Sample records for amyloid-like adhesins produced

  1. Functional amyloid formation by Streptococcus mutans

    PubMed Central

    Oli, M. W.; Otoo, H. N.; Crowley, P. J.; Heim, K. P.; Nascimento, M. M.; Ramsook, C. B.; Lipke, P. N.

    2012-01-01

    Dental caries is a common infectious disease associated with acidogenic and aciduric bacteria, including Streptococcus mutans. Organisms that cause cavities form recalcitrant biofilms, generate acids from dietary sugars and tolerate acid end products. It has recently been recognized that micro-organisms can produce functional amyloids that are integral to biofilm development. We now show that the S. mutans cell-surface-localized adhesin P1 (antigen I/II, PAc) is an amyloid-forming protein. This conclusion is based on the defining properties of amyloids, including binding by the amyloidophilic dyes Congo red (CR) and Thioflavin T (ThT), visualization of amyloid fibres by transmission electron microscopy and the green birefringent properties of CR-stained protein aggregates when viewed under cross-polarized light. We provide evidence that amyloid is present in human dental plaque and is produced by both laboratory strains and clinical isolates of S. mutans. We provide further evidence that amyloid formation is not limited to P1, since bacterial colonies without this adhesin demonstrate residual green birefringence. However, S. mutans lacking sortase, the transpeptidase enzyme that mediates the covalent linkage of its substrates to the cell-wall peptidoglycan, including P1 and five other proteins, is not birefringent when stained with CR and does not form biofilms. Biofilm formation is inhibited when S. mutans is cultured in the presence of known inhibitors of amyloid fibrillization, including CR, Thioflavin S and epigallocatechin-3-gallate, which also inhibited ThT uptake by S. mutans extracellular proteins. Taken together, these results indicate that S. mutans is an amyloid-forming organism and suggest that amyloidogenesis contributes to biofilm formation by this oral microbe. PMID:23082034

  2. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms.

    PubMed

    López-Ochoa, Jaqueline; Montes-García, J Fernando; Vázquez, Candelario; Sánchez-Alonso, Patricia; Pérez-Márquez, Victor M; Blackall, Patrick J; Vaca, Sergio; Negrete-Abascal, Erasmo

    2017-09-01

    Gallibacterium, which is a bacterial pathogen in chickens, can form biofilms. Amyloid proteins present in biofilms bind Congo red dye. The aim of this study was to characterize the cell-surface amyloid-like protein expressed in biofilms formed by Gallibacterium strains and determine the relationship between this protein and curli, which is an amyloid protein that is commonly expressed by members of the Enterobacteriaceae family. The presence of amyloid-like proteins in outer membrane protein samples from three strains of G. anatis and one strain of Gallibacterium genomospecies 2 was evaluated. A protein identified as elongation factor-Tu (EF-Tu) by mass spectrometric analysis and in silico analysis was obtained from the G. anatis strain F149 T . This protein bound Congo red dye, cross-reacted with anti-curli polyclonal serum, exhibited polymerizing properties and was present in biofilms. This protein also reacted with pooled serum from chickens that were experimentally infected with G. anatis, indicating the in vivo immunogenicity of this protein. The recombinant EF-Tu purified protein, which was prepared from G. anatis 12656-12, polymerizes under in vitro conditions, forms filaments and interacts with fibronectin and fibrinogen, all of which suggest that this protein functions as an adhesin. In summary, EF-Tu from G. anatis presents amyloid characteristics, is present in biofilms and could be relevant for the pathogenesis of G. anatis.

  3. Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli.

    PubMed

    Toma, Claudia; Martínez Espinosa, Estela; Song, Tianyan; Miliwebsky, Elizabeth; Chinen, Isabel; Iyoda, Sunao; Iwanaga, Masaaki; Rivas, Marta

    2004-11-01

    The distribution of eight putative adhesins that are not encoded in the locus for enterocyte effacement (LEE) in 139 Shiga toxin-producing Escherichia coli (STEC) of different serotypes was investigated by PCR. Five of the adhesins (Iha, Efa1, LPF(O157/OI-141), LPF(O157/OI-154), and LPF(O113)) are encoded in regions corresponding to genomic O islands of E. coli EDL933, while the other three adhesins have been reported to be encoded in the STEC megaplasmid of various serotypes (ToxB [O157:H7], Saa [O113:H21], and Sfp [O157:NM]). STEC strains were isolated from humans (n = 54), animals (n = 52), and food (n = 33). They were classified into five seropathotypes (A through E) based on the reported occurrence of STEC serotypes in human disease, in outbreaks, and in the hemolytic-uremic syndrome (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003). The most prevalent adhesin was that encoded by the iha gene (91%; 127 of 139 strains), which was distributed in all seropathotypes. toxB and efa1 were present mainly in strains of seropathotypes A and B, which were LEE positive. saa was present only in strains of seropathotypes C, D, and E, which were LEE negative. Two fimbrial genes, lpfA(O157/OI-141) and lpfA(O157/OI-154), were strongly associated with seropathotype A. The fimbrial gene lpfA(O113) was present in all seropathotypes except for seropathotype A, while sfpA was not present in any of the strains studied. The distribution of STEC adhesins depends mainly on serotypes and not on the source of isolation. Seropathotype A, which is associated with severe disease and frequently is involved in outbreaks, possesses a unique adhesin profile which is not present in the other seropathotypes. The wide distribution of iha in STEC strains suggested that it could be a candidate for vaccine development.

  4. Amyloid-like Self-Assembly of a Cellular Compartment.

    PubMed

    Boke, Elvan; Ruer, Martine; Wühr, Martin; Coughlin, Margaret; Lemaitre, Regis; Gygi, Steven P; Alberti, Simon; Drechsel, David; Hyman, Anthony A; Mitchison, Timothy J

    2016-07-28

    Most vertebrate oocytes contain a Balbiani body, a large, non-membrane-bound compartment packed with RNA, mitochondria, and other organelles. Little is known about this compartment, though it specifies germline identity in many non-mammalian vertebrates. We show Xvelo, a disordered protein with an N-terminal prion-like domain, is an abundant constituent of Xenopus Balbiani bodies. Disruption of the prion-like domain of Xvelo, or substitution with a prion-like domain from an unrelated protein, interferes with its incorporation into Balbiani bodies in vivo. Recombinant Xvelo forms amyloid-like networks in vitro. Amyloid-like assemblies of Xvelo recruit both RNA and mitochondria in binding assays. We propose that Xenopus Balbiani bodies form by amyloid-like assembly of Xvelo, accompanied by co-recruitment of mitochondria and RNA. Prion-like domains are found in germ plasm organizing proteins in other species, suggesting that Balbiani body formation by amyloid-like assembly could be a conserved mechanism that helps oocytes function as long-lived germ cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bacterial Inclusion Bodies Contain Amyloid-Like Structure

    PubMed Central

    Wang, Lei; Maji, Samir K; Sawaya, Michael R; Eisenberg, David; Riek, Roland

    2008-01-01

    Protein aggregation is a process in which identical proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as amorphous, lacking any long-range order, or highly ordered fibrils. Protein fibrils can be composed of native globular molecules, such as the hemoglobin molecules in sickle-cell fibrils, or can be reorganized β-sheet–rich aggregates, termed amyloid-like fibrils. Amyloid fibrils are associated with several pathological conditions in humans, including Alzheimer disease and diabetes type II. We studied the structure of bacterial inclusion bodies, which have been believed to belong to the amorphous class of aggregates. We demonstrate that all three in vivo-derived inclusion bodies studied are amyloid-like and comprised of amino-acid sequence-specific cross-β structure. These findings suggest that inclusion bodies are structured, that amyloid formation is an omnipresent process both in eukaryotes and prokaryotes, and that amino acid sequences evolve to avoid the amyloid conformation. PMID:18684013

  6. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. [Lectins, adhesins, and lectin-like substances of lactobacilli and bifidobacteria].

    PubMed

    Lakhtin, V M; Aleshkin, V A; Lakhtin, M V; Afanas'ev, S S; Pospelova, V V; Shenderov, B A

    2006-01-01

    Cell-surface adhesion factors of lactobacilli and bifidobacteria, such as lectin/adhesin proteins of S-layers, secreted lectin-like bacteriocins, and lectin-like complexes, are considered and classified in the article. Certain general and specific properties of these factors are noted, such as in vitro and in vivo adhesion, cell co(aggregation), participation in the forming of microbial biofilms and colonization of mammalian alimentary tract, as well as complexation with biopolymers and bioeffectors, specificity to glycanes and natural glycoconjugates, domain and spatial organization of adhesion factors, co-functioning with other cytokines (pro- and anti-inflammatory ones), regulation of target cell properties, and other biological and physiological activities. The authors also note possibilities of application of lectins and lectin-like proteins of probiotic strains of lactobacilli and bifidobacteria in medicine and biotechnology.

  8. The amyloid architecture provides a scaffold for enzyme-like catalysts.

    PubMed

    Al-Garawi, Z S; McIntosh, B A; Neill-Hall, D; Hatimy, A A; Sweet, S M; Bagley, M C; Serpell, L C

    2017-08-03

    Natural biological enzymes possess catalytic sites that are generally surrounded by a large three-dimensional scaffold. However, the proportion of the protein molecule that participates in the catalytic reaction is relatively small. The generation of artificial or miniature enzymes has long been a focus of research because enzyme mimetics can be produced with high activity at low cost. These enzymes aim to mimic the active sites without the additional architecture contributed by the protein chain. Previous work has shown that amyloidogenic peptides are able to self-assemble to create an active site that is capable of binding zinc and catalysing an esterase reaction. Here, we describe the structural characterisation of a set of designed peptides that form an amyloid-like architecture and reveal that their capability to mimic carbonic anhydrase and serve as enzyme-like catalysts is related to their ability to self-assemble. These amyloid fibril structures can bind the metal ion Zn 2+ via a three-dimensional arrangement of His residues created by the amyloid architecture. Our results suggest that the catalytic efficiency of amyloid-like assembly is not only zinc-dependent but also depends on an active centre created by the peptides which is, in turn, dependent on the ordered architecture. These fibrils have good esterase activity, and they may serve as good models for the evolution of modern-day enzymes. Furthermore, they may be useful in designing self-assembling fibrils for applications as metal ion catalysts. This study also demonstrates that the ligands surrounding the catalytic site affect the affinity of the zinc-binding site to bind the substrate contributing to the enzymatic activity of the assembled peptides.

  9. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood.

    PubMed

    Deng, Lingquan; Bensing, Barbara A; Thamadilok, Supaporn; Yu, Hai; Lau, Kam; Chen, Xi; Ruhl, Stefan; Sullam, Paul M; Varki, Ajit

    2014-12-01

    Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a

  10. Cooperative structural transitions in amyloid-like aggregation

    NASA Astrophysics Data System (ADS)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  11. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.

    PubMed

    Pan, Kang; Zhong, Qixin

    2015-08-07

    Amyloid-like fibrils are studied because of their significance in understanding pathogenesis and creating functional materials. Amyloid-like fibrils have been studied by heating globular proteins at acidic conditions. In the present study, intrinsically disordered α-, β-, and κ-caseins were studied to form amyloid-like fibrils at pH 2.0 and 90 °C. No fibrils were observed for α-caseins, and acid hydrolysis was found to be the rate-limiting step of fibrillation of β- and κ-caseins. An increase of β-sheet structure was observed after fibrillation. Nanomechanic analysis of long amyloid-like fibrils using peak-force quantitative nanomechanical atomic force microscopy showed the lowest and highest Young's modulus for β-casein (2.35 ± 0.29 GPa) and κ-casein (4.14 ± 0.66 GPa), respectively. The dispersion with β-casein fibrils had a viscosity more than 10 and 5 times higher than those of κ-casein and β-lactoglobulin, respectively, at 0.1 s(-1) at comparable concentrations. The current findings may assist not only the understanding of amyloid fibril formation but also the development of novel functional materials from disordered proteins.

  12. Short peptides self-assemble to produce catalytic amyloids

    NASA Astrophysics Data System (ADS)

    Rufo, Caroline M.; Moroz, Yurii S.; Moroz, Olesia V.; Stöhr, Jan; Smith, Tyler A.; Hu, Xiaozhen; Degrado, William F.; Korendovych, Ivan V.

    2014-04-01

    Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn2+-dependent esterases. Zn2+ helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.

  13. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I

    DOE PAGES

    Krishnamoorthy, Aparna; Tavoosi, Narjes; Chan, Gary K. L.; ...

    2018-01-10

    Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. Here, we investigated the anti-amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A-I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid-like aggregates formed by methionine-oxidized (ox) apoA-I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β-structure in ox-apoA-I amyloid-like aggregates formed in the presence of curcumin, comparedmore » to aggregates formed without curcumin. However, the kinetics of ox-apoA-I amyloid-like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox-apoA-I amyloid-like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA-I and alters the structure of ox-apoA-I amyloid-like aggregates yet does not diminish the propensity of ox-apoA-I to form aggregates.« less

  14. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Aparna; Tavoosi, Narjes; Chan, Gary K. L.

    Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. Here, we investigated the anti-amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A-I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid-like aggregates formed by methionine-oxidized (ox) apoA-I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β-structure in ox-apoA-I amyloid-like aggregates formed in the presence of curcumin, comparedmore » to aggregates formed without curcumin. However, the kinetics of ox-apoA-I amyloid-like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox-apoA-I amyloid-like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA-I and alters the structure of ox-apoA-I amyloid-like aggregates yet does not diminish the propensity of ox-apoA-I to form aggregates.« less

  15. Mechanical properties of amyloid-like fibrils defined by secondary structures

    NASA Astrophysics Data System (ADS)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  16. Amyloid-producing odontogenic tumour (calcifying epithelial odontogenic tumour) in the mandible of a Bengal tiger (Panthera tigris tigris).

    PubMed

    Kang, M-S; Park, M-S; Kwon, S-W; Ma, S-A; Cho, D-Y; Kim, D-Y; Kim, Y

    2006-01-01

    A 13-year-old male tiger (Panthera tigris tigris) had a marked mandibular swelling noticed 12 months earlier and associated with progressive anorexia and weight loss. Radiological and post-mortem examination revealed a mass (13x15 cm) which was firm and poorly defined, with destruction of the adjacent bone tissue. Histologically, the mass was poorly demarcated, with infiltrative growth, and composed of nests, cords and islands of epithelial cells with characteristic basal cell features. Also observed were extensive squamous metaplasia, ghost cells, stellate reticulum, and fibroblastic connective tissue stroma containing inflammatory cells. A prominent feature of this tumour consisted of abundant nodular deposits of congophilic amyloid-like material with partial mineralization (Liesegang rings). Immunohistochemically, the neoplastic cells and the amyloid-like material were positive for pancytokeratin and negative for vimentin. The findings supported the diagnosis of an amyloid-producing odontogenic tumour (APOT), also known as calcifying epithelial odontogenic tumour in man and animals.

  17. Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies.

    PubMed

    Elia, Francesco; Cantini, Francesca; Chiti, Fabrizio; Dobson, Christopher Martin; Bemporad, Francesco

    2017-06-20

    The acylphosphatase from Sulfolobus solfataricus (Sso AcP) is a globular protein able to aggregate in vitro from a native-like conformational ensemble without the need for a transition across the major unfolding energy barrier. This process leads to the formation of assemblies in which the protein retains its native-like structure, which subsequently convert into amyloid-like aggregates. Here, we investigate the mechanism by which Sso AcP aggregates in vivo to form bacterial inclusion bodies after expression in E. coli. Shortly after the initiation of expression, Sso AcP is incorporated into inclusion bodies as a native-like protein, still exhibiting small but significant enzymatic activity. Additional experiments revealed that this overall process of aggregation is enhanced by the presence of the unfolded N-terminal region of the sequence and by destabilization of the globular segment of the protein. At later times, the Sso AcP molecules in the inclusion bodies lose their native-like properties and convert into β-sheet-rich amyloid-like structures, as indicated by their ability to bind thioflavin T and Congo red. These results show that the aggregation behavior of this protein is similar in vivo to that observed in vitro, and that, at least for a predominant part of the protein population, the transition from a native to an amyloid-like structure occurs within the aggregate state. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of cell binding activities of Leptospira ECM adhesins.

    PubMed

    Robbins, Gregory T; Hahn, Beth L; Evangelista, Karen V; Padmore, Lavinia; Aranda, Patrick S; Coburn, Jenifer

    2015-04-01

    Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection.

  19. Evaluation of Cell Binding Activities of Leptospira ECM Adhesins

    PubMed Central

    Robbins, Gregory T.; Hahn, Beth L.; Evangelista, Karen V.; Padmore, Lavinia; Aranda, Patrick S.; Coburn, Jenifer

    2015-01-01

    Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection. PMID:25875373

  20. Amyloid-beta aggregates formed at polar-nonpolar interfaces differ from amyloid-beta protofibrils produced in aqueous buffers.

    PubMed

    Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Hoh, Jan H; Rosenberry, Terrone L

    2005-07-01

    The deposition of aggregated amyloid-beta (Abeta) peptides in the brain as senile plaques is a pathological hallmark of Alzheimer's disease (AD). Several lines of evidence indicate that fibrillar and, in particular, soluble aggregates of these 40- and 42-residue peptides are important in the etiology of AD. Recent studies also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we review our recent reports that Abeta(1-40) in vitro can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta(1-40) in low ionic strength buffers. These aggregates were quite stable and disaggregated to only a limited extent on dilution. A second class of soluble Abeta aggregates was generated at polar-nonpolar interfaces. Aggregation in a two-phase system of buffer over chloroform occurred more rapidly than in buffer alone. In buffered 2% hexafluoroisopropanol (HFIP), microdroplets of HFIP were formed and the half-time for aggregation was less than 10 minutes. Like Abeta protofibrils, these interfacial aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. However, electron microscopy and atomic force microscopy revealed very different morphologies. The HFIP aggregates formed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP these aggregates initially were very unstable and disaggregated completely within 2 minutes. However, their stability increased as they progressed to fibers. It is important to determine whether similar interfacial Abeta aggregates are produced in vivo.

  1. Use of Two Dimensional Semi-denaturing Detergent Agarose Gel Electrophoresis to Confirm Size Heterogeneity of Amyloid or Amyloid-like Fibers.

    PubMed

    Hanna-Addams, Sarah; Wang, Zhigao

    2018-04-26

    Amyloid or amyloid-like fibers have been associated with many human diseases, and are now being discovered to be important for many signaling pathways. The ability to readily detect the formation of these fibers under various experimental conditions is essential for understanding their potential function. Many methods have been used to detect the fibers, but not without some drawbacks. For example, electron microscopy (EM), or staining with Congo Red or Thioflavin T often requires purification of the fibers. On the other hand, semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) allows detection of the SDS-resistant amyloid-like fibers in the cell extracts without purification. In addition, it allows the comparison of the size difference of the fibers. More importantly, it can be used to identify specific proteins within the fibers by Western blotting. It is less time consuming and more easily accessible to a wider number of labs. SDD-AGE results often show variable degree of heterogeneity. It raises the question whether part of the heterogeneity results from the dissociation of the protein complex during the electrophoresis in the presence of SDS. For this reason, we have employed a second dimension of SDD-AGE to determine if the size heterogeneity seen in SDD-AGE is truly a result of fiber heterogeneity in vivo and not a result of either degradation or dissociation of some of the proteins during electrophoresis. This method allows fast, qualitative confirmation that the amyloid or amyloid-like fibers are not partially dissociating during the SDD-AGE process.

  2. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  3. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid

    DOE PAGES

    Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...

    2016-09-02

    Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less

  4. Identification of Cell-Binding Adhesins of Leptospira interrogans

    PubMed Central

    Evangelista, Karen V.; Hahn, Beth; Wunder, Elsio A.; Ko, Albert I.; Haake, David A.; Coburn, Jenifer

    2014-01-01

    Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1–130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and

  5. Amyloid-beta mediates the receptor of advanced glycation end product-induced pro-inflammatory response via toll-like receptor 4 signaling pathway in retinal ganglion cell line RGC-5.

    PubMed

    Lee, Jong-Jer; Wang, Pei-Wen; Yang, I-Hui; Wu, Chia-Lin; Chuang, Jiin-Haur

    2015-07-01

    Patients with diabetes mellitus have an increased risk of developing Alzheimer's disease. Amyloid-β, a product of amyloid precursor protein, is associated with neuro-inflammation in patients with Alzheimer's diseases. The correlation between amyloid-beta and advanced glycation end products, which accumulate in tissue of diabetic patients, is not clear. The aims of this study were to determine the effect of advanced glycation end product on the expression of amyloid precursor protein/amyloid-beta and associated pro-inflammatory responses in retinal ganglion cell line RGC-5. Treatment with advanced glycation end product produced upregulation of amyloid precursor protein and increased secretion of amyloid-β(1-40). Additionally, amyloid-β(1-40) induced toll-like receptor 4-dependent phosphorylation of tyrosine in myeloid differentiation primary response gene (88). We found that N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a γ-secretase inhibitor, reduced the secretion of amyloid-β(1-40) and inhibited the advanced glycation end product-induced activation of myeloid differentiation primary response gene (88). Amyloid-β(1-40) induced the activation of NF-κB and the expression of TNFα mRNA. Knockdown of toll-like receptor 4 inhibited the amyloid-β(1-40)-induced phosphorylation of p65 in NF-κB. Additionally, the nuclear translocation of p65 and transcriptions of TNFα were inhibited by siRNA knockdown of receptor of advanced glycation end product or toll-like receptor 4. The advanced glycation end product-induced secretion of VEGF-A was also reduced by knockdown of toll-like receptor 4. Taken together, our data suggested that amyloid-β(1-40) mediates the interaction between receptor of advanced glycation end product and toll-like receptor 4. Inhibition of the toll-like receptor 4 is an effective method for suppressing the amyloid-β(1-40)-induced pro-inflammatory responses in RGC-5 cells. Copyright © 2015 Elsevier Ltd. All rights

  6. Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct anti-parallel structure

    PubMed Central

    Xu, Feng; Fu, Ziao; Dass, Sharmila; Kotarba, AnnMarie E.; Davis, Judianne; Smith, Steven O.; Van Nostrand, William E.

