholinesterase activities. Although concentrations of most contaminants were below known lethal concentrations, simultaneous exposure to multiple chemicals and other stressors may have resulted in lethal and sublethal effects.

  17. Presence of the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis in Native Amphibians Exported from Madagascar

    PubMed Central

    Kolby, Jonathan E.

    2014-01-01

    The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented. PMID:24599336

  18. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    PubMed

    Kolby, Jonathan E

    2014-01-01

    The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented. PMID:24599336

  19. Amphibian pathogens in Southeast Asian frog trade.

    PubMed

    Gilbert, Martin; Bickford, David; Clark, Leanne; Johnson, Arlyne; Joyner, Priscilla H; Ogg Keatts, Lucy; Khammavong, Kongsy; Nguyễn Văn, Long; Newton, Alisa; Seow, Tiffany P W; Roberton, Scott; Silithammavong, Soubanh; Singhalath, Sinpakhone; Yang, Angela; Seimon, Tracie A

    2012-12-01

    Amphibian trade is known to facilitate the geographic spread of pathogens. Here we assess the health of amphibians traded in Southeast Asia for food or as pets, focusing on Batrachochytrium dendrobatidis (Bd), ranavirus and general clinical condition. Samples were collected from 2,389 individual animals at 51 sites in Lao PDR, Cambodia, Vietnam and Singapore for Bd screening, and 74 animals in Cambodia and Vietnam for ranavirus screening. Bd was found in one frog (n = 347) in Cambodia and 13 in Singapore (n = 419). No Bd was found in Lao PDR (n = 1,126) or Vietnam (n = 497), and no ranavirus was found in Cambodia (n = 70) or Vietnam (n = 4). Mild to severe dermatological lesions were observed in all East Asian bullfrogs Hoplobatrachus rugolosus (n = 497) sampled in farms in Vietnam. Histologic lesions consistent with sepsis were found within the lesions of three frogs and bacterial sepsis in two (n = 4); one had Gram-negative bacilli and one had acid-fast organisms consistent with mycobacterium sp. These results confirm that Bd is currently rare in amphibian trade in Southeast Asia. The presence of Mycobacterium-associated disease in farmed H. rugolosus is a cause for concern, as it may have public health implications and indicates the need for improved biosecurity in amphibian farming and trade. PMID:23404036

  20. POTENTIAL DEVELOPMENTAL EFFECTS OF ATRAZINE ON AMPHIBIANS

    EPA Science Inventory

    Recent research has generated conflicting results on the effects of atrazine on gonadal developmental (e.g., male hermaphroditism) in amphibians and how these effects influence secondary sexual characteristics (e.g., laryngeal muscle mass). The SAP is being asked to consider the...

  1. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  2. Managing Amphibian Disease with Skin Microbiota.

    PubMed

    Woodhams, Douglas C; Bletz, Molly; Kueneman, Jordan; McKenzie, Valerie

    2016-03-01

    The contribution of emerging amphibian diseases to the sixth mass extinction is driving innovative wildlife management strategies, including the use of probiotics. Bioaugmentation of the skin mucosome, a dynamic environment including host and microbial components, may not provide a generalized solution. Multi-omics technologies and ecological context underlie effective implementation. PMID:26916805

  3. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. PMID:22145866

  4. Some quantitative changes observed in Philosamia ricini pupal haemolymph during metamorphosis

    PubMed Central

    Pant, Radha; Agrawal, H. C.

    1965-01-01

    1. The quantitative variations of the concentrations of uric acid, citrate, nucleic acids and total and acid-soluble phosphorus in the pupal haemolymph of Philosamia ricini during metamorphosis have been studied. 2. The mean value for total nitrogen in the haemolymph and total loss in weight of the insects during metamorphosis have also been recorded. PMID:5893263

  5. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  6. Diseases of amphibian eggs and embryos

    USGS Publications Warehouse

    Green, D.E.; Converse, K.A.

    2005-01-01

    Amphibians generally are prolific egg producers. In tropical and semi-tropical regions, deposition of eggs may occur year-round or may coincide with rainy seasons, while in temperate regions, deposition of eggs usually occurs immediately after emergence from hibernation. Numbers of eggs produced by each species may vary from a few dozen to thousands. Accordingly, some eggs may be infertile and wastage of embryos is to be expected. Fertility, viability and decomposition of eggs and embryos must be considered before it is assumed that diseases are present. An important consideration in the evaluation of egg masses is the fact that some will contain infertile and non-viable eggs. These infertile and nonviable eggs will undergo decomposition and they may appear similar to eggs that are infected by a pathogen. Evaluation of egg masses and embryos for the presence of disease may require repeated observations in a given breeding season as well as continued monitoring of egg masses during their growth and development and over successive breeding seasons. Amphibian eggs rarely are subjected to a comprehensive health (diagnostic) examination; hence, there is scant literature on the diseases of this life stage. Indeed, the eggs of some North American amphibians have yet to be described. Much basic physiology and normal biomedical baseline data on amphibian eggs is lacking. For example, it is known that the aquatic eggs of some species of shrimp quickly are coated by a protective and commensal bacterium that effectively impedes invasion of the eggs by other environmental organisms and potential pathogens. In the absence of this bacterium, shrimp eggs are rapidly killed by other bacteria and fungi (Green, 2001). The possibility that amphibian eggs also have important symbiotic or commensal bacteria needs to be investigated. Furthermore, the quantity and types of chemicals in the normal gelatinous capsules of amphibian eggs have scarcely been examined. Abnormalities of the

  7. Chytrid fungus infections in laboratory and introduced Xenopus laevis populations: assessing the risks for U.K. native amphibians

    PubMed Central

    Tinsley, Richard C.; Coxhead, Peter G.; Stott, Lucy C.; Tinsley, Matthew C.; Piccinni, Maya Z.; Guille, Matthew J.

    2015-01-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) is notorious amongst current conservation biology challenges, responsible for mass mortality and extinction of amphibian species. World trade in amphibians is implicated in global dissemination. Exports of South African Xenopus laevis have led to establishment of this invasive species on four continents. Bd naturally infects this host in Africa and now occurs in several introduced populations. However, no previous studies have investigated transfer of infection into co-occurring native amphibian faunas. A survey of 27 U.K. institutions maintaining X. laevis for research showed that most laboratories have low-level infection, a risk for native species if animals are released into the wild. RT-PCR assays showed Bd in two introduced U.K. populations of X. laevis, in Wales and Lincolnshire. Laboratory and field studies demonstrated that infection levels increase with stress, especially low temperature. In the U.K., native amphibians may be exposed to intense transmission in spring when they enter ponds to spawn alongside X. laevis that have cold-elevated Bd infections. Exposure to cross-infection has probably been recurrent since the introduction of X. laevis, >20 years in Lincolnshire and 50 years in Wales. These sites provide an important test for assessing the impact of X. laevis on Bd spread. However, RT-PCR assays on 174 native amphibians (Bufo, Rana, Lissotriton and Triturus spp.), sympatric with the Bd-infected introduced populations, showed no foci of self-sustaining Bd transmission associated with X. laevis. The abundance of these native amphibians suggested no significant negative population-level effect after the decades of co-occurrence. PMID:25843959

  8. Metabolomic insights into system-wide coordination of vertebrate metamorphosis

    PubMed Central

    2014-01-01

    Background After completion of embryogenesis, many organisms experience an additional obligatory developmental transition to attain a substantially different juvenile or adult form. During anuran metamorphosis, the aquatic tadpole undergoes drastic morphological changes and remodelling of tissues and organs to become a froglet. Thyroid hormones are required to initiate the process, but the mechanism whereby the many requisite changes are coordinated between organs and tissues is poorly understood. Metabolites are often highly conserved biomolecules between species and are the closest reflection of phenotype. Due to the extensive distribution of blood throughout the organism, examination of the metabolites contained therein provides a system-wide overview of the coordinated changes experienced during metamorphosis. We performed an untargeted metabolomic analysis on serum samples from naturally-metamorphosing Rana catesbeiana from tadpoles to froglets using ultraperformance liquid chromatography coupled to a mass spectrometer. Total and aqueous metabolite extracts were obtained from each serum sample to select for nonpolar and polar metabolites, respectively, and selected metabolites were validated by running authentic compounds. Results The majority of the detected metabolites (74%) showed statistically significant abundance changes (padj < 0.001) between metamorphic stages. We observed extensive remodelling of five core metabolic pathways: arginine and purine/pyrimidine, cysteine/methionine, sphingolipid, and eicosanoid metabolism and the urea cycle, and found evidence for a major role for lipids during this postembryonic process. Metabolites traditionally linked to human disease states were found to have biological linkages to the system-wide changes occuring during the events leading up to overt morphological change. Conclusions To our knowledge, this is the first wide-scale metabolomic study of vertebrate metamorphosis identifying fundamental pathways

  9. Establishing causality in the decline and deformity of amphibians: The amphibian research and monitoring initiative model

    USGS Publications Warehouse

    Little, E.E.; Bridges, C.M.; Linder, G.; Boone, M.

    2003-01-01

    Research to date has indicated that a range of environmental variables such as disease, parasitism, predation, competition, environmental contamination, solar ultraviolet radiation, climate change, or habitat alteration may be responsible for declining amphibian populations and the appearance of deformed organisms, yet in many cases no definitive environmental variable stands out as a causal factor. Multiple Stressors are often present in the habitat, and interactions among these can magnify injury to biota. This raises the possibility that the additive or synergistic impact of these Stressors may be the underlying cause of amphibian declines. Effective management for the restoration of amphibian populations requires the identification of causal factors contributing to their declines. A systematic approach to determine causality is especially important because initial impressions may be misleading or ambiguous. In addition, the evaluation of amphibian populations requires consideration of a broader spatial scale than commonly used in regulatory monitoring. We describe a systematic three-tiered approach to determine causality in amphibian declines and deformities. Tier 1 includes an evaluation of historic databases and extant data and would involve a desktop synopsis of the status of various stressors as well as site visits. Tier 2 studies are iterative, hypothesis driven studies beginning with general tests and continuing with analyses of increasing complexity as certain stressors are identified for further investigation. Tier 3 applies information developed in Tier 2 as predictive indicators of habitats and species at risk over broad landscape scales and provides decision support for the adaptive management of amphibian recovery. This comprehensive, tiered program could provide a mechanistic approach to identifying and addressing specific stressors responsible for amphibian declines across various landscapes.

  10. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations.

    PubMed

    Bradley, Paul W; Gervasi, Stephanie S; Hua, Jessica; Cothran, Rickey D; Relyea, Rick A; Olson, Deanna H; Blaustein, Andrew R

    2015-10-01

    Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd-infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post-metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population-level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events. PMID:26219571

  11. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  12. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles.

    PubMed

    Zirin, Jonathan; Cheng, Daojun; Dhanyasi, Nagaraju; Cho, Julio; Dura, Jean-Maurice; Vijayraghavan, Krishnaswamy; Perrimon, Norbert

    2013-11-15

    One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24h of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis. PMID:24051228

  13. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles

    PubMed Central

    Zirin, Jonathan; Cheng, Daojun; Dhanyasi, Nagaraju; Cho, Julio; Dura, Jean-Maurice; VijayRaghavan, Krishnaswamy; Perrimon, Norbert

    2013-01-01

    One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24 hrs of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis. PMID:24051228

  14. Helping Your Local Amphibians (HYLA): An Internet-Based Amphibian Course for Educators

    NASA Astrophysics Data System (ADS)

    Murphy, Tony P.

    2001-12-01

    A pilot on-line course on amphibians was offered free to 20 educators around the United States in 1999. This course, called Helping Your Local Amphibians (HYLA), was the first of its kind on-line course for educators dealing with amphibian issues. It also used these animals as a focus to teach about the environment. The course lasted 9 weeks with some additional time for continued discussions and used various aspects of Internet technology (including a virtual conference center), media, and traditional paper-based products to complete the learning process. Five teachers were selected to attend a national amphibian summit hosted by the Center for Global Environmental Education, Hamline University, St. Paul, MN. The course was aimed primarily at upper elementary and middle school teachers, but participants included formal and nonformal educators. For the most part, educators expressed satisfaction with the course and the content, as well as the structure of the web site. For 80% of the group, this was their first Internet-based course. In addition, as part of the course, the educators were expected to take some action with their primary audiences to help local amphibian populations. This mainly took the form of surveys or habitat clean-ups. The development of the course was underwritten by grants from the National Fish and Wildlife Foundation, U.S. Fish and Wildlife Service, the Best Buy Children's Foundation, and Hamline University.

  15. Research proceedings on amphibian model organisms

    PubMed Central

    LIU, Lu-Sha; ZHAO, Lan-Ying; WANG, Shou-Hong; JIANG, Jian-Ping

    2016-01-01

    Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism. PMID:27469255

  16. Neurosteroid Biosynthesis in the Brain of Amphibians

    PubMed Central

    Vaudry, Hubert; Do Rego, Jean-Luc; Burel, Delphine; Luu-The, Van; Pelletier, Georges; Vaudry, David; Tsutsui, Kazuyoshi

    2011-01-01

    Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates. PMID:22649387

  17. Research proceedings on amphibian model organisms.

    PubMed

    Liu, Lu-Sha; Zhao, Lan-Ying; Wang, Shou-Hong; Jiang, Jian-Ping

    2016-07-18

    Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism. PMID:27469255

  18. Direct and indirect effects of climate change on amphibian populations

    USGS Publications Warehouse

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  19. Bent's Old Fort: Amphibians and Reptiles

    USGS Publications Warehouse

    Muths, E.

    2008-01-01

    Bent's Old Fort National Historic Site sits along the Arkansas River in the semi-desert prairie of southeastern Colorado. The USGS provided assistance in designing surveys to assess the variety of herpetofauna (amphibians and reptiles) resident at this site. This brochure is the results of those efforts and provides visitors with information on what frogs, toads, snakes and salamanders might be seen and heard at Bent's Old Fort.

  20. Amphibians as research models for regenerative medicine

    PubMed Central

    Song, Fengyu; Li, Bingbing

    2010-01-01

    The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible. PMID:21197215

  1. Emerging infectious diseases and amphibian population declines.

    PubMed Central

    Daszak, P.; Berger, L.; Cunningham, A. A.; Hyatt, A. D.; Green, D. E.; Speare, R.

    1999-01-01

    We review recent research on the pathology, ecology, and biogeography of two emerging infectious wildlife diseases, chytridiomycosis and ranaviral disease, in the context of host-parasite population biology. We examine the role of these diseases in the global decline of amphibian populations and propose hypotheses for the origins and impact of these panzootics. Finally, we discuss emerging infectious diseases as a global threat to wildlife populations. PMID:10603206

  2. Effects of Delayed Metamorphosis on Larval Survival, Metamorphosis, and Juvenile Performance of Four Closely Related Species of Tropical Sea Urchins (Genus Echinometra)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Uehara, Tsuyoshi

    2014-01-01

    We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22–24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis

  3. Pesticide Detection in Rainwater, Stemflow, and Amphibians from Agricultural Spray Drift in Southern Georgia, USA

    EPA Science Inventory

    Amphibians are important sentinel environmental species since they integrate stressors from both aquatic and terrestrial ecosystems. Pesticides are well established as a significant stressor for amphibians. In order to study spray-drift contributions to amphibian habitats, pestic...

  4. Pesticide Uptake Across the Amphibian Dermis Through Soil and Overspray Exposures

    EPA Science Inventory

    For terrestrial amphibians, accumulation ofpesticides through dermal contact is a primary route ofexposure in agricultural landscapes and may be contributingto widespread amphibian declines. To show pesticidetransfer across the amphibian dermis at permitted labelapplication rates...

  5. Ranavirus outbreaks in amphibian populations of northern Idaho

    USGS Publications Warehouse

    Russell, Danelle M.; Goldberg, Caren S.; Sprague, Laura; Waits, Lisette P.; Green, D. Earl; Schuler, Krysten L.; Rosenblum, Erica Bree

    2011-01-01

    Ranavirus outbreaks, caused by pathogens in the genus Ranavirus (Family Iridoviridae), were the largest single cause of reported amphibian mass mortality events in the United States from 1996–2001 (Green et al. 2002). Mortality events associated with ranaviruses have been documented on five continents and throughout the latitudes and elevations where amphibians occur (Gray et al. 2009). However, the threat of ranaviruses to amphibian and reptile populations in specific regions is still largely unknown (Chinchar 2002; Gray et al. 2009).

  6. Amphibian Decline: An Integrated Analysis of Multiple Stressor Effects

    USGS Publications Warehouse

    2003-01-01

    Although the effects of contaminants on amphibians have been studied for decades, relatively little is known about these effects compared to the more intensively studied mammals. and birds. Science has advanced its understanding of the complexities linked to declining amphibian populations; however, there are many remaining questions whose answers would directly benefit amphibians and adaptive management plans ministering to them. In an effort to answer those questions and focus on ecological risk assessment of amphibians, scientists, researchers, and resource management professionals from diverse fields participated in a Society of Environmental Toxicology and Chemistry (SETAC)-Johnson Foundation Wingspread conference with three goals: characterize a process that would bring a range of interdisciplinary technical and management tools to the tasks of causal analysis; demonstrate the current state of available technical tools to assess amphibian populations exposed to various environmental stressors; and focus on identifying research that would likely benefit sustainable populations through adaptive management programs. A result of the Wingspread conference, Amphibian Decline examines the ecotoxicology and stressors of amphibians in an attempt to address issues related to declining amphibian populations and the role that various stressors might have in those losses. It identifies gaps in current data, interprets information into an existing framework, and points toward critical areas for future research. Through the combined efforts of research and resource management communities, recommendations can be developed to change current policies and management actions to address the problem of amphibian decline.

  7. Coupling constant metamorphosis, the Staeckel transform and superintegrability

    SciTech Connect

    Post, Sarah

    2010-12-23

    This paper is dedicated to the memory of Marcos Moshinsky. In this paper, we discuss the important role that coupling constant metamorphosis (CCM) and the Staeckel transform have played in the analysis of superintegrable systems. We explain the relation between the two and in particular show that they coincide when transforming between second-order superintegrable systems. Unlike in the case of second-order superintegrability, the quantum analog of CCM has only been proven for a subclass of systems with integrals of a specific form. We give the proof and as an application show the mapping of a family of superintegrable deformations of the simple harmonic oscillator to an associated family of superintegrable deformations of the Kepler-Coulomb potential.

  8. Global rates of habitat loss and implications for amphibian conservation

    USGS Publications Warehouse

    Gallant, A.L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the

  9. Conceptual Design for the Amphibian Research and Monitoring Initiative (ARMI)

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Langtimm, C. A.; Adams, M. J.; Gallant, A. L.; James, D. L.

    2001-12-01

    In 2000, the President of the United States (US) and Congress directed Department of Interior (DOI) agencies to develop a program for monitoring trends in amphibian populations on DOI lands and to conduct research into causes of declines. The U.S. Geological Survey (USGS) was given lead responsibility for planning and implementing the Amphibian Research and Monitoring Initiative (ARMI) in cooperation with the National Park Service (NPS), Fish and Wildlife Service, and Bureau of Land Management. The program objectives are to (1) establish a network for monitoring the status and distribution of amphibian species on DOI lands; (2) identify and monitor environmental conditions known to affect amphibian populations; (3) conduct research on causes of amphibian population change and malformations; and (4) provide information to resource managers, policy makers, and the public in support of amphibian conservation. The ARMI program will integrate research efforts of USGS, other Federal, and non-federal herpetologists, hydrologists, and geographers across the Nation. ARMI will conduct a small number (~20) of intensive research efforts (for example, studies linking amphibian population changes to hydrologic conditions) and a larger number (~50) of more generalized inventory and monitoring studies encompassing broader areas such as NPS units. ARMI will coordinate with and try to augment other amphibian inventory studies such as the National Amphibian Atlas and the North American Amphibian Monitoring Program. ARMI will develop and test protocols for the standardized collection of amphibian data and provide a centrally managed database designed to simplify data entry, retrieval, and analysis. ARMI pilot projects are underway at locations across the US.

  10. Nitric Oxide Acts as a Positive Regulator to Induce Metamorphosis of the Ascidian Herdmania momus

    PubMed Central

    Ueda, Nobuo; Degnan, Sandie M.

    2013-01-01

    Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian

  11. First survey for the amphibian chytrid fungus Batrachochytrium dendrobatidis in Connecticut (USA) finds widespread prevalence.

    PubMed

    Richards-Hrdlicka, Kathryn L; Richardson, Jonathan L; Mohabir, Leon

    2013-02-28

    The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is an emerging infectious fungal pathogen of amphibians and is linked to global population declines. Until now, there has only been 1 survey for the fungus in the northeastern USA, which focused primarily on northern New England. We tested for Bd in a large number of samples (916 individuals from 116 sites) collected throughout the state of Connecticut, representing 18 native amphibian species. In addition, 239 preserved wood frog Lithobates sylvaticus tadpoles from throughout the state were screened for the fungus. Bd presence was assessed in both the fresh field swabs and the preserved samples using a sensitive quantitative PCR assay. Our contemporary survey found widespread Bd prevalence throughout Connecticut, occurring in 14 species and in 28% of all sampled animals. No preserved L. sylvaticus specimens tested positive for the fungus. Two common species, bullfrogs R. catesbeiana and green frogs R. clamitans had particularly high infection rates (0.21-0.39 and 0.33-0.42, respectively), and given their wide distribution throughout the state, we suggest they may serve as sentinels for Bd occurrence in this region. Further analyses found that several other factors increase the likelihood of infection, including life stage, host sex, and host family. Within sites, ponds with ranids, especially green frogs, increased the likelihood of Bd prevalence. By studying Bd in populations not facing mass declines, the results from this study are an important contribution to our understanding of how some amphibian species and populations remain infected yet exhibit no signs of chytridiomycosis even when Bd is widely distributed. PMID:23446966

  12. Interacting Symbionts and Immunity in the Amphibian Skin Mucosome Predict Disease Risk and Probiotic Effectiveness

    PubMed Central

    Woodhams, Douglas C.; Brandt, Hannelore; Baumgartner, Simone; Kielgast, Jos; Küpfer, Eliane; Tobler, Ursina; Davis, Leyla R.; Schmidt, Benedikt R.; Bel, Christian; Hodel, Sandro; Knight, Rob; McKenzie, Valerie

    2014-01-01

    Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related

  13. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar

    PubMed Central

    Kolby, Jonathan E.; Smith, Kristine M.; Ramirez, Sara D.; Rabemananjara, Falitiana; Pessier, Allan P.; Brunner, Jesse L.; Goldberg, Caren S.; Berger, Lee; Skerratt, Lee F.

    2015-01-01

    We performed a rapid response investigation to evaluate the presence and distribution of amphibian pathogens in Madagascar following our identification of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranavirus in commercially exported amphibians. This targeted risk-based field surveillance program was conducted from February to April 2014 encompassing 12 regions and 47 survey sites. We simultaneously collected amphibian and environmental samples to increase survey sensitivity and performed sampling both in wilderness areas and commercial amphibian trade facilities. Bd was not detected in any of 508 amphibian skin swabs or 68 water filter samples, suggesting pathogen prevalence was below 0.8%, with 95% confidence during our visit. Ranavirus was detected in 5 of 97 amphibians, including one adult Mantidactylus cowanii and three unidentified larvae from Ranomafana National Park, and one adult Mantidactylus mocquardi from Ankaratra. Ranavirus was also detected in water samples collected from two commercial amphibian export facilities. We also provide the first report of an amphibian mass-mortality event observed in wild amphibians in Madagascar. Although neither Bd nor ranavirus appeared widespread in Madagascar during this investigation, additional health surveys are required to disentangle potential seasonal variations in pathogen abundance and detectability from actual changes in pathogen distribution and rates of spread. Accordingly, our results should be conservatively interpreted until a comparable survey effort during winter months has been performed. It is imperative that biosecurity practices be immediately adopted to limit the unintentional increased spread of disease through the movement of contaminated equipment or direct disposal of contaminated material from wildlife trade facilities. The presence of potentially introduced strains of ranaviruses suggests that Madagascar's reptile species might also be threatened by disease

  14. AMPHIBIAN DECLINES AND ENVIRONMENTAL CHANGE IN THE EASTERN "MOJAVE DESERT"

    EPA Science Inventory

    A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert, USA, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distribution of amphibians were investigated in a 20...

  15. MOJAVE DESERT SPRING: THE AMPHIBIAN POINT OF VIEW

    EPA Science Inventory

    Numerous springs are scattered throughout the eastern Mojave Desert, most of which are concentrated near the bases of mountain ranges. Spring-fed wetlands in this region comprise nearly all the available habitat for amphibians. We surveyed 128 springs for amphibians and habitat t...

  16. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  17. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply...

  18. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply...

  19. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply...

  20. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply...

  1. All about Amphibians. Animal Life for Children. [Videotape].

    ERIC Educational Resources Information Center

    2000

    This videotape teaches children about their favorite amphibious creatures, as well as amphibians' nearest cousins--toads, newts, and salamanders. Young students discover how these amazing creatures can live both in and out of water, learn about the amphibious life cycle, and compare the differences between amphibians and reptiles. This videotape…

  2. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply...

  3. Amphibians and Reptiles from Paramakatoi and Kato, Guyana

    USGS Publications Warehouse

    MacCulloch, Ross D.; Reynolds, Robert P.

    2012-01-01

    We report the herpetofauna of two neighboring upland locations in west-central Guyana. Twenty amphibian and 24 reptile species were collected. Only 40% of amphibians and 12.5% of reptiles were collected in both locations. This is one of the few collections made at upland (750–800 m) locations in the Guiana Shield.

