Science.gov

Sample records for amplitude proportional coulomb

  1. Amplitude Function of Asymptotic Correlations Along Charged Wall in Coulomb Fluids

    NASA Astrophysics Data System (ADS)

    Šamaj, Ladislav

    2016-05-01

    In classical semi-infinite Coulomb fluids, two-point correlation functions exhibit a slow inverse-power law decay along a uniformly charged wall. In this work, we concentrate on the corresponding amplitude function which depends on the distances of the two points from the wall. Recently Šamaj (J Stat Phys 161:227-249 2015), applying a technique of anticommuting variables to a 2D system of charged rectilinear wall with "counter-ions only", we derived a relation between the amplitude function and the density profile which holds for any temperature. In this paper, using the Möbius conformal transformation of particle coordinates in a disc, a new relation between the amplitude function and the density profile is found for that model. In all exactly solvable cases, the amplitude function factorizes itself in the two distances from the wall. Presupposing this factorization property at any temperature and using specific sum rules for semi-infinite geometries, a relation between the amplitude function of the charge-charge structure function and the charge profile is derived for many-component Coulomb fluids in any dimension.

  2. Amplitude Function of Asymptotic Correlations Along Charged Wall in Coulomb Fluids

    NASA Astrophysics Data System (ADS)

    Šamaj, Ladislav

    2016-07-01

    In classical semi-infinite Coulomb fluids, two-point correlation functions exhibit a slow inverse-power law decay along a uniformly charged wall. In this work, we concentrate on the corresponding amplitude function which depends on the distances of the two points from the wall. Recently Šamaj (J Stat Phys 161:227-249 2015), applying a technique of anticommuting variables to a 2D system of charged rectilinear wall with "counter-ions only", we derived a relation between the amplitude function and the density profile which holds for any temperature. In this paper, using the Möbius conformal transformation of particle coordinates in a disc, a new relation between the amplitude function and the density profile is found for that model. In all exactly solvable cases, the amplitude function factorizes itself in the two distances from the wall. Presupposing this factorization property at any temperature and using specific sum rules for semi-infinite geometries, a relation between the amplitude function of the charge-charge structure function and the charge profile is derived for many-component Coulomb fluids in any dimension.

  3. The amplitude of the electroolfactogram in catfish correlates with the proportion of responding ORNs.

    PubMed

    Koce, A; Valentincic, T

    2000-01-01

    We recorded simultaneously the electrophysiological responses of the olfactory organ [the electroolfactogram (EOG)] and action potential activity of single olfactory receptor neurons (ORNs) to amino acid stimuli in the brown bullhead catfish, Ameiurus nebulosus. To determine whether the amplitude of the EOG depends upon the number of responding ORNs, we tested two highly stimulatory (based on EOG recordings) amino acids [L-norvaline (L-nVal) and L-cysteine (L-Cys)], two amino acids of intermediate potency [L-arginine (L-Arg) and L-isoleucine (L-Ile)], and a poorly stimulatory amino acid [L-proline (L-Pro)]. Forty-nine percent of the spontaneously active, single ORNs tested (n=142) were either suppressed or excited by amino acid stimuli. Of the ORNs tested with specific amino acids, 61% responded to 1 mM L-nVal (n=49), 57% responded to 1 mM L-Cys (n=30), 45% responded to L-Arg (n=31) and 36% responded to L-Ile (n=22) with either suppression or excitation. Only one ORN responded with suppression to 10(-2) M L-Pro (n=10). These data suggest that the amplitude of the EOG in the brown bullhead catfish is correlated with the number of responsive ORNs (Spearman corr. coef. = 0.9; P<0.05). PMID:10653181

  4. Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f. non-linear wheel shimmy system with combined Coulomb and quadratic damping

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Zhang, L.

    2005-01-01

    Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.

  5. Coulomb Breakup Problem

    SciTech Connect

    Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.

    2008-12-05

    We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.

  6. Coulomb drag

    NASA Astrophysics Data System (ADS)

    Narozhny, B. N.; Levchenko, A.

    2016-04-01

    Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.

  7. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  8. Proportional Reasoning.

    ERIC Educational Resources Information Center

    Miller, Jane Lincoln; Fey, James T.

    2000-01-01

    Explores strategies to encourage students' understanding of proportional reasoning. Conducts a study to compare the proportional reasoning of students studying one of the new standards-based curricula with that of students from a control group. (ASK)

  9. Investigating Coulomb's Law.

    ERIC Educational Resources Information Center

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  10. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  11. 1/f Noise in a Coulomb Glass.

    NASA Astrophysics Data System (ADS)

    Yu, Clare C.; Shtengel, Kirill

    2002-03-01

    Low frequency 1/f noise is found in Coulomb glasses, among other systems with slow relaxation. It has been recently studied in detail in Si:B in the experimental work of Massey and Lee [1]. They concluded that their findings were inconsistent with the single-particle mechanisms proposed earlier. We show that the observed noise can be produced by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures [2]. Coulomb interactions are included through the Coulomb gap in the density of states. The low frequency noise spectrum goes as ω^-α with α slightly larger than 1. This result, together with the temperature dependence of α and the noise amplitude are in good agreement with the experiments of Massey and Lee. [1] J. G. Massey and Mark Lee, Phys. Rev. Lett. 79, 3986 (1997). [2] Kirill Shtengel and Clare C. Yu (2001), cond-mat/0111302.

  12. The scattering of the screened Coulomb potential

    NASA Astrophysics Data System (ADS)

    Cao, Xin-Wei; Chen, Wen-Li; Li, Yuan-Yuan; Wei, Gao-Feng

    2014-08-01

    We study the scattering states of the screened Coulomb potential in the nonrelativistic frame. The explicitly calculation formula of phase shift is derived and the normalized radial wave functions of scattering states on the ^{\\prime} k/2\\pi scale^{\\prime} are presented. By studying analytical properties of scattering amplitude the screening effects on bound states are discussed numerically. It is shown that the screening effects increase with increasing screened parameter, especially for large quantum states.

  13. Plane Wave and Coulomb Asymptotics

    NASA Astrophysics Data System (ADS)

    Mulligan, P. G.; Crothers, D. S. F.

    2004-01-01

    A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.

  14. Positron scattering from hydrogen atom with screened Coulomb potentials

    SciTech Connect

    Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.

    2014-03-05

    Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.

  15. Giant Coulomb blockade magnetoresistance

    SciTech Connect

    Zhang, Xiaoguang; Wen, Z. C.; Wei, H. X.; Han, Prof. X. F.

    2010-01-01

    We show that the Coulomb blockade voltage can be made to depend strongly on the electron spin in a thin magnetic granular layer inserted in the middle of an insulating layer of a tunnel junction. This strong spin dependence is predicted from the spin-dependent inter-granular conductance through any of the following effects within the granular layer, giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), colossal magnetoresistance (CMR), or GMR through a polymer spacer. The resulting Coulomb blockade magnetoresistance (CBMR) ratio can exceed the magnetoresistance ratio of the granular layer itself by orders of magnitude. Unlike other magenetoresistance effects, the CBMR effect does not require magnetic electrodes.

  16. Confinement of Coulomb balls

    SciTech Connect

    Arp, O.; Block, D.; Klindworth, M.; Piel, A.

    2005-12-15

    A model for the confinement of the recently discovered Coulomb balls is proposed. These spherical three-dimensional plasma crystals are trapped inside a rf discharge under gravity conditions and show an unusual structural order in complex plasmas. Measurements of the thermophoretic force acting on the trapped dust particles and simulations of the plasma properties of the discharge are presented. The proposed model of confinement considers thermophoretic, ion-drag, and electric field forces, and shows excellent agreement with the observations. The findings suggest that self-confinement does not significantly contribute to the structural properties of Coulomb balls.

  17. Coulomb problem for vector bosons

    SciTech Connect

    Kuchiev, M.Yu.; Flambaum, V.V.

    2006-05-01

    The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.

  18. Coulomb drag in topological insulator films

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Liu, Weizhe Edward; Culcer, Dimitrie

    2016-05-01

    We study Coulomb drag between the top and bottom surfaces of topological insulator films. We derive a kinetic equation for the thin-film spin density matrix containing the full spin structure of the two-layer system, and analyze the electron-electron interaction in detail in order to recover all terms responsible for Coulomb drag. Focusing on typical topological insulator systems, with a film thicknesses d up to 6 nm, we obtain numerical and approximate analytical results for the drag resistivity ρD and find that ρD is proportional to T2d-4 na-3/2 np-3/2 at low temperature T and low electron density na,p, with a denoting the active layer and p the passive layer. In addition, we compare ρD with graphene, identifying qualitative and quantitative differences, and we discuss the multi-valley case, ultra thin films and electron-hole layers.

  19. Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons

    ERIC Educational Resources Information Center

    Shen, Kan

    2009-01-01

    This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…

  20. Semiclassical Coulomb field

    SciTech Connect

    Polonyi, J.

    2008-06-15

    The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.

  1. Ion Coulomb crystals

    NASA Astrophysics Data System (ADS)

    Drewsen, Michael

    2015-03-01

    The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged the past two decades. While this document lacks figures, it includes a substantial number of references in which more detailed information can be found. It is the hope that the text will stimulate the reader to dig deeper into one or more of the discussed subjects and inspire her/him to think about new potential applications.

  2. Strip Diagrams: Illuminating Proportions

    ERIC Educational Resources Information Center

    Cohen, Jessica S.

    2013-01-01

    Proportional reasoning is both complex and layered, making it challenging to define. Lamon (1999) identified characteristics of proportional thinkers, such as being able to understand covariance of quantities; distinguish between proportional and nonproportional relationships; use a variety of strategies flexibly, most of which are nonalgorithmic,…

  3. On Coulomb collisions in bi-Maxwellian plasmas

    SciTech Connect

    Hellinger, Petr; Travnicek, Pavel M.

    2009-05-15

    Collisional momentum and energy transport in bi-Maxwellian plasmas with a drift velocity along the ambient magnetic field are calculated from both the Fokker-Planck and Boltzmann integral approximations. The transport coefficients obtained from the two approaches are identical to the leading order (proportional to the Coulomb logarithm) and are presented here in a closed form involving generalized double hypergeometric functions.

  4. Coulomb interactions and fermion condensation

    SciTech Connect

    Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )

    1990-08-15

    The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.

  5. Coincidence Proportional Counter

    DOEpatents

    Manley, J H

    1950-11-21

    A coincidence proportional counter having a plurality of collecting electrodes so disposed as to measure the range or energy spectrum of an ionizing particle-emitting source such as an alpha source, is disclosed.

  6. Adaptation through proportion.

    PubMed

    Xiong, Liyang; Shi, Wenjia; Tang, Chao

    2016-01-01

    Adaptation is a ubiquitous feature in biological sensory and signaling networks. It has been suggested that adaptive systems may follow certain simple design principles across diverse organisms, cells and pathways. One class of networks that can achieve adaptation utilizes an incoherent feedforward control, in which two parallel signaling branches exert opposite but proportional effects on the output at steady state. In this paper, we generalize this adaptation mechanism by establishing a steady-state proportionality relationship among a subset of nodes in a network. Adaptation can be achieved by using any two nodes in the sub-network to respectively regulate the output node positively and negatively. We focus on enzyme networks and first identify basic regulation motifs consisting of two and three nodes that can be used to build small networks with proportional relationships. Larger proportional networks can then be constructed modularly similar to LEGOs. Our method provides a general framework to construct and analyze a class of proportional and/or adaptation networks with arbitrary size, flexibility and versatile functional features. PMID:27526863

  7. Proportioning Cats and Rats

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2012-01-01

    Students may be able to set up a relevant proportion and solve through cross multiplication. However, this ability may not reflect the desired mathematical understanding of the covarying relationship that exists between two variables or the equivalent relationship that exists between two ratios. Students who lack this understanding are likely to…

  8. Selecting Proportional Reasoning Tasks

    ERIC Educational Resources Information Center

    de la Cruz, Jessica A.

    2013-01-01

    With careful consideration given to task selection, students can construct their own solution strategies to solve complex proportional reasoning tasks while the teacher's instructional goals are still met. Several aspects of the tasks should be considered including their numerical structure, context, difficulty level, and the strategies they are…

  9. Keep It in Proportion.

    ERIC Educational Resources Information Center

    Snider, Richard G.

    1985-01-01

    The ratio factors approach involves recognizing a given fraction, then multiplying so that units cancel. This approach, which is grounded in concrete operational thinking patterns, provides a standard for science ratio and proportion problems. Examples are included for unit conversions, mole problems, molarity, speed/density problems, and…

  10. Early hominin limb proportions.

    PubMed

    Richmond, Brian G; Aiello, Leslie C; Wood, Bernard A

    2002-10-01

    Recent analyses and new fossil discoveries suggest that the evolution of hominin limb length proportions is complex, with evolutionary reversals and a decoupling of proportions within and between limbs. This study takes into account intraspecific variation to test whether or not the limb proportions of four early hominin associated skeletons (AL 288-1, OH 62, BOU-VP-12/1, and KNM-WT 15000) can be considered to be significantly different from one another. Exact randomization methods were used to compare the differences between pairs of fossil skeletons to the differences observed between all possible pairs of individuals within large samples of Gorilla gorilla, Pan troglodytes, Pongo pygmaeus, and Homo sapiens. Although the difference in humerofemoral proportions between OH 62 and AL 288-1 does not exceed variation in the extant samples, it is rare. When humerofemoral midshaft circumferences are compared, the difference between OH 62 and AL 288-1 is fairly common in extant species. This, in combination with error associated with the limb lengths estimates, suggests that it may be premature to consider H. (or Australopithecus) habilis as having more apelike limb proportions than those in A. afarensis. The humerofemoral index of BOU-VP-12/1 differs significantly from both OH 62 and AL 288-1, but not from KNM-WT 15000. Published length estimates, if correct, suggest that the relative forearm length of BOU-VP-12/1 is unique among hominins, exceeding those of the African apes and resembling the proportions in Pongo. Evidence that A. afarensis exhibited a less apelike upper:lower limb design than A. africanus (and possibly H. habilis) suggests that, if A. afarensis is broadly ancestral to A. africanus, the latter did not simply inherit primitive morphology associated with arboreality, but is derived in this regard. The fact that the limb proportions of OH 62 (and possibly KNM-ER 3735) are no more human like than those of AL 288-1 underscores the primitive body design of H

  11. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  12. Monitor proportional counter

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    1979-01-01

    An Uhuru class Ar-CO2 gas filled proportional counter sealed with a 1.5 mil beryllium window and sensitive to X-rays in the energy bandwidth from 1.5 to 22 keV is presented. This device is coaligned with the X-ray telescope aboard the Einstein Observatory and takes data as a normal part of the Observatory operations.

  13. Studies of Coulomb Gauge QCD

    SciTech Connect

    Adam P. Szczepaniak; Eric S. Swanson

    2000-12-12

    Here we will discuss how the nonabelian Coulomb kernel exhibits confinement already at the mean field level. In the heavy quark limit residual interactions between heavy quarks and transverse gluons are spin dependent i.e., relativistic and can be calculated using the Foldy-Wouthuysen transformation. This makes the Coulomb gauge suitable for studying the nonrelativistic limit. Finally it is possible to use standard mean field techniques to define quasiparticle excitations, which, as we discuss below, have similar properties to what is usually assumed about constituent quarks in the light quark sector.

  14. Interpolating the Coulomb phase of little string theory

    DOE PAGESBeta

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi

    2015-12-03

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less

  15. Interpolating the Coulomb phase of little string theory

    SciTech Connect

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi

    2015-12-03

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.

  16. Interpolating the Coulomb phase of little string theory

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi

    2015-12-01

    We study up to 8-derivative terms in the Coulomb branch effective action of (1, 1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU( k) SYM and DSLST respectively, for k = 2 , 3 , 4 , 5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2 , 0) little string theory.

  17. Renormalization in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, John C.

    2011-04-01

    In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.

  18. Entropic Corrections to Coulomb's Law

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Sheykhi, A.

    2012-04-01

    Two well-known quantum corrections to the area law have been introduced in the literatures, namely, logarithmic and power-law corrections. Logarithmic corrections, arises from loop quantum gravity due to thermal equilibrium fluctuations and quantum fluctuations, while, power-law correction appears in dealing with the entanglement of quantum fields in and out the horizon. Inspired by Verlinde's argument on the entropic force, and assuming the quantum corrected relation for the entropy, we propose the entropic origin for the Coulomb's law in this note. Also we investigate the Uehling potential as a radiative correction to Coulomb potential in 1-loop order and show that for some value of distance the entropic corrections of the Coulomb's law is compatible with the vacuum-polarization correction in QED. So, we derive modified Coulomb's law as well as the entropy corrected Poisson's equation which governing the evolution of the scalar potential ϕ. Our study further supports the unification of gravity and electromagnetic interactions based on the holographic principle.

  19. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  20. Masked Proportional Routing

    NASA Technical Reports Server (NTRS)

    Wolpert, David

    2004-01-01

    Masked proportional routing is an improved procedure for choosing links between adjacent nodes of a network for the purpose of transporting an entity from a source node ("A") to a destination node ("B"). The entity could be, for example, a physical object to be shipped, in which case the nodes would represent waypoints and the links would represent roads or other paths between waypoints. For another example, the entity could be a message or packet of data to be transmitted from A to B, in which case the nodes could be computer-controlled switching stations and the links could be communication channels between the stations. In yet another example, an entity could represent a workpiece while links and nodes could represent, respectively, manufacturing processes and stages in the progress of the workpiece towards a finished product. More generally, the nodes could represent states of an entity and the links could represent allowed transitions of the entity. The purpose of masked proportional routing and of related prior routing procedures is to schedule transitions of entities from their initial states ("A") to their final states ("B") in such a manner as to minimize a cost or to attain some other measure of optimality or efficiency. Masked proportional routing follows a distributed (in the sense of decentralized) approach to probabilistically or deterministically choosing the links. It was developed to satisfy a need for a routing procedure that 1. Does not always choose the same link(s), even for two instances characterized by identical estimated values of associated cost functions; 2. Enables a graceful transition from one set of links to another set of links as the circumstances of operation of the network change over time; 3. Is preferably amenable to separate optimization of different portions of the network; 4. Is preferably usable in a network in which some of the routing decisions are made by one or more other procedure(s); 5. Preferably does not cause an

  1. Coulomb problem for vector particles : Energy spectrum.

    SciTech Connect

    Kuchiev, M. Yu.; Flambaum, V. V.; Physics; Univ. of South Wales

    2006-05-31

    The Coulomb problem for vector bosons W{+-} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.

  2. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  3. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  4. Load proportional safety brake

    NASA Technical Reports Server (NTRS)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  5. Masked Proportional Routing

    NASA Technical Reports Server (NTRS)

    Wolpert, David H. (Inventor)

    2003-01-01

    Distributed approach for determining a path connecting adjacent network nodes, for probabilistically or deterministically transporting an entity, with entity characteristic mu from a source node to a destination node. Each node i is directly connected to an arbitrary number J(mu) of nodes, labeled or numbered j=jl, j2, .... jJ(mu). In a deterministic version, a J(mu)-component baseline proportion vector p(i;mu) is associated with node i. A J(mu)-component applied proportion vector p*(i;mu) is determined from p(i;mu) to preclude an entity visiting a node more than once. Third and fourth J(mu)-component vectors, with components iteratively determined by Target(i;n(mu);mu),=alpha(mu).Target(i;n(mu)-1;mu)j+beta(mu).p* (i;mu)j and Actual(i;n(mu);+a(mu)j. Actual(i;n(mu)-l;mu)j+beta(mu).Sent(i;j'(mu);n(mu)-1;mu)j, are computed, where n(mu) is an entity sequence index and alpha(mu) and beta(mu) are selected numbers. In one embodiment, at each node i, the node j=j'(mu) with the largest vector component difference, Target(i;n(mu);mu)j'- Actual (i;n(mu);mu)j'. is chosen for the next link for entity transport, except in special gap circumstances, where the same link is optionally used for transporting consecutively arriving entities. The network nodes may be computer-controlled routers that switch collections of packets, frames, cells or other information units. Alternatively, the nodes may be waypoints for movement of physical items in a network or for transformation of a physical item. The nodes may be states of an entity undergoing state transitions, where allowed transitions are specified by the network and/or the destination node.

  6. Coulomb dissociation of N,2120

    NASA Astrophysics Data System (ADS)

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamaño, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkäll, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Datta Pramanik, Ushasi; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Gonzalez Diaz, D.; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hâkan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Sanchez del Rio Saez, Jose; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai; R3B Collaboration

    2016-06-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N,2120 are reported. Relativistic N,2120 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19N (n ,γ )20N and 20N (n ,γ ) 21N excitation functions and thermonuclear reaction rates have been determined. The 19 (n ,γ )20N rate is up to a factor of 5 higher at T <1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.

  7. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  8. Coulomb Energies in ^18Ne

    NASA Astrophysics Data System (ADS)

    Sherr, R.; Fortune, H. T.

    1998-10-01

    Coulomb energies of the ^18Ne mirrors of the levels of ^18O vary considerably from state to state, an effect understood as arising from their different configurations. All the low-lying positive-parity states in these nuclei can be described in terms of two nucleons coupled to an ^16O core plus a collective component (most probably four-particle two-hole (4p-2h)). We have computed Coulomb energies using one such formulation(Lawson, Serduke and Fortune, Phys. Rev. C 14), 1245 (1976).. Two-particle energies arise from coupling a neutron to single-particle states of ^17O, and a proton to the mirror states of ^17F. For the 4p-2h component, we use the ^14O-^14C mass difference, plus a ph Coulomb term(Sherr and Bertsch, Phys. Rev. C 12), 1671 (1975).. Agreement is perhaps slightly better than another such attempt(Nero, Adelberger and Dietrich, Phys. Rev. C 24), 1864 (1981). using wave functions from Benson and Flowers.

  9. Collective modes in charge-density waves and long-range Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Virosztek, Attila; Maki, Kazumi

    1993-07-01

    We study theoretically the collective modes in charge-density waves in the presence of long-range Coulomb interaction. We find that earlier works by Takada and his collaborators are inadequate since they introduced inconsistent approximations in evaluating a variety of correlation functions. The amplitude mode is unaffected by the Coulomb interaction, while the phase mode splits into the phason with linear dispersion (i.e., acoustic mode) and the optical mode with an energy gap in the presence of the Coulomb interaction. In particular, we establish the temperature dependence of the phason velocity vφ. A comparison with recent neutron-scattering data on the phason velocity in the charge-density wave of a single crystal of blue bronze K0.3MoO3 indicates that mean-field theory which includes the long-range Coulomb interaction gives an excellent description of the observed phason velocity.

  10. Extracting forward strong amplitudes from elastic differential cross sections

    SciTech Connect

    C.M. Chen; D.J. Ernst; Mikkel B. Johnson

    2001-07-01

    The feasibility of a model-independent extraction of the forward strong amplitude from elastic nuclear cross section data in the Coulomb-nuclear interference region is assessed for {pi} and K{sup +} scattering at intermediate energies. Theoretically-generated ''data'' are analyzed to provide criteria for optimally designing experiments to measure these amplitudes, whose energy dependence (particularly that of the real parts) is needed for disentangling various sources of medium modifications of the projectile-nucleon interaction. The issues considered include determining the angular region over which to make the measurements, the role of the most forward angles measured, and the effects of statistical and systematic errors. We find that there is a region near the forward direction where Coulomb-nuclear interference allows reliable extraction of the strong forward amplitude for both pions and the K{sup +} from .3 to 1 GeV/c.

  11. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  12. Visual Manipulatives for Proportional Reasoning.

    ERIC Educational Resources Information Center

    Moore, Joyce L.; Schwartz, Daniel L.

    The use of a visual representation in learning about proportional relations was studied, examining students' understandings of the invariance of a multiplicative relation on both sides of a proportion equation and the invariance of the structural relations that exist in different semantic types of proportion problems. Subjects were 49 high-ability…

  13. An entropic understanding of Coulomb force

    NASA Astrophysics Data System (ADS)

    Cho, Jin-Ho; Kim, Hyosung

    2012-02-01

    Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.

  14. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  15. Coulomb Dissociation of 27P

    NASA Astrophysics Data System (ADS)

    Beceiro Novo, S.; Sümmerer, K.; Cortina-Gil, D.; Wimmer, C.; Plag, R.; Alvarez-Pol, H.; Aumann, T.; Behr, K.; Boretzky, K.; Casarejos, E.; Chatillon, A.; Datta-Pramanik, U.; Elekes, Z.; Fulop, Z.; Galaviz, D.; Geissel, H.; Giron, S.; Greife, U.; Hammache, F.; Heil, M.; Hoffman, J.; Johansson, H.; Karagiannis, C.; Kiselev, O.; Kurz, N.; Larsson, K.; Le Bleis, T.; Litvinov, Y.; Mahata, K.; Muentz, C.; Nociforo, C.; Ott, W.; Paschalis, S.; Prokopowicz, W.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Stanoiu, M.; Stroth, J.; Typel, S.; Wagner, A.; Wamers, F.; Weick, H.

    2012-09-01

    In this work the astrophysical 26Si(p,γ)27P reaction is studied using the Coulomb dissociation technique. We performed a 27P Coulomb Dissociation experiment at GSI, Darmstadt (28 May-5 June 2007) using the ALADIN-LAND setup which allows complete-kinematic studies. A secondary 27P beam at 498 AMeV impinging a 515mg/cm2 Pb target was used. The relative energy of the outgoing system (26Si+p) is measured obtaining the resonant states of the 27P. Preliminary results show four resonant states measured at 0.36±0.07, 0.88±0.09, 1.5±0.2, 2.3±0.3 MeV and evidence of a higher state at around 3.1 MeV. The preliminary total cross section obtained for relative energies between 0 and 3 MeV has been measured and yields 55±7 mb.

  16. Calculating scattering amplitudes efficiently

    SciTech Connect

    Dixon, L.

    1996-01-01

    We review techniques for more efficient computation of perturbative scattering amplitudes in gauge theory, in particular tree and one- loop multi-parton amplitudes in QCD. We emphasize the advantages of (1) using color and helicity information to decompose amplitudes into smaller gauge-invariant pieces, and (2) exploiting the analytic properties of these pieces, namely their cuts and poles. Other useful tools include recursion relations, special gauges and supersymmetric rearrangements. 46 refs., 11 figs.

  17. Two-dimensional Coulomb scattering of a quantum particle: Wave functions and Green's functions

    NASA Astrophysics Data System (ADS)

    Pupyshev, V. V.

    2016-02-01

    We solve the problem of the propagation of a charged quantum particle in a two-dimensional plane embedded in the three-dimensional coordinate space. We consider scattering of this particle by a stable Coulomb center situated in the same plane. We study the wave function of this particle, its Green's function, and all radial components of these functions. We derive uniform majorant bounds on absolute values of these functions and find the wave function representation in terms of regular radial Coulomb functions and the scattering amplitude representation via partial phases. We obtain integral representations of the Greens's function and all its radial components.

  18. Coulombic contribution and fat center vortex model

    SciTech Connect

    Rafibakhsh, Shahnoosh; Deldar, Sedigheh

    2007-02-27

    The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.

  19. Stereoscopic Investigations of 3D Coulomb Balls

    SciTech Connect

    Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander

    2005-10-31

    In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.

  20. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  1. Coulomb blockade with neutral modes.

    PubMed

    Kamenev, Alex; Gefen, Yuval

    2015-04-17

    We study transport through a quantum dot in the fractional quantum Hall regime with filling factors ν=2/3 and ν=5/2, weakly coupled to the leads. We account for both injection of electrons to or from the leads, and quasiparticle rearrangement processes between the edge and the bulk of the quantum dot. The presence of neutral modes introduces topological constraints that modify qualitatively the features of the Coulomb blockade (CB). The periodicity of CB peak spacings doubles and the ratio of spacing between adjacent peaks approaches (in the low temperature and large dot limit) a universal value: 2∶1 for ν=2/3 and 3∶1 for ν=5/2. The corresponding CB diamonds alternate their width in the direction of the bias voltage and allow for the determination of the neutral mode velocity, and of the topological numbers associated with it. PMID:25933323

  2. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  3. Multiple Ways to Solve Proportions

    ERIC Educational Resources Information Center

    Ercole, Leslie K.; Frantz, Marny; Ashline, George

    2011-01-01

    When solving problems involving proportions, students may intuitively draw on strategies that connect to their understanding of fractions, decimals, and percents. These two statements--"Instruction in solving proportions should include methods that have a strong intuitive basis" and "Teachers should begin instruction with more intuitive…

  4. Coulomb blockade in low-mobility nanometer size Si MOSFET's

    NASA Astrophysics Data System (ADS)

    Sanquer, M.; Specht, M.; Ghenim, L.; Deleonibus, S.; Guegan, G.

    2000-03-01

    We investigate coherent transport in Si metal-oxide-semiconductor field-effect transistors with nominal gate lengths 50-100 nm and various widths at very low temperature. Independent of the geometry, localized states appear when G~=e2/h and transport is dominated by resonant tunnelling through a single quantum dot formed by an impurity potential. We find that the typical size of the relevant impurity quantum dot is comparable to the channel length and that the periodicity of the observed Coulomb blockade oscillations is roughly inversely proportional to the channel length. The spectrum of resonances and the nonlinear I-V curves allow us to measure the charging energy and the mean level energy spacing for electrons in the localized state. Furthermore, we find that in the dielectric regime the variance var(lng) of the logarithmic conductance lng is proportional to its average value consistent with one-electron scaling models.

  5. Theoretical Investigation of a Proportional-Plus-Flicker Automatic Pilot

    NASA Technical Reports Server (NTRS)

    Seaberg, Ernest C.

    1950-01-01

    The proportional-plus-flicker automatic pilot operates by a nonlinear principle whereby a fast-acting flicker servomotor response is combined with a low-speed proportional servomotor response for the purpose of obtaining supersonic stability and control. Essentially, the autopilot maintains a zero reference about which the output is proportional to the input. However, a flicker response overrides this proportional response at a fixed angle of gimbal displacement on either side of the zero gyroscope reference. Therefore, in contrast to other high speed control systems, the design requirements are simplified because the two components of the proportional-flicker control system are easy to build separately and they can be combined in a relatively simple manner. By application of the proportional-flicker principle, satisfactory stability can be obtained by the proper adjustment of the variable factors in the autopilot mechanism; namely, the proportional gain, the amplitude of flicker control deflection, the autopilot time-lag factor (the time-lag between flicker and proportional operation), and the point in the range that the autopilot switches from a flicker to a proportional system. There is a possibility that these factors can be adjusted so that a more rapid response time (the time to reach steady state) is obtained with the non-linear proportional-flicker autopilot than with a purely linear proportional autopilot. For the main part of this analysis, the proportional part of the system is approximated by a zero-phase-lag proportional autopilot with the assumption that the control surface moves instantaneously at the point where the system switches from flicker to proportional. Good correlation is shown between the results obtained by this method and results obtained by using a close approximation of an actual autopilot transfer function for proportional autopilot operation.

  6. Pore fluid pressure, apparent friction, and Coulomb failure

    USGS Publications Warehouse

    Beeler, N.M.; Simpson, R.W.; Hickman, S.H.; Lockner, D.A.

    2000-01-01

    Many recent studies of stress-triggered seismicity rely on a fault failure model with a single free parameter, the apparent coefficient of friction, presumed to be a material constant with possible values 0 ≤ μ′ ≤ 1. These studies may present a misleading view of fault strength and the role of pore fluid pressure in earthquake failure. The parameter μ′ is intended to incorporate the effects of both friction and pore pressure, but is a material constant only if changes in pore fluid pressure induced by changes in stress are proportional to the normal stress change across the potential failure plane. Although specific models of fault zones permit such a relation, neither is it known that fault zones within the Earth behave this way, nor is this behavior expected in all cases. In contrast, for an isotropic homogeneous poroelastic model the pore pressure changes are proportional to changes in mean stress, μ′ is not a material constant, and −∞ ≤ μ′ ≤ +∞. Analysis of the change in Coulomb failure stress for tectonically loaded reverse and strike-slip faults shows considerable differences between these two pore pressure models, suggesting that such models might be distinguished from one another using observations of triggered seismicity (e.g., aftershocks). We conclude that using the constant apparent friction model exclusively in studies of Coulomb failure stress is unwise and could lead to significant errors in estimated stress change and seismic hazard.