    2016-01-01

    Cerebrovascular accumulation of amyloid β-protein (Aβ), a condition known as cerebral amyloid angiopathy (CAA), is a common pathological feature of patients with Alzheimer's disease. Familial Aβ mutations, such as Dutch-E22Q and Iowa-D23N, can cause severe cerebrovascular accumulation of amyloid that serves as a potent driver of vascular cognitive impairment and dementia. The distinctive features of vascular amyloid that underlie its unique pathological properties remain unknown. Here, we use transgenic mouse models producing CAA mutants (Tg-SwDI) or overproducing human wild-type Aβ (Tg2576) to demonstrate that CAA-mutant vascular amyloid influences wild-type Aβ deposition in brain. We also show isolated microvascular amyloid seeds from Tg-SwDI mice drive assembly of human wild-type Aβ into distinct anti-parallel β-sheet fibrils. These findings indicate that cerebrovascular amyloid can serve as an effective scaffold to promote rapid assembly and strong deposition of Aβ into a unique structure that likely contributes to its distinctive pathology. PMID:27869115

  7. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Charge transport and intrinsic fluorescence in amyloid-like fibrils

    PubMed Central

    del Mercato, Loretta Laureana; Pompa, Pier Paolo; Maruccio, Giuseppe; Torre, Antonio Della; Sabella, Stefania; Tamburro, Antonio Mario; Cingolani, Roberto; Rinaldi, Ross

    2007-01-01

    The self-assembly of polypeptides into stable, conductive, and intrinsically fluorescent biomolecular nanowires is reported. We have studied the morphology and electrical conduction of fibrils made of an elastin-related polypeptide, poly(ValGlyGlyLeuGly). These amyloid-like nanofibrils, with a diameter ranging from 20 to 250 nm, result from self-assembly in aqueous solution at neutral pH. Their morphological properties and conductivity have been investigated by atomic force microscopy, scanning tunneling microscopy, and two-terminal transport experiments at the micro- and nanoscales. We demonstrate that the nanofibrils can sustain significant electrical conduction in the solid state at ambient conditions and have remarkable stability. We also show intrinsic blue-green fluorescence of the nanofibrils by confocal microscopy analyses. These results indicate that direct (label-free) excitation can be used to investigate the aggregation state or the polymorphism of amyloid-like fibrils (and possibly of other proteinaceous material) and open up interesting perspectives for the use of peptide-based nanowire structures, with tunable physical and chemical properties, for a wide range of nanobiotechnological and bioelectronic applications. PMID:17984067

  9. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis

    PubMed Central

    Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui

    2017-01-01

    Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α–induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis. PMID:28827318

  10. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis.

    PubMed

    Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui; Wang, Zhigao

    2017-09-05

    Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.

  11. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    PubMed

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  12. Yersinia adhesins: An arsenal for infection.

    PubMed

    Chauhan, Nandini; Wrobel, Agnieszka; Skurnik, Mikael; Leo, Jack C

    2016-10-01

    The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c

    PubMed Central

    Besingi, Richard N; Wenderska, Iwona B; Senadheera, Dilani B; Cvitkovitch, Dennis G; Long, Joanna R; Wen, Zezhang T

    2017-01-01

    Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds. PMID:28141493

  14. Biorecognition of Escherichia coli K88 adhesin for glycated porcine albumin.

    PubMed

    Sarabia-Sainz, Andre-i; Ramos-Clamont, Gabriela; Candia-Plata, Ma María del Carmen; Vázquez-Moreno, Luz

    2009-03-01

    Escherichia coli (E. coli) that expresses galactose-reactive lectins, like K88 adhesin, causes high mortality among piglets. Carbohydrates that compete for adhesion could serve as an alternative for disease prevention. Porcine serum albumin (PSA) was modified by non-enzymatic glycation with lactose to produce PSA-Lac or PSA-Glc beta (1-4) Gal, as confirmed by reduction of available free amino groups, increased molecular mass and by Ricinus communis lectin recognition. E. coli K88 binds to PSA-Lac treatments containing three and four lactoses, respectively. In addition, PSA-Lac partially inhibited K88 strain adherence to mucins. These results suggest that neoglycoconjugates obtained by non-enzymatic glycation of proteins may serve in the prophylaxis of piglets' diarrhea.

  15. Yersinia infection tools-characterization of structure and function of adhesins.

    PubMed

    Mikula, Kornelia M; Kolodziejczyk, Robert; Goldman, Adrian

    2012-01-01

    Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals-Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen-host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis.

  16. Yersinia infection tools—characterization of structure and function of adhesins

    PubMed Central

    Mikula, Kornelia M.; Kolodziejczyk, Robert; Goldman, Adrian

    2013-01-01

    Among the seventeen species of the Gram-negative genus Yersinia, three have been shown to be virulent and pathogenic to humans and animals—Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis. In order to be so, they are armoured with various factors that help them adhere to tissues and organelles, cross the cellular barrier and escape the immune system during host invasion. The group of proteins that mediate pathogen–host interactions constitute adhesins. Invasin, Ail, YadA, YadB, YadC, Pla, and pH 6 antigen belong to the most prominent and best-known Yersinia adhesins. They act at different times and stages of infection complementing each other by their ability to bind a variety of host molecules such as collagen, fibronectin, laminin, β1 integrins, and complement regulators. All the proteins are anchored in the bacterial outer membrane (OM), often forming rod-like or fimbrial-like structures that protrude to the extracellular milieu. Structural studies have shown that the anchor region forms a β-barrel composed of 8, 10, or 12 antiparallel β-strands. Depending on the protein, the extracellular part can be composed of several domains belonging to the immunoglobulin fold superfamily, or form a coiled-coil structure with globular head domain at the end, or just constitute several loops connecting individual β-strands in the β-barrel. Those extracellular regions define the activity of each adhesin. This review focuses on the structure and function of these important molecules, and their role in pathogenesis. PMID:23316485

  17. Amyloid-like assembly of the low complexity domain of yeast Nab3.

    PubMed

    O'Rourke, Thomas W; Loya, Travis J; Head, PamelaSara E; Horton, John R; Reines, Daniel

    2015-01-01

    Termination of transcription of short non-coding RNAs is carried out in yeast by the Nab3-Nrd1-Sen1 complex. Nab3 and Nrd1 are hnRNP-like proteins that dimerize and bind RNA with sequence specificity. We show here that an essential region of Nab3 that is predicted to be prion-like based upon its sequence bias, formed amyloid-like filaments. A similar region from Nrd1 also assembled into filaments in vitro. The purified Nab3 domain formed a macroscopic gel whose lattice organization was observed by X-ray fiber diffraction. Filaments were resistant to dissociation in anionic detergent, bound the fluorescent dye thioflavin T, and showed a β-sheet rich structure by circular dichroism spectroscopy, similar to human amyloid β which served as a reference amyloid. A version of the Nab3 domain with a mutation that impairs its termination function, also formed fibers as observed by electron microscopy. Using a protein fragment interaction assay, the purified Nab3 domain was seen to interact with itself in living yeast. A similar observation was made for full length Nab3. These results suggest that the Nab3 and Nrd1 RNA-binding proteins can attain a complex polymeric form and raise the possibility that this property is important for organizing their functional state during termination. These findings are congruent with recent work showing that RNA binding proteins with low complexity domains form a dynamic subcellular matrix in which RNA metabolism takes place but can also aberrantly yield pathological aggregated particles.

  18. FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongseok; Shin, Sooan; Teng, C.-H.

    2005-09-02

    The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-{alpha}. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-{kappa}B were involved inmore » FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.« less

  19. Quantum dots induce charge-specific amyloid-like fibrillation of insulin at physiological conditions

    NASA Astrophysics Data System (ADS)

    Sukhanova, Alyona; Poly, Simon; Shemetov, Anton; Nabiev, Igor R.

    2012-10-01

    Agglomeration of some proteins may give rise to aggregates that have been identified as the main cause of amyloid diseases. For example, fibrillation of insulin is related to diabetes mellitus. Quantum dots (QDs) are of special interest as tagging agents for diagnostic and therapeutic studies due to their broad absorption spectra, narrow emission spectra, and high photostability. In this study, PEGylated CdSe/ZnS QDs have been shown to induce the formation of amyloid-like fibrils of human insulin under physiological conditions, this process being dependent on the variation of the surface charge of the nanoparticles (NPs) used. Circular dichroism (CD), protein secondary structure analysis, thioflavin T (ThT) fluorescence assay, and the dynamic light scattering (DLS) technique have been used for comparative analysis of different stages of the fibrillation process. In particular, insulin secondary structure remodelling accompanied by a considerable increase in the rate of amyloid fiber formation have been observed after insulin was mixed with PEGylated QDs. Nanoparticles may significantly influence the rate of protein fibrillation and induce new mechanisms of amyloid diseases, as well as offer opportunities for their treatment.

  20. Amyloid-like aggregates formation by bovine apo-carbonic anhydrase in various alcohols: A comparative study.

    PubMed

    Es-Haghi, Ali; Ebrahim-Habibi, Azadeh; Sabbaghian, Marjan; Nemat-Gorgani, Mohsen

    2016-11-01

    Peptides and proteins convert from their native states to amyloid fibrillar aggregates in a number of pathological conditions. Characterizing these species could provide useful information on their pathogenicity and the key factors involved in their generation. In this study, we have observed the ability of the model protein apo-bovine carbonic anhydrase (apo-BCA) to form amyloid-like aggregates in the presence of halogenated and non-halogenated alcohols. Far-UV circular dichroism, ThT fluorescence, atomic force microscopy and dynamic light scattering were used to characterize these structures. The concentration required for effective protein aggregation varied between the solvents, with non-halogenated alcohols acting in a wider range. These aggregates show amyloid-like structures as determined by specific techniques used for characterizing amyloid structures. Oligomers were obtained with various size distributions, but fibrillar structures were not observed. Use of halogenated alcohols resulted into smaller hydrodynamic radii, and most stable oligomers were formed in hexafluoropropan-2-ol (HFIP). At optimal concentrations used to generate these structures, the non-halogenated alcohols showed higher hydrophobicity, which may be related to the lower stability of the generated oligomers. These oligomers have the potential to be used as models in the search for effective treatments in proteinopathies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adhesins of human pathogens from the genus Yersinia.

    PubMed

    Leo, Jack C; Skurnik, Mikael

    2011-01-01

    Bacteria of the Gram-negative genus Yersinia are environmentally ubiquitous. Three species are of medical importance: the intestinal pathogens Y. enterocolitica and Y. pseudotuberculosis, and the plague bacillus Y. pestis. The two former species, spread by contaminated food or water, cause a range of gastrointestinal symptoms and, rarely, sepsis. On occasion, the primary infection is followed by autoimmune sequelae such as reactive arthritis. Plague is a systemic disease with high mortality. It is a zoonosis spread by fleas, or more rarely by droplets from individuals suffering from pneumonic plague. Y. pestis is one of the most virulent of bacteria, and recent findings of antibiotic-resistant strains together with its potential use as a bioweapon have increased interest in the species. In addition to being significant pathogens in their own right, the yersiniae have been used as model systems for a number of aspects of pathogenicity. This chapter reviews the molecular mechanisms of adhesion in yersiniae. The enteropathogenic species share three adhesins: invasin, YadA and Ail. Invasin is the first adhesin required for enteric infection; it binds to β(1) integrins on microfold cells in the distal ileum, leading to the ingestion of the bacteria and allows them to cross the intestinal epithelium. YadA is the major adhesin in host tissues. It is a multifunctional protein, conferring adherence to cells and extracellular matrix components, serum and phagocytosis resistance, and the ability to autoagglutinate. Ail has a minor role in adhesion and serum resistance. Y. pestis lacks both invasin and YadA, but expresses several other adhesins. These include the pH 6 antigen and autotransporter adhesins. Also the plasminogen activator of Y. pestis can mediate adherence to host cells. Although the adhesins of the pathogenic yersiniae have been studied extensively, their exact roles in the biology of infection remain elusive.

  2. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.

    PubMed

    Gómez-Molero, Emilia; de Boer, Albert D; Dekker, Henk L; Moreno-Martínez, Ana; Kraneveld, Eef A; Ichsan; Chauhan, Neeraj; Weig, Michael; de Soet, Johannes J; de Koster, Chris G; Bader, Oliver; de Groot, Piet W J

    2015-12-01

    Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.

    PubMed

    Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin

    2017-01-26

    Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.

  4. An N-terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: A Novel Sub-family of Type I Secretion Systems.

    PubMed

    Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A

    2018-02-05

    LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.

  5. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma

    PubMed Central

    Daus, Martin L.

    2016-01-01

    In 1982, the term “prions” (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed. PMID:26742083

  6. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    PubMed

    Daus, Martin L

    2016-01-04

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  7. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation*

    PubMed Central

    Ho, Tina; Watt, Brenda; Spruce, Lynn A.; Seeholzer, Steven H.; Marks, Michael S.

    2016-01-01

    The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils. PMID:26694611

  8. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects

    PubMed Central

    Arciola, Carla Renata; Campoccia, Davide; Ravaioli, Stefano; Montanaro, Lucio

    2015-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection. PMID

  9. Signature-tagged mutagenesis in a chicken infection model leads to the identification of a novel avian pathogenic Escherichia coli fimbrial adhesin.

    PubMed

    Antão, Esther-Maria; Ewers, Christa; Gürlebeck, Doreen; Preisinger, Rudolf; Homeier, Timo; Li, Ganwu; Wieler, Lothar H

    2009-11-12

    The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first

  10. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.

    PubMed

    Sikirzhytski, Vitali; Topilina, Natalya I; Higashiya, Seiichiro; Welch, John T; Lednev, Igor K

    2008-05-07

    Elucidating the structure of the cross-beta core in large amyloid fibrils is a challenging problem in modern structural biology. For the first time, a set of de novo polypeptides was genetically engineered to form amyloid-like fibrils with similar morphology and yet different strand length. Differential ultraviolet Raman spectroscopy allowed for separation of the spectroscopic signatures of the highly ordered beta-sheet strands and turns of the fibril core. The relationship between Raman frequencies and Ramachandran dihedral angles of the polypeptide backbone indicates the nature of the beta-sheet and turn structural elements.

  11. Proteolysis of serum amyloid A and AA amyloid proteins by cysteine proteases: cathepsin B generates AA amyloid proteins and cathepsin L may prevent their formation

    PubMed Central

    Rocken, C; Menard, R; Buhling, F; Vockler, S; Raynes, J; Stix, B; Kruger, S; Roessner, A; Kahne, T

    2005-01-01

    Background: AA amyloidosis develops in patients with chronic inflammatory diseases. The AA amyloid proteins are proteolytic fragments obtained from serum amyloid A (SAA). Previous studies have provided evidence that endosomes or lysosomes might be involved in the processing of SAA, and contribute to the pathology of AA amyloidosis. Objective: To investigate the anatomical distribution of cathepsin (Cath) B and CathL in AA amyloidosis and their ability to process SAA and AA amyloid proteins. Methods and results: CathB and CathL were found immunohistochemically in every patient with AA amyloidosis and displayed a spatial relationship with amyloid in all the cases studied. Both degraded SAA and AA amyloid proteins in vitro. With the help of mass spectrometry 27 fragments were identified after incubation of SAA with CathB, nine of which resembled AA amyloid proteins, and seven fragments after incubation with CathL. CathL did not generate AA amyloid-like peptides. When native human AA amyloid proteins were used as a substrate 26 fragments were identified after incubation with CathB and 18 after incubation with CathL. Conclusion: The two most abundant and ubiquitously expressed lysosomal proteases can cleave SAA and AA amyloid proteins. CathB generates nine AA amyloid-like proteins by its carboxypeptidase activity, whereas CathL may prevent the formation of AA amyloid proteins by endoproteolytic activity within the N-terminal region of SAA. This is particularly interesting, because AA amyloidosis is a systemic disease affecting many organs and tissue types, almost all of which express CathB and CathL. PMID:15897303

  12. The Biology of Neisseria Adhesins

    PubMed Central

    Hung, Miao-Chiu; Christodoulides, Myron

    2013-01-01

    Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology. PMID:24833056

  13. A Metal-Free Method for Producing MRI Contrast at Amyloid-Beta

    PubMed Central

    Hilt, Silvia; Tang, Tang; Walton, Jeffrey H.; Budamagunta, Madhu; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Singh, Vikrant; Wulff, Heike; Gong, Qizhi; Jin, Lee-Way; Louie, Angelique; Voss, John C.

    2017-01-01

    Alzheimer’s disease (AD) is characterized by depositions of the amyloid-β (Aβ) peptide in the brain. The disease process develops over decades, with substantial neurological loss occurring before a clinical diagnosis of dementia can be rendered. It is therefore imperative to develop methods that permit early detection and monitoring of disease progression. In addition, the multifactorial pathogenesis of AD has identified several potential avenues for AD intervention. Thus, evaluation of therapeutic candidates over lengthy trial periods also demands a practical, noninvasive method for measuring Aβ in the brain. Magnetic resonance imaging (MRI) is the obvious choice for such measurements, but contrast enhancement for Aβ has only been achieved using Gd(III)-based agents. There is great interest in gadolinium-free methods to image the brain. In this study, we provide the first demonstration that a nitroxide-based small-molecule produces MRI contrast in brain specimens with elevated levels of Aβ. The molecule is comprised of a fluorene (a molecule with high affinity for Aβ) and a nitroxide spin label (a paramagnetic MRI contrast species). Labeling of brain specimens with the spin-labeled fluorene produces negative contrast in samples from AD model mice whereas no negative contrast is seen in specimens harvested from wild-type mice. Injection of SLF into live mice resulted in good brain penetration, with the compound able to generate contrast 24-hr post injection. These results provide a proof of concept method that can be used for early, noninvasive, gadolinium-free detection of amyloid plaques by magnetic resonance imaging (MRI). PMID:27911291

  14. Identification of a collagen type I adhesin of Bacteroides fragilis.

    PubMed

    Galvão, Bruna P G V; Weber, Brandon W; Rafudeen, Mohamed S; Ferreira, Eliane O; Patrick, Sheila; Abratt, Valerie R

    2014-01-01

    Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼ 31 and ∼ 34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼ 31 kDa and the ∼ 34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼ 31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein.

  15. Identification of a Collagen Type I Adhesin of Bacteroides fragilis

    PubMed Central

    Galvão, Bruna P. G. V.; Weber, Brandon W.; Rafudeen, Mohamed S.; Ferreira, Eliane O.; Patrick, Sheila; Abratt, Valerie R.

    2014-01-01

    Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein. PMID:24618940

  16. Engineering Amyloid-Like Assemblies from Unstructured Peptides via Site-Specific Lipid Conjugation

    PubMed Central

    López Deber, María Pilar; Hickman, David T.; Nand, Deepak; Baldus, Marc; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Aggregation of amyloid beta (Aβ) into oligomers and fibrils is believed to play an important role in the development of Alzheimer’s disease (AD). To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1–2% hexafluoroisopropanol (HFIP) in phosphate buffered saline (PBS). Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD), Attenuated Total Reflection InfraRed (ATR-IR), Thioflavin T (ThT) fluorescence, Dynamic Light Scattering (DLS), solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy and Electron Microscopy (EM). Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures. PMID:25207975

  17. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid

    PubMed Central

    Balbirnie, Melinda; Grothe, Robert; Eisenberg, David S.

    2001-01-01

    X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding. PMID:11226247

  18. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract

  19. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide

    NASA Astrophysics Data System (ADS)

    Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano

    2016-04-01

    Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI

  20. Towards a Pharmacophore for Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of

  1. Functional amyloid in Pseudomonas.

    PubMed

    Dueholm, Morten S; Petersen, Steen V; Sønderkær, Mads; Larsen, Poul; Christiansen, Gunna; Hein, Kim L; Enghild, Jan J; Nielsen, Jeppe L; Nielsen, Kåre L; Nielsen, Per H; Otzen, Daniel E

    2010-08-01

    Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid-like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA-F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation. © 2010 Blackwell Publishing Ltd.

  2. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation.

    PubMed

    Fustiñana, Maria Sol; Ariel, Pablo; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2010-09-01

    Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  3. Interaction of Mycobacterium leprae with Human Airway Epithelial Cells: Adherence, Entry, Survival, and Identification of Potential Adhesins by Surface Proteome Analysis

    PubMed Central

    Silva, Carlos A. M.; Danelishvili, Lia; McNamara, Michael; Berredo-Pinho, Márcia; Bildfell, Robert; Biet, Franck; Rodrigues, Luciana S.; Oliveira, Albanita V.

    2013-01-01

    This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control. PMID:23670556

  4. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis.

    PubMed

    Silva, Carlos A M; Danelishvili, Lia; McNamara, Michael; Berredo-Pinho, Márcia; Bildfell, Robert; Biet, Franck; Rodrigues, Luciana S; Oliveira, Albanita V; Bermudez, Luiz E; Pessolani, Maria C V

    2013-07-01

    This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.

