Science.gov

Sample records for ampk um antigo

  1. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  2. AMPK in cardiovascular health and disease

    PubMed Central

    Shirwany, Najeeb A; Zou, Ming-Hui

    2010-01-01

    Adenosine Monophosphate-activated Protein Kinase (AMPK), a serine/threonine kinase and a member of the Snf1/AMPK protein kinase family, consists of three protein subunits that together make a functional enzyme. AMPK, which is expressed in a number of tissues, including the liver, brain, and skeletal muscle, is allosterically activated by a rise in the AMP: ATP ratio (ie in a low ATP or energy depleted state). The net effect of AMPK activation is to halt energy consuming (anabolic) pathways but to promote energy conserving (catabolic) cellular pathways. AMPK has therefore often been dubbed the “metabolic master switch”. AMPK also plays a critical physiological role in the cardiovascular system. Increasing evidence suggest that AMPK might also function as a sensor by responding to oxidative stress. Mostly importantly, AMPK modulates endogenous antioxidant gene expression and/or suppress the production of oxidants. AMPK promotes cardiovascular homeostasis by ensuring an optimum redox balance on the heart and vascular tissues. Dysfunctional AMPK is thought to underlie several cardiovascular pathologies. Here we review this kinase from its structure and discovery to current knowledge of its adaptive and maladaptive role in the cardiovascular system. PMID:20711221

  3. AMPK Function in Aging Process.

    PubMed

    Ruiz, Rocío; Pérez-Villegas, Eva María; Manuel Carrión, Ángel

    2016-01-01

    Aging involves the progressive deterioration of physiological functions, diminishing the individual's capacity for survival. Indeed, aging is the main risk factor for cancer, diabetes, cardiovascular disorders and neurodegenerative diseases. The discovery that the rate of aging is controlled by conserved genetic and biochemical pathways represented an unprecedented advance in aging research. The AMPK protein is a metabolic sensor that acts as a qualified cellular housekeeper, as well as controlling energy homeostasis and resistance to stress. Thus, the correct regulation of this factor enhances health and survival. In this manuscript we will review the molecular pathways regulated by AMPK that are related to the aging process, paying special attention to mitochondrial dysfunction, metabolic deregulation, cell senescence and autophagy. PMID:26521771

  4. AMPK As A Target in Rare Diseases.

    PubMed

    Cotán, David; Paz, Marina Villanueva; Alcocer-Gómez, Elizabet; Garrido-Maraver, Juan; Oropesa-Ávila, Manuel; de la Mata, Mario; Pavón, Ana Delgado; de Lavera, Isabel; Galán, Fernando; Ybot-González, Patricia; Sánchez-Alcázar, José A

    2016-01-01

    The AMP-activated protein kinase (AMPK) has emerged as an important sensor of signals that control cellular energy balance in all eukaryotes. AMPK is also involved in fatty acid oxidation, glucose transport, antioxidant defense, mitochondrial biogenesis and the modulation of inflammatory processes. The numerous roles of AMPK in cell physiological and pathological states justified the notable increase in the number of publications in previous years, with almost 1500 scientific articles relative to this kinase in 2014. Due to its role in maintaining energy balance, a dysfunction in AMPK signalling pathway may result in perturbations at the systemic level that contribute to the development of many disease conditions. Among them, more than 7000 poorly-known rare diseases are particularly of social and scientific interest because they are usually chronically debilitating or even lifethreatening and lack effective and safe treatment. Several authors have demonstrated AMPK alterations and the beneficial effect of treatments with drugs regulating AMPK activity in some of these low prevalence pathologies. Among these rare diseases in which AMPK can play an important pathological role are mitochondrial disorders, muscular dystrophies, cardiovascular diseases, neurodegenerative pathologies, or even some types of cancer for the importance of AMPK as a suppressor of cell proliferation. This review focuses on current knowledge about the pathophysiological roles of AMPK and future approaches as therapeutic targeting in rare diseases. PMID:26758671

  5. AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis.

    PubMed

    Wang, Yu-Gang; Qu, Xin-Hua; Yang, Ying; Han, Xiu-Guo; Wang, Lei; Qiao, Han; Fan, Qi-Ming; Tang, Ting-Ting; Dai, Ke-Rong

    2016-09-01

    Several metabolic, genetic and oncogenic bone diseases share the common pathological phenotype of defective bone marrow stromal cell (BMSC) differentiation. Many reports in bone science in the past several years have suggested that the skeleton also has an endocrine role. The role of AMP-activated protein kinase (AMPK) as an energy metabolism sensor and how it regulates BMSC differentiation is largely unknown. In the current study, we used AMPK agonists to activate AMPK in MC3T3-E1 cells to investigate the functional roles of AMPK in osteogenesis. However, metformin and AICAR failed to activate AMPK consistently. Therefore, we established MC3T3-E1 and 3T3-L1 cell models of AMPK α subunit overexpression through lentivirus vector, in which AMPK was overactivated. AMPK hyperactivation stimulated MC3T3-E1 cell osteogenesis and inhibited 3T3-L1 cell adipogenesis. Osteopontin (OPN) mediated AMPK regulation of osteogenesis and adipogenesis. Furthermore, we provided evidence that the transcriptional repressor growth factor independence-1 (Gfi1) was downregulated and disassociated from the OPN promoter in response to AMPK activation, resulting in the upregulation of OPN. Overexpression of wild-type and dominant-negative Gfi1 modulated MC3T3-E1 osteogenesis and 3T3-L1 adipogenesis. Further evidence suggested that AMPK enhanced ectopic bone formation of MC3T3-E1 cells through the AMPK-Gfi1-OPN axis. In conclusion, AMPK was sufficient to stimulate osteogenesis of MC3T3-E1 cells and inhibit adipogenesis of 3T3-L1 cells through the AMPK-Gfi1-OPN axis. These findings helped elucidate the molecular mechanisms underlying AMPK regulation of osteogenesis and adipogenesis. PMID:27283242

  6. Glucose regulates amyloid β production via AMPK.

    PubMed

    Yang, Ting-Ting; Shih, Yao-Shan; Chen, Yun-Wen; Kuo, Yu-Min; Lee, Chu-Wan

    2015-10-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Accumulation of Aβ peptides in the brain has been suggested as the cause of AD (amyloid cascade hypothesis); however, the mechanism for the abnormal accumulation of Aβ in the brains of AD patients remains unclear. A plethora of evidence has emerged to support a link between metabolic disorders and AD. This study was designed to examine the relationship between energy status and Aβ production. Neuro 2a neuroblastoma cells overexpressing human amyloid precursor protein 695 (APP cells) were cultured in media containing different concentrations of glucose and agonist or antagonist of AMP-activated-protein-kinase (AMPK), a metabolic master sensor. The results showed that concentrations of glucose in the culture media were negatively associated with the activation statuses of AMPK in APP cells, but positively correlated with the levels of secreted Aβ. Modulating AMPK activities affected the production of Aβ. If APP cells were cultured in high glucose medium (i.e., AMPK was inactive), stimulation of AMPK activity decreased the production levels of Aβ. On the contrary, if APP cells were incubated in medium containing no glucose (i.e., AMPK was activated), inhibition of AMPK activity largely increased Aβ production. As AMPK activation is a common defect in metabolic abnormalities, our study supports the premise that metabolic disorders may aggravate AD pathogenesis. PMID:26071020

  7. AMPK activators: mechanisms of action and physiological activities.

    PubMed

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  8. AMPK activators: mechanisms of action and physiological activities

    PubMed Central

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  9. [AMPK: a link between metabolism and reproduction?].

    PubMed

    Tosca, Lucie; Chabrolle, Christine; Dupont, Joëlle

    2008-03-01

    5'AMP-activated protein kinase (AMPK) is a serine/threonine kinase that acts as a fuel gauge in regulating energy metabolism. It restores cellular ATP levels by switching on catabolic pathways and switching off anabolic pathways. Some evidence indicates that AMPK could be also implicated in reproductive functions such as granulosa cell steroidogenesis and nuclear oocyte maturation in several species. Some metabolic hormones such as leptin, resistin, adiponectin (three adipokines) and ghrelin may in part act through the AMPK signaling. These hormones are also involved in the control of the reproductive functions at the hypothalamus-pituitary-gonadal axis level in both male and female. Thus, AMPK could be one of the signaling pathways controlling the interactions between energy balance and reproduction. The reproductive system is tightly coupled with energy balance, and thereby metabolic abnormalities can lead to the development of some physiopathological situations such as the polycystic ovary syndrome (PCOS). Women with PCOS show altered fertility mostly associated with metabolic disorders such as insulin-resistance, hyperinsulinemia and/or dyslipidemia. Metformin, an insulin-sensitizer, is used for the treatment of women with PCOS. It restores subnormal fertility and energy balance. Recent studies show that AMPK is involved in the mechanism of action of metformin. Thus, it may be a therapeutic target. However, further investigations are necessary to elucidate the functions of AMPK in both metabolic and reproductive tissues. PMID:18334179

  10. Differential effects of AMPK agonists on cell growth and metabolism

    PubMed Central

    Vincent, Emma E.; Coelho, Paula P.; Blagih, Julianna; Griss, Takla; Viollet, Benoit; Jones, Russell G.

    2016-01-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used. PMID:25241895

  11. Chromium enhances insulin responsiveness via AMPK.

    PubMed

    Hoffman, Nolan J; Penque, Brent A; Habegger, Kirk M; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S

    2014-05-01

    Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. PMID:24725432

  12. Folliculin Regulates Ampk-Dependent Autophagy and Metabolic Stress Survival

    PubMed Central

    Nouët, Yann; Yan, Ming; Gingras, Marie-Claude; Schmeisser, Kathrin; Panaite, Lorena; Dupuy, Fanny; Kharitidi, Dmitri; Chotard, Laëtitia; Jones, Russell G.; Hall, David H.; Pause, Arnim

    2014-01-01

    Dysregulation of AMPK signaling has been implicated in many human diseases, which emphasizes the importance of characterizing AMPK regulators. The tumor suppressor FLCN, responsible for the Birt-Hogg Dubé renal neoplasia syndrome (BHD), is an AMPK-binding partner but the genetic and functional links between FLCN and AMPK have not been established. Strikingly, the majority of naturally occurring FLCN mutations predisposing to BHD are predicted to produce truncated proteins unable to bind AMPK, pointing to the critical role of this interaction in the tumor suppression mechanism. Here, we demonstrate that FLCN is an evolutionarily conserved negative regulator of AMPK. Using Caenorhabditis elegans and mammalian cells, we show that loss of FLCN results in constitutive activation of AMPK which induces autophagy, inhibits apoptosis, improves cellular bioenergetics, and confers resistance to energy-depleting stresses including oxidative stress, heat, anoxia, and serum deprivation. We further show that AMPK activation conferred by FLCN loss is independent of the cellular energy state suggesting that FLCN controls the AMPK energy sensing ability. Together, our data suggest that FLCN is an evolutionarily conserved regulator of AMPK signaling that may act as a tumor suppressor by negatively regulating AMPK function. PMID:24763318

  13. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity

    PubMed Central

    2013-01-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity). PMID:23441028

  14. Activation of AMPK and its Impact on Exercise Capacity.

    PubMed

    Niederberger, Ellen; King, Tanya S; Russe, Otto Quintus; Geisslinger, Gerd

    2015-11-01

    Activation of the adenosine monophosphate (AMP)-activated kinase (AMPK) contributes to beneficial effects such as improvement of the hyperglycemic state in diabetes as well as reduction of obesity and inflammatory processes. Furthermore, stimulation of AMPK activity has been associated with increased exercise capacity. A study published in 2008, directly before the Olympic Games in Beijing, showed that the AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide) increased the running capacity of mice without any training and thus, prompted the World Anti-Doping Agency (WADA) to include certain AMPK activators in the list of forbidden drugs. This raises the question as to whether all AMPK activators should be considered for registration or whether the increase in exercise performance is only associated with specific AMPK-activating substances. In this review, we intend to shed light on currently published AMPK-activating drugs, their working mechanisms, and their impact on body fitness. PMID:26186961

  15. AMPK Signaling Results in Cytoplasmic Sequestration of p27

    PubMed Central

    Short, John D.; Houston, Kevin D.; Dere, Ruhee; Cai, Sheng-Li; Kim, Jinhee; Johnson, Charles L.; Broaddus, Russell R.; Shen, Jianjun; Miyamoto, Susie; Tamanoi, Fuyuhiko; Kwiatkowski, David; Mills, Gordon B.; Walker, Cheryl Lyn

    2009-01-01

    Tuberin, the Tsc2 gene product, integrates PI3K/MAPK (mitogenic) and LKB1/AMPK (energy) signaling pathways, and previous independent studies have shown that loss of tuberin is associated with elevated AMPK signaling and altered p27 function. In Tsc2-null tumors and tumor-derived cells from Eker rats, we observed elevated AMPK signaling and concordant cytoplasmic mislocalization of p27. Cytoplasmic localization of p27 in Tsc2-null cells was reversible pharmacologically using inhibitors of the LKB1/AMPK pathway, and localization of p27 to the cytoplasm could be induced directly by activating AMPK physiologically (glucose deprivation) or genetically (constitutively-active AMPK) in Tsc2-proficient cells. Furthermore, AMPK phosphorylated p27 in vitro on at least three sites including T170 near the NLS, and T170 was demonstrated to determine p27 localization in response to AMPK signaling. p27 functions in the nucleus to suppress Cdk2 activity, and has been reported to mediate an anti-apoptotic function when localized to the cytoplasm. We found that cells with elevated AMPK signaling and cytoplasmic p27 localization exhibited elevated Cdk2 activity, which could be suppressed by inhibiting AMPK signaling. In addition, cells with elevated AMPK signaling and cytoplasmic p27 localization were resistant to apoptosis, which could be overcome by inhibition of AMPK signaling and relocalization of p27 to the nucleus. These data demonstrate that AMPK signaling determines the subcellular localization of p27, and identifies loss of integration of pathways controlling energy balance, the cell cycle and apoptosis due to aberrant AMPK and p27 function as a feature of cells that have lost the Tsc2 tumor suppressor gene. PMID:18701472

  16. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-07-01

    AMP-activated protein kinase (AMPK) is a fundamental regulator of energy metabolism, stress resistance, and cellular proteostasis. AMPK signaling controls an integrated signaling network which is involved in the regulation of healthspan and lifespan e.g. via FoxO, mTOR/ULK1, CRCT-1/CREB, and SIRT1 signaling pathways. Several studies have demonstrated that the activation capacity of AMPK signaling declines with aging, which impairs the maintenance of efficient cellular homeostasis and enhances the aging process. However, it seems that the aging process affects AMPK activation in a context-dependent manner since occasionally, it can also augment AMPK activation, possibly attributable to the type of insult and tissue homeostasis. Three protein phosphatases, PP1, PP2A, and PP2C, inhibit AMPK activation by dephosphorylating the Thr172 residue of AMPKα, required for AMPK activation. In addition, several upstream signaling pathways can phosphorylate Ser/Thr residues in the β/γ interaction domain of the AMPKα subunit that subsequently blocks the activation of AMPK. These inhibitory pathways include the insulin/AKT, cyclic AMP/PKA, and RAS/MEK/ERK pathways. We will examine the evidence whether the efficiency of AMPK responsiveness declines during the aging process. Next, we will review the mechanisms involved in curtailing the activation of AMPK. Finally, we will elucidate the potential age-related changes in the inhibitory regulation of AMPK signaling that might be a part of the aging process. PMID:27060201

  17. MLK3 phophorylates AMPK independently of LKB1.

    PubMed

    Luo, Lingyu; Jiang, Shanshan; Huang, Deqiang; Lu, Nonghua; Luo, Zhijun

    2015-01-01

    Emerging evidence has shown that cellular energy metabolism is regulated by the AMPK and MLK3-JNK signaling pathways, but the functional link between them remains to be determined. The present study aimed to explore the crosstalk between MLK3 and AMPK. We found that both JNK and AMPK were phosphorylated at their activation sites by TNF-α, Anisomycin, H2O2 and sorbitol. Interestingly, sorbitol stimulated phosphorylation of AMPK at T172 in LKB1-deficient cells. Following the screening of more than 100 kinases, we identified that MLK3 induced phosphorylation of AMPK at T172. Our in vitro analysis further revealed that MLK3-mediated phosphorylation of AMPK at T172 was independent of AMP, but addition of AMP caused a mobility shift of AMPK, an indication of autophosphorylation, suggesting that AMP binding and phosphorylation of T172 leads to maximal activation of AMPK. GST-pull down assays showed a direct interaction between AMPKα1 subunit and MLK3. Altogether, our results indicate that MLK3 serves as a common upstream kinase of AMPK and JNK and functions as a direct upstream kinase for AMPK independent of LKB1. PMID:25874865

  18. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk.

    PubMed

    Fullerton, Morgan D; Ford, Rebecca J; McGregor, Chelsea P; LeBlond, Nicholas D; Snider, Shayne A; Stypa, Stephanie A; Day, Emily A; Lhoták, Šárka; Schertzer, Jonathan D; Austin, Richard C; Kemp, Bruce E; Steinberg, Gregory R

    2015-05-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1(-/-)) mice. Macrophages from Ampk β1(-/-) mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1(-/-) macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1(-/-) macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  19. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation

    PubMed Central

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A.; Jayaram, Hiremagalur N.; Crabb, David W.

    2008-01-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H2O2, 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H2O2 markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-ζ, LKB1, and AMPK caused by exposure to H2O2. This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H2O2-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-ζ and LKB1 phosphorylation and the activation of PP2A. PMID:18832448

  20. Low-flow Characteristics of Eau Claire River Basin near Antigo, Wisconsin

    USGS Publications Warehouse

    Holmstrom, B.K.

    1975-01-01

    This report presents low-flow characteristics at six sites on streams in the Eau Claire River basin near Antigo, Wis., where applications for irrigation permits were made. The low-flow characteristics presented are the annual minimum 7-day mean flows at the 2-year recurrence interval and 10-year recurrence interval. A seepage run made October 10, 1974, showed a substantial gain in discharge from site 2 (3.75 ft3/s [cubic feet per second] or 0.11 m3/s (cubic metres per second) to site 6 (30.6 ft3/s or 0.87 m3/s) on the East Branch Eau Claire River and from site 12 (3.98 ft3/s or 0.11 m3/s) to site 16 (18.1 ft3/s or 0.51 m3/s) on the West Branch Eau Claire River; a fairly constant discharge between sites 6 (30.6 ft3/s or 0.87 m3/s) and 11 (32.3 ft3/s or 0.91 m3/s) on the East Branch and sites 16 (18.1 ft3/s or 0.51 m3/s) and 20 (18.8 ft3/s or 0.53 m3/s) on the West Branch; and a substantial gain in discharge from site 23 (57.3 ft3/s or 1.62 m3/s) to site 24 (63.4 ft3/s or 1.80 m3/s) on the Eau Claire River. A gaging station was established at the downstream potential irrigation site to collect continuous stage and discharge data on streamflow to assist the Wisconsin Department of Natural Resources in the regulation of irrigation withdrawals.

  1. Regulation and function of AMPK in physiology and diseases

    PubMed Central

    Jeon, Sang-Min

    2016-01-01

    5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer. PMID:27416781

  2. Host AMPK Is a Modulator of Plasmodium Liver Infection.

    PubMed

    Ruivo, Margarida T Grilo; Vera, Iset Medina; Sales-Dias, Joana; Meireles, Patrícia; Gural, Nil; Bhatia, Sangeeta N; Mota, Maria M; Mancio-Silva, Liliana

    2016-09-01

    Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK) activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions. PMID:27568570

  3. Regulation and function of AMPK in physiology and diseases.

    PubMed

    Jeon, Sang-Min

    2016-01-01

    5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer. PMID:27416781

  4. Hypothalamic AMPK as a Regulator of Energy Homeostasis

    PubMed Central

    Huynh, My Khanh Q.; Kinyua, Ann W.; Yang, Dong Joo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  5. Hypothalamic AMPK as a Regulator of Energy Homeostasis.

    PubMed

    Huynh, My Khanh Q; Kinyua, Ann W; Yang, Dong Joo; Kim, Ki Woo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  6. Arctigenin alleviates ER stress via activating AMPK

    PubMed Central

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  7. Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1.

    PubMed

    Sun, Yan; Li, Jia; Xiao, Na; Wang, Meng; Kou, Junping; Qi, Lianwen; Huang, Fang; Liu, Baolin; Liu, Kang

    2014-11-01

    Adipose and endothelial dysfunction is tightly associated with cardiovascular diseases in obesity and insulin resistance. Because perivascular adipose tissue (PVAT) surrounds vessels directly and influences vessel functions through paracrine effect, and AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) show similarities in modulation of metabolic pathway, we hypothesized that activation of AMPK and SIRT1 in PVAT might regulate the endothelial function in pathological settings. Thus, in this study, we focused on the regulation of AMPK and SIRT1 activities implicated in adipocytokine expression and endothelial homeostasis under inflammatory conditions by using salicylate, metformin, AICA riboside (AICAR) and resveratrol as AMPK activating agents. We prepared conditioned medium (CM) by stimulating PVAT with palmitic acid (PA) and observed the effects of AMPK activating agents on adipocytokine expression and vessel vasodilation in rats. Moreover, we explored the effects of resveratrol and metformin in fructose-fed rats. We observed that PA stimulation induced inflammation and dysregulation of adipocytokine expression accompanied with reduced AMPK activity and SIRT1 abundance in PVAT. AMPK activating agents inhibited NF-κB p65 phosphorylation and suppressed gene expression of pro-inflammatory adipocytokines, and upregulated adiponectin and PPARγ expression in PVAT in an AMPK/SIRT1-interdependent manner. Meanwhile, CM stimulation impaired endothelium-dependent vasodilation in response to acetylcholine (ACh). Pretreatment of CM with AMPK-activating agents enhanced eNOS phosphorylation in the aorta and restored the loss of endothelium-dependent vasodilation, whereas this action was abolished by co-treatment with AMPK inhibitor compound C or SIRT1 inhibitor nicotinamide. Long-term fructose-feeding in rats induced dysregulation of adipocytokine expression in PVAT and the loss of endothelium-dependent vasodilation, whereas these alterations were reversed by oral

  8. AMPK activation: a therapeutic target for type 2 diabetes?

    PubMed Central

    Coughlan, Kimberly A; Valentine, Rudy J; Ruderman, Neil B; Saha, Asish K

    2014-01-01

    Type 2 diabetes (T2D) is a metabolic disease characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Over 350 million people worldwide have T2D, and the International Diabetes Federation projects that this number will increase to nearly 600 million by 2035. There is a great need for more effective treatments for maintaining glucose homeostasis and improving insulin sensitivity. AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase whose activation elicits insulin-sensitizing effects, making it an ideal therapeutic target for T2D. AMPK is an energy-sensing enzyme that is activated when cellular energy levels are low, and it signals to stimulate glucose uptake in skeletal muscles, fatty acid oxidation in adipose (and other) tissues, and reduces hepatic glucose production. There is substantial evidence suggesting that AMPK is dysregulated in animals and humans with metabolic syndrome or T2D, and that AMPK activation (physiological or pharmacological) can improve insulin sensitivity and metabolic health. Numerous pharmacological agents, natural compounds, and hormones are known to activate AMPK, either directly or indirectly – some of which (for example, metformin and thiazolidinediones) are currently used to treat T2D. This paper will review the regulation of the AMPK pathway and its role in T2D, some of the known AMPK activators and their mechanisms of action, and the potential for future improvements in targeting AMPK for the treatment of T2D. PMID:25018645

  9. AMPK regulation of the growth of cultured human keratinocytes

    SciTech Connect

    Saha, Asish K. . E-mail: aksaha@bu.edu; Persons, Kelly; Safer, Joshua D.; Luo Zhijun; Holick, Michael F.; Ruderman, Neil B.

    2006-10-20

    AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-{beta}-D-ribofuranoside (AICAR). At concentrations of 10{sup -4} and 10{sup -3} M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10{sup -6} M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D{sub 3} (10{sup -7} and 10{sup -6} M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p < 0.05) as keratinocytes grown in control medium went from 25% to 100% confluence. In conclusion, the data are consistent with the hypothesis that activation of AMPK acts as a signal to diminish the proliferation of cultured keratinocytes as they approach confluence. They also suggest that AMPK activators, such as AICAR and troglitazone, inhibit keratinocyte growth and that the inhibition of cell growth by 1,25-dihydroxyvitamin D{sub 3} is AMPK-independent.

  10. Immunometabolism of AMPK in insulin resistance and atherosclerosis.

    PubMed

    Fullerton, Morgan D; Steinberg, Gregory R; Schertzer, Jonathan D

    2013-02-25

    Obesity leads to insulin resistance and atherosclerosis, which precede Type 2 diabetes and cardiovascular disease. Immunometabolism addresses how metabolic and inflammatory pathways converge to maintain health and a contemporary problem is determining how obesity-induced inflammation precipitates chronic diseases such as insulin resistance and atherosclerosis. AMP-activated protein kinase (AMPK) is an important serine/threonine kinase well known for regulating metabolic processes and maintaining energy homeostasis. However, both metabolic and immunological AMPK-mediated effects play a role in disease. Pro-inflammatory mediators suppress AMPK activity and hinder lipid oxidation. In addition, AMPK activation curbs inflammation by directly inhibiting pro-inflammatory signaling pathways and limiting the build-up of specific lipid intermediates that elicit immune responses. In the context of obesity and chronic disease, these reciprocal responses involve both immune and metabolic cells. Therefore, the immunometabolism of AMPK-mediated processes and therapeutics should be considered in atherosclerosis and insulin resistance. PMID:22361321

  11. Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators

    PubMed Central

    Sinnett, Sarah E.; Brenman, Jay E.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089

  12. AMPK: a master energy regulator for gonadal function.

    PubMed

    Bertoldo, Michael J; Faure, Melanie; Dupont, Joëlle; Froment, Pascal

    2015-01-01

    From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5' AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome). PMID:26236179

  13. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  14. AMPK: a master energy regulator for gonadal function

    PubMed Central

    Bertoldo, Michael J.; Faure, Melanie; Dupont, Joëlle; Froment, Pascal

    2015-01-01

    From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome). PMID:26236179

  15. AMPK at the Nexus of Energetics and Aging

    PubMed Central

    Burkewitz, Kristopher; Zhang, Yue; Mair, William B.

    2014-01-01

    When energy supply is low, organisms respond by slowing aging and increasing resistance to diverse age-related pathologies. Targeting the mechanisms underpinning this response may therefore treat multiple disorders through a single intervention. Here we discuss AMP-activated protein kinase (AMPK) as an integrator and mediator of several pathways and processes linking energetics to longevity. Activated by low energy, AMPK is both pro-longevity and druggable, but its role in some pathologies may not be beneficial. As such, activating AMPK may modulate multiple longevity pathways to promote healthy aging, but unlocking its full potential may require selective targeting towards substrates involved in longevity-assurance. PMID:24726383

  16. Discovery of Pyridones As Oral AMPK Direct Activators

    PubMed Central

    2013-01-01

    AMP-activated protein kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for type 2 diabetes and other metabolic disorders. Here, we will report the discovery of pyrrolopyridone derivatives as AMPK direct activators. We will illustrate the synthesis and structure–activity relationships of the series as well as some pharmacokinetic results. Some compounds exhibited encouraging oral exposure and were evaluated in a mouse diabetic model. Compound 17 showed oral activity at 30 mg/kg on blood glucose. PMID:24900722

  17. Discovery of Pyridones As Oral AMPK Direct Activators.

    PubMed

    Mirguet, Olivier; Sautet, Stéphane; Clément, Catherine-Anne; Toum, Jérôme; Donche, Frédéric; Marques, Celine; Rondet, Emilie; Pizzonero, Mathieu; Beaufils, Benjamin; Dudit, Yann; Huet, Pascal; Trottet, Lionel; Grondin, Pascal; Brusq, Jean-Marie; Boursier, Eric; Saintillan, Yannick; Nicodeme, Edwige

    2013-07-11

    AMP-activated protein kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for type 2 diabetes and other metabolic disorders. Here, we will report the discovery of pyrrolopyridone derivatives as AMPK direct activators. We will illustrate the synthesis and structure-activity relationships of the series as well as some pharmacokinetic results. Some compounds exhibited encouraging oral exposure and were evaluated in a mouse diabetic model. Compound 17 showed oral activity at 30 mg/kg on blood glucose. PMID:24900722

  18. A Fluorescent Reporter of AMPK activity and Cellular Energy Stress

    PubMed Central

    Tsou, Peiling; Zheng, Bin; Hsu, Chia-Hsien; Sasaki, Atsuo T; Cantley, Lewis C.