  7. Numerical approach to Coulomb gauge QCD

    SciTech Connect

    Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.

    2008-07-01

    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.

  8. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  9. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  10. Topics in Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Dennen, Tristan Lucas

    In Part 1, we combine on-shell methods with the six-dimensional helicity formalism of Cheung and O'Connell to construct tree-level and multiloop scattering amplitudes. As a nontrivial multiloop example, we confirm that the recently constructed four-loop four-point amplitude of N=4 super-Yang-Mills theory, including nonplanar contributions, is valid for dimensions less than or equal to six. We demonstrate that the tree-level amplitudes of maximal super-Yang-Mills theory in six dimensions, when stripped of their overall momentum and supermomentum delta functions, are covariant with respect to the six-dimensional dual conformal group. We demonstrate that this property is also present for loop amplitudes. In Part 2, we explore consequences of the recently discovered duality between color and kinematics, which states that kinematic numerators in a diagrammatic expansion of gauge-theory amplitudes can be arranged to satisfy Jacobi-like identities in one-to-one correspondence to the associated color factors. The related squaring relations express gravity amplitudes in terms of gauge-theory ingredients. We then present a Yang-Mills Lagrangian whose diagrams through five points manifestly satisfy the duality between color and kinematics. Finally, we compute the coefficient of the potential three-loop divergence in pure N=4 supergravity and show that it vanishes, contrary to expectations from symmetry arguments.

  11. Crystallization in two-component Coulomb systems.

    PubMed

    Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H

    2005-12-01

    The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations. PMID:16384315

  12. Coulomb Glass: a Mean Field Study

    NASA Astrophysics Data System (ADS)

    Mandra, Salvatore; Palassini, Matteo

    2012-02-01

    We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.

  13. Coulomb Distortion in the Inelastic Regime

    SciTech Connect

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  14. On the modelling of Coulomb friction

    NASA Astrophysics Data System (ADS)

    Cull, S. J.; Tucker, R. W.

    1999-03-01

    This paper analyses two different representations of Coulomb friction in the context of a dynamic simulation of the torsional vibrations of a driven drill-string. A simple model is used to compare the relative merits of a piecewise analytic approach using a discontinuous friction profile to a numerical integration using a smooth nonlinear representation of the Coulomb friction. In both cases the effects of viscous damping on the excitation of torsional relaxation oscillations are exhibited.

  15. Modelling Coulomb Collisions in Anisotropic Plasmas

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  16. Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves

    SciTech Connect

    Laha, U.; Bhoi, J.

    2013-01-15

    By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.

  17. Treatment of the two-body Coulomb problem as a short-range potential

    NASA Astrophysics Data System (ADS)

    Gasaneo, G.; Ancarani, L. U.

    2009-12-01

    The scattering wave function and the transition amplitude for the two-body Coulomb problem are written as power series of the Sommerfeld parameter. Making use of a mathematical study of the nth derivatives of Kummer function with respect to its first parameter, the series coefficients are expressed analytically in terms of multivariable hypergeometric functions. We establish the connection with the Born series based on the free particle Green’s function and show its applicability to long-range potentials. We also relate our analysis to recent works on the distorted-wave theory for the Coulomb problem. For the transition amplitude, the Born series is presented and compared to the series obtained from the exact well-known Rutherford result. Since the two series differ, care must be taken when extracting the relevant information about the scattering. Finally, implications for three-body problems are discussed.

  18. Bayesian Inference on Proportional Elections

    PubMed Central

    Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio

    2015-01-01

    Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259

  19. Bayesian inference on proportional elections.

    PubMed

    Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio

    2015-01-01

    Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259

  20. Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites.

    PubMed

    Wang, He; Valkunas, Leonas; Cao, Thu; Whittaker-Brooks, Luisa; Fleming, Graham R

    2016-08-18

    Methylammonium lead iodide (CH3NH3PbI3) hybrid perovskite in the tetragonal and orthorhombic phases have different exciton binding energies and demonstrate different excitation kinetics. Here, we explore the role that crystal structure plays in the kinetics via fluence dependent transient absorption spectroscopy. We observe stronger saturation of the free carrier concentration under high pump energy density in the orthorhombic phase relative to the tetragonal phase. We attribute this phenomenon to small dielectric constant, large exciton binding energy, and weak Coulomb screening, which results in difficult exciton dissociation under high light intensity in the orthorhombic phase. At higher excitation intensities, we observe a coherent phonon with an oscillation frequency of 23.4 cm(-1) at 77 K, whose amplitude tracks the increase of the first-order lifetime. PMID:27485190

  1. Dynamic stresses, coulomb failure, and remote triggering: corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes <1  MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  2. A method for estimating proportions

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    A proportion estimation procedure is presented which requires only on set of ground truth data for determining the error matrix. The error matrix is then used to determine an unbiased estimate. The error matrix is shown to be directly related to the probability of misclassifications, and is more diagonally dominant with the increase in the number of passes used.

  3. Proportional Reasoning with a Pyramid

    ERIC Educational Resources Information Center

    Mamolo, Ami; Sinclair, Margaret; Whiteley, Walter J.

    2011-01-01

    Proportional reasoning pops up in math class in a variety of places, such as while making scaled drawings; finding equivalent fractions; converting units of measurement; comparing speeds, prices, and rates; and comparing lengths, areas, and volume. Students need to be exposed to a variety of representations to develop a sound understanding of this…

  4. Social Justice and Proportional Reasoning

    ERIC Educational Resources Information Center

    Simic-Muller, Ksenija

    2015-01-01

    Ratio and proportional reasoning tasks abound that have connections to real-world situations. Examples in this article demonstrate how textbook tasks can easily be transformed into authentic real-world problems that shed light on issues of equity and fairness, such as population growth and crime rates. A few ideas are presented on how teachers can…

  5. Proportional Hazards Models of Graduation

    ERIC Educational Resources Information Center

    Chimka, Justin R.; Reed-Rhoads, Teri; Barker, Kash

    2008-01-01

    Survival analysis is a statistical tool used to describe the duration between events. Many processes in medical research, engineering, and economics can be described using survival analysis techniques. This research involves studying engineering college student graduation using Cox proportional hazards models. Among male students with American…

  6. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  7. Coulomb Stress Accumulation along the San Andreas Fault System

    NASA Technical Reports Server (NTRS)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  8. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2007-04-01

    The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.

  9. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.

    PubMed

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2007-04-14

    The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces. PMID:17444700

  10. Proportional counter as neutron detector

    NASA Technical Reports Server (NTRS)

    Braby, L. A.; Badhwar, G. D.

    2001-01-01

    A technique to separate out the dose, and lineal energy spectra of neutrons and charged particles is described. It is based on using two proportional counters, one with a wall, and the other with similar characteristics but wall made from a non-hydrogen containing material. Results of a calibration in a neutron field are also shown. c2001 Elsevier Science Ltd. All rights reserved.

  11. Metacarpal proportions in Australopithecus africanus.

    PubMed

    Green, David J; Gordon, Adam D

    2008-05-01

    Recent work has shown that, despite being craniodentally more derived, Australopithecus africanus had more apelike limb-size proportions than A. afarensis. Here, we test whether the A. africanus hand, as judged by metacarpal shaft and articular proportions, was similarly apelike. More specifically, did A. africanus have a short and narrow first metacarpal (MC1) relative to the other metacarpals? Proportions of both MC breadth and length were considered: the geometric mean (GM) of articular and midshaft measurements of MC1 breadth was compared to those of MC2-4, and MC1 length was compared to MC3 length individually and also to the GM of MC2 and 3 lengths. To compare the extant hominoid sample with an incomplete A. africanus fossil record (11 attributed metacarpals), a resampling procedure imposed sampling constraints on the comparative groups that produced composite intrahand ratios. Resampled ratios in the extant sample are not significantly different from actual ratios based on associated elements, demonstrating the methodological appropriateness of this technique. Australopithecus africanus metacarpals do not differ significantly from the great apes in the comparison of breadth ratios but are significantly greater than chimpanzees and orangutans in both measures of relative length. Conversely, A. africanus has a significantly smaller breadth ratio than modern humans, but does not significantly differ from this group in either measure of relative length. We conclude that the first metacarpals of A. africanus are more apelike in relative breadth while also being more humanlike in relative length, a finding consistent with previous work on A. afarensis hand proportions. This configuration would have likely promoted a high degree of manipulative dexterity, but the relatively slender, apelike first metacarpal suggests that A. africanus did not place the same mechanical demands on the thumb as more recent, stone-tool-producing hominins. PMID:18191176

  12. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  13. China Amplitude Tomography

    NASA Astrophysics Data System (ADS)

    Hearn, T. M.

    2014-12-01

    Modern data from the China Bulletin and temporary network deployments has been used to update amplitude tomography using ML and MS seismic amplitudes. This work builds on the results of Hearn et al., 2008. ML attenuation estimates are much better resolved due to the inclusion of subnet data. We find that the trade-off between geometrical spreading and attenuation estimates are well constrained; however, both of these parameters have significant trade-off with the frequency dependence of attenuation. Maps of attenuation using the ML amplitudes are similar to those of Lg attenuation found by other authors suggesting that ML attenuation estimates form a suitable proxy for Lg attenuation estimates. We are now able to associate high attenuation directly with the Longmen Shan and the Qilian Shan mountains and also, where resolved, with the Kunlun Shan, Altyn Tag, and Tian Shan mountains. Grabens around the Ordos Platform also show high attenuation. Basins, however, do not in general show high attenuation. The main exception to this is the Bohai Basin. We conclude that the ML waveforms, like the Lg waveforms, interrogate the entire crustal column and are most sensitive to tectonically active structures and rapid changes in crustal structure. Data from MS data do not include subnet readings and do not have the resolution that was obtained with the ML data. Nonetheless, features are similar with the exception that basins appear more highly attenuative.

  14. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  15. Nonlocal formulation of spin Coulomb drag

    NASA Astrophysics Data System (ADS)

    D'Amico, I.; Ullrich, C. A.

    2013-10-01

    The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum wells, where experiments have shown that the local approximation fails.

  16. Coulomb balls in Experiment and Simulation

    SciTech Connect

    Block, D.; Arp, O.; Piel, A.; Melzer, A.

    2005-10-31

    Recently, it was shown that it is possible to confine spherical dust clouds in a plasma. It was found that these dust clouds have a crystalline structure which differs notably from the well known fcc, bcc and hcp order in extended crystalline systems. The experiments show that the particles arrange in nested shells with hexagonal order on individual shells. The high transparency and the rather slow time scales of Coulomb balls allow to observe individual particles with video microscopy techniques and therefore to determine the structural properties of Coulomb balls with high accuracy. This contribution presents a comparison of experimental results and MD-Simulations.

  17. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  18. Coulomb force as an entropic force

    SciTech Connect

    Wang Tower

    2010-05-15

    Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

  19. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-01

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  20. Coulomb string tension, asymptotic string tension, and the gluon chain

    SciTech Connect

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  1. Photodetectors for Scintillator Proportionality Measurement

    SciTech Connect

    Moses, William W.; Choong, Woon-Seng; Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, J.D.

    2010-10-18

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  2. Tectonic Tremor Source Amplitude in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K. C.; Klaus, A. J.; Wech, A.

    2012-12-01

    Most studies of tectonic tremor have focused on tremor location and duration. We examine tremor source amplitude in northern Cascadia, and explore its importance in understanding the physical processes generating tremor and slow slip. In Cascadia, we observe a linear increase in tremor source amplitude during the approximately five-day initiation phase of episodic tremor and slip (ETS) events, apparently associated with a linear increase in the area where tremor is occurring. There is also mounting evidence that tremor amplitude during ETS events is strongly modulated by tidal stresses (e.g. Rubinstein et al, Science, 2008), including the most recent northern Cascadia ETS events of 2010 and 2011. This suggests a low coefficient of friction on the subduction interface. We will extend our existing amplitude catalog of the 2010 and 2011 Cascadia ETS events to include all of 2006 to 2012, incorporating multiple data sets and providing more insight into the spatial distribution of tremor, the initiation phase of ETS events, and tidal forcing of ETS and inter-ETS tremor. Tremor source amplitudes are estimated with a method similar to Maeda and Obara (JGR, 2009), using the proportional relationship between source amplitude and the root-mean square of band-limited (1.5 to 5.5 Hz) ground velocity for every 5-minute window. We use horizontal component seismograms from the CAFE (2006-2008) and Array of Arrays (2009-2011) experiments, as well as permanent PNSN stations. Tremor locations were determined using a waveform envelope cross-correlation method (Wech and Creager, GRL, 2008). We perform an inversion using these tremor locations and station ground velocities to determine the tremor source amplitude and station statics, taking into account geometric spreading and seismic attenuation.

  3. Boltzmann-Langevin theory of Coulomb drag

    NASA Astrophysics Data System (ADS)

    Chen, W.; Andreev, A. V.; Levchenko, A.

    2015-06-01

    We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.

  4. BRST invariance in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, J. C.

    2015-12-01

    In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.

  5. Coulombic Effects in Ion Mobility Spectrometry

    PubMed Central

    Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.

    2009-01-01

    Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g. IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents, and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube, and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed. PMID:19438247

  6. The Pioneer Anomaly as a Coulomb Attraction

    NASA Astrophysics Data System (ADS)

    Morris, Steven

    2016-06-01

    The anomalous acceleration of the Pioneer 10 and Pioneer 11 spacecraft can be explained as a Coulomb attraction between the positively-charged Solar System (due to cosmic rays) and the negatively-charged spacecraft (due to alpha-particle emission from the radioisotope thermoelectric generators).

  7. Thermodynamic Theory of Spherically Trapped Coulomb Clusters

    NASA Astrophysics Data System (ADS)

    Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno

    2009-11-01

    The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)

  8. Molecular Dynamics Simulations of Coulomb Explosion

    SciTech Connect

    Bringa, E M

    2002-05-17

    A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.

  9. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  10. Drift and proportional tracking chambers

    NASA Astrophysics Data System (ADS)

    Jaros, J. A.

    1980-11-01

    The many techniques exploited in constructing tracking chambers, particle detectors which measure the trajectories and momenta of charged particles, are discussed. In high energy interactions, the final states are dominated by closely collimated jets of high multiplicity, requiring good track-pair resolution in the tracking chamber. High energy particles deflect very little in limited magnetic field volumes, necessitating good spatial resolution for accurate momentum measurements. The colliding beam technique requires a device easily adapted to full solid angle coverage, and the high event rates expected in some of these machines put a premium on good time resolution. Finally, the production and subsequent decays of the tau, charmed and beautiful mesons provide multiple vertex topologies. To reconstruct these vertices reliably requires improvements in spatial resolution and track pair resolution. The proportional counter and its descendant, the drift chamber, are considered as tracking chambers. The physics of this device are discussed in order to understand its performance limitations and promises.

  11. Continuous phase and amplitude holographic elements

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor)

    1995-01-01

    A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n is less than or equal to m x m spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 micro-C/sq cm and preferably in the range of 20-200 micro-C/sq cm, and aggressive development using pure acetone for an empirically determined time (about 6 s) controlled to within 1/10 s to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.

  12. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  13. Coulomb suppression in the low-energy p-p elastic scattering via the Trojan Horse Method

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Rapisarda, G. G.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A.; Campajola, L.; Elekes, Z.; Fueloep, Zs.; Gyuerky, G.; Kiss, G. G.; Somorjai, E.; Gialanella, L.

    2010-11-24

    We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p-p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p-p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened by the agreement with the calculated OES nuclear cross sections.

  14. Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Pfeffer, P.; Höfling, S.; Kamp, M.; Worschech, L.

    2015-04-01

    We study the rectification of voltage fluctuations in a system consisting of two Coulomb-coupled quantum dots. The first quantum dot is connected to a reservoir where voltage fluctuations are supplied and the second one is attached to two separate leads via asymmetric and energy-dependent transport barriers. We observe a rectified output current through the second quantum dot depending quadratically on the noise amplitude supplied to the other Coulomb-coupled quantum dot. The current magnitude and direction can be switched by external gates, and maximum output currents are found in the nA region. The rectification delivers output powers in the pW region. Future devices derived from our sample may be applied for energy harvesting on the nanoscale beneficial for autonomous and energy-efficient electronic applications.

  15. Challenging the principle of proportionality.

    PubMed

    Andersson, Anna-Karin Margareta

    2016-04-01

    The first objective of this article is to examine one aspect of the principle of proportionality (PP) as advanced by Alan Gewirth in his 1978 bookReason and Morality Gewirth claims that being capable of exercising agency to some minimal degree is a property that justifies having at least prima facie rights not to get killed. However, according to the PP, before the being possesses the capacity for exercising agency to that minimal degree, the extent of her rights depends on to what extent she approaches possession of agential capacities. One interpretation of PP holds that variations in degree of possession of the physical constitution necessary to exercise agency are morally relevant. The other interpretation holds that only variations in degree of actual mental capacity are morally relevant. The first of these interpretations is vastly more problematic than the other. The second objective is to argue that according to the most plausible interpretation of the PP, the fetus' level of development before at least the 20th week of pregnancy does not affect the fetus' moral rights status. I then suggest that my argument is not restricted to such fetuses, although extending my argument to more developed fetuses requires caution. PMID:26839114

  16. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    SciTech Connect

    Mycek, M.A. |

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  17. Feynman rules for Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, J.C.

    2012-10-15

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.

  18. Coulomb crystallization of highly charged ions

    NASA Astrophysics Data System (ADS)

    Schmöger, L.; Versolato, O. O.; Schwarz, M.; Kohnen, M.; Windberger, A.; Piest, B.; Feuchtenbeiner, S.; Pedregosa-Gutierrez, J.; Leopold, T.; Micke, P.; Hansen, A. K.; Baumann, T. M.; Drewsen, M.; Ullrich, J.; Schmidt, P. O.; López-Urrutia, J. R. Crespo

    2015-03-01

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically 40Ar13+) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be+ ions. We also demonstrate cooling of a single Ar13+ ion by a single Be+ ion—the prerequisite for quantum logic spectroscopy with a potential 10-19 accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  19. Coulomb wave functions in momentum space

    SciTech Connect

    Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.

    2015-01-01

    An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.

  20. Coulomb wave functions in momentum space

    DOE PAGESBeta

    Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.

    2015-01-01

    An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.« less

  1. Ultrashort pulses in graphene with Coulomb impurities

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Belonenko, M. B.

    2016-06-01

    We have investigated the propagation of an electromagnetic field in graphene with impurities, including the two-dimensional case. The spectrum of electrons for the graphene subsystem is taken from a model that takes into account Coulomb impurities. Based on Maxwell's equations, we have obtained an effective equation for the vector potential of the electromagnetic field. It has been revealed that the pulse shape depends on free parameters.

  2. Dynamics of Coulombic and gravitational periodic systems

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Miller, Bruce N.

    2016-04-01

    We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.

  3. Dynamics of Coulombic and gravitational periodic systems.

    PubMed

    Kumar, Pankaj; Miller, Bruce N

    2016-04-01

    We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology. PMID:27176238

  4. Tunneling through a barrier with the phase-amplitude method

    NASA Astrophysics Data System (ADS)

    Rawitscher, George

    2016-06-01

    A previous study (Rawitscher, 2015) of the solution of Milne's non linear equation for the phase and amplitude of a one-dimensional wave function is extended to the case where the incident energy is less than the potential (Barrier region). The numerical method again consists in implementing a spectral expansion of the amplitude in terms of a number of Chebyshev polynomials. The method is applied to a Morse-type potential, for energies in a resonance region, and for one energy below the resonance region, and a strong repulsive Coulomb potential. The results are compared with highly accurate direct solutions of the Schrödinger equation, and were found to be accurate to 1 : 10-6.

  5. Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Rapisarda, G. G.; Cherubini, S.; Crucilla, V.; Gulino, M.; Cognata, M. La; Lamia, L.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A.; Campajola, L.; Elekes, Z.; Fueloep, Z.; Gyuerky, G.; Kiss, G.; Somorjai, E.; Gialanella, L.; Ordine, A.

    2008-12-15

    Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p + d{yields}p + p + n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailed formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.

  6. Compact Multigluonic Scattering Amplitudes with Heavy Scalars and Fermions

    SciTech Connect

    Ferrario, Paola; Rodrigo, German; Talavera, Pere

    2006-05-12

    Combining the Berends-Giele and on-shell recursion relations we obtain an extremely compact expression for the scattering amplitude of a complex massive scalar-antiscalar pair and an arbitrary number of positive helicity gluons. This is one of the basic building blocks for constructing other helicity configurations from recursion relations. We also show explicitly that the scattering amplitude of massive fermions to gluons, all with positive helicity, is proportional to the scalar one, confirming in this way the recently advocated SUSY-like Ward identities relating both amplitudes.

  7. In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses

    NASA Astrophysics Data System (ADS)

    R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.

    2007-10-01

    In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.

  8. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    SciTech Connect

    Li, Zhongyu; Shao, Lin; Chen, Di; Wang, Jing

    2014-04-14

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion is linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.

  9. Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

    SciTech Connect

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2015-10-15

    Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.

  10. Dimension two condensates in the Gribov-Zwanziger theory in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Guimaraes, M. S.; Mintz, B. W.; Sorella, S. P.

    2015-06-01

    We investigate the dimension two condensate ⟨ϕ¯ia bϕia b-ω¯ia bωia b⟩ within the Gribov-Zwanziger approach to Euclidean Yang-Mills theories in the Coulomb gauge, in both 3 and 4 dimensions. An explicit calculation shows that, at the first order, the condensate ⟨ϕ¯i a bϕia b-ω¯i a bωia b⟩ is plagued by a nonintegrable IR divergence in 3 D , while in 4 D it exhibits a logarithmic UV divergence, being proportional to the Gribov parameter γ2. These results indicate that in 3D the transverse spatial Coulomb gluon two-point correlation function exhibits a scaling behavior, in agreement with Gribov's expression. In 4D, however, they suggest that, next to the scaling behavior, a decoupling solution might emerge too.

  11. Bremsstrahlung radiation from slow electrons in a Coulomb field: Classical limit and quantum correction

    SciTech Connect

    Manakov, N. L. Krylovetsky, A. A.; Marmo, S. I.

    2015-11-15

    Compact analytic expressions have been derived by a direct expansion in ħ → 0 for the nonrelativistic amplitude of Coulomb bremsstrahlung radiation (BR), the differential (in frequency and angles of the scattered electron) BR cross section, and the triply differential BR cross section that takes into account the bremsstrahlung photon direction and polarization and the scattered electron direction. They contain the classical limit and a quantum correction of the order of ħ at an arbitrary BR frequency ω. An explicit expression has been found for the quantum correction of the order of ħ to the classical BR spectrum.

  12. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  13. Estimating proportions of materials using mixture models

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.; Basu, R.

    1983-01-01

    An approach to proportion estimation based on the notion of a mixture model, appropriate parametric forms for a mixture model that appears to fit observed remotely sensed data, methods for estimating the parameters in these models, methods for labelling proportion determination from the mixture model, and methods which use the mixture model estimates as auxiliary variable values in some proportion estimation schemes are addressed.

  14. Equation of state for magnetized Coulomb plasmas

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Chabrier, G.

    2013-02-01

    We have developed an analytical equation of state (EOS) for magnetized fully-ionized plasmas that cover a wide range of temperatures and densities, from low-density classical plasmas to relativistic, quantum plasma conditions. This EOS directly applies to calculations of structure and evolution of strongly magnetized white dwarfs and neutron stars. We review available analytical and numerical results for thermodynamic functions of the nonmagnetized and magnetized Coulomb gases, liquids, and solids. We propose a new analytical expression for the free energy of solid Coulomb mixtures. Based on recent numerical results, we have constructed analytical approximations for the thermodynamic functions of harmonic Coulomb crystals in quantizing magnetic fields. The analytical description ensures a consistent evaluation of all astrophysically important thermodynamic functions based on the first, second, and mixed derivatives of the free energy. Our numerical code for calculation of thermodynamic functions based on these approximations has been made publicly available. Using this code, we calculate and discuss the effects of electron screening and magnetic quantization on the position of the melting point in a range of densities and magnetic fields relevant to white dwarfs and outer envelopes of neutron stars. We consider also the thermal and mechanical structure of a magnetar envelope and argue that it can have a frozen surface which covers the liquid ocean above the solid crust. The Fortran code that realizes the analytical approximations described in this paper is available at http://www.ioffe.ru/astro/EIP/ and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A43

  15. Long-range interactions and the sign of natural amplitudes in two-electron systems

    SciTech Connect

    Giesbertz, Klaas J. H.; Leeuwen, Robert van

    2013-09-14

    In singlet two-electron systems, the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work, we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as function of a parameter in the Hamiltonian and use this feature to show that these amplitudes never become zero, except for special interactions in which infinitely many of them can become zero simultaneously when changing the interaction strength. This mechanism of avoided crossings provides an alternative argument for the non-vanishing of the natural occupation numbers in Coulomb systems.

  16. Feynman rules for Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, J. C.

    2012-10-01

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel.

  17. Coulomb Repulsion in Miniature Ion Mobility Spectrometry

    SciTech Connect

    Xu, J.; Whitten, W.B.; Ramsey, J.M.

    1999-08-08

    We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.

  18. Coulomb field in a constant electromagnetic background

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2016-06-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with a Euler-Heisenberg (EH) effective Lagrangian. The linear electric response to an imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field and corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants. These are specialized for the EH Lagrangian.

  19. Spatio-temporal correlations in Coulomb clusters

    NASA Astrophysics Data System (ADS)

    Ash, Biswarup; Chakrabarti, J.; Ghosal, Amit

    2016-05-01

    The dynamical responses of Coulomb-interacting particles in two-dimensional nanoclusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap symmetry, spatial correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Such results stem from the combined effects of confinement and long-range repulsion, making the systems inherently heterogeneous. While particles in a “solid” flow produce dynamic heterogeneities, motion in “liquid” yields an unusually long tail in the distribution of particle displacements. A phenomenological model captures much of the subtleties of our numerical simulations.

  20. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491

  1. Coulomb sum rule for {sup 4}He

    SciTech Connect

    J. Carlson; J. Jourdan; R. Schiavilla; I. Sick

    2002-10-01

    We determine the Coulomb sum for {sup 4}He using world data on {sup 4}He(e, e') and compare the results to calculations based on realistic interactions and including two-body components in the nuclear charge operator. We find good agreement between theory and experiment using free-nucleon form factors. The apparent reduction of the in-medium G{sub ep} implied by IA-interpretation of the L/T-ratios measured in {sup 4}He(e,e'p) and {sup 4}He([vec]e, e'p) is not confirmed.

  2. New approach to folding with the Coulomb wave function

    SciTech Connect

    Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  3. Experiments on Structure and Trapping of Coulomb balls

    SciTech Connect

    Block, D.; Arp, O.; Piel, A.; Melzer, A.

    2006-10-18

    This paper gives a survey of recent experiments on Coulomb balls. Starting with typical observations to introduce the Coulomb ball experiment and its diagnostic potential, their structural properties are discussed. Further, the trapping mechanism for the dust is quantified to allow for a systematic comparison of experiment and simulations. Finally, the presented results focus on the question how screening influences the structural properties and how Coulomb balls and other strongly coupled systems are related.

  4. The mystery of Coulomb friction in sediment transport

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Duran, Orencio

    Nearly all analytical models of sediment transport in Newtonian fluid (e.g., air or water) are based on Bagnold's assumption of a constant Coulomb friction coefficient (particle-shear-pressure-ratio, μ) at the interface (zb) between sediment bed and transport layer. In fact, this assumption is the main reason why these models predict the sediment load (and subsequently the sediment transport rate) to be proportional to the excess shear stress (τ -τt), a scaling which has been confirmed in many wind-tunnel and flume experiments. Attempts to explain why μ (zb) is constant have usually been based on the sliding-friction analogy or rheology arguments. However, here we analytically derive μ (zs) √{ 3} - 1 , where zs is the location at which the production rate of particle fluctuation energy is maximal. Our derivation is based on the assumption that the rate of collisional transfer of horizontal into vertical kinetic energy is typically much larger than the rate of energy dissipation. Using state-of-the-art numerical simulations of sediment transport in Newtonian fluid, we validate all assumptions and approximation involved in our derivation. Interestingly, the location zs can significantly deviate from zb depending on the simulated conditions. We acknowledge support from grants National Natural Science Foundation of China (Nos. 1151101041 and 41376095) and Natural Science Foundation of Zhejiang Province (No. LR16E090001).

  5. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.

    PubMed

    Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior. PMID:27541473

  6. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  7. Improved Shell models for screened Coulomb balls

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.

    2006-10-01

    Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).

  8. Turbine blade cooling using Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert; Colannino, Joseph; Dees, John; Goodson, David; Krichtafovitch, Igor; Prevo, Tracy

    2012-11-01

    Video photography and thermocouples reveal the effect of an electric field on the flow around a stationary, idealized turbine blade downstream of a combustor. The hot products of combustion naturally include positive ions. When the blade is an electrode and elevated to a positive potential, it tends to attract the free electrons and repel the positive ions. Due to their lower mass, the light electrons are rapidly swept toward the blade, while the positive ions are repelled. As they collide with the neutrals in the hot gas, the positive ions transfer their momentum so that a Coulomb body force is exerted on the hot gas. Cool, compressed air is injected out of the stationary blade near its leading edge to form a layer of film cooling. In contrast to the hot combustion products, the cool air is not ionized. At the interface between the hot gas and the cool air, the Coulomb repulsion force acts on the former but not the latter, analogous to gravity at a stratified interface. An effective Richardson number representing the ratio of potential to kinetic energy characterizes the topography of the interface. When the electric field is turned on, the repulsion of the hot gas from the idealized blade is evident in video recordings and thermocouple measurements.

  9. LINEAR RELATIONS BETWEEN STIMULUS AMPLITUDES AND AMPLITUDES OF RETINAL ACTION POTENTIALS FROM THE EYE OF THE WOLF SPIDER.

    PubMed

    DEVOE, R D

    1963-09-01

    Incremental photic stimuli have been used to elicit small amplitude retinal action potentials from light-adapted ocelli of the wolf spider, Lycosa baltimoriana (Keyserling) in order to see whether or not the amplitudes of these potentials are linearly related to the stimulus amplitudes. Sine wave variations of light intensity around a mean elicit sine wave variations in potential which contain inappreciable harmonics of the stimulus frequency and whose amplitudes are linearly related to the stimulus amplitudes. Likewise, the responses to the first two periodic Fourier components of incremental rectangular wave stimuli of variable duty cycle are directly proportional to the amplitudes of these components and have phases dependent only on the frequencies and phases of these components. Thirdly, a linear transfer function can be found which describes the amplitudes and phases of responses recorded at different frequencies of sine wave stimulation and this transfer function is sufficient to predict the responses to incremental step stimuli. Finally, it is shown that flash response amplitudes are linearly related to incremental flash intensities at all levels of adaptation. The relations of these linear responses to non-linear responses and to physiological mechanisms of the eye are discussed. PMID:14060442

  10. Substorm statistics: Occurrences and amplitudes

    SciTech Connect

    Borovsky, J.E.; Nemzek, R.J.

    1994-05-01

    The occurrences and amplitudes of substorms are statistically investigated with the use of three data sets: the AL index, the Los Alamos 3-satellite geosynchronous energetic-electron measurements, and the GOES-5 and -6 geosynchronous magnetic-field measurements. The investigation utilizes {approximately} 13,800 substorms in AL, {approximately} 1400 substorms in the energetic-electron flux, and {approximately} 100 substorms in the magnetic field. The rate of occurrence of substorms is determined as a function of the time of day, the time of year, the amount of magnetotail bending, the orientation of the geomagnetic dipole, the toward/away configuration of the IMF, and the parameters of the solar wind. The relative roles of dayside reconnection and viscous coupling in the production of substorms are assessed. Three amplitudes are defined for a substorms: the jump in the AL index, the peak of the >30-keV integral electron flux at geosynchronous orbit near midnight, and the angle of rotation of the geosynchronous magnetic field near midnight. The substorm amplitudes are statistically analyzed, the amplitude measurements are cross correlated with each other, and the substorm amplitudes are determined as functions of the solar-wind parameters. Periodically occurring and randomly occurring substorms are analyzed separately. The energetic-particle-flux amplitudes are consistent with unloading and the AL amplitudes are consistent with direct driving plus unloading.