  5. Template-directed deposition of amyloid

    NASA Astrophysics Data System (ADS)

    Ha, Chanki

    The formation of amyloid plaques in tissue is a pathological feature of many neurodegenerative diseases. Amyloid deposition, the process of amyloid plaque growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e. plaque), is known to be critical for amyloid formation in vivo. In order to characterize amyloid deposition, we developed novel, synthetic amyloid templates like amyloid plaques in the human Alzheimer's brain by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface. Amyloid plaques with a characteristic beta-sheet structure formed through a conformational rearrangement of soluble insulin or Abeta monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. According to visualization of temporal evolution of Abeta plaque deposition on a template, it was found that mature amyloid plaques serve as a sink of soluble Abeta in a solution as well as a reservoir of small aggregates such as oligomers and protofibrils. Quantitative analysis of seeding efficiencies of three different Abeta species revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Furthermore, studies on the interaction between Abeta40 and 42 showed an important role of Abeta42 in amyloid deposition. A slightly acidic condition was found to be unfavorable for amyloid plaque formation. Effects of metal ions on amyloid deposition indicated that Fe3+, but not Cu3 and Zn2+, is important for the deposition of amyloid plaques. The binding of Fe3+ to Abeta42 peptide was confirmed by using SIMS analysis. Zn2+ induced nonfibrillar amorphous aggregates, but the release of Zn2+ from Abeta42 deposits by Fe3+ triggered the formation of amyloid fibers. Effects or metal ion chelators such as ethylenediamine tetraacetic acid, deferoxamine, and clioquinol on amyloid deposition were tested to

  6. Enterotoxigenic Escherichia coli Adhesin-Toxoid Multiepitope Fusion Antigen CFA/I/II/IV-3xSTaN12S-mnLTG192G/L211A-Derived Antibodies Inhibit Adherence of Seven Adhesins, Neutralize Enterotoxicity of LT and STa Toxins, and Protect Piglets against Diarrhea.

    PubMed

    Nandre, Rahul; Ruan, Xiaosai; Lu, Ti; Duan, Qiangde; Sack, David; Zhang, Weiping

    2018-03-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of children's diarrhea and travelers' diarrhea. Vaccines inducing antibodies to broadly inhibit bacterial adherence and to neutralize toxin enterotoxicity are expected to be effective against ETEC-associated diarrhea. 6×His-tagged adhesin-toxoid fusion proteins were shown to induce neutralizing antibodies to several adhesins and LT and STa toxins (X. Ruan, D. A. Sack, W. Zhang, PLoS One 10:e0121623, 2015, https://doi.org/10.1371/journal.pone.0121623). However, antibodies derived from His-tagged CFA/I/II/IV-2xSTa A14Q -dmLT or CFA/I/II/IV-2xSTa N12S -dmLT protein were less effective in neutralizing STa enterotoxicity and were not evaluated in vivo for efficacy against ETEC diarrhea. Additionally, His-tagged proteins are considered less desirable for human vaccines. In this study, we produced a tagless adhesin-toxoid MEFA (multiepitope fusion antigen) protein, enhanced anti-STa immunogenicity by including a third copy of STa toxoid STa N12S , and examined antigen immunogenicity in a murine model. Moreover, we immunized pregnant pigs with the tagless adhesin-toxoid MEFA protein and evaluated passive antibody protection against STa + or LT + ETEC infection in a pig challenge model. Results showed that tagless adhesin-toxoid MEFA CFA/I/II/IV-3xSTa N12S -mnLT R192G/L211A induced broad antiadhesin and antitoxin antibody responses in the intraperitoneally immunized mice and the intramuscularly immunized pigs. Mouse and pig serum antibodies significantly inhibited adherence of seven colonization factor antigen (CFA) adhesins (CFA/I and CS1 to CS6) and effectively neutralized both toxins. More importantly, suckling piglets born to the immunized mothers acquired antibodies and were protected against STa + ETEC and LT + ETEC diarrhea. These results indicated that tagless CFA/I/II/IV-3xSTa N12S -mnLT R192G/L211A induced broadly protective antiadhesin and antitoxin antibodies and demonstrate that this adhesin

  7. Pyroglutamate-3 Amyloid-β Deposition in the Brains of Humans, Non-Human Primates, Canines, and Alzheimer Disease–Like Transgenic Mouse Models

    PubMed Central

    Frost, Jeffrey L.; Le, Kevin X.; Cynis, Holger; Ekpo, Elizabeth; Kleinschmidt, Martin; Palmour, Roberta M.; Ervin, Frank R.; Snigdha, Shikha; Cotman, Carl W.; Saido, Takaomi C.; Vassar, Robert J.; George-Hyslop, Peter St.; Ikezu, Tsuneya; Schilling, Stephan; Demuth, Hans-Ulrich; Lemere, Cynthia A.

    2014-01-01

    Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies. PMID:23747948

  8. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    PubMed Central

    Zeng, Guanghong; Vad, Brian S.; Dueholm, Morten S.; Christiansen, Gunna; Nilsson, Martin; Tolker-Nielsen, Tim; Nielsen, Per H.; Meyer, Rikke L.; Otzen, Daniel E.

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness. PMID:26500638

  9. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness.

    PubMed

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S; Christiansen, Gunna; Nilsson, Martin; Tolker-Nielsen, Tim; Nielsen, Per H; Meyer, Rikke L; Otzen, Daniel E

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness.

  10. Amyloid-like ribbons of amelogenins in enamel mineralization

    DOE PAGES

    Carneiro, Karina M. M.; Zhai, Halei; Zhu, Li; ...

    2016-03-24

    We report that enamel, the outermost layer of teeth, is an acellular mineralized tissue that cannot regenerate; the mature tissue is composed of high aspect ratio apatite nanocrystals organized into rods and inter-rod regions. Amelogenin constitutes 90% of the protein matrix in developing enamel and plays a central role in guiding the hierarchical organization of apatite crystals observed in mature enamel. To date, a convincing link between amelogenin supramolecular structures and mature enamel has yet to be described, in part because the protein matrix is degraded during tissue maturation. Here we show compelling evidence that amelogenin self-assembles into an amyloid-likemore » structure in vitro and in vivo. We show that enamel matrices stain positive for amyloids and we identify a specific region within amelogenin that self-assembles into β-sheets. Lastly, we propose that amelogenin nanoribbons template the growth of apatite mineral in human enamel. This is a paradigm shift from the current model of enamel development.« less

  11. Oral Immunization with Recombinant Lactobacillus acidophilus Expressing the Adhesin Hp0410 of Helicobacter pylori Induces Mucosal and Systemic Immune Responses

    PubMed Central

    Hongying, Fan; Xianbo, Wu; Fang, Yu; Yang, Bai

    2014-01-01

    Helicobacter pylori infection is relatively common worldwide and is closely related to gastric mucosa-associated lymphoid tissue (MALT) lymphoma, chronic gastritis, and stomach ulcers. Therefore, a safe and effective method for preventing H. pylori infection is urgently needed. Given that developing an effective vaccine against H. pylori is one of the best alternatives, H. pylori adhesin Hp0410 was expressed in the food-grade bacterium Lactobacillus acidophilus. The recombinant live bacterial vaccine was then used to orally vaccinate mice, and the immunoprotective effects of Hp0410-producing strains were investigated. H. pylori colonization in the stomach of mice immunized with the recombinant L. acidophilus was significantly reduced, in comparison with that in control groups. Furthermore, mucosal secretory IgA antibodies were elicited in the mucosal tissue of mice immunized with the recombinant bacteria, and specific anti-Hp0410 IgG responses were also detected in mouse serum. There was a significant increase in the level of protection against gastric Helicobacter infection following a challenge with H. pylori Sydney strain 1 (SS1). Our results collectively indicate that adhesin Hp0410 is a promising candidate vaccine antigen, and recombinant L. acidophilus expressing Hp0410 is likely to constitute an effective, low-cost, live bacterial vaccine against H. pylori. PMID:24285819

  12. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-β production.

    PubMed

    Lin, Yen-Chen; Wang, Jia-Yi; Wang, Kai-Chen; Liao, Jhih-Ying; Cheng, Irene H

    2014-11-01

    The deposition of amyloid-β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal-lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis. The internalization of amyloid precursor protein (APP) increases its opportunity to be processed by β-secretase and to produce Amyloid-β (Aβ) that causes Alzheimer's disease (AD). We report a pathogenic APPD678H mutant that enhances APP internalization into the endosomal-lysosomal pathway and thus promotes the β-secretase cleavage and Aβ production. This study provides genetic evidence for the importance of APP sorting in AD pathogenesis. © 2014 International Society for Neurochemistry.

  13. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

    PubMed

    Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence

    2016-03-08

    Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  15. The Collagen-Binding Adhesin Is a Virulence Factor in Staphylococcus aureus Keratitis

    PubMed Central

    Rhem, Marcus N.; Lech, Elizabeth M.; Patti, Joseph M.; McDevitt, Damien; Höök, Magnus; Jones, Dan B.; Wilhelmus, Kirk R.

    2000-01-01

    A collagen-binding strain of Staphylococcus aureus produced suppurative inflammation in a rabbit model of soft contact lens-associated bacterial keratitis more often than its collagen-binding-negative isogenic mutant. Reintroduction of the cna gene on a multicopy plasmid into the mutant helped it regain its corneal adherence and infectivity. The topical application of a collagen-binding peptide before bacterial challenge decreased S. aureus adherence to deepithelialized corneas. These data suggest that the collagen-binding adhesin is involved in the pathogenesis of S. aureus infection of the cornea. PMID:10816547

  16. Nanomechanical properties of single amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Sweers, K. K. M.; Bennink, M. L.; Subramaniam, V.

    2012-06-01

    Amyloid fibrils are traditionally associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease or Creutzfeldt-Jakob disease. However, the ability to form amyloid fibrils appears to be a more generic property of proteins. While disease-related, or pathological, amyloid fibrils are relevant for understanding the pathology and course of the disease, functional amyloids are involved, for example, in the exceptionally strong adhesive properties of natural adhesives. Amyloid fibrils are thus becoming increasingly interesting as versatile nanobiomaterials for applications in biotechnology. In the last decade a number of studies have reported on the intriguing mechanical characteristics of amyloid fibrils. In most of these studies atomic force microscopy (AFM) and atomic force spectroscopy play a central role. AFM techniques make it possible to probe, at nanometer length scales, and with exquisite control over the applied forces, biological samples in different environmental conditions. In this review we describe the different AFM techniques used for probing mechanical properties of single amyloid fibrils on the nanoscale. An overview is given of the existing mechanical studies on amyloid. We discuss the difficulties encountered with respect to the small fibril sizes and polymorphic behavior of amyloid fibrils. In particular, the different conformational packing of monomers within the fibrils leads to a heterogeneity in mechanical properties. We conclude with a brief outlook on how our knowledge of these mechanical properties of the amyloid fibrils can be exploited in the construction of nanomaterials from amyloid fibrils.

  17. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice.

    PubMed

    Vance, Tyler D R; Olijve, Luuk L C; Campbell, Robert L; Voets, Ilja K; Davies, Peter L; Guo, Shuaiqi

    2014-07-04

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches.

  18. Accelerated and Adaptive Evolution of Yeast Sexual Adhesins

    PubMed Central

    Xie, Xianfa; Qiu, Wei-Gang; Lipke, Peter N.

    2011-01-01

    There is a recent emergence of interest in the genes involved in gametic recognition as drivers of reproductive isolation. The recent population genomic sequencing of two species of sexually primitive yeasts (Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V et al. [23 co-authors]. 2009. Population genomics of domestic and wild yeasts. Nature 458:337–341.) has provided data for systematic study of the roles these genes play in the early evolution of sex and speciation. Here, we discovered that among genes encoding cell surface proteins, the sexual adhesin genes have evolved significantly more rapidly than others, both within and between Saccharomyces cerevisiae and its closest relative S. paradoxus. This result was supported by analyses using the PAML pairwise model, a modified McDonald–Kreitman test, and the PAML branch model. Moreover, using a combination of a new statistic of neutrality, an information theory–based measure of evolutionary variability, and functional characterization of amino acid changes, we found that a higher proportion of amino acid changes are fixed in the sexual adhesins than in other proteins and a greater proportion of the fixed amino acid changes either between the two species or the two subgroups of S. paradoxus are functionally dissimilar or radically different. These results suggest that the accelerated evolution of sexual adhesin genes may facilitate speciation, or incipient speciation, and promote sexual selection in general. PMID:21633112

  19. In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells.

    PubMed

    Hoepfner, Jeannine; Kleinsorge, Mandy; Papp, Oliver; Alfken, Susanne; Heiringhoff, Robin; Pich, Andreas; Sauer, Vanessa; Zibert, Andree; Göhring, Gudrun; Schmidt, Hartmut; Sgodda, Malte; Cantz, Tobias

    2017-07-26

    The transthyretin protein is thermodynamically destabilised by mutations in the transthyretin gene, promoting the formation of amyloid fibrils in various tissues. Consequently, impaired autonomic organ function is observed in patients suffering from transthyretin-related familial amyloidotic polyneuropathy (FAP). The influence of individual genetic backgrounds on fibril formation as a potential cause of genotype-phenotype variations needs to be investigated in order to ensure efficient patient-specific therapies. We reprogrammed FAP patient fibroblasts to induced pluripotent stem (iPS) cells and differentiated these cells into transthyretin-expressing hepatocyte-like cells (HLCs). HLCs differentiated from FAP iPS cells and healthy control iPS cells secreted the transthyretin protein in similar concentrations. Mass spectrometry revealed the presence of mutant transthyretin protein in FAP HLC supernatants. In comparison to healthy control iPS cells, we demonstrated the formation of transthyretin amyloid fibril-like structures in FAP HLC supernatants using the amyloid-specific dyes Congo red and thioflavin T. These dyes were also applicable for the quantitative determination of in vitro formed transthyretin fibril-like structures. Moreover, we confirmed the inhibition of fibril formation by the TTR kinetic stabiliser diclofenac. Thioflavin T fluorescence intensity measurements even allowed the quantification of amyloid fibril-like structures in 96-well plate formats as a prerequisite for patient-specific drug screening approaches.

  20. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    PubMed

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin.

  1. Pathogenetic mechanisms of amyloid A amyloidosis

    PubMed Central

    Simons, J. Paul; Al-Shawi, Raya; Ellmerich, Stephan; Speck, Ivana; Aslam, Samrina; Hutchinson, Winston L.; Mangione, Palma P.; Disterer, Petra; Gilbertson, Janet A.; Hunt, Toby; Millar, David J.; Minogue, Shane; Bodin, Karl; Pepys, Mark B.; Hawkins, Philip N.

    2013-01-01

    Systemic amyloid A (AA) amyloidosis is a serious complication of chronic inflammation. Serum AA protein (SAA), an acute phase plasma protein, is deposited extracellularly as insoluble amyloid fibrils that damage tissue structure and function. Clinical AA amyloidosis is typically preceded by many years of active inflammation before presenting, most commonly with renal involvement. Using dose-dependent, doxycycline-inducible transgenic expression of SAA in mice, we show that AA amyloid deposition can occur independently of inflammation and that the time before amyloid deposition is determined by the circulating SAA concentration. High level SAA expression induced amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly incorporated into amyloid, acutely reducing circulating SAA concentrations by up to 90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after long delays and primed most mice for explosive amyloidosis when SAA production subsequently increased. Endogenous priming and bulk amyloid deposition are thus separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly regressed with restoration of normal SAA production after doxycycline withdrawal. Reinduction of SAA overproduction revealed that, following amyloid regression, all mice were primed, especially for rapid glomerular amyloid deposition leading to renal failure, closely resembling the rapid onset of renal failure in clinical AA amyloidosis following acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart, but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits, enabling us to extend to the heart the demonstrable efficacy of our unique antibody therapy for elimination of visceral amyloid. PMID:23959890

  2. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.

    PubMed

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2017-05-01

    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  3. Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain.

    PubMed Central

    Normark, S; Lark, D; Hull, R; Norgren, M; Båga, M; O'Hanley, P; Schoolnik, G; Falkow, S

    1983-01-01

    The uropathogenic strain Escherichia coli J96 mediates mannose-resistant hemagglutination owing to production of a digalactoside-binding adhesin. A cosmid clone from this strain has been isolated that, when harbored in E. coli K-12, expressed Pap pili and this adhesin (R. Hull et al., Infect. Immun. 33:933-938, 1981). By transposon mutagenesis and by the construction of a number of hybrid plasmid derivatives, we have demonstrated that about 8.5 kilobases of DNA is required to generate a mannose-resistant hemagglutination-positive phenotype in E. coli K-12 strain P678-54. The structural gene for the Pap pili monomer, papA, has been identified and mapped close to the promotor-proximal end of the Pap operon. Although strain P678-54 that harbored a Tn5 insertion within papA showed a mannose-resistant hemagglutination-positive phenotype, it was negative in a competitive enzyme-linked immunosorbent assay with anti-Pap pilus serum. This could mean that a Pap adhesin is encoded by a region on the Pap operon that is distinct from papA. Images PMID:6136465

  4. Identification of putative adhesins of Actinobacillus suis and their homologues in other members of the family Pasteurellaceae.

    PubMed

    Bujold, Adina R; MacInnes, Janet I

    2015-11-14

    Actinobacillus suis disease has been reported in a wide range of vertebrate species, but is most commonly found in swine. A. suis is a commensal of the tonsils of the soft palate of swine, but in the presence of unknown stimuli it can invade the bloodstream, causing septicaemia and sequelae such as meningitis, arthritis, and death. It is genotypically and phenotypically similar to A. pleuropneumoniae, the causative agent of pleuropneumonia, and to other members of the family Pasteurellaceae that colonise tonsils. At present, very little is known about the genes involved in attachment, colonisation, and invasion by A. suis (or related members of the tonsil microbiota). Bioinformatic analyses of the A. suis H91-0380 genome were done using BASys and blastx in GenBank. Forty-seven putative adhesin-associated genes predicted to encode 24 putative adhesins were discovered. Among these are 6 autotransporters, 25 fimbriae-associated genes (encoding 3 adhesins), 12 outer membrane proteins, and 4 additional genes (encoding 3 adhesins). With the exception of 2 autotransporter-encoding genes (aidA and ycgV), both with described roles in virulence in other species, all of the putative adhesin-associated genes had homologues in A. pleuropneumoniae. However, the majority of the closest homologues of the A. suis adhesins are found in A. ureae and A. capsulatus--species not known to infect swine, but both of which can cause systemic infections. A. suis and A. pleuropneumoniae share many of the same putative adhesins, suggesting that the different diseases, tissue tropism, and host range of these pathogens are due to subtle genetic differences, or perhaps differential expression of virulence factors during infection. However, many of the putative adhesins of A. suis share even greater homology with those of other pathogens within the family Pasteurellaceae. Similar to A. suis, these pathogens (A. capsulatus and A. ureae) cause systemic infections and it is tempting to speculate that

  5. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  6. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.

  7. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    PubMed Central

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to 1) globally characterize cell walls isolated from a Gram-positive bacterium and 2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin. PMID:26837620

  8. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    PubMed

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  9. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    PubMed

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white.

    PubMed

    Lassé, Moritz; Ulluwishewa, Dulantha; Healy, Jackie; Thompson, Dion; Miller, Antonia; Roy, Nicole; Chitcholtan, Kenny; Gerrard, Juliet A

    2016-02-01

    The structural properties of amyloid fibrils combined with their highly functional surface chemistry make them an attractive new food ingredient, for example as highly effective gelling agents. However, the toxic role of amyloid fibrils in disease may cause some concern about their food safety because it has not been established unequivocally if consumption of food fibrils poses a health risk to consumers. Here we present a study of amyloid-like fibrils from whey, kidney bean, soy bean, and egg white to partially address this concern. Fibrils showed varied resistance to proteolytic digestion in vitro by either Proteinase K, pepsin or pancreatin. The toxicity of mature fibrils was measured in vitro and compared to native protein, early-stage-fibrillar protein, and sonicated fibrils in two immortalised human cancer cell lines, Caco-2 and Hec-1a. There was no reduction in the viability of either Caco-2 or Hec-1a cells after treatment with a fibril concentration of up to 0.25 mg/mL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pathogenesis of Human Diffusely Adhering Escherichia coli Expressing Afa/Dr Adhesins (Afa/Dr DAEC): Current Insights and Future Challenges

    PubMed Central

    2014-01-01

    SUMMARY The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as “silent pathogens” with the capacity to emerge as “pathobionts” for the development of inflammatory bowel disease and intestinal carcinogenesis. PMID:25278576

  12. Biofilm inhibitors that target amyloid proteins.

    PubMed

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Chiral recognition in amyloid fiber growth.

    PubMed

    Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald

    2016-05-01

    Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  14. Self-Assembly of Large Amyloid Fibers

    NASA Astrophysics Data System (ADS)

    Ridgley, Devin M.

    fibers when combined with extracellular myoglobin, an adder protein. The goal of this thesis is to produce, manipulate and characterize the self-assembly of large amyloid fibers for their potential industrial biomaterial applications. The techniques used throughout this study outline various methods to design and engineer amyloid fibers of a tailored modulus and morphology. Furthermore, the mechanisms described here may offer some insight into naturally occurring amyloid forming systems.

  15. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    PubMed Central

    Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.