  4. Incorporating Amphibian Malformations into Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Talley, Brooke L.

    2007-01-01

    Amphibians, a class of vertebrates consisting of frogs and toads, salamanders, and caecilians, are excellent organisms for middle school science students to study because of their ecological significance. Because they exchange oxygen and carbon dioxide through their skin, amphibians absorb any chemicals or substances present in their immediate…

  5. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl

    PubMed Central

    Page, Robert B.; Monaghan, James R.; Walker, John A.; Voss, S. Randal

    2009-01-01

    Anuran (frog) metamorphosis has long-served as a model of how thyroid hormones regulate post-embryonic development in vertebrates. However, comparatively little is known about urodele (salamander) metamorphosis. We conducted a detailed time-course study of induced metamorphosis in the Mexican axolotl (Ambystoma mexicanum) that probed metamorphic changes in morphology and gene expression in the skin. Using morphometrics, quantitative PCR, histology, and in situ hybridization we demonstrate that the development of transcriptional markers is fundamental to the resolution of early metamorphic events in axolotls. We then use linear and piecewise linear models to identify a sequence of morphological and transcriptional changes that define larval to adult remodeling events throughout metamorphosis. In addition, we show that transcriptional biomarkers are expressed in specific larval and adult cell populations of the skin and that temporal changes in these biomarkers correlate with tissue remodeling. We compare our results with other studies of natural and induced metamorphosis in urodeles and highlight what appear to be conserved features between urodele and anuran metamorphosis. PMID:19275901

  6. Amphibian otoconia in normal and altered gravity

    NASA Astrophysics Data System (ADS)

    Membre, H.; Horn, E.; Dournon, C.

    In vertebrates, the macular end organs of the inner ear are gravity sensing organs. They consist of a neuroepithelium overlaid by a mass of little otoconia or by a single large otolith. These crystallites provide essential informations for orientation and equilibrium. They are mosaic biominerals composed of proteic and inorganic phases. In amphibian adults, the mineral phase is calcium carbonate in the form of calcite or aragonite. The calcitic otoconia with a rhomboedric shape are observed in the utricle of Pleurodeles waltl (urodele amphibian). The aragonitic otoconia with a prismatic or a fusiform shape are observed in the saccule and lagena of Pleurodeles, and in the three gravity-sensing regions of Xenopus laevis (anuran amphibian). The aragonitic biocrystallites are in different proportions depending on the inner ear regions. During the development, in Pleurodeles larvae, we observed that saccular otoconia changed from calcitic to aragonitic form. In Xenopus tadpoles, we observed peculiar otoconia with a rhomboedric-like morphology or a tripartite morphology. We called the latter crystallites cauliflower-like otoconia according to the aspect. We reported our observations performed after two space missions, the experiment Torcol which flew on the French Soyuz taxi flight Perseus to MIR (launch: February 20, 1999; landing: August 28, 1999), and the experiment Aquarius-Xenopus which flew on the French Soyuz taxi flight Andromède to ISS (launch: October 21, 2001; landing: October 31, 2001). After a long journey in space, both calcitic and aragonitic otoconia were altered in Pleurodeles adults. After a short space mission, otoconia with rhomboedric, fusiform or cauliflower-like aspects were observed in Xenopus tadpoles. In these tadpoles, otoconia with rhomboedric aspect were never mixed with the other otoconia types, whereas fusiform otoconia were never alone. Cauliflower-shaped otoconia were alone or associated with fusiform otoconia. The study needs further

  7. Late Cretaceous vicariance in Gondwanan amphibians.

    PubMed

    Van Bocxlaer, Ines; Roelants, Kim; Biju, S D; Nagaraju, J; Bossuyt, Franky

    2006-01-01

    Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions. PMID:17183706

  8. Partners in amphibian and reptile conservation 2013 annual report

    USGS Publications Warehouse

    Conrad, Paulette M., (Edited By); Weir, Linda A.; Nanjappa, Priya

    2014-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effect from overexploitation; these animals are also challenged by the perception that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural an cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation of these animals has never been more important.

  9. Comprehensive and Quantitative Proteomic Analysis of Metamorphosis-Related Proteins in the Veined Rapa Whelk, Rapana venosa

    PubMed Central

    Song, Hao; Wang, Hai-Yan; Zhang, Tao

    2016-01-01

    Larval metamorphosis of the veined rapa whelk (Rapana venosa) is a pelagic to benthic transition that involves considerable structural and physiological changes. Because metamorphosis plays a pivotal role in R. venosa commercial breeding and natural populations, the endogenous proteins that drive this transition attract considerable interest. This study is the first to perform a comprehensive and quantitative proteomic analysis related to metamorphosis in a marine gastropod. We analyzed the proteomes of competent R. venosa larvae and post-larvae, resulting in the identification of 5312 proteins, including 470 that were downregulated and 668 that were upregulated after metamorphosis. The differentially expressed proteins reflected multiple processes involved in metamorphosis, including cytoskeleton and cell adhesion, ingestion and digestion, stress response and immunity, as well as specific tissue development. Our data improve understanding of the physiological traits controlling R. venosa metamorphosis and provide a solid basis for further study. PMID:27314339

  10. Comprehensive and Quantitative Proteomic Analysis of Metamorphosis-Related Proteins in the Veined Rapa Whelk, Rapana venosa.

    PubMed

    Song, Hao; Wang, Hai-Yan; Zhang, Tao

    2016-01-01

    Larval metamorphosis of the veined rapa whelk (Rapana venosa) is a pelagic to benthic transition that involves considerable structural and physiological changes. Because metamorphosis plays a pivotal role in R. venosa commercial breeding and natural populations, the endogenous proteins that drive this transition attract considerable interest. This study is the first to perform a comprehensive and quantitative proteomic analysis related to metamorphosis in a marine gastropod. We analyzed the proteomes of competent R. venosa larvae and post-larvae, resulting in the identification of 5312 proteins, including 470 that were downregulated and 668 that were upregulated after metamorphosis. The differentially expressed proteins reflected multiple processes involved in metamorphosis, including cytoskeleton and cell adhesion, ingestion and digestion, stress response and immunity, as well as specific tissue development. Our data improve understanding of the physiological traits controlling R. venosa metamorphosis and provide a solid basis for further study. PMID:27314339

  11. Thyroid hormone and retinoid X receptor function and expression during sea lamprey (Petromyzon marinus) metamorphosis.

    PubMed

    Manzon, Lori A; Youson, John H; Holzer, Guillaume; Staiano, Leopoldo; Laudet, Vincent; Manzon, Richard G

    2014-08-01

    Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR

  12. Hypometabolic homeostasis in overwintering aquatic amphibians.

    PubMed

    Boutilier, R G; Donohoe, P H; Tattersall, G J; West, T G

    1997-01-01

    Many amphibians encounter conditions each winter when their body temperature is so low that normal activities are suspended and the animals enter into a state of torpor. In ice-covered ponds or lakes, oxygen levels may also become limiting, thereby forcing animals to endure prolonged periods of severe hypoxia or anoxia. Certain frogs (e.g. Rana temporaria) can dramatically suppress their metabolism in anoxia but are not as tolerant as other facultative vertebrate anaerobes (e.g. turtle, goldfish) of prolonged periods of complete O2 lack. Many overwintering amphibians do, however, tolerate prolonged bouts of severe hypoxia, relying exclusively on cutaneous gas exchange. Rana temporaria overwintering for 2 months in hypoxic water (PO2 approximately 25 mmHg) at 3 degrees C progressively reduce their blood PCO2 to levels characteristic of water-breathing fish. The result is that blood pH rises and presumably facilitates transcutaneous O2 transfer by increasing Hb O2-affinity. Even after months of severe hypoxia, there is no substantial build-up of lactate as the animals continue to rely on cutaneous gas exchange to satisfy the requirements of a suppressed aerobic metabolism. Our recent experiments have shown that the skeletal muscle of frogs oxyconforms in vitro to the amount of O2 available. The cellular basis for the oxyconformation of skeletal muscle is unknown, but the hypothesis driving our continuing experiments theories that metabolic suppression at a cellular level is synonymous with suppressed ion leak across cellular membranes. PMID:9050248

  13. Current extinction rates of reptiles and amphibians

    PubMed Central

    Alroy, John

    2015-01-01

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats. PMID:26438855

  14. Current extinction rates of reptiles and amphibians.

    PubMed

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats. PMID:26438855

  15. Phylogenetically-Informed Priorities for Amphibian Conservation

    PubMed Central

    Isaac, Nick J. B.; Redding, David W.; Meredith, Helen M.; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species’ threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species’ phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our ‘top 100‘ list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history. PMID:22952807

  16. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis.

    PubMed

    Gomes, A S; Alves, R N; Rønnestad, I; Power, D M

    2015-09-01

    Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified. PMID:24975541

  17. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.

    PubMed

    Lozano, Jesus; Montañez, Raúl; Belles, Xavier

    2015-03-24

    In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis. PMID:25775510

  18. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  19. Vestibular Lesion-Induced Developmental Plasticity in Spinal Locomotor Networks during Xenopus laevis Metamorphosis

    PubMed Central

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  20. Amphibian skin may select for rare environmental microbes

    PubMed Central

    Walke, Jenifer B; Becker, Matthew H; Loftus, Stephen C; House, Leanna L; Cormier, Guy; Jensen, Roderick V; Belden, Lisa K

    2014-01-01

    Host-microbe symbioses rely on the successful transmission or acquisition of symbionts in each new generation. Amphibians host a diverse cutaneous microbiota, and many of these symbionts appear to be mutualistic and may limit infection by the chytrid fungus, Batrachochytrium dendrobatidis, which has caused global amphibian population declines and extinctions in recent decades. Using bar-coded 454 pyrosequencing of the 16S rRNA gene, we addressed the question of symbiont transmission by examining variation in amphibian skin microbiota across species and sites and in direct relation to environmental microbes. Although acquisition of environmental microbes occurs in some host-symbiont systems, this has not been extensively examined in free-living vertebrate-microbe symbioses. Juvenile bullfrogs (Rana catesbeiana), adult red-spotted newts (Notophthalmus viridescens), pond water and pond substrate were sampled at a single pond to examine host-specificity and potential environmental transmission of microbiota. To assess population level variation in skin microbiota, adult newts from two additional sites were also sampled. Cohabiting bullfrogs and newts had distinct microbial communities, as did newts across the three sites. The microbial communities of amphibians and the environment were distinct; there was very little overlap in the amphibians' core microbes and the most abundant environmental microbes, and the relative abundances of OTUs that were shared by amphibians and the environment were inversely related. These results suggest that, in a host species-specific manner, amphibian skin may select for microbes that are generally in low abundance in the environment. PMID:24858782

  1. Modeling effects of conservation grassland losses on amphibian habitat

    USGS Publications Warehouse

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  2. Facility design and associated services for the study of amphibians.

    PubMed

    Browne, Robert K; Odum, R Andrew; Herman, Timothy; Zippel, Kevin

    2007-01-01

    The role of facilities and associated services for amphibians has recently undergone diversification. Amphibians traditionally used as research models adjust well to captivity and thrive with established husbandry techniques. However, it is now necessary to maintain hundreds of novel amphibian species in captive breeding, conservation research, and biomedical research programs. These diverse species have a very wide range of husbandry requirements, and in many cases the ultimate survival of threatened species will depend on captive populations. Two critical factors have emerged in the maintenance of amphibians, stringent quarantine and high-quality water. Because exotic diseases such as chytridiomycosis have devastated both natural and captive populations of amphibians, facilities must provide stringent quarantine. The provision of high-quality water is also essential to maintain amphibian health and condition due to the intimate physiological relationship of amphibians to their aquatic environment. Fortunately, novel technologies backed by recent advances in the scientific knowledge of amphibian biology and disease management are available to overcome these challenges. For example, automation can increase the reliability of quarantine and maintain water quality, with a corresponding decrease in handling and the associated disease-transfer risk. It is essential to build facilities with appropriate nontoxic waterproof materials and to provide quarantined amphibian rooms for each population. Other spaces and services include live feed rooms, quarantine stations, isolation rooms, laboratory space, technical support systems, reliable energy and water supplies, high-quality feed, and security. Good husbandry techniques must include reliable and species-specific management by trained staff members who receive support from the administration. It is possible to improve husbandry techniques for many species by sharing knowledge through common information systems. Overall

  3. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    PubMed

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  4. The metamorphosis of managed care: implications for health reform internationally.

    PubMed

    Rodwin, Marc A

    2010-01-01

    The conventional wisdom is that managed care's brief life is over and we are now in a post-managed care era. In fact, managed care has a long history and continues to thrive. Writers also often assume that managed care is a fixed thing. They overlook that managed care has evolved and neglect to examine the role that it plays in the health system. Furthermore, private actors and the state have used managed care tools to promote diverse goals. These include the following: increasing access to medical care; restricting physician entrepreneurialism; challenging professional control over the medical economy; curbing medical spending; managing medical practice and markets; furthering the growth of medical markets and private insurance; promoting for-profit medical facilities and insurers; earning bounties for reducing medical expenditures: and reducing governmental responsibility for, and oversight of, medical care. Struggles over these competing goals spurred the metamorphosis of managed care. This article explores how managed care transformed physicians' conflicts of interests and responses to them. It also examines how managed care altered the opportunities for patients/medical consumers to use exit and voice to spur change. PMID:20579232

  5. Metamorphosis of a Butterfly-Associated Bacterial Community

    PubMed Central

    Hammer, Tobin J.; McMillan, W. Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies. PMID:24466308

  6. Steroid control of muscle remodeling during metamorphosis in Manduca sexta.

    PubMed

    Hegstrom, C D; Truman, J W

    1996-04-01

    During metamorphosis in the tobacco hornworm, Manduca sexta, the abdominal body-wall muscle DEO1 is remodeled to form the adult muscle DE5. The degeneration of muscle DEO1 involves the dismantling of its contractile apparatus followed by the degeneration of muscle nuclei. As some nuclei are degenerating, others begin to incorporate 5-bromodeoxyuridine (BrdU), indicating the onset of nuclear proliferation. This proliferation is initially most evident at the site where the motoneuron contacts the muscle remnant. The developmental events involved in muscle remodeling are under the control of the steroid hormones, the ecdysteroids. The loss of the contractile elements of the larval muscle requires the rise and fall of the prepupal peak of ecdysteroids, whereas the subsequent loss of muscle nuclei is influenced by the slight rise in ecdysteroids seen after pupal ecdysis. Incorporation of BrdU by muscle nuclei depends on both the adult peak of the ecdysteroids and contact with the motoneuron. Unilateral axotomy blocks proliferation within the rudiment, but it does not block its subsequent differentiation into a very thin muscle in the adult. PMID:8656216

  7. Frederick Sanger, Erwin Chargaff, and the metamorphosis of specificity.

    PubMed

    Judson, H F

    1993-12-15

    That a transformation of ruling ideas in genetics and biochemistry took place at the dawn of molecular biology, in the late 1940s, is a commonplace; but the nature and components of that transformation are widely misunderstood. The change is often identified with the importation into biology of new styles of thought and new rigor by the many scientists trained in physics or chemistry who came into the nascent field--notably, Max Delbrück, Max Perutz, Francis Crick, John Kendrew, Maurice Wilkins, Rosalind Franklin. Most generally, the change is supposed to be the realization that genes are made not of protein but of nucleic acid--and this change was initiated, of course, by the work of Oswald Avery and his colleagues. These changes are not mutually exclusive, and both were surely important to the genesis of molecular biology. But logically prior to them, more fundamental, was another transformation in ruling preconceptions, one that has been neglected: the revolution in understanding of the chemical structures--the sequences of subunits--of proteins and of nucleic acids which was wrought by the work of Frederick Sanger and of Erwin Chargaff. This was a metamorphosis in the understanding of biochemical specificity, and while it astonished many biochemists it set free the small groups of those who were beginning to call themselves molecular biologists, enabling them to think of the relationship between genes and proteins in entirely new ways. PMID:8276259

  8. [Strategies for Conservation of Endangered Amphibian and Reptile Species].

    PubMed

    Anan'eva, N B; Uteshev, V K; Orlova, N L; Gakhova, E N

    2015-01-01

    Strategies for conservation of endangered amphibian and reptile species are discussed. One-fifth of all vertebrates belongs to the category of "endangered species," and amphibians are first on the list (41%). Every fifth reptile species is in danger of extinction, and insufficient information is characteristic of every other fifth. As has been demonstrated, efficient development of a network of nature conservation areas, cryopreservation, and methods for laboratory breeding and reintroduction play.the key roles in adequate strategies for preservation of amphibians and reptiles. PMID:26638239

  9. Larval nematodes found in amphibians from northeastern Argentina.

    PubMed

    González, C E; Hamann, M I

    2010-11-01

    Five species of amphibians, Leptodactylus podicipinus, Scinax acuminatus, S. nasicus, Rhinella fernandezae and Pseudis paradoxa, were collected in Corrientes province, Argentina and searched for larval nematodes. All larval nematodes were found as cysts in the serous of the stomach of hosts. Were identified one superfamily, Seuratoidea; one genus, Spiroxys (Superfamily Gnathostomatoidea) and one family, Rhabdochonidae (Superfamily Thelazioidea). We present a description and illustrations of these taxa. These nematodes have an indirect life cycle and amphibians are infected by consuming invertebrate, the intermediate hosts. The genus Spiroxys and superfamily Seuratoidea were reported for the first time for Argentinean amphibians. PMID:21180919

  10. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    USGS Publications Warehouse

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  11. Effects of chemical cues on larval survival, settlement and metamorphosis of abalone Haliotis asinina

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobing; Bai, Yang; Huang, Bo

    2010-11-01

    Low larval survival, poor settlement, and abnormal metamorphosis are major problems in seed production of donkey-ear abalone Haliotis asinina. We examined the effects of chemical cues including epinephrine, nor-epinephrine, and serotonin on larval survival, settlement, and metamorphosis in order to determine the possibility of using these chemicals to induce the problems. The results show that epinephrine could enhance metamorphosis rate at 10-6 mol/L only but higher concentrations (10-3-10-4 mol/L); and nor-epinephrine could inhibit the performance significantly, and serotonin could increase significantly the performance at a wide-range concentration (10-3-10-6 mol/L). Treatment with serotonin at 10-5 mol/L for 72 hours resulted in the highest settlement rate (42.2%) and survival rate (49.3%), while at 10-4 mol/L for 72 hours resulted in the highest metamorphosis rate (38.8%). Therefore, serotonin may be used as a fast metamorphosis inducer in abalone culture.

  12. Xenopus laevis Müllerian ducts are sensitive indicators of estrogenic or androgenic chemical exposure in vivo (poster presentation)

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is one of a series of Tier 2 test guidelines developed by the US EPA under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects on growth, thyroid-mediated amphibian metamorphosis and repr...

  13. Amphibian fertilization and development in microgravity

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Black, S. D.

    1985-01-01

    An experiment investigating the effects of gravity on embryonic development in amphibians is proposed. The planned procedures for the preparation of the frog eggs for launching in the Space Shuttle, for the injection of the eggs with gonadotropin, for the insertion of the eggs into egg chambers, for the storage of one of the chambers in a microgravity area and the second into a centrifuge, and for the fertilization of the eggs are described. The later organogenesis, swimming behavior, cytoplasmic components, cellular formation, neural plate and archenteron expansion, and allometry and expansion of the organ systems will be examined. Normal morphology for embryos and tadpoles developing at microgravity and the formation of the neural plate opposite the sperm entry point meridian are predicted.

  14. The effects of the amphibian chytrid fungus, insecticide exposure, and temperature on larval anuran development and survival.

    PubMed

    Rumschlag, Samantha L; Boone, Michelle D; Fellers, Gary

    2014-11-01

    Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis (Bd), has been implicated as a cause of amphibian declines. Susceptibility may be influenced by environmental factors that suppress the immune response. The authors conducted a laboratory study to examine the effect of temperature, insecticide exposure, and Bd exposure during larval anuran development. The authors examined the consequences of exposure to Bd, an insecticide (carbaryl or malathion), and static or fluctuating temperature (15 °C, 20 °C, 25 °C, or 15 °C to 25 °C 72-h flux) on larval development through metamorphosis of the Pacific treefrog (Pseudacris regilla). High and fluctuating temperature had negative effects on survival in the presence of Bd. Insecticides inhibited the effects of Bd; time to tail resorption of Pacific treefrogs decreased when tadpoles were exposed to carbaryl. The present study indicates that abiotic factors may play a role in the host-pathogen interactions in this system. PMID:25098758

  15. Exposure to sublethal concentrations of a pesticide or predator cues induces changes in brain architecture in larval amphibians.

    PubMed

    Woodley, Sarah K; Mattes, Brian M; Yates, Erika K; Relyea, Rick A

    2015-11-01

    Naturally occurring environmental factors shape developmental trajectories to produce variable phenotypes. Such developmental phenotypic plasticity can have important effects on fitness, and has been demonstrated for numerous behavioral and morphological traits. However, surprisingly few studies have examined developmental plasticity of the nervous system in response to naturally occurring environmental variation, despite accumulating evidence for neuroplasticity in a variety of organisms. Here, we asked whether the brain is developmentally plastic by exposing larval amphibians to natural and anthropogenic factors. Leopard frog tadpoles were exposed to predator cues, reduced food availability, or sublethal concentrations of the pesticide chlorpyrifos in semi-natural enclosures. Mass, growth, survival, activity, larval period, external morphology, brain mass, and brain morphology were measured in tadpoles and after metamorphosis. Tadpoles in the experimental treatments had lower masses than controls, although developmental rates and survival were similar. Tadpoles exposed to predator cues or a high dose of chlorpyrifos had altered body shapes compared to controls. In addition, brains from tadpoles exposed to predator cues or a low dose of chlorpyrifos were narrower and shorter in several dimensions compared to control tadpoles and tadpoles with low food availability. Interestingly, the changes in brain morphology present at the tadpole stage did not persist in the metamorphs. Our results show that brain morphology is a developmentally plastic trait that is responsive to ecologically relevant natural and anthropogenic factors. Whether these effects on brain morphology are linked to performance or fitness is unknown. PMID:26169394

  16. Cloning and stage-specific expression of CK-M1 gene during metamorphosis of Japanese flounder, Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Wang, Zhigang; Wang, Xubo; Sun, Yeying; Zhong, Qiwang; Li, Shuo; Li, Chunmei

    2010-05-01

    The symmetrical body of flatfish larvae changes dramatically into an asymmetrical form after metamorphosis. The molecular mechanisms responsible for this change are poorly understood. As an initial step to clarify these mechanisms, we used representational difference analysis of cDNA for the identification of genes active during metamorphosis in the Japanese flounder, Paralichthys olicaceus. One of the up-regulated genes was identified as creatine kinase muscle type 1 (CK-M1). Sequence analysis of CK-M1 revealed that it spanned 1 708 bp and encoded a protein of 382 amino acids. The overall amino acid sequence of the CK-M1 was highly conserved with those of other organisms. CK-M1 was expressed in adult fish tissues, including skeletal muscle, intestine and gill. Whole mount in-situ hybridization showed that the enhanced expression of CK-M1 expanded from the head to the whole body of larvae as metamorphosis progressed. Quantitative analysis revealed stage-specific high expression of CK-M1 during metamorphosis. The expression level of CK-M1 increased initially and peaked at metamorphosis, decreased afterward, and finally returned to the pre-metamorphosis level. This stage-specific expression pattern suggested strongly that CK-M1 was related to metamorphosis in the Japanese flounder. Its specific role in metamorphosis requires further study.

  17. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    PubMed

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  18. Twenty years of ISAREN: an amphibian biologist in Wonderland.

    PubMed

    Kikuyama, Sakae

    2010-09-01

    The 6th International Symposium on Amphibian and Reptilian Endocrinology and Neurobiology (ISAREN), the former International Symposium on Amphibian Endocrinology (ISAE), was recently held in Berlin. ISAREN developed from two symposia on amphibian biology held in European countries in 1988-1990. In this article, the history of ISAREN was briefly stated. In addition, some of the topics of our researches carried out in collaboration with several groups, using various amphibian species during the past 20 years and/or presented in the past symposia were reviewed. The topics included the discovery of pancreatic chitinase, involvement of growth hormone in vitellogenin synthesis, changes of ANF-like immunoreactivity in the frogs sent into the space, discovery of a peptide sex-pheromone, origin of the epithelial pituitary, and hypothalamic regulation of thyroid-stimulating hormone. PMID:20138045

  19. CHARACTERIZATION OF RELATIVE SENSITIVITY OF AMPHIBIANS TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Different studies have demonstrated that solar ultraviolet (UV) radiation can adversely affect survival and development of embryonic and larval amphibians. However, because of among-laboratory variations in exposure profiles (artificial vs. natural sunlight; natural sunlight at d...

  20. CHARACTERIZATION OF RELATIVE SENSITIVITY OF AMPHIBIANS TO ULTRA VIOLET RADIATION

    EPA Science Inventory

    Different studies have demonstrated that solar ultraviolet (UV) radiation can adversely affect survival and development of embryonic and larval amphibians. However, because of among-laboratory variations in exposure profiles (artificial vs. natural sunlight; natural sunlight at d...

  1. Trends in amphibian occupancy in the United States

    USGS Publications Warehouse

    Adams, Michael J.; Miller, David A.W.; Muths, Erin; Corn, Paul Stephen; Grant, Evan H. Campbell; Bailey, Larissa L.; Fellers, Gary M.; Fisher, Robert N.; Sadinski, Walter J.; Waddle, Hardin; Walls, Susan C.

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  2. Invasive and introduced reptiles and amphibians: Chapter 28

    USGS Publications Warehouse

    Reed, Robert N.; Krysko, Kenneth L.

    2014-01-01

    Why is there a section on introduced amphibians and reptiles in this volume, and why should veterinarians care about this issue? Globally, invasive species are a major threat to the stability of native ecosystems,1,2 and amphibians and reptiles are attracting increased attention as potential invaders. Some introduced amphibians and reptiles have had a major impact (e.g., Brown Tree Snakes [Boiga irregularis] wiping out the native birds of Guam3 or Cane Toads [Rhinella marina] poisoning native Australian predators).4 For the vast majority of species, however, the ecological, economic, and sociopolitical effects of introduced amphibians and reptiles are generally poorly quantified, largely because of a lack of focused research effort rather than because such effects are nonexistent. This trend is alarming given that rates of introduction have increased exponentially in recent decades.