  11. CHY formula and MHV amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi

    2016-05-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl supports the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula produces the Parke-Taylor formula for MHV Yang-Mills amplitudes as well as the Hodges formula for MHV gravitational amplitudes, with an arbitrary number of external gluons/gravitons. This is achieved by developing techniques, in a manifestly Möbius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other ( n - 3)! - 1 solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes. Our results reveal a mysterious feature of the CHY formalism that in Yang-Mills and gravity theory, solutions of scattering equations, involving only external momenta, somehow know about the configuration of external polarizations of the scattering amplitudes.

  12. Amplitude sorting of oscillatory burst signals by sampling

    DOEpatents

    Davis, Thomas J.

    1977-01-01

    A method and apparatus for amplitude sorting of oscillatory burst signals is described in which the burst signal is detected to produce a burst envelope signal and an intermediate or midportion of such envelope signal is sampled to provide a sample pulse output. The height of the sample pulse is proportional to the amplitude of the envelope signal and to the maximum burst signal amplitude. The sample pulses are fed to a pulse height analyzer for sorting. The present invention is used in an acoustic emission testing system to convert the amplitude of the acoustic emission burst signals into sample pulse heights which are measured by a pulse height analyzer for sorting the pulses in groups according to their height in order to identify the material anomalies in the test material which emit the acoustic signals.

  13. Off-shell CHY amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-06-01

    The Cachazo-He-Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  14. Coulomb crystallization in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2007-11-01

    Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter

  15. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  16. Spherical Calogero model with oscillator/Coulomb potential: Quantum case

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Hakobyan, Tigran; Lechtenfeld, Olaf; Nersessian, Armen

    2016-06-01

    We consider the quantum mechanics of Calogero models in an oscillator or Coulomb potential on the N -dimensional sphere. Their Hamiltonians are obtained by an appropriate Dunkl deformation of the oscillator/Coulomb system on the sphere and its restriction to (Coxeter reflection) symmetric wave functions. By the same method we also find the symmetry generators and compute their algebras.

  17. Spherical Calogero model with oscillator/Coulomb potential: Classical case

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Hakobyan, Tigran; Lechtenfeld, Olaf; Nersessian, Armen

    2016-06-01

    We construct the Hamiltonians and symmetry generators of Calogero-oscillator and Calogero-Coulomb models on the N -dimensional sphere within the matrix-model reduction approach. Our method also produces the integrable Calogero-Coulomb-Stark model on the sphere and proves the integrability of the spin extensions of all these systems.

  18. Known-to-Unknown Approach to Teach about Coulomb's Law

    ERIC Educational Resources Information Center

    Thamburaj, P. K.

    2007-01-01

    Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…

  19. Dynamical effects in the Coulomb expansion following nuclear fragmentation

    SciTech Connect

    Chung, K.C.; Donangelo, R.; Schechter, H.

    1987-09-01

    The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.

  20. Coulomb excitation of {sup 189}Os

    SciTech Connect

    Seale, W.A.; Botelho, S.; Ribas, R.V.

    1993-10-01

    The transitional nucleus {sup 189}Os has been studied by Coulomb excitation. Measurements with a Ge(HP) detector were made at 0{degrees}, 55{degrees}, 90{degrees} with beams of {sup 28}Si at 80 and 88 Me {sup 35}Cl at 80 MeV and {sup 16}O at 58 MeV. A total of gamma-ray transitions leading to 23 levels we used in the least-squares code GOSIA to determined reduced matrix elements. A theoretic understanding of this nucleus has been attempt from the point of view of current nuclear mode as they apply to systematics of the 1/2 {sup -}[510] 3/2 -[512], 1/2 [503] levels in this ma region.

  1. Coulomb blockade of spin-dependent shuttling

    NASA Astrophysics Data System (ADS)

    Park, Hee Chul; Kadigrobov, Anatoli M.; Shekhter, Robert I.; Jonson, M.

    2013-12-01

    We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow.

  2. Ion Coulomb Crystals and Their Applications

    NASA Astrophysics Data System (ADS)

    Drewsen, Michael

    The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].

  3. The ghost propagator in Coulomb gauge

    SciTech Connect

    Watson, P.; Reinhardt, H.

    2011-05-23

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  4. Theoretical description of Coulomb balls: Fluid phase

    SciTech Connect

    Wrighton, J.; Dufty, J. W.; Kaehlert, H.; Bonitz, M.

    2009-12-15

    A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean-field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained by correcting the hypernetted chain approximation with a representation for the associated bridge functions.

  5. Supercurrent Drag via the Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Duan, Ji-Min; Yip, Sungkit

    1996-03-01

    We predict a supercurrent drag effect due to the Coulomb interaction between two parallel superconducting wires/layers. In contrast to previously explored frictional drag effect between two semiconducting quantum wells, our nondissipative drag mechanism ( J.-M. Duan and S. K. Yip, Phys. Rev. Lett.70), 3647 (1993). is based on considerations of the free energy of collective charge fluctuations. Our prediction has been confirmed experimentally ( X. Huang et al.), Phys. Rev. Lett.74, 4051 (1995). This mechanism generally exists in other nondissipative systems, such as double-layer quantum Hall syatems ( J.-M. Duan, Europhys. Lett.29), 489 (1995)., or between the two edge channels of a Hall bar, and between one-dimensional Luttinger Liquids.

  6. Positive amplitudes in the amplituhedron

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Hodges, Andrew; Trnka, Jaroslav

    2015-08-01

    The all-loop integrand for scattering amplitudes in planar SYM is determined by an "amplitude form" with logarithmic singularities on the boundary of the amplituhedron. In this note we provide strong evidence for a new striking property of the superamplitude, which we conjecture to be true to all loop orders: the amplitude form is positive when evaluated inside the amplituhedron. The statement is sensibly formulated thanks to the natural "bosonization" of the superamplitude associated with the amplituhedron geometry. However this positivity is not manifest in any of the current approaches to scattering amplitudes, and in particular not in the cellulations of the amplituhedron related to on-shell diagrams and the positive grassmannian. The surprising positivity of the form suggests the existence of a "dual amplituhedron" formulation where this feature would be made obvious. We also suggest that the positivity is associated with an extended picture of amplituhedron geometry, with the amplituhedron sitting inside a co-dimension one surface separating "legal" and "illegal" local singularities of the amplitude. We illustrate this in several simple examples, obtaining new expressions for amplitudes not associated with any triangulations, but following in a more invariant manner from a global view of the positive geometry.

  7. Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit

    NASA Astrophysics Data System (ADS)

    Gebremedhin, Daniel H.; Weatherford, Charles A.

    2014-05-01

    An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/√x2+β2 , which becomes numerically intractable (because of extreme stiffness) as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β =10-8 using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as β →0.

  8. Estimating crop proportions from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H. (Principal Investigator)

    1979-01-01

    The classification/pixel-count method for estimating the proportion of wheat in each segment is theoretically biased even if all distributional assumptions are met. Alternative ways to estimate crop proportions are examined and their performance testing is considered. Topics covered include general linear functional estimates, the method of moments, and maximum likelihood estimators.

  9. Proportional Reasoning and the Visually Impaired

    ERIC Educational Resources Information Center

    Hilton, Geoff; Hilton, Annette; Dole, Shelley L.; Goos, Merrilyn; O'Brien, Mia

    2012-01-01

    Proportional reasoning is an important aspect of formal thinking that is acquired during the developmental years that approximate the middle years of schooling. Students who fail to acquire sound proportional reasoning often experience difficulties in subjects that require quantitative thinking, such as science, technology, engineering, and…

  10. 34 CFR 81.32 - Proportionality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Proportionality. 81.32 Section 81.32 Education Office of the Secretary, Department of Education GENERAL EDUCATION PROVISIONS ACT-ENFORCEMENT Hearings for Recovery of Funds § 81.32 Proportionality. (a)(1) A recipient that made an unallowable expenditure...

  11. Prospective Elementary School Teachers' Proportional Reasoning

    ERIC Educational Resources Information Center

    Valverde, Gabriela; Castro, Encarnación

    2012-01-01

    We present the findings of a study on prospective elementary teachers' proportional reasoning. After describing some of the teachers' performance in solving multiplicative structure problems that involve ratios and relations of direct proportionality between quantities, we were able to establish classifications of their answers according to…

  12. CCSSM Challenge: Graphing Ratio and Proportion

    ERIC Educational Resources Information Center

    Kastberg, Signe E.; D'Ambrosio, Beatriz S.; Lynch-Davis, Kathleen; Mintos, Alexia; Krawczyk, Kathryn

    2013-01-01

    A renewed emphasis was placed on ratio and proportional reasoning in the middle grades in the Common Core State Standards for Mathematics (CCSSM). The expectation for students includes the ability to not only compute and then compare and interpret the results of computations in context but also interpret ratios and proportions as they are…

  13. Working Memory Mechanism in Proportional Quantifier Verification

    ERIC Educational Resources Information Center

    Zajenkowski, Marcin; Szymanik, Jakub; Garraffa, Maria

    2014-01-01

    The paper explores the cognitive mechanisms involved in the verification of sentences with proportional quantifiers (e.g. "More than half of the dots are blue"). The first study shows that the verification of proportional sentences is more demanding than the verification of sentences such as: "There are seven blue and eight yellow…

  14. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  15. Proportion of recovered waterfowl bands reported

    USGS Publications Warehouse

    Geis, A.D.; Atwood, E.L.

    1961-01-01

    Data from the annual mail survey of waterfowl hunters in the United States were used to estimate the total numbers of banded waterfowl that were shot. These estimates were compared with Banding Office records to estimate the proportion of recovered bands that was reported. On the average, about two banded birds were recovered for each one reported. The proportion reported was higher for some areas and for some species than for others. The proportion reported was higher when more of the reports came through employees of conservation agencies.

  16. Shape of Pion Distribution Amplitude

    SciTech Connect

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  17. Proportion estimation using prior cluster purities

    NASA Technical Reports Server (NTRS)

    Terrell, G. R. (Principal Investigator)

    1980-01-01

    The prior distribution of CLASSY component purities is studied, and this information incorporated into maximum likelihood crop proportion estimators. The method is tested on Transition Year spring small grain segments.

  18. Using Resampling to Compare Two Proportions

    ERIC Educational Resources Information Center

    Stephenson, W. Robert; Froelich, Amy G.; Duckworth, William M.

    2010-01-01

    This article shows that when applying resampling methods to the problem of comparing two proportions, students can discover that whether you resample with or without replacement can make a big difference.

  19. OPE for all helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Basso, Benjamin; Caetano, João; Córdova, Lucía; Sever, Amit; Vieira, Pedro

    2015-08-01

    We extend the Operator Product Expansion (OPE) for scattering amplitudes in planar SYM to account for all possible helicities of the external states. This is done by constructing a simple map between helicity configurations and so-called charged pentagon transitions. These OPE building blocks are generalizations of the bosonic pentagons entering MHV amplitudes and they can be bootstrapped at finite coupling from the integrable dynamics of the color flux tube. A byproduct of our map is a simple realization of parity in the super Wilson loop picture.

  20. Characterizing intra-exciton Coulomb scattering in terahertz excitations

    SciTech Connect

    Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-11-17

    An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.

  1. Dynamic stresses, Coulomb failure, and remote triggering

    USGS Publications Warehouse

    Hill, D.P.

    2008-01-01

    Dynamic stresses associated with crustal surface waves with 15-30-sec periods and peak amplitudes 5 km). The latter is consistent with the observation that extensional or transtensional tectonic regimes are more susceptible to remote triggering by Rayleigh-wave dynamic stresses than compressional or transpressional regimes. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems.

  2. Electron attraction mediated by Coulomb repulsion.

    PubMed

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter. PMID:27443742

  3. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  4. Spatio-temporal correlations in Coulomb clusters

    NASA Astrophysics Data System (ADS)

    Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb

    Dynamical response of Coulomb-particles in nanoclusters are investigated at different temperatures characterizing their solid-like (Wigner molecule) and liquid-like behavior. The density correlations probe spatio-temporal relaxation, uncovering distinct behavior at multiple time scales in these systems. They show a stretched-Gaussian or stretched-exponential spatial decay at long times in circular and irregular traps. Interplay of confinement and long-range nature of interactions yields spatially correlated motion of the particles in string-like paths, leaving the system heterogeneous even at long times. While particles in a `solid' flow producing dynamic heterogeneities, their random motion in `liquid' defies central limit theorem. Distinguishing the two confinements, temperature dependent motional signatures serve as a criterion for the crossover between `solid' and `liquid'. The irregular Wigner molecule turns into a nearly homogeneous liquid over a much wider temperature window compared to the circular case. The temperature dependence of different relaxation time scales builds crucial insights. A phenomenological model, relating the unusual dynamics to the heterogeneous nature of the diffusivities in the system, captures much of the subtleties of our numerical simulations.

  5. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGESBeta

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  6. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  7. Deep inelastic scattering near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Back, B.; Chan, K.

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  8. Coulomb Collision Algorithms for Particle Codes

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce

    2006-04-01

    This paper surveys some of the particle code algorithms used to model Coulomb collisions in fully ionized plasmas, e.g., pair-wise operators such as the Takizuka-Abe^1 scheme and extensions^2, Langevin equation collision operators^3,4, and partially linearized gyrokinetic collisions operators for strongly magnetized plasmas.^5,6,7 Some recent experience is reported.^8 Issues such as physics completeness, accuracy, and comparative algorithm performance are highlighted. 1. T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977). 2. K. Nanbu, Phys. Rev. E 55, 4642 (1997). 3. M.E. Jones, et al., J. Comp. Phys. 123, 169 (1996). 4. W.M. Manheimer, M. Lampe, and G. Joyce, et al., J. Comp. Phys. 138, 565 (1997). 5. X.Q. Xu and M.N. Rosenbluth, Phys. Fluids B 3, 627 (1991). 6. A.M. Dimits and B.I. Cohen, Phys. Rev. E 49, 709 (1994). 7. Z. Lin, W. M. Tang, and W. W. Lee, Phys.Plasmas 2, 2975 (August 1995). 8. B.I. Cohen, et al., ``Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering,'' accepted for publication in Phys. Plasmas (2006).

  9. Electron attraction mediated by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  10. Reply to "Comment on `Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' "

    NASA Astrophysics Data System (ADS)

    Gebremedhin, Daniel H.; Weatherford, Charles A.

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ (x ) , and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  11. Toward complete pion nucleon amplitudes

    NASA Astrophysics Data System (ADS)

    Mathieu, V.; Danilkin, I. V.; Fernández-Ramírez, C.; Pennington, M. R.; Schott, D.; Szczepaniak, Adam P.; Fox, G.

    2015-10-01

    We compare the low-energy partial-wave analyses of π N scattering with high-energy data via finite-energy sum rules. We construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and reconstruct the real parts using dispersion relations.

  12. Toward complete pion nucleon amplitudes

    DOE PAGESBeta

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; Pennington, Michael R.; Schott, Diane M.; Szczepaniak, Adam P.; Fox, G.

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  13. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  14. Employing helicity amplitudes for resummation

    NASA Astrophysics Data System (ADS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.

    2016-05-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d -dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for p p →H +0 , 1, 2 jets, p p →W /Z /γ +0 , 1, 2 jets, and p p →2 , 3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  15. N-loop string amplitude

    SciTech Connect

    Mandelstam, S.

    1986-06-01

    Work on the derivation of an explicit perturbation series for string and superstring amplitudes is reviewed. The light-cone approach is emphasized, but some work on the Polyakov approach is also mentioned, and the two methods are compared. The calculation of the measure factor is outlined in the interacting-string picture. (LEW)

  16. Positivity of spin foam amplitudes

    NASA Astrophysics Data System (ADS)

    Baez, John C.; Christensen, J. Daniel

    2002-04-01

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (eiS) rather than imaginary-time e-S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model.

  17. Constant-amplitude RC oscillator

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Westbrook, R. M.

    1970-01-01

    Sinusoidal oscillator has a frequency determined by resistance-capacitance /RC/ values of two charge control devices and a constant-amplitude voltage independent of frequency and RC values. RC elements provide either voltage-control, resistance-control, or capacitance-control of the frequency.

  18. Reassessing manual proportions in Australopithecus afarensis.

    PubMed

    Rolian, Campbell; Gordon, Adam D

    2013-11-01

    Previous analyses of hand morphology in Australopithecus afarensis have concluded that this taxon had modern human-like manual proportions, with relatively long thumbs and short fingers. These conclusions are based on the A.L.333 composite fossil assemblage from Hadar, Ethiopia, and are premised on the ability to assign phalanges to a single individual, and to the correct side and digit. Neither assignment is secure, however, given the taphonomy and sample composition at A.L.333. We use a resampling approach that includes the entire assemblage of complete hand elements at Hadar, and takes into account uncertainties in identifying phalanges by individual, side and digit number. This approach provides the most conservative estimates of manual proportions in Au. afarensis. We resampled hand long bone lengths in Au. afarensis and extant hominoids, and obtained confidence limits for distributions of manual proportions in the latter. Results confirm that intrinsic manual proportions in Au. afarensis are dissimilar to Pan and Pongo. However, manual proportions in Au. afarensis often fall at the upper end of the distribution in Gorilla, and very lower end in Homo, corresponding to disproportionately short thumbs and long medial digits in Homo. This suggests that manual proportions in Au. afarensis, particularly metacarpal proportions, were not as derived towards Homo as previously described, but rather are intermediate between gorillas and humans. Functionally, these results suggest Au. afarensis could not produce precision grips with the same efficiency as modern humans, which may in part account for the absence of lithic technology in this fossil taxon. PMID:24104947

  19. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ardelt, P.-L.; Gawarecki, K.; Müller, K.; Waeber, A. M.; Bechtold, A.; Oberhofer, K.; Daniels, J. M.; Klotz, F.; Bichler, M.; Kuhn, T.; Krenner, H. J.; Machnikowski, P.; Finley, J. J.

    2016-02-01

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k .p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  20. Thermodynamic properties of the magnetized Coulomb crystal lattices

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.

    2016-08-01

    It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.

  1. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    PubMed

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems. PMID:27232031

  2. The generalized Coulomb interactions for relativistic scalar bosons

    NASA Astrophysics Data System (ADS)

    Zarrinkamar, S.; Panahi, H.; Rezaei, M.

    2016-07-01

    Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.

  3. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)—a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  4. Progress in studying scintillator proportionality: Phenomenological model

    SciTech Connect

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  5. A New Hybrid STEP/Coulomb model for Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez, A.; Gerstenberger, M.

    2014-12-01

    Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.

  6. Diffusion and Coulomb separation of ions in dense matter.

    PubMed

    Beznogov, M V; Yakovlev, D G

    2013-10-18

    We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248

  7. Renormalization in Coulomb-gauge QCD within the Lagrangian formalism

    SciTech Connect

    Niegawa, A.

    2006-08-15

    We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)

  8. Analysis and results of the 104Sn Coulomb excitation experiment

    NASA Astrophysics Data System (ADS)

    Guastalla, G.; DiJulio, D. D.; Górska, M.; Cederkäll, J.; Boutachkov, P.; Golubev, P.; Pietri, S.; Grawe, H.; Nowacki, F.; Algora, A.; Ameil, F.; Arici, T.; Atac, A.; Bentley, M. A.; Blazhev, A.; Bloor, D.; Brambilla, S.; Braun, N.; Camera, F.; Domingo Pardo, C.; Estrade, A.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Habermann, T.; Hoischen, R.; Jansson, K.; Jolie, J.; Jungclaus, A.; Kojouharov, I.; Knoebel, R.; Kumar, R.; Kurcewicz, J.; Kurz, N.; Lalović, N.; Merchan, E.; Moschner, K.; Naqvi, F.; Nara Singh, B. S.; Nyberg, J.; Nociforo, C.; Obertelli, A.; Pfützner, M.; Pietralla, N.; Podolyák, Z.; Prochazka, A.; Ralet, D.; Reiter, P.; Rudolph, D.; Schaffner, H.; Schirru, F.; Scruton, L.; Swaleh, T.; Taprogge, J.; Wadsworth, R.; Warr, N.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.

    2014-09-01

    The analysis of the Coulomb excitation experiment conducted on 104Sn required a strict selection of the data in order to reduce the large background present in the γ-ray energy spectra and identify the γ-ray peak corresponding to the Coulomb excitation events. As a result the B(E2; 0+ → 2+) value could be extracted, which established the downward trend towards 100Sn and therefore the robustness of the N=Z=50 core against quadrupole excitations.

  9. Diffusion and Coulomb Separation of Ions in Dense Matter

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.

    2013-10-01

    We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars.

  10. Coulomb's Law Modification in Nonlinear and in Noncommutative Electrodynamics

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Schmidt, Iván

    We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the θ-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction (1/r5-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order e2) is preserved in noncommutative electrodynamics.

  11. Influence of binary Coulomb collisions on nonlinear stimulated Raman backscatter in the kinetic regime

    SciTech Connect

    Finnegan, S. M.; Yin, L.; Kline, J. L.; Albright, B. J.; Bowers, K. J.

    2011-03-15

    The influence of binary Coulomb collisions on trapped particle nonlinearities related to stimulated Raman scatter (SRS) in a single laser speckle is examined using one-dimensional particle-in-cell simulations. Binary Coulomb collisions are incorporated using a numerical particle-pairing algorithm that reproduces a collision integral of the Landau form. The onset of nonlinearly enhanced levels of SRS reflectivity is shown to coincide with electron trapping in the daughter plasma wave and is sensitive to the collisional scattering rate. Relaxation of trapping-induced perturbations to the electron velocity distribution via collisional velocity space diffusion is predicted to have the largest effect on the onset of SRS when the amplitude of the daughter plasma wave is smallest, and trapping-induced perturbations to the electron velocity distribution function are also small. In the absence of higher dimensional detrapping mechanisms (e.g., electron side-loss), it is shown that the onset threshold for enhanced SRS reflectivity is determined predominantly by the parallel diffusion of trapped electrons scattering from bulk thermal electrons, and that for the conditions studied here, the contribution to detrapping from perpendicular diffusion is non-negligible. Additionally, inverse bremsstrahlung heating of the bulk electrons is shown to shift the daughter plasma wave spectrum upward along the Stoke's resonance to larger wave frequency and smaller wave number, changing the linear parametric coupling conditions to SRS backscatter as a function of time. The reduction in SRS reflectivity from binary Coulomb collisions is greatest for laser intensities near the collisionless onset threshold, ulimately leading to an increase in the onset threshold laser intensity for enhanced SRS reflectivity in the kinetic regime.

  12. Aftershock triggering by complete Coulomb stress changes

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2002-01-01

    We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.

  13. Efros-Shklovskii variable range hopping conductivity without Coulomb gap

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Skinner, Brian

    In doped semiconductors and Coulomb glasses, in the limit of weak coupling, the electron conductivity primarily proceeds by phonon-assisted tunneling or hopping between different sites through the insulating gaps that separate them. Electron conduction can occur both through nearest-neighbor hopping and through cotunneling of electrons between distant sites via a chain of intermediate virtual states. In the presence of some disorder, the latter mechanism dominates at low temperatures, where the length of the hops grows to optimize the conductivity. This transport mechanism was introduced by Mott, and is called variable range hopping. When the Coulomb interaction between localized electrons is taken into account, it can be shown that at a sufficiently low temperature, variable range hopping conductivity obeys the Efros-Shklovskii (ES) law, which has been observed in a number of amorphous semiconductors and granular metal systems at low temperatures. ES conductivity has been long understood as the result of a soft, Coulomb gap at the Fermi level. However, such a theory overlooks the presence of spatial correlations between site energies and their possible effects on electrical conductivity. In this talk, we show both analytically and numerically that in systems where spatial correlations must be taken into account, ES conductivity may persist far outside the Coulomb gap, in contrast to conventional transport theory for doped semiconductors and Coulomb glasses where ES conductivity only occurs within the Coulomb gap.

  14. Poisson's equation solution of Coulomb integrals in atoms and molecules

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles A.; Red, Eddie; Joseph, Dwayne; Hoggan, Philip

    The integral bottleneck in evaluating molecular energies arises from the two-electron contributions. These are difficult and time-consuming to evaluate, especially over exponential type orbitals, used here to ensure the correct behaviour of atomic orbitals. In this work, it is shown that the two-centre Coulomb integrals involved can be expressed as one-electron kinetic-energy-like integrals. This is accomplished using the fact that the Coulomb operator is a Green's function of the Laplacian. The ensuing integrals may be further simplified by defining Coulomb forms for the one-electron potential satisfying Poisson's equation therein. A sum of overlap integrals with the atomic orbital energy eigenvalue as a factor is then obtained to give the Coulomb energy. The remaining questions of translating orbitals involved in three and four centre integrals and the evaluation of exchange energy are also briefly discussed. The summation coefficients in Coulomb forms are evaluated using the LU decomposition. This algorithm is highly parallel. The Poisson method may be used to calculate Coulomb energy integrals efficiently. For a single processor, gains of CPU time for a given chemical accuracy exceed a factor of 40. This method lends itself to evaluation on a parallel computer.

  15. Fast and accurate Coulomb calculation with Gaussian functions.

    PubMed

    Füsti-Molnár, László; Kong, Jing

    2005-02-15

    Coulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem. It replaces the least efficient part of the previous Coulomb methods with an accurate numerical integration scheme that scales in O(N2) instead of O(N4) with the basis size. The result is a much smaller slope in the linear scaling with respect to the molecular size and we will demonstrate through a series of benchmark calculations that it speeds up the calculation of Coulomb energy by several folds over the efficient existing code, i.e., the combination of CFMM and J-engine, without loss of accuracy. Furthermore, we will show that it is complementary to the latter and together the three methods offer the best performance for Coulomb part of DFT calculations, making the DFT calculations affordable for very large systems involving thousands of basis functions. PMID:15743222

  16. True amplitude prestack depth migration

    NASA Astrophysics Data System (ADS)

    Deng, Feng

    Reliable analysis of amplitude variation with offset (or with angle) requires accurate amplitudes from prestack migration. In routine seismic data processing, amplitude balancing and automatic gain control are often used to reduce amplitude lateral variations. However, these methods are empirical and lack a solid physical basis; thus, there are uncertainties that might produce erroneous conclusions, and hence cause economic loss. During wavefield propagation, geometrical spreading, intrinsic attenuation, transmission losses and the energy conversion significantly distort the wavefield amplitude. Most current true-amplitude migrations usually compensate only for geometrical spreading. A new prestack depth migration based on the framework of reverse-time migration in the time-space domain was developed in this dissertation with the aim of compensating all of the propagation effects in one integrated algorithm. Geometrical spreading is automatically included because of the use of full two-way wave extrapolation. Viscoelastic wave equations are solved to handle the intrinsic attenuation with a priori quality factor. Transmission losses for both up- and down-going waves are compensated using a two-pass, recursive procedure based on extracting the angle-dependent reflection/transmission coefficients from prestack migration. The losses caused by the conversion of energy from one elastic model to another are accounted for through elastic wave extrapolation; the influence of the S wave velocity contrast on the P wave reflection coefficient is implicitly included by using the Zoeppritz equations to describe the reflection and transmission at an elastic interface. Only smooth background models are assumed to be known. The contrasts/ratios of the model parameters can be estimated by fitting the compensated angle-dependent reflection coefficients obtained from data for multiple sources. This is one useful by-product of the algorithm. Numerical tests on both 2D and 3D scalar

  17. The One-Dimensional Soft-Coulomb Problem and the Hard-Coulomb Limit

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles; Gebremedhin, Daniel

    2014-05-01

    A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundary. We also, for the first time, implement an adaptive step size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1 /√{x2 +β2 } , which becomes numerically intractable as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β =10-8 using 16 digit precision calculations. Our numerical results provide a new insight into the controversial one dimensional Hydrogen atom which is a limiting case of the soft Coulomb problem as β --> 0 . CAW was supported by the Defense Threat Reduction Agency, and CAW and DG were both supported by the National Nuclear Security Agency.

  18. Proportion congruency effects: instructions may be enough.

    PubMed

    Entel, Olga; Tzelgov, Joseph; Bereby-Meyer, Yoella

    2014-01-01

    Learning takes time, namely, one needs to be exposed to contingency relations between stimulus dimensions in order to learn, whereas intentional control can be recruited through task demands. Therefore showing that control can be recruited as a function of experimental instructions alone, that is, adapting the processing according to the instructions before the exposure to the task, can be taken as evidence for existence of control recruitment in the absence of learning. This was done by manipulating the information given at the outset of the experiment. In the first experiment, we manipulated list-level congruency proportion. Half of the participants were informed that most of the stimuli would be congruent, whereas the other half were informed that most of the stimuli would be incongruent. This held true for the stimuli in the second part of each experiment. In the first part, however, the proportion of the two stimulus types was equal. A proportion congruent (PC) effect was found in both parts of the experiment, but it was larger in the second part. In our second experiment, we manipulated the proportion of the stimuli within participants by applying an item-specific design. This was done by presenting some color words most often in their congruent color, and other color words in incongruent colors. Participants were informed about the exact word-color pairings in advance. Similar to Experiment 1, this held true only for the second experimental part. In contrast to our first experiment, informing participants in advance did not result in an item-specific proportion effect, which was observed only in the second part. Thus our results support the hypothesis that instructions may be enough to trigger list-level control, yet learning does contribute to the PC effect under such conditions. The item-level proportion effect is apparently caused by learning or at least it is moderated by it. PMID:25339929

  19. Boron-10 Lined Proportional Counter Wall Effects

    SciTech Connect

    Siciliano, Edward R.; Kouzes, Richard T.

    2012-05-01

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based system in the configuration of a coincidence counter. This report provides information about how variations in proportional counter radius and gas pressure in a typical coincident counter design might affect the observed signal from boron-lined tubes. A discussion comparing tubes to parallel plate counters is also included.

  20. Amplitude effects on the dynamic performance of hydrostatic gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1979-01-01

    A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds' equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 - epsilon-squared) to the 1.5 power where epsilon is the amplitude relative to the film thickness.

  1. Coulomb Interaction Effects In Semiconductor Heterostructures With Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Capps, Jeremy Patrick

    In this thesis we analyze two different situations where the interplay between the spin-orbit coupling (SOI) of the Rashba and Dresselhaus type, linear in the electron momentum, and the Coulomb interaction generates a specific macroscopic phenomenology that can be experimentally observed. In the first problem, we investigate the Friedel oscillations that can be sustained in the presence of the Coulomb repulsion in a two-dimensional lateral superlattice with SOI and analyze the dependence on several system parameters. Then, we are concerned with the properties of a single quantum well in the special regime where the coupling strengths of the Rashba and Dresselhaus interactions are equal. Starting from general total-energy considerations, we demonstrate that the SU(2) spin-rotation symmetry and the resulting persistent helical state (PHS) predicted to occur are not in fact realized; the actual spin order being that of an itinerant antiferromagnet (IAF). We obtain numerical results that describe the temperature evolution of the order parameter in the IAF state and determine the critical temperature of the transition to the paramagnetic order. Transport in this state is modeled by using the solutions of a Boltzmann equation obtained within the relaxation time approximation. Numerical estimates performed for realistic GaAs and InAs samples indicate that at low temperatures, the amplitude of the spin-Seebeck coefficient can be increased by scattering on magnetic impurities.

  2. Randomized gap and amplitude estimation

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Wiebe, Nathan

    2016-06-01

    We provide a method for estimating spectral gaps in low-dimensional systems. Unlike traditional phase estimation, our approach does not require ancillary qubits nor does it require well-characterized gates. Instead, it only requires the ability to perform approximate Haar random unitary operations, applying the unitary whose eigenspectrum is sought and performing measurements in the computational basis. We discuss application of these ideas to in-place amplitude estimation and quantum device calibration.