    2010-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754

  16. Ecology and Biogenesis of Functional Amyloids in Pseudomonas.

    PubMed

    Rouse, Sarah L; Matthews, Stephen J; Dueholm, Morten S

    2018-05-16

    Functional amyloids can be found in the extracellular matrix produced by many bacteria during biofilm growth. They mediate the initial attachment of bacteria to surfaces and provide stability and functionality to mature biofilms. Efficient amyloid biogenesis requires a highly coordinated system of amyloid subunits, molecular chaperones and transport systems. The functional amyloid of Pseudomonas (Fap) represents such a system. Here, we review the phylogenetic diversification of the Fap system, its potential ecological role and the dedicated machinery required for Fap biogenesis, with a particular focus on the amyloid exporter FapF, the structure of which has been recently resolved. We also present a sequence covariance-based in silico model of the FapC fiber-forming subunit. Finally, we highlight key questions that remain unanswered and we believe deserve further attention by the scientific community. Copyright © 2018. Published by Elsevier Ltd.

  17. FDG metabolism associated with tau-amyloid interaction predicts memory decline

    PubMed Central

    Hanseeuw, Bernard J.; Betensky, Rebecca A.; Schultz, Aaron P.; Papp, Kate V.; Mormino, Elizabeth C.; Sepulcre, Jorge; Bark, John S.; Cosio, Danielle M.; LaPoint, Molly; Chhatwal, Jasmeer P.; Rentz, Dorene M.; Sperling, Reisa A.; Johnson, Keith

    2017-01-01

    Objective To evaluate in normal older adults and preclinical Alzheimer’s disease (AD) the impact of amyloid and regional tauopathy on cerebral glucose metabolism and subsequent memory decline. Methods We acquired positron emission tomography using F18 Flortaucipir (tau), C11 Pittsburgh Compound B (amyloid) and F18 Fluorodeoxyglucose in 90 clinically normal elderly of the Harvard Aging Brain Study. Results Posterior cingulate metabolism decreased when both amyloid and neocortical tau were high and predicted subsequent memory decline in a larger sample of normal elderly. In contrast, frontal hypometabolism related to the common age-related entorhinal tauopathy, but this dysfunction was independent of amyloid, and did not predict significant memory decline. Neocortical tauopathy was positively associated with metabolism in individuals with sub-threshold amyloid, suggesting that glucose metabolism increases before decreasing in the course of preclinical AD. Interpretation Our study identified a synergistic effect of amyloid and tau deposits and demonstrated for the first time in normal elderly its link to AD-like hypometabolism and to AD-like memory decline. The amyloid effect was seen with tau in neocortex, but not with tau in entorhinal cortex, which is the common site of age-related tauopathy. Entorhinal tau was associated with frontal hypometabolism, but this dysfunction was not associated with memory loss. PMID:28253546

  18. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges.

    PubMed

    Servin, Alain L

    2014-10-01

    The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis. Copyright © 2014, American Society for Microbiology. All Rights

  19. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii

    PubMed Central

    Chen, Yu; Bensing, Barbara A.; Seepersaud, Ravin; Mi, Wei; Liao, Maofu; Jeffrey, Philip D.; Shajahan, Asif; Sonon, Roberto N.; Azadi, Parastoo; Sullam, Paul M.; Rapoport, Tom A.

    2018-01-01

    Many pathogenic bacteria, including Streptococcus gordonii, possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is O-glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1–3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the S. gordonii adhesin GspB is sequentially O-glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach N-acetylglucosamine and glucose to Ser/Thr residues. We also found that modified GspB is transferred from the last glycosyltransferase to the Asp1/2/3 complex. Crystal structures revealed that both Asp1 and Asp3 are related to carbohydrate-binding proteins, suggesting that they interact with carbohydrates and bind glycosylated adhesin, a notion that was supported by further analyses. We further observed that Asp1 also has an affinity for phospholipids, which is attenuated by Asp2. In summary, our findings support a model in which the GspB adhesin is sequentially glycosylated by GtfA/B, Nss, and Gly and then transferred to the Asp1/2/3 complex in which Asp1 mediates the interaction of the Asp1/2/3 complex with the lipid bilayer for targeting of matured GspB to the export machinery. PMID:29462788

  20. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii.

    PubMed

    Chen, Yu; Bensing, Barbara A; Seepersaud, Ravin; Mi, Wei; Liao, Maofu; Jeffrey, Philip D; Shajahan, Asif; Sonon, Roberto N; Azadi, Parastoo; Sullam, Paul M; Rapoport, Tom A

    2018-04-06

    Many pathogenic bacteria, including Streptococcus gordonii , possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is O -glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the S. gordonii adhesin GspB is sequentially O -glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach N -acetylglucosamine and glucose to Ser/Thr residues. We also found that modified GspB is transferred from the last glycosyltransferase to the Asp1/2/3 complex. Crystal structures revealed that both Asp1 and Asp3 are related to carbohydrate-binding proteins, suggesting that they interact with carbohydrates and bind glycosylated adhesin, a notion that was supported by further analyses. We further observed that Asp1 also has an affinity for phospholipids, which is attenuated by Asp2. In summary, our findings support a model in which the GspB adhesin is sequentially glycosylated by GtfA/B, Nss, and Gly and then transferred to the Asp1/2/3 complex in which Asp1 mediates the interaction of the Asp1/2/3 complex with the lipid bilayer for targeting of matured GspB to the export machinery.

  1. Alzheimer's disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior.

    PubMed

    Sharma, Sheetal; Verma, Sonia; Kapoor, Monika; Saini, Avneet; Nehru, Bimla

    2016-09-01

    Amyloid-beta (Aβ) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer's disease (AD), but soluble oligomeric Aβ is considered to be more potent and has been hypothesized to directly impair learning and memory. Also, evidences from some clinical studies indicated that Aβ oligomer formation is the major cause for early AD onset. However, the biochemical mechanism involved in the oligomer-induced toxicity is not very well addressed. So, thise present study was undertaken to study the effects of single intracerebroventricular (icv) injection of protofibrillar Aβ 1-42 on the behavioral and biochemical profile in rats. Rats were divided into two groups (n = 8 per group): (1) sham control group and (2) Aβ 1-42 injected group. A single dose of protofibrillar Aβ 1-42 (5 ul) through icv injection was bilaterally administered into the dorsal hippocampus, while sham control animals were administered with 5 µl of vehicle. The results demonstrated that the protofibrillar Aβ significantly inhibited long-term memory retention and increased anxiety levels as shown by the behavioral studies. The amyloid deposits were present inside the brain even six weeks after injection as confirmed by thioflavin-T staining and the neurodegeneration induced by these deposits was confirmed by Nissl's staining in hippocampal and cortical regions. The amyloid aggregates induced reactive oxygen species (ROS) production, acetylcholinesterase activity, nitrite levels, lipid peroxidation, and inhibited antioxidant enzyme activity in hippocampus, cortex, and striatum regions of rat brain after six weeks. The present study indicated that protofibrillar Aβ 1-42 injection altered long term memory, induced anxiety-like behavior and also developed Alzheimer's disease like pathology in rats.

  2. Amyloid plaque structure and cell surface interactions of β-amyloid fibrils revealed by electron tomography

    PubMed Central

    Han, Shen; Kollmer, Marius; Markx, Daniel; Claus, Stephanie; Walther, Paul; Fändrich, Marcus

    2017-01-01

    The deposition of amyloid fibrils as plaques is a key feature of several neurodegenerative diseases including in particular Alzheimer’s. This disease is characterized, if not provoked, by amyloid aggregates formed from Aβ peptide that deposit inside the brain or are toxic to neuronal cells. We here used scanning transmission electron microscopy (STEM) to determine the fibril network structure and interactions of Aβ fibrils within a cell culture model of Alzheimer’s disease. STEM images taken from the formed Aβ amyloid deposits revealed three main types of fibril network structures, termed amorphous meshwork, fibril bundle and amyloid star. All three were infiltrated by different types of lipid inclusions from small-sized exosome-like structures (50–100 nm diameter) to large-sized extracellular vesicles (up to 300 nm). The fibrils also presented strong interactions with the surrounding cells such that fibril bundles extended into tubular invaginations of the plasma membrane. Amyloid formation in the cell model was previously found to have an intracellular origin and we show here that it functionally destroys the integrity of the intracellular membranes as it leads to lysosomal leakage. These data provide a mechanistic link to explain why intracellular fibril formation is toxic to the cell. PMID:28240273

  3. Molecular mechanism of extreme mechanostability in a pathogen adhesin.

    PubMed

    Milles, Lukas F; Schulten, Klaus; Gaub, Hermann E; Bernardi, Rafael C

    2018-03-30

    High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy-based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Bone marrow amyloid spherulites in a case of AL amyloidosis.

    PubMed

    Bommannan B K, Karthik; Sonai, Mukinkumar; Sachdeva, Man Updesh Singh

    2016-05-01

    Parallel arrangement of β-pleated sheets by amyloidogenic proteins is a well known phenomenon. Rarely, amyloid fibrils undergo radial orientation to form globular structures called spherulites. These amyloid spherulites show Maltese cross pattern under polarized microscopy. The clinical significance of amyloid spherulites is undetermined. Amyloidogenic proteins like insulin and β-lactoglobulin form spherulites in vitro. The senile plaques of Alzheimer's disease rarely form in vivo spherulites. Amyloid spherulites have been described in the liver and small intestine. For the first time, we document amyloid spherulite formation in the bone marrow biopsy of an AL amyloidosis patient. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. In situ hybridization of nucleus basalis neurons shows increased. beta. -amyloid mRNA in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.

    1988-02-01

    To determine which cells within the brain produce ..beta..-amyloid mRNA and to assess expression of the ..beta..-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that ..beta..-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more ..beta..-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the ..beta..-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease.

  6. Amyloid Formation by Human Carboxypeptidase D Transthyretin-like Domain under Physiological Conditions*

    PubMed Central

    Garcia-Pardo, Javier; Graña-Montes, Ricardo; Fernandez-Mendez, Marc; Ruyra, Angels; Roher, Nerea; Aviles, Francesc X.; Lorenzo, Julia; Ventura, Salvador

    2014-01-01

    Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic β-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases. PMID:25294878

  7. Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin

    PubMed Central

    Echelman, Daniel J.; Lee, Alex Q.; Fernández, Julio M.

    2017-01-01

    Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. PMID:28348083

  8. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis.

    PubMed

    Luo, Jinghui; Wärmländer, Sebastian K T S; Gräslund, Astrid; Abrahams, Jan Pieter

    2016-08-05

    Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. In vitro Paracoccidioides brasiliensis biofilm and gene expression of adhesins and hydrolytic enzymes.

    PubMed

    Sardi, Janaina de Cássia Orlandi; Pitangui, Nayla de Souza; Voltan, Aline Raquel; Braz, Jaqueline Derissi; Machado, Marcelo Pelajo; Fusco Almeida, Ana Marisa; Mendes Giannini, Maria Jose Soares

    2015-01-01

    Paracoccidioides species are dimorphic fungi that initially infect the lungs but can also spread throughout the body. The spreading infection is most likely due to the formation of a biofilm that makes it difficult for the host to eliminate the infection. Biofilm formation is crucial for the development of infections and confines the pathogen to an extracellular matrix. Its presence is associated with antimicrobial resistance and avoidance of host defenses. This current study provides the first description of biofilm formation by Paracoccidioides brasiliensis (Pb18) and an analysis of gene expression, using real-time PCR, associated with 3 adhesins and 2 hydrolytic enzymes that could be associated with the virulence profile. Biofilm formation was analyzed using fluorescence microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Metabolic activity was determined using the XTT reduction assay. P. brasiliensis was able to form mature biofilm in 144 h with a thickness of 100 μm. The presence of a biofilm was found to be associated with an increase in the expression of adhesins and enzymes. GP43, enolase, GAPDH and aspartyl proteinase genes were over-expressed, whereas phospholipase was down-regulated in biofilm. The characterization of biofilm formed by P. brasiliensis may contribute to a better understanding of the pathogenesis of paracoccidioidomycosis as well as the search for new therapeutic alternatives; while improving the effectiveness of treatment.

  10. Eckmaxol, a Phlorotannin Extracted from Ecklonia maxima, Produces Anti-β-amyloid Oligomer Neuroprotective Effects Possibly via Directly Acting on Glycogen Synthase Kinase 3β.

    PubMed

    Wang, Jialing; Zheng, Jiachen; Huang, Chunhui; Zhao, Jiaying; Lin, Jiajia; Zhou, Xuezhen; Naman, C Benjamin; Wang, Ning; Gerwick, William H; Wang, Qinwen; Yan, Xiaojun; Cui, Wei; He, Shan

    2018-04-10

    Alzheimer's disease is a progressive neurodegenerative disorder that mainly affects the elderly. Soluble β-amyloid oligomer, which can induce neurotoxicity, is generally regarded as the main neurotoxin in Alzheimer's disease. Here we report that eckmaxol, a phlorotannin extracted from the brown alga Ecklonia maxima, could produce neuroprotective effects in SH-SY5Y cells. Eckmaxol effectively prevented but did not rescue β-amyloid oligomer-induced neuronal apoptosis and increase of intracellular reactive oxygen species. Eckmaxol also significantly reversed the decreased expression of phospho-Ser9-glycogen synthase kinase 3β and increased expression of phospho-extracellular signal-regulated kinase, which was induced by Aβ oligomer. Moreover, both glycogen synthase kinase 3β and mitogen activated protein kinase inhibitors produced neuroprotective effects in SH-SY5Y cells. Furthermore, eckmaxol showed favorable interaction in the ATP binding site of glycogen synthase kinase 3β and mitogen activated protein kinase. These results suggested that eckmaxol might produce neuroprotective effects via concurrent inhibition of glycogen synthase kinase 3β and extracellular signal-regulated kinase pathways, possibly via directly acting on glycogen synthase kinase 3β and mitogen activated protein kinase. Based on the central role that β-amyloid oligomers play in the pathogenesis of Alzheimer's disease and the high annual production of Ecklonia maxima for alginate and other nutritional ingredients, this report represents a new candidate for the treatment of Alzheimer's disease, and also expands the potential application of Ecklonia maxima and its constituents in the field of pharmacology.

  11. Lessons from a Rare Familial Dementia: Amyloid and Beyond

    PubMed Central

    Cantlon, Adam; Frigerio, Carlo Sala; Walsh, Dominic M.

    2015-01-01

    Here we review the similarities between a rare inherited disorder, familial British dementia (FBD), and the most common of all late-life neurological conditions, Alzheimer's diseases (AD). We describe the symptoms, pathology and genetics of FBD, the biology of the BRI2 protein and mouse models of FBD and familial Danish dementia. In particular, we focus on the evolving recognition of the importance of protein oligomers and aberrant processing of the amyloid β-protein precursor (APP) - themes that are common to both FBD and AD. The initial discovery that FBD is phenotypically similar to AD, but associated with the deposition of an amyloid peptide (ABri) distinct from the amyloid β-protein (Aβ) led many to assume that amyloid production alone is sufficient to initiate disease and that ABri is the molecular equivalent of Aβ. Parallel with work on Aβ, studies of ABri producing animal models and in vitro ABri toxicity experiments caused a revision of the amyloid hypothesis and a focus on soluble oligomers of Aβ and ABri. Contemporaneous other studies suggested that loss of the ABri precursor protein (BRI2) may underlie the cognitive deficits in FBD. In this regard it is important to note that BRI2 has been shown to interact with and regulate the processing of APP, and that mutant BRI2 leads to altered cleavage of APP. A synthesis of these results suggests that a “two-hit mechanism” better explains FBD than earlier toxic gain of function and toxic loss of function models. The lessons learned from the study of FBD imply that the molecular pathology of AD is also likely to involve both aberrant aggregation (in AD, Aβ) and altered APP processing. With regard to FBD, we propose that the C-terminal 11 amino acid of FBD-BRI2 interfere with both the normal function of BRI2 and promotes the production of cystine cross-linked toxic ABri oligomers. In this scenario, loss of BRI2 function leads to altered APP processing in as yet underappreciated ways. Given the

  12. Amyloid in dementia associated with familial FTLD: not an innocent bystander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naasan, Georges; Rabinovici, Gil D.; Ghosh, Pia

    We present that patients with frontotemporal lobar degeneration (FTLD) can show superimposed amyloid pathology, though the impact of amyloid on the clinical presentation of FTLD is not well characterized. This cross-sectional case–control study compared clinical features, fluorodeoxyglucose-positron emission tomography metabolism and gray matter volume loss in 30 patients with familial FTLD in whom amyloid status was confirmed with autopsy or Pittsburgh compound B-PET. Compared to the amyloid-negative patients, the amyloid-positive patients performed significantly worse on several cognitive tests and showed hypometabolism and volume loss in more temporoparietal regions. Finally, our results suggest that in FTLD amyloid positivity is associated withmore » a more Alzheimer’s disease-like pattern of neurodegeneration.« less

  13. Amyloid in dementia associated with familial FTLD: not an innocent bystander

    DOE PAGES

    Naasan, Georges; Rabinovici, Gil D.; Ghosh, Pia; ...

    2015-06-04

    We present that patients with frontotemporal lobar degeneration (FTLD) can show superimposed amyloid pathology, though the impact of amyloid on the clinical presentation of FTLD is not well characterized. This cross-sectional case–control study compared clinical features, fluorodeoxyglucose-positron emission tomography metabolism and gray matter volume loss in 30 patients with familial FTLD in whom amyloid status was confirmed with autopsy or Pittsburgh compound B-PET. Compared to the amyloid-negative patients, the amyloid-positive patients performed significantly worse on several cognitive tests and showed hypometabolism and volume loss in more temporoparietal regions. Finally, our results suggest that in FTLD amyloid positivity is associated withmore » a more Alzheimer’s disease-like pattern of neurodegeneration.« less

  14. Clinical Amyloid Imaging.

    PubMed

    Mallik, Atul; Drzezga, Alex; Minoshima, Satoshi

    2017-01-01

    Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders

  15. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation.

    PubMed

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic

    2016-07-01

    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Intravenous injection of beta-amyloid seeds promotes cerebral amyloid angiopathy (CAA).

    PubMed

    Burwinkel, Michael; Lutzenberger, Manuel; Heppner, Frank L; Schulz-Schaeffer, Walter; Baier, Michael

    2018-03-05

    Seeding and spread of beta-amyloid (Aβ) pathologies have been considered to be based on prion-like mechanisms. However, limited transmissibility of Aβ seeding activity upon peripheral exposure would represent a key difference to prions, not only in terms of pathogenesis but also in terms of potential transmission of disease. We partially characterized the seeded Aβ amyloidosis after intracerebral injection of various brain homogenates in APP/PS1 mice. One particularly seed-laden homogenate was selected to investigate the development of Aβ pathologies after intravenous exposure. We report here that a single intravenous injection of an Alzheimer disease patient's-brain extract into APP/PS1 recipient mice led to cerebral amyloid angiopathy within 180 days post injection. Thus, vascular proteinopathies such as CAA are transmissible in mice via the intravenous route of peripheral exposure.

  17. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose.

    PubMed

    Sarabia-Sainz, Andre-I; Sarabia-Sainz, Hector Manuel; Montfort, Gabriela Ramos-Clamont; Mata-Haro, Veronica; Guzman-Partida, Ana María; Guzman, Roberto; Garcia-Soto, Mariano; Vazquez-Moreno, Luz

    2015-09-16

    The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10-17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections.

  18. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose

    PubMed Central

    Sarabia-Sainz, Andre-i; Sarabia-Sainz, Hector Manuel; Ramos-Clamont Montfort, Gabriela; Mata-Haro, Veronica; Guzman-Partida, Ana María; Guzman, Roberto; Garcia-Soto, Mariano; Vazquez-Moreno, Luz

    2015-01-01

    The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10–17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections. PMID:26389896

  19. Force Sensitivity in Saccharomyces cerevisiae Flocculins.

    PubMed

    Chan, Cho X J; El-Kirat-Chatel, Sofiane; Joseph, Ivor G; Jackson, Desmond N; Ramsook, Caleen B; Dufrêne, Yves F; Lipke, Peter N

    2016-01-01

    amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.

  20. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic.

    PubMed

    Hook, Gregory; Yu, Jin; Toneff, Thomas; Kindy, Mark; Hook, Vivian

    2014-01-01

    Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer's disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed.

  1. Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier.

    PubMed

    Dai, Bin; Li, Dan; Xi, Wenhui; Luo, Fang; Zhang, Xiang; Zou, Man; Cao, Mi; Hu, Jun; Wang, Wenyuan; Wei, Guanghong; Zhang, Yi; Liu, Cong

    2015-03-10

    Using and engineering amyloid as nanomaterials are blossoming trends in bionanotechnology. Here, we show our discovery of an amyloid structure, termed "amyloid-like nanosheet," formed by a key amyloid-forming segment of Alzheimer's Aβ. Combining multiple biophysical and computational approaches, we proposed a structural model for the nanosheet that is formed by stacking the amyloid fibril spines perpendicular to the fibril axis. We further used the nanosheet for laboratorial retroviral transduction enhancement and directly visualized the presence of virus on the nanosheet surface by electron microscopy. Furthermore, based on our structural model, we designed nanosheet-forming peptides with different functionalities, elucidating the potential of rational design for amyloid-based materials with novel architecture and function.

  2. Amyloid PET in neurodegenerative diseases with dementia.

    PubMed

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Adhesin genes and serum resistance in Haemophilus influenzae type f isolates

    PubMed Central

    Nelson, Kevin L.; Nguyen, Victoria; Burnham, Carey-Ann D.; Clarridge, Jill E.; Qin, Xuan; Smith, Arnold L.