    2011-01-01

    SUMMARY AMP-activated protein kinase (AMPK) is activated when the AMP/ATP ratio in cells is elevated due to energy stress. Here we describe a biosensor, AMPKAR, which exhibits enhanced fluorescence resonance energy transfer (FRET) in response to phosphorylation by AMPK, allowing spatio-temporal monitoring of AMPK activity in single cells. We show that this reporter responds to a variety of stimuli that are known to induce energy stress and that the response is dependent on AMPK α1 & α2 and on the upstream kinase, LKB1. Interestingly we found that AMPK activation is confined to the cytosol in response to energy stress but can be observed in both the cytosol and nucleus in response to calcium elevation. Finally, using this probe with U2OS cells in a microfluidics device, we observed a very high cell-to-cell variability in the amplitude and time course of AMPK activation and recovery in response to pulses of glucose deprivation. PMID:21459332

  19. The dark face of AMPK as an essential tumor promoter.

    PubMed

    Jeon, Sang-Min; Hay, Nissim

    2012-10-01

    Numerous studies have shown that supraphysiological activation of AMPK could inhibit tumor growth. On the other hand, accumulating data also suggest that AMPK activity is required for tumor growth and migration. These findings suggest that physiological activation of AMPK is critical for tumor growth/migration, possibly through maintenance of ATP levels. Our recent study provides the first evidence that the maintenance of cellular NADPH homeostasis is the predominant mechanism by which AMPK promotes tumor cell survival and solid tumor formation. We showed that AMPK activation is required to maintain intracellular NADPH levels through the activation of fatty acid oxidation (FAO) or the inhibition of fatty acid synthesis (FAS) during glucose deprivation or matrix detachment respectively. Through these processes AMPK activation inhibits the rise in reactive oxygen species (ROS) levels and promotes metabolic adaptation in response to metabolic stress. This finding also provides a new therapeutic opportunity through targeting metabolic adaptation of cancer cells, either alone or in combination with conventional anti-cancer drugs that cause metabolic stress. PMID:23676995

  20. Differential crosstalk between the AMPK and PI3K/Akt pathways in breast cancer cells of differing genotypes: Leptin inhibits the effectiveness of AMPK activation.

    PubMed

    El-Masry, Omar S; Al-Sakkaf, Kaltoom; Brown, Barry L; Dobson, Pauline R M

    2015-10-01

    AMP-activated protein kinase (AMPK), a sensor of cellular energy, is widely reported as a potential therapeutic target in treatment of breast and other cancers. The activated enzyme has been shown to be a promising anti-proliferative agent in breast cancer cell lines. However, little data exist on crosstalk between AMPK and the cellular survival axis of PI3K/Akt/mTOR pathway and the impact of microenvironment on cellular responses to AMPK activation. We present results which show differential crosstalk between AMPK and Akt, dependent on the cellular genetics of each breast cancer cell type. We also show that leptin blocks activation of AMPK and partially or completely attenuates the anti-proliferative effect of AMPK activation depending on the cell type. This suggests that leptin within the local environment might impose limitations on therapeutic usage of AMPK activators in cancer, thereby attenuating their effective use in many obese subjects. PMID:26260992

  1. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate.

    PubMed

    Ducommun, Serge; Deak, Maria; Sumpton, David; Ford, Rebecca J; Núñez Galindo, Antonio; Kussmann, Martin; Viollet, Benoit; Steinberg, Gregory R; Foretz, Marc; Dayon, Loïc; Morrice, Nicholas A; Sakamoto, Kei

    2015-05-01

    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Although it is best known for its effects on carbohydrate and lipid metabolism, AMPK is implicated in diverse cellular processes, including mitochondrial biogenesis, autophagy, and cell growth and proliferation. To further our understanding of energy homeostasis through AMPK-dependent processes, the design and application of approaches to identify and characterise novel AMPK substrates are invaluable. Here, we report an affinity proteomicstrategy for the discovery and validation of AMPK targets using an antibody to isolate proteins containing the phospho-AMPK substrate recognition motif from hepatocytes that had been treated with pharmacological AMPK activators. We identified 57 proteins that were uniquely enriched in the activator-treated hepatocytes, but were absent in hepatocytes lacking AMPK. We focused on two candidates, cingulin and mitochondrial fission factor (MFF), and further characterised/validated them as AMPK-dependent targets by immunoblotting with phosphorylation site-specific antibodies. A small-molecule AMPK activator caused transient phosphorylation of endogenous cingulin at S137 in intestinal Caco2 cells. Multiple splice-variants of MFF appear to express in hepatocytes and we identified a common AMPK-dependent phospho-site (S129) in all the 3 predominant variants spanning the mass range and a short variant-specific site (S146). Collectively, our proteomic-based approach using a phospho-AMPK substrate antibody in combination with genetic models and selective AMPK activators will provide a powerful and reliable platform for identifying novel AMPK-dependent cellular targets. PMID:25683918

  2. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    PubMed

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence. PMID:25372736

  3. Compartmentalized AMPK Signaling Illuminated by Genetically Encoded Molecular Sensors and Actuators

    PubMed Central

    Miyamoto, Takafumi; Rho, Elmer; Sample, Vedangi; Akano, Hiroki; Magari, Masaki; Ueno, Tasuku; Gorshkov, Kirill; Chen, Melinda; Tokumitsu, Hiroshi; Zhang, Jin; Inoue, Takanari

    2015-01-01

    Summary AMP-activated protein kinase (AMPK), whose activity is a critical determinant of cell vitality, serves a fundamental role in integrating extracellular and intracellular nutrient information into signals that regulate various metabolic processes. Despite the importance of AMPK, its specific roles within the different intracellular spaces remain unresolved, largely due to the lack of real-time, organelle-specific AMPK activity probes. Here, we present a series of molecular tools that allows for the measurement of AMPK activity at the different subcellular localizations and that allows for the rapid induction of AMPK inhibition. We discovered that AMPKα1, not AMPKα2, was the subunit that preferentially conferred spatial specificity to AMPK, and that inhibition of AMPK activity at the mitochondria was sufficient for triggering cytosolic ATP increase. These findings suggest that genetically encoded molecular probes represent a powerful approach for revealing the basic principles of the spatiotemporal nature of AMPK regulation. PMID:25892241

  4. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation

    PubMed Central

    Groenendijk, Floris H; Mellema, Wouter W; van der Burg, Eline; Schut, Eva; Hauptmann, Michael; Horlings, Hugo M; Willems, Stefan M; van den Heuvel, Michel M; Jonkers, Jos; Smit, Egbert F; Bernards, René

    2015-01-01

    The multikinase inhibitor sorafenib is under clinical investigation for the treatment of many solid tumors, but in most cases, the molecular target responsible for the clinical effect is unknown. Furthermore, enhancing the effectiveness of sorafenib using combination strategies is a major clinical challenge. Here, we identify sorafenib as an activator of AMP-activated protein kinase (AMPK), in a manner that involves either upstream LKB1 or CAMKK2. We further show in a phase II clinical trial in KRAS mutant advanced non-small cell lung cancer (NSCLC) with single agent sorafenib an improved disease control rate in patients using the antidiabetic drug metformin. Consistent with this, sorafenib and metformin act synergistically in inhibiting cellular proliferation in NSCLC in vitro and in vivo. A synergistic effect of both drugs is also seen on phosphorylation of the AMPKα activation site. Our results provide a rationale for the synergistic antiproliferative effects, given that AMPK inhibits downstream mTOR signaling. These data suggest that the combination of sorafenib with AMPK activators could have beneficial effects on tumor regression by AMPK pathway activation. The combination of metformin or other AMPK activators and sorafenib could be tested in prospective clinical trials. PMID:25080865

  5. AMPK: A cellular metabolic and redox sensor. A minireview

    PubMed Central

    Shirwany, Najeeb A; Zou, Ming-Hui

    2014-01-01

    AMPK is a serine/threonine kinase that is found in all eukaryotes and is ubiquitously expressed in all organ systems. Once activated, AMPK stimulates hepatic fatty acid oxidation and ketogenesis, inhibits cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibits adipocyte lipolysis and lipogenesis, stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulates insulin secretion by the pancreas. Thus its importance in many critical cellular processes is well established. For cells it is critical that energy supply and demand are closely matched. AMPK is recognized as a critical integrator of this balance. It is known to be allosterically activated by an increased AMP:ATP ratio. Activation of the kinase switches on catabolic pathways while switching off anabolic ones. It also acts as a redox sensor in endothelial cells where oxidative stress can disturb NO signaling. Abnormal NO signaling leads to disturbed vasodilatory responses. By inhibiting the formation of reactive oxygen species in the endothelium, AMPK can optimize the redox balance in the vasculature. Here, we review the role of AMPK in the cell. PMID:24389195

  6. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  7. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGESBeta

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; et al

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  8. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    PubMed Central

    Li, Xiaodan; Wang, Lili; Zhou, X Edward; Ke, Jiyuan; de Waal, Parker W; Gu, Xin; Tan, M H Eileen; Wang, Dongye; Wu, Donghai; Xu, H Eric; Melcher, Karsten

    2015-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions. PMID:25412657

  9. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK.

    PubMed

    Liu, M; Alimov, A P; Wang, H; Frank, J A; Katz, W; Xu, M; Ke, Z-J; Luo, J

    2014-05-16

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight. PMID:24607345

  10. Thiamine Deficiency Induces Anorexia by Inhibiting Hypothalamic AMPK

    PubMed Central

    Liu, Mei; Alimov, Alexander; Wang, Haiping; Frank, Jacqueline A.; Katz, Wendy; Xu, Mei; Ke, Zun-Ji; Luo, Jia

    2014-01-01

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16 days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by 9 folds in TD group. The loss of body weight (17–24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic AMPK is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight. PMID:24607345

  11. IGF-I and IGFBP-2 Stimulate AMPK Activation and Autophagy, Which Are Required for Osteoblast Differentiation.

    PubMed

    Xi, Gang; Rosen, Clifford J; Clemmons, David R

    2016-01-01

    IGF-I/insulin-like growth factor binding protein 2 (IGFBP-2) coordinately stimulate osteoblast differentiation but the mechanisms by which they function have not been determined. AMP-activated protein kinase (AMPK) is induced during differentiation and AMPK knockout mice have reduced bone mass. IGF-I modulates AMPK in other cell types; therefore, these studies determined whether IGF-I/IGFBP-2 stimulate AMPK activation and the mechanism by which AMPK modulates differentiation. Calvarial osteoblasts and MC-3T3 cells expressed activated AMPK early in differentiation and AMPK inhibitors attenuated differentiation. However, expression of constitutively activated AMPK inhibited differentiation. To resolve this discrepancy we analyzed the time course of AMPK induction. AMPK activation was required early in differentiation (day 3-6) but down-regulation of AMPK after day 9 was also necessary. IGF-I/IGFBP-2 induced AMPK through their respective receptors and blocking-receptor activation blocked AMPK induction. To determine the mechanism by which AMPK functioned we analyzed components of the autophagosome. Activated AMPK stimulated ULK-1 S555 phosphorylation as well as beclin-1 and microtubule-associated protein 1A/1B light-chain phosphatidylethanolamine conjugate (LC3II) induction. Inhibition of AMPK attenuated these changes and direct inhibition of autophagy inhibited differentiation. Conversely, expression of activated AMPK was associated with persistence of these changes beyond day 9 and inhibited differentiation. Blocking AMPK activation after day 9 down-regulated these autophagosome components and rescued differentiation. This allowed induction of mechanistic target of rapamycin and AKT, which suppressed autophagy. The results show that early induction of AMPK in response to IGF-I/IGFBP-2 followed by suppression is required for osteoblast differentiation. AMPK functions through stimulation of autophagy. The findings suggest that these early catabolic changes are

  12. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  13. Phytochemical regulation of Fyn and AMPK signaling circuitry.

    PubMed

    Lee, Chan Gyu; Koo, Ja Hyun; Kim, Sang Geon

    2015-12-01

    During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries. PMID:25951818

  14. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    PubMed

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-01

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD. PMID:21262823

  15. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  16. Blunted response of hippocampal AMPK associated with reduced neurogenesis in older versus younger mice.

    PubMed

    Jang, Sooah; Kim, Hyunjeong; Jeong, Jihyeon; Lee, Su Kyoung; Kim, Eun Woo; Park, Minsun; Kim, Chul Hoon; Lee, Jong Eun; Namkoong, Kee; Kim, Eosu

    2016-11-01

    The rate of hippocampal neurogenesis declines with aging. This is partly explained by decreased neural responsiveness to various cues stimulating metabolism. AMP-activated protein kinase (AMPK), a pivotal enzyme regulating energy homeostasis in response to metabolic demands, showed the diminished sensitivity in peripheral tissues during aging. AMPK is also known to be involved in neurogenesis. We aimed to see whether AMPK reactivity is also blunted in the aged hippocampus, and thus is associated with aging-related change in neurogenesis. Following subchronic (7days) intraperitoneal and acute intracerebroventricular (i.c.v.) administration of either 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR; AMPK activator) or saline (sham) to young (16-week-old) and old (72-week-old) mice, we measured changes in AMPK activity, brain-derived neurotrophic factor (BDNF) expression or neurogenesis in the hippocampus. AICAR-induced changes in AMPK activity were observed in the hippocampus of young mice after acute i.c.v. injection. However, neither subchronic nor acute treatment induced significant changes in AMPK activity in old mice. Intriguingly, directions of AICAR-induced changes in AMPK activity were opposite between the hippocampus (decrease) and skeletal muscle (increase). ATP levels were inversely correlated with hippocampal AMPK activity, suggesting that the higher energy levels achieved by AICAR treatment might deactivate neuronal AMPK in young mice. The blunted response of AMPK to AICAR in old age was also indicated by the observations that the levels of neurogenesis and BDNF expression were significantly changed only in young mice upon AICAR treatment. Our findings suggest that the blunted response of neuronal AMPK in old age might be responsible for aging-associated decline in neurogenesis. Therefore, in addition to activation of AMPK, recovering its sensitivity may be necessary to enhance hippocampal neurogenesis in old age. PMID:27343360

  17. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    PubMed

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  18. Chronic Activation of γ2 AMPK Induces Obesity and Reduces β Cell Function.

    PubMed

    Yavari, Arash; Stocker, Claire J; Ghaffari, Sahar; Wargent, Edward T; Steeples, Violetta; Czibik, Gabor; Pinter, Katalin; Bellahcene, Mohamed; Woods, Angela; Martínez de Morentin, Pablo B; Cansell, Céline; Lam, Brian Y H; Chuster, André; Petkevicius, Kasparas; Nguyen-Tu, Marie-Sophie; Martinez-Sanchez, Aida; Pullen, Timothy J; Oliver, Peter L; Stockenhuber, Alexander; Nguyen, Chinh; Lazdam, Merzaka; O'Dowd, Jacqueline F; Harikumar, Parvathy; Tóth, Mónika; Beall, Craig; Kyriakou, Theodosios; Parnis, Julia; Sarma, Dhruv; Katritsis, George; Wortmann, Diana D J; Harper, Andrew R; Brown, Laurence A; Willows, Robin; Gandra, Silvia; Poncio, Victor; de Oliveira Figueiredo, Márcio J; Qi, Nathan R; Peirson, Stuart N; McCrimmon, Rory J; Gereben, Balázs; Tretter, László; Fekete, Csaba; Redwood, Charles; Yeo, Giles S H; Heisler, Lora K; Rutter, Guy A; Smith, Mark A; Withers, Dominic J; Carling, David; Sternick, Eduardo B; Arch, Jonathan R S; Cawthorne, Michael A; Watkins, Hugh; Ashrafian, Houman

    2016-05-10

    Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK γ2 subunit, exhibit ghrelin signaling-dependent hyperphagia, obesity, and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation throughout all tissues can have adverse metabolic consequences, with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease. PMID:27133129

  19. Dissecting the Dual Role of AMPK in Cancer: from Experimental to Human Studies

    PubMed Central

    Zadra, Giorgia; Batista, Julie L.; Loda, Massimo

    2015-01-01

    The precise role of 5′AMP-activated kinase (AMPK) in cancer and its potential as a therapeutic target is controversial. While it is well established that activation of this energy sensor inhibits the main anabolic processes that sustain cancer cell proliferation and growth, AMPK activation can confer on cancer cells the plasticity to survive under metabolic stress such as hypoxia and glucose deprivation, which are commonly observed in fast growing tumors. Thus, AMPK is referred to as both a “conditional” tumor suppressor and “contextual” oncogene. To add a further layer of complexity, AMPK activation in human cancer tissues and its correlation with tumor aggressiveness and progression appears to vary in different contexts. The current review discusses the different faces of this metabolic regulator, the therapeutic implications of its modulation and provides an overview of the most relevant data available on AMPK activation and AMPK activating drugs in human studies. PMID:25956158

  20. Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662

    PubMed Central

    Ducommun, Serge; Ford, Rebecca J.; Bultot, Laurent; Deak, Maria; Bertrand, Luc; Kemp, Bruce E.; Steinberg, Gregory R.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Activation of AMPK provides beneficial outcomes in fighting against metabolic disorders such as insulin resistance and type 2 diabetes. Currently, there is no allosteric AMPK activator available for the treatment of metabolic diseases, and limited compounds are available to robustly stimulate cellular/tissue AMPK in a specific manner. Here we investigated whether simultaneous administration of two different pharmacological AMPK activators, which bind and act on different sites, would result in an additive or synergistic effect on AMPK and its downstream signaling and physiological events in intact cells. We observed that cotreating primary hepatocytes with the AMP mimetic 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) and a low dose (1 μM) of the allosteric activator A769662 produced a synergistic effect on AMPK Thr172 phosphorylation and catalytic activity, which was associated with a more profound increase/decrease in phosphorylation of downstream AMPK targets and inhibition of hepatic lipogenesis compared with single-compound treatment. Mechanistically, we found that cotreatment does not stimulate LKB1, upstream kinase for AMPK, but it protects against dephosphorylation of Thr172 phosphorylation by protein phosphatase PP2Cα in an additive manner in a cell-free assay. Collectively, we demonstrate that AICAR sensitizes the effect of A769662 and promotes AMPK activity and its downstream events. The study demonstrates the feasibility of promoting AMPK activity by using two activators with distinct modes of action in order to achieve a greater activation of AMPK and downstream signaling. PMID:24425763

  1. Targeting AMPK Signaling Pathway to Overcome Drug Resistance for Cancer Therapy.

    PubMed

    Wang, Zhiyu; Liu, Pengxi; Chen, Qianjun; Deng, Shigui; Liu, Xiaoyan; Situ, Honglin; Zhong, Shaowen; Hann, Swei; Lin, Yi

    2016-01-01

    Mulitdrug resistance (MDR) is one of critical factorslimiting the efficacy of cancer chemoor radiotherapy. Emerging evidence has indicated that MDR is a complex process regulated by multiple factors, among which stress response molecules are considered as central players. AMP-activated protein kinase (AMPK) is a major regulator balancing energy supply and ultimately protects cells from harmful stresses via coordinating multiple metabolic pathways Notably, AMPK activation was recently shown to mediate the metabolism reprogramming in drug resistant cancer cells including promoting Warburg effects and mitochondrial biogenesis. Furthermore, AMPK activity has also been shown to regulate the self-renewal ability of cancer stem cells that are often refractory to chemotherapy. In addition, AMPK phosphorylation was critical in mediating autophagy induction, a process demonstrated to be effective in chemosensitivity modulation via degrading cellular components to satisfy nutrients requirement under stressful condition. Meanwhile, drug discovery targeting AMPK has been developed to validate the pathological significance of AMPK in cancer prevention and treatment. Although conflicting evidence focusing on the AMPK modulation for cancer treatment is still remained, this might be attributed to differences in AMPK isotypes in specific tissues, off-targets effects, the degree and duration of drug administration and experimental setting of stress conditions. This review will focus on AMPK mediated resistance to cancer therapy and discuss its potential therapeutic implication and targeting drug development. PMID:25777274

  2. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation.

    PubMed

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L

    2015-07-31

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPK(Ser-485), but not AMPK(Thr-172), phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPK(Ser-485), but not AMPK(Thr-172), hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPK(Ser-485) hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPK(S485A) mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPK(Ser-485) hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPK(Ser-485) phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  3. Development of a Novel Phosphorylated AMPK Protection Assay for High-Throughput Screening Using TR-FRET Assay.

    PubMed

    Xu, Yazhou; Wang, Yunjie; Xu, Yuan; Li, Jia; Liao, Hong; Zhang, Luyong; Pang, Tao

    2015-08-01

    AMP-activated protein kinase (AMPK), a conserved heterotrimeric kinase, serves as an energy sensor maintaining energy balance at both cellular and whole-body levels and plays multiple beneficial roles in carbohydrate and lipid metabolism, which makes AMPK an attractive target for diabetes and other metabolic disorders. To date, establishment of the physiologically relevant biochemical assay for AMPK has not been reported. Here we developed a phosphorylated AMPK protection assay based on a time-resolved fluorescence resonance energy transfer (TR-FRET) assay, using the protein phosphatase 2A (PP2A) to dephosphorylate AMPK. The partially dephosphorylated AMPK by PP2A had lower activity than phosphorylated AMPK. This specific TR-FRET assay for AMPK was optimized in the 384-well format and produced similar EC(50) values for AMPK activators AMP and A769662 and a similar IC(50) value for AMPK inhibitor compound C, as previously reported. Under the optimized conditions, the assay Z' factor calculated over 160 data points has an optimal value greater than 0.5, which is suitable for high-throughput screening. In conclusion, this phosphorylated AMPK protection assay we developed is very robust, sensitive, and simple to perform and may be useful as a high-throughput assay for identifying AMPK activators with the ability of preventing activated AMPK against dephosphorylation by phosphatase in the physiological conditions. PMID:25956678

  4. Protective effect of nectandrin B, a potent AMPK activator on neointima formation: inhibition of Pin1 expression through AMPK activation

    PubMed Central

    Ki, Sung Hwan; Lee, Jung-Woon; Lim, Sung Chul; Hien, Tran Thi; Im, Ji Hye; Oh, Won Keun; Lee, Moo Yeol; Ji, Young Hyun; Kim, Yoon Gyoon; Kang, Keon Wook

    2013-01-01

    Background and Purpose Neointima is considered a critical event in the development of vascular occlusive disease. Nectandrin B from nutmeg functions as a potent AMP-activated protein kinase (AMPK) activators. The present study addressed whether nectandrin B inhibits intimal hyperplasia in guide wire-injured arteries and examined its molecular mechanism. Experimental Approach Neointima was induced by guide wire injury in mouse femoral arteries. Cell proliferation and mechanism studies were performed in rat vascular smooth muscle cells (VSMC) culture model. Key Results Nectandrin B increased AMPK activity in VSMC. Nectandrin B inhibited the cell proliferation induced by PDGF and DNA synthesis. Moreover, treatment of nectandrin B suppressed neointima formation in femoral artery after guide wire injury. We have recently shown that Pin1 plays a critical role in VSMC proliferation and neointima formation. Nectandrin B potently blocked PDGF-induced Pin1 and cyclin D1 expression and nectandrin B‘s anti-proliferation effect was diminished in Pin1 overexpressed VSMC. PDGF-induced phosphorylation of ERK and Akt was marginally affected by nectandrin B. However, nectandrin B increased the levels of p53 and its downstream target p21 and, also reversibly decreased the expression of E2F1 and phosphorylated Rb in PDGF-treated VSMC. AMPK inhibition by dominant mutant form of adenovirus rescued nectandrin B-mediated down-regulation of Pin1 and E2F1. Conclusions and Implications Nectandrin B inhibited VSMC proliferation and neointima formation via inhibition of E2F1-dependent Pin1 gene transcription, which is mediated through the activation of an AMPK/p53-triggered pathway. PMID:23004677

  5. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    PubMed Central

    Marcinko, Katarina; Bujak, Adam L.; Lally, James S.V.; Ford, Rebecca J.; Wong, Tammy H.; Smith, Brennan K.; Kemp, Bruce E.; Jenkins, Yonchu; Li, Wei; Kinsella, Todd M.; Hitoshi, Yasumichi; Steinberg, Gregory R.

    2015-01-01

    Objective Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. Methods Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. Results There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. Conclusions Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity. PMID:26413470

  6. Hypoxia promotes drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling

    PubMed Central

    Zhao, Changfu; Zhang, Qiao; Yu, Tao; Sun, Shudong; Wang, Wenjun; Liu, Guangyao

    2016-01-01

    Purpose Drug resistance has been recognized to be a major obstacle to the chemotherapy for osteosarcoma. And the potential importance of hypoxia as a target to reverse drug resistance in osteosarcoma has been indicated, though the mechanism underlining such role is not clarified. The present study aims to investigate the role of hypoxia in the drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling. Experimental design We investigated the promotion of the resistance to doxorubicin of osteosarcoma MG-63 and U2-os cells in vitro, and then determined the role of hypoxia-inducible factor-1 (HIF-1)α and HIF-1β, the activation and regulatory role of AMPK in the osteosarcoma U2-os cells which were treated with doxorubicin under hypoxia. Results It was demonstrated that hypoxia significantly reduced the sensitivity of MG-63 and U2-os cells to doxorubicin, indicating an inhibited viability reduction and a reduced apoptosis promotion. And such reduced sensitivity was not associated with HIF-1α, though it was promoted by hypoxia in U2-os cells. Interestingly, the AMPK signaling was significantly promoted by hypoxia in the doxorubicin-treated U2-os cells, with a marked upregulation of phosphorylated AMPK (Thr 172) and phosphorylated acetyl-CoA carboxylase (ACC) (Ser 79), which were sensitive to the AMPK activator, AICAR and the AMPK inhibitor, Compound C. Moreover, the promoted AMPK activity by AICAR or the downregulated AMPK activity by Compound C significantly reduced or promoted the sensitivity of U2-os cells to doxorubicin. Conclusion The present study confirmed the AMPK signaling activation in the doxorubicin-treated osteosarcoma cells, in response to hypoxia, and the chemical upregulation or downregulation of AMPK signaling reduced or increased the chemo-sensitivity of osteosarcoma U2-os cells in vitro. Our study implies that AMPK inhibition might be a effective strategy to sensitize osteocarcoma cells to chemotherapy. PMID

  7. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway

    SciTech Connect

    Sung, Jin Young; Woo, Chang-Hoon; Kang, Young Jin; Lee, Kwang Youn; Choi, Hyoung Chul

    2011-09-16

    Highlights: {yields} An aging model was established by stimulating VSMC with adriamycin. {yields} Adriamycin increased p-LKB1, p-AMPK, p53 and p21 expressions. {yields} Inhibition of AMPK diminished SA-{beta}-gal staining and restored VSMC proliferation. {yields} p53 and p21 siRNA attenuated adriamycin-induced SA-{beta}-gal staining in VSMC. {yields} p53-p21 pathway is a mediator of LKB1/AMPK induced VSMC senescence. -- Abstract: Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated {beta}-galactosidase (SA-{beta}-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-{beta}-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53-p21 pathway is a mediator of LKB1/AMPK-induced senescence.