  3. Genus dependence of superstring amplitudes

    SciTech Connect

    Davis, Simon

    2006-11-15

    The problem of the consistency of the finiteness of the supermoduli space integral in the limit of vanishing super-fixed point distance and the genus-dependence of the integral over the super-Schottky coordinates in the fundamental region containing a neighborhood of |K{sub n}|=0 is resolved. Given a choice of the categories of isometric circles representing the integration region, the exponential form of bounds for superstring amplitudes is derived.

  4. Pulse amplitude modulated chlorophyll fluorometer

    SciTech Connect

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  5. Phase variation of hadronic amplitudes

    SciTech Connect

    Dedonder, J.-P.; Gibbs, W. R.; Nuseirat, Mutazz

    2008-04-15

    The phase variation with angle of hadronic amplitudes is studied with a view to understanding the underlying physical quantities that control it and how well it can be determined in free space. We find that unitarity forces a moderately accurate determination of the phase in standard amplitude analyses but that the nucleon-nucleon analyses done to date do not give the phase variation needed to achieve a good representation of the data in multiple scattering calculations. Models are examined that suggest its behavior near forward angles is related to the radii of the real and absorptive parts of the interaction. The dependence of this phase on model parameters is such that if these radii are modified in the nuclear medium (in combination with the change due to the shift in energy of the effective amplitude in the medium) then the larger magnitudes of the phase needed to fit the data might be attainable but only for negative values of the phase variation parameter.

  6. Inter-Coulombic decay (ICD) of endofullerene inner-vacancies in coherence with the Auger decay

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; de, Ruma; Javani, Mohammad; Madjet, Mohamed; Manson, Steven T.; Chakraborty, Himadri

    2016-05-01

    For an endohedrally confined atom in a fullerene, an innershell vacancy created either in the atom or the fullerene can decay through the continuum of an outer electron hybridized between the systems. Such decays, which can be viewed as coherent superpositions of the single-center Auger and two-center inter-Coulombic (ICD) amplitudes, are found to govern leading decay mechanisms in endofullerenes. Resonances calculated by the method of time-dependent local density approximation (TDLDA) in the photoionization of noble gas endofullerenes show details of the underlying processes. These resonances are found to be significantly stronger than both regular ICD and Auger resonances, which make them well amenable for experimental detection. The work is supported by US NSF and DOE, Basic Energy Sciences.

  7. Canine Conjectures: Using Data for Proportional Reasoning

    ERIC Educational Resources Information Center

    Westenskow, Arla; Moyer-Packenham, Patricia S.

    2011-01-01

    No person, place, or thing can capture the attention of a class of sixth graders like "man's best friend." To prompt students' interest in a series of lessons on proportional relationships, the authors brought in a unique teaching aid--a dog. A family dog was used to supply the measurements for scatter plots and variables so that students could…

  8. Golden Proportions for the Generalized Tribonacci Numbers

    ERIC Educational Resources Information Center

    Shah, Devbhadra V.; Mehta, Darshana A.

    2009-01-01

    It is known that the ratios of consecutive terms of Fibonacci and Tribonacci sequences converge to the fixed ratio. In this article, we consider the generalized form of Tribonacci numbers and derive the "golden proportion" for the whole family of this generalized sequence. (Contains 2 tables.)

  9. Proportionality, just war theory and weapons innovation.

    PubMed

    Forge, John

    2009-03-01

    Just wars are supposed to be proportional responses to aggression: the costs of war must not greatly exceed the benefits. This proportionality principle raises a corresponding 'interpretation problem': what are the costs and benefits of war, how are they to be determined, and a 'measurement problem': how are costs and benefits to be balanced? And it raises a problem about scope: how far into the future do the states of affairs to be measured stretch? It is argued here that weapons innovation always introduces costs, and that these costs cannot be determined in advance of going to war. Three examples, the atomic bomb, the AK-47 and the ancient Greek catapult, are given as examples. It is therefore argued that the proportionality principle is inapplicable prospectively. Some replies to the argument are discussed and rejected. Some more general defences of the proportionality principle are considered and also rejected. Finally, the significance of the argument for Just War Theory as a whole is discussed. PMID:18802788

  10. Kitchen Gardens: Contexts for Developing Proportional Reasoning

    ERIC Educational Resources Information Center

    Hilton, Annette; Hilton, Geoff; Dole, Shelley; Goos, Merrilyn; O'Brien, Mia

    2013-01-01

    It is great to see how the sharing of ideas sparks new ideas. In 2011 Lyon and Bragg wrote an "Australian Primary Mathematics Classroom" (APMC) article on the mathematics of kitchen gardens. In this article the authors show how the kitchen garden may be used as a starting point for proportional reasoning. The authors highlight different…

  11. Research on fluidics, valves, and proportional amplifiers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Research and development being conducted at the Systems and Controls Laboratory is reviewed. Static characteristics (supply, input, transfer, output, and noise characteristics) of laminar proportional amplifiers were investigated. Other topics discussed include velocity profiles for laminar fluidic jets, speed control systems employing a jet pipe valve, and power amplification with a vortex valve.

  12. Body proportions of Homo habilis reviewed.

    PubMed

    Haeusler, Martin; McHenry, Henry M

    2004-04-01

    The ratio of fore- to hindlimb size plays an important role in our understanding of human evolution. Although Homo habilis was relatively modern craniodentally, its body proportions are commonly believed to have been more apelike than in the earlier Australopithecus afarensis. The evidence for this, however, rests, on two fragmentary skeletons, OH 62 and KNM-ER 3735. The upper limb of the better-preserved OH 62 from Olduvai Gorge is long and slender, but its hindlimb is represented mainly by the proximal portion of a thin femur of uncertain length. The present analysis shows that upper-to-lower limb shaft proportions of both OH 62 and AL 288-1 (A. afarensis) fall in the modern human range of variation, although OH 62 also falls inside that of chimpanzees due to their overlap in small individuals. Despite being more fragmentary, the larger-bodied KNM-ER 3735 lies outside the chimpanzee range and close to the human mean. Because the differences between any of the three individuals are compatible with the range of variation seen in extant hominoid groups, it is not legitimate to infer more primitive upper-to-lower limb shaft proportions for either H. habilis or A. afarensis. Femur length of OH 62 can only be estimated by comparison. Its closest match in size and morphology is with the gracile OH 34 specimen, which therefore provides a better analogue for the reconstruction of OH 62 than the stocky AL 288-1 femur that is traditionally used. OH 34's slender proportions are hardly due to abrasion, but match those of a modern human of that body-size, suggesting that the relative length of OH 62's leg may have been human-like. Brachial proportions, however, remained primitive. Long legs may imply long distance terrestrial travel. Perhaps this adaptation evolved early in the genus Homo, with H. habilis providing an early representative of this important change. PMID:15066379

  13. Solving the three-body Coulomb breakup problem using exterior complex scaling

    SciTech Connect

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  14. Scattering amplitudes with off-shell quarks

    NASA Astrophysics Data System (ADS)

    van Hameren, A.; Kutak, K.; Salwa, T.

    2013-11-01

    We present a prescription to calculate manifestly gauge invariant tree-level scattering amplitudes for arbitrary scattering processes with off-shell initial-state quarks within the kinematics of high-energy scattering. Consider the embedding of the process, in which the off-shell u-quark is replaced by an auxiliary quark qA, and an auxiliary photon γA is added in final state. The momentum flow is as if qA carries momentum k1 and the momentum of γA is identical to 0. γA only interacts via Eq. (3), and qA further only interacts with gluons via normal quark-gluon vertices. qA-line propagators are interpreted as iℓ̸1/(2ℓ1ṡp), and are diagonal in color space. Sum the squared amplitude over helicities of the auxiliary photon. For one helicity, simultaneously assign to the external qA-quark and to γA the spinor and polarization vector |ℓ1], {<ℓ1|γμ|ℓ2]}/{√{2}[ℓ1|ℓ2]}, and for the other helicity assign |ℓ1>, {<ℓ2|γμ|ℓ1]}/{√{2}<ℓ2|ℓ1>}. Multiply the amplitude with √{-x1k12/2}. For the rest, normal Feynman rules apply.Some remarks are at order. Regarding the momentum flow, we stress, as in [20], that momentum components proportional to k1 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta flowing through qA-lines.Regarding the sum over helicities, one might argue that only one of them leads to a non-zero result for given helicity of the final-state quark, but there may, for example, be several identical such quarks in the final state with different helicities.In case of more than one quark in the final state with the same flavor as the off-shell quark, the rules as such admit graphs with γA-propagators. These must be omitted. They do not survive the limit Λ→∞ in the derivation, since the γA-propagators are suppressed by 1/Λ.The rules regarding the qA-line could be elaborated further like in [20], leading to simplified vertices for gluons attached to this line and reducing the

  15. Proportional Reasoning of Preservice Elementary Education Majors: An Epistemic Model of the Proportional Reasoning Construct.

    ERIC Educational Resources Information Center

    Fleener, M. Jayne

    Current research and learning theory suggest that a hierarchy of proportional reasoning exists that can be tested. Using G. Vergnaud's four complexity variables (structure, content, numerical characteristics, and presentation) and T. E. Kieren's model of rational number knowledge building, an epistemic model of proportional reasoning was…

  16. Constraints on string resonance amplitudes

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Liu, Yueh-Feng

    2005-07-01

    We perform a global analysis of the tree-level open-string amplitudes in the limit s≪M2S. Based on the present data from the Tevatron, HERA, and LEP 2, we set a lower limit on the string scale MS≥0.69 1.96 TeV at 95% confidence level for the Chan-Paton factors |T|=0-4. We also estimate the expected sensitivities at the CERN LHC, which can be as high as 19 TeV for |T|=4.

  17. Pion-nucleus forward scattering amplitudes from total cross section measurements

    NASA Astrophysics Data System (ADS)

    Jeppesen, R. H.; Jakobson, M. J.; Cooper, M. D.; Hagerman, D. C.; Johnson, M. B.; Redwine, R. P.; Burleson, G. R.; Johnson, K. F.; Marrs, R. E.; Meyer, H. O.; Halpern, I.; Knutson, L. D.

    1983-02-01

    Measurements have been made of the attenuation cross sections for both π+ and π- mesons on Al, 40Ca, Cu, Sn, Ho, and Pb nuclei. The measurements were made at several energies between 114 and 215 MeV. A new method of data analysis has been used to extract both the real and the imaginary parts of a Coulomb-distorted forward scattering amplitude fN(0). Insight into the nature of fN(0) is obtained by the comparison of experimental data with theoretical values calculated from a simple absorption model. This comparison demonstrates that much of the observed rotation of the forward amplitude, when plotted on an Argand diagram, can be attributed to the Coulomb phase contained in fN(0). Comparison is also made with results of similar experiments. Although the present results are in general agreement with previously published ones, some differences are noted for the heavier elements. NUCLEAR REACTIONS Measured pion forward scattering amplitudes; Al, 40Ca, Cu, Sn, Ho, and Pb; E=114-215 MeV; strong absorption model.

  18. Proportional reasoning competence among different student populations

    NASA Astrophysics Data System (ADS)

    Wong, King

    2012-10-01

    A collaborative project between Western Washington University, Rutgers University, and New Mexico State University seeks to understand student's competence level on proportional reasoning. We have been collecting and analyzing data from introductory physics and science education courses using a set of assessment tasks. We utilize the notion of constructs to categorize student thinking according to repetitive patterns. Results suggest that, when students confront ratio and proportion problems, they often experience a gap between the mechanics of the mathematical operations and the conscious understanding of what they are doing. In this poster we will share results of our findings from different courses, institutions, and student populations. Supported by NSF grants DUE-1045227, DUE-1045231, DUE-1045250..

  19. Reconfiguration of a Nadir-Pointing 2-Craft Coulomb Tether

    NASA Astrophysics Data System (ADS)

    Natarajan, A.; Schaub, H.; Parker, G. G.

    The linear dynamics and stability analysis of reconfiguring a 2-spacecraft Coulomb tether formation is investigated. In this concept the tether between two craft is replaced with electrostatic force fields. Here the relative distance between the two satellites is increased or decreased using electrostatic Coulomb forces. The two craft are connected by an electrostatic tether which is capable of both tensile and compressive forces. The resulting virtual structure can change its shape by modifying the desired reference length. As a result, the two-craft formation will essentially act as a long, slender, nearly-rigid body of variable length. Inter-spacecraft Coulomb forces cannot influence the inertial angular momentum of this formation. However, the gravity gradient effect can be exploited to stabilize the attitude of this Coulomb tether formation about an orbit radial direction. Limits of the Coulomb tether expansion and contraction rates are discussed using linearized time-varying dynamical models. These allow the reference length time histories to be designed while ensuring linear stability of the virtual structure.

  20. Coulomb versus physical string tension on the lattice

    NASA Astrophysics Data System (ADS)

    Burgio, Giuseppe; Quandt, Markus; Reinhardt, Hugo; Vogt, Hannes

    2015-08-01

    From continuum studies it is known that the Coulomb string tension σC gives an upper bound for the physical (Wilson) string tension σW [D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003)]. How does such a relationship translate to the lattice, however? In this paper we give evidence that on the lattice, while the two string tensions are related at zero temperature, they decouple at finite temperature. More precisely, we show that on the lattice the Coulomb gauge confinement scenario is always tied to the spatial string tension, which is known to survive the deconfinement phase transition and to cause screening effects in the quark-gluon plasma. Our analysis is based on the identification and elimination of center vortices, which allows us to control the physical string tension and study its effect on the Coulomb gauge observables. We also show how alternative definitions of the Coulomb potential may sense the deconfinement transition; however, a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.

  1. Coulomb excitation studies of shape coexistence in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas; Korten, Wolfram

    2016-02-01

    Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei and allows measuring electromagnetic moments that can be directly related to the nuclear shape. The availability of radioactive ion beams (RIBs) at energies near the Coulomb barrier has made it possible to study shape coexistence in a variety of short-lived exotic nuclei. This review presents a short overview of the methods related to multi-step Coulomb excitation experiments, followed by a discussion of several examples. The focus is on two mass regions where recent Coulomb excitation experiments have contributed to the quantitative understanding of shape coexistence: nuclei with mass A≈ 70 near the N = Z line and nuclei with A ≈ 100 near neutron number N = 60. Experimental results are summarized and their significance for understanding shape coexistence is discussed. Experimental observables such as quadrupole moments and electromagnetic transition strengths represent furthermore important benchmarks for advancing theoretical nuclear structure models. With several new RIB facilities planned and under construction, Coulomb excitation will remain to be an important tool to extend the studies of nuclear shapes toward more exotic systems, and to obtain a more comprehensive and quantitative understanding of shape coexistence.

  2. Marine ice sheet profiles and stability under Coulomb basal conditions

    NASA Astrophysics Data System (ADS)

    Tsai, Victor; Stewart, Andrew; Thompson, Andrew

    2015-04-01

    The behavior of marine-terminating ice sheets, like the West Antarctic Ice Sheet, is of interest due to the possibility of rapid grounding line retreat and consequent catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where the most popular approach is to relate the ice sheet velocity to a power-law function of basal stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb friction behavior. Here we address how Coulomb conditions modify ice sheet profiles and stability criteria. The basal rheology necessarily transitions to Coulomb friction near the grounding line due to low effective stresses, leading to changes in ice sheet properties within a narrow boundary layer. Ice sheet profiles 'taper off' towards a flatter upper surface, compared to the power-law case, and basal stresses vanish at the grounding line, consistent with observations. In the Coulomb case, the grounding line ice flux also depends more strongly on flotation ice thickness, which implies that ice sheets are more sensitive to climate perturbations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water than with a power-law rheology. This implies that smaller perturbations are required to push the grounding line into regions of negative bed slope, where it would become unstable. These results have important implications for ice sheet stability in a warming climate.

  3. Nonstationary multistate Coulomb and multistate exponential models for nonadiabatic transitions

    SciTech Connect

    Ostrovsky, V. N.

    2003-07-01

    The nonstationary Schroedinger equation is considered in a finite basis of states. The model Hamiltonian matrix corresponds to a single diabatic potential curve with a Coulombic {approx}1/t time dependence. An arbitrary number of other diabatic potential curves are flat, i.e., time independent and have arbitrary energies. Related states are coupled by constant interactions with the Coulomb state. The resulting nonstationary Schroedinger equation is solved by the method of contour integral. Probabilities of transitions to any other state are obtained as t{yields}{infinity} in a simple analytical form for the case when the Coulomb state is populated initially (at instant of time t{yields}+0). The formulas apply both to the cases when a horizontal diabatic potential curve is crossed by the Coulomb one and to a noncrossing situation. In the limit of weak coupling, the transition probabilities are interpreted in terms of a sequence of pairwise Landau-Zener-type transitions. Mapping of the Coulomb model onto an exactly solvable exponential multistate model is established. For the special two-state case, the well-known Nikitin model is recovered.

  4. The Proportion of Stars with Planets

    NASA Astrophysics Data System (ADS)

    Woolfson, M. M.

    2016-04-01

    Estimates of the proportion of Sun-like stars with accompanying planets vary widely; the best present estimate is that it is about 0.34. The capture theory of planet formation involves an interaction between a condensed star and either a diffuse protostar or a high-density region in a dense embedded cluster. The protostar, or dense region, is tidally stretched into a filament that is gravitationally unstable and breaks up into a string of protoplanetary blobs, which subsequently collapse to form planets, some of which are captured by the star. A computational model, in which the passage of collapsing protostars, with initial radii 1000, 1500 and 2000 au, through a dense embedded cluster are followed, is used to estimate the proportion of protostars that would be disrupted to give planets, in environments with star number-densities in the range 5000-25,000 pc-3. It is concluded from the results that the capture theory might explain the presently-estimated proportion of stars with exoplanet companions, although other possible ways of producing exoplanets are not excluded.

  5. NASA CONNECT: Proportionality: Modeling the Future

    NASA Technical Reports Server (NTRS)

    2000-01-01

    'Proportionality: Modeling the Future' is the sixth of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov 'Proportionality: Modeling the Future', students will examine how patterns, measurement, ratios, and proportions are used in the research, development, and production of airplanes.

  6. The use of polycarbonate in proportional counters

    SciTech Connect

    Trow, M.; Smith, A. )

    1992-01-01

    Proportional counters are relatively sensitive to contamination through outgassing and the range of electrical insulators suitable for use in their manufacture is quite limited. Although small amounts of plastics such as polychlorotrifluoroethylene have been used as feedthroughs, ceramics are most commonly used when sealed counters with long lives are required. Ceramics have poor and widely scattered mechanical properties and the use of a more robust material is often highly desirable. Of particular interest is the use of polymers and this work examines polycarbonate in particular. To investigate its suitability in terms of outgassing a simple cylindrical, single anode proportional counter containing a large sample of polycarbonate was baked at {similar to}100 {degree}C and filled with a CO{sub 2}/Ar/Xe mixture (5:47.5:47.5 by pressure, respectively). Subsequent measurements of the counter indicated an increase in gain, which, after a second similar filling, was identified to be associated with a preferential loss of CO{sub 2} to the polycarbonate. The consequences of this result and the circumstances under which polycarbonate could be used on a large scale in the construction of proportional counters are discussed.

  7. Evaluation of facial beauty using anthropometric proportions.

    PubMed

    Milutinovic, Jovana; Zelic, Ksenija; Nedeljkovic, Nenad

    2014-01-01

    The improvement of a patient's facial appearance is one of the main goals of contemporary orthodontic treatment. The aim of this investigation was to evaluate the difference in facial proportions between attractive and anonymous females in order to establish objective facial features which are widely considered as beautiful. The study included two groups: first group consisted of 83 Caucasian female subjects between 22 and 28 years of age who were selected from the population of students at the University of Belgrade, and the second group included 24 attractive celebrity Caucasian females. The en face facial photographs were taken in natural head position (NHP). Numerous parameters were recorded on these photographs, in order to establish facial symmetry and correlation with the ideal set of proportions. This study showed significant difference between anonymous and attractive females. Attractive females showed smaller face in general and uniformity of the facial thirds and fifths, and most of the facial parameters meet the criteria of the ideal proportions. PMID:24701166

  8. Evaluation of Facial Beauty Using Anthropometric Proportions

    PubMed Central

    Milutinovic, Jovana

    2014-01-01

    The improvement of a patient's facial appearance is one of the main goals of contemporary orthodontic treatment. The aim of this investigation was to evaluate the difference in facial proportions between attractive and anonymous females in order to establish objective facial features which are widely considered as beautiful. The study included two groups: first group consisted of 83 Caucasian female subjects between 22 and 28 years of age who were selected from the population of students at the University of Belgrade, and the second group included 24 attractive celebrity Caucasian females. The en face facial photographs were taken in natural head position (NHP). Numerous parameters were recorded on these photographs, in order to establish facial symmetry and correlation with the ideal set of proportions. This study showed significant difference between anonymous and attractive females. Attractive females showed smaller face in general and uniformity of the facial thirds and fifths, and most of the facial parameters meet the criteria of the ideal proportions. PMID:24701166

  9. Coulomb effect and threshold effect in electronic stopping power for slow protons

    SciTech Connect

    Semrad, D.

    1986-03-01

    We show how the electronic stopping power for slow protons is influenced by the deceleration and deflection of the projectile in the field of the target nucleus (Coulomb effect) and by the fact that in insulators a finite energy is also required for excitation of the outermost electrons (threshold effect). Estimates are derived from the Fermi-Teller description of the stopping process, from a modified local-density approximation, and from measured inner-shell ionization cross sections. It is found that the introduction of an energy threshold reduces at low energies the stopping cross section by a large factor and hence leads to an appreciable deviation from v/sub 1/ proportionality.

  10. Melting and shock wave creation in uranium oxide due to Coulomb explosion after a pulsed ionization

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Chen, Di; Shao, Lin

    2015-09-01

    By means of molecular dynamics simulations, we study the effects of pulsed ionization in uranium oxide (UO2), which occurs when UO2 is bombarded with swift ions or fission fragments. A general formula is developed to predict melting radius under various conditions due to electron stripping and Coulomb explosion (CE). A critical density model is suggested in which the melting volume is proportional to ionization period, if the period is above a critical value. The maximum melting radius depends on the time period of structural relaxation above the melting temperature, which increases with increasing initial substrate temperatures due to a lower heat dissipation rate. Furthermore, shock waves are observed to emit from CE core but the kinetic energy wave peak exists only in U sublattices. The absence of kinetic energy waves in O sublattices is explained by their relatively higher thermal vibration which cancels the work done from the compression waves.

  11. Weak interaction rate Coulomb corrections in big bang nucleosynthesis

    SciTech Connect

    Smith, Christel J.; Fuller, George M.

    2010-03-15

    We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest {approx}0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.

  12. Imaging quantum Hall Coulomb islands inside a quantum ring

    NASA Astrophysics Data System (ADS)

    Martins, Frederico; Hackens, Benoit; Faniel, Sebastien; Bayot, Vincent; Pala, Marco; Sellier, Hermann; Huant, Serge; Desplanque, Ludovic; Wallart, Xavier

    2011-03-01

    In the quantum Hall regime near integer filling factors, electrons are transmitted through edge states confined at the borders of the device. In mesoscopic samples, however, edge states may be sufficiently close to allow electrons to tunnel, or to be transmitted through localized states (``Coulomb islands''). Here, we use the biased tip of a low temperature scanning gate microscope to alter tunneling through quantum Hall Coulomb islands localized inside a quantum ring patterned in an InGaAs/InAlAs heterostructure. Simultaneously, we map the quantum ring resistance and observe different sets of concentric resistance fringes, due to charging/discharging of each Coulomb island. Tuning the magnetic field and the tip voltage, we reveal the rich and complex behaviour of these fringes.

  13. Long-range Coulomb interaction in nodal-ring semimetals

    NASA Astrophysics Data System (ADS)

    Huh, Yejin; Moon, Eun-Gook; Kim, Yong Baek

    2016-01-01

    Recently there have been several proposals of materials predicted to be nodal-ring semimetals, where zero energy excitations are characterized by a nodal ring in the momentum space. This class of materials falls between the Dirac-like semimetals and the more conventional Fermi-surface systems. As a step towards understanding this unconventional system, we explore the effects of the long-range Coulomb interaction. Due to the vanishing density of states at the Fermi level, Coulomb interaction is only partially screened and remains long-ranged. Through renormalization group and large-Nf computations, we have identified a nontrivial interacting fixed point. The screened Coulomb interaction at the interacting fixed point is an irrelevant perturbation, allowing controlled perturbative evaluations of physical properties of quasiparticles. We discuss unique experimental consequences of such quasiparticles: acoustic wave propagation, anisotropic dc conductivity, and renormalized phonon dispersion as well as energy dependence of quasiparticle lifetime.

  14. Hydrodynamic Coulomb drag of strongly correlated electron liquids

    NASA Astrophysics Data System (ADS)

    Apostolov, S. S.; Levchenko, A.; Andreev, A. V.

    2014-03-01

    We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.

  15. Strong Coulomb effects in hole-doped Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Schnack, J.

    2005-06-01

    Substances such as the “telephone number compound” Sr14Cu24O41 are intrinsically hole-doped. The involved interplay of spin and charge dynamics is a challenge for theory. In this article we propose to describe hole-doped Heisenberg spin rings by means of complete numerical diagonalization of a Heisenberg Hamiltonian that depends parametrically on hole positions and includes the screened Coulomb interaction among the holes. It is demonstrated that key observables like magnetic susceptibility, specific heat, and inelastic neutron scattering cross section depend sensitively on the dielectric constant of the screened Coulomb potential.

  16. Observation of ionic Coulomb blockade in nanopores.

    PubMed

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels. PMID:27019385

  17. On rate-state and Coulomb failure models

    USGS Publications Warehouse

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  18. Microwave ac Conductivity Spectrum of a Coulomb Glass

    SciTech Connect

    Lee, Mark; Stutzmann, M. L.

    2001-07-30

    We report the first observation of the transition between interacting and noninteracting behavior in the ac conductivity spectrum {sigma}({omega}) of a doped semiconductor in its Coulomb glass state near T=0 K . The transition manifests itself as a crossover from approximately linear frequency dependence below {approx}10 GHz , to quadratic dependence above {approx}15 GHz . The sharpness of the transition and the magnitude of the crossover frequency strongly suggest that the transition is driven by photon-induced excitations across the Coulomb gap, in contrast to existing theoretical descriptions.

  19. Higher-order dynamical effects in Coulomb dissociation

    SciTech Connect

    Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.

    1995-08-01

    Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.

  20. Geometrically-frustrated pseudogap phase of Coulomb liquids

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Terletska, H.; Pankov, S.; Manousakis, E.; Dobrosavljević, V.

    2012-06-01

    We study a class of models with long-range repulsive interactions of the generalized Coulomb form V(r)∼1/rα. We show that decreasing the interaction exponent in the regime αCoulomb liquid then survives in a broad pseudogap phase found at T>Tc, which is characterized by an unusual temperature dependence of all quantities. In contrast, the leading critical behavior very close to the charge-ordering temperature remains identical as in models with short-range interactions.

  1. Convergence of Feynman integrals in Coulomb gauge QCD

    SciTech Connect

    Andraši, A.; Taylor, J.C.

    2014-12-15

    At 2-loop order, Feynman integrals in the Coulomb gauge are divergent over the internal energy variables. Nevertheless, it is known how to calculate the effective action, provided that the external gluon fields are all transverse. We show that, for the two-gluon Greens function as an example, the method can be extended to include longitudinal external fields. The longitudinal Greens functions appear in the BRST identities. As an intermediate step, we use a flow gauge, which interpolates between the Feynman and Coulomb gauges.

  2. Coulomb explosion in aromatic molecules and their deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Tzallas, P.; Kosmidis, C.; Graham, P.; Ledingham, K. W. D.; McCanny, T.; Hankin, S. M.; Singhal, R. P.; Taday, P. F.; Langley, A. J.

    2000-12-01

    Coulomb explosion within some aromatic molecules (furan, pyrrole, pyridine and pyrazine) and their deuterated derivatives induced by strong fs laser fields (˜ 4×10 16 W/cm2) is studied at λ=790 nm by means of time-of-flight (TOF) mass spectrometry. It is found that in hydrogenated molecules the Coulomb explosion process begins at internuclear distances about twice larger than the equilibrium distance ( Re), while the expansion of the molecular skeleton in the deuterated derivatives is smaller. Based on the estimated kinetic energy values of the fragment ions, the charge distribution in the transient molecular species is also discussed.

  3. Coulomb-damped resonant generators using piezoelectric transduction

    NASA Astrophysics Data System (ADS)

    Miller, L. M.; Mitcheson, P. D.; Halvorsen, E.; Wright, P. K.

    2012-06-01

    Switching interface circuits employed with piezoelectric energy harvesters can increase the electrical damping considerably over that achievable with passive rectifiers. We show that a piezoelectric harvester coupled to certain types of switching circuits becomes a Coulomb-damped resonant generator. This allows analysis of such harvester systems within a well-known framework and, subject to practical constraints, allows the optimal electrical damping to be achieved. In the piezoelectric pre-biasing technique, the Coulomb damping is set by a pre-bias voltage whose optimal value is derived as a function of piezoelectric harvester parameters.

  4. Constructing Amplitudes from Their Soft Limits

    SciTech Connect

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  5. Tissue equivalent proportional counter neutron monitor

    SciTech Connect

    Smith, R.C.; Strode, J.N.

    1980-06-01

    The Tissue Equivalent Proportional Counter (TEPC) is a sensitive area monitoring instrument that can be used either in place at fixed locations or as a portable neutron exposure measuring device. The system monitors low levels of neutron radiation exposure and has the capability of accurately measuring neutron exposure rates as low as 0.1 mrem/hr. The computerized analysis system calculates the quality factor which is important for situations where the neutron to gamma ratio may vary significantly and irregularly such as in fuel fabrication or handling facilities.

  6. Cosmic muon detector using proportional chambers

    NASA Astrophysics Data System (ADS)

    Varga, Dezső; Gál, Zoltán; Hamar, Gergő; Sára Molnár, Janka; Oláh, Éva; Pázmándi, Péter

    2015-11-01

    A set of classical multi-wire proportional chambers was designed and constructed with the main purpose of efficient cosmic muon detection. These detectors are relatively simple to construct, and at the same time are low cost, making them ideal for educational purposes. The detector layers have efficiencies above 99% for minimum ionizing cosmic muons, and their position resolution is about 1 cm, that is, particle trajectories are clearly observable. Visualization of straight tracks is possible using an LED array, with the discriminated and latched signal driving the display. Due to the exceptional operating stability of the chambers, the design can also be used for cosmic muon telescopes.

  7. Sensing circuits for multiwire proportional chambers

    NASA Technical Reports Server (NTRS)

    Peterson, H. T.; Worley, E. R.

    1977-01-01

    Integrated sensing circuits were designed, fabricated, and packaged for use in determining the direction and fluence of ionizing radiation passing through a multiwire proportional chamber. CMOS on sapphire was selected because of its high speed and low power capabilities. The design of the proposed circuits is described and the results of computer simulations are presented. The fabrication processes for the CMOS on sapphire sensing circuits and hybrid substrates are outlined. Several design options are described and the cost implications of each discussed. To be most effective, each chip should handle not more than 32 inputs, and should be mounted on its own hybrid substrate.

  8. Neutron spectrometry with He-3 proportional counters

    SciTech Connect

    Manolopoulou, M.; Fragopoulou, M.; Stoulos, S.; Vagena, E.; Westmeier, W.; Zamani, M.

    2011-07-01

    Helium filled proportional counters are widely used in the field of neutron detection and spectrometry. In this work the response of a commercially available He-3 counter is studied experimentally and calculated with Monte Carlo for the neutron energy range from 230 keV up to about 7 MeV. The calculated response of the system is used to determine neutron yield energy distribution emitted from an extended {sup nat}U/Pb assembly irradiated with 1.6 GeV deuterons. The results are in acceptable agreement with the calculated neutron distribution with DCM-DEM code. (authors)

  9. New identities among gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Feng, Bo; Søndergaard, Thomas

    2010-08-01

    Color-ordered amplitudes in gauge theories satisfy non-linear identities involving amplitude products of different helicity configurations. We consider the origin of such identities and connect them to the Kawai-Lewellen-Tye (KLT) relations between gravity and gauge theory amplitudes. Extensions are made to one-loop order of the full N = 4 super Yang-Mills multiplet.