    2013-01-01

    The incidence of invasive infections due to Haemophilus influenzae has decreased significantly in developed countries with high rates of vaccination against H. influenzae serotype b (Hib). This vaccine provides no protection against H. influenzae serotype f (Hif), typically associated with invasive infections in adults with chronic disease and/or immunodeficiency, and rarely in otherwise healthy adults and children. The specific properties of Hif associated with virulence remain largely uncharacterized. A panel of 26 Hif strains consisting of both invasive disease-associated and mucosal surface non-invasive disease-associated isolates was surveyed by DNA fingerprinting, biotyping and PCR detection of hmw1, hmw2, hsf, the hif fimbrial locus and the lipo-oligosaccharide (LOS) biosynthetic island, and assessment of β-lactamase expression and determination of resistance to the bactericidal activity of normal adult human serum. Repetitive sequence-based PCR fingerprinting differentiated the 26 strains into three clusters, with the majority of isolates (22/26, 84.6 %) clustered into a single indistinguishable group. Most isolates (24/26, 92.3 %) were of biotype I and two isolates produced β-lactamase with detection of a conjugative plasmid, and the isolates displayed a range of resistances to the bactericidal activity of human serum. All 26 isolates carried the adhesin hsf, 21 carried a partial hif fimbrial operon and 4 had the adhesin genes hmw1/2. A LOS biosynthetic island was detected in 20 isolates consisting of the genes lic2BC. It was concluded that Hif has many recognized virulence properties and comprises a relatively homogeneous group independent of the anatomical source from which it was isolated. PMID:23242639

  4. Spatial Relation between Microbleeds and Amyloid Deposits in Amyloid Angiopathy

    PubMed Central

    Dierksen, Gregory A; Skehan, Maureen E; Khan, Muhammad A; Jeng, Jed; Nandigam, RN Kaveer; Becker, John A; Kumar, Ashok; Neal, Krista L; Betensky, Rebecca A; Frosch, Matthew P; Rosand, Jonathan; Johnson, Keith A; Viswanathan, Anand; Salat, David H; Greenberg, Steven M

    2010-01-01

    Advanced cerebrovascular β-amyloid deposition (cerebral amyloid angiopathy, CAA) is associated with cerebral microbleeds, but the precise relationship between CAA burden and microbleeds is undefined. We used T2*-weighted MRI and noninvasive amyloid imaging with Pittsburgh Compound B (PiB) to analyze the spatial relationship between CAA and microbleeds. On co-registered PET and MRI images, PiB retention was increased at microbleed sites compared to simulated control lesions (p=0.002) and declined with increasing distance from the microbleed (p<0.0001). These findings indicate that microbleeds occur preferentially in local regions of concentrated amyloid and support therapeutic strategies aimed at reducing vascular amyloid deposition. PMID:20865701

  5. Chirality and chiroptical properties of amyloid fibrils.

    PubMed

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties. © 2014 Wiley Periodicals, Inc.

  6. Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold

    PubMed Central

    Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J. M.; Sabaté, Raimon; Loquet, Antoine; Saupe, Sven J.

    2015-01-01

    In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553

  7. Age-associated evolution of plasmatic amyloid in mouse lemur primates: Relationship with intracellular amyloid deposition

    PubMed Central

    Roy, Maggie; Cardoso, Cécile; Dorieux, Olène; Malgorn, Carole; Epelbaum, Stephane; Petit, Fanny; Kraska, Audrey; Brouillet, Emmanuel; Delatour, Benoît; Perret, Martine; Aujard, Fabienne; Dhenain, Marc

    2014-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β peptide (Aβ) deposition in the brain is one of its hallmarks and the measure of plasma Aβ is considered to be a biomarker for anti-amyloid drug efficacy in animal models of AD. However, age-associated plasmatic Aβ modulation in animal models is practically never addressed in the literature. Mouse lemur primates are used as a model of normal and AD-like cerebral aging. Here, we studied the effect of age on plasmatic Aβ in 58 mouse lemurs aged from 1 to 10 years. A subset of animals presented high plasmatic Aβ and the proportion of animals with high plasmatic Aβ was higher in aged animals as compared to young ones. Histological evaluation of the brain of some of these animals was carried out to assess extracellular and intracellular amyloid load. In aged lemurs, plasmatic Aβ was negatively correlated with the density of neurons accumulating deposits of Aβ. PMID:25131002

  8. Biological role of bacterial inclusion bodies: a model for amyloid aggregation.

    PubMed

    García-Fruitós, Elena; Sabate, Raimon; de Groot, Natalia S; Villaverde, Antonio; Ventura, Salvador

    2011-07-01

    Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background. © 2011 The Authors Journal compilation © 2011 FEBS.

  9. A Repetitive DNA Element Regulates Expression of the Helicobacter pylori Sialic Acid Binding Adhesin by a Rheostat-like Mechanism

    PubMed Central

    Vallström, Anna; Olofsson, Annelie; Öhman, Carina; Rakhimova, Lena; Borén, Thomas; Engstrand, Lars; Brännström, Kristoffer; Arnqvist, Anna

    2014-01-01

    During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors. PMID:24991812

  10. Characterization of amyloid in equine recurrent uveitis as AA amyloid.

    PubMed

    Ostevik, L; de Souza, G A; Wien, T N; Gunnes, G; Sørby, R

    2014-01-01

    Two horses with chronic uveitis and histological lesions consistent with equine recurrent uveitis (ERU) were examined. Microscopical findings in the ciliary body included deposits of amyloid lining the non-pigmented epithelium, intracytoplasmic, rod-shaped, eosinophilic inclusions and intraepithelial infiltration of T lymphocytes. Ultrastructural examination of the ciliary body of one horse confirmed the presence of abundant extracellular deposits of non-branching fibrils (9-11 nm in diameter) consistent with amyloid. Immunohistochemistry revealed strong positive labelling for AA amyloid and mass spectrometry showed the amyloid to consist primarily of serum amyloid A1 in both cases. The findings suggest that localized, intraocular AA amyloidosis may occur in horses with ERU. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy.

    PubMed

    Dierksen, Gregory A; Skehan, Maureen E; Khan, Muhammad A; Jeng, Jed; Nandigam, R N Kaveer; Becker, John A; Kumar, Ashok; Neal, Krista L; Betensky, Rebecca A; Frosch, Matthew P; Rosand, Jonathan; Johnson, Keith A; Viswanathan, Anand; Salat, David H; Greenberg, Steven M

    2010-10-01

    Advanced cerebrovascular β-amyloid deposition (cerebral amyloid angiopathy, CAA) is associated with cerebral microbleeds, but the precise relationship between CAA burden and microbleeds is undefined. We used T2*-weighted magnetic resonance imaging (MRI) and noninvasive amyloid imaging with Pittsburgh Compound B (PiB) to analyze the spatial relationship between CAA and microbleeds. On coregistered positron emission tomography (PET) and MRI images, PiB retention was increased at microbleed sites compared to simulated control lesions (p = 0.002) and declined with increasing distance from the microbleed (p < 0.0001). These findings indicate that microbleeds occur preferentially in local regions of concentrated amyloid and support therapeutic strategies aimed at reducing vascular amyloid deposition.

  12. The Draft Genome of the Non-Host-Associated Methanobrevibacter arboriphilus Strain DH1 Encodes a Large Repertoire of Adhesin-Like Proteins

    PubMed Central

    Poehlein, Anja; Daniel, Rolf

    2017-01-01

    Methanobrevibacter arboriphilus strain DH1 is an autotrophic methanogen that was isolated from the wetwood of methane-emitting trees. This species has been of considerable interest for its unusual oxygen tolerance and has been studied as a model organism for more than four decades. Strain DH1 is closely related to other host-associated Methanobrevibacter species from intestinal tracts of animals and the rumen, making this strain an interesting candidate for comparative analysis to identify factors important for colonizing intestinal environments. Here, the genome sequence of M. arboriphilus strain DH1 is reported. The draft genome is composed of 2.445.031 bp with an average GC content of 25.44% and predicted to harbour 1964 protein-encoding genes. Among the predicted genes, there are also more than 50 putative genes for the so-called adhesin-like proteins (ALPs). The presence of ALP-encoding genes in the genome of this non-host-associated methanogen strongly suggests that target surfaces for ALPs other than host tissues also need to be considered as potential interaction partners. The high abundance of ALPs may also indicate that these types of proteins are more characteristic for specific phylogenetic groups of methanogens rather than being indicative for a particular environment the methanogens thrives in. PMID:28634433

  13. Prediction of Peptide and Protein Propensity for Amyloid Formation

    PubMed Central

    Família, Carlos; Dennison, Sarah R.; Quintas, Alexandre; Phoenix, David A.

    2015-01-01

    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation. PMID:26241652

  14. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    PubMed Central

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  15. Collapsed state of polyglutamic acid results in amyloid spherulite formation.

    PubMed

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.

  16. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors.

    PubMed

    Villar-Piqué, Anna; Espargaró, Alba; Sabaté, Raimon; de Groot, Natalia S; Ventura, Salvador

    2012-05-03

    The amyloid-β peptide (Aβ42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Aβ42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.

  17. Host determinants of expression of the helicobacter pylori BabA adhesin

    USDA-ARS?s Scientific Manuscript database

    Expression of the Helicobacter pylori blood group antigen binding adhesin A (BabA) is more common in strains isolated from patients with peptic ulcer disease or gastric cancer, rather than asymptomatic colonization. BabA is highly polymorphic genetically and functionally among different clinical is...

  18. The PapG-adhesin at the tip of P-fimbriae provides Escherichia coli with a competitive edge in experimental bladder infections of cynomolgus monkeys

    PubMed Central

    1995-01-01

    Human urinary tract infection is an infectious disease that depends on a series of host-microbial interactions. The bacteria first colonize the colon and then the periurethral/vaginal areas; they ascend to and infect first the bladder and then the kidneys. Expression of Escherichia coli P-fimbriae constitutes the strongest correlation to renal pathogenicity, but is also related to first-time cystitis in children. The role of P-fimbriae in the preceding steps in the infectious process is unknown. To examine this, we constructed, from a P-fimbriated E. coli strain with a class II G-adhesin preferentially binding to globoside, one isogenic mutant lacking the G-adhesin and another isogenic mutant in which we replaced the papG class II allele with a class III adhesin preferentially binding to the Forssman antigen. We report here the comparison of the adhesin knockout mutant (DS17-8) and the class-switch mutant (DS17-1) with the wild-type (DS17) for in vivo colonization of the gut, vagina, and bladder of cynomolgus monkeys. It was recently shown that the class II tip G-adhesin is a prerequisite for acute pyelonephritis to occur in the monkey model in the absence of other kidney-specific adhesins or obstruction of the urinary flow. Here we show that it is not required for bladder infection but gives a competitive advantage in mixed infections. In the vagina and colon, the G-adhesin gives no competitive advantage. PMID:7500014

  19. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  20. Functional Amyloids in Reproduction.

    PubMed

    Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A

    2017-06-29

    Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.

  1. Functional amyloids in bacteria.

    PubMed

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. Amyloid oligomers and protofibrils, but not filaments, self-replicate from native lysozyme.

    PubMed

    Mulaj, Mentor; Foley, Joseph; Muschol, Martin

    2014-06-25

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.

  3. Role of aromatic interactions in amyloid formation by islet amyloid polypeptide.

    PubMed

    Tu, Ling-Hsien; Raleigh, Daniel P

    2013-01-15

    Aromatic-aromatic and aromatic-hydrophobic interactions have been proposed to play a role in amyloid formation by a range of polypeptides, including islet amyloid polypeptide (IAPP or amylin). IAPP is responsible for amyloid formation in patients with type 2 diabetes. The polypeptide is 37 residues long and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. The ability of all single aromatic to leucine mutants, all double aromatic to leucine mutants, and the triple leucine mutant to form amyloid were examined. Amyloid formation was almost twice as rapid for the F15L mutant as for the wild type but was almost 3-fold slower for the Y37L mutant and almost 2-fold slower for the F23L mutant. Amyloid fibrils formed from each of the single mutants were effective at seeding amyloid formation by wild-type IAPP, implying that the fibril structures are similar. The F15L/F23L double mutant has a larger effect than the F15L/Y37L double mutant on the rate of amyloid formation, even though a Y37L substitution has more drastic consequences in the wild-type background than does the F23L mutation, suggesting nonadditive effects between the different sites. The triple leucine mutant and the F23L/Y37L double mutant are the slowest to form amyloid. F15 has been proposed to make important contacts early in the aggregation pathway, but the data for the F15L mutant indicate that they are not optimal. A set of variants containing natural and unnatural amino acids at position 15, which were designed to conserve hydrophobicity, but alter α-helix and β-sheet propensity, were analyzed to determine the properties of this position that control the rate of amyloid formation. There is no correlation between β-sheet propensity at this position and the rate of amyloid formation, but there is a correlation with α-helical propensity.

  4. Molecular structures of amyloid and prion fibrils: consensus versus controversy.

    PubMed

    Tycko, Robert; Wickner, Reed B

    2013-07-16

    found in β-amyloid fibrils also occurs in many other fibril-forming systems. We attribute this common structural motif to the stabilization of amyloid structures by intermolecular interactions among like amino acids, including hydrophobic interactions and polar zippers. Surprisingly, we have recently identified and characterized antiparallel β-sheets in certain fibrils that are formed by the D23N mutant of Aβ₁₋₄₀, a mutant that is associated with early-onset, familial neurodegenerative disease. Antiparallel D23N-Aβ₁₋₄₀ fibrils are metastable with respect to parallel structures and, therefore, represent an off-pathway intermediate in the amyloid fibril formation process. Other methods have recently produced additional evidence for antiparallel β-sheets in other amyloid-formation intermediates. As an alternative to simple parallel and antiparallel β-sheet structures, researchers have proposed β-helical structural models for some fibrils, especially those formed by mammalian and fungal prion proteins. Solid state NMR and EPR data show that fibrils formed in vitro by recombinant PrP have in-register parallel β-sheet structures. However, the structure of infectious PrP aggregates is not yet known. The fungal HET-s prion protein has been shown to contain a β-helical structure. However, all yeast prions studied by solid state NMR (Sup35p, Ure2p, and Rnq1p) have in-register parallel β-sheet structures, with their Gln- and Asn-rich N-terminal segments forming the fibril core.

  5. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals

    PubMed Central

    Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; Penades, José R.; Lasa, Iñigo; Valle, Jaione

    2016-01-01

    Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria. PMID:27327765

  6. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish.

    PubMed

    Lee, P T; Bird, S; Zou, J; Martin, S A M

    2017-06-01

    The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.

    PubMed

    Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R

    2017-12-01

    Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like

  8. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    PubMed

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  9. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  10. Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni colonization of chickens is dependent upon surface exposed proteins termed adhesins. Putative C. jejuni adhesins include CadF, CapA, JlpA, MOMP, PEB1, Cj1279c, and Cj1349c. We examined the genetic relatedness of ninety-seven C. jejuni isolates recovered from human, poultry, bo...

  11. Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP

    PubMed Central

    Sciacca, Michele F.M.; Milardi, Danilo; Messina, Grazia M.L.; Marletta, Giovanni; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo

    2013-01-01

    Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca2+ ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca2+ ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. PMID:23332070

  12. Thermodynamics of β-amyloid fibril formation

    NASA Astrophysics Data System (ADS)

    Tiana, G.; Simona, F.; Broglia, R. A.; Colombo, G.

    2004-05-01

    Amyloid fibers are aggregates of proteins. They are built out of a peptide called β-amyloid (Aβ) containing between 41 and 43 residues, produced by the action of an enzyme which cleaves a much larger protein known as the amyloid precursor protein (APP). X-ray diffraction experiments have shown that these fibrils are rich in β-structures, whereas the shape of the peptide displays an α-helix structure within the APP in its biologically active conformation. A realistic model of fibril formation is developed based on the 17 residues Aβ12-28 amyloid peptide, which has been shown to form fibrils structurally similar to those of the whole Aβ peptide. With the help of physical arguments and in keeping with experimental findings, the Aβ12-28 monomer is assumed to be in four possible states (i.e., native helix conformation, β-hairpin, globular low-energy state, and unfolded state). Making use of these monomeric states, oligomers (dimers, tertramers, and octamers) were constructed. With the help of short, detailed molecular dynamics calculations of the three monomers and of a variety of oligomers, energies for these structures were obtained. Making use of these results within the framework of a simple yet realistic model to describe the entropic terms associated with the variety of amyloid conformations, a phase diagram can be calculated of the whole many-body system, leading to a thermodynamical picture in overall agreement with the experimental findings. In particular, the existence of micellar metastable states seem to be a key issue to determine the thermodynamical properties of the system.

  13. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  14. Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity

    PubMed Central

    Dworzak, Jenny; Renvoisé, Benoît; Habchi, Johnny; Yates, Emma V.; Combadière, Christophe; Knowles, Tuomas P.; Dobson, Christopher M.; Blackstone, Craig; Paulsen, Ole; Murphy, Philip M.

    2015-01-01

    Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine), has been implicated in the progression and severity of Alzheimer’s disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by comparing direct amyloid-β-induced toxicity in cultured, mature, microglia-depleted hippocampal neurons from wild-type and Cx3cr1-/- mice. Wild-type neurons expressed both Cx3cl1 and Cx3cr1 and released Cx3cl1 in response to amyloid-β. Knockout of neuronal Cx3cr1 abated amyloid-β-induced lactate dehydrogenase release. Furthermore, amyloid-β differentially induced depression of pre- and postsynaptic components of miniature excitatory postsynaptic currents, in a peptide conformation-dependent manner. Knockout of neuronal Cx3cr1 abated effects of both amyloid-β conformational states, which were differentiable by aggregation kinetics and peptide morphology. We obtained similar results after both acute and chronic treatment of cultured neurons with the Cx3cr1 antagonist F1. Thus, neuronal Cx3cr1 may impact Alzheimer’s disease-like pathology by modulating conformational state-dependent amyloid-β-induced synaptotoxicity. PMID:26038823

  15. Amyloid Oligomers and Protofibrils, but Not Filaments, Self-Replicate from Native Lysozyme

    PubMed Central

    2015-01-01

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer’s disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly. PMID:24884889

  16. Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET.

    PubMed

    Roberts, Blaine R; Lind, Monica; Wagen, Aaron Z; Rembach, Alan; Frugier, Tony; Li, Qiao-Xin; Ryan, Timothy M; McLean, Catriona A; Doecke, James D; Rowe, Christopher C; Villemagne, Victor L; Masters, Colin L

    2017-05-01

    We fractionated frontal cortical grey matter from human Alzheimer's disease and control subjects into four biochemically defined pools that represent four distinct compartments: soluble/cytosolic, peripheral membrane/vesicular cargo, integral lipid/membranous pools and aggregated/insoluble debris. Most of the readily extractable amyloid-β remains associated with a lipid/membranous compartment. There is an exchange of amyloid-β between the biochemical pools that was lost for the amyloid-β42 species in Alzheimer's disease, consistent with the peptide being irreversibly trapped in extracellular deposits. The quantitative amyloid-β data, combined with magnetic resonance imaging volumetric analysis of the amount of cortical grey matter in brain, allowed us to estimate the total mass of amyloid-β in Alzheimer's disease (6.5 mg) and control (1.7 mg) brains. The threshold positron emission tomography standard uptake value ratio of 1.4 equates to 5.0 μg amyloid-β/g of grey matter and the mean Alzheimer's disease dementia standard uptake value ratio level of 2.3 equates to 11.20 μg amyloid-β/g of grey matter. It takes 19 years to accumulate amyloid from the threshold positron emission tomography standard uptake value ratio to the mean value observed for Alzheimer's disease dementia. This accumulation time window combined with the difference of 4.8 mg of amyloid-β between Alzheimer's disease and control brain allows for a first approximation of amyloid-β accumulation of 28 ng/h. This equates to an estimated 2-5% of the total amyloid-β production being deposited as insoluble plaques. Understanding these rates of amyloid-β accumulation allows for a more quantitative approach in targeting the failure of amyloid-β clearance in sporadic Alzheimer's disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Is amyloid-β harmful to the brain? Insights from human imaging studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagust, William

    Although the amyloid-β protein associated with the Alzheimer’s disease plaque has been detectable in living people for over a decade, its importance in the pathogenesis of Alzheimer’s disease is still debated. The frequent presence of amyloid-β in the brains of cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-β is crucial to the development of Alzheimer’s disease, it should be associated with other Alzheimer’s disease-like neurological changes. Here, this review examines whether amyloid-β is associated with other biomarkers indicative of early Alzheimer’s disease in normal older people. The preponderance of evidence links amyloid-β tomore » functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline seem to be those with evidence of both amyloid-β and findings suggestive of neurodegeneration. Lastly, the crucial question is thus how amyloid-β is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia.« less

  18. Is amyloid-β harmful to the brain? Insights from human imaging studies

    DOE PAGES

    Jagust, William

    2015-11-26

    Although the amyloid-β protein associated with the Alzheimer’s disease plaque has been detectable in living people for over a decade, its importance in the pathogenesis of Alzheimer’s disease is still debated. The frequent presence of amyloid-β in the brains of cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-β is crucial to the development of Alzheimer’s disease, it should be associated with other Alzheimer’s disease-like neurological changes. Here, this review examines whether amyloid-β is associated with other biomarkers indicative of early Alzheimer’s disease in normal older people. The preponderance of evidence links amyloid-β tomore » functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline seem to be those with evidence of both amyloid-β and findings suggestive of neurodegeneration. Lastly, the crucial question is thus how amyloid-β is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia.« less

  19. Alzheimer disease therapy--moving from amyloid-β to tau.

    PubMed

    Giacobini, Ezio; Gold, Gabriel

    2013-12-01

    Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis--which places amyloid plaques at the heart of AD pathogenesis--does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.

  20. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies.