  8. AMPK Signaling in the Dorsal Hippocampus Negatively Regulates Contextual Fear Memory Formation.

    PubMed

    Han, Ying; Luo, Yixiao; Sun, Jia; Ding, Zengbo; Liu, Jianfeng; Yan, Wei; Jian, Min; Xue, Yanxue; Shi, Jie; Wang, Ji-Shi; Lu, Lin

    2016-06-01

    Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energy homeostasis. However, still unknown is its role in memory formation. In the present study, we found that AMPK is primarily expressed in neurons in the hippocampus, and then we demonstrated a time-dependent decrease in AMPK activity and increase in mammalian target of rapamycin complex 1 (mTORC1) activity after contextual fear conditioning in the CA1 but not CA3 area of the dorsal hippocampus. Using pharmacological methods and adenovirus gene transfer to bidirectionally regulate AMPK activity, we found that increasing AMPK activity in the CA1 impaired the formation of long-term fear memory, and decreasing AMPK activity enhanced fear memory formation. These findings were associated with changes in the phosphorylation of AMPK and p70s6 kinase (p70s6k) and expression of BDNF and membrane GluR1 and GluR2 in the CA1. Furthermore, the prior administration of an mTORC1 inhibitor blocked the enhancing effect of AMPK inhibition on fear memory formation, suggesting that this negative regulation of contextual fear memory by AMPK in the CA1 depends on the mTORC1 signaling pathway. Finally, we found that AMPK activity regulated hippocampal spine growth associated with memory formation. In summary, our results indicate that AMPK is a key negative regulator of plasticity and fear memory formation. PMID:26647974

  9. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    SciTech Connect

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya Nan, Fa-Jun Li, Jia

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome.

  10. Negative regulation of Bmi-1 by AMPK and implication in cancer progression

    PubMed Central

    Huang, Deqiang; He, Xiaoling; Zou, Junrong; Guo, Pei; Jiang, Shanshan; Lv, Nonghua; Alekseyev, Yuriy; Luo, Lingyu; Luo, Zhijun

    2016-01-01

    Bmi-1 is a transcriptional regulator that promotes tumor cell self-renewal and epithelial to mesenchymal transition and its upregulation is associated with tumor progression, AMPK is an intracellular fuel-sensing enzyme and plays important roles in tumor cell growth and progression. Thus, the present study aims to examine the regulation of Bmi-1 by AMPK. First, our data revealed that, as compared to adjacent normal tissue, Bmi-1 was highly expressed in gastric cancer, whereas phosphorylation of AMPK (p-AMPK) was reduced. Similar findings were observed in lung adenocarcinomas and appeared that the expression of Bmi-1 was correlated with pathological grades of the cancer, where opposite changes were found in p-AMPK. Second, Metformin, a pharmacological AMPK activator and anti-diabetic drug, or ectopic expression of LKB1, diminished expression of Bmi-1 in cancer cells, an event that was reversed by silencing LKB1. Third, knockdown of LITAF, previously identified as a downstream target of AMPK, upregulated Bmi-1, associated with increased cell viability, colony formation, and migration of cancer cells in vitro. Fourth, metformin increased the abundance of miR-15a, miR-128, miR-192, and miR-194, which was prevented by knockdown of LITAF. Accordingly, transfection of these individual miRNAs downregulated Bmi-1. Altogether, our data for the first time suggest a regulatory axis in cancer cells: AMPK upregulates LITAF, which in turn increases miRNAs, leading to attenuation of Bmi-1 expression. PMID:26717043

  11. FLCN: A new regulator of AMPK-dependent Warburg metabolic reprogramming

    PubMed Central

    Gingras, Marie-Claude; Pause, Arnim

    2014-01-01

    Tumor cells manage their energy to support aberrant proliferation by reprogramming their cellular metabolism, for example through the Warburg effect. Although AMPK is a major regulator of energy homeostasis, its role in cancer metabolic adaptation is unclear. We recently identified the tumor suppressor folliculin as a new regulator of AMPK-dependent metabolic transformation. PMID:27308336

  12. The AMPK-related kinase SNARK regulates muscle mass and myocyte survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-r...

  13. Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Santos, Vanessa V.; Deo, Minh; Davies, Jeffrey S.; Kemp, Bruce E.; Elsworth, John D.

    2016-01-01

    Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD. PMID:27467571

  14. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  15. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation

    PubMed Central

    Lee, Hyemi; Oh, Eun-Taex; Choi, Bo-Hwa; Park, Moon-Taek; Lee, Ja-Kyeong; Lee, Jae-Seon; Park, Heon Joo

    2015-01-01

    Oxygen and glucose deprivation (OGD) due to insufficient blood circulation can decrease cancer cell survival and proliferation in solid tumors. OGD increases the intracellular [AMP]/[ATP] ratio, thereby activating the AMPK. In this study, we have investigated the involvement of NQO1 in OGD-mediated AMPK activation and cancer cell death. We found that OGD activates AMPK in an NQO1-dependent manner, suppressing the mTOR/S6K/4E-BP1 pathway, which is known to control cell survival. Thus, the depletion of NQO1 prevents AMPK-induced cancer cell death in OGD. When we blocked OGD-induced Ca2+/CaMKII signaling, the NQO1-induced activation of AMPK was attenuated. In addition, when we blocked the RyR signaling, the accumulation of intracellular Ca2+ and subsequent activation of CaMKII/AMPK signaling was decreased in NQO1-expressing cells under OGD. Finally, siRNA-mediated knockdown of CD38 abrogated the OGD-induced activation of Ca2+/CaMKII/AMPK signaling. Taken together, we conclude that NQO1 plays a key role in the AMPK-induced cancer cell death in OGD through the CD38/cADPR/RyR/Ca2+/CaMKII signaling pathway. PMID:25586669

  16. AMPK directly inhibits NDPK through a phosphoserine switch to maintain cellular homeostasis

    PubMed Central

    Onyenwoke, Rob U.; Forsberg, Lawrence J.; Liu, Lucy; Williams, Tyisha; Alzate, Oscar; Brenman, Jay E.

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy sensor that regulates metabolism to maintain cellular energy balance. AMPK activation has also been proposed to mimic benefits of caloric restriction and exercise. Therefore, identifying downstream AMPK targets could elucidate new mechanisms for maintaining cellular energy homeostasis. We identified the phosphotransferase nucleoside diphosphate kinase (NDPK), which maintains pools of nucleotides, as a direct AMPK target through the use of two-dimensional differential in-gel electrophoresis. Furthermore, we mapped the AMPK/NDPK phosphorylation site (serine 120) as a functionally potent enzymatic “off switch” both in vivo and in vitro. Because ATP is usually the most abundant cellular nucleotide, NDPK would normally consume ATP, whereas AMPK would inhibit NDPK to conserve energy. It is intriguing that serine 120 is mutated in advanced neuroblastoma, which suggests a mechanism by which NDPK in neuroblastoma can no longer be inhibited by AMPK-mediated phosphorylation. This novel placement of AMPK upstream and directly regulating NDPK activity has widespread implications for cellular energy/nucleotide balance, and we demonstrate in vivo that increased NDPK activity leads to susceptibility to energy deprivation–induced death. PMID:22114351

  17. Hypothalamic AMPK: a canonical regulator of whole-body energy balance.

    PubMed

    López, Miguel; Nogueiras, Rubén; Tena-Sempere, Manuel; Diéguez, Carlos

    2016-07-01

    AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism. PMID:27199291

  18. Negative regulation of Bmi-1 by AMPK and implication in cancer progression.

    PubMed

    Huang, Deqiang; He, Xiaoling; Zou, Junrong; Guo, Pei; Jiang, Shanshan; Lv, Nonghua; Alekseyev, Yuriy; Luo, Lingyu; Luo, Zhijun

    2016-02-01

    Bmi-1 is a transcriptional regulator that promotes tumor cell self-renewal and epithelial to mesenchymal transition and its upregulation is associated with tumor progression, AMPK is an intracellular fuel-sensing enzyme and plays important roles in tumor cell growth and progression. Thus, the present study aims to examine the regulation of Bmi-1 by AMPK. First, our data revealed that, as compared to adjacent normal tissue, Bmi-1 was highly expressed in gastric cancer, whereas phosphorylation of AMPK (p-AMPK) was reduced. Similar findings were observed in lung adenocarcinomas and appeared that the expression of Bmi-1 was correlated with pathological grades of the cancer, where opposite changes were found in p-AMPK. Second, Metformin, a pharmacological AMPK activator and anti-diabetic drug, or ectopic expression of LKB1, diminished expression of Bmi-1 in cancer cells, an event that was reversed by silencing LKB1. Third, knockdown of LITAF, previously identified as a downstream target of AMPK, upregulated Bmi-1, associated with increased cell viability, colony formation, and migration of cancer cells in vitro. Fourth, metformin increased the abundance of miR-15a, miR-128, miR-192, and miR-194, which was prevented by knockdown of LITAF. Accordingly, transfection of these individual miRNAs downregulated Bmi-1. Altogether, our data for the first time suggest a regulatory axis in cancer cells: AMPK upregulates LITAF, which in turn increases miRNAs, leading to attenuation of Bmi-1 expression. PMID:26717043

  19. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice.

    PubMed

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya; Nan, Fa-Jun; Li, Jia

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. PMID:24055643

  20. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    PubMed

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  1. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis.

    PubMed Central

    Rutter, Guy A; Da Silva Xavier, Gabriela; Leclerc, Isabelle

    2003-01-01

    AMPK (5'-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain. PMID:12839490

  2. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    PubMed

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. PMID:23673223

  3. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM.

    PubMed

    Chennell, George; Willows, Robin J W; Warren, Sean C; Carling, David; French, Paul M W; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  4. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells

    PubMed Central

    Cacicedo, José M.; Ruderman, Neil B.; Ido, Yasuo

    2014-01-01

    Dysregulated autophagy and decreased AMP-activated protein kinase (AMPK) activity are each associated with atherogenesis. Atherogenesis is preceded by high circulating concentrations of glucose and fatty acids, yet the mechanism by which these nutrients regulate autophagy in human aortic endothelial cells (HAECs) is not known. Furthermore, whereas AMPK is recognized as an activator of autophagy in cells with few nutrients, its effects on autophagy in nutrient-rich HAECs has not been investigated. We maintained and passaged primary HAECs in media containing 25 mM glucose and incubated them subsequently with 0.4 mM palmitate. These conditions impaired basal autophagy and rendered HAECs more susceptible to apoptosis and adhesion of monocytes, outcomes attenuated by the autophagy activator rapamycin. Glucose and palmitate diminished AMPK activity and phosphorylation of the uncoordinated-51-like kinase 1 (ULK1) at Ser555, an autophagy-activating site targeted by AMPK. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR)-mediated activation of AMPK phosphorylated acetyl-CoA carboxylase, but treatment with AICAR or other AMPK activators (A769662, phenformin) did not restore ULK1 phosphorylation or autophagosome formation. To determine whether palmitate-induced ceramide accumulation contributed to this finding, we overexpressed a ceramide-metabolizing enzyme, acid ceramidase. The increase in acid ceramidase expression ameliorated the effects of excess nutrients on ULK1 phosphorylation, without altering the effects of the AMPK activators. Thus, unlike low nutrient conditions, AMPK becomes uncoupled from autophagy in HAECs in a nutrient-rich environment, such as that found in patients with increased cardiovascular risk. These findings suggest that combinations of AMPK-independent and AMPK-dependent therapies may be more effective alternatives than either therapy alone for treating nutrient-induced cellular dysfunction. PMID:25354528

  5. Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels

    PubMed Central

    Sozio, Margaret S.; Shin, Eric; Zhao, Zhenwen; Xu, Yan; Ross, Ruth A.; Zeng, Yan; Crabb, David W.

    2010-01-01

    Ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMP-activated protein kinase (AMPK). This study shows that the inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of the phosphorylation of upstream kinases and the activation of protein phosphatase 2A (PP2A).Inhibition of AMPK phosphorylation by palmitate was attributed to ceramide-dependent PP2A activation. We hypothesized that the inhibitory effect of ethanol on AMPK phosphorylation was mediated partly through the generation of ceramide. The effect of ethanol and inhibitors of ceramide synthesis on AMPK phosphorylation, ceramide levels, and PP2A activity were assessed in rat hepatoma cells (H4IIEC3). The effect of ethanol on hepatic ceramide levels was also studied in C57BL/6J mice fed the Lieber-DeCarli diet. In H4IIEC3 cells, ceramide reduced AMPK phosphorylation when they were treated for between 4 and 12 h. The basal level of AMPK phosphorylation in hepatoma cells was increased with the treatment of ceramide synthase inhibitor, fumonisin B1. Ethanol treatment significantly increased cellular ceramide content and PP2A activity by ∼18–23%, when the cells were treated with ethanol for between 4 and 12 h. These changes in intracellular ceramide concentrations and PP2A activity correlated with the time course over which ethanol inhibited AMPK phosphorylation. The activation of PP2A and inhibition of AMPK phosphorylation caused by ethanol was attenuated by fumonisin B1 and imipramine, an acid sphingomyelinase (SMase) inhibitor. There was a significant increase in the levels of ceramide and acid SMase mRNA in the livers of ethanol-fed mice compared with controls. We concluded that the effect of ethanol on AMPK appears to be mediated in part through increased cellular levels of ceramide and activation of PP2A. PMID:20224005

  6. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart

    PubMed Central

    Morrison, Alex; Chen, Li; Wang, Jinli; Zhang, Ming; Yang, Hui; Ma, Yina; Budanov, Andrei; Lee, Jun Hee; Karin, Michael; Li, Ji

    2015-01-01

    The regulation of AMPK in the ischemic heart remains incompletely understood. Recent evidence implicates the role of Sestrin2 in the AMPK signaling pathway, and it is hypothesized that Sestrin2 plays an influential role during myocardial ischemia to promote AMPK activation. Sestrin2 protein was found to be expressed in adult cardiomyocytes and accumulated in the heart during ischemic conditions. Sestrin2 knockout (KO) mice were used to determine the importance of Sestrin2 during ischemia and reperfusion (I/R) injury. When wild-type (WT) and Sestrin2 KO mice were subjected to in vivo I/R, myocardial infarct size was significantly greater in Sestrin2 KO compared with WT hearts. Similarly, Langendorff perfused hearts indicated exacerbated postischemic contractile function in Sestrin2 KO hearts compared with WT. Ischemic AMPK activation was found to be impaired in the Sestrin2 KO hearts. Immunoprecipitation of Sestrin2 demonstrated an association with AMPK. Moreover, liver kinase B1 (LKB1), a major AMPK upstream kinase, was associated with the Sestrin2-AMPK complex in a time-dependent manner during ischemia, whereas this interaction was nearly abolished in Sestrin2 KO hearts. Thus, Sestrin2 plays an important role in cardioprotection against I/R injury, serving as an LKB1-AMPK scaffold to initiate AMPK activation during ischemic insults.—Morrison, A., Chen, L. Wang, J., Zhang, M., Yang, H., Ma, Y., Budanov, A., Lee, J. H., Karin, M., Li, J. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. PMID:25366347

  7. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    SciTech Connect

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  8. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    PubMed Central

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2014-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in a dose-dependent manner. Cordycepin-induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin-dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit. PMID:24286368

  9. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer?

    PubMed Central

    Hardie, D. Grahame

    2015-01-01

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status expressed in essentially all eukaryotic cells. Once activated by energetic stress via a mechanism that detects increases in AMP:ATP and ADP:ATP ratios, AMPK acts to restore energy homeostasis by switching on catabolic pathways that generate ATP, while switching off ATP-consuming processes, including anabolic pathways required for cell growth and proliferation. AMPK activation promotes the glucose-sparing, oxidative metabolism utilized by most quiescent cells, rather than the rapid glucose uptake and glycolysis used by most proliferating cells. Numerous pharmacological activators of AMPK are known, including drugs in long use such as salicylate and metformin, and there is evidence that regular use of either of the latter provides protection against development of cancer. Tumor cells appear to be under selection pressure to down-regulate AMPK, thus limiting its restraining influence on cell growth and proliferation, and several interesting mechanisms by which this occurs are discussed. Paradoxically, however, a complete loss of AMPK function, which appears to be rare in human cancers, may be deleterious to survival of tumor cells. AMPK can therefore either be a friend and a foe in cancer, depending on the context. PMID:26152739

  10. AMPK and the biochemistry of exercise: Implications for human health and disease

    PubMed Central

    Richter, Erik A.; Ruderman, Neil B.

    2009-01-01

    Synopsis AMP-activated protein kinase (AMPK) is a phylogenetically conserved fuel-sensing enzyme that is present in all mammalian cells. During exercise, it is activated in skeletal muscle in humans, and at least in rodents, also in adipose tissue, liver and perhaps other organs by events that increase the AMP/ATP ratio. When activated AMPK stimulates energy generating processes such as glucose uptake and fatty acid oxidation and decreases energy consuming processes such as protein and lipid synthesis. Exercise is perhaps the most powerful physiological activator of AMPK and a unique model for studying its many physiological roles. In addition, it improves the metabolic status of rodents with a metabolic syndrome phenotype, as does treatment with AMPK activating agents; therefore, it is tempting to attribute the therapeutic benefits of regular physical activity to activation of AMPK. Here we review the acute and chronic effects of exercise on AMPK activity in skeletal muscle and other tissues. We also discuss the potential role of AMPK activation in mediating the prevention and treatment by exercise of specific disorders associated with the metabolic syndrome including type 2 diabetes and Alzheimer’s disease. PMID:19196246

  11. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis

    PubMed Central

    Zadra, Giorgia; Photopoulos, Cornelia; Tyekucheva, Svitlana; Heidari, Pedram; Weng, Qing Ping; Fedele, Giuseppe; Liu, Hong; Scaglia, Natalia; Priolo, Carmen; Sicinska, Ewa; Mahmood, Umar; Signoretti, Sabina; Birnberg, Neal; Loda, Massimo

    2014-01-01

    5′AMP-activated kinase (AMPK) constitutes a hub for cellular metabolic and growth control, thus representing an ideal therapeutic target for prostate cancers (PCas) characterized by increased lipogenesis and activation of mTORC1 pathway. However, whether AMPK activation itself is sufficient to block cancer cell growth remains to be determined. A small molecule screening was performed and identified MT 63–78, a specific and potent direct AMPK activator. Here, we show that direct activation of AMPK inhibits PCa cell growth in androgen sensitive and castration resistant PCa (CRPC) models, induces mitotic arrest, and apoptosis. In vivo, AMPK activation is sufficient to reduce PCa growth, whereas the allelic loss of its catalytic subunits fosters PCa development. Importantly, despite mTORC1 blockade, the suppression of de novo lipogenesis is the underpinning mechanism responsible for AMPK-mediated PCa growth inhibition, suggesting AMPK as a therapeutic target especially for lipogenesis-driven PCas. Finally, we demonstrate that MT 63–78 enhances the growth inhibitory effect of AR signaling inhibitors MDV3100 and abiraterone. This study thus provides a rationale for their combined use in CRPC treatment. PMID:24497570

  12. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    PubMed

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  13. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism

    PubMed Central

    Madiraju, Anila K.; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W.; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Kibbey, Richard G.; Shulman, Gerald I.

    2016-01-01

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  14. Re-sensitization of radiation resistant colorectal cancer cells to radiation through inhibition of AMPK pathway

    PubMed Central

    JIN, HONGYONG; GAO, SUJIE; GUO, HUILING; REN, SHENGNAN; JI, FUJIAN; LIU, ZHUO; CHEN, XUEBO

    2016-01-01

    Radiotherapy (RT) is commonly used to treat multi-tumors to attenuate the risk of recurrence. Despite impressive initial clinical responses, a large proportion of patients experience resistance to RT. Therefore, identification of functionally relevant biomarkers would be beneficial for radioresistant patients. Adenosine monophosphate-activated kinase (AMPK) is recognized as a mediator of tumor suppressor gene function. In the present study, radio-sensitive and -resistant colon cancer patient samples were compared and the AMPK pathway was observed to be highly activated in radioresistant patients. In addition, the protein and mRNA levels of AMPK were upregulated in radioresistant colon cancer cells in comparison to radiosensitive colon cancer cells. The present study provides evidence that activation of AMPK by metformin contributes to radioresistance. Inhibition of AMPK by either small interfering RNA or Compound C, which is a specific inhibitor of AMPK, re-sensitized radiation resistant cells. The data presented indicates a synergistic effect on radiation resistant cancer cells by the combination of Compound C and radiation. In summary, the present study proposes that inhibition of the AMPK pathway is a potential strategy for reversing radiation resistance and may contribute to the development of therapeutic anticancer drugs. PMID:27123089

  15. Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice.

    PubMed

    Egawa, Tatsuro; Goto, Ayumi; Ohno, Yoshitaka; Yokoyama, Shingo; Ikuta, Akihiro; Suzuki, Miho; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Hayashi, Tatsuya; Goto, Katsumasa

    2015-10-01

    AMPK is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-wk hindlimb suspension between transgenic mice overexpressing the dominant-negative mutant of AMPK (AMPK-DN) and their wild-type (WT) littermates. Male WT (n = 24) and AMPK-DN (n = 24) mice were randomly divided into two groups: an untreated preexperimental control group (n = 12 in each group) and an unloading (n = 12 in each group) group. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ∼30% in WT mice by hindlimb unloading and by ∼20% in AMPK-DN mice. There were no changes in puromycin-labeled protein or Akt/70-kDa ribosomal S6 kinase signaling, the indicators of protein synthesis. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of the ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to the protein degradation system, phosphorylated forkhead box class O3a, inhibitor of κBα, microRNA (miR)-1, and miR-23a, were decreased only in WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than in WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulation of the protein degradation system, especially the ubiquitin-proteasome system. PMID:26244519

  16. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.

    PubMed

    Salminen, Antero; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks

  17. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    SciTech Connect

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  18. Antagonistic control of muscle cell size by AMPK and mTORC1.

    PubMed

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Foretz, Marc; Viollet, Benoit

    2011-08-15

    Nutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues. PMID:21799304

  19. AMPK Dilates Resistance Arteries via Activation of SERCA and BKCa Channels in Smooth Muscle.

    PubMed

    Schneider, Holger; Schubert, Kai Michael; Blodow, Stephanie; Kreutz, Claus-Peter; Erdogmus, Serap; Wiedenmann, Margarethe; Qiu, Jiehua; Fey, Theres; Ruth, Peter; Lubomirov, Lubomir T; Pfitzer, Gabriele; Mederos Y Schnitzler, Michael; Hardie, D Grahame; Gudermann, Thomas; Pohl, Ulrich

    2015-07-01

    The protective effects of 5'-AMP-activated protein kinase (AMPK) on the metabolic syndrome may include direct effects on resistance artery vasomotor function. However, the precise actions of AMPK on microvessels and their potential interaction are largely unknown. Thus, we set to determine the effects of AMPK activation on vascular smooth muscle tone and the underlying mechanisms. Resistance arteries isolated from hamster and mouse exhibited a pronounced endothelium-independent dilation on direct pharmacological AMPK activation by 2 structurally unrelated compounds (PT1 and A769662). The dilation was associated with a decrease of intracellular-free calcium [Ca(2+)]i in vascular smooth muscle cell. AMPK stimulation induced activation of BKCa channels as assessed by patch clamp studies in freshly isolated hamster vascular smooth muscle cell and confirmed by direct proof of membrane hyperpolarization in intact arteries. The BKCa channel blocker iberiotoxin abolished the hyperpolarization but only partially reduced the dilation and did not affect the decrease of [Ca(2+)]i. By contrast, the sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA) inhibitor thapsigargin largely reduced these effects, whereas combined inhibition of SERCA and BKCa channels virtually abolished them. AMPK stimulation significantly increased the phosphorylation of the SERCA modulator phospholamban at the regulatory T17 site. Stimulation of smooth muscle AMPK represents a new, potent vasodilator mechanism in resistance vessels. AMPK directly relaxes vascular smooth muscle cell by a decrease of [Ca(2+)]i. This is achieved by calcium sequestration via SERCA activation, as well as activation of BKCa channels. There is in part a mutual compensation of both calcium-lowering mechanisms. However, SERCA activation which involves an AMPK-dependent phosphorylation of phospholamban is the predominant mechanism in resistance vessels. PMID:26034200

  20. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    PubMed

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  1. Survival Advantage of AMPK Activation to Androgen-Independent Prostate Cancer Cells During Energy Stress

    PubMed Central

    Chhipa, Rishi Raj; Wu, Yue; Mohler, James L.; Ip, Clement

    2016-01-01

    Androgen-independent prostate cancer usually develops as a relapse following androgen ablation therapy. Removing androgen systemically causes vascular degeneration and nutrient depletion of the prostate tumor tissue. The fact that the malignancy later evolves to androgen-independence suggests that some cancer cells are able to survive the challenge of energy/nutrient deprivation. AMP-activated protein kinase (AMPK) is an important manager of energy stress. The present study was designed to investigate the role of AMPK in contributing to the survival of the androgen-independent phenotype. Most of the experiments were carried out in the androgen-dependent LNCaP cells and the androgen-independent C4-2 cells. These two cell lines have the same genetic background, since the C4-2 line is derived from the LNCaP line. Glucose deprivation (GD) was instituted to model energy stress encountered by these cells. The key findings are as follows. First, the activation of AMPK by GD was much stronger in C4-2 cells than in LNCaP cells, and the robustness of AMPK activation was correlated favorably with cell viability. Second, the response of AMPK was specific to energy deficiency rather than to amino acid deficiency. The activation of AMPK by GD was functional, as demonstrated by appropriate phosphorylation changes of mTOR and mTOR downstream substrates. Third, blocking AMPK activation by chemical inhibitor or dominant negative AMPK led to increased apoptotic cell death. The observation that similar results were found in other androgen-independent prostate cancer cell lines, including CW22Rv1 abd VCaP, provided further assurance that AMPK is a facilitator on the road to androgen-independence of prostate cancer cells. PMID:20570728

  2. Blockade of MerTK Activation by AMPK Inhibits RPE Cell Phagocytosis.

    PubMed

    Qin, Suofu

    2016-01-01

    Timely removal of shed photoreceptor outer segments by retinal pigment epithelial cells (RPE) plays a key role in biological renewal of these highly peroxidizable structures and in maintenance of retina health. How environmental stress cause RPE cell dysfunction is undefined however. AMP-activated protein kinase (AMPK), a heterotrimer of a catalytic α subunit and regulatory β and γ subunits, maintains energy homeostasis by limiting energy utilization and/or promoting energy production when energy supply is compromised. Intriguingly, AMPK has been shown to be important in functions of RPE cells. In this mini-review, the role and mechanisms of AMPK in controlling RPE cell phagocytosis are discussed. PMID:26427488

  3. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression

    PubMed Central

    Shackelford, David B.; Shaw, Reuben J.

    2009-01-01

    In the past decade, studies of the human tumor suppressor LKB1 have uncovered a novel signaling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues such as liver, muscle, and adipose, a function that has made it a key therapeutic target in patients with diabetes. The connection of AMPK with several tumor suppressors suggests that therapeutic manipulation of this pathway with established diabetes drugs warrants further investigation in patients with cancer. PMID:19629071

  4. Stimulators of AMP-activated kinase (AMPK) inhibit seawater- but not cAMP-induced oocyte maturation in a marine worm: Implications for interactions between cAMP and AMPK signaling.