  3. Trends in amphibian occupancy in the United States.

    PubMed

    Adams, Michael J; Miller, David A W; Muths, Erin; Corn, Paul Stephen; Grant, Evan H Campbell; Bailey, Larissa L; Fellers, Gary M; Fisher, Robert N; Sadinski, Walter J; Waddle, Hardin; Walls, Susan C

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized. PMID:23717602

  4. Checklist of Helminth parasites of Amphibians from South America.

    PubMed

    Campião, Karla Magalhães; Morais, Drausio Honorio; Dias, Olívia Tavares; Aguiar, Aline; Toledo, Gislayne De Melo; Tavares, Luiz Eduardo Roland; Da Silva, Reinaldo José

    2014-01-01

    Parasitological studies on helminths of amphibians in South America have increased in the past few years. Here, we present a list with summarized data published on helminths of South American amphibians from 1925 to 2012, including a list of helminth parasites, host species, and geographic records. We found 194 reports of helminths parasitizing 185 amphibian species from eleven countries: Argentina, Brazil, Chile, Colombia, Equador, French Guyana, Guyana, Paraguay, Peru, Uruguay and Venezuela. Helminth biodiversity includes 278 parasite species of the groups Acanthocephala, Nematoda, Cestoda, Monogenea and Trematoda. A list of helminth parasite species per host, and references are also presented. This contribution aims to document the biodiversity of helminth parasites in South American amphibians, as well as identify gaps in our knowledge, which in turn may guide subsequent studies.  PMID:25082165

  5. AmphibiaChina: an online database of Chinese Amphibians.

    PubMed

    Che, Jing; Wang, Kai

    2016-01-18

    AmphibiaChina, an open-access, web-based database, is designed to provide comprehensive and up-to-date information on Chinese amphibians. It offers an integrated module with six major sections. Compared to other known databases including AmphibiaWeb and Amphibian Species of the World, AmphibiaChina has the following new functions: (1) online species identification based on DNA barcode sequences; (2) comparisons and discussions of different major taxonomic systems; and (3) phylogenetic progress on Chinese amphibians. This database offers a window for the world to access available information of Chinese amphibians. AmphibiaChina with its Chinese version can be accessed at http://www.amphibiachina.org. PMID:26828034

  6. Ambient UV-B radiation causes deformities in amphibian embryos

    USGS Publications Warehouse

    Blaustein, A.R.; Kiesecker, J.M.; Chivers, D.P.; Anthony, R.G.

    1997-01-01

    There has been a great deal of recent attention on the suspected increase in amphibian deformities. However, most reports of amphibian deformities have been anecdotal, and no experiments in the field under natural conditions have been performed to investigate this phenomenon. Under laboratory conditions, a variety of agents can induce deformities in amphibians. We investigated one of these agents, UV-B radiation, in field experiments, as a cause for amphibian deformities. We monitored hatching success and development in long-toed salamanders under UV-B shields and in regimes that allowed UV-B radiation. Embryos under UV-B shields had a significantly higher hatching rate and fewer deformities, and developed more quickly than those exposed to UV-B. Deformities may contribute directly to embryo mortality, and they may affect an individual's subsequent survival after hatching.

  7. Metabolism of pesticides after dermal exposure to amphibians

    EPA Science Inventory

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. Aquatic, terrestrial, and arboreal amphibians are often exposed to pesticides during their agricultural application resultin...

  8. An alternative framework for responding to the amphibian crisis

    USGS Publications Warehouse

    Muths, Erin L.; Fisher, Robert N.

    2015-01-01

    Volumes of data illustrate the severity of the crisis affecting amphibians, where > 32% of amphibians worldwide are threatened with declining populations. Although there have been isolated victories, the current approach to the issue is unsuccessful. We suggest that a radically different approach, something akin to human emergency response management (i.e. the Incident Command System), is one alternative to addressing the inertia and lack of cohesion in responding to amphibian issues. We acknowledge existing efforts and the useful research that has been conducted, but we suggest that a change is warranted and that the identification of a new amphibian chytrid provides the impetus for such a change. Our goal is to recognize that without a centralized effort we (collectively) are likely to fail in responding to this challenge.

  9. AmphibiaChina: an online database of Chinese Amphibians

    PubMed Central

    CHE, Jing; WANG, Kai

    2016-01-01

    AmphibiaChina, an open-access, web-based database, is designed to provide comprehensive and up-to-date information on Chinese amphibians. It offers an integrated module with six major sections. Compared to other known databases including AmphibiaWeb and Amphibian Species of the World, AmphibiaChina has the following new functions: (1) online species identification based on DNA barcode sequences; (2) comparisons and discussions of different major taxonomic systems; and (3) phylogenetic progress on Chinese amphibians. This database offers a window for the world to access available information of Chinese amphibians. AmphibiaChina with its Chinese version can be accessed at http://www.amphibiachina.org. PMID:26828034

  10. Hot bodies protect amphibians against chytrid infection in nature

    PubMed Central

    Rowley, Jodi J. L.; Alford, Ross A.

    2013-01-01

    Environmental context strongly affects many host-pathogen interactions, but the underlying causes of these effects at the individual level are usually poorly understood. The amphibian chytrid fungus has caused amphibian population declines and extinctions in many parts of the world. Many amphibian species that have declined or have been extirpated by the pathogen in some environments coexist with it in others. Here we show that in three species of rainforest frogs in nature, individuals' probability of infection by the amphibian chytrid fungus was strongly related to their thermal history. Individuals' probability of infection declined rapidly as they spent more time above the pathogen's upper optimum temperature. This relationship can explain population-level patterns of prevalence in nature, and suggests that natural or artificial selection for higher thermal preferences could reduce susceptibility to this pathogen. Similar individual-level insights could improve our understanding of environmental context-dependence in other diseases. PMID:23519020

  11. ALIEN SPECIES: THEIR ROLE IN AMPHIBIAN POPULATION DECLINES AND RESTORATION

    EPA Science Inventory

    Alien species (also referred to as exotic, invasive, introduced, or normative species) have been implicated as causal agents in population declines of many amphibian species. Herein, we evaluate the relative contributions of alien species and other factors in adversely affecting ...

  12. The effect of pinealectomy, continuous light, and continuous darkness on metamorphosis of anadromous sea lampreys, Petromyzon marinus L

    SciTech Connect

    Cole, W.C.; Youson, J.H.

    1981-12-01

    The role of the pineal complex in lamprey metamorphosis was investigated by examining the influence of pinealectomy and continuous light and darkness on the initiation of this event in anadromous sea lampreys, Petromyzon marinus L. Larval lampreys, which on the basis of a condition factor were considered likely to enter metamorphosis in July, were separated in May of 1979 and 1980 into the following groups: (1) intact controls, (2) sham-operated controls, (3) pinealectomized individuals, (4) those exposed to continuous light, and (5) those exposed to continuous light or dark. The importance of the pineal complex to metamorphosis was supported by morphological evidence that, in all presumably pinealectomized individuals that entered metamorphosis, the complex had apparently not been removed during the surgical procedure. The ways in which the pineal complex may be involved in lamprey metamorphosis are discussed.

  13. Monitoring amphibians in Great Smoky Mountains National Park

    USGS Publications Warehouse

    Dodd, C. Kenneth, Jr.

    2003-01-01

    This report provides an overview of the Park’s amphibians, the factors affecting their distribution, a review of important areas of biodiversity, and a summary of amphibian life history in the Southern Appalachians. In addition, survey techniques are described as well as examples of how the techniques are set up, a critique of what the results tell the observer, and a discussion of the limitations of the techniques and the data. The report reviews considerations for site selection, outlines steps for biosecurity and for processing diseased or dying animals, and provides resource managers with a decision tree on how to monitor the Park’s amphibians based on different levels of available resources. It concludes with an extensive list of references for inventorying and monitoring amphibians. USGS and Great Smoky Mountains National Park biologists need to establish cooperative efforts and training to ensure that congressionally mandated amphibian surveys are performed in a statistically rigorous and biologically meaningful manner, and that amphibian populations on Federal lands are monitored to ensure their long-term survival. The research detailed in this report will aid these cooperative efforts.

  14. Global amphibian declines: perspectives from the United States and beyond

    USGS Publications Warehouse

    Densmore, Christine L.

    2011-01-01

    Over recent decades, amphibians have experienced population declines, extirpations and species-level extinctions at an alarming rate. Numerous potential etiologies for amphibian declines have been postulated including climate and habitat degradation. Other potential anthropogenic causes including overexploitation and the frequent introductions of invasive predatory species have also been blamed for amphibian declines. Still other underlying factors may include infectious diseases caused by the chytrid fungus Batrachochytrium dendrobatidis, pathogenic viruses (Ranavirus), and other agents. It is nearly certain that more than one etiology is to blame for the majority of the global amphibian declines, and that these causal factors include some combination of climatological or physical habitat destabilization and infectious disease, most notably chytridiomycosis. Scientific research efforts are aimed at elucidating these etiologies on local, regional, and global scales that we might better understand and counteract the driving forces behind amphibian declines. Conservation efforts as outlined in the Amphibian Conservation Action Plan of 2005 are also being made to curtail losses and prevent further extinctions wherever possible.

  15. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians

    PubMed Central

    Sloggett, John J.

    2012-01-01

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups. PMID:26466621

  16. Global patterns of diversification in the history of modern amphibians.

    PubMed

    Roelants, Kim; Gower, David J; Wilkinson, Mark; Loader, Simon P; Biju, S D; Guillaume, Karen; Moriau, Linde; Bossuyt, Franky

    2007-01-16

    The fossil record of modern amphibians (frogs, salamanders, and caecilians) provides no evidence for major extinction or radiation episodes throughout most of the Mesozoic and early Tertiary. However, long-term gradual diversification is difficult to reconcile with the sensitivity of present-day amphibian faunas to rapid ecological changes and the incidence of similar environmental perturbations in the past that have been associated with high turnover rates in other land vertebrates. To provide a comprehensive overview of the history of amphibian diversification, we constructed a phylogenetic timetree based on a multigene data set of 3.75 kb for 171 species. Our analyses reveal several episodes of accelerated amphibian diversification, which do not fit models of gradual lineage accumulation. Global turning points in the phylogenetic and ecological diversification occurred after the end-Permian mass extinction and in the late Cretaceous. Fluctuations in amphibian diversification show strong temporal correlation with turnover rates in amniotes and the rise of angiosperm-dominated forests. Approximately 86% of modern frog species and >81% of salamander species descended from only five ancestral lineages that produced major radiations in the late Cretaceous and early Tertiary. This proportionally late accumulation of extant lineage diversity contrasts with the long evolutionary history of amphibians but is in line with the Tertiary increase in fossil abundance toward the present. PMID:17213318

  17. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    PubMed

    Daimon, Takaaki; Kozaki, Toshinori; Niwa, Ryusuke; Kobayashi, Isao; Furuta, Kenjiro; Namiki, Toshiki; Uchino, Keiro; Banno, Yutaka; Katsuma, Susumu; Tamura, Toshiki; Mita, Kazuei; Sezutsu, Hideki; Nakayama, Masayoshi; Itoyama, Kyo; Shimada, Toru; Shinoda, Tetsuro

    2012-01-01

    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis. PMID:22412378

  18. Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    PubMed Central

    Daimon, Takaaki; Kozaki, Toshinori; Niwa, Ryusuke; Kobayashi, Isao; Furuta, Kenjiro; Namiki, Toshiki; Uchino, Keiro; Banno, Yutaka; Katsuma, Susumu; Tamura, Toshiki; Mita, Kazuei; Sezutsu, Hideki; Nakayama, Masayoshi; Itoyama, Kyo; Shimada, Toru; Shinoda, Tetsuro

    2012-01-01

    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis. PMID:22412378

  19. Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa

    PubMed Central

    2011-01-01

    Background The metamorphosis of the spionid polychaete Pseudopolydora vexillosa includes spontaneous settlement onto soft-bottom habitats and morphogenesis that can be completed in a very short time. A previous study on the total changes to the proteome during the various developmental stages of P. vexillosa suggested that little or no de novo protein synthesis occurs during metamorphosis. In this study, we used multicolor fluorescence detection of proteins in 2-D gels for differential analysis of proteins and phosphoproteins to reveal the dynamics of post-translational modification proteins in this species. A combination of affinity chromatography, 2D-PAGE, and mass spectrometry was used to identify the phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles. Results We reproducibly detected 210, 492, and 172 phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles, respectively. The highest percentage of phosphorylation was observed during the competent larval stage. About 64 stage-specific phosphoprotein spots were detected in the competent stage, and 32 phosphoproteins were found to be significantly differentially expressed in the three stages. We identified 38 phosphoproteins, 10 of which were differentially expressed during metamorphosis. These phosphoproteins belonged to six categories of biological processes: (1) development, (2) cell differentiation and integrity, (3) transcription and translation, (4) metabolism, (5) protein-protein interaction and proteolysis, and (6) receptors and enzymes. Conclusion This is the first study to report changes in phosphoprotein expression patterns during the metamorphosis of the marine polychaete P. vexillosa. The higher degree of phosphorylation during the process of attaining competence to settle and metamorphose may be due to fast morphological transitions regulated by various mechanisms. Our data are consistent with previous studies showing a

  20. Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki

    SciTech Connect

    Semlitsch, R.D.; Caldwell, J.P.

    1982-08-01

    Density-dependent aspects of growth, metamorphosis, and survivorship of Scaphiopus holbrooki tadpoles were examined in the laboratory under two experimental regimes. In the first density experiment, the growth index (W) of tadpoles decreased exponentially with density. Mean growth rate varied from 0.023 mL/d at the lowest density to 0.006 mL/d at the highest density. The mean number of days to metamorphic climax was positively associated with the initial density treatment: 27 d at the lowest density to 86 d at the highest density. The body size of tadpoles at metamorphosis showed a concave curvilinear relationship to initial density, indicating tadpoles at the highest densities are apparently capable to growth recovery once released from density stress. The survival of tadpoles decreased exponentially with initial density, from 90% at the lowest density to 20% at the highest initial density. In the second experiment a cross-classified design was used to examine the effects of density and duration of treatment (time) on growth and metamorphosis. Density and time had significant effects on body size at metamorphosis and days to metamorphosis. There was no significant interaction between density and time. These results indicate that the inhibitory effect of density stress varies with the duration of the stress. Scaphiopus holbrooki tadpoles exhibit developmental traits (rapid growth, short larval period, small body size at metamorphosis) that should be favored by natural selection in high density habitats. Dispersability may be a mechanism whereby S. holbrooki can minimize the detrimental effects of density stress.

  1. Functional modifications associated with gastrointestinal tract organogenesis during metamorphosis in Atlantic halibut (Hippoglossus hippoglossus)

    PubMed Central

    2014-01-01

    Background Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. Results Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach’s role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach’s proteolytic capacity and its increased peristaltic

  2. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays.

    PubMed

    Olmstead, Allen W; Lindberg-Livingston, Annelie; Degitz, Sigmund J

    2010-06-01

    Endocrine disrupting compounds have been shown to alter gonad differentiation in both male and female individuals in amphibian, avian, fish, invertebrate, and reptile species. In some cases, these affected individuals are completely sex reversed and are morphologically indistinguishable from normal individuals of the opposite sex. Detecting shifts in sex ratios following chemical exposure often requires large numbers of organisms to achieve the necessary statistical power, especially in those species with genetic sex determination and homomorphic sex chromosomes (such as amphibians and many fish). The ability to assess the genetic sex of individuals would allow for detection of sex reversal (genotype-phenotype mismatches) that have greater statistical power compared to examining changes in sex ratios. Utilizing amplified fragment length polymorphisms (AFLPs), we developed a method for genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, that can be incorporated into endocrine disruptor screening assays that examine the effects of chemicals on gonad differentiation. AFLPs from 512 primer pairs were assessed in one spawn of X. tropicalis. Each primer pair yielded, on average, 100 fragments. In total 17 sex-linked AFLPs were identified, isolated, and sequenced. A recombination map of these AFLPs was generated using over 300 individuals with four AFLPs having a recombination rate of 0% with regard to sex. A BLASTn search of the X. tropicalis genome using these AFLP sequences resulted in identification of sex-linked scaffolds. Areas of these scaffolds were searched for additional polymorphisms that could be utilized for genotyping sex. Retrospective and prospective strategies for incorporating genotyping sex in endocrine disruptor bioassays with X. tropicalis were developed. A Monte Carlo simulation comparing analyzing data as sex ratio shifts versus assessment of sex reversal using genotyping demonstrates the increase in statistical power that can be

  3. Lymphocyte development in fish and amphibians.

    PubMed

    Hansen, J D; Zapata, A G

    1998-12-01

    Recently, molecular markers such as recombination activating genes (RAG), terminal deoxynucleotidyl transferase (TdT), stem cell leukemia hematopoietic transcription factor (SCL), Ikaros and gata-binding protein (Gata)-family members have been isolated and characterized from key lower vertebrates, adding to our growing knowledge of lymphopoiesis in ectotherms. In all gnathostomes there appear to be two main embryonic locations derived from the early mesoderm, both intra- and extraembryonic, which contribute to primitive and definitive hematopoiesis based upon their differential expression of SCL, Gata-1, Gata-2 and myeloblastosis oncogene (c-myb). In teleosts, a unique intraembryonic location for hematopoietic stem cells termed the intermediate cell mass (ICM) of Oellacher appears to be responsible for primitive or definitive hematopoiesis depending upon the species being investigated. In Xenopus, elegant grafting studies in combination with specific molecular markers has led to a better definition of the roles that ventral blood islands and dorsal lateral plate play in amphibian hematopoiesis, that of primitive and definitive lymphopoiesis. After the early embryonic contribution to hematopoiesis, specialized tissues must assume the role of providing the proper microenvironment for T and B-lymphocyte development from progenitor stem cells. In all gnathostomes, the thymus is the major site for T-cell maturation as evidenced by strong expression of developmental markers such as Ikaros, Rag and TdT plus expression of T-cell specific markers such as T-cell receptor beta and lck. In this respect, several zebrafish mutants have provided new insights on the development of the thymopoietic environment. On the other hand, the sites for B-cell lymphopoiesis are less clear among the lower vertebrates. In elasmobranchs, the spleen, Leydig's organ and the spiral valve may all contribute to B-cell development, although pre-B cells have yet to be fully addressed in fish. In

  4. Translocations of amphibians: Proven management method or experimental technique

    USGS Publications Warehouse

    Seigel, Richard A.; Dodd, C. Kenneth, Jr.

    2002-01-01

    In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.

  5. Developments in amphibian captive breeding and reintroduction programs.

    PubMed

    Harding, Gemma; Griffiths, Richard A; Pavajeau, Lissette

    2016-04-01

    Captive breeding and reintroduction remain high profile but controversial conservation interventions. It is important to understand how such programs develop and respond to strategic conservation initiatives. We analyzed the contribution to conservation made by amphibian captive breeding and reintroduction since the launch of the International Union for Conservation of Nature (IUCN) Amphibian Conservation Action Plan (ACAP) in 2007. We assembled data on amphibian captive breeding and reintroduction from a variety of sources including the Amphibian Ark database and the IUCN Red List. We also carried out systematic searches of Web of Science, JSTOR, and Google Scholar for relevant literature. Relative to data collected from 1966 to 2006, the number of species involved in captive breeding and reintroduction projects increased by 57% in the 7 years since release of the ACAP. However, there have been relatively few new reintroductions over this period; most programs have focused on securing captive-assurance populations (i.e., species taken into captivity as a precaution against extinctions in the wild) and conservation-related research. There has been a shift to a broader representation of frogs, salamanders, and caecilians within programs and an increasing emphasis on threatened species. There has been a relative increase of species in programs from Central and South America and the Caribbean, where amphibian biodiversity is high. About half of the programs involve zoos and aquaria with a similar proportion represented in specialist facilities run by governmental or nongovernmental agencies. Despite successful reintroduction often being regarded as the ultimate milestone for such programs, the irreversibility of many current threats to amphibians may make this an impractical goal. Instead, research on captive assurance populations may be needed to develop imaginative solutions to enable amphibians to survive alongside current, emerging, and future threats. PMID

  6. Mechanics of Blastopore Closure during Amphibian Gastrulation

    PubMed Central

    Feroze, Rafey; Shawky, Joseph H.; von Dassow, Michelangelo; Davidson, Lance A.

    2014-01-01

    Blastopore closure in the amphibian embryo involves large scale tissue reorganization driven by physical forces. These forces are tuned to generate sustained blastopore closure throughout the course of gastrulation. We describe the mechanics of blastopore closure at multiple scales and in different regions around the blastopore by characterizing large scale tissue deformations, cell level shape change and subcellular F-actin organization and by measuring tissue force production and structural stiffness of the blastopore during gastrulation. We find that the embryo generates a ramping magnitude of force until it reaches a peak force on the order of 0.5 μ Newtons. During this time course, the embryo also stiffens 1.5 fold. Strain rate mapping of the dorsal, ventral and lateral epithelial cells proximal to the blastopore reveals changing patterns of strain rate throughout closure. Cells dorsal to the blastopore, which are fated to become neural plate ectoderm, are polarized and have straight boundaries. In contrast, cells lateral and ventral to the blastopore are less polarized and have tortuous cell boundaries. The F-actin network is organized differently in each region with the highest percentage of alignment occurring in the lateral region. Interestingly F-actin was consistently oriented toward the blastopore lip in dorsal and lateral cells, but oriented parallel to the lip in ventral regions. Cell shape and F-actin alignment analyses reveal different local mechanical environments in regions around the blastopore, which was reflected by the strain rate maps. PMID:25448691

  7. Incentive or Habit Learning in Amphibians?

    PubMed Central

    Muzio, Rubén N.; Pistone Creydt, Virginia; Iurman, Mariana; Rinaldi, Mauro A.; Sirani, Bruno; Papini, Mauricio R.

    2011-01-01

    Toads (Rhinella arenarum) received training with a novel incentive procedure involving access to solutions of different NaCl concentrations. In Experiment 1, instrumental behavior and weight variation data confirmed that such solutions yield incentive values ranging from appetitive (deionized water, DW, leading to weight gain), to neutral (300 mM slightly hypertonic solution, leading to no net weight gain or loss), and aversive (800 mM highly hypertonic solution leading to weight loss). In Experiment 2, a downshift from DW to a 300 mM solution or an upshift from a 300 mM solution to DW led to a gradual adjustment in instrumental behavior. In Experiment 3, extinction was similar after acquisition with access to only DW or with a random mixture of DW and 300 mM. In Experiment 4, a downshift from DW to 225, 212, or 200 mM solutions led again to gradual adjustments. These findings add to a growing body of comparative evidence suggesting that amphibians adjust to incentive shifts on the basis of habit formation and reorganization. PMID:22087217

  8. Energy and water in aestivating amphibians.

    PubMed

    Carvalho, José E; Navas, Carlos A; Pereira, Isabel C

    2010-01-01

    The physiological mechanisms, behavioral adjustments, and ecological associations that allow animal species to live in extreme environments have evoked the attention of many zoologists. Often, extreme environments are defined as those believed to be limiting to life in terms of water, energetic availability, and temperature. These three elements seem extreme in a number of arid and semi-arid settings that even so have been colonized by amphibians. Because this taxon is usually seen as the quintessential water-dependent ectotherm tetrapods, their presence in a number of semi-arid environments poses a number of intriguing questions regarding microhabitat choice and physiological plasticity, particularly regarding the ecological and physiological correlates of behaviors granting avoidance of the harshest conditions of semi-arid environments. Such avoidance states, generally associated to the concept of aestivation, are currently seen as a diverse and complex phenomena varying from species to species and involving numerous behavioral and metabolic adjustments that enhance survival during the drought. This chapter reviews the physiological ecology of anuran aestivation, mainly from the perspective of water and energy balance. PMID:20069408

  9. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer.

    PubMed

    Wesner, J S; Kraus, J M; Schmidt, T S; Walters, D M; Clements, W H

    2014-09-01

    The response of larval aquatic insects to stressors such as metals is used to assess the ecological condition of streams worldwide. However, nearly all larval insects metamorphose from aquatic larvae to winged adults, and recent surveys indicate that adults may be a more sensitive indicator of stream metal toxicity than larvae. One hypothesis to explain this pattern is that insects exposed to elevated metal in their larval stages have a reduced ability to successfully complete metamorphosis. To test this hypothesis we exposed late-instar larvae of the mayfly, Centroptilum triangulifer, to an aqueous Zn gradient (32-476 μg/L) in the laboratory. After 6 days of exposure, when metamorphosis began, larval survival was unaffected by zinc. However, Zn reduced wingpad development at concentrations above 139 μg/L. In contrast, emergence of subimagos and imagos tended to decline with any increase in Zn. At Zn concentrations below 105 μg/L (hardness-adjusted aquatic life criterion), survival between the wingpad and subimago stages declined 5-fold across the Zn gradient. These results support the hypothesis that metamorphosis may be a survival bottleneck, particularly in contaminated streams. Thus, death during metamorphosis may be a key mechanism explaining how stream metal contamination can impact terrestrial communities by reducing aquatic insect emergence. PMID:25093980

  10. Ligand binding pocket function of drosophila USP is necessary for metamorphosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...

  11. EVIDENCE FOR ACCELERATED METAMORPHOSIS IN BULLFROG (RANA CATESBIEANA) TADPOLES IN AN EPHEMERAL POND

    EPA Science Inventory

    It has been widely accepted that time to metamorphosis for non-native bullfrog tadpoles in the Pacific Northwest is greater than one year. We surveyed 22 ponds within the EE Wilson Reserve (Benton County, Oregon) for bullfrog tadpoles and metamorphs from April through September, ...

  12. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  13. Are G-protein-coupled receptors involved in mediating larval settlement and metamorphosis of coral planulae?

    PubMed

    Tran, Cawa; Hadfield, Michael G

    2012-04-01

    Larvae of the scleractinian coral Pocillopora damicornis are induced to settle and metamorphose by the presence of marine bacterial biofilms, and the larvae of Montipora capitata respond to a combination of filamentous and crustose coralline algae. The primary goal of this study was to better understand metamorphosis of cnidarian larvae by determining what types of receptors and signal-transduction pathways are involved during stimulation of metamorphosis of P. damicornis and M. capitata. Evidence from studies on larvae of hydrozoans suggests that G-protein-coupled receptors (GPCRs) are good candidates. Settlement experiments were conducted in which competent larvae were exposed to neuropharmacological agents that affect GPCRs and their associated signal-transduction pathways, AC/cAMP and PI/DAG/PKC. On the basis of the results of these experiments, we conclude that GPCRs and these pathways do not mediate settlement and metamorphosis in either coral species. Two compounds that had an effect on both species, forskolin and phorbol-12-myristate-13-acetate (TPA), may be acting on other cellular processes not related to GPCRs. This study strengthens our understanding of the underlying physiological mechanisms that regulate metamorphosis in coral larvae. PMID:22589403

  14. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer

    USGS Publications Warehouse

    Wesner, Jeff S.; Kraus, Johanna M.; Schmidt, Travis S.; Walters, David M.; Clements, William H.