  10. ProPortal: A Database for Prochlorococcus

    DOE Data Explorer

    Huang, Katherine [Chisholm lab, MIT

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans, and is the smallest known oxygenic phototroph. All isolates described thus far can be assigned to either a tightly clustered high-light (HL) adapted clade, or a more divergent low-light (LL) adapted group. They are closely related to, but distinct from, marine Synechococcus. The genomes of 12 strains have been sequenced and they range in size from 1.6 to 2.6 Mbp. They represent diverse lineages, spanning the rRNA diversity (97 to 99.93% similarity) of cultured representatives of this group. Our analyses of these genomes inform our understanding of how adaptation occurs in the oceans along gradients of light, nutrients, and other environmental factors, providing essential context for interpreting rapidly expanding metagenomic datasets. [Copied from http://proportal.mit.edu/project/prochlorococcus/] ProPortal allows users to browse and search genome date for not only Prochlorococcus, but Cyanophage and Synechococcus. Microarray data, environmental cell concentration data, and metagenome information are also available.

  11. Body size and proportions in early hominids.

    PubMed

    McHenry, H M

    1992-04-01

    The discovery of several associated body parts of early hominids whose taxonomic identity is known inspires this study of body size and proportions in early hominids. The approach consists of finding the relationship between various measures of skeletal size and body mass in modern ape and human specimens of known body weight. This effort leads to 78 equations which predict body weight from 95 fossil specimens ranging in geological age between 4 and 1.4 mya. Predicted weights range from 10 kg to over 160 kg, but the partial associated skeletons provide the essential clues as to which predictions are most reliable. Measures of hindlimb joint size are the best and probably those equations based on the human samples are better than those based on all Hominoidea. Using hindlimb joint size of specimens of relatively certain taxonomy and assuming these measures were more like those of modern humans than of apes, the male and female averages are as follows: Australopithecus afarensis, 45 and 29 kg; A. africanus, 41 and 30 kg; A. robustus, 40 and 32 kg; A. boisei, 49 and 34 kg; H. habilis, 52 and 32 kg. These values appear to be consistent with the range of size variation seen in the entire postcranial samples that can be assigned to species. If hominoid (i.e., ape and human combined) proportions are assumed, the males would be 10 to 23 kg larger and the females 4 to 10 kg larger. PMID:1580350

  12. Kalman-predictive-proportional-integral-derivative (KPPID)

    SciTech Connect

    Fluerasu, A.; Sutton, M.

    2004-12-17

    With third generation synchrotron X-ray sources, it is possible to acquire detailed structural information about the system under study with time resolution orders of magnitude faster than was possible a few years ago. These advances have generated many new challenges for changing and controlling the state of the system on very short time scales, in a uniform and controlled manner. For our particular X-ray experiments on crystallization or order-disorder phase transitions in metallic alloys, we need to change the sample temperature by hundreds of degrees as fast as possible while avoiding over or under shooting. To achieve this, we designed and implemented a computer-controlled temperature tracking system which combines standard Proportional-Integral-Derivative (PID) feedback, thermal modeling and finite difference thermal calculations (feedforward), and Kalman filtering of the temperature readings in order to reduce the noise. The resulting Kalman-Predictive-Proportional-Integral-Derivative (KPPID) algorithm allows us to obtain accurate control, to minimize the response time and to avoid over/under shooting, even in systems with inherently noisy temperature readings and time delays. The KPPID temperature controller was successfully implemented at the Advanced Photon Source at Argonne National Laboratories and was used to perform coherent and time-resolved X-ray diffraction experiments.

  13. Energy Proportionality for Disk Storage Using Replication

    SciTech Connect

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  14. Promoting Students' Proportional Reasoning Using Invention Tasks

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2012-10-01

    To many students, introductory physics may seem a fast-moving parade of abstract, mysterious quantities. Most such quantities are rooted in proportional reasoning. Using ratio, physicists construct the force experienced by a unit charge and characterize motion with the change in velocity for a unit time. While physicists reason about these ratios without conscious effort, students may resort to memorized algorithms and struggle to match the appropriate algorithm to the situation encountered. Dan Schwartz and colleagues at Stanford University have developed invention instruction as a means to prepare students for future learning. Invention tasks present open-ended situations in which students must invent a procedure or quantity in order to make meaningful comparisons. Through creative thinking and struggle, students are primed to make sense of the accepted scientific solution. A collaboration between Western Washington University, Rutgers, and New Mexico State has developed sequences of invention tasks to promote proportional reasoning. Central to our work is the development of assessments to gauge student learning. This talk presents an overview of the coordinated research and curriculum development project together with selected examples.

  15. Multi-hit time-to-amplitude CAMAC module (MTAC)

    SciTech Connect

    Kang, H.

    1980-10-01

    A Multi-Hit Time-to-Amplitude Module (MTAC) for the SLAC Mark III drift chamber system has been designed to measure drift time by converting time-proportional chamber signals into analog levels, and converting the analog data by slow readout via a semi-autonomous controller in a CAMAC crate. The single width CAMAC module has 16 wire channels, each with a 4-hit capacity. An externally generated common start initiates an internal precision ramp voltage which is then sampled using a novel shift register gating scheme and CMOS sampling switches. The detailed design and performance specifications are described.

  16. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  17. Finiteness of the Coulomb gauge QCD perturbative effective action

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, J. C.

    2015-05-01

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ-Lee term which was inserted into the Hamiltonian.

  18. Hamiltonian flow in Coulomb gauge Yang-Mills theory

    SciTech Connect

    Leder, Markus; Reinhardt, Hugo; Pawlowski, Jan M.; Weber, Axel

    2011-01-15

    We derive a new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge. The flow equations for the static gluon and ghost propagators are solved under the assumption of ghost dominance within different diagrammatic approximations. The results are compared to those obtained in the variational approach and the reliability of the approximations is discussed.

  19. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    SciTech Connect

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  20. The Coulomb problem on a 3-sphere and Heun polynomials

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Yeghikyan, Vahagn

    2013-08-01

    The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.

  1. The Coulomb problem on a 3-sphere and Heun polynomials

    SciTech Connect

    Bellucci, Stefano; Yeghikyan, Vahagn

    2013-08-15

    The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.

  2. Coulomb Crystals in Cylindrical Dusty Plasmas under Gravity/Microgravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuo; Totsuji, Hiroo; Adachi, Satoshi

    2014-10-01

    Coulomb crystals of dusty plasmas have been studied under microgravity with utilities boarding on the International Space Station in a joint Russian/German research project. Dynamics of the Coulomb crystals in cylindrical plasmas is investigated with the apparatus of PK-4 being launched till the end of 2014. A science team in Japan studied the cylindrical dusty plasmas to contribute to the project with the PK-4J modified original for microgravity experiments of parabolic flights in Japan. In the experiments, the dust particles distributed at the off-centered position close to the bottom in balancing of gravity. Under microgravity, they changed the distribution and formed a Coulomb crystal around the center axis in the plasmas. Several particles arranged in a line parallel to the axis, and the lines piled up to a bundle. Spatial distribution of the dust particles affects on plasma parameters of ion density and electron temperature. Structures of the Coulomb crystals connected to the parameters are discussed. The present study were supported by JAXA and Diamond Air Service.

  3. Coulomb gauge approach for charmonium meson and hybrid radiative transitions

    NASA Astrophysics Data System (ADS)

    Gou, Peng; Yépez-Martínez, Tochtli; Szczepaniak, Adam P.

    2015-01-01

    We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.

  4. Accurate Coulomb blockade thermometry up to 60 kelvin.

    PubMed

    Meschke, M; Kemppinen, A; Pekola, J P

    2016-03-28

    We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107

  5. Coulomb gauge approach for charmonium meson and hybrid radiative transitions

    DOE PAGESBeta

    Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.

    2015-01-22

    We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.

  6. Finiteness of the Coulomb gauge QCD perturbative effective action

    SciTech Connect

    Andraši, A.; Taylor, J.C.

    2015-05-15

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.

  7. Using the Screened Coulomb Potential to Illustrate the Variational Method

    ERIC Educational Resources Information Center

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2012-01-01

    The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…

  8. Coulomb effects on edge scattering in elastic nuclear collisions

    SciTech Connect

    Silveira, R. da; Leclercq-Willain, Ch.

    2011-04-15

    We present a qualitative analysis of the effects of the Coulomb force on the edge scattering produced in elastic nuclear collisions occurring under strong absorption conditions. This analysis is illustrated with several examples of nucleus-nucleus and antiproton-nucleus elastic scattering.

  9. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  10. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  11. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  12. Boron-10 Lined Proportional Counter Model Validation

    SciTech Connect

    Lintereur, Azaree T.; Siciliano, Edward R.; Kouzes, Richard T.

    2012-06-30

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project “Coincidence Counting With Boron-Based Alternative Neutron Detection Technology” at Pacific Northwest National Laboratory (PNNL) for the development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube-based alternative system in the configuration of a coincidence counter. This report discusses the validation studies performed to establish the degree of accuracy of the computer modeling methods current used to simulate the response of boron-lined tubes. This is the precursor to developing models for the uranium neutron coincidence collar under Task 2 of this project.

  13. A proportional temperature controller with automatic shutoff

    NASA Astrophysics Data System (ADS)

    Lucich, G. M.; Holland, P. W.

    1980-08-01

    A sensitive, proportional temperature controller useful in the temperature range from 40 to 400 C with an accuracy of plus or minus 0.1 C is described. It is potentially useful for regulating temperatures in air chambers, liquid baths, furnaces and reaction vessels and for other applications. This instrument was developed to control the duration and temperature of the heating cycle of a charcoal filled adsorber that is part of a special helium analyzer. The controller was made from commercially available parts and can be easily modified to provide continuous temperature control. The circuit is solid state and employs no electromechanical devices. Over a 2 year period of use as a component of the special helium analyzer, this temperature controller performed successfully and required no maintenance.

  14. Path collapse in Feynman formula. Stable path integral formula from local time reparametrization invariant amplitude

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    1989-06-01

    The Feynman formula, which expresses the time displacement amplitude > x b | exp (-t Ȟ) | x a< in terms of a path integral Π 1N (∫ dn) Π 1N+1 ( {∫ dp n}/{2π}) exp{Σ 1N [ ip n(x n-x n-1) - ɛH (p n, x n)]} with large N, does not exist for systems with Coulomb {-1}/{r} potential and gives incorrect threshold behaviours near centrifugal {1}/{r 2} or angular {1}/{sin2θ } barriers. We discuss the physical origin of this failure and propose an alternative well-defined path integral formula based on a family of amplitudes that is invariant under arbitrary local time reparametrizations. The time slicing with finite N breaks this invariance. For appropriate choices of the reparametrization function the fluctuations are stabilized and the new formula is applicable to all the above systems.

  15. Contributions of Coulombic and Hofmeister Effects to the Osmotic Activation of Escherichia coli Transporter ProP.

    PubMed

    Culham, Doreen E; Shkel, Irina A; Record, M Thomas; Wood, Janet M

    2016-03-01

    Osmosensing transporters mediate osmolyte accumulation to forestall cellular dehydration as the extracellular osmolality increases. ProP is a bacterial osmolyte-H(+) symporter, a major facilitator superfamily member, and a paradigm for osmosensing. ProP activity is a sigmoid function of the osmolality. It is determined by the osmolality, not the magnitude or direction of the osmotic shift, in cells and salt-loaded proteoliposomes. The activation threshold varies directly with the proportion of anionic phospholipid in cells and proteoliposomes. The osmosensory mechanism was probed by varying the salt composition and concentration outside and inside proteoliposomes. Data analysis was based on the hypothesis that the fraction of maximal transporter activity at a particular luminal salt concentration reflects the proportion of ProP molecules in an active conformation. ProP attained the same activity at the same osmolality when diverse, membrane-impermeant salts were added to the external medium. Contributions of Coulombic and/or Hofmeister salt effects to ProP activation were examined by varying the luminal salt cation (K(+) and Na(+)) and anion (chloride, phosphate, and sulfate) composition and then systematically increasing the luminal salt concentration by increasing the external osmolality. ProP activity increased with the sixth power of the univalent cation concentration, independent of the type of anion. This indicates that salt activation of ProP is a Coulombic, cation effect resulting from salt cation accumulation and not site-specific cation binding. Possible origins of this Coulombic effect include folding or assembly of anionic cytoplasmic ProP domains, an increase in local membrane surface charge density, and/or the juxtaposition of anionic protein and membrane surfaces during activation. PMID:26871755

  16. Compact Collision Kernels for Hard Sphere and Coulomb Cross Sections; Fokker-Planck Coefficients

    SciTech Connect

    Chang Yongbin; Shizgal, Bernie D.

    2008-12-31

    A compact collision kernel is derived for both hard sphere and Coulomb cross sections. The difference between hard sphere interaction and Coulomb interaction is characterized by a parameter {eta}. With this compact collision kernel, the calculation of Fokker-Planck coefficients can be done for both the Coulomb and hard sphere interactions. The results for arbitrary order Fokker-Planck coefficients are greatly simplified. An alternate form for the Coulomb logarithm is derived with concern to the temperature relaxation in a binary plasma.

  17. Blocage de Coulomb dans une boite quantique laterale contenant un faible nombre d'electrons

    NASA Astrophysics Data System (ADS)

    Gould, Charles

    Dans ce travail on utilise une nouvelle geometrie pour augmenter le controle sur le nombre d'electrons contenus dans une boite quantique laterale, et ainsi atteindre un regime de petit nombre d'electrons. Ces echantillons permettent une etude du blocage de Coulomb quand les electrons sont injectes a partir d'un gaz electronique a deux dimensions (2DEG). Les mesures a faible champ magnetique demontrent la grande flexibilite des echantillons et montrent que l'on peut faire varier le nombre d'electrons dans une boite quantique a partir de plus de 40 electrons jusqu'a un seul electron, ce qui est assez courant dans les boites quantiques verticales, mais ce qui n'avait jamais ete reussi dans une boite quantique laterale. Nos resultats montrent egalement que dans les boites quantiques laterales il est possible de determiner le spin du niveau qui participe au transport a l'aide du phenomene de blocage de spin. De plus, dans certaines circonstances il est meme possible de determiner le spin total de la boite quantique, ce qui peut avoir des applications pratiques dans des domaines tels l'informatique quantique. Les mesures dans le regime de renversement de spin a un champ magnetique plus eleve montrent l'importance des correlations electrons---electrons dans ces boites quantiques, qui menent a des depolarisations et a des structures de spins qui ont un effet sur le transport. En particulier, ces correlations menent a l'existence de niveaux excites de basse energie qui causent une dependance anormale de l'amplitude des pics de blocage de Coulomb en fonction de la temperature. Nos experiences demontrent egalement la possibilite d'utiliser ces boites quantiques comme sondes pour etudier les proprietes du bord d'un 2DEG. Une voie de recherche a etre exploree.

  18. Calibration of proportional counters in microdosimetry

    SciTech Connect

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for /sup 60/Co using different extrapolation procedures from 0.15 keV/..mu..m to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed.

  19. Proportional mortality of 50 years and above

    PubMed Central

    Swaroop, S.; Uemura, K.

    1957-01-01

    In 1954 the United Nations Committee of Experts on International Definition and Measurement of Standards and Levels of Living suggested that for the measurement of levels of living quantifiable or potentially quantifiable components should be considered separately. An attempt is made in the present paper to evolve a single, comprehensive numerical indicator to quantify the component “health, including demographic conditions”. The use of an objective statistical technique as a guide in the selection of such an indicator is suggested. From the application of this technique, it is concluded that the percentage of deaths at the ages 50 years and over to total deaths (proportional mortality) affords a fairly suitable yardstick by which broad inter-country comparisons may be made. This indicator has the advantages of simplicity of calculation, comprehensiveness, availability of data, possibility of international comparability despite the varying quality of basic statistical information, sensitivity for the purpose of inter-country comparisons, and validity for studying levels and trends. PMID:13500159

  20. S-duality and helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Colwell, Kitran; Terning, John

    2016-03-01

    We examine interacting Abelian theories at low energies and show that holomorphically normalized photon helicity amplitudes transform into dual amplitudes under SL(2, {Z} ) as modular forms with weights that depend on the number of positive and negative helicity photons and on the number of internal photon lines. Moreover, canonically normalized helicity amplitudes transform by a phase, so that even though the amplitudes are not duality invariant, their squares are duality invariant. We explicitly verify the duality transformation at one loop by comparing the amplitudes in the case of an electron and the dyon that is its SL(2, {Z} ) image, and extend the invariance of squared amplitudes order by order in perturbation theory. We demonstrate that S-duality is a property of all low-energy effective Abelian theories with electric and/or magnetic charges and see how the duality generically breaks down at high energies.

  1. Suppression of the Coulomb Interaction in the Off-Energy-Shell p-p Scattering from the p+d{yields}p+p+n Reaction

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Rapisarda, G. G.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Mudo, F.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A.; Elekes, Z.; Fueloep, Z.; Gyuerky, G.; Kiss, G.; Somorjai, E.

    2007-06-22

    Off-energy-shell effects in p-p scattering have been investigated at p-p relative energies from 600 down to 80 keV applying the Trojan horse method (THM) to the p+d{yields}p+p+n reaction at 5 MeV. In contrast with the on-energy-shell case, no Coulomb-nuclear interference minimum has been found in the extracted THM p-p cross section, due to the suppression of the Coulomb amplitude as predicted by the half-off-energy shell calculations. This hypothesis is strengthened by the agreement between THM p-p data and calculated on-energy-shell n+n, n+p and nuclear p+p cross sections.

  2. Gravity and Yang-Mills amplitude relations

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas; FengBo

    2010-11-15

    Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.

  3. Minimal Basis for Gauge Theory Amplitudes

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Vanhove, Pierre

    2009-10-16

    Identities based on monodromy for integrations in string theory are used to derive relations between different color-ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color-ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)exclamation amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.

  4. Cascaded phase-preserving multilevel amplitude regeneration.

    PubMed

    Roethlingshoefer, Tobias; Onishchukov, Georgy; Schmauss, Bernhard; Leuchs, Gerd

    2014-12-29

    The performance of cascaded in-line phase-preserving amplitude regeneration using nonlinear amplifying loop mirrors has been studied in numerical simulations. As an example of a spectrally efficient modulation format with two amplitude states and multiple phase states, the regeneration performance of a star-16QAM format, basically an 8PSK format with two amplitude levels, was evaluated. An increased robustness against amplified spontaneous emission and nonlinear phase noise was observed resulting in a significantly increased transmission distance. PMID:25607142

  5. Discontinuities of multi-Regge amplitudes

    NASA Astrophysics Data System (ADS)

    Fadin, V. S.

    2015-04-01

    In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for n-gluon amplitudes in the planar N = 4 SYM at n ≥ 6. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.

  6. DVCS amplitude with kinematical twist-3 terms

    SciTech Connect

    Radyushkin, A.V.; Weiss, C.

    2000-08-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.

  7. Estimating Genetic Ancestry Proportions from Faces

    PubMed Central

    Klimentidis, Yann C.; Shriver, Mark D.

    2009-01-01

    Ethnicity can be a means by which people identify themselves and others. This type of identification mediates many kinds of social interactions and may reflect adaptations to a long history of group living in humans. Recent admixture in the US between groups from different continents, and the historically strong emphasis on phenotypic differences between members of these groups, presents an opportunity to examine the degree of concordance between estimates of group membership based on genetic markers and on visually-based estimates of facial features. We first measured the degree of Native American, European, African and East Asian genetic admixture in a sample of 14 self-identified Hispanic individuals, chosen to cover a broad range of Native American and European genetic admixture proportions. We showed frontal and side-view photographs of the 14 individuals to 241 subjects living in New Mexico, and asked them to estimate the degree of NA admixture for each individual. We assess the overall concordance for each observer based on an aggregated measure of the difference between the observer and the genetic estimates. We find that observers reach a significantly higher degree of concordance than expected by chance, and that the degree of concordance as well as the direction of the discrepancy in estimates differs based on the ethnicity of the observer, but not on the observers' age or sex. This study highlights the potentially high degree of discordance between physical appearance and genetic measures of ethnicity, as well as how perceptions of ethnic affiliation are context-specific. We compare our findings to those of previous studies and discuss their implications. PMID:19223962

  8. The simplest model for non-congruent fluid-fluid phase transition in Coulomb system

    NASA Astrophysics Data System (ADS)

    Stroev, N. E.; Iosilevskiy, I. L.

    2015-11-01

    The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM(˜)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with “linear mixture” (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM(˜) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM(˜) there were reproduced two-dimensional remarkable (“banana-like”) structure of two-phase region P — T diagram and the characteristic non-monotonic shape of caloric phase enthalpy-temperature diagram, similar to the non-congruent evaporation of reactive plasma products in high-temperature heating with the uranium-oxygen system. The parameters of critical points (CP) line were calculated on the entire range of proportions of ions 0 < X < 1, including two reference values, when CP coincides with a point of extreme temperature and extreme pressure, XT and Xp. Finally, it is clearly demonstrated the low-temperature property of non-congruent gas-liquid transition — “distillation”, which is weak in chemically reactive plasmas.

  9. Reconfiguration and Control of Non-Equal Mass Three-Craft Coulomb Formation

    NASA Astrophysics Data System (ADS)

    Ting, Wang; Guangqing, Xia; Nan, Zhao

    2016-03-01

    The paper studied reconfiguration of Coulomb formation from three-craft system to four-craft system. Assumed that three-craft Coulomb system already formed a triangle configuration, then, the fourth Coulomb craft is scheduled to join the existing system so as to form a new static configuration. New possible configurations such as quadrilateral in 2-dimension and tetrahedron in 3-dimension for four-craft Coulomb formation are discussed in the paper. The processing of reconfiguration will not change the original origin and triangle formation. Through the Particle Swarm Optimization (PSO) algorithm, the mass, the charge and the position of the fourth Coulomb craft can be calculated for these configurations.

  10. Ion wake effects on the Coulomb ion drag in complex dusty plasmas

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2010-09-06

    The ion wake effects on the Coulomb drag force are investigated in complex dusty plasmas. It is shown that the ion wake effects significantly enhance the Coulomb ion drag force. It is also found that the ion wake effects on the Coulomb drag force increase with an increase in the Debye length. In addition, the ion wake effects on the momentum transfer cross section and Coulomb drag force are found to be increased with increasing thermal Mach number, i.e., decreasing plasma temperature. It is also found that the Coulomb ion drag force would be stronger for smaller dust grains.

  11. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  12. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    PubMed Central

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  13. Characterization of ion Coulomb crystals for fundamental sciences

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu

    2015-11-01

    We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled 165Ho14+ ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho14+ ions will be achieved by sympathetic cooling with a single laser-cooled Be+.

  14. Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Yin, Xiao; Zhi-Ming, Zhang

    2016-01-01

    We propose a scheme for entangling two nanomechanical oscillators by Coulomb interaction in an optomechanical system. We find that the steady-state entanglement of two charged nanomechanical oscillators can be obtained when the coupling between them is stronger than a critical value which relies on the detuning. Remarkably, the degree of entanglement can be controlled by the Coulomb interaction and the frequencies of the two charged oscillators. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009, and 11574092), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholar and Innovative Research Team in University, China (Grant No. IRT1243).

  15. Interplay of Coulomb interaction and spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian

    2016-07-01

    We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .

  16. Coulomb excitation of C{sub 60} molecules

    SciTech Connect

    Esbensen, H.; Berry, H.G.; Cheng, S.

    1995-08-01

    The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.

  17. Conductance of a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  18. Effect of Coulomb screening length on nuclear "pasta" simulations

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Giménez Molinelli, P. A.; Nichols, J. I.; Dorso, C. O.

    2014-05-01

    We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities and low temperatures. The electrostatic interaction between protons is included as a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the nonhomogeneous nuclear structures known as "nuclear pasta." As the screening length increases, we can see a transition from a one-per-cell pasta regime (due exclusively to finite-size effects) to a more appealing multiple pasta per simulation box. This qualitative difference in the structure of neutron star matter at low temperatures shows that special caution should be taken when the screening length is estimated for numerical simulations.

  19. Coulomb attraction in optical spectra of quantum discs

    NASA Astrophysics Data System (ADS)

    Adolph, B.; Glutsch, S.; Bechstedt, F.

    1994-06-01

    We present a theory which describes the influence of the Coulomb interaction on the optical spectra of quantum discs within the envelope function formalism. Starting from a non-local Elliott formula luminescence is traced back to two-particle wave functions and energies. They are solutions of the corresponding Schrödinger equation for an electron-hole pair under the influence of the Coulomb attraction and confinement potentials determined by the spatial variation of the band edges of the considered microstructure. We present a complete numerical solution of the two-particle problem for flat quantum dots, i.e. discs for which the size quantization in growth direction is much stronger than that in the xy-plane. We discuss two different situations, single discs with infinite and finite confinement potentials. Resulting theoretical lineshapes are compared with luminescence spectra obtained recently for quantum discs fabricated by laser-induced thermal cation interdiffusion in quantum-well structures.

  20. Imaging Coulomb islands in a quantum Hall interferometer.

    PubMed

    Hackens, B; Martins, F; Faniel, S; Dutu, C A; Sellier, H; Huant, S; Pala, M; Desplanque, L; Wallart, X; Bayot, V

    2010-01-01

    In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magnetic-field magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states. PMID:20975700

  1. Coulomb effects in low-energy nuclear fragmentation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  2. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.

    2011-10-28

    In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.

  3. Coulomb blockage of hybridization in two-dimensional DNA arrays

    NASA Astrophysics Data System (ADS)

    Vainrub, Arnold; Pettitt, B. Montgomery

    2002-10-01

    Experiments on DNA microarrays have revealed substantial differences in hybridization thermodynamics between DNA free in solution and surface tethered DNA. Here we develop a mean field model of the Coulomb effects in two-dimensional DNA arrays to understand the binding isotherms and thermal denaturation of the double helix. We find that the electrostatic repulsion of the assayed nucleic acid from the array of DNA probes dominates the binding thermodynamics, and thus causes the Coulomb blockage of the hybridization. The results explain, observed in DNA microarrays, the dramatic decrease of the hybridization efficiency and the thermal denaturation curve broadening as the probe surface density grows. We demonstrate application of the theory for evaluation and optimization of the sensitivity, specificity, and the dynamic range of DNA array devices.

  4. ``Perfect'' Coulomb Drag in a Bilayer Quantum Hall System

    NASA Astrophysics Data System (ADS)

    Nandi, D.; Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2012-02-01

    We report Coulomb drag measurements in Corbino geometry which reveal that equal but oppositely directed electrical currents can freely propagate across the insulating bulk of the bilayer quantized Hall state at νT=1 even when the two 2D layers are electrically isolated and interlayer tunneling has been heavily suppressed by an in-plane magnetic field. This effect, which we dub ``perfect'' Coulomb drag, reflects the transport of charge neutral excitons across the bulk of the 2D system. The equal magnitude of the drive and drag currents is lost at high current and when either the temperature or effective separation between the two 2D layers is increased. In each of these cases, ordinary quasiparticle charge transport across the annulus has grown to dominate over exciton transport.

  5. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  6. Quantum solution for the one-dimensional Coulomb problem

    SciTech Connect

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  7. Simulation of Coulomb interaction effects in electron sources

    NASA Astrophysics Data System (ADS)

    Rouse, John; Zhu, Xieqing; Liu, Haoning; Munro, Eric

    2011-07-01

    Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.

  8. Coulomb's Law Corrections from a Gauge-Kinetic Mixing

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Schmidt, Iván

    We study the connection or equivalence between two well-known extensions of the Standard Model, that is, for the coupling between the familiar massless electromagnetism U(1)QED and a hidden-sector U(1)h, and axionic electrodynamics. Our discussion is carried out using the gauge-invariant but path-dependent variables formalism, which is an alternative to the Wilson loop approach. When we compute in this way the static quantum potential for the coupling between the familiar massless electromagnetism U(1)QED and a hidden-sector U(1)h, the result of this calculation is a Yukawa correction to the usual static Coulomb potential. Previously,14, we have shown that axionic electrodynamics has a different structure which is reflected in a confining piece. Therefore, both extensions of the Standard Model are not equivalent. Interestingly, when the above calculation is done inside a superconducting box, the Coulombic piece disappears leading to a screening phase.

  9. Conductance through a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, Bernard; Lutchyn, Roman; Glazman, Leonid

    Motivated by recent experiments of the Copenhagen group on InAs nanowires with epitaxial Al, we investigate the two-terminal conductance of a strongly proximitized nanowire in the Coulomb blockade regime. We identify the leading electron transport processes at zero applied magnetic field B as well as at finite fields, suppressing the induced gap Δind (B) . In the conventional superconducting phase, the conductance is controlled by the sequential Cooper pair tunneling if Δind (B) exceeds the charging energy Ec, and by the elastic single-electron processes if Δind (B) Coulomb blockade peaks, which explains the experimental finding in Ref.. We also develop a quantitative theory for the differential conductance and examine its evolution across the topological transition point.

  10. Cooling of cryogenic electron bilayers via the Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Friesen, Mark; Joynt, Robert; Coppersmith, S. N.

    2011-09-01

    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure and analyze the power transfer. We show that, across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.

  11. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  12. Extended Kepler-Coulomb quantum superintegrable systems in three dimensions

    NASA Astrophysics Data System (ADS)

    Kalnins, E. G.; Kress, J. M.; Miller, W., Jr.

    2013-03-01

    The quantum Kepler-Coulomb system in three dimensions is well known to be second order superintegrable, with a symmetry algebra that closes polynomially under commutators. This polynomial closure is also typical for second order superintegrable systems in 2D and for second order systems in 3D with nondegenerate (four-parameter) potentials. However, the degenerate three-parameter potential for the 3D Kepler-Coulomb system (also second order superintegrable) is an exception, as its symmetry algebra does not close polynomially. The 3D four-parameter potential for the extended Kepler-Coulomb system is not even second order superintegrable, but Verrier and Evans (2008 J. Math. Phys. 49 022902) showed it was fourth order superintegrable, and Tanoudis and Daskaloyannis (2011 arXiv:11020397v1) showed that, if a second fourth order symmetry is added to the generators, the symmetry algebra closes polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of quantum extended Kepler-Coulomb three- and four-parameter systems indexed by a pair of rational numbers (k1, k2) and reducing to the usual systems when k1 = k2 = 1. We show these systems to be superintegrable of arbitrarily high order and determine the structure of their symmetry algebras. We demonstrate that the symmetry algebras close algebraically; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering operators, not themselves symmetry operators or even defined independent of basis, that can be employed to construct the symmetry operators and their structure relations.

  13. Stability characterizations of fixtured rigid bodies with Coulomb friction

    SciTech Connect

    PANG,J.S.; TRINKLE,JEFFREY C.

    2000-02-15

    This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.

  14. Electron screening of the Coulomb potential at small internuclear distances

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2015-07-01

    Values of He+-Au potential at small internuclear distances (R = 10-4 to 10-3 nm) have been obtained from the Rutherford backscattering (RBS) data. The potential has been shown to be independent of the collision velocity and close to the potential approximation proposed in Zinoviev (2011) [1]. Experimental data on the electron screening of the Coulomb potential enabled calculation of corrections for the nuclear fusion cross-sections and improvement of the RBS data quantitative analysis.

  15. Coulomb excitations for a short linear chain of metallic shells

    SciTech Connect

    Zhemchuzhna, Liubov; Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Gao, Bo

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  16. Wigner solids, classical Coulomb lattices, and invariant average potential

    NASA Astrophysics Data System (ADS)

    Hall, G. L.; Rice, T. R.