    PubMed

    Stricker, Stephen A; Swiderek, Lee; Nguyen, Thanh

    2010-06-01

    Previous studies have shown that elevations in intraoocytic cAMP prevent mammalian oocytes from maturing, whereas cAMP degradation allows these oocytes to begin maturation, as evidenced by the onset of oocyte nuclear disassembly (="germinal vesicle breakdown", GVBD). Moreover, such cAMP degradation not only reduces cAMP levels but also generates AMP, which in turn can stimulate AMP-activated kinase (AMPK), a well-documented inducer of GVBD in mice. Alternatively, in some marine invertebrates, intraoocytic cAMP triggers, rather than blocks, GVBD, and whether AMPK up- or downregulates maturation in these species has not been tested. Thus, AMPK was monitored in the nemertean worm Cerebratulus during GVBD stimulated by seawater (SW) or cAMP elevators. In oocytes lacking surrounding follicle cells, AMPK activity was initially elevated in immature oocytes but subsequently reduced during SW- or cAMP-induced GVBD, given that the catalytic alpha-subunit of AMPK in maturing oocytes displayed a decreased stimulatory phosphorylation at T172 and an increased inhibitory phosphorylation at S485/491. Accordingly, AMPK-mediated phosphorylation of acetyl-CoA carboxylase, a known target of active AMPK, also declined during maturation. Moreover, treatments with either ice-cold calcium-free seawater (CaFSW) or AMPK agonists dissolved in SW maintained AMPK activity and inhibited GVBD. Conversely, adding cAMP elevators to CaFSW- or SW-solutions of AMPK activators restored GVBD while promoting S485/491 phosphorylation and AMPK deactivation. Collectively, such findings not only demonstrate for the first time that intraoocytic AMPK can block GVBD in the absence of surrounding follicle cells, but these results also provide evidence for a novel GVBD-regulating mechanism involving AMPK deactivation by cAMP-mediated S485/491 phosphorylation. PMID:20336704

  5. Metabolic Roles of AMPK and Metformin in Cancer Cells

    PubMed Central

    Choi, Yeon Kyung; Park, Keun-Gyu

    2013-01-01

    Metformin is one of the most widely used anti-diabetic agents in the world, and a growing body of evidence suggests that it may also be effective as an anti-cancer drug. Observational studies have shown that metformin reduces cancer incidence and cancer-related mortality in multiple types of cancer. These results have drawn attention to the mechanisms underlying metformin’s anti-cancer effects, which may include triggering of the AMP-activated protein kinase (AMPK) pathway, resulting in vulnerability to an energy crisis (leading to cell death under conditions of nutrient deprivation) and a reduction in circulating insulin/IGF-1 levels. Clinical trials are currently underway to determine the benefits, appropriate dosage, and tolerability of metformin in the context of cancer therapy. This review highlights fundamental aspects of the molecular mechanisms underlying metformin’s anti-cancer effects, describes the epidemiological evidence and ongoing clinical challenges, and proposes directions for future translational research. PMID:23794020

  6. AMPK Activation via Modulation of De Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization.

    PubMed

    Asby, Daniel J; Cuda, Francesco; Beyaert, Maxime; Houghton, Franchesca D; Cagampang, Felino R; Tavassoli, Ali

    2015-07-23

    5-Aminoimidazole-4-carboxamide ribonucleotide (known as ZMP) is a metabolite produced in de novo purine biosynthesis and histidine biosynthesis, but only utilized in the cell by a homodimeric bifunctional enzyme (called ATIC) that catalyzes the last two steps of de novo purine biosynthesis. ZMP is known to act as an allosteric activator of the cellular energy sensor adenosine monophosphate-activated protein kinase (AMPK), when exogenously administered as the corresponding cell-permeable ribonucleoside. Here, we demonstrate that endogenous ZMP, produced by the aforementioned metabolic pathways, is also capable of activating AMPK. Using an inhibitor of ATIC homodimerization to block the ninth step of de novo purine biosynthesis, we demonstrate that the subsequent increase in endogenous ZMP activates AMPK and its downstream signaling pathways. We go on to illustrate the viability of using this approach to AMPK activation as a therapeutic strategy with an in vivo mouse model for metabolic disorders. PMID:26144885

  7. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway

    PubMed Central

    Mo, Jung-Soon; Meng, Zhipeng; Kim, Young Chul; Park, Hyun Woo; Hansen, Carsten Gram; Kim, Soohyun; Lim, Dae-Sik; Guan, Kun-Liang

    2015-01-01

    YAP (Yes-associated protein) is a transcription co-activator in the Hippo tumor suppressor pathway and controls cell growth, tissue homeostasis, and organ size. YAP is inhibited by the kinase Lats, which phosphorylates YAP to induce its cytoplasmic localization and proteasomal degradation. YAP induces gene expression by binding to the TEAD family transcription factors. Dysregulation of the Hippo-YAP pathway is frequently observed in human cancers. Here we show that cellular energy stress induces YAP phosphorylation, in part due to AMPK-dependent Lats activation, thereby inhibiting YAP activity. Moreover, AMPK directly phosphorylates YAP S94, a residue essential for the interaction with TEAD, thus disrupting the YAP-TEAD interaction. AMPK-induced YAP inhibition can suppress oncogenic transformation of Lats-null cells with high YAP activity. Our study establishes a molecular mechanism and functional significance of AMPK in linking cellular energy status to the Hippo-YAP pathway. PMID:25751140

  8. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications.

    PubMed

    Yao, Fan; Zhang, Ming; Chen, Li

    2016-01-01

    Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays, which could remove cytotoxic proteins and dysfunctional organelles. This review will summarize the regulation of autophagy and AMPK in diabetes and its complications, and explore how AMPK stimulates autophagy in different diabetic syndromes. A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment. PMID:26904395

  9. Leishmania infantum modulates host macrophage mitochondrial metabolism by hijacking the SIRT1-AMPK axis.

    PubMed

    Moreira, Diana; Rodrigues, Vasco; Abengozar, Maria; Rivas, Luis; Rial, Eduardo; Laforge, Mireille; Li, Xiaoling; Foretz, Marc; Viollet, Benoit; Estaquier, Jérôme; Cordeiro da Silva, Anabela; Silvestre, Ricardo

    2015-03-01

    Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis. PMID:25738568

  10. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans

    PubMed Central

    Hwang, Ara B.; Ryu, Eun-A; Artan, Murat; Chang, Hsin-Wen; Kabir, Mohammad Humayun; Nam, Hyun-Jun; Lee, Dongyeop; Yang, Jae-Seong; Kim, Sanguk; Mair, William B.; Lee, Cheolju; Lee, Siu Sylvia; Lee, Seung-Jae

    2014-01-01

    Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS. PMID:25288734

  11. Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis

    PubMed Central

    Moreira, Diana; Rodrigues, Vasco; Abengozar, Maria; Rivas, Luis; Rial, Eduardo; Laforge, Mireille; Li, Xiaoling; Foretz, Marc; Viollet, Benoit; Estaquier, Jérôme; Cordeiro da Silva, Anabela; Silvestre, Ricardo

    2015-01-01

    Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis. PMID:25738568

  12. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    PubMed

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1. PMID:27015742

  13. Activation of AMPK Prevents Monocrotaline-Induced Extracellular Matrix Remodeling of Pulmonary Artery

    PubMed Central

    Li, Shaojun; Han, Dong; Zhang, Yonghong; Xie, Xinming; Ke, Rui; Zhu, Yanting; Liu, Lu; Song, Yang; Yang, Lan; Li, Manxiang

    2016-01-01

    Background The current study was performed to investigate the effect of adenosine monophosphate (AMP) – activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms. Material/Methods PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression. Conclusions This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH. PMID:26978596

  14. Nutrient Excess and AMPK Downregulation in Incubated Skeletal Muscle and Muscle of Glucose Infused Rats

    PubMed Central

    Valentine, Rudy J.; Petrocelli, Robert; Schultz, Vera; Brandon, Amanda; Cooney, Gregory J.; Kraegen, Edward W.; Ruderman, Neil B.; Saha, Asish K.

    2015-01-01

    We have previously shown that incubation for 1h with excess glucose or leucine causes insulin resistance in rat extensor digitorum longus (EDL) muscle by inhibiting AMP-activated protein kinase (AMPK). To examine the events that precede and follow these changes, studies were performed in rat EDL incubated with elevated levels of glucose or leucine for 30min-2h. Incubation in high glucose (25mM) or leucine (100μM) significantly diminished AMPK activity by 50% within 30min, with further decreases occurring at 1 and 2h. The initial decrease in activity at 30min coincided with a significant increase in muscle glycogen. The subsequent decreases at 1h were accompanied by phosphorylation of αAMPK at Ser485/491, and at 2h by decreased SIRT1 expression and increased PP2A activity, all of which have previously been shown to diminish AMPK activity. Glucose infusion in vivo, which caused several fold increases in plasma glucose and insulin, produced similar changes but with different timing. Thus, the initial decrease in AMPK activity observed at 3h was associated with changes in Ser485/491 phosphorylation and SIRT1 expression and increased PP2A activity was a later event. These findings suggest that both ex vivo and in vivo, multiple factors contribute to fuel-induced decreases in AMPK activity in skeletal muscle and the insulin resistance that accompanies it. PMID:25996822

  15. Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic β-cells.

    PubMed

    Park, Sun-Hyun; Ryu, Shin-Young; Yu, Weon-Jin; Han, Young Eun; Ji, Young-Sun; Oh, Keunhee; Sohn, Jong-Woo; Lim, Ajin; Jeon, Jae-Pyo; Lee, Hyunsu; Lee, Kyu-Hee; Lee, Suk-Ho; Berggren, Per-Olof; Jeon, Ju-Hong; Ho, Won-Kyung

    2013-07-30

    Leptin is a pivotal regulator of energy and glucose homeostasis, and defects in leptin signaling result in obesity and diabetes. The ATP-sensitive potassium (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic β-cells. In this study, we provide evidence that leptin modulates pancreatic β-cell functions by promoting K(ATP) channel translocation to the plasma membrane via AMP-activated protein kinase (AMPK) signaling. K(ATP) channels were localized mostly to intracellular compartments of pancreatic β-cells in the fed state and translocated to the plasma membrane in the fasted state. This process was defective in leptin-deficient ob/ob mice, but restored by leptin treatment. We discovered that the molecular mechanism of leptin-induced AMPK activation involves canonical transient receptor potential 4 and calcium/calmodulin-dependent protein kinase kinase β. AMPK activation was dependent on both leptin and glucose concentrations, so at optimal concentrations of leptin, AMPK was activated sufficiently to induce K(ATP) channel trafficking and hyperpolarization of pancreatic β-cells in a physiological range of fasting glucose levels. There was a close correlation between phospho-AMPK levels and β-cell membrane potentials, suggesting that AMPK-dependent K(ATP) channel trafficking is a key mechanism for regulating β-cell membrane potentials. Our results present a signaling pathway whereby leptin regulates glucose homeostasis by modulating β-cell excitability. PMID:23858470

  16. AMPK is a negative regulator of the Warburg Effect and suppresses tumor growth in vivo

    PubMed Central

    Faubert, Brandon; Boily, Gino; Izreig, Said; Griss, Takla; Samborska, Bozena; Dong, Zhifeng; Dupuy, Fanny; Chambers, Christopher; Fuerth, Benjamin J.; Viollet, Benoit; Mamer, Orval A.; Avizonis, Daina; DeBerardinis, Ralph J.; Siegel, Peter M.; Jones, Russell G.

    2012-01-01

    Summary AMPK is a metabolic sensor that helps maintain cellular energy homeostasis. Despite evidence linking AMPK with tumor suppressor functions, the role of AMPK in tumorigenesis and tumor metabolism is unknown. Here we show that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells, and suppresses tumor growth in vivo. Genetic ablation of the α1 catalytic subunit of AMPK accelerates Myc-induced lymphomagenesis. Inactivation of AMPKα in both transformed and non-transformed cells promotes a metabolic shift to aerobic glycolysis, increased allocation of glucose carbon into lipids, and biomass accumulation. These metabolic effects require normoxic stabilization of the hypoxia-inducible factor-1α (HIF-1α), as silencing HIF-1α reverses the shift to aerobic glycolysis and the biosynthetic and proliferative advantages conferred by reduced AMPKα signaling. Together our findings suggest that AMPK activity opposes tumor development, and its loss fosters tumor progression in part by regulating cellular metabolic pathways that support cell growth and proliferation. PMID:23274086

  17. Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity.

    PubMed

    Siggs, Owen M; Stockenhuber, Alexander; Deobagkar-Lele, Mukta; Bull, Katherine R; Crockford, Tanya L; Kingston, Bethany L; Crawford, Greg; Anzilotti, Consuelo; Steeples, Violetta; Ghaffari, Sahar; Czibik, Gabor; Bellahcene, Mohamed; Watkins, Hugh; Ashrafian, Houman; Davies, Benjamin; Woods, Angela; Carling, David; Yavari, Arash; Beutler, Bruce; Cornall, Richard J

    2016-06-28

    Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt-Hogg-Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1 Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51-like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK. PMID:27303042

  18. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease.

    PubMed

    Bayliss, Jacqueline A; Lemus, Moyra B; Stark, Romana; Santos, Vanessa V; Thompson, Aiysha; Rees, Daniel J; Galic, Sandra; Elsworth, John D; Kemp, Bruce E; Davies, Jeffrey S; Andrews, Zane B

    2016-03-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. PMID:26961958

  19. Dystrophin–glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling

    PubMed Central

    Garbincius, Joanne F.; Michele, Daniel E.

    2015-01-01

    Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin–glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle. PMID:26483453

  20. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    SciTech Connect

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin; Feng, Xudong; Xia, Qing

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  1. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues.

    PubMed

    Fulco, Marcella; Sartorelli, Vittorio

    2008-12-01

    The ability to adapt and respond to nutrients is an ancient cellular function, conserved from unicellular to the most complex multicellular organisms, including mammals. Mammals adapt to changes in nutritional status through the modulation of tissue-specific metabolic pathways so as to maintain energy homeostasis. At least two proteins are activated in response to reduced nutrient availability: AMP-activated protein kinase (AMPK) and NAD(+)-dependent deacetylase SIRT1. AMPK functions as a sensor of cellular energy status and as a master regulator of metabolism. When ATP levels decrease, AMPK is activated to boost ATP production and to inhibit ATP usage, thus restoring energy balance. Similarly, SIRT1 is activated in response to changes in the energy status to promote transcription of genes that mediate the metabolic response to stress, starvation or calorie restriction. Several observations support a model where, in response to stress and reduced nutrients, a metabolic pathway is activated within which AMPK and SIRT1 concordantly function to ensure an appropriate cellular response and adaptation to environmental modifications. In this perspective, we compare and contrast the roles of SIRT1 and AMPK in several metabolic tissues and propose a working model of how the AMPK-SIRT1 axis may be regulated to control functions relevant to organismal physiology and pathophysiology. PMID:19029811

  2. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  3. Impaired Macrophage Migration Inhibitory Factor (MIF)-AMPK Activation and Ischemic Recovery in the Senescent Heart

    PubMed Central

    Ma, Heng; Wang, Jingying; Thomas, D Paul; Tong, Chao; Leng, Lin; Wang, Wenkui; Merk, Melanie; Zierow, Swen; Bernhagen, Jürgen; Ren, Jun; Bucala, Richard; Li, Ji

    2010-01-01

    Background Elderly patients are more sensitive to myocardial ischemia, which results in higher mortality. We investigated how aging impacts the cardioprotective AMP-activated protein kinase (AMPK) signaling pathway. Methods and Results Ischemic AMPK activation was impaired in aged compared to young murine hearts. The expression and secretion of the AMPK upstream regulator, macrophage migration inhibitory factor (MIF), were lower in aged compared to young adult hearts. Additionally, the levels of hypoxia-inducible factor 1α (HIF-1α), a known transcriptional activator of MIF, were reduced in aged compared to young hearts. Ischemia-induced AMPK activation in MIF knock-out (MIF KO) mice was blunted, leading to greater contractile dysfunction in MIF-deficient than in wild type (WT) hearts. Furthermore, intra-myocardial injection of adenovirus encoding MIF (Adv-MIF) in aged mice increased MIF expression and ischemic AMPK activation, and reduced infarct size. Conclusions An impaired MIF-AMPK activation response in senescence thus may be attributed to an aging-associated defect in the transcription factor for MIF, HIF-1α. In the clinical setting, impaired cardiac HIF-1α activation and consequent reduced MIF expression may play an important role in the increased susceptibility to myocardial ischemia observed in older cardiac patients. PMID:20606117

  4. Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation.

    PubMed

    Hu, Xueqing; Jiang, Fangzhen; Bao, Qi; Qian, Huan; Fang, Quan; Shao, Zheren

    2016-01-01

    It is vital to develop new therapeutic agents for the treatment of melanoma. In the current study, we studied the potential effect of Compound 13 (C13), a novel α1-selective AMP-activated protein kinase (AMPK) activator, in melanoma cells. We showed that C13 exerted mainly cytostatic, but not cytotoxic activities in melanoma cells. C13 potently inhibited proliferation in melanoma cell lines (A375, OCM-1 and B16), but not in B10BR melanocytes. Meanwhile, the AMPK activator inhibited melanoma cell cycle progression by inducing G1-S arrest. Significantly, we failed to detect significant melanoma cell death or apoptosis after the C13 treatment. For the mechanism study, we showed that C13 activated AMPK and inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in melanoma cells through interaction with the α1 subunit. Short hairpin RNA (shRNA)-mediated knockdown of AMPKα1 not only blocked C13-mediated AMPK activation but also abolished its antiproliferative activity against melanoma cells. Together, these results show that C13 inhibits melanoma cell proliferation through activating AMPK signaling. Our data suggest that C13 along with other small molecular AMPK activators may be beneficial for patients with melanoma. PMID:26271666

  5. An evolutionary perspective of AMPK-TOR signaling in the three domains of life.

    PubMed

    Roustan, Valentin; Jain, Arpit; Teige, Markus; Ebersberger, Ingo; Weckwerth, Wolfram

    2016-06-01

    AMPK and TOR protein kinases are the major control points of energy signaling in eukaryotic cells and organisms. They form the core of a complex regulatory network to co-ordinate metabolic activities in the cytosol with those in the mitochondria and plastids. Despite its relevance, it is still unclear when and how this regulatory pathway was formed during evolution, and to what extent its representations in the major eukaryotic lineages resemble each other. Here we have traced 153 essential proteins forming the human AMPK-TOR pathways across 412 species representing all three domains of life-prokaryotes (bacteria, archaea) and eukaryotes-and reconstructed their evolutionary history. The resulting phylogenetic profiles indicate the presence of primordial core pathways including seven proto-kinases in the last eukaryotic common ancestor. The evolutionary origins of the oldest components of the AMPK pathway, however, extend into the pre-eukaryotic era, and descendants of these ancient proteins can still be found in contemporary prokaryotes. The TOR complex in turn appears as a eukaryotic invention, possibly to aid in retrograde signaling between the mitochondria and the remainder of the cell. Within the eukaryotes, AMPK/TOR showed both a highly conserved core structure and a considerable plasticity. Most notably, KING1, a protein originally assigned as the γ subunit of AMPK in plants, is more closely related to the yeast SDS23 gene family than to the γ subunits in animals or fungi. This suggests its functional difference from a canonical AMPK γ subunit. PMID:27270999

  6. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    PubMed

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  7. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2{alpha} in adipocytes

    SciTech Connect

    Dagon, Yossi; Avraham, Yosefa; Berry, Elliot M. . E-mail: Berry@md.huji.ac.il

    2006-02-03

    AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of adipose tissue content. Yet, the nature of this action is controversial. We examined the effect on F442a adipocytes of the AMPK activator-AICAR. Activation of AMPK induced dose-dependent apoptotic cell death, inhibition of lipolysis, and downregulatation key adipogenic genes, such as peroxisome proliferator-activated receptor (PPAR{gamma}) and CCAAT/enhancer-binding protein alpha (C/EBP{alpha}). We have identified the {alpha}-subunit of the eukaryotic initiation factor-2 (eIF2{alpha}) as a target gene which is phosphorylated following AICAR treatment. Such phosphorylation is one of the best-characterized mechanisms for downregulating protein synthesis. 2-Aminopurine (2-AP), an inhibitor of eIF2{alpha} kinases, could overcome the apoptotic effect of AICAR, abolishing the reduction of PPAR{gamma} and C/EBP{alpha} and the lipolytic properties of AMPK. Thus, AMPK may diminish adiposity via reduction of fat cell number through eIF2{alpha}-dependent translation shutdown.

  8. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress.

    PubMed

    Liu, Xiaowen; Xiao, Zhen-Dong; Han, Leng; Zhang, Jiexin; Lee, Szu-Wei; Wang, Wenqi; Lee, Hyemin; Zhuang, Li; Chen, Junjie; Lin, Hui-Kuan; Wang, Jing; Liang, Han; Gan, Boyi

    2016-04-01

    Long non-coding RNAs (lncRNAs) have emerged as critical regulators in various cellular processes. However, the potential involvement of lncRNAs in kinase signalling remains largely unknown. AMP-activated protein kinase (AMPK) acts as a critical sensor of cellular energy status. Here we show that the lncRNA NBR2 (neighbour of BRCA1 gene 2) is induced by the LKB1-AMPK pathway under energy stress. On energy stress, NBR2 in turn interacts with AMPK and promotes AMPK kinase activity, thus forming a feed-forward loop to potentiate AMPK activation during energy stress. Depletion of NBR2 attenuates energy-stress-induced AMPK activation, resulting in unchecked cell cycling, altered apoptosis/autophagy response, and increased tumour development in vivo. NBR2 is downregulated and its low expression correlates with poor clinical outcomes in some human cancers. Together, the results of our study uncover a mechanism coupling lncRNAs with metabolic stress response, and provides a broad framework to understand further the regulation of kinase signalling by lncRNAs. PMID:26999735

  9. AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver.

    PubMed

    Liu, Shudong; Jing, Fei; Yu, Chunxiao; Gao, Ling; Qin, Yejun; Zhao, Jiajun

    2015-01-01

    Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH). PMID:25933205

  10. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes.

    PubMed

    Balteau, Magali; Van Steenbergen, Anne; Timmermans, Aurélie D; Dessy, Chantal; Behets-Wydemans, Gaetane; Tajeddine, Nicolas; Castanares-Zapatero, Diego; Gilon, Patrick; Vanoverschelde, Jean-Louis; Horman, Sandrine; Hue, Louis; Bertrand, Luc; Beauloye, Christophe

    2014-10-15

    Exposure of cardiomyocytes to high glucose concentrations (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase (NOX2). NOX2 activation is triggered by enhanced glucose transport through a sodium-glucose cotransporter (SGLT) but not by a stimulation of glucose metabolism. The aim of this work was to identify potential therapeutic approaches to counteract this glucotoxicity. In cultured adult rat cardiomyocytes incubated with 21 mM glucose (HG), AMP-activated protein kinase (AMPK) activation by A769662 or phenformin nearly suppressed ROS production. Interestingly, glucagon-like peptide 1 (GLP-1), a new antidiabetic drug, concomitantly induced AMPK activation and prevented the HG-mediated ROS production (maximal effect at 100 nM). α2-AMPK, the major isoform expressed in cardiomyocytes (but not α1-AMPK), was activated in response to GLP-1. Anti-ROS properties of AMPK activators were not related to changes in glucose uptake or glycolysis. Using in situ proximity ligation assay, we demonstrated that AMPK activation prevented the HG-induced p47phox translocation to caveolae, whatever the AMPK activators used. NOX2 activation by either α-methyl-d-glucopyranoside, a glucose analog transported through SGLT, or angiotensin II was also counteracted by GLP-1. The crucial role of AMPK in limiting HG-mediated NOX2 activation was demonstrated by overexpressing a constitutively active form of α2-AMPK using adenoviral infection. This overexpression prevented NOX2 activation in response to HG, whereas GLP-1 lost its protective action in α2-AMPK-deficient mouse cardiomyocytes. Under HG, the GLP-1/AMPK pathway inhibited PKC-β2 phosphorylation, a key element mediating p47phox translocation. In conclusion, GLP-1 induces α2-AMPK activation and blocks HG-induced p47phox translocation to the plasma membrane, thereby preventing glucotoxicity. PMID:25128166

  11. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  12. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    SciTech Connect

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  13. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. PMID:26890602

  14. RAGE signaling mediates post-injury arterial neointima formation by suppression of liver kinase B1 and AMPK activity

    PubMed Central

    Yu, Weifang; Liu-Bryan, Ru; Stevens, Stephanie; Damanahalli, Jagadeesha K.; Terkeltaub, Robert

    2012-01-01

    Objective Intima formation involves smooth muscle cell (SMC) proliferation and migration that ultimately drives arterial stenosis, thrombosis, and ischemia in atherosclerosis, hypertension, and arterial revascularization. Receptor for advanced glycation endproducts (RAGE) is a transmembrane signaling receptor implicated in diabetic renal and vascular complications, and post-injury intima formation, partly via Signal transducer and activator of transcription 3 (STAT3) activation. The metabolic super-regulator Adenosine monophosphate kinase (AMPK) inhibits SMC proliferation and intima formation. AMPK activation is promoted by liver kinase B1 (LKB1), and LKB1 inhibits STAT3 activation. Here, we tested the hypothesis that RAGE promotes arterial intima formation by modulating both LKB1 and AMPK. Methods and Results RAGE ligands (the calgranulin S100A11, and glycated albumin) suppressed AMPK activation in conjunction with increased proliferation and migration of cultured SMCs. These effects were inhibited both by RAGE deficiency and by prior AMPK activation. In SMCs, RAGE ligands decreased LKB1 activity. Moreover, knockdown of both LKB1 and AMPK were associated with increased STAT3 phosphorylation levels. In response to murine carotid artery ligation, expression of RAGE and S100A11 increased, whereas AMPK and LKB1 activity decreased in situ. Conversely, LKB1 and AMPK activity increased in situ, and neointima formation was attenuated in Rage−/− mice. Conclusion The linkage of decreased LKB1 and AMPK activity with increased STAT3 in SMCs mediates the capacity of RAGE ligand-induced signaling to promote neointima formation in response to arterial injury. PMID:22552116

  15. 5′-AMP-activated Protein Kinase (AMPK) Supports the Growth of Aggressive Experimental Human Breast Cancer Tumors*

    PubMed Central

    Laderoute, Keith R.; Calaoagan, Joy M.; Chao, Wan-ru; Dinh, Dominc; Denko, Nicholas; Duellman, Sarah; Kalra, Jessica; Liu, Xiaohe; Papandreou, Ioanna; Sambucetti, Lidia; Boros, Laszlo G.

    2014-01-01

    Rapid tumor growth can establish metabolically stressed microenvironments that activate 5′-AMP-activated protein kinase (AMPK), a ubiquitous regulator of ATP homeostasis. Previously, we investigated the importance of AMPK for the growth of experimental tumors prepared from HRAS-transformed mouse embryo fibroblasts and for primary brain tumor development in a rat model of neurocarcinogenesis. Here, we used triple-negative human breast cancer cells in which AMPK activity had been knocked down to investigate the contribution of AMPK to experimental tumor growth and core glucose metabolism. We found that AMPK supports the growth of fast-growing orthotopic tumors prepared from MDA-MB-231 and DU4475 breast cancer cells but had no effect on the proliferation or survival of these cells in culture. We used in vitro and in vivo metabolic profiling with [13C]glucose tracers to investigate the contribution of AMPK to core glucose metabolism in MDA-MB-231 cells, which have a Warburg metabolic phenotype; these experiments indicated that AMPK supports tumor glucose metabolism in part through positive regulation of glycolysis and the nonoxidative pentose phosphate cycle. We also found that AMPK activity in the MDA-MB-231 tumors could systemically perturb glucose homeostasis in sensitive normal tissues (liver and pancreas). Overall, our findings suggest that the contribution of AMPK to the growth of aggressive experimental tumors has a critical microenvironmental component that involves specific regulation of core glucose metabolism. PMID:24993821

  16. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response

    PubMed Central

    Zimmermann, Kristin; Baldinger, Johannes; Mayerhofer, Barbara; Atanasov, Atanas G.; Dirsch, Verena M.; Heiss, Elke H.