    PubMed Central

    Gong, K; Wen, D Y; Ouyang, T; Rao, A T; Herzberg, M C

    1995-01-01

    Platelets aggregate in response to an adhesin and the platelet aggregation-associated protein (PAAP) expressed on the cell surfaces of certain strains of Streptococcus sanguis. We sought to identify the corresponding PAAP receptor and accessory adhesin binding sites on platelets. Since the adhesion(s) of S. sanguis for platelets has not been characterized, an anti-idiotype (anti-id) murine monoclonal antibody (MAb2) strategy was developed. First, MAb1s that distinguished the adhesin and PAAP antigens on the surface of S. sanguis I 133-79 were selected. Fab fragments of MAb1.2 (immunoglobulin G2b [IgG2b]; 70 pmol) reacted with 5 x 10(7) cells of S. sanguis to completely inhibit the aggregation of human platelets in plasma. Under similar conditions, MAb1.1 (IgG1) inhibited the adhesion of S. sanguis cells to platelets by a maximum of 34%, with a comparatively small effect on platelet aggregation. Together, these two MAb1s inhibited S. sanguis-platelet adhesion by 63%. In Western immunoblots, both MAb1s reacted with S. sanguis 133-79 87- and 150-kDa surface proteins and MAb1.2 also reacted with purified type I collagen. The hybridomas producing MAb1.1 and MAb1.2 were then injected into BALB/c mice. Enlarged spleens were harvested, and a panel of MAb2 hybridomas was prepared. To identify anti-ids against the specific MAb1s, the MAb2 panel was screened by enzyme-linked immunosorbent assay for reaction with rabbit polyclonal IgG antibodies against the 87- and 150-kDa antigens. The reactions between the specific rabbit antibodies and anti-ids were inhibited by the 87- and 150-kDa antigens. When preincubated with platelets, MAb2.1 (counterpart of MAb1.1) inhibited adhesion to platelets maximally by 46% and MAb2.2 (anti-MAb1.2) inhibited adhesion to platelets maximally by 35%. Together, both MAb2s inhibited the adhesion of S. sanguis to platelets by 81%. MAb2.2 also inhibited induction of platelet aggregation. MAb2.2 immunoprecipitated a biotinylated platelet membrane

  1. Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain.

    PubMed

    Lasagna-Reeves, Cristian A; Glabe, Charles G; Kayed, Rakez

    2011-06-24

    Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-β APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-β annular protofibril formation could be a relevant target for the prevention of amyloid-β toxicity in Alzheimer disease.

  2. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    PubMed Central

    Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.

    2012-01-01

    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400

  3. Characterization of the biomechanical properties of T4 pili expressed by Streptococcus pneumoniae--a comparison between helix-like and open coil-like pili.

    PubMed

    Castelain, Mickaël; Koutris, Efstratios; Andersson, Magnus; Wiklund, Krister; Björnham, Oscar; Schedin, Staffan; Axner, Ove

    2009-07-13

    Bacterial adhesion organelles, known as fimbria or pili, are expressed by gram-positive as well as gram-negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by gram-positive Streptococcus pneumoniae with respect to their biomechanical properties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by gram-negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble, whereas open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached by distributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins which presumably detach sequentially.

  4. Diabetes Drug Discovery: hIAPP1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets.

    PubMed

    Fernández-Gómez, Isaac; Sablón-Carrazana, Marquiza; Bencomo-Martínez, Alberto; Domínguez, Guadalupe; Lara-Martínez, Reyna; Altamirano-Bustamante, Nelly F; Jiménez-García, Luis Felipe; Pasten-Hidalgo, Karina; Castillo-Rodríguez, Rosa Angélica; Altamirano, Perla; Marrero, Suchitil Rivera; Revilla-Monsalve, Cristina; Valdés-Sosa, Peter; Salamanca-Gómez, Fabio; Garrido-Magaña, Eulalia; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M

    2018-03-19

    Human islet amyloid peptide (hIAPP 1-37 ) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP 1-37 ) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP 1-37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP 1-37 . When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP 1-37 . Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP 1-37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A - F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.

  5. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    PubMed

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  6. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    PubMed

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  7. Distinct spatiotemporal accumulation of N-truncated and full-length amyloid-β42 in Alzheimer's disease.

    PubMed

    Shinohara, Mitsuru; Koga, Shunsuke; Konno, Takuya; Nix, Jeremy; Shinohara, Motoko; Aoki, Naoya; Das, Pritam; Parisi, Joseph E; Petersen, Ronald C; Rosenberry, Terrone L; Dickson, Dennis W; Bu, Guojun

    2017-12-01

    Accumulation of amyloid-β peptides is a dominant feature in the pathogenesis of Alzheimer's disease; however, it is not clear how individual amyloid-β species accumulate and affect other neuropathological and clinical features in the disease. Thus, we compared the accumulation of N-terminally truncated amyloid-β and full-length amyloid-β, depending on disease stage as well as brain area, and determined how these amyloid-β species respectively correlate with clinicopathological features of Alzheimer's disease. To this end, the amounts of amyloid-β species and other proteins related to amyloid-β metabolism or Alzheimer's disease were quantified by enzyme-linked immunosorbent assays (ELISA) or theoretically calculated in 12 brain regions, including neocortical, limbic and subcortical areas from Alzheimer's disease cases (n = 19), neurologically normal elderly without amyloid-β accumulation (normal ageing, n = 13), and neurologically normal elderly with cortical amyloid-β accumulation (pathological ageing, n = 15). We observed that N-terminally truncated amyloid-β42 and full-length amyloid-β42 accumulations distributed differently across disease stages and brain areas, while N-terminally truncated amyloid-β40 and full-length amyloid-β40 accumulation showed an almost identical distribution pattern. Cortical N-terminally truncated amyloid-β42 accumulation was increased in Alzheimer's disease compared to pathological ageing, whereas cortical full-length amyloid-β42 accumulation was comparable between Alzheimer's disease and pathological ageing. Moreover, N-terminally truncated amyloid-β42 were more likely to accumulate more in specific brain areas, especially some limbic areas, while full-length amyloid-β42 tended to accumulate more in several neocortical areas, including frontal cortices. Immunoprecipitation followed by mass spectrometry analysis showed that several N-terminally truncated amyloid-β42 species, represented by pyroglutamylated amyloid-β11

  8. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.

    PubMed

    Bensing, Barbara A; Loukachevitch, Lioudmila V; McCulloch, Kathryn M; Yu, Hai; Vann, Kendra R; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-04-01

    Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGES

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  10. The extracellular protein factor Epf from Streptococcus pyogenes is a cell surface adhesin that binds to cells through an N-terminal domain containing a carbohydrate-binding module.

    PubMed

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H P; Whisstock, James C; Baker, Edward N; Kreikemeyer, Bernd

    2012-11-02

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.

  11. PMEL: A PIGMENT CELL-SPECIFIC MODEL FOR FUNCTIONAL AMYLOID FORMATION

    PubMed Central

    Watt, Brenda; van Niel, Guillaume; Raposo, Graça; Marks, Michael S.

    2013-01-01

    PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL to an ordered amyloid polymer. PMID:23350640

  12. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1)more » an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different

  13. Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IAPP.

    PubMed

    Sciacca, Michele F M; Milardi, Danilo; Messina, Grazia M L; Marletta, Giovanni; Brender, Jeffrey R; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo

    2013-01-08

    Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca(2+) ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca(2+) ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. The amyloid precursor protein and postnatal neurogenesis/neuroregeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yanan; Tang, Bor Luen

    2006-03-03

    The amyloid precursor protein (APP) is the source of amyloid-beta (A{beta}) peptide, produced via its sequential cleavage {beta}- and {gamma}-secretases. Various biophysical forms of A{beta} (and the mutations of APP which results in their elevated levels) have been implicated in the etiology and early onset of Alzheimer's disease. APP's evolutionary conservation and the existence of APP-like isoforms (APLP1 and APLP2) which lack the A{beta} sequence, however, suggest that these might have important physiological functions that are unrelated to A{beta} production. Soluble N-terminal fragments of APP have been known to be neuroprotective, and the interaction of its cytoplasmic C-terminus with amore » myriad of proteins associates it with diverse processes such as axonal transport and transcriptional regulation. The notion for an essential postnatal function of APP has been demonstrated genetically, as mice deficient in both APP and APLP2 or all three APP isoforms exhibit early postnatal lethality and neuroanatomical abnormalities. Recent findings have also brought to light two possible functions of the APP family in Brain-regulation of neural progenitor cell proliferation and axonal outgrowth after injury. Interestingly, these two apparently related neurogenic/neuroregenerative functions of APP involve two separate domains of the molecule.« less

  15. Serum amyloid P inhibits dermal wound healing

    USDA-ARS?s Scientific Manuscript database

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  16. Amyloid Precursor-like Protein 2 Association with HLA Class I Molecules

    PubMed Central

    Tuli, Amit; Sharma, Mahak; Wang, Xiaojian; Simone, Laura C.; Capek, Haley L.; Cate, Steven; Hildebrand, William H.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2009-01-01

    Amyloid precursor-like protein 2 (APLP2) is a ubiquitously expressed protein. The previously demonstrated functions for APLP2 include binding to the mouse major histocompatibility complex (MHC) class I molecule H-2Kd and down regulating its cell surface expression. In this study, we have investigated the interaction of APLP2 with the human leukocyte antigen (HLA) class I molecule in human tumor cell lines. APLP2 was readily detected in pancreatic, breast, and prostate tumor lines, although it was found only in very low amounts in lymphoma cell lines. In a pancreatic tumor cell line, HLA class I was extensively co-localized with APLP2 in vesicular compartments following endocytosis of HLA class I molecules. In pancreatic, breast, and prostate tumor lines, APLP2 was bound to the HLA class I molecule. APLP2 was found to bind to HLA-A24, and more strongly to HLA-A2. Increased expression of APLP2 resulted in reduced surface expression of HLA-A2 and HLA-A24. Overall, these studies demonstrate that APLP2 binds to the HLA class I molecule, co-localizes with it in intracellular vesicles, and reduces the level of HLA class I molecule cell surface expression. PMID:19184004

  17. The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections.

    PubMed

    Campoccia, Davide; Speziale, Pietro; Ravaioli, Stefano; Cangini, Ilaria; Rindi, Simonetta; Pirini, Valter; Montanaro, Lucio; Arciola, Carla Renata

    2009-12-01

    Staphylococcus aureus is a major, highly clonal, pathogen causing implant infections. This study aimed at investigating the diverse distribution of bacterial adhesins in most prevalent S. aureus strain types causing orthopaedic implant infections. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes. Within the collection of isolates, automated ribotyping detected 98 distinct ribogroups. For many ribogroups, characteristic tandem genes arrangements could be identified. In the predominant S. aureus cluster, enlisting 27 isolates, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. This study suggests that specific adhesins may synergistically act in the onset of implant infections and that anti-adhesin strategies should be targeted to adhesins conjointly present.

  18. Binding and orientation of fibronectin on polystyrene surfaces using immobilized bacterial adhesin-related peptides.

    PubMed

    Klueh, U; Bryers, J D; Kreutzer, D L

    2003-10-01

    Fibronectin (FN) is known to bind to bacteria via high affinity receptors on bacterial surfaces known as adhesins. The binding of bacteria to FN is thought to have a key role in foreign device associated infections. For example, previous studies have indicated that Staphylococcus aureus adhesins bind to the 29 kDa NH(3) terminus end of FN, and thereby promote bacteria adherence to surfaces. Recently, the peptide sequences within the S. aureus adhesin molecule that are responsible for FN binding have been identified. Based on these observations, we hypothesize that functional FN can be bound and specifically oriented on polystyrene surfaces using bacterial adhesin-related (BRP-A) peptide. We further hypothesize that monoclonal antibodies that react with specific epitopes on the FN can be used to quantify both FN binding and orientation on these surfaces. Based on this hypothesis, we initiated a systematic investigation of the binding and orientation of FN on polystyrene surfaces using BRP-A peptide. To test this hypothesis, the binding and orientation of the FN to immobilized BRP-A was quantified using (125)I-FN, and monoclonal antibodies. (125)I-FN was used to quantitate FN binding to peptide-coated polystyrene surfaces. The orientation of bound FN was demonstrated by the use of monoclonal antibodies, which are reactive with the amine (N) or carboxyl (C) termini of the FN. The results of our studies demonstrated that when the BRP-A peptide was used to bind FN to surfaces that: 1. functional FN was bound to the peptide; 2. anti-C terminus antibodies bound to the peptide FN; and 3. only limited binding of anti-N terminus antibodies to peptide-bound FN occurred. We believe that the data that indicate an enhanced binding of anti-C antibodies reactive to anti-N antibodies are a result of the FN binding in an oriented manner with the N termini of FN bound tightly to the BRP-A on the polystyrene surface. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 36

  19. [Therapeutic strategy for familial amyloid polyneuropathy (FAP)].

    PubMed

    Ikeda, Shu-ichi

    2009-11-01

    Familial amyloid polyneuropathy (FAP) was long considered to be an incurable disease, but a new therapeutic approach was developed 15 years ago. As the liver produces most of the transthyretin (TTR) in serum, it was assumed that the replacement of a liver expressing an abnormal TTR gene should stop the production of the variant TTR, the serum amyloid precursor in FAP. Until now about 1,500 FAP patients underwent liver transplantation, and the 10-year-survival rate is about 77%. After operation the progression of FAP symptoms certainly stopped, and patients who were in an early stage of the disease and underwent successful operations showed considerable improvement in their quality of life. Electrophysiological study of peripheral nerve function has demonstrated that liver transplantation can halt the progression of peripheral neuropathy in FAP patients, and histopathological regression of amyloid deposits was seen on the patients with long post-transplatation courses. Pharmacological therapies have been considered for FAP patients and among them, diflunisal, one of non-steroidal antiinflammatory drugs, is very promising. TTR tetramer dissociation is an initial step for the process of TTR-derived amyloid fibril formation associated with FAP and diflinisal can inhibit this process by stabilization of the TTR tetramer. Clinical trial of this drug for FAP patients is now going worldwide.

  20. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    PubMed Central

    Shin, Thuzar M; Isas, J Mario; Hsieh, Chia-Ling; Kayed, Rakez; Glabe, Charles G; Langen, Ralf; Chen, Jeannie

    2008-01-01

    Background The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD), age-related macular degeneration (AMD), atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins. Results We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE) cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation. Conclusion These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases. PMID:18939994

  1. Is amyloid-β harmful to the brain? Insights from human imaging studies.

    PubMed

    Jagust, William

    2016-01-01

    Although the amyloid-β protein associated with the Alzheimer's disease plaque has been detectable in living people for over a decade, its importance in the pathogenesis of Alzheimer's disease is still debated. The frequent presence of amyloid-β in the brains of cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-β is crucial to the development of Alzheimer's disease, it should be associated with other Alzheimer's disease-like neurological changes. This review examines whether amyloid-β is associated with other biomarkers indicative of early Alzheimer's disease in normal older people. The preponderance of evidence links amyloid-β to functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline seem to be those with evidence of both amyloid-β and findings suggestive of neurodegeneration. The crucial question is thus how amyloid-β is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'.

    PubMed

    Musiek, Erik S; Holtzman, David M

    2015-06-01

    The amyloid hypothesis, which has been the predominant framework for research in Alzheimer's disease (AD), has been the source of considerable controversy. The amyloid hypothesis postulates that amyloid-β peptide (Aβ) is the causative agent in AD. It is strongly supported by data from rare autosomal dominant forms of AD. However, the evidence that Aβ causes or contributes to age-associated sporadic AD is more complex and less clear, prompting criticism of the hypothesis. We provide an overview of the major arguments for and against the amyloid hypothesis. We conclude that Aβ likely is the key initiator of a complex pathogenic cascade that causes AD. However, we argue that Aβ acts primarily as a trigger of other downstream processes, particularly tau aggregation, which mediate neurodegeneration. Aβ appears to be necessary, but not sufficient, to cause AD. Its major pathogenic effects may occur very early in the disease process.

  3. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits.

    PubMed

    Dinamarca, M C; Cerpa, W; Garrido, J; Hancke, J L; Inestrosa, N C

    2006-11-01

    The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

  4. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin*♦

    PubMed Central

    Bensing, Barbara A.; Loukachevitch, Lioudmila V.; McCulloch, Kathryn M.; Yu, Hai; Vann, Kendra R.; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M.; Iverson, T. M.

    2016-01-01

    Streptococcus sanguinis is a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets. S. sanguinis expresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. PMID:26833566

  5. Amyloid β-protein oligomers and Alzheimer’s disease

    PubMed Central

    2013-01-01

    The oligomer cascade hypothesis, which states that oligomers are the initiating pathologic agents in Alzheimer’s disease, has all but supplanted the amyloid cascade hypothesis, which suggested that fibers were the key etiologic agents in Alzheimer’s disease. We review here the results of in vivo, in vitro and in silico studies of amyloid β-protein oligomers, and discuss important caveats that should be considered in the evaluation of these results. This article is divided into four sections that mirror the main approaches used in the field to better understand oligomers: (1) attempts to locate and examine oligomers in vivo in situ; that is, without removing these species from their environment; (2) studies involving oligomers extracted from human or animal tissues and the subsequent characterization of their properties ex vivo; (3) studies of oligomers that have been produced synthetically and studied using a reductionist approach in relatively simple in vitro biophysical systems; and (4) computational studies of oligomers in silico. These multiple orthogonal approaches have revealed much about the molecular and cell biology of amyloid β-protein. However, as informative as these approaches have been, the amyloid β-protein oligomer system remains enigmatic. PMID:24289820

  6. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques.

    PubMed

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M

    2015-07-14

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.

  7. Magnetic Fluids Have Ability to Decrease Amyloid Aggregation Associated with Amyloid-Related Diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Koneracka, Martina; Siposova, Katarina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fabian, Martin; Kopcansky, Peter; Gazova, Zuzana

    2010-12-01

    At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several amyloid-related diseases. We have investigated the effect of four magnetic fluids (MFs)—electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate (MF2, MF3 and MF4) with adsorbed BSA (MF2) or dextran (MF4)—on amyloid aggregation of two proteins, human insulin and chicken egg lysozyme. The morphology, particle size and size distribution of the prepared magnetic fluids were characterized. We have found that MFs are able to decrease amyloid aggregation of both studied proteins and the extent of depolymerization depended on the MF properties. The most effective reduction was observed for MF4 as 90% decrease of amyloids was detected for insulin and lysozyme amyloid aggregates. Our findings indicate that MFs have potential to be used for treatment of amyloid diseases.

  8. Oral immunization of mice with plant-derived fimbrial adhesin FaeG induces systemic and mucosal K88ad enterotoxigenic Escherichia coli-specific immune responses.

    PubMed

    Liang, Wanqi; Huang, Yahong; Yang, Xinghong; Zhou, Zhiai; Pan, Aihu; Qian, Bingjun; Huang, Cheng; Chen, Jianxiu; Zhang, Dabing

    2006-04-01

    The importance of adhesins in pathogenicity has resulted in them being useful targets in the defense against bacterial infections. To produce edible vaccines against piglet diarrhea caused by enterotoxigenic Escherichia coli (ETEC), plants were genetically engineered to produce recombinant fimbrial adhesin FaeG. To evaluate the efficacy of the edible vaccine FaeG in mice, the soluble protein extracts were examined by about 15 microg recombinant FaeG for each oral immunization dose per mouse. After four doses of vaccination, both IgG and IgA antibodies specific to K88ad fimbriae were elicited in serum, and specific IgA antibodies were also evoked in feces of the immunized mice. Moreover, visible K88ad ETEC agglutination by the specific serum from the immunized mice was observed, implying the antibody was highly specific and effective. Results from an in vitro villous-adhesion assay further confirmed that serum antibodies of the immunized mice could inhibit K88ad ETEC from adhering to pig intestinal receptors, further demonstrating the oral immune efficacy of the plant-derived FaeG. This study provides a promising, noninvasive method for vaccinating swine by feeding supplements of transgenic plant. Moreover, the low cost and ease of delivery of this edible ETEC vaccine will facilitate its application in economically disadvantaged regions.

  9. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update.

    PubMed

    Farid, Karim; Charidimou, Andreas; Baron, Jean-Claude

    2017-01-01

    Sporadic cerebral amyloid angiopathy (CAA) is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH), dementia and 'amyloid spells' - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria - the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal) amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET) amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers) in sporadic CAA. We focus on two key areas: (a) the diagnostic utility of amyloid-PET in CAA and (b) the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth. A total of six

  10. Yersinia adhesin A (YadA)--beauty & beast.

    PubMed

    Mühlenkamp, Melanie; Oberhettinger, Philipp; Leo, Jack C; Linke, Dirk; Schütz, Monika S

    2015-02-01

    The trimeric autotransporter adhesin Yersinia adhesin A is the prototype of the type Vc secretion systems. It is expressed by enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis strains, but not by Yersinia pestis. A characteristic trait of YadA is its modular composition and trimeric nature. YadA consists of an N-terminal passenger domain which is exposed on the bacterial cell surface. The translocation of this passenger onto the surface is facilitated by a C-terminal β-barrel domain which concomitantly anchors YadA into the outer membrane with three YadA monomers contributing to the formation of a single β-barrel. In Y. enterocolitica, but not Y. pseudotuberculosis, YadA is a decisive virulence factor and its deletion renders the bacteria virtually avirulent in mouse models of infection. This striking importance of YadA in infection may derive from its manifold functions in host cell interaction. Presumably the most important function of YadA is that it mediates adhesion to extracellular matrix components of eukaryotic host cells. Only tight adhesion allows for the injection of "anti-host" effector proteins via a type III secretion system into the host cell cytosol. These effector proteins enable Yersinia to subvert the host immune system in order to replicate and establish infection. YadA is also essential for the survival of Y. enterocolitica upon contact with serum, an important immune-evasion mechanism called serum resistance. To this end, YadA interacts with several components of the host complement system, the first line of immune defense. This review will summarize recent findings about the structure and biogenesis of YadA and its interactions with the host complement system. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿

    PubMed Central

    Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik

    2009-01-01

    Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568

  12. Biophysical Investigation of the Membrane-Disrupting Mechanism of the Antimicrobial and Amyloid-Like Peptide Dermaseptin S9

    PubMed Central

    Caillon, Lucie; Killian, J. Antoinette; Lequin, Olivier; Khemtémourian, Lucie

    2013-01-01

    Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with 2H- and 31P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors. PMID:24146759

  13. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    PubMed

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities.