    2014-01-01

    The response of larval aquatic insects to stressors such as metals is used to assess the ecological condition of streams worldwide. However, nearly all larval insects metamorphose from aquatic larvae to winged adults, and recent surveys indicate that adults may be a more sensitive indicator of stream metal toxicity than larvae. One hypothesis to explain this pattern is that insects exposed to elevated metal in their larval stages have a reduced ability to successfully complete metamorphosis. To test this hypothesis we exposed late-instar larvae of the mayfly, Centroptilum triangulifer, to an aqueous Zn gradient (32–476 μg/L) in the laboratory. After 6 days of exposure, when metamorphosis began, larval survival was unaffected by zinc. However, Zn reduced wingpad development at concentrations above 139 μg/L. In contrast, emergence of subimagos and imagos tended to decline with any increase in Zn. At Zn concentrations below 105 μg/L (hardness-adjusted aquatic life criterion), survival between the wingpad and subimago stages declined 5-fold across the Zn gradient. These results support the hypothesis that metamorphosis may be a survival bottleneck, particularly in contaminated streams. Thus, death during metamorphosis may be a key mechanism explaining how stream metal contamination can impact terrestrial communities by reducing aquatic insect emergence.

  15. Stable isotope enrichment in laboratory ant colonies: effects of colony age, metamorphosis, diet, and fat storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory-reared colonies of Solenopsis invicta Buren (Formicidae: Solenopsidini) to test the effects of metamorphosis,...

  16. Caring about Strangers: A Lingisian Reading of Kafka's "Metamorphosis"

    ERIC Educational Resources Information Center

    Hung, Ruyu

    2013-01-01

    This article explores a significant question, implicit in Kafka's novel "Metamorphosis," explicitly asked by Rorty: "Can I care about a stranger?" Alphonso Lingis's view is adopted to overcome a mainstream belief that there is a distinction between my community and the stranger's community, or us community and…

  17. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations

    PubMed Central

    Savage, Anna E.; Zamudio, Kelly R.

    2016-01-01

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. PMID:27009220

  18. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations.

    PubMed

    Savage, Anna E; Zamudio, Kelly R

    2016-03-30

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. PMID:27009220

  19. A review of the role of contaminants in amphibian declines

    USGS Publications Warehouse

    Sparling, D.W.

    2003-01-01

    CONCLUSIONS--Although there are no published studies that demonstrate beyond all doubt that contaminants are involved in long term population declines of amphibians, there is ample evidence and reason to encourage active research and concern about effects. Many contaminants are lethal to amphibians at environmentally realistic concentrations. Acute mortality from these compounds may be difficult to detect because investigators would have to be present shortly after exposures. Chronic mortality may be masked by metapopulation phenomena so that areas that serve as population sinks may be repeatedly recolonized and difficult to identify. Metapopulation dynamics also make it more difficult to define discrete populations. Contaminants also have many sublethal effects on behavior, energetics, malformations, and diverse effects on physiological pathways which, by themselves might not lead to overt death but could alter reproduction or interact with other factors to result in gradual declines in populations. Scientific understanding of these interactions, and of the ecotoxicology of amphibians in general is far behind what is known about birds, fish, and mammals, and research is desperately needed in this area. Some specific suggestions for critically needed research include: (1) Determination of lethal concentrations of common contaminants - pesticides, PAHs, metals--under environmentally realistic conditions of light, temperature, and water chemistry. (2) Better understanding of the effects of long term (weeks, months), low- concentration exposure of persistent pesticides and stable contaminants on amphibians. (3) Development and refinement of bioindicators in amphibians to use in monitoring and screening for potential effects of contaminants in declining amphibian populations. (4) Further studies on the interaction between contaminants and disease agents including immunosuppression in amphibians. (5) Additional research on the interaction between ultraviolet radiation

  20. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    USGS Publications Warehouse

    Welsh, H.H., Jr.; Fellers, G.M.; Lind, A.J.

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  1. Advective and diffusive dermal processes for estimating terrestrial amphibian pesticide exposure

    EPA Science Inventory

    Background/Question/Methods Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Historically, evaluation of pesticide risk to both amphibians and reptiles has been achieved by comparing ingestion and inhalat...

  2. Investigating the Influence of Environmental Factors on Pesticide Exposure in Amphibians

    EPA Science Inventory

    Environmental factors such as temporal weather patterns and soil characterization coupled with pesticide application rates are known to influence exposure and subsequent absorption of these compounds in amphibians. Amphibians are a unique class of vertebrates due to their varied ...

  3. Neuroendocrine control of spawning in amphibians and its practical applications.

    PubMed

    Vu, Maria; Trudeau, Vance L

    2016-08-01

    Across vertebrates, ovulation and sperm release are primarily triggered by the timed surge of luteinizing hormone (LH). These key reproductive events are governed by the action of several brain neuropeptides, pituitary hormones and gonadal steroids which operate to synchronize physiology with behaviour. In amphibians, it has long been recognized that the neuropeptide gonadotropin-releasing hormone (GnRH) has stimulatory effects to induce spawning. Extensive work in teleosts reveals an inhibitory role of dopamine in the GnRH-regulated release of LH. Preliminary evidence suggests that this may be a conserved function in amphibians. Emerging studies are proposing a growing list of modulators beyond GnRH that are involved in the control of spawning including prolactin, kisspeptins, pituitary adenylate cyclase-activating polypeptide, gonadotropin-inhibitory hormone and endocannabinoids. Based on these physiological data, spawning induction methods have been developed to test on selective amphibian species. However, several limitations remain to be investigated to strengthen the evidence for future applications. The current state of knowledge regarding the neuroendocrine control of spawning in amphibians will be reviewed in detail, the elements of which will have wide implications towards the captive breeding of endangered amphibian species for conservation. PMID:27013378

  4. The cause of global amphibian declines: a developmental endocrinologist's perspective

    PubMed Central

    Hayes, T. B.; Falso, P.; Gallipeau, S.; Stice, M.

    2010-01-01

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117

  5. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    PubMed

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117

  6. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection

    PubMed Central

    Calhoun, Dana M.; Woodhams, Doug; Howard, Cierra; LaFonte, Bryan E.; Gregory, Jacklyn R.; Johnson, Pieter T. J.

    2016-01-01

    Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species. PMID:26911920

  7. Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis.

    PubMed

    Voyles, Jamie; Berger, Lee; Young, Sam; Speare, Rick; Webb, Rebecca; Warner, Jeffrey; Rudd, Donna; Campbell, Ruth; Skerratt, Lee F

    2007-09-14

    Mounting evidence implicates the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis, in global amphibian declines and extinctions. While the virulence of this disease has been clearly demonstrated, there is, as yet, no mechanistic explanation for how B. dendrobatidis kills amphibians. To investigate the pathology of chytridiomycosis, blood samples were collected from uninfected, aclinically infected and clinically diseased amphibians and analyzed for a wide range of biochemical and hematological parameters. Here, we show that green tree frogs Litoria caerulea with severe chytridiomycosis had reduced plasma osmolality, sodium, potassium, magnesium and chloride concentrations. Stable plasma albumin, hematocrit and urea levels indicated that hydration status was unaffected, signifying depletion of electrolytes from circulation rather than dilution due to increased water uptake. We suggest that B. dendrobatidis kills amphibians by disrupting normal epidermal functioning, leading to osmotic imbalance through loss of electrolytes. Determining how B. dendrobatidis kills amphibians is fundamental to understanding the host-pathogen relationship and thus the population declines attributed to B. dendrobatidis. Understanding the mechanisms of mortality may also explain interspecific variation in susceptibility to chytridiomycosis. PMID:17972752

  8. Annual Report: 2014: Partners in Amphibian and Reptile Conservation (PARC)

    USGS Publications Warehouse

    Weir, Linda A.; Nanjappa, P.; Apodaca, J. J.; Williams, J.

    2015-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effects from overexploitation; these animals are also burdened by humans attitudes – that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural and cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation to ensure healthy populations of these animals has never been more important. As you will see herein, PARC’s 15th anniversary has been marked with major accomplishments and an ever-increasing momentum. With your help, PARC can continue to build on its successes and protect these vital species.

  9. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    PubMed

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution. PMID:16012106

  10. Topoisomerase Assays

    PubMed Central

    Nitiss, John L.; Soans, Eroica; Rogojina, Anna; Seth, Aman; Mishina, Margarita

    2012-01-01

    Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I, which makes single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are of assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay for examining topoisomerase covalent complexes in vivo and an assay for measuring DNA cleavage in vitro. PMID:22684721

  11. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure.

    PubMed

    Cahill, Patrick L; Atalah, Javier; Selwood, Andrew I; Kuhajek, Jeanne M

    2016-01-01

    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL(-1) in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL(-1) to high µg mL(-1) range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure. PMID:26966668

  12. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure

    PubMed Central

    Atalah, Javier; Selwood, Andrew I.; Kuhajek, Jeanne M.

    2016-01-01

    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL−1 in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL−1 to high µg mL−1 range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure. PMID:26966668

  13. Cool Temperatures Reduce Antifungal Activity of Symbiotic Bacteria of Threatened Amphibians – Implications for Disease Management and Patterns of Decline

    PubMed Central

    Daskin, Joshua H.; Bell, Sara C.; Schwarzkopf, Lin; Alford, Ross A.

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians’ skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd’s optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8°C to 33°C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  14. 50 CFR 16.14 - Importation of live amphibians or their eggs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Importation of live amphibians or their... Importation of live amphibians or their eggs. Upon the filing of a written declaration with the District Director of Customs at the port of entry as required under § 14.61, all species of live amphibians or...

  15. 50 CFR 16.14 - Importation of live amphibians or their eggs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Importation of live amphibians or their... Importation of live amphibians or their eggs. Upon the filing of a written declaration with the District Director of Customs at the port of entry as required under § 14.61, all species of live amphibians or...

  16. 50 CFR 16.14 - Importation of live amphibians or their eggs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Importation of live amphibians or their... Importation of live amphibians or their eggs. Upon the filing of a written declaration with the District Director of Customs at the port of entry as required under § 14.61, all species of live amphibians or...

  17. 50 CFR 16.14 - Importation of live amphibians or their eggs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Importation of live amphibians or their... Importation of live amphibians or their eggs. Upon the filing of a written declaration with the District Director of Customs at the port of entry as required under § 14.61, all species of live amphibians or...

  18. 50 CFR 16.14 - Importation of live amphibians or their eggs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Importation of live amphibians or their... Importation of live amphibians or their eggs. Upon the filing of a written declaration with the District Director of Customs at the port of entry as required under § 14.61, all species of live amphibians or...

  19. The current status of amphibian and reptile ecotoxicological research

    USGS Publications Warehouse

    Sparling, D.W.; Bishop, C.A.; Linder, G.

    2000-01-01

    The extent of research conducted on the effects of contaminants on reptiles and amphibians has been scant compared to that of other vertebrate classes including fishes, birds and mammals. In a review of literature from 1972 until 1998 we found that only about 2.7% of the papers published on ecotoxicology in vertebrates concerned amphibians and 1.4% for reptiles. Most studies on amphibian ecotoxicology were on metals, pesticides, and acid deposition. For reptiles the greatest frequency of papers included metals, organochlorines, and others. In proportion to the taxonomic importance, far more papers were written on turtles than on other reptile orders. Most of the papers dealt with residues and very few dealt with effects of contaminant exposure.

  20. Hormonal regulation of ion and water transport in anuran amphibians.

    PubMed

    Uchiyama, Minoru; Konno, Norifumi

    2006-05-15

    Amphibians occupy a wide variety of ecological habitats, and their adaptation is made possible through the specialization of the epithelia of their osmoregulatory organs, such as the skin, kidney, and urinary bladder, which control the hydromineral and acid-base balance of their internal medium. Amphibians can change drastically plasma Na+, Cl-, and urea levels and excretion rates in response to environmental stimuli such as acute desiccation and changes in external salinity. Several hormones and the autonomic nervous system act to control osmoregulation. Several ion channels including an epithelial sodium channel (ENaC), a urea transporter (UT), and water channels (AQPs) are found in epithelial tissues of their osmoregulatory organs. This mini review examines the currents status of our knowledge about hormone receptors for arginine vasotocin, angiotensin II and aldosterone, and membrane ion channels and transporters, such as ENaC, UT, and AQPs in amphibians. PMID:16472810

  1. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines.

    PubMed

    Voyles, Jamie; Young, Sam; Berger, Lee; Campbell, Craig; Voyles, Wyatt F; Dinudom, Anuwat; Cook, David; Webb, Rebecca; Alford, Ross A; Skerratt, Lee F; Speare, Rick

    2009-10-23

    The pathogen Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis, is one of the few highly virulent fungi in vertebrates and has been implicated in worldwide amphibian declines. However, the mechanism by which Bd causes death has not been determined. We show that Bd infection is associated with pathophysiological changes that lead to mortality in green tree frogs (Litoria caerulea). In diseased individuals, electrolyte transport across the epidermis was inhibited by >50%, plasma sodium and potassium concentrations were respectively reduced by approximately 20% and approximately 50%, and asystolic cardiac arrest resulted in death. Because the skin is critical in maintaining amphibian homeostasis, disruption to cutaneous function may be the mechanism by which Bd produces morbidity and mortality across a wide range of phylogenetically distant amphibian taxa. PMID:19900897

  2. Amphibian research and monitoring initiative: Concepts and implementation

    USGS Publications Warehouse

    Corn, P.S.; Adams, M.J.; Battaglin, W.A.; Gallant, A.L.; James, D.L.; Knutson, M.; Langtimm, C.A.; Sauer, J.R.

    2005-01-01

    This report provides the basis for discussion and subsequent articulation of a national plan for the Amphibian Research and Monitoring Initiative (ARMI). The authors were members of a task force formed from within the U.S. Geological Survey (USGS) that included scientists with expertise in biology, cartography, hydrology, and statistics. The assignment of the task force was to extend work begun by the National Amphibian Leadership Group. This group, composed of senior USGS scientists, managers, and external authorities, met in Gainesville, Florida, in February 20001. The product of this meeting was a document outlining the framework for a national program to monitor amphibian populations and to conduct research into the causes of declines.

  3. Spatial network structure and amphibian persistence in stochastic environments

    PubMed Central

    Fortuna, Miguel A; Gómez-Rodríguez, Carola; Bascompte, Jordi

    2006-01-01

    In the past few years, the framework of complex networks has provided new insight into the organization and function of biological systems. However, in spite of its potential, spatial ecology has not yet fully incorporated tools and concepts from network theory. In the present study, we identify a large spatial network of temporary ponds, which are used as breeding sites by several amphibian species. We investigate how the structural properties of the spatial network change as a function of the amphibian dispersal distance and the hydric conditions. Our measures of network topology suggest that the observed spatial structure of ponds is robust to drought (compared with similar random structures), allowing the movement of amphibians to and between flooded ponds, and hence, increasing the probability of reproduction even in dry seasons. PMID:16777733

  4. Granular gland transcriptomes in stimulated amphibian skin secretions.

    PubMed Central

    Chen, Tianbao; Farragher, Susan; Bjourson, Anthony J; Orr, David F; Rao, Pingfan; Shaw, Chris

    2003-01-01

    Amphibian defensive skin secretions are complex, species-specific cocktails of biologically active molecules, including many uncharacterized peptides. The study of such secretions for novel peptide discovery is time-limited, as amphibians are in rapid global decline. While secretion proteome analysis is non-lethal, transcriptome analysis has until now required killing of specimens prior to skin dissection for cDNA library construction. Here we present the discovery that polyadenylated mRNAs encoding dermal granular gland peptides are present in defensive skin secretions, stabilized by endogenous nucleic acid-binding amphipathic peptides. Thus parallel secretory proteome and transcriptome analyses can be performed without killing the specimen in this model amphibian system--a finding that has important implications in conservation of biodiversity within this threatened vertebrate taxon and whose mechanistics may have broader implications in biomolecular science. PMID:12413397

  5. The Amphibian Diversity of Bukit Jana, Taiping, Perak

    PubMed Central

    Shahrudin, Shahriza; Jaafar, Ibrahim

    2012-01-01

    The study on the amphibian fauna of Bukit Jana, Taiping, Perak was carried out from January 2009 until December 2010 with a total of 12 nights of observation. Twenty four species of frogs from 14 genera and 6 families were recorded to inhabit the Bukit Jana areas. Seven commensal species were found around human habitations near the foothill whereas the others are typical forest frogs found mostly near the rivers, streams and forest floor. This is the first amphibian checklist of Bukit Jana, Perak and it contributed 22% out of 107 species of frogs that are recorded to inhabit Peninsular Malaysia. PMID:24575233

  6. Ticks infesting amphibians and reptiles in Pernambuco, Northeastern Brazil.

    PubMed

    Dantas-Torres, Filipe; Oliveira-Filho, Edmilson F; Soares, Fábio Angelo M; Souza, Bruno O F; Valença, Raul Baltazar P; Sá, Fabrício B

    2008-01-01

    Ticks infesting amphibians and reptiles in the State of Pernambuco are reviewed, based on the current literature and new collections recently carried out by the authors. To date, three tick species have been found on amphibians and reptiles in Pernambuco. Amblyomma fuscum appears to be exclusively associated with Boa constrictor, its type host. Amblyomma rotundatum has a relatively low host-specificity, being found on toads, snakes, and iguana. Amblyomma dissimile has been found on a lizard and also small mammals (i.e., rodents and marsupials). New tick-host associations and locality records are given. PMID:19265581

  7. Exposure to suboptimal temperatures during metamorphosis reveals a critical developmental window in the solitary bee, Megachile rotundata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metamorphosis is an important developmental stage for holometabolous insects, during which adult morphology and physiology are established. Proper development relies on optimal body temperatures, and natural ambient temperature (Ta) fluctuations, especially in spring or in northern latitudes, could ...

  8. Red List of amphibians and reptiles of the Wadden Sea area

    NASA Astrophysics Data System (ADS)

    Fog, K.; Podloucky, R.; Dierking, U.; Stumpel, A. H. P.

    1996-10-01

    In the Wadden Sea, in total, 8 species of amphibians and 4 species of reptiles are threatened in at least one subregion. Of these, 7 species of amphibians and all 4 species of reptiles are threatened in the entire area and are therefore placed on the trilateral Red List. 1 species of the listed reptiles is (probably) extinct in the entire Wadden Sea area. The status of 1 species of amphibians is endangered, the status of (probably) 4 species of amphibians and 3 species of reptiles are vulnerable and of 2 species of amphibians susceptible.

  9. Slow dynamics of the amphibian tympanic membrane

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Meenderink, Sebastiaan W. F.; van der Heijden, Marcel; Narins, Peter M.

    2015-12-01

    Several studies have demonstrated that delays associated with evoked otoacoustic emissions (OAEs) largely originate from filter delays of resonant elements in the inner ear. However, one vertebrate group is an exception: Anuran (frogs and toads) amphibian OAEs exhibit relatively long delays (several milliseconds), yet relatively broad tuning. These delays, also apparent in auditory nerve fiber (ANF) responses, have been partially attributed to the middle ear (ME), with a total forward delay of ˜0.7 ms (˜30 times longer than in gerbil). However, ME forward delays only partially account for the longer delays of OAEs and ANF responses. We used scanning laser Doppler vibrometery to map surface velocity over the tympanic membrane (TyM) of anesthetized bullfrogs (Rana catesbeiana). Our main finding is a circularly-symmetric wave on the TyM surface, starting at the outer edges of the TyM and propagating inward towards the center (the site of the ossicular attachment). This wave exists for frequencies ˜0.75-3 kHz, overlapping the range of bullfrog hearing (˜0.05-1.7 kHz). Group delays associated with this wave varied from 0.4 to 1.2 ms and correlated with with TyM diameter, which ranged from ˜6-16 mm. These delays correspond well to those from previous ME measurements. Presumably the TyM waves stem from biomechanical constraints of semi-aquatic species with a relatively large tympanum. We investigated some of these constraints by measuring the pressure ratio across the TyM (˜10-30 dB drop, delay of ˜0.35 ms), the effects of ossicular interruption, the changes due to physiological state of TyM (`dry-out'), and by calculating the middle-ear input impedance. In summary, we found a slow, inward-traveling wave on the TyM surface that accounts for a substantial fraction of the relatively long otoacoustic and neurophysiological delays previously observed in the anuran inner ear.

  10. RISK ASSESSMENT FOR THE EFFECTS OF SOLAR RADIATION ON AMPHIBIANS

    EPA Science Inventory

    Recent studies have demonstrated that exposure to solar ultraviolet radiation (UVR) can cause mortality and increase the occurrence of eye and limb malformation in some species of amphibians. Based on these reports and various field observations, it has been hypothesized that UV...

  11. On the worrying fate of Data Deficient amphibians.

    PubMed

    Nori, Javier; Loyola, Rafael

    2015-01-01

    The 'Data Deficient' (DD) category of the IUCN Red List assembles species that cannot be placed in another category due to insufficient information. This process generates uncertainty about whether these species are safe or actually in danger. Here, we give a global overview on the current situation of DD amphibian species (almost a quarter of living amphibians) considering land-use change through habitat modification, the degree of protection of each species and the socio-political context of each country harboring DD species. We found that DD amphibians have, on average, 81% of their ranges totally outside protected areas. Worryingly, more than half of DD species have less than 1% of their distribution represented in protected areas. Furthermore, the percentage of overlap between species' range and human-modified landscapes is high, at approximately 58%. Many countries harboring a large number of DD species show a worrying socio-political trend illustrated by substantial, recent incremental increases in the Human Development Index and lower incremental increases in the establishment of protected areas. Most of these are African countries, which are located mainly in the central and southern regions of the continent. Other countries with similar socio-political trends are in southeastern Asia, Central America, and in the northern region of South America. This situation is concerning, but it also creates a huge opportunity for considering DD amphibians in future conservation assessments, planning, and policy at different levels of government administration. PMID:25965422

  12. AMPHIBIAN DECLINE, ULTRAVIOLET RADIATION AND LOCAL POPULATION ADAPTATION

    EPA Science Inventory

    Amphibian population declines have been noted on both local and global scales. Causes for these declines are unknown although many hypotheses have been offered. In areas adjacent to human development, loss of habitat is a fairly well accepted cause. However in isolated, seemingl...

  13. Preliminary checklist of amphibians and reptiles from Baramita, Guyana

    USGS Publications Warehouse

    Reynolds, R.P.; MacCulloch, R.D.

    2012-01-01

    We provide an initial checklist of the herpetofauna of Baramita, a lowland rainforest site in the Northwest Region of Guyana. Twenty-five amphibian and 28 reptile species were collected during two separate dry-season visits. New country records for two species of snakes are documented, contributing to the knowledge on the incompletely known herpetofauna of Guyana.

  14. On the Worrying Fate of Data Deficient Amphibians

    PubMed Central

    Nori, Javier; Loyola, Rafael

    2015-01-01

    The ‘Data Deficient’ (DD) category of the IUCN Red List assembles species that cannot be placed in another category due to insufficient information. This process generates uncertainty about whether these species are safe or actually in danger. Here, we give a global overview on the current situation of DD amphibian species (almost a quarter of living amphibians) considering land-use change through habitat modification, the degree of protection of each species and the socio-political context of each country harboring DD species. We found that DD amphibians have, on average, 81% of their ranges totally outside protected areas. Worryingly, more than half of DD species have less than 1% of their distribution represented in protected areas. Furthermore, the percentage of overlap between species’ range and human-modified landscapes is high, at approximately 58%. Many countries harboring a large number of DD species show a worrying socio-political trend illustrated by substantial, recent incremental increases in the Human Development Index and lower incremental increases in the establishment of protected areas. Most of these are African countries, which are located mainly in the central and southern regions of the continent. Other countries with similar socio-political trends are in southeastern Asia, Central America, and in the northern region of South America. This situation is concerning, but it also creates a huge opportunity for considering DD amphibians in future conservation assessments, planning, and policy at different levels of government administration. PMID:25965422

  15. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe.

    PubMed

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K; Beukema, Wouter; Bletz, Molly C; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank; Lötters, Stefan

    2016-07-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  16. Can Myxosporean parasites compromise fish and amphibian reproduction?

    PubMed Central

    Sitjà-Bobadilla, Ariadna

    2009-01-01

    Research into fish and amphibian reproduction has increased exponentially in recent years owing to the expansion of the aquaculture industry, the need to recover fishery populations, the impact of endocrine disruptors on the aquatic environment and the global decline of amphibian populations. This review focuses on a group of parasites, the Myxozoa, that affect fish and amphibian reproduction. Lists of the myxosporeans that specifically infect gonads are provided. Most of these are parasitic of freshwater hosts, and most amphibian cases are reported from testes. Sex specificity and sex reversal are discussed in relation to gonadal parasitism. The immune response of the fish to the infection is described, and the contribution of the immunoprivilege of gonads to host invasion is emphasized. The pathological effect of these parasites can be significant, especially in aquacultured broodstocks, on some occasions, leading to parasitic castration. Although myxosporean parasites are currently not very frequent in gonads, their impact could increase in the future owing to the transactions in the global market. Their easy release into the aquatic environment with spawning could make their spreading even more feasible. In the absence of commercial drugs or vaccines to treat and prevent these infections, there is an urgent need to develop specific, rapid and reliable diagnostic tools to control and manage animal movements. In addition, much effort is still to be made on deciphering the life cycle of these organisms, their invasion strategies and their immune evasion mechanisms. PMID:19474043

  17. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  18. Can myxosporean parasites compromise fish and amphibian reproduction?