    1980-04-01

    We show that Hall's analysis of K for Wigner solids, the Ihm and Cohen analysis of the Fuchs energy ɛ, some extensions of Hall's analysis, and some recent results for the classical Coulomb-lattice model provide a tight theoretical framework useful beyond the matter of Hall's conclusions about the ɛ for Wigner solids based on an incorrect relation accepted from the literature. We also comment on spherical approximations.

  17. Coulomb interaction from the interplay between confinement and screening

    NASA Astrophysics Data System (ADS)

    Gaete, P.; Guendelman, E. I.

    2004-07-01

    It has been noticed that confinement effects can be described by the addition of a -FμνaFaμν term in the Lagrangian density. We now study the combined effect of such "confinement term" and that of a mass term. The surprising result is that the interplay between these two terms gives rise to a Coulomb interaction. Our picture has a certain correspondence with the quasiconfinement picture described by Giles, Jaffe and de Rujula for QCD with symmetry breaking.

  18. Coulomb field scattering in Born-Infeld electrodynamics

    SciTech Connect

    Tennant, Daniel

    2011-02-15

    In the context of Born-Infeld electrodynamics, the electromagnetic fields interact with each other via their nonlinear couplings. A calculation will be performed where an incoming electromagnetic plane wave scatters off a Coulomb field in the geometrical optics approximation. In addition to finding the first-order angle of deflection, exact solutions for the trajectory will also be found. The possibility of electromagnetic bound states will be discussed.

  19. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    SciTech Connect

    Lindesay, James V

    2002-03-12

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum.

  20. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  1. Strong Coulomb effects on pions produced in heavy ion collisons

    NASA Astrophysics Data System (ADS)

    Sullivan, J. P.; Bistirlich, J. A.; Bowman, H. R.; Bossingham, R.; Buttke, T.; Crowe, K. M.; Frankel, K. A.; Martoff, C. J.; Miller, J.; Murphy, D. L.; Rasmussen, J. O.; Zajc, W. A.; Hashimoto, O.; Koike, M.; Péter, J.; Benenson, W.; Crawley, G. M.; Kashy, E.; Nolen, J. A.

    1982-03-01

    Doubly differential cross sections for the production of π+ and π- near the velocity of the incident beam for pion laboratory angles from 0 to 20 degrees are presented. Beams of 20Ne with EA=280, 380, and 480 MeV and 40Ar with EA=535 MeV incident on C, NaF, KCl, Cu, and U targets were used. A sharp peak in the π- spectrum and a depression in the π+ spectrum is observed at 0° near the incident projectile velocity. The effect is explained in terms of Coulomb interactions between pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffmann and an effective projectile fragment charge are made. The relationship between these data and previously measured projectile fragmentation data is discussed and a simple parametrization of projectile mass, target mass, and beam energy dependence of the differential cross sections is given. NUCLEAR REACTIONS C, NaF, Cu, U (20Ne,π+/-)X, EA=280-480 MeV; C, KCl (40Ar,π+/-)X, EA=535 MeV; measured σ(Eπ,θπ), θπ=0°-20°, π velocity near beam velocity; deduced projectile fragment charges, Coulomb effects.

  2. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  3. Optimal reconfigurations of two-craft Coulomb formations along manifolds

    NASA Astrophysics Data System (ADS)

    Jones, Drew R.; Schaub, Hanspeter

    2013-02-01

    Coulomb formations refer to swarms of closely flying spacecraft, in which the net electric charge of each vehicle is controlled. Active charge control is central to this concept and enables a propulsion system with highly desirable characteristics, albeit with limited controllability. Numerous Coulomb formation equilibria have been derived, but to maintain and maneuver these configurations, some inertial thrust is required to supplement the nearly propellant-less charge control. In this work, invariant manifold theory is applied to two-craft Coulomb equilibria, which are admitted in a linearized two-body gravity model. The manifolds associated with these systems are analyzed for the first time, and are then utilized as part of a general procedure for formulating optimal reconfigurations. Specifically, uncontrolled flows along the manifolds are sought which provide near continuous transfers from one equilibrium to another. Control is then introduced to match continuity, while minimizing inertial thrusting. This methodology aims to exploit uncontrolled motions and charge control to realize the shape-changing ability of these formations, without large inertial control efforts. Some variations in formulating and parameterizing the optimal transfers are discussed, and analytical expressions are derived to aid in establishing control parameter limits, under certain assumptions. Numerical results are provided, as demonstrative examples of the optimization procedure, using relatively simple control approximations. Finally, Particle Swarm Optimization, a novel stochastic method, is used with considerable success to solve the numerically difficult parameter optimization problems.

  4. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule

    NASA Astrophysics Data System (ADS)

    Cloët, Ian C.; Bentz, Wolfgang; Thomas, Anthony W.

    2016-01-01

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q |≳0.5 GeV . The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  6. Electron interactions in graphene through an effective Coulomb potential

    NASA Astrophysics Data System (ADS)

    Rodrigues, Joao N. B.; Adam, Shaffique

    A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).

  7. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    PubMed

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei. PMID:26849589

  8. Coulomb crystal mass spectrometry in a digital ion trap

    NASA Astrophysics Data System (ADS)

    Deb, Nabanita; Pollum, Laura L.; Smith, Alexander D.; Keller, Matthias; Rennick, Christopher J.; Heazlewood, Brianna R.; Softley, Timothy P.

    2015-03-01

    We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radio-frequency wave form is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields are subsequently applied to the trap electrodes for ion ejection. Close to 100% detection efficiency is demonstrated for Ca+ and CaF+ ions from bicomponent Ca+-CaF+ Coulomb crystals prepared by the reaction of Ca+ with CH3F . A quantitative linear relationship is observed between ion number and the corresponding integrated time-of-flight (TOF) peak, independent of the ionic species. The technique is applicable to a diverse range of multicomponent Coulomb crystals—demonstrated here for Ca+-NH 3+ -NH 4+ and Ca+-CaOH +-CaOD + crystals—and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.

  9. Quasi-exactly solvable relativistic soft-core Coulomb models

    SciTech Connect

    Agboola, Davids Zhang, Yao-Zhong

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  10. Implosive Interatomic Coulombic decay in the simplest molecular anion

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  11. GSFC's Multi-Wire Gas Proportional Counter

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.

    2013-01-01

    The Goddard X-ray group made its appearance in 1964 as a one person (Elihu Boldt) appendage to the well established cosmic ray group, then headed by Frank MacDonald. This discipline proximity was crucial because it meant superb technical support from the start, which allowed the fledging group to quickly advance toward directions of choice. When I became the 2nd member of the group in 1966, the new discipline still relied on bulky gas counters, stacked to make up a usable detection area. Slim opportunities existed for timing or spectral inferences. Elihu's strong interest in pursuing the reported diffuse cosmic radiation had to be set aside, as improving this situation appeared to be years away. Cosmic ray researchers had long used charged particle timing techniques for cleaning up their data, but those appeared irrelevant for our purposes because of the large, background generating, mass of the gas containment vessels and the slow drift in the counter gas of the charge from photon interaction sites to the counter anode. We had to deal with these realities in whatever choices we made for our future instruments. The multi-wire gas proportional counter emerged from our still small group in the late1960s, demonstrating on several rocket and balloon flights a greatly reduced detector background, improved event timing and adequate resolution for addressing key spectral features. Three of these detectors, flown in 1975 on NASA's 8th orbiting solar observatory, were successfully used for some 3 years to conduct non dispersive, 1-10 keV spectroscopy on many galactic and extragalactic sources, including several clusters of galaxies. In 1977 we flew a set of larger detectors on the first of NASA's High Energy Astrophysical Observatories (HEAO). These were specifically designed for the study of the X-ray background. Finally, the largest instruments of this family were flown in 1995 by our group on NASA's Rossi X-ray Timing Explorer, RXTE, which observed over a remarkable 16

  12. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    PubMed

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. PMID:21889150

  13. Thermal cracking and amplitude dependent attenuation

    SciTech Connect

    Johnston, D.H.; Toksoez, M.N.

    1980-02-10

    The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.

  14. Helicity amplitudes on the light-front

    NASA Astrophysics Data System (ADS)

    Cruz Santiago, Christian A.

    Significant progress has been made recently in the field of helicity amplitudes. Currently there are on-shell recursion relations with shifted complex momenta, geometric interpretations of amplitudes and gauge invariant off-shell amplitudes. All this points to helicity amplitudes being a rich field with much more to say. In this work we take initial steps in understanding amplitudes through the light-front formalism for the first time. We begin by looking at crossing symmetry. In the light-front it is not obvious that crossing symmetry should be present as there are non-local energy denominators that mix energies of different states. Nevertheless, we develop a systematic approach to relate, for example, 1 → N gluon processes to 2 → N -- 1 processes. Using this method, we give a perturbative proof of crossing symmetry on the light-front. One important caveat is that the proof requires the amplitudes to be on-shell. We also saw that the analytic continuation from outgoing to incoming particle produces a phase that's dependent on the choice of polarizations. Next, we reproduce the Parke-Taylor amplitudes. For this purpose we found a recursion relation for an off-shell object called the fragmentation function. This recursion relies on the factorization property of the fragmentation functions, and it becomes apparent that this recursion is the light-front analog of the Berends-Giele recursion relation. We also found this object's connection to off-shell and on-shell amplitudes. The solution for the off-shell amplitude, which does reproduce the Parke-Taylor amplitudes in the on-shell limit, turns out to be very interesting. It can be written as a linear sum of off-shell objects with the same structure as MHV amplitudes. Finally, we look at the Wilson line approach to generate gauge invariant off-shell amplitudes. It turns out that the exact same recursion relation appears on both frameworks, thereby providing the interpretation that our recursion relation has it

  15. A stochastic approximation algorithm for estimating mixture proportions

    NASA Technical Reports Server (NTRS)

    Sparra, J.

    1976-01-01

    A stochastic approximation algorithm for estimating the proportions in a mixture of normal densities is presented. The algorithm is shown to converge to the true proportions in the case of a mixture of two normal densities.

  16. Measurement of analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region with a 22-GeV/c polarized proton beam.

    PubMed

    Tojo, J; Alekseev, I; Bai, M; Bassalleck, B; Bunce, G; Deshpande, A; Doskow, J; Eilerts, S; Fields, D E; Goto, Y; Huang, H; Hughes, V; Imai, K; Ishihara, M; Kanavets, V; Kurita, K; Kwiatkowski, K; Lewis, B; Lozowski, W; Makdisi, Y; Meyer, H-O; Morozov, B V; Nakamura, M; Przewoski, B; Rinckel, T; Roser, T; Rusek, A; Saito, N; Smith, B; Svirida, D; Syphers, M; Taketani, A; Thomas, T L; Underwood, D; Wolfe, D; Yamamoto, K; Zhu, L

    2002-07-29

    The analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region of momentum transfer, 9.0x10(-3)<-t<4.1x10(-2) (GeV/c)(2), was measured with a 21.7 GeV/c polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to nonflip amplitude, r(5), was obtained from the analyzing power to be Rer(5)=0.088+/-0.058 and Imr(5)=-0.161+/-0.226. PMID:12144435

  17. Theory and simulation of ion Coulomb crystal formation in a Penning trap

    NASA Astrophysics Data System (ADS)

    Asprusten, Martin; Worthington, Simon; Thompson, Richard C.

    2014-01-01

    Ion Coulomb crystals (ICCs) are formed by laser-cooled ions in both radio-frequency and Penning traps. In radio-frequency traps, the crystals are generally stationary. In Penning traps, ICCs always rotate. The frequency of rotation is often set by an applied rotating wall drive that forces the crystal to rotate at the same frequency as the drive. In the absence of any applied rotating or oscillating fields, ICCs in a Penning trap can be in stable equilibrium with a range of rotation frequencies. The density and shape of the crystal adjust with the rotation frequency to ensure that equilibrium is reached. Here, we show that the parameters of the radial laser-cooling beam determine the rotation frequency of a small crystal in a Penning trap when no driving fields are present. We demonstrate, using an approximate theoretical treatment and realistic simulations, that the crystal rotation frequency is independent of the number of ions and the trap parameters, so long as the crystal radius remains smaller than the cooling laser beam waist. As the rotation frequency increases, the crystal eventually becomes a linear string, at which point it is no longer able to adjust its density. Instead, a small amplitude vibration in the zigzag mode of oscillation manifests itself as a rotation of the crystal at a fixed frequency that depends only on the applied trap potential.

  18. High power laser coupling to carbon nano-tubes and ion Coulomb explosion

    SciTech Connect

    K, Magesh Kumar K; Tripathi, V. K.

    2013-09-15

    Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω=ω{sub p}/√(2), where ω{sub p} is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ω{sub p}=√(2)ω, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube r{sub c}, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.

  19. High power laser coupling to carbon nano-tubes and ion Coulomb explosion

    NASA Astrophysics Data System (ADS)

    K, Magesh Kumar K.; Tripathi, V. K.

    2013-09-01

    Linear and non linear interaction of laser with an array of carbon nanotubes is investigated. The ac conductivity of nanotubes, due to uneven response of free electrons in them to axial and transverse fields, is a tensor. The propagation constant for p-polarization shows resonance at a specific frequency that varies with the direction of laser propagation. It also shows surface plasmon resonance at ω =ωp/√2 , where ωp is the plasma frequency of free electrons inside a nanotube, assumed to be uniform plasma cylinder. The attenuation constant is also resonantly enhanced around these frequencies. At large laser amplitude, the nanotubes behave as thin plasma rods. As the electrons get heated, the nanotubes undergo hydrodynamic expansion. At an instant when plasma frequency reaches ωp=√2 ω, the electron temperature rises rapidly and then saturates. For a Gaussian laser beam, the heating rate is maximum on the laser axis and falls off with the distance r from the axis. When the excursion of the electrons Δ is comparable or larger than the radius of the nanotube rc, the nanotubes undergo ion Coulomb explosion. The distribution function of ions turns out to be a monotonically decreasing function of energy.

  20. Amplitude blanking related to the pore-filling of gas hydrate in sediments

    USGS Publications Warehouse

    Lee, M.W.; Dillon, William P.

    2001-01-01

    Seismic indicators of gas-hydrate-bearing sediments include elevated interval velocities and amplitude reduction of seismic reflections owing to the presence of gas hydrate in the sediment's pore spaces. However, large amplitude blanking with relatively low interval velocities observed at the Blake Ridge has been enigmatic because realistic seismic models were absent to explain the observation. This study proposes models in which the gas hydrate concentrations vary in proportion to the porosity. Where gas hydrate concentrations are greater in more porous media, a significant amplitude blanking can be achieved with relatively low interval velocity. Depending on the amount of gas hydrate concentration in the pore space, reflection amplitudes from hydrate-bearing sediments can be much less, less or greater than those from corresponding non-hydrate-bearing sediments.

  1. Two-loop superstring five-point amplitude and S -duality

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Mafra, Carlos R.; Schlotterer, Oliver

    2016-02-01

    The low-energy limit of the massless two-loop five-point amplitudes for both type IIA and type IIB superstrings is computed with the pure spinor formalism and its overall coefficient determined from first principles. For the type IIB theory, the five-graviton amplitude is found to be proportional to its tree-level counterpart at the corresponding order in α' . Their ratio ties in with expectations based on S-duality since it matches the same modular function E5 /2 which relates the two-loop and tree-level four-graviton amplitudes. For R-symmetry violating states, the ratio between tree-level and two-loop amplitudes at the same α'-order carries an additional factor of -3 /5 . Its S -duality origin can be traced back to a modular form derived from E5 /2.

  2. Spatial Proportional Reasoning Is Associated with Formal Knowledge about Fractions

    ERIC Educational Resources Information Center

    Möhring, Wenke; Newcombe, Nora S.; Levine, Susan C.; Frick, Andrea

    2016-01-01

    Proportional reasoning involves thinking about parts and wholes (i.e., about fractional quantities). Yet, research on proportional reasoning and fraction learning has proceeded separately. This study assessed proportional reasoning and formal fraction knowledge in 8- to 10-year-olds. Participants (N = 52) saw combinations of cherry juice and water…

  3. Using Literature as a Vehicle to Explore Proportional Reasoning.

    ERIC Educational Resources Information Center

    Thompson, Denisse R.; Austin, Richard A.; Beckmann, Charlene E.

    The development of proportional reasoning is a major focus of the middle grades curriculum. The challenge for educators is to find contexts that engage students and that facilitate the study of proportional reasoning. This chapter explores proportional thinking with students in grades 3-8 by using a number of books in which the underlying stories…

  4. Evaluation of facial divine proportion in North Indian Population

    PubMed Central

    Khan, Naseem Ahmad; Nagar, Amit; Tandon, Pradeep; Singh, Gulshan Kumar; Singh, Alka

    2016-01-01

    Objective: To evaluate the facial divine proportion and its relationship with facial attractiveness in North Indian population. Materials and Methods: For evaluation of various facial proportions, standardized frontal facial photographs of total 300 subjects between 18 and 30 years of age were obtained. Black and white copies of these photographs were presented in front of an evaluation jury for assigning scores of facial attractiveness and finally 130 attractive subjects were selected. These subjects were divided into two groups, Group I (attractive females n = 65) and Group II (attractive males n = 65) and they were further analyzed for various parameters of facial proportions. Unpaired Student's t-test was used to compare both groups. Results: Group I showed that five of seven vertical facial proportions were close to divine proportion (1.618) whereas only two vertical proportions in Group II were close to it. Transverse facial proportions in both groups deviated more from divine proportion (1.618) and were closer to silver proportion (1.414). Conclusions: Most of the facial proportions of attractive females in the North-Indian population were close to the divine proportion. Thus, facial divine proportion could be an important factor in the perception of facial attractiveness of North-Indian attractive females.

  5. A link representation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    He, Song

    2013-10-01

    We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

  6. Form factor and boundary contribution of amplitude

    NASA Astrophysics Data System (ADS)

    Huang, Rijun; Jin, Qingjun; Feng, Bo

    2016-06-01

    The boundary contribution of an amplitude in the BCFW recursion relation can be considered as a form factor involving boundary operator and unshifted particles. At the tree-level, we show that by suitable construction of Lagrangian, one can relate the leading order term of boundary operators to some composite operators of mathcal{N} = 4 superYang-Mills theory, then the computation of form factors is translated to the computation of amplitudes. We compute the form factors of these composite operators through the computation of corresponding double trace amplitudes.

  7. [Research on proportional control system of prosthetic hand based on FMG signals].

    PubMed

    Yi, Jinhua; Yu, Hongliu; Li, Panpan; Zhao, Shengnan

    2013-02-01

    The control of prosthetic hand is always a focus in prosthesis research. For solving current problems of controlling signals of skin surface electrical signals, we applied force myography (FMG) signals in prosthetic control of this system. The control system based on FMG signals were designed, containing signal acquisition and pre-processing, prosthetic control, motor driving and so on. Two-freedom artificial hand with proportional control was proposed through acquiring two-channel FMG signals from the amputee stump. The proportional control of prosthetic hand was achieved according to the average of FMG amplitude. The results showed that the control system had a great potential to control artificial hand and to realize speed adjustment effectively. Besides, the Virtual instrument software LabVIEW is adopted to establish the FMG signal collection and calibration of experiment system. PMID:23488135

  8. As-built design specification for proportion estimate software subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, S. (Principal Investigator)

    1980-01-01

    The Proportion Estimate Processor evaluates four estimation techniques in order to get an improved estimate of the proportion of a scene that is planted in a selected crop. The four techniques to be evaluated were provided by the techniques development section and are: (1) random sampling; (2) proportional allocation, relative count estimate; (3) proportional allocation, Bayesian estimate; and (4) sequential Bayesian allocation. The user is given two options for computation of the estimated mean square error. These are referred to as the cluster calculation option and the segment calculation option. The software for the Proportion Estimate Processor is operational on the IBM 3031 computer.

  9. Constant-amplitude, frequency- independent phase shifter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1971-01-01

    Electronic circuit using operational amplifiers provides output with constant phase shift amplitude, with respect to sinusoidal input, over wide range of frequencies. New circuit includes field effect transistor, Q, operational amplifiers, A1 and A2, and phase detector.

  10. Effective string theory and QCD scattering amplitudes

    SciTech Connect

    Makeenko, Yuri

    2011-01-15

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  11. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  12. Coulombic wall slip of concentrated soft-particle suspensions

    NASA Astrophysics Data System (ADS)

    Adams, Michael; Liu, Wei; Zhang, Zhibing; Fryer, Peter

    2013-06-01

    The coefficients of friction of concentrated soft-particle suspensions (tomato paste and a microgel suspension) were measured as a function of the slip velocity for a number of substrates. The data are interpreted using a micro-elastohydrodynamic model that is consistent with significant bulk frictional dissipation and an increase in the number of particle-wall contacts with increasing normal stress. The origin of the Coulombic slip, which has not been observed previously for pastes, is ascribed to the sensitivity of the lubricating film thickness.

  13. The distinguishable cluster approach from a screened Coulomb formalism.

    PubMed

    Kats, Daniel

    2016-01-28

    The distinguishable cluster doubles equations have been derived starting from an effective screened Coulomb formalism and a particle-hole symmetric formulation of the Fock matrix. A perturbative triples correction to the distinguishable cluster with singles and doubles (DCSD) has been introduced employing the screened integrals. It is shown that the resulting DCSD(T) method is more accurate than DCSD for reaction energies and is less sensitive to the static correlation than coupled cluster with singles and doubles with a perturbative triples correction. PMID:26827197

  14. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    NASA Astrophysics Data System (ADS)

    Nia, Iman Hassani; Mohseni, Hooman

    2014-07-01

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  15. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    SciTech Connect

    Sjue, Sky K.

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  16. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    SciTech Connect

    Nia, Iman Hassani; Mohseni, Hooman

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  17. A Monte Carlo study of the generalized Coulomb Milne problem

    NASA Astrophysics Data System (ADS)

    Barghouthi, I. A.; Barakat, A. R.

    2005-11-01

    Because of its relevance to space plasma problems (such as the terrestrial polar wind), we investigated the diffusion of a minor ion species through a non-uniform background major ion species. A Fokker Planck expression was used to represent the Coulomb collisions between the minor and the background ions. A change of variables was implemented in order to transform the problem into a simpler form where the background medium is uniform. This transformed problem described minor ions diffusing through a background of ions with constant density in the semi-infinite region z˜⩾0 and zero density in the region z˜<0. This problem was termed the generalized Coulomb Milne problem and was addressed by a Monte Carlo simulation. Three different minor-to-background mass ratios (γ) were considered, namely γ=16, 1, and 116, which were relevant to H and O ions, the two most dominant ions in the terrestrial ionosphere. The minor ion velocity distribution (f) and the velocity moments (density (n); drift velocity (u), parallel (T) and perpendicular (T) temperatures; and parallel (q˜s∥) and perpendicular (q˜s⊥) heat fluxes) were computed. For the cases when the minor species mass was comparable to, or larger than the background species mass (γ=16,1), the distribution was close to Maxwellian at low altitudes due to Coulomb collisions, gradually formed a weak upward tail in the transition region, and eventually assumed a half-Maxwellian shape at the collisionless region. This was reflected in the enhancement of the flow and random energies, and the energy fluxes for these cases. Deep into the collision-dominated region, n was found to be linearly dependent on the normalized distance z˜ with a gradient (m=dn˜/dz˜). As γ decreased from 16 to 1 to 116, m decreased from 2.0 to 1.7 to 0.75, respectively. For the case of a lighter minor ion species drifting through a heavier background ion species (e.g. γ=116), the ion outflow exhibited some interesting qualitatively

  18. Superconductor-insulator transition in the presence of Coulomb disorder

    NASA Astrophysics Data System (ADS)

    Shklovskii, B. I.

    2007-12-01

    Superconductor-insulator transition driven by the decreasing concentration of electrons n is studied in the case of the disorder potential created by randomly positioned charged impurities. Electrons and Cooper pairs (formed by a non-Coulomb attraction) nonlinearly screen the random potential of impurities. Both electrons and Cooper pairs can be delocalized or localized in the resulting self-consistent potential. The border separating the superconductor and insulator phases in the plane of the concentration of electrons and the length of the Cooper pair is found. For a strong disorder, the central segment of this border follows the Bose-Einstein-Condensation-BCS crossover line defined for a clean sample.

  19. A nonlinear Bloch model for Coulomb interaction in quantum dots

    SciTech Connect

    Bidegaray-Fesquet, Brigitte Keita, Kole

    2014-02-15

    In this paper, we first derive a Coulomb Hamiltonian for electron–electron interaction in quantum dots in the Heisenberg picture. Then we use this Hamiltonian to enhance a Bloch model, which happens to be nonlinear in the density matrix. The coupling with Maxwell equations in case of interaction with an electromagnetic field is also considered from the Cauchy problem point of view. The study is completed by numerical results and a discussion about the advisability of neglecting intra-band coherences, as is done in part of the literature.

  20. The Coulomb excitations of Bernal bilayer graphene under external fields

    SciTech Connect

    Wu, Jhao-Ying; Lin, Ming-Fa

    2014-03-31

    We study the field effects on the Coulomb excitation spectrum of Bernal bilayer graphene by using the tight-binding model and the random-phase approximation. The electric field opens the band gap and creates the saddle points, the latter brings about a prominent interband plasmon. On the other hand, the magnetic field induces the dispersionless Landau levels (LLs) that causes the inter-LL plasmons. The two kinds of field-induced plasmon modes can be further tuned by the magnitude of momentum transfer and the field strength. The predicted results may be further validated by the inelastic light-scattering or high-resolution electron-energy-loss spectroscopy (HREELLS)

  1. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  2. Challenges in calculating molecular systems with Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Kirnosov, Nikita; Sharkey, Keeper; Adamowicz, Ludwik

    2014-03-01

    The highly accurate quantum mechanical calculations are not only crucial for high-resolution experimental data verification, but may also serve as a guide in the field of exotic systems exploration. Including all non-relativistic effects in a single-step variational approach and rigorously separating out the center of mass motion allows us to build a reliable model for calculating bound states of molecular systems with Coulomb interactions. In these calculations the wave function of the system is expanded in terms of explicitly correlated Gaussian (ECG) basis functions. Examples of calculations of energies and other properties of some molecular systems will be presented.

  3. Topological defect motifs in two-dimensional Coulomb clusters.

    PubMed

    Radzvilavičius, A; Anisimovas, E

    2011-09-28

    We study the distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analysed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds-grain boundaries, rosette defects, vacancies and interstitial particles. Proliferation of defects in metastable configurations destroys the orientational order of the Wigner lattice. PMID:21891854

  4. Heavy quarks, gluons and the confinement potential in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Popovici, Carina; Watson, Peter; Reinhardt, Hugo

    2011-05-01

    We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.

  5. Heavy quarks, gluons and the confinement potential in Coulomb gauge

    SciTech Connect

    Popovici, Carina; Watson, Peter; Reinhardt, Hugo

    2011-05-23

    We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.

  6. Seismic directional beamforming using cosine amplitude distribution

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Xu, X.; Song, J.; Jia, H.; Ge, L.

    2013-12-01

    o improve the signal-to-noise ratio in seismic exploration, we studied the method of time domain seismic beam-forming based on receiver array (TSBBRA). TSBBRA is useful to extract reflected waves from some target layers and decrease noise from other direction. When noise is strong enough, the control parameter of the method of TSBBRA need to be increased. It means that we have to use more raw records to form a directional seismic record. Therefore, the signal energy in beam is much denser, and the beam becomes narrower accordingly. When the beam can not cover the receiver array, the signal-to-noise ratios in different traces are quite unbalanced and average quality of data probably is still quite low. Therefore, this paper proposes seismic directional beamforming using the cosine amplitude distribution (SDBCAD). SDBCAD can adjust seismic beam shape by introducing cosine amplitude distribution, an amplitude weighting method, in the procedure of beamforming. We studied cosine amplitude weighting function, analyzed the characteristics of uniform and cosine amplitude distribution in beamforming, and compared directivity of beams from the two kind of amplitude pattern. It shows that the main beam of cosine-weighted amplitude is different from uniform distribution. The coverage of main beam from SDBCAD is wider than uniform amplitude, and the width of beam is varied with different number of cosine order. So we simulated the seismic raw record, and used TSBBRA and SDBCAD to process simulated data at the receiving array. The results show that SDBCAD can broaden directional beam, and the main beam from SDBCAD can cover the entire traces instead of partial coverage in TSBBRA. The average signal-to-noise ratio increased 0.2~4.5dB. It concludes that SDBCAD is competent to stretch beam reasonable, and it is useful to boost signal-to-noise ratio when beam from TSBBRA is too narrow to illuminate receiver array properly. Updated results will be presented at the meeting.

  7. Nucleon Distribution Amplitudes from Lattice QCD

    SciTech Connect

    Goeckeler, Meinulf; Kaltenbrunner, Thomas; Warkentin, Nikolaus; Horsley, Roger; Zanotti, James M.; Nakamura, Yoshifumi; Pleiter, Dirk; Schierholz, Gerrit; Rakow, Paul E. L.; Schaefer, Andreas; Stueben, Hinnerk

    2008-09-12

    We calculate low moments of the leading-twist and next-to-leading-twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature.

  8. The amplitude of quantum field theory

    SciTech Connect

    Medvedev, B.V. ); Pavlov, V.P.; Polivanov, M.K. ); Sukhanov, A.D. )

    1989-05-01

    General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number.

  9. Students' Understanding of Proportional, Inverse Proportional, and Affine Functions: Two Studies on the Role of External Representations

    ERIC Educational Resources Information Center

    De Bock, Dirk; Van Dooren, Wim; Verschaffel, Lieven

    2015-01-01

    We investigated students' understanding of proportional, inverse proportional, and affine functions and the way this understanding is affected by various external representations. In a first study, we focus on students' ability to model textual descriptions of situations with different kinds of representations of proportional, inverse…

  10. The Identification and Validation Process of Proportional Reasoning Attributes: An Application of a Proportional Reasoning Modeling Framework

    ERIC Educational Resources Information Center

    Tjoe, Hartono; de la Torre, Jimmy

    2014-01-01

    In this paper, we discuss the process of identifying and validating students' abilities to think proportionally. More specifically, we describe the methodology we used to identify these proportional reasoning attributes, beginning with the selection and review of relevant literature on proportional reasoning. We then continue with the…

  11. Estimating sighting proportions of American alligator nests during helicopter survey

    USGS Publications Warehouse

    Rice, Kenneth G.; Percival, H. Franklin; Woodward, Allan R.

    2000-01-01

    Proportions of American alligator (Alligator mississippiensis) nests sighted during aerial survey in Florida were estimated based upon multiple surveys by different observers. We compared sighting proportions across habitats, nesting seasons, and observer experience levels. The mean sighting proportion across all habitats and years was 0.736 (SE=0.024). Survey counts corrected by the mean sighting proportion reliably predicted total nest counts (7?2=0.933). Sighting proportions did not differ by habitat type (P=0.668) or year P=0.328). Experienced observers detected a greater proportion of nests (P<0.0001) than did either less experienced or inexperienced observers. Reliable estimates of nest abundance can be derived from aerial counts of alligator nests when corrected by the appropriate sighting proportion.

  12. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  13. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-04-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  14. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  15. Cumulative Coulomb Stress Triggering as an Explanation for the Canterbury (New Zealand) Aftershock Sequence: Initial Conditions Are Everything?

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark; Harte, David; Williams, Charles

    2016-01-01

    Using 2 years of aftershock data and three fault-plane solutions for each of the initial M7.1 Darfield earthquake and the larger (M >6) aftershocks, we conduct a detailed examination of Coulomb stress transfer in the Canterbury 2010-2011 earthquake sequence. Moment tensor solutions exist for 283 of the events with M ≥ 3.6, while 713 other events of M ≥ 3.6 have only hypocentre and magnitude information available. We look at various methods for deciding between the two possible mechanisms for the 283 events with moment tensor solutions, including conformation to observed surface faulting, and maximum ΔCFF transfer from the Darfield main shock. For the remaining events, imputation methods for the mechanism including nearest-neighbour, kernel smoothing, and optimal plane methods are considered. Fault length, width, and depth are arrived at via a suite of scaling relations. A large (50-70 %) proportion of the faults considered were calculated to have initial loading in excess of the final stress drop. The majority of faults that accumulated positive ΔCFF during the sequence were `encouraged' by the main shock failure, but, on the other hand, of the faults that failed during the sequence, more than 50 % of faults appeared to have accumulated a negative ΔCFF from all preceding failures during the sequence. These results were qualitatively insensitive to any of the factors considered. We conclude that there is much unknown about how Coulomb stress triggering works in practice.