    2015-01-01

    In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis. PMID:25843659

  17. AMPK Suppresses Connexin43 Expression in the Bladder and Ameliorates Voiding Dysfunction in Cyclophosphamide-induced Mouse Cystitis

    PubMed Central

    Zhang, Xiling; Yao, Jian; Gao, Kun; Chi, Yuan; Mitsui, Takahiko; Ihara, Tatsuya; Sawada, Norifumi; Kamiyama, Manabu; Fan, Jianglin; Takeda, Masayuki

    2016-01-01

    Bladder voiding dysfunction is closely related to local oxidation, inflammation, and enhanced channel activities. Given that the AMP-activated protein kinase (AMPK) has anti-oxidative, anti-inflammatory and channel-inhibiting properties, we examined whether and how AMPK affected bladder activity. AMPK activation in rat bladder smooth muscle cells (BSMCs) using three different AMPK agonists resulted in a decrease in connexin43 (Cx43) expression and function, which was associated with reduced CREB phosphorylation, Cx43 promoter activity and mRNA expression, but not Cx43 degradation. Downregulation of CREB with siRNA increased Cx43 expression. A functional analysis revealed that AMPK weakened BSMC contraction and bladder capacity. AMPK also counteracted the IL-1β- and TNFα-induced increase in Cx43 in BSMCs. In vivo administration of the AMPK agonist AICAR attenuated cyclophosphamide-initiated bladder oxidation, inflammation, Cx43 expression and voiding dysfunction. Further analysis comparing the responses of the wild-type (Cx43+/+) and heterozygous (Cx43+/−) Cx43 mice to cyclophosphamide revealed that the Cx43+/− mice retained a relatively normal micturition pattern compared to the Cx43+/+ mice. Taken together, our results indicate that AMPK inhibits Cx43 in BSMCs and improves bladder activity under pathological conditions. We propose that strategies that target AMPK can be developed as novel therapeutic approaches for treating bladder dysfunction. PMID:26806558

  18. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  19. Wasabi leaf extracts attenuate adipocyte hypertrophy through PPARγ and AMPK.

    PubMed

    Oowatari, Yasuo; Ogawa, Tetsuro; Katsube, Takuya; Iinuma, Kiyohisa; Yoshitomi, Hisae; Gao, Ming

    2016-08-01

    Hypertrophy of adipocytes in obese adipose tissues causes metabolic abnormality by adipocytokine dysregulation, which promotes type 2 diabetes mellitus, hypertension, and dyslipidemia. We investigated the effects of wasabi (Wasabia japonica Matsum) leaf extracts on metabolic abnormalities in SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a model of metabolic syndrome. Male SHRSP/ZF rats aged 7 weeks were divided into two groups: control and wasabi leaf extract (WLE) groups, which received water or oral treatment with 4 g/kg/day WLE for 6 weeks. WLE improved the body weight gain and high blood pressure in SHRSP/ZF rats, and the plasma triglyceride levels were significantly lower in the WLE group. Adipocyte hypertrophy was markedly prevented in adipose tissue. The expression of PPARγ and subsequent downstream genes was suppressed in the WLE group adipose tissues. Our data suggest that WLE inhibits adipose hypertrophy by suppressing PPARγ expression in adipose tissue and stimulating the AMPK activity by increased adiponectin. PMID:27140496

  20. AMPK Knockdown in Placental Trophoblast Cells Results in Altered Morphology and Function

    PubMed Central

    Carey, Erica A.K.; Albers, Renee E.; Doliboa, Savannah R.; Hughes, Martha; Wyatt, Christopher N.; Natale, David R.C.

    2014-01-01

    The placenta is a transient organ that develops upon the initiation of pregnancy and is essential for embryonic development and fetal survival. The rodent placenta consists of distinct lineages and includes cell types that are analogous to those that make up the human placenta. Trophoblast cells within the labyrinth layer, which lies closest to the fetus, fuse and come in contact with maternal blood, thus facilitating nutrient and waste exchange between the mother and the baby. Abnormalities of the placenta may occur as a result of cellular stress and have been associated with pregnancy-associated disorders: such as preeclampsia, intrauterine growth restriction, and placental insufficiency. Cellular stress has also been shown to alter proliferation and differentiation rates of trophoblast cells. This stress response is important for cell survival and ensures continued placental functionality. AMP-activated protein kinase is an important sensor of cellular metabolism and stress. To study the role of AMPK in the trophoblast cells, we used RNA interference to simultaneously knockdown levels of both the AMPK alpha isoforms, AMPKα1 and AMPKα2. SM10 trophoblast progenitor cells were transduced with AMPKα1/2 shRNA and stable clones were established to analyze the effects of AMPK knockdown on important cellular functions. Our results indicate that a reduction in AMPK levels causes alterations in cell morphology, growth rate, and nutrient transport, thus identifying an important role for AMPK in the regulation of placental trophoblast differentiation. PMID:25003940

  1. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease.

    PubMed

    Wu, Yuncheng; Li, Xinqun; Zhu, Julie Xiaohong; Xie, Wenjie; Le, Weidong; Fan, Zhen; Jankovic, Joseph; Pan, Tianhong

    2011-01-01

    Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models. PMID:21778691

  2. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia.

    PubMed

    Sujobert, Pierre; Poulain, Laury; Paubelle, Etienne; Zylbersztejn, Florence; Grenier, Adrien; Lambert, Mireille; Townsend, Elizabeth C; Brusq, Jean-Marie; Nicodeme, Edwige; Decrooqc, Justine; Nepstad, Ina; Green, Alexa S; Mondesir, Johanna; Hospital, Marie-Anne; Jacque, Nathalie; Christodoulou, Alexandra; Desouza, Tiffany A; Hermine, Olivier; Foretz, Marc; Viollet, Benoit; Lacombe, Catherine; Mayeux, Patrick; Weinstock, David M; Moura, Ivan C; Bouscary, Didier; Tamburini, Jerome

    2015-06-01

    AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers. PMID:26004183

  3. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells

    PubMed Central

    Kim, Nami; Lee, Jung Ok; Lee, Hye Jeong; Lee, Yong Woo; Kim, Hyung Ip; Kim, Su Jin; Park, Sun Hwa; Lee, Chul Su; Ryoo, Sun Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2016-01-01

    Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phosphorylation of protein kinase C-α (PKCα). Chelation of calcium with BAPTA-AM blocked isoeugenol-induced AMPK phosphorylation and glucose uptake. Isoeugenol stimulated p38MAPK phosphorylation that was inhibited after pretreatment with compound C, an AMPK inhibitor. Isoeugenol also increased glucose transporter type 4 (GLUT4) expression and its translocation to the plasma membrane. GLUT4 translocation was not observed after the inhibition of AMPK and CaMKK. In addition, isoeugenol activated the Akt substrate 160 (AS160) pathway, which is downstream of the p38MAPK pathway. Knockdown of the gene encoding AS160 inhibited isoeugenol-induced glucose uptake. Together, these results indicate that isoeugenol exerts beneficial health effects by activating the AMPK/p38MAPK/AS160 pathways in skeletal muscle. PMID:26585419

  4. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5

    PubMed Central

    Yan, Yi; Tsukamoto, Osamu; Nakano, Atsushi; Kato, Hisakazu; Kioka, Hidetaka; Ito, Noriaki; Higo, Shuichiro; Yamazaki, Satoru; Shintani, Yasunori; Matsuoka, Ken; Liao, Yulin; Asanuma, Hiroshi; Asakura, Masanori; Takafuji, Kazuaki; Minamino, Tetsuo; Asano, Yoshihiro; Kitakaze, Masafumi; Takashima, Seiji

    2015-01-01

    Augmented AMP-activated protein kinase (AMPK) activity inhibits cell migration, possibly contributing to the clinical benefits of chemical AMPK activators in preventing atherosclerosis, vascular remodelling and cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we identify PDZ and LIM domain 5 (Pdlim5) as a novel AMPK substrate and show that it plays a critical role in the inhibition of cell migration. AMPK directly phosphorylates Pdlim5 at Ser177. Exogenous expression of phosphomimetic S177D-Pdlim5 inhibits cell migration and attenuates lamellipodia formation. Consistent with this observation, S177D-Pdlim5 suppresses Rac1 activity at the cell periphery and displaces the Arp2/3 complex from the leading edge. Notably, S177D-Pdlim5, but not WT-Pdlim5, attenuates the association with Rac1-specific guanine nucleotide exchange factors at the cell periphery. Taken together, our findings indicate that phosphorylation of Pdlim5 on Ser177 by AMPK mediates inhibition of cell migration by suppressing the Rac1-Arp2/3 signalling pathway. PMID:25635515

  5. Amelioration of LPS-Induced Inflammation Response in Microglia by AMPK Activation

    PubMed Central

    Chen, Chin-Chen; Lin, Jiun-Tsai; Cheng, Yi-Fang; Kuo, Cheng-Yi; Huang, Chun-Fang; Kao, Shao-Hsuan; Liang, Yao-Jen; Cheng, Ching-Yi; Chen, Han-Min

    2014-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis via modulating metabolism of glucose, lipid, and protein. In addition to energy modulation, AMPK has been demonstrated to associate with several important cellular events including inflammation. The results showed that ENERGI-F704 identified from bamboo shoot extract was nontoxic in concentrations up to 80 μM and dose-dependently induced phosphorylation of AMPK (Thr-172) in microglia BV2 cells. Our findings also showed that the treatment of BV2 with ENERGI-F704 ameliorated the LPS-induced elevation of IL-6 and TNF-α production. In addition, ENERGI-F704 reduced increased production of nitric oxide (NO) and prostaglandin E2 (PGE2) via downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), respectively. Moreover, ENERGI-F704 decreased activated nuclear translocation and protein level of NF-κB. Inhibition of AMPK with compound C restored decreased NF-κB translocation by ENERGI-F704. In conclusion, ENERGI-F704 exerts inhibitory activity on LPS-induced inflammation through manipulating AMPK signaling and exhibits a potential therapeutic agent for neuroinflammatory disease. PMID:25025067

  6. NFAT-133 increases glucose uptake in L6 myotubes by activating AMPK pathway.

    PubMed

    Thakkar, Chandni S; Kate, Abhijeet S; Desai, Dattatraya C; Ghosh, Asit Ranjan; Kulkarni-Almeida, Asha A

    2015-12-15

    NFAT-133 is an aromatic compound with cinammyl alcohol moiety, isolated from streptomycetes strain PM0324667. We have earlier reported that NFAT-133 increases insulin stimulated glucose uptake in L6 myotubes using a PPARγ independent mechanism and reduces plasma or blood glucose levels in diabetic mice. Here we investigated the effects of NFAT-133 on cellular signaling pathways leading to glucose uptake in L6 myotubes. Our studies demonstrate that NFAT-133 increases glucose uptake in a dose- and time-dependent manner independent of the effects of insulin. Treatment with Akti-1/2, wortmannin and increasing concentrations of insulin had no effect on NFAT-133 mediated glucose uptake. NFAT-133 induced glucose uptake is completely mitigated by Compound C, an AMPK inhibitor. Further, the kinases upstream of AMPK activation namely; LKB-1 and CAMKKβ are not involved in NFAT-133 mediated AMPK activation nor does the compound NFAT-133 have any effect on AMPK enzyme activity. Further analysis confirmed that NFAT-133 indirectly activates AMPK by reducing the mitochondrial membrane potential and increasing the ratio of AMP:ATP. PMID:26546724

  7. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk.

    PubMed

    Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K; Staels, Bart; Lefebvre, Philippe

    2014-03-01

    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544

  8. Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics.

    PubMed

    Jiang, Lake Q; de Castro Barbosa, Thais; Massart, Julie; Deshmukh, Atul S; Löfgren, Lars; Duque-Guimaraes, Daniella E; Ozilgen, Arda; Osler, Megan E; Chibalin, Alexander V; Zierath, Juleen R

    2016-01-01

    Decrease of AMPK-related signal transduction and insufficient lipid oxidation contributes to the pathogenesis of obesity and type 2 diabetes. Previously, we identified that diacylglycerol kinase-δ (DGKδ), an enzyme involved in triglyceride biosynthesis, is reduced in skeletal muscle from type 2 diabetic patients. Here, we tested the hypothesis that DGKδ plays a role in maintaining appropriate AMPK action in skeletal muscle and energetic aspects of contraction. Voluntary running activity was reduced in DGKδ(+/-) mice, but glycogen content and mitochondrial markers were unaltered, suggesting that DGKδ deficiency affects skeletal muscle energetics but not mitochondrial protein abundance. We next determined the role of DGKδ in AMPK-related signal transduction and lipid metabolism in isolated skeletal muscle. AMPK activation and signaling were reduced in DGKδ(+/-) mice, concomitant with impaired lipid oxidation and elevated incorporation of free fatty acids into triglycerides. Strikingly, DGKδ deficiency impaired work performance, as evident by altered force production and relaxation dynamics in response to repeated contractions. In conclusion, DGKδ deficiency impairs AMPK signaling and lipid metabolism, thereby highlighting the deleterious role of excessive lipid metabolites in the development of peripheral insulin resistance and type 2 diabetes pathogenesis. DGKδ deficiency also influences skeletal muscle energetics, which may lead to low physical activity levels in type 2 diabetes. PMID:26530149

  9. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes

    PubMed Central

    Young, Nathan P.; Kamireddy, Anwesh; Van Nostrand, Jeanine L.; Eichner, Lillian J.; Shokhirev, Maxim Nikolaievich; Dayn, Yelena; Shaw, Reuben J.

    2016-01-01

    Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK−/− EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation. PMID:26944679

  10. AMPK-independent inhibition of human macrophage ER stress response by AICAR.

    PubMed

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  11. Geniposide Suppresses Hepatic Glucose Production via AMPK in HepG2 Cells.

    PubMed

    Guo, Lixia; Zheng, Xuxu; Liu, Jianhui; Yin, Zhongyi

    2016-01-01

    Geniposide is one of the main compounds in Gardenia jasminoides ELLIS and has many pharmacological activities, but its anti-hyperglycemic activity has not yet been fully explored. This study was designed to determine, for the first time, how geniposide from G. jasminoides regulates hepatic glucose production, and the underlying mechanisms. During in vitro study, we found the inhibitory effect of geniposide on the hepatic glucose production is partly through AMP-activated protein kinase (AMPK) activation in HepG2 cells. Geniposide significantly inhibited hepatic glucose production in a dose-dependent manner. AMPK, acetyl coenzyme A synthetase (ACC) and forkhead box class O1 (FoxO1) phosphorylation were stimulated by different concentrations of geniposide. In addition, the enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were all significantly suppressed. What is important is that these effects were partly reversed by (1) inhibition of AMPK activity by compound C, a selective AMPK inhibitor, and by (2) suppression of AMPKα expression by small interfering RNA (siRNA). In summary, geniposide potentially ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis by modulation of the AMPK-FoxO1 signaling pathway. Geniposide or geniposide-containing medicinal plants could represent a promising therapeutic agent to prevent type 2 diabetes on gluconeogenesis. PMID:26830672

  12. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk

    PubMed Central

    Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K.; Staels, Bart; Lefebvre, Philippe

    2014-01-01

    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544

  13. AMPK-independent inhibition of human macrophage ER stress response by AICAR

    PubMed Central

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  14. Sequestration-Mediated Downregulation of de Novo Purine Biosynthesis by AMPK.

    PubMed

    Schmitt, Danielle L; Cheng, Yun-Ju; Park, Junyong; An, Songon

    2016-07-15

    Dynamic partitioning of de novo purine biosynthetic enzymes into multienzyme compartments, purinosomes, has been associated with increased flux of de novo purine biosynthesis in human cells. However, we do not know of a mechanism by which de novo purine biosynthesis would be downregulated in cells. We have investigated the functional role of AMP-activated protein kinase (AMPK) in the regulation of de novo purine biosynthesis because of its regulatory action on lipid and carbohydrate biosynthetic pathways. Using pharmacological AMPK activators, we have monitored subcellular localizations of six pathway enzymes tagged with green fluorescent proteins under time-lapse fluorescence single-cell microscopy. We revealed that only one out of six pathway enzymes, formylglycinamidine ribonucleotide synthase (FGAMS), formed spatially distinct cytoplasmic granules after treatment with AMPK activators, indicating the formation of single-enzyme self-assemblies. In addition, subsequent biophysical studies using fluorescence recovery after photobleaching showed that the diffusion kinetics of FGAMS were slower when it localized inside the self-assemblies than within the purinosomes. Importantly, high-performance liquid chromatographic studies revealed that the formation of AMPK-promoted FGAMS self-assembly caused the reduction of purine metabolites in HeLa cells, indicating the downregulation of de novo purine biosynthesis. Collectively, we demonstrate here that the spatial sequestration of FGAMS by AMPK is a mechanism by which de novo purine biosynthesis is downregulated in human cells. PMID:27128383

  15. CK2 inhibition induced PDK4-AMPK axis regulates metabolic adaptation and survival responses in glioma.

    PubMed

    Dixit, Deobrat; Ahmad, Fahim; Ghildiyal, Ruchi; Joshi, Shanker Datt; Sen, Ellora

    2016-05-15

    Understanding mechanisms that link aberrant metabolic adaptation and pro-survival responses in glioma cells is crucial towards the development of new anti-glioma therapies. As we have previously reported that CK2 is associated with glioma cell survival, we evaluated its involvement in the regulation of glucose metabolism. Inhibition of CK2 increased the expression of metabolic regulators, PDK4 and AMPK along with the key cellular energy sensor CREB. This increase was concomitant with altered metabolic profile as characterized by decreased glucose uptake in a PDK4 and AMPK dependent manner. Increased PDK4 expression was CREB dependent, as exogenous inhibition of CREB functions abrogated CK2 inhibitor mediated increase in PDK4 expression. Interestingly, PDK4 regulated AMPK phosphorylation which in turn affected cell viability in CK2 inhibitor treated glioma cells. CK2 inhibitor 4,5,6,7-Tetrabromobenzotriazole (TBB) significantly retarded the growth of glioma xenografts in athymic nude mouse model. Coherent with the in vitro findings, elevated senescence, pAMPK and PDK4 levels were also observed in TBB-treated xenograft tissue. Taken together, CK2 inhibition in glioma cells drives the PDK4-AMPK axis to affect metabolic profile that has a strong bearing on their survival. PMID:27001465

  16. Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation.

    PubMed

    Naimi, Madina; Tsakiridis, Theodoros; Stamatatos, Theocharis C; Alexandropoulos, Dimitris I; Tsiani, Evangelia

    2015-04-01

    Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation. PMID:25794239

  17. The transcriptional activity of Gli1 is negatively regulated by AMPK through Hedgehog partial agonism in hepatocellular carcinoma.

    PubMed

    Xu, Qiuran; Liu, Xin; Zheng, Xin; Yao, Yingmin; Wang, Maode; Liu, Qingguang

    2014-09-01

    The aberrant activation of the Hedgehog (Hh) signaling pathway has been implicated in a variety of malignancies, including hepatocellular carcinoma (HCC). The mammalian 5' adenosine monophosphate-activated protein kinase (AMPK) plays a crucial role in cellular energy homeostasis. However, the interaction between the Hh and AMPK signaling pathways has not been investigated to date. In the present study, to the best of our knowlege, we report for the first time the negative regulation of glioma-associated oncogene 1 (Gli1), an important downstream effector of Hh, by the AMPK signal transduction pathway. Immunoprecipitation and GST-pull down assay showed a direct interaction between AMPK and Gli1. The overexpression of AMPK induced the downregulation of Gli1 expression, while the knockdown of AMPK upregulated Gli1 expression in a relatively short period of time (24 h or less). Our data suggest that AMPK may function as an upstream molecule that regulates Gli1 expression. Therefore, AMPK may play a role in the Hh signaling pathway, through which it regulates tumorigenesis. PMID:25017332

  18. AMPK potentiates hypertonicity-induced apoptosis by suppressing NFκB/COX-2 in medullary interstitial cells.

    PubMed

    Han, Qifei; Zhang, Xiaoyan; Xue, Rui; Yang, Hang; Zhou, Yunfeng; Kong, Xiaomu; Zhao, Pan; Li, Jing; Yang, Jichun; Zhu, Yi; Guan, Youfei

    2011-10-01

    Cells residing in the hypertonic, hypoxic renal medulla depend on dynamic adaptation mechanisms to respond to changes in energy supply and demand. The serine/threonine kinase 5'-AMP protein kinase (AMPK) is a sensor of cellular energy status, but whether it contributes to the survival of cells in the renal medulla is unknown. Here, hypertonic conditions induced a decrease in AMPK phosphorylation within 12 hours in renal medullary interstitial cells (RMIC), followed by a gradual return to baseline levels. Activation of AMPK markedly increased hypertonicity-induced apoptosis of RMICs and suppressed both hypertonicity-induced NFκB nuclear translocation and cyclooxygenase-2 (COX-2) activation; overexpression of COX-2 significantly attenuated these effects. AMPK activation also markedly reduced generation of reactive oxygen species and nuclear expression of tonicity-responsive enhancer-binding protein, which prevented upregulation of osmoprotective genes. In vivo, pharmacologic activation of AMPK led to massive apoptosis of RMICs and renal dysfunction in the setting of water deprivation in mice. Taken together, these results identify a critical role for AMPK in the maintenance of RMIC viability and suggest that AMPK modulates the NFκB-COX-2 survival pathway in the renal medulla. Furthermore, this study raises safety concerns for the development of AMPK activators as anti-diabetic drugs, especially for patients prone to dehydration. PMID:21903993

  19. AMPK Mediates Glucocorticoids Stress-Induced Downregulation of the Glucocorticoid Receptor in Cultured Rat Prefrontal Cortical Astrocytes

    PubMed Central

    Lu, Wei; Zhou, Hai-Yun; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Yi; Chen, Jian-Guo; Wang, Fang

    2016-01-01

    Chronic stress induces altered energy metabolism and plays important roles in the etiology of depression, in which the glucocorticoid negative feedback is disrupted due to imbalanced glucocorticoid receptor (GR) functions. The mechanism underlying the dysregulation of GR by chronic stress remains elusive. In this study, we investigated the role of AMP-activated protein kinase (AMPK), the key enzyme regulating cellular energy metabolism, and related signaling pathways in chronic stress-induced GR dysregulation. In cultured rat cortical astrocytes, glucocorticoid treatment decreased the level, which was accompanied by the decreased expression of liver kinase B1 (LKB1) and reduced phosphorylation of AMPK. Glucocorticoid-induced effects were attenuated by glucocorticoid-inducible kinase 1 (SGK1) inhibitor GSK650394, which also inhibited glucocorticoid induced phosphorylation of Forkhead box O3a (FOXO3a). Furthermore, glucocorticoid-induced down-regulation of GR was mimicked by the inhibition of AMPK and abolished by the AMPK activators or the histone deacetylase 5 (HDAC5) inhibitors. In line with the role of AMPK in GR expression, AMPK activator metformin reversed glucocorticoid-induced reduction of AMPK phosphorylation and GR expression as well as behavioral alteration of rats. Taken together, these results suggest that chronic stress activates SGK1 and suppresses the expression of LKB1 via inhibitory phosphorylation of FOXO3a. Downregulated LKB1 contributes to reduced activation of AMPK, leading to the dephosphorylation of HDAC5 and the suppression of transcription of GR. PMID:27513844

  20. Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding

    PubMed Central

    Langendorf, Christopher G.; Ngoei, Kevin R. W.; Scott, John W.; Ling, Naomi X. Y.; Issa, Sam M. A.; Gorman, Michael A.; Parker, Michael W.; Sakamoto, Kei; Oakhill, Jonathan S.; Kemp, Bruce E.

    2016-01-01

    The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. PMID:26952388

  1. Gain-of-Function Mutant p53 Promotes Cell Growth and Cancer Cell Metabolism via Inhibition of AMPK Activation

    PubMed Central

    Zhou, Ge; Wang, Jiping; Zhao, Mei; Xie, Tong-Xin; Tanaka, Noriaki; Sano, Daisuke; Patel, Ameeta A.; Ward, Alexandra M; Sandulache, Vlad; Jasser, Samar A.; Skinner, Heath D.; Fitzgerald, Alison Lea; Osman, Abdullah A.; Wei, Yongkun; Xia, Xuefeng; Songyang, Zhou; Mills, Gordon B.; Hung, Mien-Chie; Caulin, Carlos; Liang, Jiyong; Myers, Jeffrey N.

    2014-01-01

    SUMMARY Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth. Under conditions of energy stress, GOF mutp53s, but not wild-type p53, preferentially bind to the AMPKα subunit and inhibit AMPK activation. Given the importance of AMPK as an energy sensor and tumor suppressor that inhibits anabolic metabolism, our findings reveal that direct inhibition of AMPK activation is an important mechanism through which mutp53s can gain oncogenic function. PMID:24857548

  2. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signaling in cancer

    PubMed Central

    Hart, Peter C.; Mao, Mao; de Abreu, Andre Luelsdorf; Ansenberger-Fricano, Kristine; Ekoue, Dede N.; Ganini, Douglas; Kajdacsy-Balla, Andre; Diamond, Alan M.; Minshall, Richard D.; Consolaro, Marcia E. L.; Santos, Janine H.; Bonini, Marcelo G.

    2014-01-01

    Manganese superoxide dismutase (MnSOD/SOD2) is a mitochondria-resident enzyme that governs the types of reactive oxygen species egressing from the organelle to affect cellular signaling. Here, we demonstrate that MnSOD upregulation in cancer cells establishes a steady flow of H2O2 originating from mitochondria that sustains AMP-activated kinase (AMPK) activation and the metabolic shift to glycolysis. Restricting MnSOD expression or inhibiting AMPK suppress the metabolic switch and dampens the viability of transformed cells indicating that the MnSOD/AMPK axis is critical in support cancer cell bioenergetics. Recapitulating in vitro findings, clinical and epidemiologic analyses of MnSOD expression and AMPK activation indicated that the MnSOD/AMPK pathway is most active in advanced stage and aggressive breast cancer subtypes. Taken together, our results indicate that MnSOD serves as a biomarker of cancer progression and acts as critical regulator of tumor cell metabolism. PMID:25651975

  3. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation.

    PubMed

    Ming, Wei; Lu, Gan; Xin, Sha; Huanyu, Lu; Yinghao, Jiang; Xiaoying, Lei; Chengming, Xu; Banjun, Ruan; Li, Wang; Zifan, Lu

    2016-08-01

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. PMID:27237975

  4. Molecular mechanisms of appetite and obesity: a role for brain AMPK.

    PubMed

    Martínez de Morentin, Pablo B; Urisarri, Adela; Couce, María L; López, Miguel

    2016-10-01

    Feeding behaviour and energy storage are both crucial aspects of survival. Thus, it is of fundamental importance to understand the molecular mechanisms regulating these basic processes. The AMP-activated protein kinase (AMPK) has been revealed as one of the key molecules modulating energy homoeostasis. Indeed, AMPK appears to be essential for translating nutritional and energy requirements into generation of an adequate neuronal response, particularly in two areas of the brain, the hypothalamus and the hindbrain. Failure of this physiological response can lead to energy imbalance, ultimately with extreme consequences, such as leanness or obesity. Here, we will review the data that put brain AMPK in the spotlight as a regulator of appetite. PMID:27555613

  5. Influence of laser light on AMPK as a factor in the laser therapy of diabetes

    NASA Astrophysics Data System (ADS)

    Makela, A. M.