    PubMed

    Sitjà-Bobadilla, Ariadna

    2009-08-22

    Research into fish and amphibian reproduction has increased exponentially in recent years owing to the expansion of the aquaculture industry, the need to recover fishery populations, the impact of endocrine disruptors on the aquatic environment and the global decline of amphibian populations. This review focuses on a group of parasites, the Myxozoa, that affect fish and amphibian reproduction. Lists of the myxosporeans that specifically infect gonads are provided. Most of these are parasitic of freshwater hosts, and most amphibian cases are reported from testes. Sex specificity and sex reversal are discussed in relation to gonadal parasitism. The immune response of the fish to the infection is described, and the contribution of the immunoprivilege of gonads to host invasion is emphasized. The pathological effect of these parasites can be significant, especially in aquacultured broodstocks, on some occasions, leading to parasitic castration. Although myxosporean parasites are currently not very frequent in gonads, their impact could increase in the future owing to the transactions in the global market. Their easy release into the aquatic environment with spawning could make their spreading even more feasible. In the absence of commercial drugs or vaccines to treat and prevent these infections, there is an urgent need to develop specific, rapid and reliable diagnostic tools to control and manage animal movements. In addition, much effort is still to be made on deciphering the life cycle of these organisms, their invasion strategies and their immune evasion mechanisms. PMID:19474043

  19. Using Reptile and Amphibian Activities in the Classroom

    ERIC Educational Resources Information Center

    Tomasek, Terry; Matthews, Catherine E.

    2008-01-01

    Reptiles and amphibians are a diverse and interesting group of organisms. The four activities described in this article take students' curiosity into the realm of scientific understanding. The activities involve the concepts of species identification; animal adaptations, communication, and habitat; and conservation. (Contains 1 table and 2…

  20. UPDATE ON COORDINATED STUDIES OF AMPHIBIAN DISTRIBUTIONS AND UV RADIATION

    EPA Science Inventory

    In February of 2000 researchers from the EPA, the National Park Service, other governmental agencies, and academia formulated a plan for coordinated studies of amphibian distributions and aquatic ultraviolet radiation exposure risks in several national parks. At this point we hav...

  1. Using Amphibians and Reptiles To Learn the Process of Science.

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Greene, Brian D.

    2001-01-01

    Discusses using amphibians and reptiles as an excellent resource for students to observe and gain an understanding of the process of science. These animals are easy to maintain in the classroom and play important roles in ecosystems as the prey for many birds and mammals and as the predators of various organisms. (SAH)

  2. Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses

    PubMed Central

    Puglis, Holly J.; Boone, Michelle D.

    2012-01-01

    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians. PMID:22761833

  3. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe

    PubMed Central

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K.; Beukema, Wouter; Bletz, Molly C.; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F.; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R.; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank

    2016-01-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010–2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity. PMID:27070102

  4. Emerging contaminants and their potential effects on amphibians and reptiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious threats to the health and sustainability of global amphibian populations have been well documented over the last few decades. Encroachment upon and destruction of primary habitat is the most critical threat, but some species have disappeared while their habitat remains. Additional stressor...

  5. Effects of pollution on freshwater fish and amphibians

    SciTech Connect

    Pickering, Q.H.; Hunt, E.P.; Phipps, G.L.; Roush, T.H.; Smith, W.E.; Spehar, D.L.; Stephan, C.E.; Tanner, D.K.

    1983-06-01

    A literature review is presented dealing with studies on the effects of pollution on freshwater fish and amphibians. The pollutants studied included acid mine drainage, PCBs, cadmium, lead, naphthalene, plutonium, in addition to several studies dealing with pH effects. (JMT)

  6. Pesticides in amphibian habitats of central and northern California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amphibians in California are facing serious population declines. Contaminants, especially pesticides, have been linked to these declines. This study reports on a survey of central and northern California wetlands sampled along four transects associated with Lassen National Park, Lake Tahoe, Yosemit...

  7. Utricular otoconia of some amphibians have calcitic morphology

    NASA Technical Reports Server (NTRS)

    Pote, K. G.; Ross, M. D.

    1993-01-01

    This report concerns the morphological features of otoconia removed from the inner ear of four amphibian species. Results from scanning electron microscopic examination are compared based on the site of origin. These results show that utricular otoconia have a mineral structure that mimics calcite, rather than the widely accepted idea that they are mineralized by calcium carbonate of the aragonite polymorph.

  8. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians

    PubMed Central

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C.; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-01-01

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi. PMID:24003137

  9. Examining the Evidence for Chytridiomycosis in Threatened Amphibian Species

    PubMed Central

    Heard, Matthew; Smith, Katherine F.; Ripp, Kelsey

    2011-01-01

    Extinction risks are increasing for amphibians due to rising threats and minimal conservation efforts. Nearly one quarter of all threatened/extinct amphibians in the IUCN Red List is purportedly at risk from the disease chytridiomycosis. However, a closer look at the data reveals that Batrachochytrium dendrobatidis (the causal agent) has been identified and confirmed to cause clinical disease in only 14% of these species. Primary literature surveys confirm these findings; ruling out major discrepancies between Red List assessments and real-time science. Despite widespread interest in chytridiomycosis, little progress has been made between assessment years to acquire evidence for the role of chytridiomycosis in species-specific amphibian declines. Instead, assessment teams invoke the precautionary principle when listing chytridiomycosis as a threat. Precaution is valuable when dealing with the world's most threatened taxa, however scientific research is needed to distinguish between real and predicted threats in order to better prioritize conservation efforts. Fast paced, cost effective, in situ research to confirm or rule out chytridiomycosis in species currently hypothesized to be threatened by the disease would be a step in the right direction. Ultimately, determining the manner in which amphibian conservation resources are utilized is a conversation for the greater conservation community that we hope to stimulate here. PMID:21826233

  10. Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline

    PubMed Central

    Sodhi, Navjot S.; Bickford, David; Diesmos, Arvin C.; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W.; Sekercioglu, Cagan H.; Bradshaw, Corey J. A.

    2008-01-01

    Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation. PMID:18286193

  11. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles

    PubMed Central

    Brown, Jason L.; Sillero, Neftali; Glaw, Frank; Bora, Parfait; Vieites, David R.; Vences, Miguel

    2016-01-01

    Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800–1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling, i.e., the amount

  12. Marine Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail–Like Structures

    PubMed Central

    Shikuma, Nicholas J.; Pilhofer, Martin; Weiss, Gregor L.; Hadfield, Michael G.; Jensen, Grant J.; Newman, Dianne K.

    2016-01-01

    Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail–like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development. PMID:24407482

  13. [On some features of embryonic development and metamorphosis of Aurelia aurita (Cindaria, Scyphozoa)].

    PubMed

    Maĭorova, T D; Kosevich, I A; Melekhova, O P

    2012-01-01

    Aurelia aurita is a cosmopolite species of scyphomedusae. Its major structural patterns and life cycle are well investigated. This work provides a detailed study on development and structure of the planula in A. aurita until it completes its metamorphosis. Lifetime observations and histological study performed during the settlement and metamorphosis of the planulae demonstrated that the inner manibrium linen of primary polyp (gastroderm) develops from the ectoderm of the planula posterior end. The spatial and temporal dynamics of serotonergic cells from the early embryonic stages until the formation of the primary polyp were studied for the first time. In addition, the distribution oftyrosinated tubulin and neuropeptide RFamide at different stages ofA. aurita development were studied. PMID:23101407

  14. Pharmacological induction of larval settlement and metamorphosis in the blue mussel Mytilus edulis L.

    PubMed

    Dobretsov, Sergey V; Qian, Pei-Yuan

    2003-02-01

    The blue mussel Mytilus edulis L. is an important aquaculture and fouling species in northern seas. Although the general role of chemical cues for settlement of larvae of the blue mussel has been proposed, few studies have focused on induction of settlement and metamorphosis by pharmacological agents. In this study, the induction of larval settlement of the blue mussel by pharmacological compounds was investigated through a series of laboratory experiments with an aim of identifying artificial cues for laboratory bioassay systems in fouling and antifouling research. Gamma-aminobutiric acid (GABA), dihydroxyphenyl L-alanine (DOPA), isobutyl methylxanthine (IBMX) and acetylcholine chloride (ACH) at 10(-7)-10(-2) M as well as KCl at 10-40 mM K+ in excess of the level in normal seawater were tested for their inductive effect on larval settlement. In filtered seawater (FSW) < 9% of the larvae settled after 48 h. Elevated K+ and GABA levels had no effect on larval settlement and metamorphosis. DOPA at 10(-5) M and IBMX at 10(-6)-10(-4) M induced 41-83% larval settlement and ACH at 10(-7)-10(-5) M induced < 40% larval settlement. While the highest settlement rates were observed after 48 h exposure to the chemical, most of the larvae settled within 24 h. Compounds at concentrations of 10(-3)-10(-2) M were either toxic to larvae or retarded the growth of the post-larvae shell. Juveniles resulting from induction by lower concentrations of chemicals had a very high survival rate, completed metamorphosis and grew as well as the juveniles that metamorphosed spontaneously. IBMX at 10(-6)-10(-4) M and L-DOPA at 10(-5) M are effective agents for induction of settlement and metamorphosis for future studies using juvenile M. edulis. PMID:14618689

  15. Changes in the Gut Microbiome of the Sea Lamprey during Metamorphosis

    PubMed Central

    Tetlock, Amanda; Yost, Christopher K.; Stavrinides, John

    2012-01-01

    Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey. PMID:22923392

  16. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.

    PubMed

    Matsunobu, Shohei; Sasakura, Yasunori

    2015-09-01

    In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated. PMID:26102482

  17. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  18. Development of a mobile application for amphibian species recognition

    NASA Astrophysics Data System (ADS)

    Parveen, B.; H, Chew T.; Shamsir, M. S.; Ahmad, N.

    2014-02-01

    The smartphones mobility and its pervasiveness are beginning to transform practices in biodiversity conservation. The integrated functionalities of a smartphone have created for the public and biodiversity specialists means to identify, gather and record biodiversity data while simultaneously creating knowledge portability in the digital forms of mobile guides. Smartphones enable beginners to recreate the delight of species identification usually reserved for specialist with years of experience. Currently, the advent of Android platform has enabled stakeholders in biodiversity to harness the ubiquity of this platform and create various types of mobile application or "apps" for use in biodiversity research and conservation. However, there is an apparent lack of application devoted to the identification in herpetofauna or amphibian science. Amphibians are a large class of animals with many different species still unidentified under this category. Here we describe the development of an app called Amphibian Recognition Android Application (ARAA) to identify frog amphibian species as well as an accompanying field guide. The app has the amphibian taxonomic key which assists the users in easy and rapid species identification, thus facilitating the process of identification and recording of species occurrences in conservation work. We will also present an overview of the application work flow and how it is designed to meet the needs a conservationist. As this application is still in its beta phase, further research is required to improve the application to include tools such automatic geolocation and geotagging, participative sensing via crowdsourcing and automated identification via image capture. We believe that the introduction of this app will create an impetus to the awareness of nature via species identification.

  19. Projected climate impacts for the amphibians of the western hemisphere

    USGS Publications Warehouse

    Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.

    2010-01-01

    Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing

  20. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster

    PubMed Central

    Navrotskaya, V.; Vorobyova, L.; Sharma, H.; Muresanu, D.; Summergrad, P.

    2015-01-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL’s mechanisms of action remain unclear. Involvement of tryptophan (TRP)–kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP–KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications. PMID:25798213

  1. Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp.

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Yamamoto, H.; Nonaka, M.

    2008-06-01

    Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248 . These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two-four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight-ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.

  2. Initial characterization of receptors for molecules that induce the settlement and metamorphosis of Haliotis rufescens larvae

    SciTech Connect

    Trapido-Rosenthal, H.G.

    1985-01-01

    Larvae of the marine gastropod mollusc Haliotis refescens are induced to undergo metamorphosis by ..gamma..-aminobutyric acid (GABA) and stereochemically related compounds. The most potent of these inducers is (-)-..beta..-(parachlorophenyl)-GABA (baclofen). The inductive response exhibits positive cooperatively, and is subject to both facilitation (up-regulation) and habituation (down-regulation). Facilitation is brought about by diamino acids such as L-diaminopropionic acid (L-DAPA), and is characterized by decreased Hill coefficients (n/sub H/) and concentration requirements (EC/sub 50/) for inducers. Facilitation does not require the simultaneous presence of facilitating and inducing compounds, and the facilitated state is persistent. Larvae are capable of being up-regulated 2 days before they are capable of undergoing settlement and metamorphosis. Habituation can be brought about by exposure of pre-competent larvae to GABA 4 days prior to the attainment of competence; it is then slowly reversible. Larvae specifically bind tritiated (-)-baclofen in a manner that is saturable with both increasing time of exposure of larvae to, and with increasing concentration of, this compound. Specific binding can be competed for by unlabeled GABA-mimetic inducing molecules; the order of effectiveness of these molecules as competitors for specific binding correlates well with their effectiveness as inducers of metamorphosis. Facilitation of larvae by exposure to diamino acids does not alter their specific binding of tritiated (-)-baclofen. It is concluded from these findings that Haliotis larvae possess receptors for GABA-mimetic compounds.

  3. Evidence for early metamorphosis of sea lampreys in the Chippewa River, Michigan

    USGS Publications Warehouse

    Morkert, Sidney B.; Swink, William D.; Seelye, James G.

    1998-01-01

    We determined age at metamorphosis to the juvenile or parasitic phase for sea lampreysPetromyzon marinus in a highly productive Great Lakes tributary to determine if the age at metamorphosis was earlier than expected. Ages determined from statoliths, a structure analogous to otoliths in teleost fishes, indicated that many sea lampreys collected from the Chippewa River, Michigan, in September 1995 were undergoing metamorphosis at age 2, at least 1 year earlier than previously observed. In all, 141 newly metamorphosed lampreys were examined, and 81% were estimated to be only 2 years old. The length-frequency distribution of newly metamorphosed sea lampreys in the Chippewa River also indicated the possibility of metamorphsis at age 2, but to a lesser extent than indicated by statolith aging. The Chippewa River is a highly productive stream that might require more frequent treatment than previously suspected. More careful examination of other highly productive streams is needed to determine if, and to what extent, sea lampreys metamorphose at age 2 in the Chippewa River and other Great Lakes tributaries.

  4. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi

    PubMed Central

    Ventura, Tomer; Fitzgibbon, Quinn P.; Battaglene, Stephen C.; Elizur, Abigail

    2015-01-01

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation. PMID:26311524

  5. Larger Body Size at Metamorphosis Enhances Survival, Growth and Performance of Young Cane Toads (Rhinella marina)

    PubMed Central

    Cabrera-Guzmán, Elisa; Crossland, Michael R.; Brown, Gregory P.; Shine, Richard

    2013-01-01

    Body size at metamorphosis is a key trait in species (such as many anurans) with biphasic life-histories. Experimental studies have shown that metamorph size is highly plastic, depending upon larval density and environmental conditions (e.g. temperature, food supply, water quality, chemical cues from conspecifics, predators and competitors). To test the hypothesis that this developmental plasticity is adaptive, or to determine if inducing plasticity can be used to control an invasive species, we need to know whether or not a metamorphosing anuran’s body size influences its subsequent viability. For logistical reasons, there are few data on this topic under field conditions. We studied cane toads (Rhinella marina) within their invasive Australian range. Metamorph body size is highly plastic in this species, and our laboratory studies showed that larger metamorphs had better locomotor performance (both on land and in the water), and were more adept at catching and consuming prey. In mark-recapture trials in outdoor enclosures, larger body size enhanced metamorph survival and growth rate under some seasonal conditions. Larger metamorphs maintained their size advantage over smaller siblings for at least a month. Our data support the critical but rarely-tested assumption that all else being equal, larger body size at metamorphosis is likely to enhance an individual’s long term viability. Thus, manipulations to reduce body size at metamorphosis in cane toads may help to reduce the ecological impact of this invasive species. PMID:23922930

  6. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis

    PubMed Central

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-01-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322

  7. Scenarios for acceleration in fish development and the role of metamorphosis

    NASA Astrophysics Data System (ADS)

    Kooijman, S. A. L. M.; Pecquerie, L.; Augustine, S.; Jusup, M.

    2011-11-01

    We compare various alternative explanations of why embryo development is sometimes slow relative to juvenile and adult development on the basis of the standard Dynamic Energy Budget (DEB) model and make the comparison with avian altricial versus precocial development. We discuss the role of the energy investment ratio, which combines four different aspects of DEBs: allocation, assimilation, mobilisation and costs for structure. We show how this ratio affects the morphology of growth curves: the ratio of the slopes at start and birth during embryonic growth, as well as the von Bertalanffy time as function of ultimate length during post-embryonic growth. We propose an extension of the standard DEB model that combines a Gompertz (i.e. exponential) start with a von Bertalanffy 'tail' with a smooth transition; a combination that has been applied frequently in fisheries research and here given a mechanistic significance. Implications are that a slow embryonic development is combined with a fast post-metamorphic one and that parameters at metamorphosis depend on feeding history prior to metamorphosis. Identical individuals, in terms of parameter values and amounts of reserve and structure, will become permanently different when they experience different (local) environments, even if they experience identical environments after metamorphosis. This might explain part of the parameter variation amongst individuals.

  8. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi.

    PubMed

    Ventura, Tomer; Fitzgibbon, Quinn P; Battaglene, Stephen C; Elizur, Abigail

    2015-01-01

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation. PMID:26311524

  9. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  10. Influence of natural settlement cues on the metamorphosis of fiddler crab megalopae, Uca vocator (Decapoda: Ocypodidae).

    PubMed

    Simith, Darlan J B; Diele, Karen; Abrunhosa, Fernando A

    2010-06-01

    Megalopae of many decapod crab species accelerate their development time to metamorphosis (TTM) when exposed to natural physical and/or chemical cues characteristic of the parental habitat. In the present study, the influence of natural settlement cues on the moulting rates and development TTM in megalopae of the fiddler crab Uca vocator was investigated. The effects of mud from different habitats (including well-preserved and degraded-polluted mangrove habitats) and conspecific adult 'odours' (seawater conditioned with crabs) on the induction of metamorphosis were compared with filtered pure seawater (control). 95 to 100% of the megalopae successfully metamorphosed to first juvenile crab stage in all treatments, including the control. However, the development TTM differed significantly among treatments. Settlement cues significantly shortened development, while moulting was delayed in their absence. The fact that megalopae responded to metamorphosis-stimulating cues originating from both adult and non-adult benthic habitats demonstrates that settlement in this species may occur in a wider range of habitats within the mangrove ecosystem, including impacted areas. PMID:20563412

  11. Phase-based metamorphosis of diffusion lesion in relation to perfusion values in acute ischemic stroke.

    PubMed

    Rekik, Islem; Allassonnière, Stéphanie; Luby, Marie; Carpenter, Trevor K; Wardlaw, Joanna M

    2015-01-01

    Examining the dynamics of stroke ischemia is limited by the standard use of 2D-volume or voxel-based analysis techniques. Recently developed spatiotemporal models such as the 4D metamorphosis model showed promise for capturing ischemia dynamics. We used a 4D metamorphosis model to evaluate acute ischemic stroke lesion morphology from the acute diffusion-weighted imaging (DWI) to final T2-weighted imaging (T2-w). In 20 representative patients, we metamorphosed the acute lesion to subacute lesion to final infarct. From the DWI lesion deformation maps we identified dynamic lesion areas and examined their association with perfusion values inside and around the lesion edges, blinded to reperfusion status. We then tested the model in ten independent patients from the STroke Imaging Repository (STIR). Perfusion values varied widely between and within patients, and were similar in contracting and expanding DWI areas in many patients in both datasets. In 25% of patients, the perfusion values were higher in DWI-contracting than DWI-expanding areas. A similar wide range of perfusion values and ongoing expansion and contraction of the DWI lesion were seen subacutely. There was more DWI contraction and less expansion in patients who received thrombolysis, although with widely ranging perfusion values that did not differ. 4D metamorphosis modeling shows promise as a method to improve use of multimodal imaging to understand the evolution of acute ischemic tissue towards its fate. PMID:26288755

  12. Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis.

    PubMed

    Pablos, María Victoria; Jiménez, María Ángeles; San Segundo, Laura; Martini, Federica; Beltrán, Eulalia; Fernández, Carlos

    2016-06-01

    The compound 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB; galaxolide, Chemical Abstracts Service number 1222-05-5) is a synthetic musk used extensively as a fragrance in many consumer products and classified as an emerging pollutant. The ecotoxicological information available for HHCB addresses exposure via water, but this compound is frequently adsorbed into particulate matter. The goal of the present study was to assess the effects of dietary exposure to several environmentally relevant HHCB concentrations adsorbed in food during Xenopus laevis metamorphosis. The authors sought to determine if such exposure to this synthetic musk resulted in histological changes in the thyroid gland in conjunction with changes in development (staging, timing to metamorphosis), body weight, and length. Developmental acceleration on day 14, together with hypertrophy of the thyroid follicular epithelium in tadpoles, suggested a possible agonistic effect of HHCB, which would have been compensated after metamorphosis by regulatory mechanisms to maintain homeostasis. Further research into the potential thyroid-related mechanisms of action of HHCB should be conducted. Environ Toxicol Chem 2016;35:1428-1435. © 2015 SETAC. PMID:26472276

  13. Ontogenic and ecological control of metamorphosis onset in a carapid fish, Carapus homei: experimental evidence from vertebra and otolith comparisons.

    PubMed

    Parmentier, Eric; Lecchini, David; Lagardere, Francoise; Vandewalle, Pierre

    2004-08-01

    In Carapus homei, reef colonisation is associated with a penetration inside a sea cucumber followed by heavy transformations during which the length of the fish is reduced by 60%. By comparing vertebral axis to otolith ontogenetic changes, this study aimed (i) to specify the events linked to metamorphosis, and (ii) to establish to what extent these fish have the ability to delay it. Different larvae of C. homei were caught when settling on the reef and kept in different experimental conditions for at least 7 days and up to 21 days: darkness or natural light conditions, presence of sea cucumber or not, and food deprivation or not. Whatever the nutritional condition, a period of darkness seems sufficient to initiate metamorphosis. Twenty-one days in natural light conditions delayed metamorphosis, whereas the whole metamorphosis process is the fastest (15 days) for larvae living in sea cucumbers. Whether the metamorphosis was initiated or not, otoliths were modified with the formation of a transition zone, whose structure varied depending on the experimental conditions. At day 21, larvae maintained in darkness had an otolith transition zone with more increments (around 80), albeit wider than those (more or less 21) of individuals kept under natural lighting. These differences in otolith growth could indicate an increased incorporation rate of released metabolites by metamorphosing larvae. However, the presence of a transition zone in delayed-metamorphosis larvae suggests that these otolith changes record the endogenously-induced onset of metamorphosis, whereas body transformations seem to be modulated by the environmental conditions of settlement. PMID:15286941

  14. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis

    PubMed Central

    2014-01-01

    Background During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. Results We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis

  15. Development, organization, and remodeling of phoronid muscles from embryo to metamorphosis (Lophotrochozoa: Phoronida)

    PubMed Central

    2013-01-01

    Background The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. Results In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Conclusion Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids

  16. The Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on the Mortality and Growth of Two Amphibian Species (Xenopus laevis and Pseudacris triseriata)

    PubMed Central

    Collier, Alex; Orr, Lowell; Morris, Julie; Blank, James

    2008-01-01

    We observed a slight drop in the growth of Xenopus laevis and Pseudacris triseriata larvae following acute exposure (24–48 h) during egg development to three concentrations of TCDD (0.3, 3.0, 30.0 μg/l). Our exposure protocol was modeled on a previous investigation that was designed to mimic the effects of maternal deposition of TCDD. The doses selected were consistent with known rates of maternal transfer between mother and egg using actual adult body burdens from contaminated habitats. Egg and embryonic mortality immediately following exposure increased only among 48 h X. laevis treatments. Control P. triseriata and X. laevis completed metamorphosis more quickly than TCDD-treated animals. The snout-vent length of recently transformed P. triseriata did not differ between treatments although controls were heavier than high-dosed animals. Likewise, the snout-vent length and weight of transformed X. laevis did not differ between control and TCDD treatments. These findings provide additional evidence that amphibians, including P. triseriata and X. laevis are relatively insensitive to acute exposure to TCDD during egg and embryonic development. Although the concentrations selected for this study were relatively high, they were not inconsistent with our current understanding of bioaccumulation via maternal transfer. PMID:19151431

  17. Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine.