  16. Coulomb-Boltzmann-Shifted distribution in laser-generated plasmas from 1010 up to 1019 W/cm2 intensities

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2016-02-01

    The charge production from laser-generated plasmas generates not isotropically ion acceleration in vacuum and with mean kinetic energy proportional to the ion charge state. The ion velocity depends on many factors of which the most important are the plasma temperature, the adiabatic gas expansion in vacuum and the Coulomb acceleration. The ion energy distributions of the emitted ions from the plasma can be well explained by the Coulomb-Boltzmann-Shifted function, with a cut-off limitation at high energy for a wide range of laser intensities. It can be applied for intensities of 1010 W/cm2, when plasma is produced only in the backward direction from thick targets (backward plasma acceleration regime), as well as at intensities of the order of 1019 W/cm2, when plasma is produced in the forward direction from thin targets in target-normal sheath acceleration regime. It loses of validity in radiation pressure acceleration regime, at which ions are emitted near mono-energetically.

  17. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  18. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    PubMed

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I< or =10(17) W cm(-2)), and the attainment of cluster vertical ionization (CVI) (at I=10(17) W cm(-2) for cluster radius R(0)< or =31 A). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter eta=q(C)m(A)/q(A)m(C) for (CA(4))(n) clusters (A=H,D), where q(j) and m(j) (j=A,C) are the ionic charges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)< or

  19. Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.

    PubMed

    Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki

    2015-03-11

    Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology. PMID:25330166

  20. Relations between closed string amplitudes at higher-order tree level and open string amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Xin; Du, Yi-Jian; Ma, Qian

    2010-01-01

    KLT relations almost factorize closed string amplitudes on S by two open string tree amplitudes which correspond to the left- and the right-moving sectors. In this paper, we investigate string amplitudes on D and RP. We find that KLT factorization relations do not hold in these two cases. The relations between closed and open string amplitudes have new forms. On D and RP, the left- and the right-moving sectors are connected into a single sector. Then an amplitude with closed strings on D or RP can be given by one open string tree amplitude except for a phase factor. The relations depends on the topologies of the world-sheets. Under T-duality, the relations on D and RP give the amplitudes between closed strings scattering from D-brane and O-plane respectively by open string partial amplitudes. In the low energy limits of these two cases, the factorization relations for graviton amplitudes do not hold. The amplitudes for gravitons must be given by the new relations instead.

  1. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-01

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γH = 2) and eight (γ1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (α _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  2. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    PubMed

    Przybytek, Michal; Helgaker, Trygve

    2013-08-01

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  3. Coulomb ensemble of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Myasnikov, Maxim

    Strongly coupled Coulomb systems (SCCS) are of considerable fundamental and applied interest. They have been theoretically and experimentally investigated during many decades. In recent years, ordered dust structures of liquid-like and crystalline type in discharge plasma is often considered as a physical model of SCCS that can visually be observed. Using such structures of charged dust particles, one can investigate the processes of phase transitions, waves, and instabilities on kinetic level. For confinement and investigation of strongly coupled systems of charged dust particles, we propose to use a trap based on the known possibility of the levitation of diamagnetic bodies in a nonuniform steady-state magnetic field. For the investigation of Coulomb clusters of diamagnetic particles in nonuniform magnetic field the experimental setup with the region of stable levitation about 400 cm(3) and magnetic field gradient of 0.04 T/cm was produced. Preliminary experiments were carried out on the board of International Space Station with carbon particles with sizes of 100, 200, 300 and 400 mum in the argon atmosphere under atmospheric pressure. The preliminary analysis of the experiments allowed us to determine the formation of large cluster of carbon particles in the magnet trap. A number of particles in the cluster was about 2000. The oscillations of the cluster were observed, the maximum amplitude of the oscillations was 0.49 cm, the oscillation period - 10 s and damping factor - 0.07 s(-1) . From the balance of electrostatic and magnetic forces the dust charges were evaluated. The charge value for the particles with size of 400 mum was q_{p}≈ 4* 10(4) e. Next we performed MD simulation of the observed processes of the cluster formation and oscillation. To account for the magnetic forces confining a cluster we have numerically calculated the magnetic field distribution in the cusp trap and approximate it by a simple expression with reasonable accuracy. Results of the

  4. Gauge equivalence in QCD: The Weyl and Coulomb gauges

    NASA Astrophysics Data System (ADS)

    Haller, Kurt; Ren, Hai-Cang

    2003-10-01

    The Weyl-gauge (Aa0=0) QCD Hamiltonian is unitarily transformed to a representation in which it is expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states we have constructed that implement the non-Abelian Gauss’s law, this unitarily transformed Weyl-gauge Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application of this Hamiltonian to a variety of physical processes, including the evaluation of S-matrix elements. This isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-gauge fields operating within a space of “standard” perturbative states. The fact that the gauge-invariant chromoelectric field is not Hermitian has important implications for the functional form of the Hamiltonian finally obtained. When this non-Hermiticity is taken into account, the “extra” vertices in the Christ-Lee’ Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this non-Hermiticity is neglected, the Hamiltonian used in the earlier work of Gribov and others results.

  5. Quasiequilibrium Characterization of Mixed-Ion Coulomb Crystals

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu; Schuessler, Hans A.

    2015-11-01

    We demonstrate the application of reliable methods to determine both the average micromotion energies and the number of sympathetically cooled ions (SCIs) embedded in mixed-ion Coulomb crystals in a linear Paul trap. The number of the SCIs and the micromotion energies for the observed mixed-ion crystals are determined by comparing experimentally obtained images with molecular-dynamics simulations, where the kinetic energies of SCIs trapped in rf fields are averaged in cold elastic collisions between the laser-cooled ions and virtual very light atoms. This combined method quickly achieves the quasiequilibrium state of large mixed Coulomb crystals with over 103 ions, regardless of the initial conditions, and shows that the previously used pseudopotential-based adiabatic approximations should be replaced by such molecular-dynamics simulations. In addition, a pattern-matching recognition procedure is introduced which objectively ascertains the number of ions. We also apply the presented characterization method to determine the reaction-rate constant between slow acetonitrile molecules and sympathetically cooled Ne+ ions at a translational temperature lower than 10 K.

  6. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands. PMID:24722427

  7. Coulomb-corrected molecular orbital tomography of nitrogen

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; He, Lixin; Lan, Pengfei; Zhu, Xiaosong; Li, Yang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Lu, Peixiang

    2016-03-01

    High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation.

  8. Coulomb-corrected molecular orbital tomography of nitrogen.

    PubMed

    Zhai, Chunyang; He, Lixin; Lan, Pengfei; Zhu, Xiaosong; Li, Yang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Lu, Peixiang

    2016-01-01

    High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation. PMID:27000666

  9. Enhancement of the Coulomb collision rate by individual particle wakes

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott; Scheiner, Brett

    2013-09-01

    Charged particles moving in a plasma leave a trailing wake in their electric potential profile associated with the response function of the medium. For superthermal particles, these wakes can cause significant departures from the oft-assumed screened Coulomb potential profile. The wakes extend the interaction length scale beyond the Debye screening length for collisions between fast test particles and field particles in their wake. This can increase the Coulomb collision rate for velocities beyond the thermal speed. To demonstrate this effect, we consider the relaxation rate due to electron-electron collisions of an electron distribution function with initially depleted tails, as is common near boundary sheaths or double layers. This problem is related to Langmuir's paradox. We compare the standard Landau (Fokker-Planck) collision operator, which does not account for wakes, with the Lenard-Balescu collision operator, which includes wake effects through the linear dielectric response function. For this distribution, the linear dielectric is described by the incomplete plasma dispersion function. We compare the collision operators directly as well as the relaxation rate determined from a hybrid kinetic-fluid model. S. D. Baalrud, Phys. Plasmas 20, 012118 (2013).

  10. Coulomb excitation of 44Ca and 46Ar

    NASA Astrophysics Data System (ADS)

    Calinescu, S.; Cáceres, L.; Grévy, S.; Sorlin, O.; Dombrádi, Z.; Stanoiu, M.; Astabatyan, R.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Clément, E.; Franchoo, S.; Garcia, R.; Gillibert, R.; Guerin, I. H.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Maslov, V.; Morfouace, P.; Mrazek, J.; Negoita, F.; Niikura, M.; Perrot, L.; Podolyák, Z.; Petrone, C.; Penionzhkevich, Y.; Roger, T.; Rotaru, F.; Sohler, D.; Stefan, I.; Thomas, J. C.; Vajta, Z.; Wilson, E.

    2016-04-01

    The reduced transition probabilities B (E 2 ;0g.s . +→21+) of the 46Ar and 44Ca nuclei were studied using the Coulomb excitation technique at intermediate energy at the LISE/GANIL facility. The in-flight γ rays, emitted after the Coulomb excitation of their first 2+ states, were detected in an array of 64 BaF2 crystals. The present B(E 2 ↑ ) value for 44Ca, 475(36) e2fm4 , agrees well with the value of 495(35) e2fm4 obtained by averaging results of previous experiments. Consistent B (E 2 ;0g.s . +→21+) values of 225(29) e2fm4 and 234(19) e2fm4 have been obtained for 46Ar from an absolute and a relative measurement, normalized to the 44Ca value. Both results agree with the ones obtained with the same experimental technique at the NSCL facility but are a factor of 2 smaller than the shell model predictions. The drop in B (E 2 ;0g.s . +→21+) in the Ar chain at N =28 , confirmed in this experiment, shows that 46Ar is sensitive to the N =28 shell closure.

  11. Coulomb excitation of a {sup 78}Rb radioactive beam.

    SciTech Connect

    Schwartz, J.

    1998-11-18

    In order to test the feasibility of Coulomb excitation of radioactive projectiles with low beam energies and intensities, they have produced a secondary radioactive beam of {sup 78}Rb and Coulomb re-excited it. The beam was produced in the fusion evaporation reaction {sup 24}Mg({sup 58}Ni,3pn){sup 78}Rb at a beam energy of 260 MeV, using the Argonne National Laboratory ATLAS accelerator. The residues of interest were separated from other reaction products and non-interacting beam using the Fragment Mass Analyzer (FMA). The beam leaving the FMA was {sup 78}Kr and {sup 78}Rb{sup gs,m1,m2}, which was refocused onto a {sup 58}Ni secondary target. They have extracted a spectrum of {gamma}-rays associated with re-excitation of A = 78 isobars. The re-excitation of stable {sup 78}Kr was observed, which serves as a reference. Gamma-rays associated with excitation of {sup 78}Rb{sup gs,m1,m2} were also seen. The measured yields indicate that all the {sup 78}Rb states are highly deformed.

  12. Coulomb attraction in the optical spectra of quantum disks

    NASA Astrophysics Data System (ADS)

    Adolph, B.; Glutsch, S.; Bechstedt, F.

    1993-11-01

    In this paper we present a theory that describes the influence of the Coulomb interaction between electrons and holes on the optical spectra of flat quantum dots within the envelope-function formalism. Starting from a nonlocal Elliott-like formula, absorption and luminescence characteristics are traced back to properties of two-particle wave functions and energies, which are solutions of the corresponding Schrödinger equation for an electron-hole pair under the influence of the Coulomb attraction and confinement potentials, determined by the spatial variation of the band edges of the considered microstructure. We present a complete numerical solution of the two-particle problem for flat quantum dots, i.e., disks for which the size quantization in the growth direction is much stronger than that in the perpendicular plane. The resulting theoretical line shapes are compared with luminescence spectra obtained recently for quantum dots fabricated by laser-induced thermal cation interdiffusion in quantum-well structures.

  13. Mechanical model of the Lorentz force and Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Dmitriyev, Valery

    2008-09-01

    The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.

  14. Exact linearized Coulomb collision operator in the moment expansion

    DOE PAGESBeta

    Ji, Jeong -Young; Held, Eric D.

    2006-10-05

    In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less

  15. Unsafe coulomb excitation of {sup 240-244}Pu.

    SciTech Connect

    Wiedenhoever, I.

    1998-12-01

    The high spin states of {sup 240}Pu and {sup 244}Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a {sup 208}Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to {sup 242}Pu were obtained as well. In the case of {sup 244}Pu, the yrast band was extended to 34{h_bar}, revealing the completed {pi}i{sub 13/2} alignment, a ''first'' for actinide nuclei. The yrast sequence of {sup 242}Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of {sup 240}Pu was measured up to the highest rotational frequencies ever reported in the actinide region ({approximately} 300 keV), no sign of particle alignment was observed. In this case, several observables such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the {pi}i{sub 13/2} particle alignment.

  16. Coulomb-corrected molecular orbital tomography of nitrogen

    PubMed Central

    Zhai, Chunyang; He, Lixin; Lan, Pengfei; Zhu, Xiaosong; Li, Yang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Lu, Peixiang

    2016-01-01

    High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation. PMID:27000666

  17. Large-amplitude electrostatic solitary structures in dusty plasmas with vortexlike variable charge dust distribution

    SciTech Connect

    Tribeche, Mouloud

    2005-07-15

    A theoretical model is presented to show the existence, formation, and possible realization of large-amplitude solitary potentials in a charge varying dusty plasma with trapped dust particles. These nonlinear localized structures are self-consistent solutions of the Vlasov equation in which the dust response is non-Maxwellian due to the dust trapping in the large-amplitude plasma potentials. The soliton suffers the well-known anomalous damping, the importance of which is roughly proportional to the dust grain velocity. Our investigation may be taken as a prerequisite for the understanding of the electrostatic solitary waves that may occur in space dusty plasmas.

  18. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.

    1999-09-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  19. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  20. Inquiry pedagogy to promote emerging proportional reasoning in primary students

    NASA Astrophysics Data System (ADS)

    Fielding-Wells, Jill; Dole, Shelley; Makar, Katie

    2014-03-01

    Proportional reasoning as the capacity to compare situations in relative (multiplicative) rather than absolute (additive) terms is an important outcome of primary school mathematics. Research suggests that students tend to see comparative situations in additive rather than multiplicative terms and this thinking can influence their capacity for proportional reasoning in later years. In this paper, excerpts from a classroom case study of a fourth-grade classroom (students aged 9) are presented as they address an inquiry problem that required proportional reasoning. As the inquiry unfolded, students' additive strategies were progressively seen to shift to proportional thinking to enable them to answer the question that guided their inquiry. In wrestling with the challenges they encountered, their emerging proportional reasoning was supported by the inquiry model used to provide a structure, a classroom culture of inquiry and argumentation, and the proportionality embedded in the problem context.

  1. A description of seismic amplitude techniques

    NASA Astrophysics Data System (ADS)

    Shadlow, James

    2014-02-01

    The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.

  2. Periodic amplitude variations in Jovian continuum radiation

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-12-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both 5 and 10 horus. Contrary to a plausible initial idea, the continuum amplitudes are not organized by the position of the observer relative to the dense plasma sheet. Instead, there seem to be perferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clocklike modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude solar wind alignment to the amplitude of the continuum radiation implies that the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  3. Connecting physical resonant amplitudes and lattice QCD

    NASA Astrophysics Data System (ADS)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 -i/2 129 (3) (1) 7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  4. Cut-constructible part of QCD amplitudes

    SciTech Connect

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-05-15

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.

  5. Perturbative type II amplitudes for BPS interactions

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-02-01

    We consider the perturbative contributions to the {{ R }}4, {D}4{{ R }}4 and {D}6{{ R }}4 interactions in toroidally compactified type II string theory. These BPS interactions do not receive perturbative contributions beyond genus three. We derive Poisson equations satisfied by these moduli dependent string amplitudes. These T-duality invariant equations have eigenvalues that are completely determined by the structure of the integrands of the multi-loop amplitudes. The source terms are given by boundary terms of the moduli space of Riemann surfaces corresponding to both separating and non-separating nodes. These are determined directly from the string amplitudes, as well as from U-duality constraints and logarithmic divergences of maximal supergravity. We explicitly solve these Poisson equations in nine and eight-dimensions.

  6. Connecting physical resonant amplitudes and lattice QCD

    NASA Astrophysics Data System (ADS)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 02) -i/2 129 (3) (1) (7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  7. Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi; Ruiz, Mario; Palacios, Pablo; Ortiz, Hugo; Yepes, Hugo

    2013-05-01

    The amplitude source location (ASL) method, which uses high-frequency amplitudes under the assumption of isotropic S-wave radiation, has been shown to be useful for locating the sources of various types of volcano-seismic signals. We tested the ASL method by using synthetic seismograms and examined the source amplitudes determined by this method for various types of volcano-seismic signals observed at different volcanoes. Our synthetic tests indicated that, although ASL results are not strongly influenced by velocity structure and noise, they do depend on site amplification factors at individual stations. We first applied the ASL method to volcano-tectonic (VT) earthquakes at Taal volcano, Philippines. Our ASL results for the largest VT earthquake showed that a frequency range of 7-12 Hz and a Q value of 50 were appropriate for the source location determination. Using these values, we systematically estimated source locations and amplitudes of VT earthquakes at Taal. We next applied the ASL method to long-period events at Cotopaxi volcano and to explosions at Tungurahua volcano in Ecuador. We proposed a practical approach to minimize the effects of site amplifications among different volcano seismic networks, and compared the source amplitudes of these various volcano-seismic events with their seismic magnitudes. We found a proportional relation between seismic magnitude and the logarithm of the source amplitude. The ASL method can be used to determine source locations of small events for which onset measurements are difficult, and thus can estimate the sizes of events over a wider range of sizes compared with conventional hypocenter determination approaches. Previously, there has been no parameter widely used to quantify the sources of volcano-seismic signals. This study showed that the source amplitude determined by the ASL method may be a useful quantitative measure of volcano-seismic event size.

  8. A Monte Carlo study of the generalized Coulomb Milne problem

    NASA Astrophysics Data System (ADS)

    Barghouthi, I.; Barakat, A.

    2003-04-01

    Because of its relevance to the solar wind and terrestrial polar wind, we investigated the problem where a swarm of minor ions escaped through a background of non-uniform major ions. The Fokker-Planck expression was used to represent the Coulomb collisions between the minor and major ions. A change of variables was utilized in order to transform the problem into a simpler form where the background medium was uniform. This transformed problem described minor ions diffusing through a background of ions of a constant density in the semi-infinite region (z>0), and vacuum in the region (z<0), which resembles the standard Milne problem. A Monte Carlo model was used to investigate this "generalized Coulomb Milne" problem for three different minor-to-major ion mass ratios, namely; R = m/M = 1/16, 1 and 16, where m and M are the minor and major ion masses, respectively. The minor ions' velocity distribution function and velocity moments (i.e. density, drift velocity, parallel and perpendicular temperatures, and parallel and perpendicular heat fluxes) were computed. The following conclusions can be drawn: (1) In general, the minor ion species for the cases of (R=1,16) show very similar characteristics, while the third case (R=1/16) shows very different characteristics. (2) In the collision-dominated region (z>>1), the gradient of the normalized density profile approaches a constant value. This asymptotic value of the gradient increases when R decreases. (3) As the minor ion species drifts from the collision-dominated region (z>>) to the collisionless region (z<<1), its velocity distribution starts as Maxwellian, then it develops a tail in the (-z) direction, and finally reaches a form close to bi-Maxwellian. The case of (R=1/16) develops a relatively more pronounced tail, and displays a double-hump form, which is absent for the other two cases. (4) The heat flux profile for the case of (R=1/6) in the collision-dominated region exceeds the corresponding values from the other

  9. Short-time dynamics of correlated quantum Coulomb systems

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2007-03-01

    Strong correlations in dense Coulomb systems are attracting increasing interest in many fields ranging from dense astrophysical plasmas, dusty plasmas and semiconductors to metal clusters and ultracold trapped ions [1]. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) and many-particle correlations such as Coulomb and Yukawa liquids and crystals. Of particular current interest is the response of these systems to short excitations generated e.g. by femtosecond laser pulses and giving rise to ultrafast relaxation processes and build up of binary correlations. The proper theoretical tool are non-Markovian quantum kinetic equations [1,2] which can be derived from Nonequilibrium Green's Functions (NEGF) and are now successfully solved numerically for dense plasmas and semiconductors [3], correlated electrons [4] and other many-body systems with moderate correlations [5]. This method is well suited to compute the nonlinear response to strong fields selfconsistently including many-body effects [6]. Finally, we discuss recent extensions of the NEGF-computations to the dynamics of strongly correlated Coulomb systems, such as single atoms and molecules [7] and electron and exciton Wigner crystals in quantum dots [8,9]. [1] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer 1996; M. Bonitz Quantum Kinetic Theory, Teubner, Stuttgart/Leipzig 1998; [2] Progress in Nonequilibrium Green's Functions III, M. Bonitz and A. Filinov (Eds.), J. Phys. Conf. Ser. vol. 35 (2006); [3] M. Bonitz et al. Journal of Physics: Condensed Matter 8, 6057 (1996); R. Binder, H.S. K"ohler, and M. Bonitz, Phys. Rev. B 55, 5110 (1997); [4] N.H. Kwong, and M. Bonitz, Phys. Rev. Lett. 84, 1768 (2000); [5] Introduction to Computational Methods for Many-Body Systems, M. Bonitz and D. Semkat (eds.), Rinton Press, Princeton (2006); [6] H. Haberland, M. Bonitz, and D. Kremp, Phys. Rev. E 64

  10. Amplitude for N-Gluon Superstring Scattering

    SciTech Connect

    Stieberger, Stephan; Taylor, Tomasz R.

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  11. Microstrip amplitude-weighted wilkinson power dividers

    NASA Astrophysics Data System (ADS)

    Huck, K. D.

    1986-03-01

    Unequal-split reactive power dividers were examined for use in forming amplitude tapers for microstrip array antennas. Circuits with power ratios of up to 5.0 between arms were constructed on Rexolite substrate, for operation at 4.0 GHz and 7.5 GHz. The 4.0 GHz circuits were very accurate in forming the correct amplitude ratio between outputs, and in maintaining phase balance between outputs. Of those circuits designed for 7.5 GHz, only those with split ratios less than 2.5 worked correctly. This report includes a review of the theory, measured results, and recommendations for improved power dividers.

  12. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  13. First birth cesarean proportion: A missed indicator in controlling policies

    PubMed Central

    Safari-Faramani, Roya; Haghdoost, Ali Akbar; Nakhaei, Nouzar; Foroudnia, Shohreh; Mahmoodabadi, Zahra; Safizadeh, Mansooreh

    2016-01-01

    Background: Around one out of two mothers give births by cesarean section (CS) surgery in Iran and about half of this number is due to previous CS. Recently Health Sector Evolution (HSEP) program (started in April 2014) targets the high rate of CS in Iran. To assess the impact of the interventions, we emphasized that the First Birth Cesarean (FBC) proportion is one of the main indicators to assess the controlling programs. Methods: Data on the mode of delivery were collected in Kerman province between 21 March and 20 March 2015 classified by hospital ownership. FBC proportion is defined as the number of CS in the first pregnancies divided by the total number of first births. Chi-square test for trend was used to assess the trends. Results: Total number of births was around 34000. There were 8.9 and 13.1 percent reduction in CS and FBC proportion respectively. CS proportion was 54.5 at the end of the first quarter of the studied period and reached to 49.6 at the end of the period (p<0.0001). Also, FBC proportion was 54.1 percent at first and reached to 47 percent at the end of the study period. The main reason for CS was due to previous CS. At the hospital level, the highest reduction in CS and FBC proportion were in public hospitals. Conclusion: Results suggested more reduction in FBC proportion than the CS proportion, so this is a very good sign since more potential CS cases will be prevented. As repeated CS is one of the main indications for the operation, in the short term, even effective policies may change the overall proportion slightly, while the FBC proportion is more sensitive to reflect the impacts. Therefore, it is necessary to target the main fuel to reduce CS proportion effectively.

  14. Three-body Coulomb systems using generalized angular-momentum S states

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  15. Addendum to 'Equation of state of classical Coulomb plasma mixtures'

    SciTech Connect

    Potekhin, A. Y.; Chabrier, G.; Chugunov, A. I.; DeWitt, H. E.; Rogers, F. J.

    2009-10-15

    Recently developed analytic approximation for the equation of state of fully ionized nonideal electron-ion plasma mixtures [A. Y. Potekhin, G. Chabrier, and F. J. Rogers, Phys. Rev. E 79, 016411 (2009)], which covers the transition between the weak and strong Coulomb coupling regimes and reproduces numerical results obtained in the hypernetted-chain (HNC) approximation, is modified in order to fit the small deviations from the linear mixing in the strong-coupling regime, revealed by recent Monte Carlo simulations. In addition, a mixing rule is proposed for the regime of weak coupling, which generalizes post-Debye density corrections to the case of mixtures and numerically agrees with the HNC approximation in that regime.

  16. Investigation of uncertainty components in Coulomb blockade thermometry

    SciTech Connect

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  17. Coulomb collisions and coronal heating by velocity filtration

    NASA Astrophysics Data System (ADS)

    Anderson, Stephen W.

    1994-12-01

    We introduce the effects of Coulomb collisions to the velocity filtration model of coronal heating, which has so far been done collisionlessly. Non-Maxwellian particle distributions are at the heart of this model, so collisions, which force such distributions to relax, can play a critical role. We consider a column of plasma extending upwards from the bottom of the corona and use typical transition zone densities and temperatures as well as the non-Maxwellian kappa distribution previously used in this model. We demonstrate the collisions are an important factor by comparing electron density and energy profiles predicted by the collisionless Vlasov equation to ones made using the assumption that collisions are a small, first-order perturbation. For the heights considered (below 0.5 solar radius), these collisional corrections are of order unity or larger. We conclude that the velocity filtration model needs to be redone including collisions self-consistently.

  18. Coulomb and nuclear excitations of narrow resonances in 17Ne

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2016-08-01

    New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  19. Coulomb-stable triply charged diatomic: HeY3+

    NASA Astrophysics Data System (ADS)

    Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter

    1999-11-01

    Accurate relativistic coupled-cluster calculations show that the triply charged species HeY3+ is a stable molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and vibrational-rotational constants for HeY3+ are predicted (Re=224.3 pm, D0=0.394 eV, ωe=437 cm-1, ωexe=15.8 cm-1, Be=0.877 cm-1). It is further shown that the He-Y3+ bond can basically be described as a charge-induced dipole interaction.

  20. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices.

    PubMed

    Lotkhov, Sergey V

    2013-06-14

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ~ 20 mK for films with sheet resistivities as high as ~7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. PMID:23670293

  1. Gravitational Modification of the Coulomb-Breit Hamiltonian

    SciTech Connect

    Caicedo, Jose Alexander; Urrutia, Luis Fernando

    2009-04-20

    In the poster session we presented a short review of our first results in the construction of the Coulomb-Breit Hamiltonian for a pair of fermions immersed in a background gravitational field which is described by General Relativity. Here we present a resume of that construction. We make a special stress on the objectives and the hypothesis used, but there is no special attention on the explicit form of the results because actually there is an updated and optimised version of our work in the edition process for publication; however we mention some special characteristics of the effect of the background gravitational field on the quantum nature of the system composed by fermions and its electromagnetic field, particularly the possibility of the observation of centre of mass effects in matter interferometry experiments.

  2. Highly accurate eigenvalues for the distorted Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ixaru, L. Gr.; de Meyer, H.; vanden Berghe, G.

    2000-03-01

    We consider the eigenvalue problem for the radial Schrödinger equation with potentials of the form V(r)=S(r)/r+R(r) where S(r) and R(r) are well behaved functions which tend to some (not necessarily equal) constants when r-->0 and r-->∞. Formulas (14.4.5)-(14.4.8) of Abramowitz and Stegun [Handbook of Mathematical Functions, 8th ed. (Dover, New York, 1972)], corresponding to the pure Coulomb case, are here generalized for this distorted case. We also present a complete procedure for the numerical solution of the problem. Our procedure is robust, very economic and particularly suited for very large n. Numerical illustrations for n up to 2000 are given.

  3. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  4. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378

  5. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroki; Nagaosa, Naoto

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  6. Deep inelastic scattering at energies near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Rehm, K.E.; Schiffer, J.P.

    1993-10-01

    A large yield for a process that appears to have many of the features of deep inelastic scattering has been observed at energies, near the Coulomb barrier in the systems {sup 112,124}Sn + {sup 58}Ni by Wolfs et al. In order to better understand the mechanisms by which energy dissipation takes place close to the barrier, we have extended the measurements of Wolfs to the system {sup 136}Xe + {sup 64}Ni. The use of inverse kinematics in the present measurements resulted in better mass and energy resolution due to reduced target effects and in more complete angular coverage. We have obtained angular distributions, mass distributions, and total cross sections for deep inelastic scattering at two energies near the barrier. The results on the closed neutron shell nucleus {sup 136}Xe complement those from the closed proton shell Sn nuclei.

  7. Bounded solutions of neutral fermions with a screened Coulomb potential

    SciTech Connect

    Castro, Antonio S. de . E-mail: castro@feg.unesp.br

    2005-11-01

    The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength.

  8. Communication: Phase space wavelets for solving Coulomb problems.

    PubMed

    Shimshovitz, Asaf; Tannor, David J

    2012-09-14

    Recently we introduced a phase space approach for solving the time-independent Schrödinger equation using a periodic von Neumann basis with bi-orthogonal exchange (pvb) [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. Here we extend the approach to allow a wavelet scaling of the phase space Gaussians. The new basis set, which we call the wavelet pvb basis, is simple to implement and provides an appealing alternative to other wavelet approaches. For the 1D Coulomb problems tested in this paper, the method reduces the size of the basis relative to the Fourier grid method by a factor of 13-60. The savings in basis set size is predicted to grow steeply as the dimensionality increases. PMID:22979843

  9. Influence of Coulomb screening on lateral lasing in VECSELs.

    PubMed

    Wang, Chengao; Malloy, Kevin; Sheik-Bahae, Mansoor

    2015-12-14

    Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures. PMID:26699044

  10. Attractive Coulomb interaction of two-dimensional Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.

    2016-06-01

    We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron and hole exchange interaction between excited excitons has an attractive character both for s - and p -type two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons, the direct interaction of 2D Rydberg excitons exhibits van der Waals-type long-range interaction. The results predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.

  11. Coulomb gauge confinement in the heavy quark limit

    SciTech Connect

    Popovici, C.; Watson, P.; Reinhardt, H.

    2010-05-15

    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.

  12. Strong nuclear couplings as a source of Coulomb rainbow suppression

    SciTech Connect

    Keeley, N.; Alamanos, N.; Rusek, K.

    2010-09-15

    A recent measurement of the {sup 11}Be+{sup 64}Zn quasielastic scattering angular distribution exhibits a non-Fresnel-type pattern, in contrast to {sup 6}He+{sup 64}Zn elastic scattering but similar to that for the elastic scattering of {sup 6}He from heavy targets. We show by means of continuum discretized coupled-channels (CDCC) calculations that this unusual behavior of {sup 11}Be is caused by the much greater importance of nuclear coupling to the continuum in {sup 11}Be compared to {sup 6}He, where Coulomb dipole coupling is mainly responsible for the non-Fresnel-like shape, when present. We also show that the dynamic polarization potentials derived from the CDCC calculations seem to follow a universal form as a function of radius.

  13. Attention Modulation by Proportion Congruency: The Asymmetrical List Shifting Effect

    ERIC Educational Resources Information Center

    Abrahamse, Elger L.; Duthoo, Wout; Notebaert, Wim; Risko, Evan F.