    2006-02-01

    The use of light and laser in the treatment of diabetes has been under research and some controversy. The following paper explores some of the mechanisms involved in glucose level regulation in connection to light. Several researchers have found that laser irradiation can activate ATP production, influence redox values within cells, and have other effects which can (in)directly activate AMP-activated protein kinase (AMPK). The activation of AMPK plays an important, albeit not an exclusive, role in the induction of GLUT4 recruitment to the plasma membrane. In addition, there is some demonstration that AMPK may regulate glucose transport through GLUT1. Increased glucose uptake will result in an increase in glycolysis and ATP production.

  6. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats.

    PubMed

    Duca, Frank A; Côté, Clémence D; Rasmussen, Brittany A; Zadeh-Tahmasebi, Melika; Rutter, Guy A; Filippi, Beatrice M; Lam, Tony K T

    2015-05-01

    Metformin is a first-line therapeutic option for the treatment of type 2 diabetes, even though its underlying mechanisms of action are relatively unclear. Metformin lowers blood glucose levels by inhibiting hepatic glucose production (HGP), an effect originally postulated to be due to a hepatic AMP-activated protein kinase (AMPK)-dependent mechanism. However, studies have questioned the contribution of hepatic AMPK to the effects of metformin on lowering hyperglycemia, and a gut-brain-liver axis that mediates intestinal nutrient- and hormone-induced lowering of HGP has been identified. Thus, it is possible that metformin affects HGP through this inter-organ crosstalk. Here we show that intraduodenal infusion of metformin for 50 min activated duodenal mucosal Ampk and lowered HGP in a rat 3 d high fat diet (HFD)-induced model of insulin resistance. Inhibition of duodenal Ampk negated the HGP-lowering effect of intraduodenal metformin, and both duodenal glucagon-like peptide-1 receptor (Glp-1r)-protein kinase A (Pka) signaling and a neuronal-mediated gut-brain-liver pathway were required for metformin to lower HGP. Preabsorptive metformin also lowered HGP in rat models of 28 d HFD-induced obesity and insulin resistance and nicotinamide (NA)-streptozotocin (STZ)-HFD-induced type 2 diabetes. In an unclamped setting, inhibition of duodenal Ampk reduced the glucose-lowering effects of a bolus metformin treatment in rat models of diabetes. These findings show that, in rat models of both obesity and diabetes, metformin activates a previously unappreciated duodenal Ampk-dependent pathway to lower HGP and plasma glucose levels. PMID:25849133

  7. The emerging role of AMPK in the regulation of breathing and oxygen supply.

    PubMed

    Evans, A Mark; Mahmoud, Amira D; Moral-Sanz, Javier; Hartmann, Sandy

    2016-09-01

    Regulation of breathing is critical to our capacity to accommodate deficits in oxygen availability and demand during, for example, sleep and ascent to altitude. It is generally accepted that a fall in arterial oxygen increases afferent discharge from the carotid bodies to the brainstem and thus delivers increased ventilatory drive, which restores oxygen supply and protects against hypoventilation and apnoea. However, the precise molecular mechanisms involved remain unclear. We recently identified as critical to this process the AMP-activated protein kinase (AMPK), which is key to the cell-autonomous regulation of metabolic homoeostasis. This observation is significant for many reasons, not least because recent studies suggest that the gene for the AMPK-α1 catalytic subunit has been subjected to natural selection in high-altitude populations. It would appear, therefore, that evolutionary pressures have led to AMPK being utilized to regulate oxygen delivery and thus energy supply to the body in the short, medium and longer term. Contrary to current consensus, however, our findings suggest that AMPK regulates ventilation at the level of the caudal brainstem, even when afferent input responses from the carotid body are normal. We therefore hypothesize that AMPK integrates local hypoxic stress at defined loci within the brainstem respiratory network with an index of peripheral hypoxic status, namely afferent chemosensory inputs. Allied to this, AMPK is critical to the control of hypoxic pulmonary vasoconstriction and thus ventilation-perfusion matching at the lungs and may also determine oxygen supply to the foetus by, for example, modulating utero-placental blood flow. PMID:27574022

  8. Honokiol affects melanoma cell growth by targeting the AMPK signaling pathway

    PubMed Central

    Kaushik, Gaurav; Kwatra, Deep; Subramaniam, Dharmalingam; Jensen, Roy A.; Anant, Shrikant; Mammen, Joshua M.V.

    2015-01-01

    Background Malignant melanoma is an aggressive form of skin cancer with limited effective therapeutic options. Melanoma research concentrates on maximizing the effect on cancer cells with minimal toxicity to normal cells. AMP-activated protein kinase (AMPK) is an important regulator of cellular energy homeostasis and has been shown to control tumor progression regulating the cell cycle, protein synthesis and cell growth and/or survival. Honokiol (HNK) is a biphenolic compound derived from Magnolia officianalis, a plant that has been used in traditional Chinese and Japanese medicine for the treatment of various pathological conditions. Recent studies have shown that HNK has antitumor activity with relatively low toxicity. In this study we demonstrated that the growth inhibitory effects of HNK on melanoma and melanoma cancer stem cells (CSCs) was mediated through the activation of AMPK and hence AMPK signaling in melanoma cells. Methods We determined the effects of HNK treatment on various melanoma cell lines. HNK induced cell growth inhibitory effects were determined using hexosaminidase assay. Protein expression studies were done by immunoblotting. Primary spheroid assay was used to assess stemness by growing single suspension cells in ultra-low attachment plates. Results HNK is highly effective in inhibiting melanoma cells by attenuating AKT/mammalian target of rapamycin and AMPK signaling. HNK showed significant inhibition of the spheroid forming capacity of melanoma cells and, hence, stemness. HNK significantly decreased the number and size of melanospheres in a dose dependent manner. Western blot analyses showed enhanced phosphorylation of AMPK in melanoma cells. Furthermore, HNK decreased the cellular ATP pool in a dose-dependent manner with maximum effects observed at 48 h. Conclusion The results suggest that HNK can target melanoma cells and mark them for cell death through AMPK signaling. Further studies are warranted for developing HNK as an effective

  9. The emerging role of AMPK in the regulation of breathing and oxygen supply

    PubMed Central

    Evans, A. Mark; Mahmoud, Amira D.; Moral-Sanz, Javier; Hartmann, Sandy

    2016-01-01

    Regulation of breathing is critical to our capacity to accommodate deficits in oxygen availability and demand during, for example, sleep and ascent to altitude. It is generally accepted that a fall in arterial oxygen increases afferent discharge from the carotid bodies to the brainstem and thus delivers increased ventilatory drive, which restores oxygen supply and protects against hypoventilation and apnoea. However, the precise molecular mechanisms involved remain unclear. We recently identified as critical to this process the AMP-activated protein kinase (AMPK), which is key to the cell-autonomous regulation of metabolic homoeostasis. This observation is significant for many reasons, not least because recent studies suggest that the gene for the AMPK-α1 catalytic subunit has been subjected to natural selection in high-altitude populations. It would appear, therefore, that evolutionary pressures have led to AMPK being utilized to regulate oxygen delivery and thus energy supply to the body in the short, medium and longer term. Contrary to current consensus, however, our findings suggest that AMPK regulates ventilation at the level of the caudal brainstem, even when afferent input responses from the carotid body are normal. We therefore hypothesize that AMPK integrates local hypoxic stress at defined loci within the brainstem respiratory network with an index of peripheral hypoxic status, namely afferent chemosensory inputs. Allied to this, AMPK is critical to the control of hypoxic pulmonary vasoconstriction and thus ventilation–perfusion matching at the lungs and may also determine oxygen supply to the foetus by, for example, modulating utero-placental blood flow. PMID:27574022

  10. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease

    PubMed Central

    Vázquez-Manrique, Rafael P.; Farina, Francesca; Cambon, Karine; Dolores Sequedo, María; Parker, Alex J.; Millán, José María; Weiss, Andreas; Déglon, Nicole; Neri, Christian

    2016-01-01

    The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD. PMID:26681807

  11. Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner.

    PubMed

    Zhong, Zhang-Feng; Tan, Wen; Qiang, William W; Scofield, Virginia L; Tian, Ke; Wang, Chun-Ming; Qiang, Wen-An; Wang, Yi-Tao

    2016-04-26

    Furanodiene is a bioactive sesquiterpene isolated from the spice-producing Curcuma wenyujin plant (Y. H. Chen and C. Ling) (C. wenyujin), which is a commonly prescribed herb used in clinical cancer therapy by modern practitioners of traditional Chinese medicine. Previously, we have shown that furanodiene inhibits breast cancer cell growth both in vitro and in vivo, however, the mechanism for this effect is not yet known. In this study, therefore, we asked (1) whether cultured breast cancer cells made resistant to the chemotherapeutic agent doxorubicin (DOX) via serial selection protocols are susceptible to furanodiene's anticancer effect, and (2) whether AMP-activated protein kinase (AMPK), which is a regulator of cellular energy homeostasis in eukaryotic cells, participates in this effect. We show here (1) that doxorubicin-resistant MCF-7 (MCF-7/DOX(R)) cells treated with furanodiene exhibit altered mitochondrial function and reduced levels of ATP, resulting in apoptotic cell death, and (2) that AMPK is central to this effect. In these cells, furanodiene (as opposed to doxorubicin) noticeably affects the phosphorylation of AMPK and AMPK pathway intermediates, ACLY and GSK-3β, suggesting that furanodiene reduces mitochondrial function and cellular ATP levels by way of AMPK activation. Finally, we find that the cell permeable agent and AMPK inhibitor compound C (CC), abolishes furanodiene-induced anticancer activity in these MCF-7/DOX(R) cells, with regard to cell growth inhibition and AMPK activation; in contrast, AICAR (5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside, acadesine), an AMPK activator, augments furanodiene-induced anticancer activity. Furthermore, specific knockdown of AMPK in MCF-7/DOX(R) cells protects these cells from furanodiene-induced cell death. Taken together, these findings suggest that AMPK and its pathway intermediates are promising therapeutic targets for treating chemoresistant breast cancer, and that furanodiene may be an important

  12. In vitro studies on anti-obesity activity of Korean Memilmuk through AMPK activation.

    PubMed

    Park, Gil-Sun; Jeon, Yu-Mi; Kim, Ji-Hye; Park, Sang-Kyu; Lee, Mi-Young

    2016-01-01

    The anti-obesity effect of Korean traditional food, Memilmuk, was examined through inhibition of differentiation of 3T3-L1 preadipocytes by buckwheat flour extract. Oil-Red O staining showed that lipid accumulation in adipocytes was reduced upon adding buckwheat flour extract, indicating effective inhibition of adipocyte differentiation. Buckwheat flour extract also inhibited the expression of adipogenic transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), and AMP-activated protein kinase (AMPK), an intracellular regulator of energy balance. Overall, the anti-obesity effect of Korean Memilmuk might be mediated through down-regulation of PPARγ expression via AMPK activation by buckwheat flour. PMID:26930853

  13. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    PubMed Central

    Kristensen, Dorte E; Albers, Peter H; Prats, Clara; Baba, Otto; Birk, Jesper B; Wojtaszewski, Jørgen F P

    2015-01-01

    AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been demonstrated. We hypothesized that AMPK subunits are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of vastus lateralis muscle from healthy men before and after two exercise trials: (1) continuous cycling (CON) for 30 min at 69 ± 1% peak rate of O2 consumption () or (2) interval cycling (INT) for 30 min with 6 × 1.5 min high-intensity bouts peaking at 95 ± 2% . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (−71%) was found. α1, α2, β2 and γ1 AMPK expression was similar between fibre types. In type I vs. II fibres phosphoregulation after CON was similar (AMPKThr172, ACCSer221, TBC1D1Ser231 and GS2+2a) or lower (TBC1D4Ser704). Following INT, phosphoregulation in type I vs. II fibres was lower (AMPKThr172, TBC1D1Ser231, TBC1D4Ser704 and ACCSer221) or higher (GS2+2a). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise type-specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling. PMID:25640469

  14. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death

    PubMed Central

    Rao, Enyu; Zhang, Yuwen; Zhu, Ganqian; Hao, Jiaqing; Persson, Xuan-Mai T.; Egilmez, Nejat K.; Suttles, Jill; Li, Bing

    2015-01-01

    A number of studies have linked AMPK, a major metabolic sensor coordinating of multiple cellular functions, to tumor development and progression. However, the exact role of AMPK in tumor development is still controversial. Here we report that activation of AMPK promotes survival and anti-tumor function of T cells, in particular CD8+ T cells, resulting in superior tumor suppression in vivo. While AMPK expression is dispensable for T cell development, genetic deletion of AMPK promotes T cell death during in vitro activation and in vivo tumor development. Moreover, we demonstrate that protein phosphatases are the key mediators of AMPK-dependent effects on T cell death, and inhibition of phosphatase activity by okadaic acid successfully restores T cell survival and function. Altogether, our data suggest a novel mechanism by which AMPK regulates protein phosphatase activity in control of survival and function of CD8+ T cells, thereby enhancing their role in tumor immunosurveillance. PMID:25760243

  15. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  16. Dibenzoylmethane exerts metabolic activity through regulation of AMP-activated protein kinase (AMPK)-mediated glucose uptake and adipogenesis pathways.

    PubMed

    Kim, Nami; Kim, Hong Min; Lee, Eun Soo; Lee, Jung Ok; Lee, Hye Jeong; Lee, Soo Kyung; Moon, Ji Wook; Kim, Ji Hae; Kim, Joong Kwan; Kim, Su Jin; Park, Sun Hwa; Chung, Choon Hee; Kim, Hyeon Soo

    2015-01-01

    Dibenzoylmethane (DBM) has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK) and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor). DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4) was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS), was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes. PMID:25756788

  17. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels.

    PubMed

    Hawley, Simon A; Ford, Rebecca J; Smith, Brennan K; Gowans, Graeme J; Mancini, Sarah J; Pitt, Ryan D; Day, Emily A; Salt, Ian P; Steinberg, Gregory R; Hardie, D Grahame

    2016-09-01

    Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors. PMID:27381369

  18. Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection

    PubMed Central

    Fan, Xue-Yu; Tian, Chan; Wang, Hui; Xu, Yin; Ren, Ke; Zhang, Bao-Yun; Gao, Chen; Shi, Qi; Meng, Ge; Zhang, Lu-Bin; Zhao, Yang-Jing; Shao, Qi-Xiang; Dong, Xiao-Ping

    2015-01-01

    AMPK is a serine/threonine protein kinase that acts as a positive regulator of autophagy, by phosphorylating ULK1 at specific sites. A previous study demonstrated activation of the macroautophagic system in scrapie-infected experimental rodents and in certain human prion diseases, in which the essential negative regulator mTOR is severely inhibited. In this study, AMPK and ULK1 in the brains of hamsters infected with scrapie strain 263 K and in the scrapie-infected cell line SMB-S15 were analysed. The results showed an up-regulated trend of AMPK and AMPK-Thr172, ULK1 and ULK1-Ser555. Increases in brain AMPK and ULK1 occurred at an early stage of agent 263 K infection. The level of phosphorylated ULK1-Ser757 decreased during mid-infection and was only negligibly present at the terminal stage, a pattern that suggested a close relationship of the phosphorylated protein with altered endogenous mTOR. In addition, the level of LKB1 associated with AMPK activation was selectively increased at the early and middle stages of infection. Knockdown of endogenous ULK1 in SMB-S15 cells inhibited LC3 lipidation. These results showed that, in addition to the abolishment of the mTOR regulatory pathway, activation of the AMPK-ULK1 pathway during prion infection contributes to autophagy activation in prion-infected brain tissues. PMID:26423766

  19. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.

    PubMed

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima; Fisher-Wellman, Kelsey H; Kleinert, Maximilian; Humphrey, Sean J; Yang, Pengyi; Holliday, Mira; Trefely, Sophie; Fazakerley, Daniel J; Stöckli, Jacqueline; Burchfield, James G; Jensen, Thomas E; Jothi, Raja; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; James, David E

    2015-11-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry. PMID:26437602

  20. Dibenzoylmethane Exerts Metabolic Activity through Regulation of AMP-Activated Protein Kinase (AMPK)-Mediated Glucose Uptake and Adipogenesis Pathways

    PubMed Central

    Kim, Nami; Kim, Hong Min; Lee, Eun Soo; Lee, Jung Ok; Lee, Hye Jeong; Lee, Soo Kyung; Moon, Ji Wook; Kim, Ji Hae; Kim, Joong Kwan; Kim, Su Jin; Park, Sun Hwa; Chung, Choon Hee; Kim, Hyeon Soo

    2015-01-01

    Dibenzoylmethane (DBM) has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK) and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor). DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4) was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS), was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes. PMID:25756788

  1. LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells.

    PubMed

    Li, Nian-Shuang; Zou, Jun-Rong; Lin, Hui; Ke, Rong; He, Xiao-Ling; Xiao, Lu; Huang, Deqiang; Luo, Lingyu; Lv, Nonghua; Luo, Zhijun

    2016-06-01

    Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that maintains energy homeostasis in both normal and cancerous cells, and has emerged as a tumor suppressor. The present study aims to delineate the functional relationship between AMPK and transforming growth factor beta (TGF-β). Our results showed that expression of liver kinase B1 (LKB1), an upstream kinase of AMPK, impeded TGF-β-induced Smad phosphorylation and their transcriptional activity in breast cancer cells, whereas knockdown of LKB1 or AMPKα1 subunit by short hairpin RNA (shRNA) enhanced the effect of TGF-β. Furthermore, AMPK activation reduced the promoter activity of TGF-β1. In accordance, type 2 diabetic patients taking metformin displayed a trend of reduction of serum TGF-β1, as compared with those without metformin. A significant reduction of serum TGF-β1 was found in mice after treatment with metformin. These results suggest that AMPK inhibits the transcription of TGF-β1, leading to reduction of its concentration in serum. Finally, metformin suppressed epithelial-to-mesenchymal transition of mammary epithelial cells. Taken together, our study demonstrates that AMPK exerts multiple actions on TGF-β signaling and supports that AMPK can serve as a therapeutic drug target for breast cancer. PMID:26718214

  2. Pharmacologic regulation of AMPK in breast cancer affects cytoskeletal properties involved with microtentacle formation and re-attachment

    PubMed Central

    Chakrabarti, Kristi R.; Whipple, Rebecca A.; Boggs, Amanda E.; Hessler, Lindsay K.; Bhandary, Lekhana; Vitolo, Michele I.; Thompson, Keyata; Martin, Stuart S.

    2015-01-01

    The presence of tumor cells in the circulation is associated with a higher risk of metastasis in patients with breast cancer. Circulating breast tumor cells use tubulin-based structures known as microtentacles (McTNs) to re-attach to endothelial cells and arrest in distant organs. McTN formation is dependent on the opposing cytoskeletal forces of stable microtubules and the actin network. AMP-activated protein kinase (AMPK) is a cellular metabolic regulator that can alter actin and microtubule organization in epithelial cells. We report that AMPK can regulate the cytoskeleton of breast cancer cells in both attached and suspended conditions. We tested the effects of AMPK on microtubule stability and the actin-severing protein, cofilin. AMPK inhibition with compound c increased both microtubule stability and cofilin activation, which also resulted in higher McTN formation and re-attachment. Conversely, AMPK activation with A-769662 decreased microtubule stability and cofilin activation with concurrent decreases in McTN formation and cell re-attachment. This data shows for the first time that AMPK shifts the balance of cytoskeletal forces in suspended breast cancer cells, which affect their ability to form McTNs and re-attach. These results support a model where AMPK activators may be used therapeutically to reduce the metastatic efficiency of breast tumor cells. PMID:26431377

  3. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation.

    PubMed

    Hu, Min; Liu, Bo

    2016-07-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  4. Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK

    PubMed Central

    Dai, Siyuan; Tang, Zijian; Cao, Junyue; Zhou, Wei; Li, Huawen; Sampson, Stephen; Dai, Chengkai

    2015-01-01

    Numerous extrinsic and intrinsic insults trigger the HSF1-mediated proteotoxic stress response (PSR), an ancient transcriptional program that is essential to proteostasis and survival under such conditions. In contrast to its well-recognized mobilization by proteotoxic stress, little is known about how this powerful adaptive mechanism reacts to other stresses. Surprisingly, we discovered that metabolic stress suppresses the PSR. This suppression is largely mediated through the central metabolic sensor AMPK, which physically interacts with and phosphorylates HSF1 at Ser121. Through AMPK activation, metabolic stress represses HSF1, rendering cells vulnerable to proteotoxic stress. Conversely, proteotoxic stress inactivates AMPK and thereby interferes with the metabolic stress response. Importantly, metformin, a metabolic stressor and popular anti-diabetic drug, inactivates HSF1 and provokes proteotoxic stress within tumor cells, thereby impeding tumor growth. Thus, these findings uncover a novel interplay between the metabolic stress sensor AMPK and the proteotoxic stress sensor HSF1 that profoundly impacts stress resistance, proteostasis, and malignant growth. PMID:25425574

  5. Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRα/POMC pathway

    PubMed Central

    Cho, Kumsun; Chung, Jae Yong; Cho, Sung Kweon; Shin, Hyun-Woo; Jang, In-Jin; Park, Jong-Wan; Yu, Kyung-Sang; Cho, Joo-Youn

    2015-01-01

    Metformin is a first-line drug for treating type 2 diabetes. Although metformin is known to phosphorylate AMP-activated protein kinase (AMPK), it is unclear how the glucose-lowering effect of metformin is related to AMPK activation. The aim of this study was to identify the urinary endogenous metabolites affected by metformin and to identify the novel underlying molecular mechanisms related to its anti-diabetic effect. Fourteen healthy male subjects were orally administered metformin (1000 mg) once. First morning urine samples were taken before and after administration to obtain metabolomic data. We then further investigated the anti-diabetic mechanism of metformin in vitro and in vivo. The fluctuation of the metabolite cortisol indicated that the neuroendocrine system was involved in the anti-diabetic effect of metformin. Actually we found that metformin induced AMPK/liver X receptor α (LXRα) phosphorylation, followed by pro-opiomelanocortin (POMC) suppression in rat pituitary cells. We confirmed this result by administering metformin in an animal study. Given that cortisol stimulates gluconeogenesis, we propose the anti-hyperglycemic effect of metformin is attributed to reduced POMC/adrenocorticotropic hormone (ACTH)/cortisol levels following AMPK/LXRα phosphorylation in the pituitaries. PMID:25634597

  6. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    PubMed Central

    Liou, Chian-Jiun; Lai, Xuan-Yu; Chen, Ya-Ling; Wang, Chia-Ling; Wei, Ciao-Han; Huang, Wen-Chung

    2015-01-01

    Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway. PMID:26413119

  7. The impact of endurance exercise on global and AMPK gene-specific DNA methylation.

    PubMed

    King-Himmelreich, Tanya S; Schramm, Stefanie; Wolters, Miriam C; Schmetzer, Julia; Möser, Christine V; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. PMID:27103439

  8. Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells

    PubMed Central

    Jaganathan, Sajjeev; Malek, Ehsan; Vallabhapurapu, Subrahmanya; Vallabhapurapu, Sivakumar; Driscoll, James J.

    2014-01-01

    The proteasome inhibitor bortezomib is an effective anti-cancer agent for the plasma cell malignancy multiple myeloma but clinical response is hindered by the emergence of drug resistance through unknown mechanisms. Drug sensitive myeloma cells were exposed to bortezomib to generate drug resistant cells that displayed a significant increase in subunits of the energy sensor AMP-activated protein kinase (AMPK). AMPK activity in resistant cells was increased and bortezomib resistant cells contained a ~4-fold greater level of autophagosomes than drug sensitive cells. Real-time measurements indicated that bortezomib reduced the oxygen consumption rate in drug sensitive cells more readily than in resistant cells. Genetic ablation of AMPK activity reduced the bortezomib effect on autophagy. The autophagy-related gene (Atg)5 is required for autophagosome formation and enhances cellular susceptibility to apoptotic stimuli. Atg5 knockout eliminated bortezomib-induced autophagosome formation and reduced susceptibility to bortezomib. Bortezomib treatment of myeloma cells lead to ATG5 cleavage through a calpain-dependent manner while calpain inhibition or a calpain-insensitive Atg5 mutant promoted bortezomib-resistance. In contrast, AICAR, an AMPK activator, enhanced bortezomib-induced cleavage of ATG5 and increased bortezomib-induced killing. Taken together, the results demonstrate that ATG5 cleavage provokes apoptosis and represents a molecular link between autophagy and apoptosis with therapeutic implications. PMID:25481044

  9. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro.

    PubMed

    Walter, Carolin; Clemens, Laura E; Müller, Amelie J; Fallier-Becker, Petra; Proikas-Cezanne, Tassula; Riess, Olaf; Metzger, Silke; Nguyen, Huu Phuc

    2016-09-01

    The expansion of a polyglutamine repeat in huntingtin (HTT) causes Huntington disease (HD). Although the exact pathogenesis is not entirely understood, mutant huntingtin (mHTT) causes disruption of various cellular functions, formation of aggregates and ultimately cell death. The process of autophagy is the main degradation pathway for mHTT, and various studies have demonstrated that the induction of autophagy leads to an amelioration of aggregate formation and an increase in cell viability. Commonly, this is achieved by inhibition of the mammalian target of rapamycin (mTOR), a prominent regulator of cell metabolism. Alternatively, non-canonical AMPK or mTOR-independent autophagy regulation has been recognized. Given mTOR's involvement in major cellular pathways besides autophagy, its inhibition may come with potentially detrimental effects. Here, we investigated if AMPK activation may provide a target for the induction of autophagy in an mTOR-independent manner. We demonstrate that activation of AMPK by A769662 and overexpression of a constitutively active form of AMPKα in STHdh cells and mouse embryonic fibroblasts (MEFs), leads to increased expression of the autophagosomal markers LC3 and p62, suggesting efficient autophagy induction. The induction of autophagy was independent of mTOR, and accompanied by a decrease of mHTT-containing aggregates as well as improved cell viability. Therefore, we validated AMPK as a promising therapeutic target to treat HD, and identified A769662 as a potential therapeutic compound to facilitate the clearance of mHTT. PMID:27133377

  10. Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight.