    PubMed

    Maury, Carl Peter J

    2018-05-01

    A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.

  15. The Functional Curli Amyloid Is Not Based on In-register Parallel β-Sheet Structure*

    PubMed Central

    Shewmaker, Frank; McGlinchey, Ryan P.; Thurber, Kent R.; McPhie, Peter; Dyda, Fred; Tycko, Robert; Wickner, Reed B.

    2009-01-01

    The extracellular curli proteins of Enterobacteriaceae form fibrous structures that are involved in biofilm formation and adhesion to host cells. These curli fibrils are considered a functional amyloid because they are not a consequence of misfolding, but they have many of the properties of protein amyloid. We confirm that fibrils formed by CsgA and CsgB, the primary curli proteins of Escherichia coli, possess many of the hallmarks typical of amyloid. Moreover we demonstrate that curli fibrils possess the cross-β structure that distinguishes protein amyloid. However, solid state NMR experiments indicate that curli structure is not based on an in-register parallel β-sheet architecture, which is common to many human disease-associated amyloids and the yeast prion amyloids. Solid state NMR and electron microscopy data are consistent with a β-helix-like structure but are not sufficient to establish such a structure definitively. PMID:19574225

  16. Supersaturation-Limited and Unlimited Phase Spaces Compete to Produce Maximal Amyloid Fibrillation near the Critical Micelle Concentration of Sodium Dodecyl Sulfate.

    PubMed

    So, Masatomo; Ishii, Akira; Hata, Yasuko; Yagi, Hisashi; Naiki, Hironobu; Goto, Yuji

    2015-09-15

    Although various natural and synthetic compounds have been shown to accelerate or inhibit the formation of amyloid fibrils, the mechanisms by which they achieve these adverse effects in a concentration-dependent manner currently remain unclear. Sodium dodecyl sulfate (SDS), one of the compounds that has adverse effects on fibrillation, is the most intensively studied. Here we examined the effects of a series of detergents including SDS on the amyloid fibrillation of β2-microglobulin at pH 7.0, a protein responsible for dialysis-related amyloidosis. In all the detergents examined (i.e., SDS, sodium decyl sulfate, sodium octyl sulfate, and sodium deoxycholate), amyloid fibrillation was accelerated and inhibited at concentrations near the critical micelle concentration (CMC) and higher than CMC, respectively. The most stable conformation changed from monomers with a β-structure to amyloid fibrils with a β-structure and then to α-helical complexes with micelles with an increase in detergent concentrations. These results suggest that competition between supersaturation-limited fibrillation and unlimited mixed micelle formation between proteins and micelles underlies the detergent concentration-dependent complexity of amyloid fibrillation.

  17. Transthyretin Sequesters Amyloid β Protein and Prevents Amyloid Formation

    NASA Astrophysics Data System (ADS)

    Schwarzman, Alexander L.; Gregori, Luisa; Vitek, Michael P.; Lyubski, Sergey; Strittmatter, Warren J.; Enghilde, Jan J.; Bhasin, Ramaninder; Silverman, Josh; Weisgraber, Karl H.; Coyle, Patricia K.; Zagorski, Michael G.; Talafous, Joseph; Eisenberg, Moises; Saunders, Ann M.; Roses, Allen D.; Goldgaber, Dmitry

    1994-08-01

    The cardinal pathological features of Alzheimer disease are depositions of aggregated amyloid β protein (Aβ) in the brain and cerebrovasculature. However, the Aβ is found in a soluble form in cerebrospinal fluid in healthy individuals and patients with Alzheimer disease. We postulate that sequestration of Aβ precludes amyloid formation. Failure to sequester Aβ in Alzheimer disease may result in amyloidosis. When we added Aβ to cerebrospinal fluid of patients and controls it was rapidly sequestered into stable complexes with transthyretin. Complexes with apolipoprotein E, which has been shown to bind Aβ in vitro, were not observed in cerebrospinal fluid. Additional in vitro studies showed that both purified transthyretin and apolipoprotein E prevent amyloid formation.

  18. Structural evaluation of an amyloid fibril model using small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dahal, Eshan; Choi, Mina; Alam, Nadia; Bhirde, Ashwinkumar A.; Beaucage, Serge L.; Badano, Aldo

    2017-08-01

    Amyloid fibrils are highly structured protein aggregates associated with a wide range of diseases including Alzheimer’s and Parkinson’s. We report a structural investigation of an amyloid fibril model prepared from a commonly used plasma protein (bovine serum albumin (BSA)) using small-angle x-ray scattering (SAXS) technique. As a reference, the size estimates from SAXS are compared to dynamic light scattering (DLS) data and the presence of amyloid-like fibrils is confirmed using Congo red absorbance assay. Our SAXS results consistently show the structural transformation of BSA from spheroid to rod-like elongated structures during the fibril formation process. We observe the elongation of fibrils over two months with fibril length growing from 35.9  ±  3.0 nm to 51.5  ±  2.1 nm. Structurally metastable fibrils with distinct SAXS profiles have been identified. As proof of concept, we demonstrate the use of such distinct SAXS profiles to detect fibrils in the mixture solutions of two species by estimating their volume fractions. This easily detectable and well-characterized amyloid fibril model from BSA can be readily used as a control or standard reference to further investigate SAXS applications in the detection of structurally diverse amyloid fibrils associated with protein aggregation diseases.

  19. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease.

    PubMed

    Cohen, Mark; Appleby, Brian; Safar, Jiri G

    2016-01-01

    Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.

  20. Operational Plasticity Enables Hsp104 to Disaggregate Diverse Amyloid and Non-Amyloid Clients

    PubMed Central

    DeSantis, Morgan E.; Leung, Eunice H.; Sweeny, Elizabeth A.; Jackrel, Meredith E.; Cushman-Nick, Mimi; Neuhaus-Follini, Alexandra; Vashist, Shilpa; Sochor, Matthew A.; Knight, M. Noelle; Shorter, James

    2012-01-01

    Summary It is not understood how Hsp104, a hexameric AAA+ ATPase from yeast, disaggregates diverse structures including stress-induced aggregates, prions, and α-synuclein conformers connected to Parkinson disease. Here, we establish that Hsp104 hexamers adapt different mechanisms of intersubunit collaboration to disaggregate stress-induced aggregates versus amyloid. To resolve disordered aggregates, Hsp104 subunits collaborate non-co-operatively via probabilistic substrate binding and ATP hydrolysis. To disaggregate amyloid, several subunits co-operatively engage substrate and hydrolyze ATP. Importantly, Hsp104 variants with impaired intersubunit communication dissolve disordered aggregates but not amyloid. Unexpectedly, prokaryotic ClpB subunits collaborate differently than Hsp104 and couple probabilistic substrate binding to cooperative ATP hydrolysis, which enhances disordered aggregate dissolution but sensitizes ClpB to inhibition and diminishes amyloid disaggregation. Finally, we establish that Hsp104 hexamers deploy more subunits to disaggregate Sup35 prion strains with more stable ‘cross-β’ cores. Thus, operational plasticity enables Hsp104 to robustly dissolve amyloid and non-amyloid clients, which impose distinct mechanical demands. PMID:23141537

  1. Production and regulation of functional amyloid curli fimbriae by Shiga toxin-producing Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Functional amyloid, in the form of adhesive fimbrial proteins termed curli, was first described in Salmonella and Escherichia coli. Curli fibers adhere to various host cells and structural proteins, interact with components of the host immune system, and participate in biofilm formation. Shiga toxin...

  2. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils.

    PubMed

    Grelle, Gerlinde; Otto, Albrecht; Lorenz, Mario; Frank, Ronald F; Wanker, Erich E; Bieschke, Jan

    2011-12-13

    Causal therapeutic approaches for amyloid diseases such as Alzheimer's and Parkinson's disease targeting toxic amyloid oligomers or fibrils are still emerging. Here, we show that theaflavins (TF1, TF2a, TF2b, and TF3), the main polyphenolic components found in fermented black tea, are potent inhibitors of amyloid-β (Aβ) and α-synuclein (αS) fibrillogenesis. Their mechanism of action was compared to that of two established inhibitors of amyloid formation, (-)-epigallocatechin gallate (EGCG) and congo red (CR). All three compounds reduce the fluorescence of the amyloid indicator dye thioflavin T. Mapping the binding regions of TF3, EGCG, and CR revealed that all three bind to two regions of the Aβ peptide, amino acids 12-23 and 24-36, albeit with different specificities. However, their mechanisms of amyloid inhibition differ. Like EGCG but unlike congo red, theaflavins stimulate the assembly of Aβ and αS into nontoxic, spherical aggregates that are incompetent in seeding amyloid formation and remodel Aβ fibrils into nontoxic aggregates. When compared to EGCG, TF3 was less susceptible to air oxidation and had an increased efficacy under oxidizing conditions. These findings suggest that theaflavins might be used to remove toxic amyloid deposits.

  3. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p.

    PubMed

    Peters, Brian M; Ovchinnikova, Ekaterina S; Krom, Bastiaan P; Schlecht, Lisa Marie; Zhou, Han; Hoyer, Lois L; Busscher, Henk J; van der Mei, Henny C; Jabra-Rizk, Mary Ann; Shirtliff, Mark E

    2012-12-01

    The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive

  4. MEFA (multiepitope fusion antigen)-Novel Technology for Structural Vaccinology, Proof from Computational and Empirical Immunogenicity Characterization of an Enterotoxigenic Escherichia coli (ETEC) Adhesin MEFA

    PubMed Central

    Duan, Qiangde; Lee, Kuo Hao; Nandre, Rahul M; Garcia, Carolina; Chen, Jianhan; Zhang, Weiping

    2017-01-01

    Vaccine development often encounters the challenge of virulence heterogeneity. Enterotoxigenic Escherichia coli (ETEC) bacteria producing immunologically heterogeneous virulence factors are a leading cause of children’s diarrhea and travelers’ diarrhea. Currently, we do not have licensed vaccines against ETEC bacteria. While conventional methods continue to make progress but encounter challenge, new computational and structure-based approaches are explored to accelerate ETEC vaccine development. In this study, we applied a structural vaccinology concept to construct a structure-based multiepitope fusion antigen (MEFA) to carry representing epitopes of the seven most important ETEC adhesins [CFA/I, CFA/II (CS1–CS3), CFA/IV (CS4–CS6)], simulated antigenic structure of the CFA/I/II/IV MEFA with computational atomistic modeling and simulation, characterized immunogenicity in mouse immunization, and examined the potential of structure-informed vaccine design for ETEC vaccine development. A tag-less recombinant MEFA protein (CFA/I/II/IV MEFA) was effectively expressed and extracted. Molecular dynamics simulations indicated that this MEFA immunogen maintained a stable secondary structure and presented epitopes on the protein surface. Empirical data showed that mice immunized with the tagless CFA/I/II/IV MEFA developed strong antigen-specific antibody responses, and mouse serum antibodies significantly inhibited in vitro adherence of bacteria expressing these seven adhesins. These results revealed congruence of antigen immunogenicity between computational simulation and empirical mouse immunization and indicated this tag-less CFA/I/II/IV MEFA potentially an antigen for a broadly protective ETEC vaccine, suggesting a potential application of MEFA-based structural vaccinology for vaccine design against ETEC and likely other pathogens. PMID:28944092

  5. Effect of Amyloid Imaging on the Diagnosis and Management of Patients with Cognitive Decline: Impact of Appropriate Use Criteria.

    PubMed

    Grundman, Michael; Johnson, Keith A; Lu, Ming; Siderowf, Andrew; Dell'Agnello, Grazia; Arora, Anupa K; Skovronsky, Daniel M; Mintun, Mark A; Pontecorvo, Michael J

    2016-01-01

    Published appropriate use criteria (AUC) describe patients for whom amyloid positron emission tomography (PET) might be most useful. This study compared the impact of amyloid PET on diagnosis and management in subjects likely to either meet or not meet AUC. Physicians provided a provisional diagnosis and management plan for patients presenting with cognitive decline before and after amyloid PET imaging with florbetapir F 18. Participants were classified as AUC-like or not, based on the prescan diagnosis and demographic features. In all, 125 of 229 participants (55%) were classified as AUC-like. Sixty-two percent of the AUC-like subjects had a change in diagnosis after scanning compared with 45% of the non-AUC subjects (p = 0.011). Both groups demonstrated high rates of change in their management plans after scanning (88.0% for AUC-like cases, 85.6% for non-AUC cases). The impact of amyloid imaging on diagnosis and planned management was maintained and, if anything, amplified in AUC-like patients. © 2016 S. Karger AG, Basel.

  6. The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module*

    PubMed Central

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H. P.; Whisstock, James C.; Baker, Edward N.; Kreikemeyer, Bernd

    2012-01-01

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain. PMID:22977243

  7. N-terminal Domains Elicit Formation of Functional Pmel17 Amyloid Fibrils*

    PubMed Central

    Watt, Brenda; van Niel, Guillaume; Fowler, Douglas M.; Hurbain, Ilse; Luk, Kelvin C.; Stayrook, Steven E.; Lemmon, Mark A.; Raposo, Graça; Shorter, James; Kelly, Jeffery W.; Marks, Michael S.

    2009-01-01

    Pmel17 is a transmembrane protein that mediates the early steps in the formation of melanosomes, the subcellular organelles of melanocytes in which melanin pigments are synthesized and stored. In melanosome precursor organelles, proteolytic fragments of Pmel17 form insoluble, amyloid-like fibrils upon which melanins are deposited during melanosome maturation. The mechanism(s) by which Pmel17 becomes competent to form amyloid are not fully understood. To better understand how amyloid formation is regulated, we have defined the domains within Pmel17 that promote fibril formation in vitro. Using purified recombinant fragments of Pmel17, we show that two regions, an N-terminal domain of unknown structure and a downstream domain with homology to a polycystic kidney disease-1 repeat, efficiently form amyloid in vitro. Analyses of fibrils formed in melanocytes confirm that the polycystic kidney disease-1 domain forms at least part of the physiological amyloid core. Interestingly, this same domain is also required for the intracellular trafficking of Pmel17 to multivesicular compartments within which fibrils begin to form. Although a domain of imperfect repeats (RPT) is required for fibril formation in vivo and is a component of fibrils in melanosomes, RPT is not necessary for fibril formation in vitro and in isolation is unable to adopt an amyloid fold in a physiologically relevant time frame. These data define the structural core of Pmel17 amyloid, imply that the RPT domain plays a regulatory role in timing amyloid conversion, and suggest that fibril formation might be physically linked with multivesicular body sorting. PMID:19840945

  8. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

    PubMed Central

    Schaeffer, Carolyn R.; Hoang, Tra-My N.; Sudbeck, Craig M.; Alawi, Malik; Tolo, Isaiah E.; Robinson, D. Ashley; Horswill, Alexander R.; Rohde, Holger

    2016-01-01

    infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis. PMID:27747298

  9. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques

    PubMed Central

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M.

    2015-01-01

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer’s disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer’s disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer’s disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology. PMID:26124111

  10. Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae.

    PubMed

    Assato, Patricia Akemi; da Silva, Julhiany de Fátima; de Oliveira, Haroldo Cesar; Marcos, Caroline Maria; Rossi, Danuza; Valentini, Sandro Roberto; Mendes-Giannini, Maria José Soares; Zanelli, Cleslei Fernando; Fusco-Almeida, Ana Marisa

    2015-11-04

    14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.

  11. Amyloid causes intermittent network disruptions in cognitively intact older subjects.

    PubMed

    Mueller, Susanne G

    2018-05-16

    Recent findings in AD models but also human patients suggest that amyloid can cause intermittent neuronal hyperactivity. The overall goal of this study was to use dynamic fMRI analysis combined with graph analysis to a) characterize the graph analytical signature of two types of intermittent hyperactivity (spike-like (spike) and hypersynchronus-like (synchron)) in simulated data and b) to attempt to identify one of these signatures in task-free fMRIs of cognitively intact subjects (CN) with or without increased brain amyloid. The toolbox simtb was used to generate 33 data sets with 2 short spike events, 33 with 2 synchron and 33 baseline data sets. A combination of sliding windows, hierarchical cluster analysis and graph analysis was used to characterize the spike and the synchron signature. Florbetapir-F18 PET and task-free 3 T fMRI was acquired in 49 CN (age = 70.7 ± 6.4). Processing the real data with the same approach as the simulated data identified phases whose graph analytical signature resembled that of the synchron signature in the simulated data. The duration of these phases was positively correlated with amyloid load (r = 0.42, p < 0.05) and negatively with memory performance (r = -0.43, p < 0.05). In conclusion, amyloid positivity is associated with intermittent hyperactivity that is caused by short phases of hypersynchronous activity. The negative association with memory performance suggests that these disturbances have the potential to interfere with cognitive processes and could lead to cognitive impairment if they become more frequent or more severe with increasing amyloid deposition.

  12. Generation of amyloid-β is reduced by the interaction of calreticulin with amyloid precursor protein, presenilin and nicastrin.

    PubMed

    Stemmer, Nina; Strekalova, Elena; Djogo, Nevena; Plöger, Frank; Loers, Gabriele; Lutz, David; Buck, Friedrich; Michalak, Marek; Schachner, Melitta; Kleene, Ralf

    2013-01-01

    Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca(2+)- and N-glycan-independent interaction is mediated by amino acids 330-344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330-344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with

  13. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs

    PubMed Central

    Kumar, Rajnish; Nordberg, Agneta

    2016-01-01

    Abstract Amyloid-β peptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-β. The amyloid-β hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-β oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer’s disease; once more it is unclear how it increases the risk of Alzheimer’s disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer’s disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer’s disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-β interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAβACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-β fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-β fibrillization for at least 65 h. We show

  14. Structure of the Head of the Bartonella Adhesin BadA

    PubMed Central

    Szczesny, Pawel; Linke, Dirk; Ursinus, Astrid; Bär, Kerstin; Schwarz, Heinz; Riess, Tanja M.; Kempf, Volkhard A. J.; Lupas, Andrei N.; Martin, Jörg; Zeth, Kornelius

    2008-01-01

    Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 Å. Both domains are β-prisms, the N-terminal one formed by interleaved, five-stranded β-meanders parallel to the trimer axis and the C-terminal one by five-stranded β-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens. PMID:18688279

  15. Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithianantham, Stanley; Xu, Minghua; Wu, Nan

    2006-12-01

    The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: themore » intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.« less

  16. Apparatus for producing diamond-like carbon flakes

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1986-01-01

    A vacuum arc from a spot at the face of a graphite cathode to a graphite anode produces a beam of carbon ions and atoms. A carbon coating from this beam is deposited on an ion beam sputtered target to produce diamond-like carbon flakes. A graphite tube encloses the cathode, and electrical isolation is provided by an insulating sleeve. The tube forces the vacuum arc spot to be confined to the surface on the outermost end of the cathode. Without the tube the arc spot will wander to the side of the cathode. This spot movement results in low rates of carbon deposition, and the properties of the deposited flakes are more graphite-like than diamond-like.

  17. Rational heterodoxy: cholesterol reformation of the amyloid doctrine.

    PubMed

    Castello, Michael A; Soriano, Salvador

    2013-01-01

    According to the amyloid cascade hypothesis, accumulation of the amyloid peptide Aβ, derived by proteolytic processing from the amyloid precursor protein (APP), is the key pathogenic trigger in Alzheimer's disease (AD). This view has led researchers for more than two decades and continues to be the most influential model of neurodegeneration. Nevertheless, close scrutiny of the current evidence does not support a central pathogenic role for Aβ in late-onset AD. Furthermore, the amyloid cascade hypothesis lacks a theoretical foundation from which the physiological generation of Aβ can be understood, and therapeutic approaches based on its premises have failed. We present an alternative model of neurodegeneration, in which sustained cholesterol-associated neuronal distress is the most likely pathogenic trigger in late-onset AD, directly causing oxidative stress, inflammation and tau hyperphosphorylation. In this scenario, Aβ generation is part of an APP-driven adaptive response to the initial cholesterol distress, and its accumulation is neither central to, nor a requirement for, the initiation of the disease. Our model provides a theoretical framework that places APP as a regulator of cholesterol homeostasis, accounts for the generation of Aβ in both healthy and demented brains, and provides suitable targets for therapeutic intervention. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Imaging and quantification of amyloid fibrillation in the cell nucleus.