    PubMed

    Zocche, Jairo José; Damiani, Adriani Paganini; Hainzenreder, Giana; Mendonça, Rodrigo Ávila; Peres, Poliana Bernardo; Santos, Carla Eliete Iochims Dos; Debastiani, Rafaela; Dias, Johnny Ferraz; Andrade, Vanessa Moraes de

    2013-07-01

    The aims of the study were to determine the heavy metal content in the tissues of Hypsiboas faber from a coal mining area and to compare the DNA damage in the blood cells of these animals with that of animals living in an unpolluted area. The heavy metal content was detected according to the technique of Particle-Induced X-ray Emission (PIXE) and the DNA damage was assessed by the Comet assay. Our results reveal that the specimens of H. faber collected from the coal mining area exhibited elements of order Fe>Cu>Al>Zn>Rb>Mn>Br, independently of the organ. The values of Comet assay parameters (DNA damage index and DNA damage frequency) were significantly higher in specimens collected from the coal mining area than in the reference animals. Our study concludes that the coal mining residues are genotoxic to amphibians and may have adverse effects on soil, water, vegetation and wild animals. PMID:23619523

  18. Assessment of environmental DNA for detecting presence of imperiled aquatic amphibian species in isolated wetlands

    USGS Publications Warehouse

    Mckee, Anna; Calhoun, Daniel L.; Barichivich, William J.; Spear, Stephen F.; Goldberg, Caren S.; Glenn, Travis C

    2015-01-01

    Environmental DNA (eDNA) is an emerging tool that allows low-impact sampling for aquatic species by isolating DNA from water samples and screening for DNA sequences specific to species of interest. However, researchers have not tested this method in naturally acidic wetlands that provide breeding habitat for a number of imperiled species, including the frosted salamander (Ambystoma cingulatum), reticulated flatwoods salamanders (Ambystoma bishopi), striped newt (Notophthalmus perstriatus), and gopher frog (Lithobates capito). Our objectives for this study were to develop and optimize eDNA survey protocols and assays to complement and enhance capture-based survey methods for these amphibian species. We collected three or more water samples, dipnetted or trapped larval and adult amphibians, and conducted visual encounter surveys for egg masses for target species at 40 sites on 12 different longleaf pine (Pinus palustris) tracts. We used quantitative PCRs to screen eDNA from each site for target species presence. We detected flatwoods salamanders at three sites with eDNA but did not detect them during physical surveys. Based on the sample location we assumed these eDNA detections to indicate the presence of frosted flatwoods salamanders. We did not detect reticulated flatwoods salamanders. We detected striped newts with physical and eDNA surveys at two wetlands. We detected gopher frogs at 12 sites total, three with eDNA alone, two with physical surveys alone, and seven with physical and eDNA surveys. We detected our target species with eDNA at 9 of 11 sites where they were present as indicated from traditional surveys and at six sites where they were not detected with traditional surveys. It was, however, critical to use at least three water samples per site for eDNA. Our results demonstrate eDNA surveys can be a useful complement to traditional survey methods for detecting imperiled pond-breeding amphibians. Environmental DNA may be particularly useful in situations

  19. An amphibian model for studies of developmental reproductive toxicity.

    PubMed

    Berg, Cecilia

    2012-01-01

    The developmental programming of the reproductive system is vulnerable to chemical exposure. It is therefore important to evaluate long-term consequences of early life-stage exposure to endocrine disrupting chemicals. The African clawed frog Xenopus tropicalis has several characteristics which facilitates studies of developmental reproductive toxicity. Here, I present a X. tropicalis test protocol, including study design, exposure regime, and endpoints for chemical disruption of sex differentiation, reproductive organ development, the thyroxin-regulated metamorphosis, oestrogen synthesis (activity of the CYP19 aromatase enzyme), and fertility. PMID:22669660

  20. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites.

    PubMed

    Loudon, Andrew H; Holland, Jessica A; Umile, Thomas P; Burzynski, Elizabeth A; Minbiole, Kevin P C; Harris, Reid N

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd

  1. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Liu, Peng; Stajich, Jason E

    2015-04-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. PMID:25819009

  2. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites

    PubMed Central

    Loudon, Andrew H.; Holland, Jessica A.; Umile, Thomas P.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; Harris, Reid N.

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd

  3. Toxicity of road salt to Nova Scotia amphibians.

    PubMed

    Collins, Sara J; Russell, Ronald W

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC(50)) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. PMID:18684543

  4. Early 1900s Detection of Batrachochytrium dendrobatidis in Korean Amphibians

    PubMed Central

    Fong, Jonathan J.; Cheng, Tina L.; Bataille, Arnaud; Pessier, Allan P.; Waldman, Bruce; Vredenburg, Vance T.

    2015-01-01

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is a major conservation concern because of its role in decimating amphibian populations worldwide. We used quantitative PCR to screen 244 museum specimens from the Korean Peninsula, collected between 1911 and 2004, for the presence of Bd to gain insight into its history in Asia. Three specimens of Rugosa emeljanovi (previously Rana or Glandirana rugosa), collected in 1911 from Wonsan, North Korea, tested positive for Bd. Histology of these positive specimens revealed mild hyperkeratosis – a non-specific host response commonly found in Bd-infected frogs – but no Bd zoospores or zoosporangia. Our results indicate that Bd was present in Korea more than 100 years ago, consistent with hypotheses suggesting that Korean amphibians may be infected by endemic Asian Bd strains. PMID:25738656

  5. Early 1900 s detection of Batrachochytrium dendrobatidis in Korean amphibians.

    PubMed

    Fong, Jonathan J; Cheng, Tina L; Bataille, Arnaud; Pessier, Allan P; Waldman, Bruce; Vredenburg, Vance T

    2015-01-01

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is a major conservation concern because of its role in decimating amphibian populations worldwide. We used quantitative PCR to screen 244 museum specimens from the Korean Peninsula, collected between 1911 and 2004, for the presence of Bd to gain insight into its history in Asia. Three specimens of Rugosa emeljanovi (previously Rana or Glandirana rugosa), collected in 1911 from Wonsan, North Korea, tested positive for Bd. Histology of these positive specimens revealed mild hyperkeratosis - a non-specific host response commonly found in Bd-infected frogs - but no Bd zoospores or zoosporangia. Our results indicate that Bd was present in Korea more than 100 years ago, consistent with hypotheses suggesting that Korean amphibians may be infected by endemic Asian Bd strains. PMID:25738656

  6. Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona).

    PubMed

    Gower, David J; Doherty-Bone, Thomas; Loader, Simon P; Wilkinson, Mark; Kouete, Marcel T; Tapley, Benjamin; Orton, Frances; Daniel, Olivia Z; Wynne, Felicity; Flach, Edmund; Müller, Hendrik; Menegon, Michele; Stephen, Ian; Browne, Robert K; Fisher, Mathew C; Cunningham, Andrew A; Garner, Trenton W J

    2013-06-01

    Batrachochytrium dendrobatidis (Bd) is commonly termed the 'amphibian chytrid fungus' but thus far has been documented to be a pathogen of only batrachian amphibians (anurans and caudatans). It is not proven to infect the limbless, generally poorly known, and mostly soil-dwelling caecilians (Gymnophiona). We conducted the largest qPCR survey of Bd in caecilians to date, for more than 200 field-swabbed specimens from five countries in Africa and South America, representing nearly 20 species, 12 genera, and 8 families. Positive results were recovered for 58 specimens from Tanzania and Cameroon (4 families, 6 genera, 6+ species). Quantities of Bd were not exceptionally high, with genomic equivalent (GE) values of 0.052-17.339. In addition, we report the first evidence of lethal chytridiomycosis in caecilians. Mortality in captive (wild-caught, commercial pet trade) Geotrypetes seraphini was associated with GE scores similar to those we detected for field-swabbed, wild animals. PMID:23677560

  7. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    SciTech Connect

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

  8. A field guide to amphibian larvae and eggs of Minnesota, Wisconsin, and Iowa

    USGS Publications Warehouse

    Parmelee, J.R.; Knutson, M.G.; Lyon, J.E.

    2002-01-01

    Apparent worldwide declines in amphibian populations (Pechmann and Wake 1997) have stimulated interest in amphibians as bioindicators of the health of ecosystems. Because we have little information on the population status of many species, there is interest by public and private land management agencies in monitoring amphibian populations. Amphibian egg and larval surveys are established methods of surveying pond-breeding amphibians. Adults may be widely dispersed across the landscape, but eggs and larvae are confined to the breeding site during a specific season of the year. Also, observations of late-stage larvae or metamorphs are evidence of successful reproduction, which is an important indicator of the viability of the population. The goal of this guide is to help students, natural resources personnel, and biologists identify eggs and larval stages of amphibians in the field without the aid of a microscope.

  9. Salmonella enterica serotype Javiana infections associated with amphibian contact, Mississippi, 2001.

    PubMed Central

    Srikantiah, P.; Lay, J. C.; Hand, S.; Crump, J. A.; Campbell, J.; Van Duyne, M. S.; Bishop, R.; Middendor, R.; Currier, M.; Mead, P. S.; Mølbak, K.

    2004-01-01

    Salmonella Javiana is a Salmonella serotype that is restricted geographically in the United States to the Southeast. During the summer of 2001, the number of reported S. Javiana infections in Mississippi increased sevenfold. To identify sources of infection, we conducted a case-control study, defining a case as an infection with S. Javiana between August and September in a Mississippi resident. We enrolled 55 cases and 109 controls. Thirty (55%) case patients reported exposure to amphibians, defined as owning, touching, or seeing an amphibian on one's property, compared with 30 (29%) controls (matched odds ratio 2.8, P=0.006). Contact with amphibians and their environments may be a risk factor for human infection with S. Javiana. The geographic pattern of S. Javiana infections in the United States mimics the distribution of certain amphibian species in the Southeast. Public health officials should consider amphibians as potential sources of salmonellosis, and promote hand washing after contact with amphibians. PMID:15061502

  10. Evaluating the links between climate, disease spread, and amphibian declines

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Romansic, John M.; McCallum, Hamish; Hudson, Peter J.

    2008-01-01

    Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to explain these declines. Positive correlations between global warming and Bd-related declines sparked the chytrid-thermal-optimum hypothesis, which proposes that global warming increased cloud cover in warm years that drove the convergence of daytime and nighttime temperatures toward the thermal optimum for Bd growth. In contrast, the spatiotemporal-spread hypothesis states that Bd-related declines are caused by the introduction and spread of Bd, independent of climate change. We provide a rigorous test of these hypotheses by evaluating (i) whether cloud cover, temperature convergence, and predicted temperature-dependent Bd growth are significant positive predictors of amphibian extinctions in the genus Atelopus and (ii) whether spatial structure in the timing of these extinctions can be detected without making assumptions about the location, timing, or number of Bd emergences. We show that there is spatial structure to the timing of Atelopus spp. extinctions but that the cause of this structure remains equivocal, emphasizing the need for further molecular characterization of Bd. We also show that the reported positive multi-decade correlation between Atelopus spp. extinctions and mean tropical air temperature in the previous year is indeed robust, but the evidence that it is causal is weak because numerous other variables, including regional banana and beer production, were better predictors of these extinctions. Finally, almost all of our findings were opposite to the predictions of the chytrid-thermal-optimum hypothesis. Although climate change is likely to play an important role in worldwide amphibian declines

  11. Amphibian Development in the Virtual Absence of Gravity

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Black, Steven D.; Wassersug, Richard J.

    1995-01-01

    To test whether gravity is required for normal amphibian development, Xenopus laevis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate that a vertebrate can ovulate in the virtual absence of gravity and that the eggs can develop to a free-living stage.

  12. Evaluating the links between climate, disease spread, and amphibian declines.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Romansic, John M; McCallum, Hamish; Hudson, Peter J

    2008-11-11

    Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to explain these declines. Positive correlations between global warming and Bd-related declines sparked the chytrid-thermal-optimum hypothesis, which proposes that global warming increased cloud cover in warm years that drove the convergence of daytime and nighttime temperatures toward the thermal optimum for Bd growth. In contrast, the spatiotemporal-spread hypothesis states that Bd-related declines are caused by the introduction and spread of Bd, independent of climate change. We provide a rigorous test of these hypotheses by evaluating (i) whether cloud cover, temperature convergence, and predicted temperature-dependent Bd growth are significant positive predictors of amphibian extinctions in the genus Atelopus and (ii) whether spatial structure in the timing of these extinctions can be detected without making assumptions about the location, timing, or number of Bd emergences. We show that there is spatial structure to the timing of Atelopus spp. extinctions but that the cause of this structure remains equivocal, emphasizing the need for further molecular characterization of Bd. We also show that the reported positive multi-decade correlation between Atelopus spp. extinctions and mean tropical air temperature in the previous year is indeed robust, but the evidence that it is causal is weak because numerous other variables, including regional banana and beer production, were better predictors of these extinctions. Finally, almost all of our findings were opposite to the predictions of the chytrid-thermal-optimum hypothesis. Although climate change is likely to play an important role in worldwide amphibian declines

  13. Amphibian development in the virtual absence of gravity.

    PubMed Central

    Souza, K A; Black, S D; Wassersug, R J

    1995-01-01

    To test whether gravity is required for normal amphibian development, Xenopus laevis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate that a vertebrate can ovulate in the virtual absence of gravity and that the eggs can develop to a free-living stage. Images Fig. 1 Fig. 2 PMID:7892210

  14. On the origin of and phylogenetic relationships among living amphibians

    PubMed Central

    Zardoya, Rafael; Meyer, Axel

    2001-01-01

    The phylogenetic relationships among the three orders of modern amphibians (Caudata, Gymnophiona, and Anura) have been estimated based on both morphological and molecular evidence. Most morphological and paleontological studies of living and fossil amphibians support the hypothesis that salamanders and frogs are sister lineages (the Batrachia hypothesis) and that caecilians are more distantly related. Previous interpretations of molecular data based on nuclear and mitochondrial rRNA sequences suggested that salamanders and caecilians are sister groups to the exclusion of frogs. In an attempt to resolve this apparent conflict, the complete mitochondrial genomes of a salamander (Mertensiella luschani) and a caecilian (Typhlonectes natans) were determined (16,656 and 17,005 bp, respectively) and compared with previously published sequences from a frog (Xenopus laevis) and several other groups of vertebrates. Phylogenetic analyses of the mitochondrial data supported with high bootstrap values the monophyly of living amphibians with respect to other living groups of tetrapods, and a sister group relationship of salamanders and frogs. The lack of phylogenetically informative sites in the previous rRNA data sets (because of its shorter size and higher among-site rate variation) likely explains the discrepancy between our results and those based on previous molecular data. Strong support of the Batrachia hypothesis from both molecule- and morphology-based studies provides a robust phylogenetic framework that will be helpful to comparative studies among the three living orders of amphibians and will permit better understanding of the considerably divergent vertebral, brain, and digit developmental patterns found in frogs and salamanders. PMID:11390961

  15. Spemann's organizer and self-regulation in amphibian embryos.

    PubMed

    De Robertis, Edward M

    2006-04-01

    In 1924, Spemann and Mangold demonstrated the induction of Siamese twins in transplantation experiments with salamander eggs. Recent work in amphibian embryos has followed their lead and uncovered that cells in signalling centres that are located at the dorsal and ventral poles of the gastrula embryo communicate with each other through a network of secreted growth-factor antagonists, a protease that degrades them, a protease inhibitor and bone-morphogenic-protein signals. PMID:16482093

  16. Spemann's organizer and self-regulation in amphibian embryos

    PubMed Central

    De Robertis, Edward M.

    2008-01-01

    In 1924, Spemann and Mangold demonstrated the induction of Siamese twins in transplantation experiments with salamander eggs. Recent work in amphibian embryos has followed their lead and uncovered that cells in signalling centres that are located at the dorsal and ventral poles of the gastrula embryo communicate with each other through a network of secreted growth-factor antagonists, a protease that degrades them, a protease inhibitor and bone-morphogenic-protein signals. PMID:16482093

  17. On the origin of and phylogenetic relationships among living amphibians.

    PubMed

    Zardoya, R; Meyer, A

    2001-06-19

    The phylogenetic relationships among the three orders of modern amphibians (Caudata, Gymnophiona, and Anura) have been estimated based on both morphological and molecular evidence. Most morphological and paleontological studies of living and fossil amphibians support the hypothesis that salamanders and frogs are sister lineages (the Batrachia hypothesis) and that caecilians are more distantly related. Previous interpretations of molecular data based on nuclear and mitochondrial rRNA sequences suggested that salamanders and caecilians are sister groups to the exclusion of frogs. In an attempt to resolve this apparent conflict, the complete mitochondrial genomes of a salamander (Mertensiella luschani) and a caecilian (Typhlonectes natans) were determined (16,656 and 17,005 bp, respectively) and compared with previously published sequences from a frog (Xenopus laevis) and several other groups of vertebrates. Phylogenetic analyses of the mitochondrial data supported with high bootstrap values the monophyly of living amphibians with respect to other living groups of tetrapods, and a sister group relationship of salamanders and frogs. The lack of phylogenetically informative sites in the previous rRNA data sets (because of its shorter size and higher among-site rate variation) likely explains the discrepancy between our results and those based on previous molecular data. Strong support of the Batrachia hypothesis from both molecule- and morphology-based studies provides a robust phylogenetic framework that will be helpful to comparative studies among the three living orders of amphibians and will permit better understanding of the considerably divergent vertebral, brain, and digit developmental patterns found in frogs and salamanders. PMID:11390961

  18. Engineering a future for amphibians under climate change

    USGS Publications Warehouse

    Shoo, L.P.; Olson, D.H.; Mcmenamin, S.K.; Murray, K.A.; Van Sluys, M.; Donnelly, M.A.; Stratford, D.; Terhivuo, J.; Merino-Viteri, A.; Herbert, S.M.; Bishop, P.J.; Corn, P.S.; Dovey, L.; Griffiths, R.A.; Lowe, K.; Mahony, M.; McCallum, H.; Shuker, J.D.; Simpkins, C.; Skerratt, L.F.; Williams, S.E.; Hero, J.-M.

    2011-01-01

    1. Altered global climates in the 21st century pose serious threats for biological systems and practical actions are needed to mount a response for species at risk. 2. We identify management actions from across the world and from diverse disciplines that are applicable to minimizing loss of amphibian biodiversity under climate change. Actions were grouped under three thematic areas of intervention: (i) installation of microclimate and microhabitat refuges; (ii) enhancement and restoration of breeding sites; and (iii) manipulation of hydroperiod or water levels at breeding sites. 3. Synthesis and applications. There are currently few meaningful management actions that will tangibly impact the pervasive threat of climate change on amphibians. A host of potentially useful but poorly tested actions could be incorporated into local or regional management plans, programmes and activities for amphibians. Examples include: installation of irrigation sprayers to manipulate water potentials at breeding sites; retention or supplementation of natural and artificial shelters (e.g. logs, cover boards) to reduce desiccation and thermal stress; manipulation of canopy cover over ponds to reduce water temperature; and, creation of hydrologoically diverse wetland habitats capable of supporting larval development under variable rainfall regimes. We encourage researchers and managers to design, test and scale up new initiatives to respond to this emerging crisis.

  19. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians.

    PubMed

    Scheele, Ben C; Hunter, David A; Grogan, Laura F; Berger, Lee; Kolby, Jon E; McFadden, Michael S; Marantelli, Gerry; Skerratt, Lee F; Driscoll, Don A

    2014-10-01

    Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large-scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease-free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease-associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species. PMID:24975971

  20. Molecular characterization of iridoviruses isolated from sympatric amphibians and fish

    USGS Publications Warehouse

    Mao, J.; Green, D.E.; Fellers, G.; Chinchar, V.G.

    1999-01-01

    Iridoviruses infect invertebrates (primarily insects and crustaceans) and ectothermic vertebrates (fish, amphibians, and reptiles). Identical, or nearly identical viruses, have been isolated from different animals within the same taxonomic class, indicating that infection by a given virus is not limited to a single species. Although inter-class infections have been documented following experimental infection with vertebrate iridoviruses, it is not clear whether such infections occur in nature. Here we report the isolation of apparently identical iridoviruses from wild sympatric fish (the threespine stickleback, Gasterostelus aculeatus) and amphibians (the red-legged frog, Rana aurora). Viruses isolated from sticklebacks (stickleback virus, SBV) and from a red-legged frog tadpole (tadpole virus 2, TV2) replicated in fathead minnow (FHM) cells and synthesized proteins which co-migrated with those of frog virus 3 (FV3). Following restriction endonuclease digestion of viral DNA with Hind III and Xba I, gel analysis showed that the profiles of SBV and TV2 were identical to each other and distinct from FV3. Using oligonucleotide primers specific for a highly conserved region of the iridovirus major capsid protein, an not, vert, ~500 nucleotide DNA fragment was amplified from SBV and TV2. Sequence analysis showed that within this 500 nucleotide region SBV and TV2 were identical to each other and to FV3. Taken together these results provide the first evidence that iridoviruses naturally infect animals belonging to different taxonomic classes, and strengthen the suggestion that fish may serve as a reservoir for amphibian viruses or vice versa.

  1. Optimizing protection efforts for amphibian conservation in Mediterranean landscapes

    NASA Astrophysics Data System (ADS)

    García-Muñoz, Enrique; Ceacero, Francisco; Carretero, Miguel A.; Pedrajas-Pulido, Luis; Parra, Gema; Guerrero, Francisco

    2013-05-01

    Amphibians epitomize the modern biodiversity crisis, and attract great attention from the scientific community since a complex puzzle of factors has influence on their disappearance. However, these factors are multiple and spatially variable, and declining in each locality is due to a particular combination of causes. This study shows a suitable statistical procedure to determine threats to amphibian species in medium size administrative areas. For our study case, ten biological and ecological variables feasible to affect the survival of 15 amphibian species were categorized and reduced through Principal Component Analysis. The principal components extracted were related to ecological plasticity, reproductive potential, and specificity of breeding habitats. Finally, the factor scores of species were joined in a presence-absence matrix that gives us information to identify where and why conservation management are requires. In summary, this methodology provides the necessary information to maximize benefits of conservation measures in small areas by identifying which ecological factors need management efforts and where should we focus them on.

  2. Pronephric duct extension in amphibian embryos: migration and other mechanisms.

    PubMed

    Drawbridge, Julie; Meighan, Christopher M; Lumpkins, Rebecca; Kite, Mary E

    2003-01-01

    Initiation of excretory system development in all vertebrates requires (1) delamination of the pronephric and pronephric duct rudiments from intermediate mesoderm at the ventral border of anterior somites, and (2) extension of the pronephric duct to the cloaca. Pronephric duct extension is the central event in nephric system development; the pronephric duct differentiates into the tubule that carries nephric filtrate out of the body and induces terminal differentiation of adult kidneys. Early studies concluded that pronephric ducts formed by means of in situ segregation of pronephric duct tissue from lateral mesoderm ventral to the forming somites; more recent studies highlight caudal migration of the pronephric duct as the major morphogenetic mechanism. The purpose of this review is to provide the historical background on studies of the mechanisms of amphibian pronephric duct extension, to review evidence showing that different amphibians perform pronephric duct morphogenesis in different ways, and to suggest future studies that may help illuminate the molecular basis of the mechanisms that have evolved in amphibians to extend the pronephric duct to the cloaca. PMID:12508219

  3. Independent evolution of the sexes promotes amphibian diversification

    PubMed Central

    De Lisle, Stephen P.; Rowe, Locke

    2015-01-01

    Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models—that the sexes share a common adaptive landscape—leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation. PMID:25694616

  4. Synergism between UV-B radiation and pathogen magnifies amphibian embryo mortality in nature

    SciTech Connect

    Kiesecker, J.M.; Blaustein, R.

    1995-11-21

    Previous research has shown that amphibians have differential sensitivity to ultraviolet-B (UV-B) radiation. In some species, ambient levels of UV-B radiation cause embryonic mortality in nature. The detrimental effects of UV-B alone or with other agents may ultimately affect amphibians at the population level. Here, we experimentally demonstrate a synergistic effect between UV-B radiation and a pathogenic fungus in the field that increases the mortality of amphibian embryos compared with either factor alone. Studies investigating single factors for causes of amphibian egg mortality or population declines may not reveal the complex factors involved in declines.

  5. Amphibians and disease: Implications for conservation in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Corn, P.S.

    2007-01-01

    The decline of amphibian populations is a world-wide phenomenon that has received increasing attention since about 1990. In 2004, the World Conservation Union’s global amphibian assessment concluded that 48% of the world’s 5,743 described amphibian species were in decline, with 32% considered threatened (Stuart et al. 2004). Amphibian declines are a significant issue in the western United States, where all native species of frogs in the genus Rana and many toads in the genus Bufo are at risk, particularly those that inhabit mountainous areas (Corn 2003a,b; Bradford 2005).

  6. Perspectives from the Aldo Leopold Wilderness Research Institute: Amphibians and wilderness

    USGS Publications Warehouse

    Corn, Paul Stephen

    2001-01-01

    The decline of amphibian species has emerged as a major global conservation issue in the last decade. Last year, the Department of the Interior (DOI) initiated a major national initiative to detect trends in amphibian populations and research the causes of declines. The program, conducted principally by the U.S. Geological Survey (USGS), emphasizes lands managed by DOI, but collaboration with the Forest Service is encouraged to increase the scope of inference about population trends. Although amphibians are not usually the first group of animals that comes to mind when one thinks of wilderness, conservation of amphibian populations is clearly a wilderness issue.

  7. Developmental Transcriptome Analysis and Identification of Genes Involved in Larval Metamorphosis of the Razor Clam, Sinonovacula constricta.

    PubMed

    Niu, Donghong; Wang, Fei; Xie, Shumei; Sun, Fanyue; Wang, Ze; Peng, Maoxiao; Li, Jiale

    2016-04-01

    The razor clam Sinonovacula constricta is an important commercial species. The deficiency of developmental transcriptomic data is becoming the bottleneck of further researches on the mechanisms underlying settlement and metamorphosis in early development. In this study, de novo transcriptome sequencing was performed for S. constricta at different early developmental stages by using Illumina HiSeq 2000 paired-end (PE) sequencing technology. A total of 112,209,077 PE clean reads were generated. De novo assembly generated 249,795 contigs with an average length of 585 bp. Gene annotation resulted in the identification of 22,870 unigene hits against the NCBI database. Eight unique sequences related to metamorphosis were identified and analyzed using real-time PCR. The razor clam reference transcriptome would provide useful information on early developmental and metamorphosis mechanisms and could be used in the genetic breeding of shellfish. PMID:26921240

  8. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects.

    PubMed

    Ureña, Enric; Manjón, Cristina; Franch-Marro, Xavier; Martín, David

    2014-05-13

    All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis. PMID:24778249

  9. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis

    PubMed Central

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-01-01

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by Decapentaplegic (Gb’Dpp) and Glass-bottom boat/60A (Gb’Gbb) signaling that occurs as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb’myo expression is suppressed, the activation of Gb’jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb’myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5–8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development. PMID:27140602

  10. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    PubMed

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development. PMID:27140602

  11. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.