    PubMed

    Rigacci, Stefania; Miceli, Caterina; Nediani, Chiara; Berti, Andrea; Cascella, Roberta; Pantano, Daniela; Nardiello, Pamela; Luccarini, Ilaria; Casamenti, Fiorella; Stefani, Massimo

    2015-11-01

    The healthy effects of plant polyphenols, some of which characterize the so-called Mediterranean diet, have been shown to arise from epigenetic and biological modifications resulting, among others, in autophagy stimulation. Our previous work highlighted the beneficial effects of oleuropein aglycone (OLE), the main polyphenol found in the extra virgin olive oil, against neurodegeneration both in cultured cells and in model organisms, focusing, in particular, autophagy activation. In this study we investigated more in depth the molecular and cellular mechanisms of autophagy induction by OLE using cultured neuroblastoma cells and an OLE-fed mouse model of amylod beta (Aβ) deposition. We found that OLE triggers autophagy in cultured cells through the Ca2+-CAMKKβ-AMPK axis. In particular, in these cells OLE induces a rapid release of Ca2+ from the SR stores which, in turn, activates CAMKKβ, with subsequent phosphorylation and activation of AMPK. The link between AMPK activation and mTOR inhibition was shown in the OLE-fed animal model in which we found that decreased phospho-mTOR immunoreactivity and phosphorylated mTOR substrate p70 S6K levels match enhanced phospho-AMPK levels, supporting the idea that autophagy activation by OLE proceeds through mTOR inhibition. Our results agree with those reported for other plant polyphenols, suggesting a shared molecular mechanism underlying the healthy effects of these substances against ageing, neurodegeneration, cancer, diabetes and other diseases implying autophagy dysfunction. PMID:26474288

  11. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography

    PubMed Central

    Ouyang, Yan; Zhu, Li; Li, Yifang; Guo, Miaomiao; Liu, Yang; Cheng, Jin; Zhao, Jing; Wu, Yi

    2016-01-01

    Mammalian AMP-activated protein kinase (AMPK) acts as an important sensor of cellular energy homeostasis related with AMP/ADP to ATP ratio. The overall architecture of AMPK has been determined in either homotrimer or monomer form by electron microscopy (EM) and X-ray crystallography successively. Accordingly proposed models have consistently revealed a key role of the α subunit linker in sensing adenosine nucleoside binding on the γ subunit and mediating allosteric regulation of kinase domain (KD) activity, whereas there are vital differences in orienting N-terminus of α subunit and locating carbohydrate-binding module (CBM) of β subunit. Given that Mg2+, an indispensable cofactor of AMPK was present in the EM sample preparation buffer however absent when forming crystals, here we carried out further reconstructions without Mg2+ to expectably inspect if this ion may contribute to this difference. However, no essential alteration has been found in this study compared to our early work. Further analyses indicate that the intra-molecular movement of the KD and CBM are most likely due to the flexible linkage of the disordered linkers with the rest portion as well as a contribution from the plasticity in the inter-molecular assembly mode, which might ulteriorly reveal an architectural complication of AMPK. PMID:27063142

  12. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation

    PubMed Central

    Cao, Ke; Xu, Jie; Pu, Wenjun; Dong, Zhizhong; Sun, Lei; Zang, Weijin; Gao, Feng; Zhang, Yong; Feng, Zhihui; Liu, Jiankang

    2015-01-01

    Obesity is associated with an increasing prevalence of cardiovascular diseases and metabolic syndrome. It is of paramount importance to reduce obesity-associated cardiac dysfunction and impaired energy metabolism. In this study, the activation of the AMP-activated protein kinase (AMPK) pathway by punicalagin (PU), a major ellagitannin in pomegranate was investigated in the heart of a rat obesity model. In male SD rats, eight-week administration of 150 mg/kg pomegranate extract (PE) containing 40% punicalagin sufficiently prevented high-fat diet (HFD)-induced obesity associated accumulation of cardiac triglyceride and cholesterol as well as myocardial damage. Concomitantly, the AMPK pathway was activated, which may account for prevention of mitochondrial loss via upregulating mitochondrial biogenesis and amelioration of oxidative stress via enhancing phase II enzymes in the hearts of HFD rats. Together with the normalized expression of uncoupling proteins and mitochondrial dynamic regulators, PE significantly prevented HFD-induced cardiac ATP loss. Through in vitro cultures, we showed that punicalagin was the predominant component that activated AMPK by quickly decreasing the cellular ATP/ADP ratio specifically in cardiomyocytes. Our findings demonstrated that punicalagin, the major active component in PE, could modulate mitochondria and phase II enzymes through AMPK pathway to prevent HFD-induced cardiac metabolic disorders. PMID:26369619

  13. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK.

    PubMed

    Lang, Florian; Eylenstein, Anja; Shumilina, Ekaterina

    2012-11-01

    STIM and Orai isoforms orchestrate store operated Ca2+ entry (SOCE) and thus cytosolic Ca2+ fluctuations following stimulation by hormones, growth factors and further mediators. Orai1 is a target of Nedd4-2, an ubiquitin ligase preparing several plasma membrane proteins for degradation. Phosphorylation of Nedd4-2 by the serum and glucocorticoid inducible kinase SGK1 leads to the binding of Nedd4-2 to the protein 14-3-3 thus preventing its interaction with Orai1. Nedd4-2 is activated by the energy sensing AMP activated kinase AMPK. Thus, SGK1 disrupts and AMPK fosters degradation of Orai1. New synthesis of both, Orai1 and STIM1, is stimulated by the transcription factor NF-κB (nuclear factor kappa B), which binds to the respective promoter regions of the genes encoding STIM1 and Orai1. SGK1 upregulates and AMPK presumably downregulates NF-κB and thus de novo synthesis of Orai1 and STIM1 proteins. The regulation by SGK1 links SOCE to the signaling of a wide variety of hormones and growth factors, the AMPK dependent regulation of Orai1 and STIM1 may serve to limit inadequate activation of SOCE following energy depletion, which is otherwise expected to activate SOCE by depletion of intracellular Ca2+ stores due to impairment of the ATP consuming sarco/endoplasmatic reticulum Ca2+ ATPase SERCA. PMID:22682960

  14. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases

    PubMed Central

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A.; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600

  15. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.

    PubMed

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600

  16. AMPK Agonist AICAR Improves Cognition and Motor Coordination in Young and Aged Mice

    ERIC Educational Resources Information Center

    Kobilo, Tali; Guerrieri, Davide; Zhang, Yongqing; Collica, Sarah C.; Becker, Kevin G.; van Praag, Henriette

    2014-01-01

    Normal aging can result in a decline of memory and muscle function. Exercise may prevent or delay these changes. However, aging-associated frailty can preclude physical activity. In young sedentary animals, pharmacological activation of AMP-activated protein kinase (AMPK), a transcriptional regulator important for muscle physiology, enhanced…

  17. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling

    PubMed Central

    Tang, Hong; Yu, Ruili; Liu, Shiying; Huwatibieke, Bahetiyaer; Li, Ziru; Zhang, Weizhen

    2016-01-01

    Irisin, a myokine released during exercise, promotes browning of subcutaneous adipose tissue and regulates energy homeostasis. Although exercise constantly reduces blood cholesterol, whether irisin is involved in the regulation of cholesterol remains largely unknown. In the present study, subcutaneous infusion of irisin for 2 weeks induced a reduction in plasma and hepatic cholesterol in high fat diet-induced obese (DIO) mice. These alterations were associated with an activation of 5′ AMP-activated protein kinase (AMPK) and inhibition of sterol regulatory element-binding transcription factor 2 (SREBP2) transcription and nuclear translocation. In primary hepatocytes from either lean or DIO mice, irisin significantly decreased cholesterol content via sequential activation of AMPK and inhibition of SREBP2. Suppression of AMPK by compound C or AMPKα1 siRNA blocked irisin-induced alterations in cholesterol contents and SREBP2. In conclusion, irisin could suppress hepatic cholesterol production via a mechanism dependent of AMPK and SREBP2 signaling. These findings suggest that irisin is a promising therapeutic target for treatment of hypercholesterolemia. PMID:27211556

  18. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    PubMed

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  19. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography.

    PubMed

    Ouyang, Yan; Zhu, Li; Li, Yifang; Guo, Miaomiao; Liu, Yang; Cheng, Jin; Zhao, Jing; Wu, Yi

    2016-01-01

    Mammalian AMP-activated protein kinase (AMPK) acts as an important sensor of cellular energy homeostasis related with AMP/ADP to ATP ratio. The overall architecture of AMPK has been determined in either homotrimer or monomer form by electron microscopy (EM) and X-ray crystallography successively. Accordingly proposed models have consistently revealed a key role of the α subunit linker in sensing adenosine nucleoside binding on the γ subunit and mediating allosteric regulation of kinase domain (KD) activity, whereas there are vital differences in orienting N-terminus of α subunit and locating carbohydrate-binding module (CBM) of β subunit. Given that Mg(2+), an indispensable cofactor of AMPK was present in the EM sample preparation buffer however absent when forming crystals, here we carried out further reconstructions without Mg(2+) to expectably inspect if this ion may contribute to this difference. However, no essential alteration has been found in this study compared to our early work. Further analyses indicate that the intra-molecular movement of the KD and CBM are most likely due to the flexible linkage of the disordered linkers with the rest portion as well as a contribution from the plasticity in the inter-molecular assembly mode, which might ulteriorly reveal an architectural complication of AMPK. PMID:27063142

  20. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation*

    PubMed Central

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L.

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPKSer-485, but not AMPKThr-172, phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPKSer-485, but not AMPKThr-172, hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPKSer-485 hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPKS485A mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPKSer-485 hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPKSer-485 phosphorylation to the increased risk of AD in obesity and diabetes. PMID:26100639

  1. A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice.

    PubMed

    Rousset, Catherine I; Leiper, Fiona C; Kichev, Anton; Gressens, Pierre; Carling, David; Hagberg, Henrik; Thornton, Claire

    2015-04-01

    Perinatal hypoxic-ischaemic encephalopathy (HIE) occurs in 1-2 in every 1000 term infants and the devastating consequences range from cerebral palsy, epilepsy and neurological deficit to death. Cellular damage post insult occurs after a delay and is mediated by a secondary neural energy failure. AMP-activated protein kinase (AMPK) is a sensor of cellular stress resulting from ATP depletion and/or calcium dysregulation, hallmarks of the neuronal cell death observed after HIE. AMPK activation has been implicated in the models of adult ischaemic injury but, as yet, there have been no studies defining its role in neonatal asphyxia. Here, we find that in an in vivo model of neonatal hypoxia-ischaemic and in oxygen/glucose deprivation in neurons, there is pathological activation of the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPKα1 signalling pathway. Pharmacological inhibition of AMPK during the insult promotes neuronal survival but, conversely, inhibiting AMPK activity prior to the insult sensitizes neurons, exacerbating cell death. Our data have pathological relevance for neonatal HIE as prior sensitization such as exposure to bacterial infection (reported to reduce AMPK activity) produces a significant increase in injury. We show that in an in vivo model of neonatal hypoxia-ischaemic and in oxygen/glucose deprivation in neurons, there is a pathological activation of the CaMKKβ-AMPKα1 signalling pathway. Inhibiting AMPK during OGD promotes neuronal survival; conversely, inhibiting AMPK prior to OGD exacerbates cell death. Our data have clinical relevance as prior sensitization (e.g. exposure to bacterial infection reducing AMPK activity) increases injury. AMPK, AMP-activated protein kinase; HI, hypoxia-ischaemia; OGD, oxygen-glucose deprivation. PMID:25598140

  2. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK.

    PubMed

    Lee, Wei-Hwa; Wu, Hsueh-Hsia; Huang, Wei-Jan; Li, Yi-Ning; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2015-01-01

    Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor

  3. Shizukaol D Isolated from Chloranthus japonicas Inhibits AMPK-Dependent Lipid Content in Hepatic Cells by Inducing Mitochondrial Dysfunction

    PubMed Central

    Hu, Rongkuan; Yan, Huan; Hao, Xiaojiang; Liu, Haiyang; Wu, Jiarui

    2013-01-01

    This study is the first to demonstrate that shizukaol D, a natural compound isolated from Chloranthusjaponicus, can activate AMP- activated protein kinase (AMPK), a key sensor and regulator of intracellular energy metabolism, leading to a decrease in triglyceride and cholesterol levels in HepG2 cells. Furthermore, we found that shizukaol D induces mitochondrial dysfunction by depolarizing the mitochondrial membrane and suppressing energy production, which may result in AMPK activation. Our results provide a possible link between mitochondrial dysfunction and AMPK activation and suggest that shizukaol D might be used to treat metabolic syndrome. PMID:23967345

  4. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    PubMed

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease. PMID:19617399

  5. Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway.

    PubMed

    Sun, Li; Zhang, Song; Yu, Chengyuan; Pan, Zhenwei; Liu, Yang; Zhao, Jing; Wang, Xiaoyu; Yun, Fengxiang; Zhao, Hongwei; Yan, Sen; Yuan, Yue; Wang, Dingyu; Ding, Xue; Liu, Guangzhong; Li, Wenpeng; Zhao, Xuezhu; Liu, Zhaorui; Li, Yue

    2015-12-01

    Autophagy plays an important role in liver triglyceride (TG) metabolism. Inhibition of autophagy could reduce the clearance of TG in the liver. Hydrogen sulfide (H2S) is a potent stimulator of autophagic flux. Recent studies showed H2S is protective against hypertriglyceridemia (HTG) and noalcoholic fatty liver disease (NAFLD), while the mechanism remains to be explored. Here, we tested the hypothesis that H2S reduces serum TG level and ameliorates NAFLD by stimulating liver autophagic flux by the AMPK-mTOR pathway. The level of serum H2S in patients with HTG was lower than that of control subjects. Sodium hydrosulfide (NaHS, H2S donor) markedly reduced serum TG levels of male C57BL/6 mice fed a high-fat diet (HFD), which was abolished by coadministration of chloroquine (CQ), an inhibitor of autophagic flux. In HFD mice, administration of NaSH increased the LC3BII-to-LC3BI ratio and decreased the p62 protein level. Meanwhile, NaSH increased the phosphorylation of AMPK and thus reduced the phosphorylation of mTOR in a Western blot study. In cultured LO2 cells, high-fat treatment reduced the ratio of LC3BII to LC3BI and the phosphorylation of AMPK, which were reversed by the coadministration of NaSH. Knockdown of AMPK by siRNA in LO2 cells blocked the autophagic enhancing effects of NaSH. The same qualitative effect was observed in AMPKα2(-/-) mice. These results for the first time demonstrated that H2S could reduce serum TG level and ameliorate NAFLD by activating liver autophagy via the AMPK-mTOR pathway. PMID:26442880

  6. Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK.

    PubMed

    Zhou, Hongyu; Shang, Chaowei; Wang, Min; Shen, Tao; Kong, Lingmei; Yu, Chunlei; Ye, Zhennan; Luo, Yan; Liu, Lei; Li, Yan; Huang, Shile

    2016-09-15

    Ciclopirox olamine (CPX), an off-patent antifungal agent, has recently been identified as a potential anticancer agent. The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation and survival. Little is known about whether and how CPX executes its anticancer action by inhibiting mTOR. Here we show that CPX inhibited the phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), two downstream effector molecules of mTOR complex 1 (mTORC1), in a spectrum of human tumor cells, indicating that CPX inhibits mTORC1 signaling. Using rhabdomyosarcoma cells as an experimental model, we found that expression of constitutively active mTOR (E2419K) conferred resistance to CPX inhibition of cell proliferation, suggesting that CPX inhibition of mTORC1 contributed to its anticancer effect. In line with this, treatment with CPX inhibited tumor growth and concurrently suppressed mTORC1 signaling in RD xenografts. Mechanistically, CPX inhibition of mTORC1 was neither via inhibition of IGF-I receptor or phosphoinositide 3-kinase (PI3K), nor by activation of phosphatase and tensin homolog (PTEN). Instead, CPX inhibition of mTORC1 was attributed to activation of AMP-activated protein kinase (AMPK)-tuberous sclerosis complexes (TSC)/raptor pathways. This is supported by the findings that CPX activated AMPK; inhibition of AMPK with Compound C or ectopic expression of dominant negative AMPKα partially prevented CPX from inhibiting mTORC1; silencing TSC2 attenuated CPX inhibition of mTORC1; and CPX also increased AMPK-mediated phosphorylation of raptor (S792). Therefore, the results indicate that CPX exerts the anticancer effect by activating AMPK, resulting in inhibition of mTORC1 signaling. PMID:27396756

  7. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK).

    PubMed

    Tang, Xiao Xiao; Chen, Hao; Yu, Sidney; Zhang, Li; Caplan, Michael J; Chan, Hsiao Chang

    2010-01-01

    The tight junctions (TJs), characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK) cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK). AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK. PMID:20808811

  8. ROLE OF AMPK THOUGHOUT MEIOTIC MATURATION IN THE MOUSE OOCYTE: EVIDENCE FOR PROMOTION OF POLAR BODY FORMATION AND SUPPRESSION OF PREMATURE ACTIVATION

    PubMed Central

    Downs, Stephen M.; Ya, Ru; Davis, Christopher

    2014-01-01

    This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK-activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK-activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C-induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles and midbody during maturation. Immunolocalization of the α1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle, but not in the spindle poles or midbody; α2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation. PMID:20830737

  9. Dehydrozingerone exerts beneficial metabolic effects in high-fat diet-induced obese mice via AMPK activation in skeletal muscle.

    PubMed

    Kim, Su Jin; Kim, Hong Min; Lee, Eun Soo; Kim, Nami; Lee, Jung Ok; Lee, Hye Jeong; Park, Na Yeon; Jo, Joo Yeon; Ham, Bo Young; Han, Si Hyun; Park, Sun Hwa; Chung, Choon Hee; Kim, Hyeon Soo

    2015-03-01

    Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high-fat diet-induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP-activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen-activated protein kinase (MAPK) signalling in an AMPK-dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ-induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin-induced glucose uptake increased in DHZ-fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle. PMID:25582026

  10. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2 cells.

    PubMed

    Liu, Xin; Hao, Jie-Jie; Zhang, Li-Juan; Zhao, Xia; He, Xiao-Xi; Li, Miao-Miao; Zhao, Xiao-Liang; Wu, Jian-Dong; Qiu, Pei-Ju; Yu, Guang-Li

    2014-10-01

    Low molecular weight and sulfated low molecular weight guluronate (LMG and SLMG) were prepared and hypolipidemic effects were studied in a human hepatocellular carcinoma HepG2 cell line. Both compounds decreased total cholesterol (TC) and triglycerides (TG) and inhibited 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity in HepG2 cells. In general, SLMG had greater effects than LMG. Activation of sterol regulatory element-binding protein 2 (SREBP-2), low density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and AMPK's downstream targets were evidenced by increased phosphorylation of AMPK, HMGCR, and acetyl-CoA-carboxylase (ACC), which decreased HMGRC and ACC activity. We further demonstrated that activated AMPK was linked to down-regulated SREBP-1 and up-regulated cholesterol 7α-hydroxylase (CYP7A1). PMID:25089813

  11. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    PubMed

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  12. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  13. Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy.

    PubMed

    Zheng, Qijun; Zhao, Kun; Han, Xuefeng; Huff, Anna F; Cui, Qin; Babcock, Sara A; Yu, Shiqiang; Zhang, Yingmei

    2015-02-01

    Prolonged caloric restriction often results in alteration in heart geometry and function although the underlying mechanism remains poorly defined. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, preserves energy and nutrient in the face of caloric insufficiency. This study was designed to examine the role of AMPK in prolonged caloric restriction-induced change in cardiac homeostasis and the underlying mechanism(s) involved with a focus on autophagy. Wild-type (WT) and AMPK kinase dead (KD) mice were caloric restricted (by 40%) for 30 weeks. Echocardiographic, cardiomyocyte contractile and intracellular Ca²⁺ properties, autophagy and autophagy regulatory proteins were evaluated. Caloric restriction compromised echocardiographic indices (decreased ventricular mass, left ventricular diameters, and cardiac output), cardiomyocyte contractile and intracellular Ca²⁺ properties associated with upregulated autophagy (Beclin-1, Atg5 and LC3BII-to-LC3BI ratio), increased autophagy adaptor protein p62, elevated phosphorylation of AMPK and TSC1/2, depressed phosphorylation of mTOR and ULK1. Although AMPK inhibition did not affect cardiac mechanical function, autophagy and autophagy signaling proteins, it significantly accentuated caloric restriction-induced changes in myocardial contractile function and intracellular Ca²⁺ handling. Interestingly, AMPK inhibition reversed caloric restriction-induced changes in autophagy and autophagy signaling. AMPK inhibition led to dampened levels of Beclin-1, Atg 5 and LC3B ratio along with suppressed phosphorylation of AMPK and TSC1/2 as well as elevated phosphorylation of mTOR and ULK1. Taken together, these data suggest an indispensible role for AMPK in the maintenance of cardiac homeostasis under prolonged caloric restriction-induced pathological changes possibly through autophagy regulation. This article is part of a Special Issue entitled: Autophagy and protein quality control in

  14. Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease.

    PubMed

    Li, Hui; Satriano, Joseph; Thomas, Joanna L; Miyamoto, Satoshi; Sharma, Kumar; Pastor-Soler, Núria M; Hallows, Kenneth R; Singh, Prabhleen

    2015-09-01

    Renal hypoxia contributes to chronic kidney disease (CKD) progression, as validated in experimental and human CKD. In the early stages, increased oxygen consumption causes oxygen demand/supply mismatch, leading to hypoxia. Hence, early targeting of the determinants and regulators of oxygen consumption in CKD may alter the disease course before permanent damage ensues. Here, we focus on hypoxia inducible factor-1α (HIF-1α) and AMP-activated protein kinase (AMPK) and on the mechanisms by which they may facilitate cellular hypoxia adaptation. We found that HIF-1α activation in the subtotal nephrectomy (STN) model of CKD limits protein synthesis, inhibits apoptosis, and activates autophagy, presumably for improved cell survival. AMPK activation was diminished in the STN kidney and was remarkably restored by HIF-1α activation, demonstrating a novel role for HIF-1α in the regulation of AMPK activity. We also investigated the independent and combined effects of HIF-1α and AMPK on cell survival and death pathways by utilizing pharmacological and knockdown approaches in cell culture models. We found that the effect of HIF-1α activation on autophagy is independent of AMPK, but on apoptosis it is partially AMPK dependent. The effects of HIF-1α and AMPK activation on inhibiting protein synthesis via the mTOR pathway appear to be additive. These various effects were also observed under hypoxic conditions. In conclusion, HIF-1α and AMPK appear to be linked at a molecular level and may act as components of a concerted cellular response to hypoxic stress in the pathophysiology of CKD. PMID:26136559

  15. Modulation of the AMPK/Sirt1 axis during neuronal infection by herpes simplex virus type 1.

    PubMed

    Martin, Carolina; Leyton, Luis; Arancibia, Yennyfer; Cuevas, Alexei; Zambrano, Angara; Concha, Margarita I; Otth, Carola

    2014-01-01

    Currently, it is unclear whether a neuron that undergoes viral reactivation and produces infectious particles survives and resumes latency or is killed, which is intriguing even if still unanswered. Previous reports have shown that herpes simplex virus type 1 (HSV-1) inhibits apoptosis during early infection, but is pro-apoptotic during productive infection. Taking in consideration that the stress sensors AMPK and Sirt1 are involved in neuronal survival and neuroprotection, we hypothesized that HSV-1 could activate the AMPK/Sirt1 axis as a strategy to establish latency through inhibition of apoptosis and restoration of the energy status. These effects could be accomplished through deacetylation of pro-apoptotic protein p53 and regulation of the master regulator of mitochondrial biogenesis and function PGC-1α and its target gene TFAM. Accordingly, we evaluated the AMPK/Sirt1 axis and its targets p53, PGC-1α, and acetyl CoA carboxylase in mice neuronal cultures infected with HSV-1 by western blot, RT-qPCR, and immunofluorescence analyses. Herein, we show that HSV-1 differentially modulates the AMPK/Sirt1 axis during the course of infection. In fact, during early infection (2 hpi) activated AMPK (p-AMPK) was down-regulated, but thereafter recovered gradually. In contrast, the levels of acetylated-p53 increased during the first hours post infection, but afterwards were reduced in parallel with the activation of Sirt1. However, acetylated-p53 peaked again at 18 hpi during productive infection, suggesting an activation of apoptosis. Strikingly, acetylated-p53, Sirt1, and p-AMPK apparently translocate from the nucleus to the cytoplasm after 4 hpi, where they accumulate in discrete foci in the perinuclear region. These results suggest that HSV-1 modulates the AMPK/Sirt1 axis differentially during the course of infection interfering with pro-apoptotic signaling and regulating mitochondrial biogenesis. PMID:24858404

  16. AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation

    PubMed Central

    Ferretti, Anabela C.; Tonucci, Facundo M.; Hidalgo, Florencia; Almada, Evangelina; Larocca, Maria C.; Favre, Cristián

    2016-01-01

    The signaling pathways that govern survival response in hepatic cancer cells subjected to nutritional restriction have not been clarified yet. In this study we showed that liver cancer cells undergoing glucose deprivation both arrested in G0/G1 and died mainly by apoptosis. Treatment with the AMPK activator AICAR phenocopied the effect of glucose deprivation on cell survival, whereas AMPK silencing in HepG2/C3A, HuH-7 or SK-Hep-1 cells blocked the cell cycle arrest and the increase in apoptotic death induced by glucose starvation. Both AMPK and PKA were promptly activated after glucose withdrawal. PKA signaling had a dual role during glucose starvation: whereas it elicited an early decreased in cell viability, it later improved this parameter. We detected AMPK phosphorylation (AMPKα(Ser173)) by PKA, which was increased in glucose starved cells and was associated with diminution of AMPK activation. To better explore this inhibitory effect, we constructed a hepatocarcinoma derived cell line which stably expressed an AMPK mutant lacking that PKA phosphorylation site: AMPKα1(S173C). Expression of this mutant significantly decreased viability in cells undergoing glucose starvation. Furthermore, after 36 h of glucose deprivation, the index of AMPKα1(S173C) apoptotic cells doubled the apoptotic index observed in control cells. Two main remarks arise: 1. AMPK is the central signaling kinase in the scenario of cell cycle arrest and death induced by glucose starvation in hepatic cancer cells; 2. PKA phosphorylation of Ser173 comes out as a strong control point that limits the antitumor effects of AMPK in this situation. PMID:26894973

  17. Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5'-AMP-activated protein kinase (AMPK) pathway

    PubMed Central

    Johnson, Jeremy J.; Syed, Deeba N.; Heren, Chenelle R.; Suh, Yewseok; Adhami, Vaqar M.; Mukhtar, Hasan

    2010-01-01

    Purpose The anti-cancer effect of carnosol was investigated in human prostate cancer PC3 cells. Methods Biochemical analysis and protein array data of carnosol treated PC3 cells were analyzed. Results We evaluated carnosol for its potential anti-cancer properties in the PC3 cells. Using an MTT assay we found that carnosol (10 – 70 µM) decreases cell viability in a time and dose dependent manner. Next, we evaluated the effect of carnosol (20–60 uM) effect using flow cytometry as well as biochemical analysis and found induction of G2-phase cell cycle arrest. To establish a more precise mechanism, we performed a protein array that evaluated 638 proteins involved in cell signaling pathways. The protein array identified 5'-AMP-activated protein kinase (AMPK), a serine/threonine protein kinase involved in the regulation of cellular energy balance as a potential target. Further downstream effects consistent with cancer inhibition included the modulation of the mTOR/HSP70S6k/4E-BP1 pathway. Additionally, we found that carnosol targeted the PI3K/Akt pathway in a dose dependent manner. Conclusions These results suggest that carnosol targets multiple signaling pathways that include the AMPK pathway. The ability of carnosol to inhibit prostate cancer in vitro suggests carnosol may be a novel agent for the management of PCa. PMID:18286356

  18. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  19. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise.