    2013-01-01

    Proportion congruency effects represent hallmark phenomena in current theorizing about cognitive control. This is based on the notion that proportion congruency determines the relative levels of attention to relevant and irrelevant information in conflict tasks. However, little empirical evidence exists that uniquely supports such an attention…

  14. The Failings of the Law of Definite Proportions

    ERIC Educational Resources Information Center

    Suchow, Lawrence

    1975-01-01

    Indicates that the concept of definite proportions or constant composition should be introduced with qualification. Presents arguments against the Law of Definite Proportions and cites examples in the areas of solid solutions, compounds of the transition and inner transition elements, and in some compounds of the representative elements. (GS)

  15. Understanding Proportional Reasoning in Pre-Service Teachers

    ERIC Educational Resources Information Center

    Johnson, Kim H.

    2013-01-01

    The purpose of this study is to examine the proportional reasoning of pre-service teachers at the beginning of their teacher preparation program using the developmental shifts described by Lobato and Ellis (2010). They cast changes in proportional reasoning as transitions or "shifts" in students' thinking and these shifts can serve as…

  16. 16 CFR 240.9 - Proportionally equal terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Proportionally equal terms. 240.9 Section 240.9 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR ADVERTISING ALLOWANCES AND OTHER MERCHANDISING PAYMENTS AND SERVICES § 240.9 Proportionally equal terms....

  17. 16 CFR 240.9 - Proportionally equal terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Proportionally equal terms. 240.9 Section 240.9 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR ADVERTISING ALLOWANCES AND OTHER MERCHANDISING PAYMENTS AND SERVICES § 240.9 Proportionally equal terms....

  18. The influence of lower face vertical proportion on facial attractiveness.

    PubMed

    Johnston, D J; Hunt, O; Johnston, C D; Burden, D J; Stevenson, M; Hepper, P

    2005-08-01

    This study investigated the influence of changing lower face vertical proportion on the attractiveness ratings scored by lay people.Ninety-two social science students rated the attractiveness of a series of silhouettes with normal, reduced or increased lower face proportions. The random sequences of 10 images included an image with the Eastman normal lower face height relative to total face height [lower anterior face height/total anterior face height (LAFH/TAFH) of 55 per cent], and images with LAFH/TAFH increased or decreased by up to four standard deviations (SD) from the Eastman norm. All the images had a skeletal Class I antero-posterior (AP) relationship. A duplicate image in each sequence assessed repeatability. The participants scored each image using a 10 point numerical scale and also indicated whether they would seek treatment if the image was their own profile. The profile image with normal vertical facial proportions was rated by the lay people as the most attractive. Attractiveness scores reduced as the vertical facial proportions diverged from the normal value. Images with a reduced lower face proportion were rated as significantly more attractive than the corresponding images with an increased lower face proportion. Images with a reduced lower face proportion were also significantly less likely to be judged as needing treatment than the corresponding images with an increased lower face proportion. PMID:15961569

  19. ESTIMATING PROPORTION OF AREA OCCUPIED UNDER COMPLEX SURVEY DESIGNS

    EPA Science Inventory

    Estimating proportion of sites occupied, or proportion of area occupied (PAO) is a common problem in environmental studies. Typically, field surveys do not ensure that occupancy of a site is made with perfect detection. Maximum likelihood estimation of site occupancy rates when...

  20. Coulomb problem in non-commutative quantum mechanics

    SciTech Connect

    Galikova, Veronika; Presnajder, Peter

    2013-05-15

    The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter {lambda} is to be regarded as a measure of the non-commutativity - setting {lambda}= 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space R{sub {lambda}}{sup 3}, an analog of the Coulomb problem configuration space (R{sup 3} with the origin excluded) is introduced. R{sub {lambda}}{sup 3} is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H{sub {lambda}}, a NC analog of the Hilbert space of the wave functions. We will refer to them as 'wave functions' also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H{sub {lambda}} is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in {lambda}) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in {lambda}). All the NC contributions to the known QM solutions either vanish or disappear in the limit {lambda}{yields} 0.

  1. Amplitude Frequency Response Measurement: A Simple Technique

    ERIC Educational Resources Information Center

    Satish, L.; Vora, S. C.

    2010-01-01

    A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…

  2. Particle Distribution Modification by Low Amplitude Modes

    SciTech Connect

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  3. Amplitude analyses of charmless B decays

    NASA Astrophysics Data System (ADS)

    Latham, Thomas

    2016-05-01

    We present recent results from the LHCb experiment of Amplitude Analyses of charmless decays of B0 and BS0 mesons to two vector mesons. Measurements obtained include the branching fractions and polarization fractions, as well as CP asymmetries. The analyses use the data recorded by the LHCb experiment during Run 1 of the LHC.

  4. Cardiac phase: Amplitude analysis using macro programming

    SciTech Connect

    Logan, K.W.; Hickey, K.A.

    1981-11-01

    The analysis of EKG gated radionuclide cardiac imaging data with Fourier amplitude and phase images is becoming a valuable clinical technique, demonstrating location, size, and severity of regional ventricular abnormalities. Not all commercially available nuclear medicine computer systems offer software for phase and amplitude analysis; however, many systems do have the capability of linear image arithmetic using simple macro commands which can easily be sequenced into stored macro-strings or programs. Using simple but accurate series approximations for the Fourier operations, macro programs have been written for a Digital Equipment Corporation Gamma-11 system to obtain phase and amplitude images from routine gated cardiac studies. In addition, dynamic cine-mode presentation of the onset of mechanical systole is generated from the phase data, using only a second set of macro programs. This approach is easily adapted to different data acquisition protocols, and can be used on any system with macro commands for image arithmetic. Key words: Fourier analysis, cardiac cycle, gated blood pool imaging, amplitude image, phase image

  5. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  6. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  7. Investigation of Coulomb dipole polarization effects on reactions involving exotic nuclei

    NASA Astrophysics Data System (ADS)

    Fernández-García, J. P.; Alvarez, M. A. G.; Chamon, L. C.

    2015-07-01

    We have analyzed elastic scattering angular distributions and total reaction cross sections of the exotic nuclei 11,9Li on 208Pb, at energies below and above the Coulomb barrier. For this purpose, we have used an optical potential with no adjustable parameters, composed by the nuclear São Paulo potential, derived from the nonlocal nature of the interaction, and the Coulomb dipole polarization potential, derived from the semiclassical theory of Coulomb excitation. Within this formalism, we identified an unusual long-range absorption for the +208Pb 11Li system, which is dominated by the Coulomb interaction. We compare it to the absorption mechanisms observed for +208Pb6He which, unlike those of +208Pb11Li, take place at small interacting distances, where both Coulomb and nuclear interactions are important. The proposed approach shows to be a fundamental basis to study reactions involving exotic nuclei.

  8. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  9. Amplitude equation for under water sand-ripples in one dimension.

    NASA Astrophysics Data System (ADS)

    Schnipper, Teis; Mertens, Keith; Ellegaard, Clive; Bohr, Tomas

    2007-11-01

    Sand-ripples under oscillatory water flow form periodic patterns with wave lengths primarily controlled by the amplitude d of the water motion. We present an amplitude equation for sand-ripples in one spatial dimension which captures the formation of the ripples as well as secondary bifurcations observed when the amplitude d is suddenly varied. The equation has the form [ ht=- ɛ(h-h)+((hx)^2-1)hxx- hxxxx+ δ((hx)^2)xx] which, due to the first term, is neither completely local (it has long-range coupling through the average height h) nor has local sand conservation. We discuss why this is reasonable and how this term (with ɛ˜d-2) stops the coarsening process at a finite wavelength proportional to d. We compare our numerical results with experimental observations in a narrow channel.

  10. Calculation of energy levels, {ital E}1 transition amplitudes, and parity violation in francium

    SciTech Connect

    Dzuba, V.A.; Flambaum, V.V.; Sushkov, O.P.

    1995-05-01

    Many-body perturbation theory in the screened Coulomb interaction was used to calculate energy levels, {ital E}1 trransition amplitudes, and the parity-nonconserving (PNC) {ital E}1 amplitude of the 7{ital s}-8{ital s} transition in francium. The method takes into account the core-polarization effect, the second-order correlations, and the three dominating sequences of higher-order correlation diagrams: screening of the electron-electron interaction, particle-hole interaction, and the iterations of the self-energy operator. The result for the PNC amplitude for {sup 223}Fr is {ital E}1(7{ital s}-8{ital s})=(1.59{plus_minus}{similar_to}1%){times}10{sup {minus}10}{ital iea}{sub {ital B}}({minus}{ital Q}{sub {ital W}}/{ital N}), where {ital Q}{sub {ital W}} is the weak charge of the nucleus, {ital N}=136 is the number of neutrons, {ital e}={vert_bar}{ital e}{vert_bar} is the elementary charge, and {ital a}{sub {ital B}} is the Bohr radius. Our prediction for the position of the 8{ital s} energy level of Fr, which has not been measured yet, is 13 110 cm{sup {minus}1} below the limit of the continuous spectrum. The accuracy of the calculations was controlled by comparison with available experimental data and analogous calculations for cesium. It is estimated to be {similar_to}0.1% for the energy levels and {similar_to}1% for the transition amplitudes.

  11. Proportional myoelectric control of a virtual object to investigate human efferent control.

    PubMed

    Gordon, Keith E; Ferris, Daniel P

    2004-12-01

    We used proportional myoelectric control of a one-dimensional virtual object to investigate differences in efferent control between the proximal and distal muscles of the upper limbs. Eleven subjects placed one of their upper limbs in a brace that restricted movement while we recorded electromyography (EMG) signals from elbow flexors/extensors or wrist flexors/extensors during isometric contractions. By activating their muscles, subjects applied virtual forces to a virtual object using a real-time computer interface. The magnitudes of these forces were proportional to EMG amplitudes. Subjects used this proportional EMG control to move the virtual object through two tracking tasks, one with a static target and one with a moving target (i.show $132#e., a sine wave). We hypothesized that subjects would have better control over the virtual object using their distal muscles rather than using their proximal muscles because humans typically use more distal joints to perform fine motor tasks. The results indicated that there was no difference in subjects' ability to control virtual object movements when using either upper arm muscles or forearm muscles. These results suggest that differences in control accuracy between elbow joint movements and wrist joint movements are more likely to be a result of motor practice, proprioceptive feedback or joint mechanics rather than inherent differences in efferent control. PMID:15258714

  12. Estimation of lithofacies proportions using well and well test data

    SciTech Connect

    Hu, L.Y.; Blanc, G.; Noetinger, B.

    1996-12-31

    A crucial step of the commonly used geostatistical methods for modeling heterogeneous reservoirs (e.g. the sequential indicator simulation and the truncated Gaussian functions) is the estimation of the lithofacies local proportion (or probability density) functions. Well-test derived permeabilities show good correlation with lithofacies proportions around wells. Integrating well and well-test data in estimating lithofacies proportions could permit the building of more realistic models of reservoir heterogeneity. However this integration is difficult because of the different natures and measurement scales of these two types of data. This paper presents a two step approach to integrating well and well-test data into heterogeneous reservoir modeling. First lithofacies proportions in well-test investigation areas are estimated using a new kriging algorithm called KISCA. KISCA consists in kriging jointly the proportions of all lithofacies in a well-test investigation area so that the corresponding well-test derived permeability is respected through a weighted power averaging of lithofacies permeabilities. For multiple well-tests, an iterative process is used in KISCA to account for their interaction. After this, the estimated proportions are combined with lithofacies indicators at wells for estimating proportion (or probability density) functions over the entire reservoir field using a classical kriging method. Some numerical examples were considered to test the proposed method for estimating lithofacies proportions. In addition, a synthetic lithofacies reservoir model was generated and a well-test simulation was performed. The comparison between the experimental and estimated proportions in the well-test investigation area demonstrates the validity of the proposed method.

  13. System training and assessment in simultaneous proportional myoelectric prosthesis control

    PubMed Central

    2014-01-01

    Background Pattern recognition control of prosthetic hands take inputs from one or more myoelectric sensors and controls one or more degrees of freedom. However, most systems created allow only sequential control of one motion class at a time. Additionally, only recently have researchers demonstrated proportional myoelectric control in such systems, an option that is believed to make fine control easier for the user. Recent developments suggest improved reliability if the user follows a so-called prosthesis guided training (PGT) scheme. Methods In this study, a system for simultaneous proportional myoelectric control has been developed for a hand prosthesis with two motor functions (hand open/close, and wrist pro-/supination). The prosthesis has been used with a prosthesis socket equivalent designed for normally-limbed subjects. An extended version of PGT was developed for use with proportional control. The control system’s performance was tested for two subjects in the Clothespin Relocation Task and the Southampton Hand Assessment Procedure (SHAP). Simultaneous proportional control was compared with three other control strategies implemented on the same prosthesis: mutex proportional control (the same system but with simultaneous control disabled), mutex on-off control, and a more traditional, sequential proportional control system with co-contractions for state switching. Results The practical tests indicate that the simultaneous proportional control strategy and the two mutex-based pattern recognition strategies performed equally well, and superiorly to the more traditional sequential strategy according to the chosen outcome measures. Conclusions This is the first simultaneous proportional myoelectric control system demonstrated on a prosthesis affixed to the forearm of a subject. The study illustrates that PGT is a promising system training method for proportional control. Due to the limited number of subjects in this study, no definite conclusions can be

  14. Properties of an imaging gas scintillation proportional counter

    NASA Technical Reports Server (NTRS)

    Ku, W. H.-M.; Hailey, C. J.

    1981-01-01

    An instrument which combines the improved energy resolution offered by the gas scintillation proportional counter (GSPC) with the submillimeter imaging capabilities of the multiwire proportional counter (MWPC) is described. The imaging gas scintillation proportional counter detects the centroid of the UV light excited by X-ray photons interacting in the noble gas of the GSPC with a UV sensitive gas in the MWPC. The prototype counter yields a measured performance of 9% (FWHM) energy resolution and 0.9 mm (FWHM) spatial resolution at 6 keV. Further design refinements should achieve 18% (FWHM) energy resolution and 0.6 mm (FWHM) spatial resolution at 1 keV.

  15. Polaris: Amplitude, Period Change, and Companions

    NASA Astrophysics Data System (ADS)

    Evans, N. R.; Sasselov, D. D.; Short, C. I.

    2000-12-01

    Amplitude: Polaris has presented us with the rare phenomenon of a Cepheid with a pulsation amplitude which has decreased over the last 50 years. In this study we investigate whether the amplitude decrease during the last 15 years has had any effect on upper atmosphere heating. We obtained IUE high and low resolution spectra but found no change in either the Mg II chromospheric emission or the flux at 1800 Å/ between 1978 and 1993 when the pulsation amplitude dropped by 50 % (from 2.8 to 1.6 km sec-1). The energy distribution from 1700 Å/ through V, B, R(KC), and I(KC) is like that of a nonvariable supergiant of the same color rather than a full amplitude Cepheid in that it has nonradiative flux at 1800 Å/ which the full amplitude Cepheid δ Cep lacks. Period Change: Polaris also has a rapidly changing period (3.2 sec/year), in common with other overtone pulsators. We argue that this is a natural consequence of the different envelope locations which dominate in growth rates in fundamental and overtone pulsation. In fundamental mode pulsators, the deeper envelope is more important in determining growth rates than for overtone pulsators. For fundamental mode pulsators, evolutionary changes in the radius produce approximately linear changes in period. In overtone pulsators, pulsation reacts to small evolutionary changes in a more unstable way because the modes are more sensitive to high envelope features such as opacity bumps, and the growth rates for the many closely spaced overtone modes change easily. Companions: The upper limit to the X-ray flux from an Einstein observation implies that the companion in the astrometric orbit is probably earlier than F4 V. The combination of upper and lower limits on the companion from IUE and Einstein respectively catch the companion mass between 1.7 and 1.4 M⊙ . The X-ray limit is consistent with the more distant companion α UMi B being a physical companion in a hierarchal triple system. However the X-ray limits imply that

  16. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response (Invited)

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Woessner, J.; Enescu, B.; Catalli, F.; Lombardi, A.

    2009-12-01

    It is nowadays well established that both Coulomb stress perturbations and the rate- and state-dependent frictional response of fault populations are needed to model the spatial and temporal evolution of seismicity. This represents the most popular physics-based approach to forecast the rate of earthquake production and its performances have to be verified with respect to alternative statistical methods. Despite the numerous applications of Coulomb stress interactions, a rigorous validation of the forecasting capabilities is still missing. In this work, we use the Dieterich (1994) physics-based approach to simulate the spatio-temporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modelled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the variability of input physical model parameters and their correlations. We first discuss the impact of uncertainties in model parameters and, in particular, in computed coseismic stress perturbations on the seismicity rate changes forecasted through the frictional model. We aim to understand how the variability of Coulomb stress changes affects the correlation between predicted and observed changes in the rate of earthquake production. We use the aftershock activity following the 1992 M 7.3 Landers (California) earthquake as one of our case studies. We analyze the variability of stress changes resulting from the use of different published slip distributions. We find that the standard deviation of the uncertainty is of the same size as the absolute stress change and that their ratio, the coefficient of variation (CV), is approximately constant in

  17. The Construction of Spin Foam Vertex Amplitudes

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; Hellmann, Frank

    2013-01-01

    Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  18. Differential equations, associators, and recurrences for amplitudes

    NASA Astrophysics Data System (ADS)

    Puhlfürst, Georg; Stieberger, Stephan

    2016-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.

  19. Flutter of articulated pipes at finite amplitude

    NASA Technical Reports Server (NTRS)

    Rousselet, J.; Herrmann, G.

    1975-01-01

    Previous studies of the behavior of pipes conveying fluid have assumed that the fluid velocity relative to the pipe is a known quantity and is unaffected by the motion of the pipe. This approach eliminates the need to find the flow equations of motion, and is adequate for infinitesimal transverse amplitudes of motion of the pipe system, but is incapable of predicting what will be the effect of larger amplitudes. This last shortcoming may be of importance when flow velocities are near critical velocities, that is, velocities at which the system begins to flutter. It is the purpose of the present study to investigate in greater detail the dynamic behavior of pipes in the vicinity of critical velocities.

  20. Delbrück amplitudes: new calculations

    NASA Astrophysics Data System (ADS)

    Kahane, Sylvian

    1992-06-01

    Calculations of the first-order Delbrück scattering amplitudes were parallelized in a medium-grain mode assuring a very efficient, equal-load implementation, on systems with a moderate number of processors. New numerical values were calculated in the energy range 7.92-28 MeV and in the angular range 0.001°-120° with an estimated accuracy of as good as 1%. The old tables of Bar-Noy and Kahane are improved by these new calculations especially the values of Re A+- amplitudes. Good agreement is found with the calculations of Turrini, Maino and Ventura with a smoother behaviour of the present values. The calculations were performed on a system of eight transputers.

  1. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  2. Amplitudes of MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul

    2016-05-01

    The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.

  3. Effect of mixed (boundary) pixels on crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Chhikara, R. S.

    1984-01-01

    In estimating acreage proportions of crop types in a segment using Landsat data, considerable problem is caused by the presence of mixed pixels. Due to lack of understanding of their spectral characteristics, mixed pixels have been treated in the past as pure while clustering and classifying the segment data. This paper examines this approach of treating mixed pixels as pure pixels and the effect of mixed pixels on the bias and variance of a crop type proportion estimate. First, the spectral response of a boundary pixel is modeled and an analytical expression for the bias and variance of a proportion estimate is obtained. This is followed by a numerical illustration of the effect of mixed pixels on bias and variance. It is shown that as the size of the mixed pixel class increases in a segment, the variance increases, however, such increase does not always affect the bias of the proportion estimate.

  4. DC motor proportional control system for orthotic devices

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  5. Proportionality: a valid alternative to correlation for relative data.

    PubMed

    Lovell, David; Pawlowsky-Glahn, Vera; Egozcue, Juan José; Marguerat, Samuel; Bähler, Jürg

    2015-03-01

    In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative-or compositional-data, differential expression needs careful interpretation, and correlation-a statistical workhorse for analyzing pairwise relationships-is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes. PMID:25775355

  6. Proportionality: A Valid Alternative to Correlation for Relative Data

    PubMed Central

    Lovell, David; Pawlowsky-Glahn, Vera; Egozcue, Juan José; Marguerat, Samuel; Bähler, Jürg

    2015-01-01

    In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative—or compositional—data, differential expression needs careful interpretation, and correlation—a statistical workhorse for analyzing pairwise relationships—is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes. PMID:25775355

  7. Improvements in estimating proportions of objects from multispectral data

    NASA Technical Reports Server (NTRS)

    Horwitz, H. M.; Hyde, P. D.; Richardson, W.

    1974-01-01

    Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set.

  8. Description of an ionization calorimeter complemented with proportional counters

    NASA Technical Reports Server (NTRS)

    Babayan, K. P.; Boyadzhyan, N. G.; Vasiltsov, V. V.; Grigorov, N. L.; Sobinyakov, V. A.; Shestoperov, V. Y.

    1975-01-01

    An ionization calorimeter is described with a system of proportional counters which are used to determine the charge of the particles incident to the calorimeter and to estimate the number of the secondary charged particles.

  9. Chiral extrapolation of SU(3) amplitudes

    SciTech Connect

    Ecker, Gerhard

    2011-05-23

    Approximations of chiral SU(3) amplitudes at NNLO are proposed to facilitate the extrapolation of lattice data to the physical meson masses. Inclusion of NNLO terms is essential for investigating convergence properties of chiral SU(3) and for determining low-energy constants in a controllable fashion. The approximations are tested with recent lattice data for the ratio of decay constants F{sub K}/F{sub {pi}}.

  10. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  11. Deep Inelastic Scattering at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-08-04

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances.

  12. Subleading soft factor for string disk amplitudes

    NASA Astrophysics Data System (ADS)

    Schwab, Burkhard U. W.

    2014-08-01

    We investigate the behavior of superstring disk scattering amplitudes in the presence of a soft external momentum at finite string tension. We prove that there are no α'-corrections to the field theory form of the subleading soft factor S (1). At the end of this work, we also comment on the possibility to find the corresponding subleading soft factors in closed string theory using our result and the KLT relations.

  13. Poisson Green's function method for increased computational efficiency in numerical calculations of Coulomb coupling elements

    NASA Astrophysics Data System (ADS)

    Zimmermann, Anke; Kuhn, Sandra; Richter, Marten

    2016-01-01

    Often, the calculation of Coulomb coupling elements for quantum dynamical treatments, e.g., in cluster or correlation expansion schemes, requires the evaluation of a six dimensional spatial integral. Therefore, it represents a significant limiting factor in quantum mechanical calculations. If the size or the complexity of the investigated system increases, many coupling elements need to be determined. The resulting computational constraints require an efficient method for a fast numerical calculation of the Coulomb coupling. We present a computational method to reduce the numerical complexity by decreasing the number of spatial integrals for arbitrary geometries. We use a Green's function formulation of the Coulomb coupling and introduce a generalized scalar potential as solution of a generalized Poisson equation with a generalized charge density as the inhomogeneity. That enables a fast calculation of Coulomb coupling elements and, additionally, a straightforward inclusion of boundary conditions and arbitrarily spatially dependent dielectrics through the Coulomb Green's function. Particularly, if many coupling elements are included, the presented method, which is not restricted to specific symmetries of the model, presents a promising approach for increasing the efficiency of numerical calculations of the Coulomb interaction. To demonstrate the wide range of applications, we calculate internanostructure couplings, such as the Förster coupling, and illustrate the inclusion of symmetry considerations in the method for the Coulomb coupling between bound quantum dot states and unbound continuum states.

  14. Proportional reasoning in the learning of chemistry: levels of complexity

    NASA Astrophysics Data System (ADS)

    Ramful, Ajay; Narod, Fawzia Bibi

    2014-03-01

    This interdisciplinary study sketches the ways in which proportional reasoning is involved in the solution of chemistry problems, more specifically, problems involving quantities in chemical reactions (commonly referred to as stoichiometry problems). By building on the expertise of both mathematics and chemistry education research, the present paper shows how the theoretical constructs in proportional reasoning in mathematics education offer rich explanatory accounts of the complexities involved in solving stoichiometry problems. Using Vergnaud's concept of measure spaces, the theoretical analysis shows that proportionality situations are relatively more intricate, involving various layers of complexity in chemistry as compared to those in the mathematics curriculum. Knowledge of proportionality and chemistry are simultaneously required to provide solutions to chemical reactions. Our analysis of a range of stoichiometry situations led us to propose a problem analysis framework involving five levels of difficulty. Further, the specificity of proportionality in stoichiometry is that it can only be established when quantities are interpreted in the unit "mole," a unit which does not have any physical embodiment in terms of a measure of quantity unlike mass and volume. Our analysis of student-teachers' solution to the stoichiometry problems, shows that they tend to incorrectly (probably intuitively) set proportional relationships when two quantities in a reaction are expressed in non-molar quantities such as mass. The data also bring to the fore the primarily formulaic approach that student-teachers use in setting inherent proportionality relationships. An important finding is the interpretation of a chemical equation as a mathematical equation, rather than a statement of proportionality.

  15. Amplitude-integrated electroencephalography in neonates.

    PubMed

    El-Dib, Mohamed; Chang, Taeun; Tsuchida, Tammy N; Clancy, Robert R

    2009-11-01

    Conventional electroencephalography (EEG) has been used for decades in the neonatal intensive care unit for formulating neurologic prognoses, demonstrating brain functional state and degree of maturation, revealing cerebral lesions, and identifying the presence and number of electrographic seizures. However, both the immediate availability of conventional EEG and the expertise with which it is interpreted are variable. Amplitude-integrated EEG provides simplified monitoring of cerebral function, and is rapidly gaining popularity among neonatologists, with growing use in bedside decision making and inclusion criteria for randomized clinical studies. Nonetheless, child neurologists and neurophysiologists remain cautious about relying solely on this tool and prefer interpreting conventional EEG. The present review examines the technical aspects of generating, recording, and interpreting amplitude-integrated EEG and contrasts this approach with conventional EEG. Finally, several proposed amplitude-integrated EEG classification schemes are reviewed. A clear understanding of this emerging technology of measuring brain health in the premature or sick neonate is critical in modern care of the newborn infant. PMID:19818932

  16. Coulomb drag between one-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Muhammad, Mustafa

    We have measured Coulomb drag (CD) between two spatially separated and electrically isolated one-dimensional (1D) wires to study the Luttinger liquid (LL) state in 1D systems. We have fabricated dual-wire CD devices with long quantum wires (≥ 1 microm) and short quantum wires (≤ 500 nm) with respect to the thermal lengths. The devices are made from high-mobility (≅10 6cm2/Vs) two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, using high-resolution e-beam lithography, combined with metal deposition by e-beam evaporation to form surface Schottky gates. Peak in drag voltage occurs when the subband bottoms of the lowest energy subbands of the drive and the drag wires line up with each other and the Fermi level. We have observed drag on 1 microm device at 22 mK temperature which is found to be reminiscent of the drag observed earlier on a 2 microm device. An extensive reanalysis of the drag results obtained on the 2 microm device indicates a power-law temperature dependence of drag for both identical and non-identical wires. Also drag is found to decay exponentially with the mismatch between the wires. These properties indicate the existence of Luttinger liquid (LL) state in the long wire device. We have observed positive and negative drags on short wire devices. The observed temperature dependence of drag resistance, for both positive and negative drags, shows first an increase, followed by a constant plateau and finally a decrease as the temperature is increased. This is in line with the predictions of the Fermi--Luttinger liquid (FLL) forward momentum transfer theory. This is the first experimental observation of 1D Coulomb drag due to forward momentum transfer between wires. A negative drag between same type of carriers (holes or electrons) may conceivably result from forward momentum transfer or forward scattering if the band curvature of the drag wire at or near the Fermi point is negative. Negative band curvature may result from asymmetry

  17. Coulomb drag between one-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Muhammad, Mustafa

    We have measured Coulomb drag (CD) between two spatially separated and electrically isolated one-dimensional (1D) wires to study the Luttinger liquid (LL) state in 1D systems. We have fabricated dual-wire CD devices with long quantum wires (≥ 1 mum) and short quantum wires (≤ 500 nm) with respect to the thermal lengths. The devices are made from high-mobility (≅106cm2/Vs) two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, using high-resolution e-beam lithography, combined with metal deposition by e-beam evaporation to form surface Schottky gates. Peak in drag voltage occurs when the subband bottoms of the lowest energy subbands of the drive and the drag wires line up with each other and the Fermi level. We have observed drag on 1 mum device at 22 mK temperature which is found to be reminiscent of the drag observed earlier on a 2 mum device. An extensive reanalysis of the drag results obtained on the 2 mum device indicates a power-law temperature dependence of drag for both identical and non-identical wires. Also drag is found to decay exponentially with the mismatch between the wires. These properties indicate the existence of Luttinger liquid (LL) state in the long wire device. We have observed positive and negative drags on short wire devices. The observed temperature dependence of drag resistance, for both positive and negative drags, shows first an increase, followed by a constant plateau and finally a decrease as the temperature is increased. This is in line with the predictions of the Fermi-Luttinger liquid (FLL) forward momentum transfer theory. This is the first experimental observation of 1D Coulomb drag due to forward momentum transfer between wires. A negative drag between same type of carriers (holes or electrons) may conceivably result from forward momentum transfer or forward scattering if the band curvature of the drag wire at or near the Fermi point is negative. Negative band curvature may result from asymmetry in the wire

  18. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  19. Interatomic and intermolecular Coulombic decay: the coming of age story

    NASA Astrophysics Data System (ADS)

    Jahnke, T.

    2015-04-01

    In pioneering work by Cederbaum et al an excitation mechanism was proposed that occurs only in loosely bound matter (Cederbaum et al 1997 Phys. Rev. Lett. 79 4778): it turned out, that (in particular) in cases where a local Auger decay is energetically forbidden, an excited atom or molecule is able to decay in a scheme which was termed ‘interatomic Coulombic decay’ (or ‘intermolecular Coulombic decay’) (ICD). As ICD occurs, the excitation energy is released by transferring it to an atomic or molecular neighbor of the initially excited particle. As a consequence the neighboring atom or molecule is ionized as it receives the energy. A few years later the existence of ICD was confirmed experimentally (Marburger et al 2003 Phys. Rev. Lett. 90 203401; Jahnke et al 2004 Phys. Rev. Lett. 93 163401; Öhrwall et al 2004 Phys. Rev. Lett. 93 173401) by different techniques. Since this time it has been found that ICD is not (as initially suspected) an exotic feature of van der Waals or hydrogen bonded systems, but that ICD is a very general and common feature occurring after a manifold of excitation schemes and in numerous weakly bound systems, as revealed by more than 200 publications. It was even demonstrated, that ICD can become more efficient than a local Auger decay in some system. This review will concentrate on recent experimental investigations on ICD. It will briefly introduce the phenomenon and give a short summary of the ‘early years’ of ICD (a detailed view on this episode of investigations can be found in the review article by U Hergenhahn with the same title (Hergenhahn 2011 J. Electron Spectrosc. Relat. Phenom. 184 78)). More recent articles will be presented that investigate the relevance of ICD in biological systems and possible radiation damage of such systems due to ICD. The occurrence of ICD and ICD-like processes after different excitation schemes and in different systems is covered in the middle section: in that context the helium dimer (He2

  20. A spectral Phase-Amplitude method for propagating a wave function to large distances

    NASA Astrophysics Data System (ADS)

    Rawitscher, George

    2015-06-01

    The phase and amplitude (Ph-A) of a wave function vary slowly with distance, in contrast to the wave function that can be highly oscillatory. Hence the Ph-A representation of a wave function requires far fewer computational mesh points than the wave function itself. In 1930 Milne presented an equation for the phase and the amplitude functions (which is different from the one developed by Calogero), and in 1962 Seaton and Peach solved these equations iteratively. The objective of the present study is to implement Seaton and Peach's iteration procedure with a spectral Chebyshev expansion method, and at the same time present a non-iterative analytic solution to an approximate version of the iterative equations. The iterations converge rapidly for the case of attractive potentials. Two numerical examples are given: (1) for a potential that decreases with distance as 1 /r3, and (2) a Coulomb potential ∝ 1 / r. In both cases the whole radial range of [0-2000] requires only between 25 and 100 mesh points and the corresponding accuracy is between 10-3 and 10-6. The 0th iteration (which is the WKB approximation) gives an accuracy of 10-2. This spectral method permits one to calculate a wave function out to large distances reliably and economically.