    PubMed

    Buchholz, Daniel R

    2015-12-15

    Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases of adulthood, including diabetes and cardiovascular disease. Endocrine and molecular mechanisms that regulate perinatal development and that underlie the connections between early life events and adult diseases are not well elucidated. Such mechanisms are difficult to study in uterus-enclosed mammalian embryos because of confounding maternal effects. To elucidate mechanisms of developmental endocrinology in the perinatal period, Xenopus laevis the African clawed frog is a valuable vertebrate model. Frogs and humans have identical hormones which peak at birth and metamorphosis, have conserved hormone receptors and mechanisms of gene regulation, and have comparable roles for hormones in many target organs. Study of molecular and endocrine mechanisms of hormone-dependent development in frogs is advantageous because an extended free-living larval period followed by metamorphosis (1) is independent of maternal endocrine influence, (2) exhibits dramatic yet conserved developmental effects induced by thyroid and glucocorticoid hormones, and (3) begins at a developmental stage with naturally undetectable hormone levels, thereby facilitating endocrine manipulation and interpretation of results. This review highlights the utility of frog metamorphosis to elucidate molecular and endocrine actions, hormone interactions, and endocrine disruption, especially with respect to thyroid hormone. Knowledge from the frog model is expected to provide fundamental insights to aid medical understanding of endocrine disease, stress, and endocrine disruption affecting the perinatal period in humans

  12. The regenerative cells during the metamorphosis in the midgut of bees.

    PubMed

    Martins, Gustavo Ferreira; Neves, Clóvis Andrade; Campos, Lúcio Antonio Oliveira; Serrão, José Eduardo

    2006-01-01

    The midgut epithelium of bees is formed by the digestive cells, responsible for enzyme secretion and nutrient absorption and for small regenerative cells that are placed in nests scattered among the digestive cells. During metamorphosis, the larval midgut epithelium degenerates and a new adult midgut epithelium is built during larval differentiation of regenerative cells. The present work focuses on the midgut epithelial modifications during the post-embryonic development of the stingless bee Melipona quadrifasciata anthidioides worker and the occurrence of regenerative cell proliferation during midgut metamorphosis in order to test the hypothesis that adult midgut epithelium of worker bees results from regenerative cell proliferation during the pupal stage. Regenerative cell proliferation was detected during larval lifespan. Larval aging is followed by an increase in the number and the size of the nests of regenerative cells. Larval epithelium degeneration begins 2 days after the start of defecation process and in this period the nests of regenerative cells are in contact by means of cytoplasmic extension which have many septate desmosomes and gap junctions. The BrdU immunoreactive regenerative cells were found in the prepupae 12 h after BrdU injection, suggesting that regenerative cell population increase during this larval period. Regenerative cell proliferation results in the increase of the regenerative cell population and not in the formation of new digestive cells because the proliferation of regenerative cells would not be enough to reestablish the nests of regenerative cells and at the same time form new adult digestive cells. In this sense the hypothesis that digestive adult cells originate from regenerative cell proliferation during midgut metamorphosis in M. quadrifasciata anthidioides was rejected. PMID:16168658

  13. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  14. Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae

    PubMed Central

    Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  15. Analysis of gene expression in Homarus americanus larvae exposed to sublethal concentrations of endosulfan during metamorphosis.

    PubMed

    Bauer, Megan; Greenwood, Spencer J; Clark, K Fraser; Jackman, Paula; Fairchild, Wayne

    2013-12-01

    Agricultural pesticide runoff has been suspected as the cause of numerous fish kills in rivers throughout Prince Edward Island but the impact on the surrounding marine environment is unknown. Endosulfan, an organochlorine pesticide, is a potent neurotoxin and molt inhibitor used to combat the Colorado potato beetle however it has the potential to affect non-target organisms including the American lobster (Homarus americanus). Metamorphosis is a critical stage of development and the effects of contaminant exposure during this time are largely unknown in lobster. A 14day endosulfan exposure was performed to identify the effects on survival, development and gene expression in lobster larvae during metamorphosis; all of which were predicted to be negatively impacted. The higher endosulfan concentrations resulted in greater mortality and a significant increase in the number of days required to reach metamorphosis in surviving animals. A custom made H. americanus microarray was used for monitoring the changes in expression of 14,592 genes at the termination of the exposure. Genes with >1.5 fold change and identified as being significant at p<0.05 using one-way ANOVA were selected for further analysis. A total of 707 genes were identified as being significantly differentiated, however with only ~40% annotation of the array, the majority of these genes were unknown. Annotated genes of interest were involved in many processes: development, metabolism, immunity and oxidative stress response and gene regulation. Nine genes of interest (histone H1, farnesoic acid O-methyltransferase, cuticle protein, glutathione S-transferase, thioredoxin, NADH dehydrogenase, ecdysone nuclear receptor Fushi tarazu F1 (FTZ-F1), ferritin and ecdysone inducible protein E75 (EIP-E75)) were selected for RT-qPCR validation of the microarray results. The RT-qPCR method was more sensitive than the microarray yet detected similar expression patterns. The two highest endosulfan concentrations resulted

  16. Helicase Assays

    PubMed Central

    Wang, Xin; Li, Jing; Diaz, Jason; You, Jianxin

    2016-01-01

    Helicases are a class of enzymes which are motor proteins using energy derived from ATP hydrolysis to move directionally along a nucliec acid phosphodiester backbone (such as DNA, RNA and DNA-RNA hybrids) and separate two annealed nucleic acid strands. Many cellular processes, such as transcription, DNA replication, recombination and DNA repair involve helicase activity. Here, we provide a protocol to analyze helicase activities in vitro. In this protocol, the DNA helicase protein Merkel cell polyomavirus large T-antigen was expressed in the mammalian cell line HEK293 and immoblized on an IgG resin. The helicase assay is performing while the protein is immoblized on IgG resin.

  17. Angiogenesis Assays.

    PubMed

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  18. AMPHIBIAN OCCURRENCE AND AQUATIC INVADERS IN A CHANGING LANDSCAPE: IMPLICATIONS FOR WETLAND MITIGATION IN THE WILLAMETTE VALLEY, OREGON, USA

    EPA Science Inventory

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon Willamette Valley and used an information theoretic appro...

  19. Dusky-like is required for epidermal pigmentation and metamorphosis in Tribolium castaneum.

    PubMed

    Li, Chengjun; Yun, Xiaopei; Li, Bin

    2016-01-01

    Dusky-like (Dyl) is associated with the morphogenesis of embryonic denticle, adult sensory bristle and wing hair in Drosophila melanogaster. And whether Dyl involved in insect post-embryonic development and its signal transduction are poorly understood. Here, phylogenetic analysis revealed that dyl displayed one-to-one orthologous relationship among insects. In Tribolium castaneum, dyl is abundantly expressed at the late embryonic stage. Tissue-specific expression analysis at the late adult stage illustrated high expression of dyl in the fat body and ovary. Knockdown of dyl resulted in the defects in larval epidermal pigmentation and completely blocked the transitions from larval to pupal and pupal to adult stages of T. castaneum. We further discovered that dyl RNAi phenotypes were phenocopied by blimp-1 or shavenbaby (svb) silencing, and dyl was positively regulated by blimp-1 through svb in T. castaneum. These results suggest that Dyl functions downstream of Blimp-1 through Svb for larval epidermal pigmentation and metamorphosis. Moreover, ftz-f1 was down-regulated after RNA interference (RNAi) suppressing any of those three genes, indicating that Ftz-f1 works downstream of Dyl to mediate the effects of Blimp-1, Svb and Dyl on metamorphosis in T. castaneum. This study provides valuable insights into functions and signaling pathway of insect Dyl. PMID:26829909

  20. Larval rearing, metamorphosis, growth and reproduction of the eolid nudibranch hermissenda crassicornis (eschscholtz, 1831) (gastropoda: opisthobranchia).

    PubMed

    Harrigan, J F; Alkon, D L

    1978-06-01

    1. Hermissenda crassicornis is a subannual nudibranch species that reproduces year-round. 2. There is a significant positive relationship between adult weight, diameter of the egg mass, estimated number of eggs per egg mass, and average number of eggs per capsule. 3. There is a planktonic veliger stage of 34 days minimum at 13 degrees -15 degrees C. 4. Larvae metamorphose on at least three species of hydroids. 5. To develop in reasonable numbers to a state competent to metamorphose veligers require a diet that includes phytoplankton of larger cell size (10-11 microm) than the commonly used Isochrysis and Monochrysis (5 microm). 6. Although Hermissenda feeds on a wide variety of sessile invertebrate species in the ocean, a diet of tunicate alone (Ciona intestinalis) promotes good growth and survival in the laboratory. 7. Egg mass deposition is initiated only after first copulation, except in the last month of life, and continues from about one-month post-metamorphosis to death, at about four months post-metamorphosis. Generation time (egg-to-egg) may be as short as 2.5 months. 8. A laboratory strain of Hermissenda is being established to provide animals of known history for research on the neural correlates of behavior. Animals, at least initially, are being selected for fast growth rate. PMID:20693369

  1. A New Clarification Method to Visualize Biliary Degeneration During Liver Metamorphosis in Sea Lamprey (Petromyzon marinus)

    PubMed Central

    Chung-Davidson, Yu-Wen; Davidson, Peter J.; Scott, Anne M.; Walaszczyk, Erin J.; Brant, Cory O.; Buchinger, Tyler; Johnson, Nicholas S.; Li, Weiming

    2014-01-01

    Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model. PMID:24962075

  2. A new clarification method to visualize biliary degeneration during liver metamorphosis in sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Davidson, Peter J.; Scott, Anne M.; Walaszczyk, Erin J.; Brant, Cory O.; Buchinger, Tyler; Johnson, Nicholas S.; Li, Weiming

    2014-01-01

    Biliary atresia is a rare disease of infancy, with an estimated 1 in 15,000 frequency in the southeast United States, but more common in East Asian countries, with a reported frequency of 1 in 5,000 in Taiwan. Although much is known about the management of biliary atresia, its pathogenesis is still elusive. The sea lamprey (Petromyzon marinus) provides a unique opportunity to examine the mechanism and progression of biliary degeneration. Sea lamprey develop through three distinct life stages: larval, parasitic, and adult. During the transition from larvae to parasitic juvenile, sea lamprey undergo metamorphosis with dramatic reorganization and remodeling in external morphology and internal organs. In the liver, the entire biliary system is lost, including the gall bladder and the biliary tree. A newly-developed method called “CLARITY” was modified to clarify the entire liver and the junction with the intestine in metamorphic sea lamprey. The process of biliary degeneration was visualized and discerned during sea lamprey metamorphosis by using laser scanning confocal microscopy. This method provides a powerful tool to study biliary atresia in a unique animal model.

  3. Dusky-like is required for epidermal pigmentation and metamorphosis in Tribolium castaneum

    PubMed Central

    Li, Chengjun; Yun, Xiaopei; Li, Bin

    2016-01-01

    Dusky-like (Dyl) is associated with the morphogenesis of embryonic denticle, adult sensory bristle and wing hair in Drosophila melanogaster. And whether Dyl involved in insect post-embryonic development and its signal transduction are poorly understood. Here, phylogenetic analysis revealed that dyl displayed one-to-one orthologous relationship among insects. In Tribolium castaneum, dyl is abundantly expressed at the late embryonic stage. Tissue-specific expression analysis at the late adult stage illustrated high expression of dyl in the fat body and ovary. Knockdown of dyl resulted in the defects in larval epidermal pigmentation and completely blocked the transitions from larval to pupal and pupal to adult stages of T. castaneum. We further discovered that dyl RNAi phenotypes were phenocopied by blimp-1 or shavenbaby (svb) silencing, and dyl was positively regulated by blimp-1 through svb in T. castaneum. These results suggest that Dyl functions downstream of Blimp-1 through Svb for larval epidermal pigmentation and metamorphosis. Moreover, ftz-f1 was down-regulated after RNA interference (RNAi) suppressing any of those three genes, indicating that Ftz-f1 works downstream of Dyl to mediate the effects of Blimp-1, Svb and Dyl on metamorphosis in T. castaneum. This study provides valuable insights into functions and signaling pathway of insect Dyl. PMID:26829909

  4. Ouro proteins are not essential to tail regression during Xenopus tropicalis metamorphosis.

    PubMed

    Nakai, Yuya; Nakajima, Keisuke; Robert, Jacques; Yaoita, Yoshio

    2016-03-01

    Tail regression is one of the most prominent transformations observed during anuran metamorphosis. A tadpole tail that is twice as long as the tadpole trunk nearly disappears within 3 days in Xenopus tropicalis. Several years ago, it was proposed that this phenomenon is driven by an immunological rejection of larval-skin-specific antigens, Ouro proteins. We generated ouro-knockout tadpoles using the TALEN method to reexamine this immunological rejection model. Both the ouro1- and ouro2-knockout tadpoles expressed a very low level of mRNA transcribed from a targeted ouro gene, an undetectable level of Ouro protein encoded by a target gene and a scarcely detectable level of the other Ouro protein from the untargeted ouro gene in tail skin. Furthermore, congenital athymic frogs were produced by Foxn1 gene modification. Flow cytometry analysis showed that mutant frogs lacked splenic CD8(+) T cells, which play a major role in cytotoxic reaction. Furthermore, T-cell-dependent skin allograft rejection was dramatically impaired in mutant frogs. None of the knockout tadpoles showed any significant delay in the process of tail shortening during the climax of metamorphosis, which shows that Ouro proteins are not essential to tail regression at least in Xenopus tropicalis and argues against the immunological rejection model. PMID:26847415

  5. Phenotypic variation in metamorphosis and paedomorphosis in the salamander Ambystoma talpoideum

    SciTech Connect

    Semlitsch, R.D.; Gibbons, J.W.

    1985-08-01

    Phenotypic variation in metamorphosis and paedomorphosis in the salamander Ambystoma talpoideum was examined to determine its environmental or genetic basis. Eight artificial ponds were maintained, four at each of two environmental treatments: constant water level, to simulate fish-free permanent breeding ponds, and gradual drying out, to simulate temporary breeding ponds. Two populations of salamanders were used, derived from two breeding ponds having different frequencies of paedomorphosis. The water level in the drying treatment was lowered during the last 10 wk of the experimental period with no apparent differences in water chemistry parameters between treatments and only a slight change in water temperature during the last 2 wk. The effects of water level were potentially confounded by those of water temperature, density of larvae, and amount food. Population differences in the frequency of metamorphosis and paedomorphosis could potentially represent genetic differences resulting from the different selective regimes that individuals encounter in breeding ponds varying in drying frequency. 35 references, 3 figures, 4 tables.

  6. Post-embryonic larval development and metamorphosis of the hydroid Eudendrium racemosum (Cavolini) (Hydrozoa, Cnidaria)

    NASA Astrophysics Data System (ADS)

    Sommer, C.

    1990-09-01

    The morphology and histology of the planula larva of Eudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.

  7. AN OVERVIEW OF OECD AND EPA/ORD ACTIVITIES RELATED TO AMPHIBIAN TESTING

    EPA Science Inventory

    There has been significant recent activity related to testing amphibians in a regulatory setting. Much of this has emanated from interest by the US Environmental Protection Agency (EPA) and the Office of Economic Cooperation and Development (OECD) in utilizing amphibians in scree...

  8. What's Slithering around on Your School Grounds? Transforming Student Awareness of Reptile & Amphibian Diversity

    ERIC Educational Resources Information Center

    Tomasek, Terry M.; Matthews, Catherine E.; Hall, Jeff

    2005-01-01

    The protocols used in a research project on amphibian and reptile diversity at Cool Springs Environmental Education Center near New Bern, North Carolina is described. An increasing or stable number of amphibians and reptiles would indicate that the forest has a balance of invertebrates, leaf litter, moisture, pH, debris, burrows and habitat…

  9. Coordinated Studies of Ultraviolet Radiation and Amphibians in Lentic Wetland Habitats

    EPA Science Inventory

    Ultraviolet radiation (UVR) has been suggested as a potential cause of population declines and increases in malformations in amphibians. This study indicates that the present distributions of amphibians in four western U.S. National Parks are not related to UVR exposure, and sugg...

  10. 76 FR 45603 - Agency Information Collection Activities: Comment Request for the North American Amphibian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... On March 14, 2011 we published a Federal Register notice (76 FR 13658) announcing that we would... American Amphibian Monitoring Program (NAAMP) AGENCY: U.S. Geological Survey (USGS), Interior. ACTION... request (ICR) for the North American Amphibian Monitoring Program (NAAMP). As required by the...

  11. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  12. The Creatures beneath Our Feet: Amphibian Monitors Take to the Road.

    ERIC Educational Resources Information Center

    Daigle, Cheryl Perusse

    1999-01-01

    The Nature Conservancy's Berkshire Program involves community volunteers in monitoring migration routes of amphibians that rely on vernal pools for breeding success. Vernal-pool workshops provide basic knowledge of amphibian lifecycles and detailed monitoring instructions. Nighttime field trips for adults and children and monitoring experiences…

  13. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  14. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  15. Cognitive and Emotional Evaluation of an Amphibian Conservation Program for Elementary School Students

    ERIC Educational Resources Information Center

    Randler, Christoph; Ilg, Angelika; Kern, Janina

    2005-01-01

    The authors describe a study aimed at enhancing knowledge about amphibian species. Two classes of 3rd and 4th graders aged 9-11 years participated in the study. In addition, approximately one half of the students participated in an environmental conservation action designated to preserve migrating amphibians. During this action, students…

  16. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  17. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  18. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.

    PubMed

    Laughlin, Thomas F; Ahmad, Zulfiqar

    2010-04-01

    Previously melittin, the alpha-helical basic honey bee venom peptide, was shown to inhibit F(1)-ATPase by binding at the beta-subunit DELSEED motif of F(1)F(o)-ATP synthase. Herein, we present the inhibitory effects of the basic alpha-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F(1) and membrane bound F(1)F(0)Escherichia coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (approximately 96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of approximately 13-70%. MRP-amide was also the most potent inhibitor on molar scale (IC(50) approximately 3.25 microM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase ( approximately 20-40% additional inhibition). Inhibition was fully reversible and found to be identical in both F(1)F(0) membrane preparations as well as in isolated purified F(1). Interestingly, growth of E. coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F(1)-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase. PMID:20100509

  19. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides

    PubMed Central

    Laughlin, Thomas F.; Ahmad, Zulfiqar

    2010-01-01

    Previously melittin, the α-helical basic honey bee venom peptide, was shown to inhibit F1-ATPase by binding at the β-subunit DELSEED motif of F1Fo ATP synthase. Herein, we present the inhibitory effects of the basic α-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F1 and membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (~96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of ~13% to 70%. MRP-amide was also the most potent inhibitor on molar scale (IC50 ~3.25 µM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase (~20–40% additional inhibition). Inhibition was fully reversible and found to be identical in both F1Fo membrane preparations as well as in isolated purified F1. Interestingly, growth of Escherichia coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F1-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase. PMID:20100509

  20. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  1. Oviduct structure and function and reproductive modes in amphibians.

    PubMed

    Wake, M H; Dickie, R

    The structure and function of the oviducts of members of the three Orders of the Class Amphibia (Anura, frogs and toads; Urodela, salamanders and newts; Gymnophiona, caecilians) are well described for only a few species. Further, the majority of such descriptions relate only to temperate species that breed in water, lay their eggs there, and have free-living larvae, the presumed ancestral condition of oviparity. Many species of amphibians have derived reproductive modes. Such modes include breeding terrestrially and arboreally, making foam nests, parental transport of eggs and/or tadpoles, direct development (copulating on land, laying the eggs in terrestrial sites, fully metamorphosed juveniles hatching, obviating the free-living larval stage). Other derived modes are ovoviviparity (developing embryos retained in the oviducts, born at a diversity stages of development, no maternal nutrition in addition to yolk) and viviparity (oviductal retention of developing young, maternal nutrition after yolk is resorbed, young born as fully metamorphosed juveniles). The amphibian oviduct is regionally differentiated to secrete varying numbers of layers of material around each egg, which function in fertilization, etc.; it is responsive to endocrine output and environmental mediation during the reproductive cycle; and it maintains developing embryos in some members of all three orders, some with oviductal epithelial secretion of nutrients. However, little is known of the structure-function relationships of the oviduct in species with derived reproductive modes. A comparison of oviduct morphology, function, endocrinology, ecology and phylogeny in amphibians with diverse reproductive modes suggests a number of highly productive avenues of investigation. PMID:9803536

  2. Parallels in amphibian and bat declines from pathogenic fungi.

    PubMed

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases. PMID:23622255

  3. Behavioral, molecular and integrative mechanisms of amphibian osmoregulation.

    PubMed

    Hillyard, S D

    1999-06-01

    Amphibian water balance has been studied at many levels of biological order. Terrestrial species must react to environmental cues that relate to water availability while some arboreal species have cutaneous skin secretions that can reduce evaporative water loss. The Indian tree frog. Polypedates maculatus, uses cutaneous secretions and wiping behavior to lower evaporation but also relies on moist microclimates to endure prolonged survival away from water. The related species, P. leucomystax, inhabits wetter forest habitats. Preliminary studies with this species are unable to demonstrate the expression of wiping behavior, indicating that arid habitats may be a powerful selective force for this behavior. Laboratory experiments on rehydrating toads in the genus Bufo indicate that animals are able to detect changes in barometric pressure and humidity that might result in the availability of water under field situations. Experiments with Bufonid species and with spadefoot toads, Scaphiopus couchi, show that the peptide hormone, angiotensin II, stimulates cutaneous drinking in a similar manner seen for oral drinking by other vertebrate classes. Amphibian tissues have long been used as a model for the study of basic physiological principles of epithelial ion and water transport. Recent progress with tissue cultures has provided information on the molecular structure of ion and water channels that can be applied to obtain a better understanding, at the molecular level, of ion and water balance strategies used by the wide variety of amphibian species. Terrestrial amphibians are more tolerant of dehydration than are other vertebrates and are able to store dilute urine in their urinary bladder. Toads appear to be able to detect the presence of water in their bladders in addition to the availability of water in their environment. Dehydrated toads are able to rehydrate very rapidly by the coordination of behavioral and physiological mechanisms to enhance cutaneous water

  4. Sperm motility of externally fertilizing fish and amphibians.

    PubMed

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P < 0.05) greater than that of freshwater fish sperm (~150 seconds), with the longevities of both marine and freshwater fish being significantly (P < 0.05) lower than that of anuran sperm (~4100 seconds). The average velocity of anuran sperm (25 μm/s) was significantly (P < 0.05) lower than that of marine fish (140 μm/s) or freshwater fish (135 μm/s) sperm. The longevity of the sperm of giant salamanders (Cryptobranchoidea) of approximately 600 seconds was greater than that of freshwater fish sperm but much lower than anuran sperm. Our research and information from the literature showed that higher osmolarities promote greater longevity in anuran sperm, and some freshwater fish sperm, and that anuran and cryptobranchid sperm maintained membrane integrity long after the cessation of motility, demonstrating a preferential sharing of energy reserves toward the maintenance of membrane integrity. The maintenance of the membrane integrity of anuran sperm in fresh water for up to 6 hours showed an extremely high osmotic tolerance relative to fish sperm. The very high longevity and osmotic tolerance of anuran sperm and high longevity of cryptobranchid sperm, relative to those of freshwater fish, may reflect the complex fertilization history of amphibian sperm in

  5. The role of multiple stressor causes in declining amphibian populations: a wingspread workshop summary

    USGS Publications Warehouse

    Krest, S.K.; Linder, G.; Sparling, D.W.

    2003-01-01

    Numerous studies have documented the decline of amphibian populations over the past decade and no single factor has been the linked to these widespread declines. Determining the causes of declining amphibian populations worldwide has proven difficult because of the variety of anthropogenic and natural suspect agents. A Wingspread workshop, convened by The Society of Environmental Toxicology and Chemistry (SETAC), brought together individuals with expertise in the areas of amphibian biology, ecotoxicology, natural resource management, and environmental policy. This workshop had three objectives: 1) create a network for future discussions on multiple stressor causes of declines; 2) characterize and prioritize technical issues critical to the analysis of the decline problem; and 3) identify and develop resource management approaches to promote sustainable and healthy amphibian populations. The workshop proceedings will be summarized in a book entitled, 'Multiple Stressors and Declining Amphibian Populations: Evaluating Cause and Effect.' This paper summarizes the results of the workshop.

  6. The role of multiple stressor causes in declining amphibian populations: A wingspread workshop summary

    USGS Publications Warehouse

    Krest, S.K.; Linder, G.; Sparling, D.W.

    2003-01-01

    Numerous studies have documented the decline of amphibian populations over the past decade and no single factor has been the linked to these widespread declines. Determining the causes of declining amphibian populations worldwide has proven difficult because of the variety of anthropogenic and natural suspect agents. A Wingspread workshop, convened by The Society of Environmental Toxicology and Chemistry (SETAC), brought together individuals with expertise in the areas of amphibian biology, ecotoxicology, natural resource management, and environmental policy. This workshop had three objectives: 1) create a network for future discussions on multiple Stressor causes of declines; 2) characterize and prioritize technical issues critical to the analysis of the decline problem; and 3) identify and develop resource management approaches to promote sustainable and healthy amphibian populations. The workshop proceedings will be summarized in a book entitled, "Multiple Stressors and Declining Amphibian Populations: Evaluating Cause and Effect." This paper summarizes the results of the workshop.

  7. Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states

    PubMed Central

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.

    2016-01-01

    Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list comprises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction. Coahuila is home to several species of conservation concern, especially lizards and turtles. Coahuila is an important state for the conservation of the native regional fauna. PMID:27408554

  8. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity

    PubMed Central

    Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; Blecha, Frank

    2016-01-01

    Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24–37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption. PMID:27356970

  9. A critical review of freshwater crayfish as amphibian predators: capable consumers of toxic prey?

    PubMed

    Wilson, Natasha J; Williams, Craig R

    2014-05-01

    Consumption of amphibian eggs and larvae by crayfish has been widely reported despite many amphibians being unpalatable and/or toxic to other predators. The aim of this review was to gather information regarding the consumption and/or avoidance of toxic amphibians by these omnivores. We then appraised the extent of toxin consumptive ability in terms of crayfish phylogenetic history so as to speculate as to the evolutionary history of this trait. Reports indicating an ability to tolerate amphibian toxins were collected and reviewed for 12 freshwater crayfish species. In reviewing these, we have established that freshwater crayfish appear to be tolerant of a range of toxic amphibians, often consuming large numbers of eggs and larvae without lethal or apparent sublethal effects. Toxin tolerance was evident within both superfamilies (Astacoidea and Parastacoidea) suggesting that tolerance may be a primitive trait in freshwater crayfish. PMID:24556015

  10. Evolutionary landscape of amphibians emerging from ancient freshwater fish inferred from complete mitochondrial genomes.