    PubMed

    Li, Mengyao; Verdijk, Lex B; Sakamoto, Kei; Ely, Brian; van Loon, Luc J C; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. PMID:23000302

  20. Metformin sensitizes anticancer effect of dasatinib in head and neck squamous cell carcinoma cells through AMPK-dependent ER stress

    PubMed Central

    Lin, Yu-Chin; Huang, Wen-Chih; Huang, Liang-Yu; Lin, Yi-Ting; Chen, Ching-Chow

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) is an important endemic disease in Taiwan with aggressive course and dismal outcome. Dasatinib is a Bcr-bl and Src kinase inhibitor that has potential against HNSCC. We recently disclosed that EGFR degradation is critical for dasatinib-induced apoptosis. Here, we further demonstrate that AMPK-dependent ER stress is responsible for this event. Dasatinib induced ER stress which mediated EGFR degradation in a c-cbl-dependent manner. AMPK activation induced by dasatinib might be due to ATP decrease through the up-regulation of pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, activation of AMPK by metformin sensitized dasatinib-induced in vitro and in vivo anti-cancer effect. The correlation of AMPK activation and EGFR expression was seen in HNSCC cells and human tumor specimens. Our results disclose that AMPK-dependent ER stress plays a crucial role in the anti-cancer effect of dasatinib in HNSCC and further activation of AMPK by metformin might enhance dasatinib efficacy. PMID:24457597

  1. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice

    PubMed Central

    Yu, Yongmei; Zhang, Xian H.; Ebersole, Blake; Ribnicky, David; Wang, Zhong Q.

    2013-01-01

    We sought to evaluate the effects of Momordica charantia (bitter melon, BM) extract on insulin sensitivity, NAFLD, hepatic FGF21 and AMPK signaling in mice fed a high-fat diet. Male C57/B6 mice were randomly divided into HFD and HFD supplementation with BM for 12 week. Body weight, plasma glucose, FGF21 and insulin levels, hepatic FGF21 and AMPK signaling proteins were measured. The results showed that plasma FGF21 and insulin concentrations were significantly decreased and hepatic FGF21 content was significantly down-regulated, while FGF receptors 1, 3 and 4 (FGFR1, FGFR3 and FGFR4) were greatly up-regulated in BM group compared to the HFD group (P < 0.05 and P < 0.01). BM also significantly increased hepatic AMPK p, AMPK α1 AMPK α2 and Sirt1 content compared to the HFD mice. We, for the first time, demonstrated that BM extract attenuated hepatic steatosis in mice by enhancing hepatic FGF21 and AMPK/Sirt1 signaling. PMID:24189525

  2. Activation of AMPK in rat hypothalamus participates in cold-induced resistance to nutrient-dependent anorexigenic signals

    PubMed Central

    Roman, Erika A; Cesquini, Maristela; Stoppa, Graziela R; Carvalheira, José B; Torsoni, Márcio A; Velloso, Lício A

    2005-01-01

    The exposure of homeothermic animals to a cold environment leads to a powerful activation of orexigenic signalling which is accompanied by molecular and functional resistance to insulin-induced inhibition of feeding. Recent evidence suggests that AMPK participates in nutrient-dependent control of satiety and adiposity. The objective of the present study was to evaluate the effect of cold exposure upon the molecular activation of AMPK signalling in the hypothalamus of rats. Immunoblotting demonstrated that cold exposure per se is sufficient for inducing, on a time-dependent basis, the molecular activation of the serine/threonine kinase AMP-activated protein kinase (AMPK) and inactivation of the acetyl-CoA carboxylase (ACC). These molecular phenomena were accompanied by resistance to nutrient-induced inactivation of AMPK and activation of ACC. Moreover, cold-exposure led to a partial inhibition of a feeding-induced anorexigenic response, which was paralleled by resistance to insulin-induced suppression of feeding. Finally, cold exposure significantly impaired insulin-induced inhibition of AMPK through a mechanism dependent on the molecular cross-talk between phosphatidylinositol-3(PI3)-kinase/Akt and AMPK. In conclusion, increased feeding during cold exposure results, at least in part, from resistance to insulin- and nutrient-dependent anorexigenic signalling in the hypothalamus. PMID:16141267

  3. PKC and AMPK regulation of Kv1.5 potassium channels

    PubMed Central

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K+ current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4–2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems. PMID:26043299

  4. PKC and AMPK regulation of Kv1.5 potassium channels.

    PubMed

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4-2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems. PMID:26043299

  5. Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens.

    PubMed

    Hu, Xiyi; Liu, Lei; Song, Zhigang; Sheikhahmadi, Ardashir; Wang, Yufeng; Buyse, Johan

    2016-01-01

    The 5'-adenosine monophosphate-activated protein kinase (AMPK) plays a key role in rapid metabolic adaptations to maintain energy homeostasis in poultry. It remains unclear if AMPK is involved in muscular energy metabolism in broiler chickens. Hence, in the present study, seven-day-old male broilers were equally divided into three groups: fed ad libitum (control); feed-deprived for 24h (S24); feed-deprived for 24h and then refed for 24h (S24R24). Compared to the control group, the plasma levels of glucose, insulin, T3 and triglycerides in the S24 group were significantly lower (P<0.05), whereas the uric acid levels were significantly higher (P<0.01). Except for glucose, refeeding for 24h reversed the fasting-induced alterations in plasma metabolite. Fasting decreased the liver kinase B1 (LKB1), AMPK alpha 2 subunit (AMPKα2), and fatty acid synthase (FAS) mRNA levels (P<0.05) in M. pectoralis major (PM). Feed deprivation did not affect the phosphorylated AKT, mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70S6K) in PM (P>0.05), but upregulated carnitine palmitoyltransferase 1 (CPT1) gene expression and increased phosphorylated LKB1 (0.05AMPK and LKB1 of the PM muscle returned to control group levels after 24h refeeding. In M. biceps femoris (BF), the AMPKα2 and FAS mRNA levels were decreased by fasting compared to control (P<0.05), whereas CPT1 mRNA and phosphorylated LKB1 and AMPK protein levels were increased. Refeeding for 24h reversed the changes in AMPKα2 and CPT1 gene expression and phosphorylated AMPKα2 subunit. Fasting did not affect the AKT, mTOR and p70S6K in both PM and BF muscles (P>0.05). However, refeeding after 24h of fasting increased the phosphorylated mTOR level in BF muscle which was in parallel with increased plasma insulin concentration. It was likely that increased phospho-mTOR level in the BF muscle was

  6. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway.

    PubMed

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-08-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. PMID:27208776

  7. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney

    PubMed Central

    Lempiäinen, J; Finckenberg, P; Levijoki, J; Mervaala, E

    2012-01-01

    BACKGROUND AND PURPOSE Renal ischaemia/reperfusion (RI/R) injury is a major cause of acute kidney injury (AKI) and an important determinant of long-term kidney dysfunction. AMP-kinase and histone deacetylase sirtuin 1 (SIRT1) regulate cellular metabolism and are activated during hypoxia. We investigated whether AMP-kinase activator AICAR (5-amino-4-imidazolecarboxamide riboside-1-β-D-ribofuranoside) ameliorates RI/R injury and whether SIRT1 is involved in the pathogenesis. EXPERIMENTAL APPROACH Eight-week-old Sprague Dawley rats were divided into five groups: (i) sham-operated group; (ii) I/R group (40 min bilateral ischaemia followed by 24 h of reperfusion; (iii) I/R group + AICAR 50 mg·kg−1 i.v. given 60 min before operation; (iv). I/R group + AICAR 160 mg·kg−1 i.v; (v) I/R group + AICAR 500 mg·kg−1 i.v. Serum creatinine and urea levels were measured. Acute tubular necrosis (ATN), monocyte/macrophage infiltration and nitrotyrosine expression were scored. Kidney AMP-activated protein kinase (AMPK) and SIRT1 expressions were measured. KEY RESULTS Highest dose of AICAR decreased serum creatinine and urea levels, attenuated I/R injury-induced nitrosative stress and monocyte/macrophage infiltration, and ameliorated the development of ATN. Kidney I/R injury was associated with decreased AMPK phosphorylation and a fivefold increase in kidney SIRT1 expression. AICAR increased pAMPK/AMPK ratio and prevented the I/R-induced increase in renal SIRT1 expression. CONCLUSIONS AND IMPLICATIONS AICAR protects against the development of ATN after kidney I/R injury. Activators of kidney AMP kinase may thus represent a novel therapeutic approach to patients susceptible to AKI and to those undergoing kidney transplantation. The present study also suggests a role for SIRT1 in the pathogenesis of RI/R injury. PMID:22324445

  8. Phyllostachys edulis extract induces apoptosis signaling in osteosarcoma cells, associated with AMPK activation

    PubMed Central

    Chou, Chi-Wen; Cheng, Ya-Wen; Tsai, Chung-Hung

    2014-01-01

    Objective Bamboo is distributed worldwide, and its different parts are used as foods or as a traditional herb. Recently, antitumoral effects of bamboo extracts on several tumors have been increasingly reported; however, antitumoral activity of bamboo extracts on osteosarcoma remains unclear. In the present study, we investigated effects of an aqueous Phyllostachys edulis leaf extract (PEE) on osteosarcoma cells and the underlying mechanism of inhibition. Methods The growth of human osteosarcoma cell lines 143B and MG-63 and lung fibroblast MRC-5 cells was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Apoptosis was demonstrated using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay and flow cytometric analysis. Phosphorylation and protein levels were determined by immunoblotting. Results After treatment with PEE, viability of 143B and MG-63 cells was dose-dependently reduced to 36.3%±1.6% of control values, which were similar to AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) treatments. In parallel, ratios of apoptotic cells and cells in the sub-G1 phase were significantly increased. Further investigation showed that PEE treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and p53. Consistently, our results revealed that PEE activated adenosine monophosphate-activated protein kinase (AMPK) signaling, and the AMPK activation was associated with the induction of apoptotic signaling. Conclusion Our results indicated that PEE suppressed the growth of 143B and MG-63 cells but moderately affected MRC-5 cells. PEE-induced apoptosis may attribute to AMPK activation and the following activation of apoptotic signaling cascades. These findings revealed that PEE possesses antitumoral activity on human osteosarcoma cells by manipulating AMPK signaling, suggesting that PEE alone or combined with regular antitumor drugs may be beneficial as osteosarcoma

  9. Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity.

    PubMed

    Zha, Qing-Bing; Zhang, Xiao-Yu; Lin, Qiu-Ru; Xu, Li-Hui; Zhao, Gao-Xiang; Pan, Hao; Zhou, Dan; Ouyang, Dong-Yun; Liu, Ze-Huan; He, Xian-Hui

    2015-01-01

    Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity. PMID:25970614

  10. Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity

    PubMed Central

    Xu, Li-Hui; Zhao, Gao-Xiang; Pan, Hao; Zhou, Dan; Ouyang, Dong-Yun; Liu, Ze-Huan; He, Xian-Hui

    2015-01-01

    Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity. PMID:25970614

  11. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle.

    PubMed

    Ihsan, Mohammed; Markworth, James F; Watson, Greig; Choo, Hui Cheng; Govus, Andrew; Pham, Toan; Hickey, Anthony; Cameron-Smith, David; Abbiss, Chris R

    2015-08-01

    This study investigated the effect of regular postexercise cold water immersion (CWI) on muscle aerobic adaptations to endurance training. Eight males performed 3 sessions/wk of endurance training for 4 wk. Following each session, subjects immersed one leg in a cold water bath (10°C; COLD) for 15 min, while the contralateral leg served as a control (CON). Muscle biopsies were obtained from vastus lateralis of both CON and COLD legs prior to training and 48 h following the last training session. Samples were analyzed for signaling kinases: p38 MAPK and AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), enzyme activities indicative of mitochondrial biogenesis, and protein subunits representative of respiratory chain complexes I-V. Following training, subjects' peak oxygen uptake and running velocity were improved by 5.9% and 6.2%, respectively (P < 0.05). Repeated CWI resulted in higher total AMPK, phosphorylated AMPK, phosphorylated acetyl-CoA carboxylase, β-3-hydroxyacyl-CoA-dehydrogenase and the protein subunits representative of complex I and III (P < 0.05). Moreover, large effect sizes (Cohen's d > 0.8) were noted with changes in protein content of p38 (d = 1.02, P = 0.064), PGC-1α (d = 0.99, P = 0.079), and peroxisome proliferator-activated receptor α (d = 0.93, P = 0.10) in COLD compared with CON. No differences between conditions were observed in the representative protein subunits of respiratory complexes II, IV, and V and in the activities of several mitochondrial enzymes (P > 0.05). These findings indicate that regular CWI enhances p38, AMPK, and possibly mitochondrial biogenesis. PMID:26041108

  12. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK.

    PubMed

    White, James P; Puppa, Melissa J; Gao, Song; Sato, Shuichi; Welle, Stephen L; Carson, James A

    2013-05-15

    Although catabolic signaling has a well-established role in muscle wasting during cancer cachexia, the suppression of anabolic signaling also warrants further investigation. In cachectic tumor-bearing mice, circulating IL-6 levels are associated with suppressed muscle protein synthesis and mTORC1 signaling. We have found AMPK and IGF-I/insulin signaling, two well-known regulators of the mammalian target of rapamycin (mTOR), are altered with the progression of cachexia. How IL-6 can induce suppression of mTORC1 signaling remains to be established. The purpose of this study was to examine mTOR complex 1 (mTORC1) activation and regulation by IL-6 during cancer cachexia. IL-6 effects on mTOR activation were examined in Apc(Min/+) mouse skeletal muscle and C2C12 myotubes. Systemic IL-6 overexpression in Apc(Min/+) mice produced a dose-dependent suppression of mTOR signaling that corresponded to induction of STAT3 and AMPK phosphorylation. This result was also evident in IL-6-treated myotubes. Basal mTOR activation and mTOR responsiveness to glucose administration were suppressed in cachectic skeletal muscle. However, insulin induction of mTOR activity was maintained in IL-6-treated myotubes. Whereas IL-6 suppression of myotube mTOR activity was rescued by AMPK inhibition, inhibition of STAT3 signaling was not sufficient to rescue IL-6 suppression of mTOR activity. Last, treadmill exercise training was able to prevent IL-6-induced inhibition of mTOR signaling in Apc(Min/+) mice independently of activated STAT. In conclusion, we report dose-dependent suppression of mTOR activity by IL-6 and suppressed mTOR responsiveness to glucose administration in Apc(Min/+) mice. IL-6 suppression of mTOR activity was dependent on AMPK activation and independent of STAT signaling in myotubes. PMID:23531613

  13. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    SciTech Connect

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.; Sreejayan, Nair; Du, Min

    2010-04-23

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.

  14. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation.

    PubMed

    Zhou, Yue; He, Xin; Chen, Yili; Huang, Yiyi; Wu, Lingling; He, Jiangui

    Diabetes mellitus is a prominent risk factor for cardiovascular diseases. Diabetic cardiomyopathy is an important complication of the heart independent of hypertension and coronary artery disease and is accompanied by cardiac hypertrophy. Cardiac hypertrophy easily leads to heart failure, which is a leading cause of morbidity and mortality. Glucagon-like peptide 1 (GLP-1) is an incretin hormone, which has various beneficial roles in the cardiovascular system, and exendin-4 is a highly potent glucagon-like peptide 1 receptor agonist. However, the role of GLP-1 in cardiac hypertrophy remains unknown. Our study revealed that exendin-4 treatment ameliorated phenylephrine (PE)-induced cardiac hypertrophy, which presented as decreased cardiac hypertrophic markers (ANP, BNP, and β-MHC) and cell surface area. This condition was significantly reversed upon treatment with the GLP-1 receptor antagonist exendin9-39. We also discovered that Erk1/2 and AMPK signaling pathways were involved in this process. Furthermore, our data demonstrate that the AMPK inhibitor compound C inhibited the anti-hypertrophic effect of exendin-4, which is associated with the mTOR/p70S6K/4-EBP1 signaling pathway. Finally, exendin-4 enhanced the anti-hypertrophic effect of rapamycin. In summary, our study disclosed that exedin-4 inhibits cardiac hypertrophy by upregulating GLP-1 receptor expression and activating the AMPK/mTOR signaling pathway. PMID:26519882

  15. Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers

    PubMed Central

    Law, Betty Yuen Kwan; Mok, Simon Wing Fai; Chan, Wai Kit; Xu, Su Wei; Wu, An Guo; Yao, Xiao Jun; Wang, Jing Rong; Liu, Liang; Wong, Vincent Kam Wai

    2016-01-01

    Drug resistance hinder most cancer chemotherapies and leads to disease recurrence and poor survival of patients. Resistance of cancer cells towards apoptosis is the major cause of these symptomatic behaviours. Here, we showed that isoquinoline alkaloids, including liensinine, isoliensinine, dauricine, cepharanthine and hernandezine, putatively induce cytotoxicity against a repertoire of cancer cell lines (HeLa, A549, MCF-7, PC3, HepG2, Hep3B and H1299). Proven by the use of apoptosis-resistant cellular models and autophagic assays, such isoquinoline alkaloid-induced cytotoxic effect involves energy- and autophagy-related gene 7 (Atg7)-dependent autophagy that resulted from direct activation of AMP activated protein kinase (AMPK). Hernandezine possess the highest efficacy in provoking such cell death when compared with other examined compounds. We confirmed that isoquinoline alkaloid is structurally varied from the existing direct AMPK activators. In conclusion, isoquinoline alkaloid is a new class of compound that induce autophagic cell death in drug-resistant fibroblasts or cancers by exhibiting its direct activation on AMPK. PMID:26811496

  16. LKB1/AMPK and PKA Control ABCB11 Trafficking and Polarization in Hepatocytes

    PubMed Central

    Homolya, László; Fu, Dong; Sengupta, Prabuddha; Jarnik, Michal; Gillet, Jean-Pierre; Vitale-Cross, Lynn; Gutkind, J. Silvio; Lippincott-Schwartz, Jennifer; Arias, Irwin M.

    2014-01-01

    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation. PMID:24643070

  17. Desnutrin/ATGL is Regulated by AMPK and is Required for a Brown Adipose Phenotype

    PubMed Central

    Ahmadian, Maryam; Abbott, Marcia J.; Tang, Tianyi; Hudak, Carolyn S.S.; Kim, Yangha; Bruss, Matthew; Hellerstein, Marc K.; Lee, Hui-Young; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Duncan, Robin E.; Kang, Chulho; Sul, Hei Sook

    2011-01-01

    SUMMARY While fatty acids (FAs) released by white adipose tissue (WAT) provide energy for other organs, lipolysis is also critical in brown adipose tissue (BAT), generating FAs for oxidation and UCP-1 activation for thermogenesis. Here, we show that adipose-specific ablation of desnutrin/ATGL in mice converts BAT to a WAT-like tissue. These mice exhibit severely impaired thermogenesis with increased expression of WAT-enriched genes but decreased BAT genes including UCP-1 with lower PPARα binding to its promoter, revealing the requirement of desnutrin-catalyzed lipolysis for maintaining BAT phenotype. We also show that desnutrin is phosphorylated by AMPK at S406, increasing TAG hydrolase activity, and provide evidence for increased lipolysis by AMPK phosphorylation of desnutrin in adipocytes and in vivo. Despite adiposity and impaired BAT function, desnutrin-ASKO mice have improved hepatic insulin sensitivity with lower DAG levels. Overall, desnutrin is phosphorylated/activated by AMPK to increase lipolysis and brings FA oxidation and UCP-1 induction for thermogenesis. PMID:21641555

  18. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    PubMed Central

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  19. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes.

    PubMed

    Homolya, László; Fu, Dong; Sengupta, Prabuddha; Jarnik, Michal; Gillet, Jean-Pierre; Vitale-Cross, Lynn; Gutkind, J Silvio; Lippincott-Schwartz, Jennifer; Arias, Irwin M

    2014-01-01

    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation. PMID:24643070

  20. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol. PMID:25330949

  1. Modulation of the LKB1-AMPK Signalling Pathway Underpins Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension.

    PubMed

    Evans, A Mark; Lewis, Sophronia A; Ogunbayo, Oluseye A; Moral-Sanz, Javier

    2015-01-01

    Perhaps the defining characteristic of pulmonary arteries is the process of hypoxic pulmonary vasoconstriction (HPV) which, under physiological conditions, supports ventilation-perfusion matching in the lung by diverting blood flow away from oxygen deprived areas of the lung to oxygen rich regions. However, when alveolar hypoxia is more widespread, either at altitude or with disease (e.g., cystic fibrosis), HPV may lead to hypoxic pulmonary hypertension. HPV is driven by the intrinsic response to hypoxia of pulmonary arterial smooth muscle and endothelial cells, which are acutely sensitive to relatively small changes in pO2 and have evolved to monitor oxygen supply and thus address ventilation-perfusion mismatch. There is now a consensus that the inhibition by hypoxia of mitochondrial oxidative phosphorylation represents a key step towards the induction of HPV, but the precise nature of the signalling pathway(s) engaged thereafter remains open to debate. We will consider the role of the AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), an upstream kinase through which AMPK is intimately coupled to changes in oxygen supply via mitochondrial metabolism. A growing body of evidence, from our laboratory and others, suggests that modulation of the LKB1-AMPK signalling pathway underpins both hypoxic pulmonary vasoconstriction and the development of pulmonary hypertension. PMID:26303471

  2. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    PubMed

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  3. Liraglutide reduces fatty degeneration in hepatic cells via the AMPK/SREBP1 pathway

    PubMed Central

    WANG, YAN-GUI; YANG, TIAN-LUN

    2015-01-01

    Recent studies have suggested that liraglutide could have a potential function in improving non-alcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism remains unclear. The aim of the present study was to investigate the role of the AMP-activated protein kinase (AMPK)/sterol regulatory element binding protein 1 (SREBP1) pathway in mediating the effect of liraglutide in reducing fatty degeneration in an in vitro NAFLD model. To resemble the NAFLD condition in vitro, L-02 cells were treated with 0.5 mM free fatty acids (FFAs) for 24 h. Liraglutide could affect the expression of AMPKα1, phosphorylated AMPKα1 and SREBP1 in a dose-dependent manner in FFA-exposed L-02 cells, as demonstrated by western blot analysis. The intracellular lipid accumulation was significantly decreased, as shown by oil red O staining. A significant decrease in the content of triglyceride and total cholesterol was observed when the FFA-exposed L-02 cells were incubated with liraglutide. In addition, the increased expression of liver-type fatty acid-binding protein in FFA-exposed L-02 cells was suppressed by liraglutide. These effects were reversed by compound C, an AMPK inhibitor. In conclusion, this study has demonstrated that liraglutide can reduce fatty degeneration induced by FFAs in hepatocytes, and this effect may be partially mediated by the AMPK/SREBP1 pathway. PMID:26640549

  4. AMPK-dependent modulation of hepatic lipid metabolism by nesfatin-1.

    PubMed

    Yin, Yue; Li, Ziru; Gao, Ling; Li, Yin; Zhao, Jing; Zhang, Weizhen

    2015-12-01

    The aim of this study was to characterize the mechanism by which peripheral nesfatin-1 regulates hepatic lipid metabolism. Continuous peripheral infusion of nesfatin-1 reduced adiposity and plasma levels of triglyceride and cholesterol. In mice fed high fat diet, peripheral nesfatin-1 significantly decreased hepatic steatosis measured by triglyceride content and oil red staining area and diameter. These alterations were associated with a significant reduction in lipogenesis-related transcriptional factors PPARγ and SREBP1, as well as rate-limited enzyme genes such as acaca, fasn, gpam, dgat1 and dgat2. In primary hepatocytes, nesfatin-1 inhibited both basal and oleic acid stimulated triglyceride accumulation, which was accompanied by a decrement in lipogenesis-related genes and an increase in β-oxidation-related genes. In cultured hepatocytes, nesfatin-1 increased levels of AMPK phosphorylation. Inhibition of AMPK by compound C blocked the reduction of triglyceride content elicited by nesfatin-1. Our studies demonstrate that nesfatin-1 attenuates lipid accumulation in hepatocytes by an AMPK-dependent mechanism. PMID:26363221

  5. AMPK Promotes Aberrant PGC1β Expression To Support Human Colon Tumor Cell Survival

    PubMed Central

    Fisher, Kurt W.; Das, Binita; Kim, Hyun Seok; Clymer, Beth K.; Gehring, Drew; Smith, Deandra R.; Costanzo-Garvey, Diane L.; Fernandez, Mario R.; Brattain, Michael G.; Kelly, David L.; MacMillan, John

    2015-01-01

    A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2β2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1β. In contrast, PGC1β and ERRα are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKγ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1β-dependent transcriptional pathway via a specific AMPK isoform. PMID:26351140

  6. AICAR induces AMPK-independent programmed necrosis in prostate cancer cells.

    PubMed

    Guo, Feng; Liu, Shuang-Qing; Gao, Xing-Hua; Zhang, Long-Yang

    2016-05-27

    AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which induces cytotoxic effect to several cancer cells. Its potential activity in prostate cancer cells and the underlying signaling mechanisms have not been extensively studied. Here, we showed that AICAR primarily induced programmed necrosis, but not apoptosis, in prostate cancer cells (LNCaP, PC-3 and PC-82 lines). AICAR's cytotoxicity to prostate cancer cells was largely attenuated by the necrosis inhibitor necrostatin-1. Mitochondrial protein cyclophilin-D (CYPD) is required for AICAR-induced programmed necrosis. CYPD inhibitors (cyclosporin A and sanglifehrin A) as well as CYPD shRNAs dramatically attenuated AICAR-induced prostate cancer cell necrosis and cytotoxicity. Notably, AICAR-induced cell necrosis appeared independent of AMPK, yet requiring reactive oxygen species (ROS) production. ROS scavengers (N-acetylcysteine and MnTBAP), but not AMPKα shRNAs, largely inhibited prostate cancer cell necrosis and cytotoxicity by AICAR. In summary, the results of the present study demonstrate mechanistic evidences that AMPK-independent programmed necrosis contributes to AICAR's cytotoxicity in prostate cancer cells. PMID:27103440

  7. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems

    PubMed Central

    Song, Ping; Zou, Ming-Hui

    2012-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases due to increased production or decreased scavenging, which have been considered as common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase. PMID:22357101

  8. Pioglitazone, a PPARγ agonist, attenuates PDGF-induced vascular smooth muscle cell proliferation through AMPK-dependent and AMPK-independent inhibition of mTOR/p70S6K and ERK signaling.

    PubMed

    Osman, Islam; Segar, Lakshman

    2016-02-01

    Pioglitazone (PIO), a PPARγ agonist that improves glycemic control in type 2 diabetes through its insulin-sensitizing action, has been shown to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. Although PPARγ-dependent and PPARγ-independent mechanisms have been attributed to its vasoprotective effects, the signaling events associated with PIO action in VSMCs are not fully understood. To date, the likely intermediary role of AMP-activated protein kinase (AMPK) toward PIO inhibition of VSMC proliferation has not been examined. Using human aortic VSMCs, the present study demonstrates that PIO activates AMPK in a sustained manner thereby contributing in part to inhibition of key proliferative signaling events. In particular, PIO at 30μM concentration activates AMPK to induce raptor phosphorylation, which diminishes PDGF-induced mTOR activity as evidenced by decreased phosphorylation of p70S6K, 4E-BP1, and S6 and increased accumulation of p27(kip1), a cell cycle inhibitor. In addition, PIO inhibits the basal phosphorylation of ERK in VSMCs. Downregulation of endogenous AMPK by target-specific siRNA reveals an AMPK-independent effect for PIO inhibition of ERK, which contributes in part to diminutions in cyclin D1 expression and Rb phosphorylation and the suppression of VSMC proliferation. Furthermore, AMPK-dependent inhibition of mTOR/p70S6K and AMPK-independent inhibition of ERK signaling occur regardless of PPARγ expression/activation in VSMCs as evidenced by gene silencing and pharmacological inhibition of PPARγ. Strategies that utilize nanoparticle-mediated PIO delivery at the lesion site may limit restenosis after angioplasty without inducing PPARγ-mediated systemic adverse effects. PMID:26643070

  9. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    SciTech Connect

    Russe, Otto Quintus Möser, Christine V. Kynast, Katharina L. King, Tanya S. Olbrich, Katrin Grösch, Sabine Geisslinger, Gerd Niederberger, Ellen

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  10. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation. PMID:26188187