    PubMed

    Wang, Xiao-Tong; Zhang, Yan-Feng; Wu, Qian; Zhang, Hao

    2012-05-01

    It is very interesting that the only extant marine amphibian is the marine frog, Fejervarya cancrivora. This study investigated the reasons for this apparent rarity by conducting a phylogenetic tree analysis of the complete mitochondrial genomes from 14 amphibians, 67 freshwater fishes, four migratory fishes, 35 saltwater fishes, and one hemichordate. The results showed that amphibians, living fossil fishes, and the common ancestors of modern fishes are phylogenetically separated. In general, amphibians, living fossil fishes, saltwater fishes, and freshwater fishes are clustered in different clades. This suggests that the ancestor of living amphibians arose from a type of primordial freshwater fish, rather than the coelacanth, lungfish, or modern saltwater fish. Modern freshwater fish and modern saltwater fish were probably separated from a common ancestor by a single event, caused by crustal movement. PMID:22503684

  11. Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states.

    PubMed

    Lemos-Espinal, Julio A; Smith, Geoffrey R

    2016-01-01

    We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list comprises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction. Coahuila is home to several species of conservation concern, especially lizards and turtles. Coahuila is an important state for the conservation of the native regional fauna. PMID:27408554

  12. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity.

    PubMed

    Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank

    2016-01-01

    Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption. PMID:27356970

  13. Indomethacin induction of metamorphosis from the asexual stage to sexual stage in the moon jellyfish, Aurelia aurita.

    PubMed

    Kuniyoshi, Hisato; Okumura, Izumi; Kuroda, Rie; Tsujita, Natsumi; Arakawa, Kenji; Shoji, Jun; Saito, Tamio; Osada, Hiroyuki

    2012-01-01

    We found while screening a chemical library that indomethacin, an inhibitor of prostaglandin biosynthesis, induced strobilation (metamorphosis from the asexual to sexual stage) in the moon jellyfish, Aurelia aurita. Indomethacin initiated strobilation in a dose-dependent manner, but was not involved in the progression of strobilation. Pharmacological experiments suggested that indomethacin could induce strobilation independently of prostaglandin biosynthesis. PMID:22785488

  14. Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish.

    PubMed

    Hofmann, D K; Fitt, W K; Fleck, J

    1996-02-01

    Experimental data reveal that most, if not all, major events in the metagenetic life-cycle of Cassiopea spp. at these checkpoints depend on the interaction with specific biotic and physical cues. For medusa formation within a permissive temperature range by monodisk strobilation of the polyp, the presence of endosymbiotic dinoflagellates is indispensable. The priming effect of the algal symbionts is not primarily coupled with photosynthetic activity, but was found to be enhanced in the light. Budding of larva-like propagules by the polyp, however, is independent from such zooxanthellae. On the other hand the budding rate is influenced by various rearing conditions. Exogenous chemical cues control settlement and metamorphosis into scyphopolyps of both sexually produced planula larvae and asexual propagules. In laboratory experiments two classes of metamorphosis inducing compounds have been detected: a family of oligopeptides, featuring a proline-residue next to the carboxyterminal amino acid, and several phorbol esters. Using the peptide 14C-DNS-GPGGPA, induction of metamorphosis has been shown to be receptor-mediated. Furthermore, activation of protein kinase C, a key enzyme within the inositolphospholipid-signalling pathway appears to be involved in initiating metamorphosis. In mangrove habitats of Cassiopea spp. planula larvae specifically settle and metamorphose on submerged, deteriorating mangrove leaves from which biologically active fractions have been isolated. The chemical characterisation and comparison of these compounds from the natural environment with the properties and mode of action of oligopeptide inducers is in progress. PMID:8735945

  15. Transient gut retention and persistence of Salmonella through metamorphosis in the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    his study was undertaken to determine the retention of Salmonella through Alphitobius diaperinus metamorphosis and the contribution of defecation to external contamination. Adults and larvae were exposed to a tagged Salmonella enterica and evaluated for external elimination. Each day for three wee...

  16. An Unprecedented Role Reversal: Ground Beetle Larvae (Coleoptera: Carabidae) Lure Amphibians and Prey upon Them

    PubMed Central

    Wizen, Gil; Gasith, Avital

    2011-01-01

    Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae). Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani) lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal. PMID:21957480

  17. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival.

    PubMed

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-11-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms. PMID:24363907

  18. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival

    PubMed Central

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-01-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms. PMID:24363907

  19. Linking genetic and environmental factors in amphibian disease risk

    PubMed Central

    Savage, Anna E; Becker, Carlos G; Zamudio, Kelly R

    2015-01-01

    A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L. yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source–sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines. PMID:26136822

  20. Blood parasites of amphibians from Algonquin Park, Ontario.

    PubMed

    Barta, J R; Desser, S S

    1984-07-01

    During a 5 wk period beginning May 25, 1983, 329 amphibians, which included specimens of Rana catesbeiana Shaw, Rana clamitans Latreille, Rana septentrionalis Baird, Rana sylvatica LeConte, Hyla crucifer Wied, Bufo americanus Holbrook, and Plethodon cinereus Green, from Lake Sasajewun, Algonquin Park, Ontario, Canada were examined for blood parasites. The prevalences of species of Trypanosoma, Haemogregarina, Lankesterella, Babesiasoma, and Thrombocytozoons in these amphibians were determined. Two species of microfilaria (probably Foleyella spp.) and two intraerythrocytic forms, inclusions of an icosahedral cytoplasmic DNA virus (ICDV) and groups of rickettsial organisms, were also observed. The following are new host records: Trypanosoma ranarum (Lankester, 1871) in B. americanus; Trypanosoma ranarum (Lankester, 1871) in R. sylvatica; Trypanosoma pipientis Diamond, 1950, Babesiasoma stableri Schmittner and McGhee, 1961 and Thrombocytozoons ranarum Tchacarof, 1963 in R. septentrionalis. The aquatic frogs generally showed a much higher prevalence of infection with blood parasites than the terrestrial frogs, toads and salamanders, which is suggestive of an aquatic vector. The leech Batracobdella picta Verrill, 1872, which was found on many of the aquatic frogs, is the most likely vector in the study area. Also, an increasing prevalence of parasites was noted with increasing sizes (ages) of Rana clamitans and R. catesbeiana suggesting that longer exposure to water makes these species more likely to acquire blood parasites. The presence of Trypanosoma ranarum in B. americanus appeared to coincide with their attainment of sexual maturity. PMID:6492319

  1. Multicellular Mathematical Modelling of Mesendoderm Formation in Amphibians.

    PubMed

    Brown, L E; Middleton, A M; King, J R; Loose, M

    2016-03-01

    The earliest cell fate decisions in a developing embryo are those associated with establishing the germ layers. The specification of the mesoderm and endoderm is of particular interest as the mesoderm is induced from the endoderm, potentially from an underlying bipotential group of cells, the mesendoderm. Mesendoderm formation has been well studied in an amphibian model frog, Xenopus laevis, and its formation is driven by a gene regulatory network (GRN) induced by maternal factors deposited in the egg. We have recently demonstrated that the axolotl, a urodele amphibian, utilises a different topology in its GRN to specify the mesendoderm. In this paper, we develop spatially structured mathematical models of the GRNs governing mesendoderm formation in a line of cells. We explore several versions of the model of mesendoderm formation in both Xenopus and the axolotl, incorporating the key differences between these two systems. Model simulations are able to reproduce known experimental data, such as Nodal expression domains in Xenopus, and also make predictions about how the positional information derived from maternal factors may be interpreted to drive cell fate decisions. We find that whilst cell-cell signalling plays a minor role in Xenopus, it is crucial for correct patterning domains in axolotl. PMID:26934886

  2. Effect of biogeographic history on population vulnerability in European amphibians.

    PubMed

    Dufresnes, Christophe; Perrin, Nicolas

    2015-08-01

    The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental-scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta-analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post-glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post-glacial) should be considered in conservation assessments for regional and national red lists. PMID:25833793

  3. Anthropogenic and Ecological Drivers of Amphibian Disease (Ranavirosis)

    PubMed Central

    North, Alexandra C.; Hodgson, David J.; Price, Stephen J.; Griffiths, Amber G. F.

    2015-01-01

    Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria) populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000) dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild. PMID:26039741

  4. Chytridiomycosis risk among Central European amphibians based on surveillance data.

    PubMed

    Balá, Vojtech; Vojar, Jirří; Civi, Petr; Andera, Martin; Rozínek, Roman

    2014-11-13

    The Czech Republic hosts a surprisingly rich biodiversity of amphibians representing the majority of amphibian species present in all of Central and Eastern Europe. Surveillance data of Batrachochytrium dendrobatidis (Bd) collected during 2008 to 2012 were analysed for basic patterns of prevalence and infection intensity among species, age groups and localities. In addition, an investigation was made into possible data bias due to varying PCR inhibition. Infection prevalence in the genus Pelophylax was significantly higher than in other sampled taxa, while Bombina and Bufo were infected with intermediate prevalence. Individual mortalities putatively caused by chytridiomycosis were detected in Bombina and Bufo, but not in Pelophylax. Differences among localities were seen to modulate the pathogen's infection rate and influence overall individual infection intensities. PCR inhibition occurred significantly more often in samples from the genus Pelophylax than in other tested taxa (Bufo bufo, B. viridis, Bombina bombina, Pelobates fuscus and Rana dalmatina). Although we found no completely inhibited samples within the genus Bombina, the infection loads were lower in the sample set processed without bovine serum albumin, suggesting some level of PCR inhibition. The combination of high Bd prevalence with no apparent deleterious effect and the high dispersal abilities of water frogs predispose them to act as vectors for chytridiomycosis. It is possible that the role of Pelophylax frogs in the spread of Bd is overlooked due to a large proportion of unrecognized false negatives, but this issue needs further confirmation. PMID:25392037

  5. Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations.

    PubMed

    Lambert, Max R; Giller, Geoffrey S J; Barber, Larry B; Fitzgerald, Kevin C; Skelly, David K

    2015-09-22

    Research on endocrine disruption in frog populations, such as shifts in sex ratios and feminization of males, has predominantly focused on agricultural pesticides. Recent evidence suggests that suburban landscapes harbor amphibian populations exhibiting similar levels of endocrine disruption; however the endocrine disrupting chemical (EDC) sources are unknown. Here, we show that sex ratios of metamorphosing frogs become increasingly female-dominated along a suburbanization gradient. We further show that suburban ponds are frequently contaminated by the classical estrogen estrone and a variety of EDCs produced by plants (phytoestrogens), and that the diversity of organic EDCs is correlated with the extent of developed land use and cultivated lawn and gardens around a pond. Our work also raises the possibility that trace-element contamination associated with human land use around suburban ponds may be contributing to the estrogenic load within suburban freshwaters and constitutes another source of estrogenic exposure for wildlife. These data suggest novel, unexplored pathways of EDC contamination in human-altered environments. In particular, we propose that vegetation changes associated with suburban neighborhoods (e.g., from forests to lawns and ornamental plants) increase the distribution of phytoestrogens in surface waters. The result of frog sex ratios varying as a function of human land use implicates a role for environmental modulation of sexual differentiation in amphibians, which are assumed to only have genetic sex determination. Overall, we show that endocrine disruption is widespread in suburban frog populations and that the causes are likely diverse. PMID:26372955

  6. Exon capture optimization in amphibians with large genomes.

    PubMed

    McCartney-Melstad, Evan; Mount, Genevieve G; Shaffer, H Bradley

    2016-09-01

    Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0 t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians. PMID:27223337

  7. Proximity to pollution sources and risk of amphibian limb malformation.

    PubMed

    Taylor, Brynn; Skelly, David; Demarchis, Livia K; Slade, Martin D; Galusha, Deron; Rabinowitz, Peter M

    2005-11-01

    The cause of limb deformities in wild amphibian populations remains unclear, even though the apparent increase in prevalence of this condition may have implications for human health. Few studies have simultaneously assessed the effect of multiple exposures on the risk of limb deformities. In a cross-sectional survey of 5,264 hylid and ranid metamorphs in 42 Vermont wetlands, we assessed independent risk factors for nontraumatic limb malformation. The rate of nontraumatic limb malformation varied by location from 0 to 10.2%. Analysis of a subsample did not demonstrate any evidence of infection with the parasite Ribeiroia. We used geographic information system (GIS) land-use/land-cover data to validate field observations of land use in the proximity of study wetlands. In a multiple logistic regression model that included land use as well as developmental stage, genus, and water-quality measures, proximity to agricultural land use was associated with an increased risk of limb malformation (odds ratio = 2.26; 95% confidence interval, 1.42-3.58; p < 0.001). The overall discriminant power of the statistical model was high (C = 0.79). These findings from one of the largest systematic surveys to date provide support for the role of chemical toxicants in the development of amphibian limb malformation and demonstrate the value of an epidemiologic approach to this problem. PMID:16263502

  8. Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations

    PubMed Central

    Lambert, Max R.; Giller, Geoffrey S. J.; Barber, Larry B.; Fitzgerald, Kevin C.; Skelly, David K.

    2015-01-01

    Research on endocrine disruption in frog populations, such as shifts in sex ratios and feminization of males, has predominantly focused on agricultural pesticides. Recent evidence suggests that suburban landscapes harbor amphibian populations exhibiting similar levels of endocrine disruption; however the endocrine disrupting chemical (EDC) sources are unknown. Here, we show that sex ratios of metamorphosing frogs become increasingly female-dominated along a suburbanization gradient. We further show that suburban ponds are frequently contaminated by the classical estrogen estrone and a variety of EDCs produced by plants (phytoestrogens), and that the diversity of organic EDCs is correlated with the extent of developed land use and cultivated lawn and gardens around a pond. Our work also raises the possibility that trace-element contamination associated with human land use around suburban ponds may be contributing to the estrogenic load within suburban freshwaters and constitutes another source of estrogenic exposure for wildlife. These data suggest novel, unexplored pathways of EDC contamination in human-altered environments. In particular, we propose that vegetation changes associated with suburban neighborhoods (e.g., from forests to lawns and ornamental plants) increase the distribution of phytoestrogens in surface waters. The result of frog sex ratios varying as a function of human land use implicates a role for environmental modulation of sexual differentiation in amphibians, which are assumed to only have genetic sex determination. Overall, we show that endocrine disruption is widespread in suburban frog populations and that the causes are likely diverse. PMID:26372955

  9. Anthropogenic and ecological drivers of amphibian disease (ranavirosis).

    PubMed

    North, Alexandra C; Hodgson, David J; Price, Stephen J; Griffiths, Amber G F

    2015-01-01

    Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria) populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000) dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild. PMID:26039741

  10. Interactions of Amphibians, Fish, and Macroinvertebrates in a Southeastern Wetland

    NASA Astrophysics Data System (ADS)

    Schultheis, R. D.; Batzer, D. P.

    2005-05-01

    In fishless habitats, amphibians often compete with and are predators of macroinvertebrates. Unlike fish, the effects these interactions have on macroinvertebrate communities have been largely unexplored. We conducted an experiment in a semi-permanent oxbow wetland in the Piedmont region of Georgia to explore interactions between amphibians and macroinvertebrates. The predator community was dominated by Ambystoma opacum (Marbled Salamander) and Notophthalmus viridescens (Eastern Newt). Salamanders and newts were excluded from areas of wetland habitat using wire mesh cages (1.5M x 1.5M, 3mm mesh). The macroinvertebrate communities within the cages were then compared to the ambient habitat outside the cages. Fish, mostly Lepomis macrochirus (Bluegill) and Gambusia affinis (Mosquito Fish), colonized the wetland late in the first year of the study, and became common by year two. Also in year two, Rana catesbeiana (Bullfrog) became established. Thus, we were able to explore the variable effects on the macroinvertebrate community of a changing predator complex over a two year period.

  11. Radioautographic investigation of retinal growth in mature amphibians

    SciTech Connect

    Svistunov, S.A.; Mitashov, V.I.

    1986-07-01

    Growth of the retina was studied in mature intact amphibians, tritons, axolotls, ambystomas and clawed frogs, for six months using multiple injection of /sup 3/H-thymidine. It was established that the source of replenishment of the retina by new cells is its terminal zone in all animals investigated. This is attested to by the gradual migration of labeled cells from the growth zone into differentiated layers of the retina. The most intensely labeled cells occupy a distal position relative to other labeled cells, therefore marking the boundary between the initial part of the retina, not containing labeled nuclei, and the part being augmented. For each species studied, a level of proliferative activity is characteristic for cells of the terminal zone, which decreases in the order axolotl-clawed frog-triton -ambystoma. In the axolotl and additional growth zone is noted in the retina, in addition to the terminal, which is located in the area of the unclosed section of the embryonic fissure. Results obtained serve as a basis for the regenerative potentials of eye tissues revealed previously in these amphibian species.

  12. Linking genetic and environmental factors in amphibian disease risk.

    PubMed

    Savage, Anna E; Becker, Carlos G; Zamudio, Kelly R

    2015-07-01

    A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L. yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source-sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines. PMID:26136822

  13. Testing and comparison of non-opioid analgesics in amphibians.

    PubMed

    Stevens, C W; MacIver, D N; Newman, L C

    2001-07-01

    Because of the lack of information about effective analgesics in non-mammalian vertebrates, the potency of various non-opioid agents were tested in a model of analgesia by using Northern grass frogs (Rana pipiens). This alternative model has been used widely for investigating opioid analgesic action. Potential non-opioid analgesics tested included antipsychotic, benzodiazepine, barbiturate, antihistamine, non-steroidal anti-inflammatory (NSAID), and partial opioid agents. Northern grass frogs were acclimated to lab conditions in individual cages. Drugs were administered systemically through the dorsal lymph sac, and analgesic effects were estimated by using the acetic acid test (AAT). The AAT is done by placing logarithmic dilutions of acid dropwise on the dorsum of the animal's thigh until a wiping response is obtained. At various doses, chlorpromazine and haloperidol (antipsychotics), chlordiazepoxide (a benzodiazepine), buprenorphine (a partial opioid agonist), and diphenhydramine (a histamine antagonist) produced moderate to strong analgesic effects. Indomethacin and ketorolac (NSAIDs), butorphanol (a partial opioid agonist), and pentobarbital (a barbiturate) produced weaker but noticeable analgesic effects. Our results are the first to document the effectiveness of a wide array of pharmacologically active agents in a novel amphibian model for analgesia. These findings provide needed data regarding the use of alternative, non-opioid agents for the treatment of pain in amphibians and other poikilothermic species. PMID:11451391

  14. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians

    PubMed Central

    Bonetti, Maria Fernanda; Wiens, John J.

    2014-01-01

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369

  15. Interactions of temperature and steroids on larval growth, development, and metamorphosis in a toad (Bufo boreas).

    PubMed

    Hayes, T; Chan, R; Licht, P

    1993-07-01

    The effects of temperature and steroids [testosterone (T), estradiol (E2), and corticosterone (B)] on premetamorphic growth and development were investigated in the toad (Bufo boreas). The effects of steroids were both temperature and age dependent. In the first experiment, steroids (1.1-1.4 microM) were administered by dissolving them in the water beginning 1 day after hatching at 22 degrees C or 27 degrees C. At 22 degrees C, B inhibited growth (P < 0.001) but had no significant effect on development. Forelegs never emerged in B-treated animals and all died before complete tail resorption. Discontinuation of B treatment allowed normal growth and metamorphosis, but the resulting post-metamorphic animals were significantly shorter (snout-vent length, P < 0.001) than after other treatments. At 22 degrees C, T and E2 had no effect on larval growth and development or size at metamorphosis (P > 0.05), but T induced early foreleg emergence (FLE) (P < 0.005). At 27 degrees C, B was fatal after 2 weeks of treatment, and T and E2 inhibited growth (P < 0.001) and development (P < 0.001), but did not affect time to FLE. In a second experiment at 27 degrees C, treatment with 1.1 microM B starting 15 days after hatching induced early metamorphic events (P < 0.001), such as tail resorption and emergence of the left foreleg (but not the right), but jaw and head restructuring failed to occur. All B-treated animals died before complete tail resorption. In a third experiment, 0.275 and 1.11 microM B, starting at day 43 (stage 43), induced early FLE (P < 0.05) and decreased snout-vent length at tail resorption (P < 0.005) without a dose effect. A higher dose of B (4.44 microM) decreased snout-vent length at tail resorption and time to FLE (P < 0.05) but did not affect body weight at metamorphosis (P > 0.05). Animals in this experiment survived to complete tail resorption and transformed normally. The actions of B in these experiments closely resemble those observed with

  16. Stellar Metamorphosis:

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae edge-on, where the direct starlight is blocked by the dusty cocoon. Otherwise, the starlight would overwhelm the nebular light, making it very difficult to see the butterfly-shaped nebula. In a few hundred years, intense ultraviolet radiation from the central star will energize the surrounding gas, causing it to glow brightly, and a planetary nebula is born. These observations were made with the Wide Field and Planetary Camera 2 using three filters: yellow-green, blue, and near-infrared. The images were taken in 1997 by Sun Kwok and in 1996 by Matt Bobrowsky. Credits: Sun Kwok and Kate Su (University of Calgary), Bruce Hrivnak (Valparaiso University), and NASA ----------------- The Hubble Space Telescope Sees Remarkable Structure in the Heart of a Planetary Nebula [BOTTOM LEFT AND RIGHT] This Wide Field and Planetary Camera 2 image of NGC 6818 shows two distinct layers of gas (with dust): a spherical outer region and a brighter, vase-shaped interior 'bubble.' Astronomers believe that a fast wind - material propelled by radiation from the hot central star - is creating the inner elongated shape. The central star of the planetary nebula appears as a tiny blue dot. The material in the wind is traveling so fast that it smashes through older, slower-moving stellar debris, causing a 'blowout' at both ends of the bubble (lower right and upper left). This nebula looks like a twin of NGC 3918, another planetary nebula that has been observed by the Hubble telescope. The structure of NGC 3918 is remarkably similar to that of NGC 6818. It has an outer spherical envelope and an inner, brighter, elongated bubble. A fast-moving wind also appears to have created an orifice at one end (bottom right-hand corner) of the inner bubble. There are even faint wisps of material that were probably blown out of this hole. In the opposite direction (top left-hand corner), there is a protrusion that seems on the verge of breaking through to form a hole. By finding and studying such similar objects, astronomers hope to learn crucial details about the evolutionary history of planetary nebulae. The Hubble telescope observation was taken March 10, 1997. This picture is a composite of images taken with three filters that are representative of the true colors of the object. Two of these are, respectively, in the light of a red and a blue spectral line of hydrogen - the major constituent of the nebula. The third image is in the light of a luminous green line due to doubly ionized oxygen. NGC 6818 is about 6,000 light-years away in the constellation Sagittarius. The nebula has a diameter of about 0.5 light-years. Credits: Robert Rubin (NASA Ames Research Center), Reginald Dufour and Matt Browning (Rice University), Patrick Harrington (University of Maryland), and NASA

  17. Midlife Metamorphosis

    ERIC Educational Resources Information Center

    Evans, Patricia

    2008-01-01

    The study was conducted in response to the need for an increased understanding of the aging experiences of women transitioning midlife. The purpose of the research was to explore the personal understanding of the changes that occur during the midlife period. A qualitative case study was implemented to ascertain how women of the Latter-day Saint…

  18. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  19. Physicochemical and biological characterizations of Pxt peptides from amphibian (Xenopus tropicalis) skin.

    PubMed

    Shigeri, Yasushi; Horie, Masanori; Yoshida, Tsuyoshi; Hagihara, Yoshihisa; Imura, Tomohiro; Inagaki, Hidetoshi; Haramoto, Yoshikazu; Ito, Yuzuru; Asashima, Makoto

    2016-06-01

    Pxt peptides (Pxt-1 through Pxt-12) have been isolated from amphibian, Xenopus tropicalis Pxt-related peptides (Pxt-2, Pxt-5, Pxt-12, reverse Pxt-2, reverse Pxt-5 and reverse Pxt-12) with significant foaming properties were further characterized. In the physicochemical experiments, all Pxt-related peptides formed significant amphiphilic α-helices in 50% 2,2,2-trifluoroethanol by circular dichroism measurements. Among Pxt-related peptides, both Pxt-5 and reverse Pxt-5 were the most effective in reducing their surface tensions. Moreover, Pxt-2, Pxt-5 and reverse Pxt-5 produced constant surface tensions above their critical association concentrations, suggesting the micelle-like assemblies. In the biological experiments, Pxt-5 possessed the most potent hemolytic activity, while reverse Pxt-5 exhibited the most remarkable gene expression of interleukin 8 and heme oxygenase 1 and the most potent cytotoxicity in HaCaT cells. In contrast, Pxt-12 and reverse Pxt-12 were much weaker in antimicrobial assays for Gram-negative bacteria, Gram-positive bacteria and yeasts, as well as in hemolytic, cell viability and cytotoxicity assays in HaCaT cells. All Pxt-related peptides exhibited about 20-50% of the total cellular histamine release at 10(-5) M, as well as mastoparan and melittin in mast cells. Real-time polymerase chain reaction analysis confirmed the gene expressions of Pxt-5 in testis and Pxt-12 in muscle, in addition to skin, while Pxt-2 was only in skin. PMID:26802742

  20. Vitamin A (Retinoid) Metabolism and Actions: What We Know and What We Need to Know About Amphibians

    PubMed Central

    Clugston, Robin D.; Blaner, William S.

    2015-01-01

    Vitamin A status is an important consideration in the health of both wild and captive amphibians. Data concerning whole body vitamin A homeostasis in amphibians are scarce, although these animals have been used as experimental models to study the actions of vitamin A in vision, limb regeneration and embryogenesis. The available data suggest that many aspects of vitamin A biology in amphibians are similar to the canonical characteristics of vitamin A metabolism and actions established in mammals. This is consistent with the evolutionary conservation of these important biological processes. Amphibians must obtain vitamin A in their diet, with captive animals being prone to vitamin A deficiency. There is still much to be learned about vitamin A biology in amphibians that can only be achieved through rigorous scientific research. Improved understanding of amphibian vitamin A biology will aid the conservation of endangered amphibians in the wild, as well as the successful maintenance of ex situ populations. PMID:24958673