    PubMed

    Arnhold, Florian; Scharf, Andrea; von Mikecz, Anna

    2015-01-01

    Xenobiotics, as well as intrinsic processes such as cellular aging, contribute to an environment that constantly challenges nuclear organization and function. While it becomes increasingly clear that proteasome-dependent proteolysis is a major player, the topology and molecular mechanisms of nuclear protein homeostasis remain largely unknown. We have shown previously that (1) proteasome-dependent protein degradation is organized in focal microenvironments throughout the nucleoplasm and (2) heavy metals as well as nanoparticles induce nuclear protein fibrillation with amyloid characteristics. Here, we describe methods to characterize the landscape of intranuclear amyloid on the global and local level in different systems such as cultures of mammalian cells and the soil nematode Caenorhabditis elegans. Application of discrete mathematics to imaging data is introduced as a tool to develop pattern recognition of intracellular protein fibrillation. Since stepwise fibrillation of otherwise soluble proteins to insoluble amyloid-like protein aggregates is a hallmark of neurodegenerative protein-misfolding disorders including Alzheimer's disease, CAG repeat diseases, and the prion encephalopathies, investigation of intracellular amyloid may likewise aid to a better understanding of the pathomechanisms involved. We consider aggregate profiling as an important experimental approach to determine if nuclear amyloid has toxic or protective roles in various disease processes.

  19. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    PubMed Central

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  20. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI.

    PubMed

    Landau, Susan M; Horng, Andy; Fero, Allison; Jagust, William J

    2016-04-12

    To examine the clinical and biomarker characteristics of patients with amyloid-negative Alzheimer disease (AD) and mild cognitive impairment (MCI) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a prospective cohort study. We first investigated the reliability of florbetapir- PET in patients with AD and patients with MCI using CSF-Aβ1-42 as a comparison amyloid measurement. We then compared florbetapir- vs florbetapir+ patients with respect to several AD-specific biomarkers, baseline and longitudinal cognitive measurements, and demographic and clinician report data. Florbetapir and CSF-Aβ1-42 +/- status agreed for 98% of ADs (89% of MCIs), indicating that most florbetapir- scans were a reliable representation of amyloid status. Florbetapir- AD (n = 27/177; 15%) and MCI (n = 74/217, 34%) were more likely to be APOE4-negative (MCI 83%, AD 96%) than their florbetapir+ counterparts (MCI 30%, AD 24%). Florbetapir- patients also had less AD-specific hypometabolism, lower CSF p-tau and t-tau, and better longitudinal cognitive performance, and were more likely to be taking medication for depression. In MCI only, florbetapir- participants had less hippocampal atrophy and hypometabolism and lower functional activity questionnaire scores compared to florbetapir+ participants. Overall, image analysis problems do not appear to be a primary explanation of amyloid negativity. Florbetapir- ADNI patients have a variety of clinical and biomarker features that differ from their florbetapir+ counterparts, suggesting that one or more non-AD etiologies (which may include vascular disease and depression) account for their AD-like phenotype. © 2016 American Academy of Neurology.

  1. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways.

    PubMed

    Gharibyan, Anna L; Zamotin, Vladimir; Yanamandra, Kiran; Moskaleva, Olesya S; Margulis, Boris A; Kostanyan, Irina A; Morozova-Roche, Ludmilla A

    2007-02-02

    Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.

  2. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils.

    PubMed

    Guo, Le; Yin, Runting; Xu, Guangxian; Gong, Xiaojuan; Chang, Zisong; Hong, Dantong; Liu, Hongpeng; Ding, Shuqin; Han, Xuebo; Li, Yuan; Tang, Feng; Liu, Kunmei

    2017-12-01

    Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4 + T cells. This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection. © 2017 John Wiley & Sons Ltd.

  3. Review: history of the amyloid fibril.

    PubMed

    Sipe, J D; Cohen, A S

    2000-06-01

    Rudolph Virchow, in 1854, introduced and popularized the term amyloid to denote a macroscopic tissue abnormality that exhibited a positive iodine staining reaction. Subsequent light microscopic studies with polarizing optics demonstrated the inherent birefringence of amyloid deposits, a property that increased intensely after staining with Congo red dye. In 1959, electron microscopic examination of ultrathin sections of amyloidotic tissues revealed the presence of fibrils, indeterminate in length and, invariably, 80 to 100 A in width. Using the criteria of Congophilia and fibrillar morphology, 20 or more biochemically distinct forms of amyloid have been identified throughout the animal kingdom; each is specifically associated with a unique clinical syndrome. Fibrils, also 80 to 100 A in width, have been isolated from tissue homogenates using differential sedimentation or solubility. X-ray diffraction analysis revealed the fibrils to be ordered in the beta pleated sheet conformation, with the direction of the polypeptide backbone perpendicular to the fibril axis (cross beta structure). Because of the similar dimensions and tinctorial properties of the fibrils extracted from amyloid-laden tissues and amyloid fibrils in tissue sections, they have been assumed to be identical. However, the spatial relationship of proteoglycans and amyloid P component (AP), common to all forms of amyloid, to the putative protein only fibrils in tissues, has been unclear. Recently, it has been suggested that, in situ, amyloid fibrils are composed of proteoglycans and AP as well as amyloid proteins and thus resemble connective tissue microfibrils. Chemical and physical definition of the fibrils in tissues will be needed to relate the in vitro properties of amyloid protein fibrils to the pathogenesis of amyloid fibril formation in vivo. Copyright 2000 Academic Press.

  4. Amyloid Beta Mediates Memory Formation

    ERIC Educational Resources Information Center

    Garcia-Osta, Ana; Alberini, Cristina M.

    2009-01-01

    The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…

  5. Probing the binding affinity of amyloids to reduce toxicity of oligomers in diabetes

    PubMed Central

    Smaoui, Mohamed Raef; Orland, Henri; Waldispühl, Jérôme

    2015-01-01

    Motivation: Amyloids play a role in the degradation of β-cells in diabetes patients. In particular, short amyloid oligomers inject themselves into the membranes of these cells and create pores that disrupt the strictly controlled flow of ions through the membranes. This leads to cell death. Getting rid of the short oligomers either by a deconstruction process or by elongating them into longer fibrils will reduce this toxicity and allow the β-cells to live longer. Results: We develop a computational method to probe the binding affinity of amyloid structures and produce an amylin analog that binds to oligomers and extends their length. The binding and extension lower toxicity and β-cell death. The amylin analog is designed through a parsimonious selection of mutations and is to be administered with the pramlintide drug, but not to interact with it. The mutations (T9K L12K S28H T30K) produce a stable native structure, strong binding affinity to oligomers, and long fibrils. We present an extended mathematical model for the insulin–glucose relationship and demonstrate how affecting the concentration of oligomers with such analog is strictly coupled with insulin release and β-cell fitness. Availability and implementation: SEMBA, the tool to probe the binding affinity of amyloid proteins and generate the binding affinity scoring matrices and R-scores is available at: http://amyloid.cs.mcgill.ca Contact: jeromew@cs.mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25777526

  6. Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Cope, Stephanie M.

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily

  7. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria.

    PubMed

    Dragoš, Anna; Kovács, Ákos T; Claessen, Dennis

    2017-08-07

    Amyloid fibrils play pivotal roles in all domains of life. In bacteria, these fibrillar structures are often part of an extracellular matrix that surrounds the producing organism and thereby provides protection to harsh environmental conditions. Here, we discuss the role of amyloid fibrils in the two distant Gram-positive bacteria, Streptomyces coelicolor and Bacillus subtilis . We describe how amyloid fibrils contribute to a multitude of developmental processes in each of these systems, including multicellular growth and community development. Despite this variety of tasks, we know surprisingly little about how their assembly is organized to fulfill all these roles.

  8. The expression of the Alzheimer’s Amyloid Precursor Protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans

    PubMed Central

    Niwa, Ryusuke; Zhou, Feng; Li, Chris; Slack, Frank J.

    2008-01-01

    Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by the accumulation of dense plaques in the brain, resulting in progressive dementia. A major plaque component is the β-amyloid peptide, which is a cleavage product of the amyloid precursor protein (APP). Studies of dominant inheritable familial AD support the hypothesis that APP is critical for AD development. On the other hand, the pathogenesis of amyloid plaque deposition in AD is thought to be the result of age-related changes with unknown mechanisms. Here we show that the Caenorhabditis elegans homolog of APP, APP-like-1 (apl-1), functions with and is under the control of molecules regulating developmental progression. In C. elegans, the timing of cell fate determination is controlled by the heterochronic genes, including let-7 microRNAs. C. elegans apl-1 shows significant genetic interactions with let-7 family microRNAs and let-7-targeted heterochronic genes, hbl-1, lin-41 and lin-42. apl-1 expression is upregulated during the last larval stage in hypodermal seam cells which is transcriptionally regulated by hbl-1, lin-41 and lin-42. Moreover, the levels of the apl-1 transcription are modulated by the activity of let-7 family microRNAs. Our works places apl-1 in a developmental timing pathway and may provide new insights into the time-dependent progression of AD. PMID:18262516

  9. Magnetite nanoparticle interactions with insulin amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Chen, Yun-Wen; Chang, Chiung-Wen; Hung, Huey-Shan; Kung, Mei-Lang; Yeh, Bi-Wen; Hsieh, Shuchen

    2016-10-01

    Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer’s disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging.

  10. Cerebral amyloid angiopathy: diagnosis and potential therapies.

    PubMed

    Weber, Stewart A; Patel, Ranish K; Lutsep, Helmi L

    2018-06-01

    Cerebral amyloid angiopathy (CAA) is characterized by the pathologic deposition of amyloid-beta within cortical and leptomeningeal arteries, arterioles, capillaries and, in rare cases, the venules of the brain. It is often associated with the development of lobar intracerebral hemorrhages (ICHs) but may cause other neurologic symptoms or be asymptomatic. Magnetic resonance imaging characteristics, such as lobar microbleeds, support a diagnosis of CAA and assist with hemorrhage risk assessments. Immunosuppressants are used to treat rarer inflammatory forms of CAA. For the more common forms of CAA, the use of antihypertensive medications can prevent ICH recurrence while the use of antithrombotics may increase hemorrhage risk. Anti-amyloid approaches to treatment have not yet been investigated in phase 3 trials. Areas covered: A literature search was conducted using MEDLINE on the topics of imaging, biomarkers, ICH prevention and treatment trials in CAA, focusing on its current diagnosis and management and opportunities for future therapeutic approaches. Expert commentary: There is likely a significant unrecognized burden of CAA in the elderly population. Continued research efforts to discover biomarkers that allow the early diagnosis of CAA will enhance the opportunity to develop treatment interventions.

  11. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation

    PubMed Central

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M.; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4′-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54–63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54–63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  12. Chronic Noise Exposure Acts Cumulatively to Exacerbate Alzheimer’s Disease-Like Amyloid-β Pathology and Neuroinflammation in the Rat Hippocampus

    PubMed Central

    Cui, Bo; Li, Kang; Gai, Zhihui; She, Xiaojun; Zhang, Na; Xu, Chuanxiang; Chen, Xuewei; An, Gaihong; Ma, Qiang; Wang, Rui

    2015-01-01

    A putative etiological association exists between noise exposure and Alzheimer’s disease (AD). Amyloid-β (Aβ) pathology is thought to be one of the primary initiating factors in AD. It has been further suggested that subsequent dysregulation of Aβ may play a mechanistic role in the AD-like pathophysiology associated with noise exposure. Here, we used ELISA, immunoblotting, cytokine arrays, and RT-PCR, to examine both hippocampal Aβ pathology and neuroinflammation in rats at different time points after noise exposure. We found that chronic noise exposure significantly accelerated the progressive overproduction of Aβ, which persisted for 7 to 14 days after the cessation of exposure. This effect was accompanied by up-regulated expression of amyloid precursor protein (APP) and its cleavage enzymes, β- and γ-secretases. Cytokine analysis revealed that chronic noise exposure increased levels of tumor necrosis factor-α and the receptor for advanced glycation end products, while decreasing the expression of activin A and platelet-derived growth factor- AA. Furthermore, we found persistent elevations of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 expression that closely corresponded to the noise-induced increases in Aβ and neuroinflammation. These studies suggest that lifelong environmental noise exposure may have cumulative effects on the onset and development of AD. PMID:26251361

  13. Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice.

    PubMed

    Franko, Andras; Rodriguez Camargo, Diana C; Böddrich, Annett; Garg, Divita; Rodriguez Camargo, Andres; Rathkolb, Birgit; Janik, Dirk; Aichler, Michaela; Feuchtinger, Annette; Neff, Frauke; Fuchs, Helmut; Wanker, Erich E; Reif, Bernd; Häring, Hans-Ulrich; Peter, Andreas; Hrabě de Angelis, Martin

    2018-01-18

    The formation of amyloid fibrils by human islet amyloid polypeptide protein (hIAPP) has been implicated in pancreas dysfunction and diabetes. However, efficient treatment options to reduce amyloid fibrils in vivo are still lacking. Therefore, we tested the effect of epigallocatechin gallate (EGCG) on fibril formation in vitro and in vivo. To determine the binding of hIAPP and EGCG, in vitro interaction studies were performed. To inhibit amyloid plaque formation in vivo, homozygous (tg/tg), hemizygous (wt/tg), and control mice (wt/wt) were treated with EGCG. EGCG bound to hIAPP in vitro and induced formation of amorphous aggregates instead of amyloid fibrils. Amyloid fibrils were detected in the pancreatic islets of tg/tg mice, which was associated with disrupted islet structure and diabetes. Although pancreatic amyloid fibrils could be detected in wt/tg mice, these animals were non-diabetic. EGCG application decreased amyloid fibril intensity in wt/tg mice, however it was ineffective in tg/tg animals. Our data indicate that EGCG inhibits amyloid fibril formation in vitro and reduces fibril intensity in non-diabetic wt/tg mice. These results demonstrate a possible in vivo effectiveness of EGCG on amyloid formation and suggest an early therapeutical application.

  14. Characterization of two new putative adhesins of Leptospira interrogans.

    PubMed

    Figueredo, Jupciana M; Siqueira, Gabriela H; de Souza, Gisele O; Heinemann, Marcos B; Vasconcellos, Silvio A; Chapola, Erica G B; Nascimento, Ana L T O

    2017-01-01

    We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of Leptospira interrogans, annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using Escherichia coli. Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for Leptospiral-surface adhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in Leptospira has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host -pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during L. interrogans infection.

  15. Prions, prionoid complexes and amyloids: the bad, the good and something in between.

    PubMed

    Hafner Bratkovič, Iva

    2017-04-19

    Prions are infectious agents causing transmissible spongiform encephalopathies in humans and animals. These protein-based particles template conformational changes in a host-encoded prion protein to an insoluble self-like conformation. Prions are also present in yeast, where they support protein-based epigenetic inheritance. There is emerging evidence that prion-like (prionoid) particles can support a variety of pathological and beneficial functions. The recent data on the prionoid spread of other pathological amyloids are discussed in light of differences between prions and prion-like aggregates. On the other hand, prion-like action has also been found to support important functions such as memory, and amyloids were shown to have a variety of physiological roles from storage to scaffolding in simple organisms and in humans. Higher-order protein complexes play important roles in signalling. Many death-fold domains can polymerise upon nucleation to enhance sensitivity and induce a robust response. Although these polymers are structurally different from amyloids, some of them are characterised by prionoid activities, such as intercellular spread. The initial activation of these complexes is vital for organismal health, whereas prolonged activation leading to unresolved inflammation underlies autoinflammatory and other diseases. Prionoid complexes play important roles far beyond prion diseases and neurodegeneration.

  16. Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development.

    PubMed

    Gamez, Gustavo; Hammerschmidt, Sven

    2012-03-01

    Streptococcus pneumoniae (pneumococcus) is an asymptomatic colonizer of the upper respiratory tract in humans. However, these apparently harmless bacteria have also a high virulence potential and are known as the etiologic agent of respiratory and life-threatening invasive diseases. Dissemination of pneumococci from the nasopharynx into the lungs or bloodstream leads to community-acquired pneumonia, septicaemia and meningitis. Traditionally, pneumococcal diseases are treated with antibiotics and prevented with polysaccharide-based vaccines. However, due to the dramatic increase in antibiotic resistance and limitations of the current available vaccines, the burden of diseases remains high. Thus, combating pneumococcal transmission and infections has emphasized the need for a new generation of protein-based vaccines. Interactions of pneumococci with soluble host proteins or cellular receptors are crucial for adherence, colonization, transmigration of host barriers and immune evasion. Therefore, surface-exposed proteins involved in these pathogenic processes and virtually expressed by all pneumococcal strains and serotypes are the prime potential targets for an immunogenic and highly protective pneumococcal-derived carrier protein of a vaccine. In this review, we will address the state of the art in deciphering, i). the conservation, distribution and pathogenic role of recently discovered pneumococcal adhesins in colonization and invasive diseases, ii). the interactions of these virulence factors with host-proteins and receptors, iii). the subversion of the host immune and cellular responses, and iv). the potential of pneumococcal adhesins as vaccine candidates.

  17. Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism

    PubMed Central

    Morales-Scheihing, Diego; Salvadores, Natalia; Moreno-Gonzalez, Ines; Gonzalez, Cesar; Shahnawaz, Mohammad

    2017-01-01

    Although a large proportion of patients with type 2 diabetes (T2D) accumulate misfolded aggregates composed of the islet amyloid polypeptide (IAPP), its role in the disease is unknown. Here, we show that pancreatic IAPP aggregates can promote the misfolding and aggregation of endogenous IAPP in islet cultures obtained from transgenic mouse or healthy human pancreas. Islet homogenates immunodepleted with anti-IAPP–specific antibodies were not able to induce IAPP aggregation. Importantly, intraperitoneal inoculation of pancreatic homogenates containing IAPP aggregates into transgenic mice expressing human IAPP dramatically accelerates IAPP amyloid deposition, which was accompanied by clinical abnormalities typical of T2D, including hyperglycemia, impaired glucose tolerance, and a substantial reduction on β cell number and mass. Finally, induction of IAPP deposition and diabetic abnormalities were also induced in vivo by administration of IAPP aggregates prepared in vitro using pure, synthetic IAPP. Our findings suggest that some of the pathologic and clinical alterations of T2D might be transmissible through a similar mechanism by which prions propagate in prion diseases. PMID:28765400

  18. Detoxification depot for beta-amyloid peptides.

    PubMed

    Sundaram, Ranjini K; Kasinathan, Chinnaswamy; Stein, Stanley; Sundaram, Pazhani

    2008-02-01

    Alzheimer's Disease (AD) is caused by the deposition of insoluble and toxic amyloid peptides (Abeta) in the brain leading to memory loss and other associated neurodegenerative symptoms. To date there is limited treatment options and strategies for treating AD. Studies have shown that clearance of the amyloid plaques from the brain and thus from the blood could be effective in stopping and or delaying the progression of the disease. Small peptides derived from the Abeta-42 sequence, in particular KLVFF, have shown to be effective binders of Abeta peptides and thus could be useful in delaying progression of the disease. We have taken advantage of this property by generating the retro-inverso (RI) version of this peptide, ffvlk, in different formats. We are presenting a new detox gel system using poly ethylene glycol (PEG), polymerized and cross linked with the RI peptides. We hypothesize that detox gel incorporating RI peptides will act like a 'sink' to capture the Abeta peptides from the surrounding environment. We tested these detox gels for their ability to capture biotinylated Abeta-42 peptides in vitro. The results showed that the detox gels bound Abeta-42 peptides effectively and irreversibly. Gels incorporating the tetramer RI peptide exhibited maximum binding capacity. The detox gel could be a potential candidate for treatment strategies to deplete the brain of toxic amyloid peptides.

  19. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes.

    PubMed

    Hanski, E; Caparon, M

    1992-07-01

    Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.

  20. In vivo staging of regional amyloid deposition.

    PubMed

    Grothe, Michel J; Barthel, Henryk; Sepulcre, Jorge; Dyrba, Martin; Sabri, Osama; Teipel, Stefan J

    2017-11-14

    To estimate a regional progression pattern of amyloid deposition from cross-sectional amyloid-sensitive PET data and evaluate its potential for in vivo staging of an individual's amyloid pathology. Multiregional analysis of florbetapir ( 18 F-AV45)-PET data was used to determine individual amyloid distribution profiles in a sample of 667 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, including cognitively normal older individuals (CN) as well as patients with mild cognitive impairment and Alzheimer disease (AD) dementia. The frequency of regional amyloid positivity across CN individuals was used to construct a 4-stage model of progressing amyloid pathology, and individual distribution profiles were used to evaluate the consistency of this hierarchical stage model across the full cohort. According to a 4-stage model, amyloid deposition begins in temporobasal and frontomedial areas, and successively affects the remaining associative neocortex, primary sensory-motor areas and the medial temporal lobe, and finally the striatum. Amyloid deposition in these brain regions showed a highly consistent hierarchical nesting across participants, where only 2% exhibited distribution profiles that deviated from the staging scheme. The earliest in vivo amyloid stages were mostly missed by conventional dichotomous classification approaches based on global florbetapir-PET signal, but were associated with significantly reduced CSF Aβ42 levels. Advanced in vivo amyloid stages were most frequent in patients with AD and correlated with cognitive impairment in individuals without dementia. The highly consistent regional hierarchy of PET-evidenced amyloid deposition across participants resembles neuropathologic observations and suggests a predictable regional sequence that may be used to stage an individual's progress of amyloid pathology in vivo. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of

  1. Impact of membrane curvature on amyloid aggregation.

    PubMed

    Terakawa, Mayu S; Lin, Yuxi; Kinoshita, Misaki; Kanemura, Shingo; Itoh, Dai; Sugiki, Toshihiko; Okumura, Masaki; Ramamoorthy, Ayyalusamy; Lee, Young-Ho

    2018-04-28

    The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding

  2. Toward the Discovery of Effective Polycyclic Inhibitors of α-Synuclein Amyloid Assembly*

    PubMed Central

    Lamberto, Gonzalo R.; Torres-Monserrat, Valentina; Bertoncini, Carlos W.; Salvatella, Xavier; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O.

    2011-01-01

    The fibrillation of amyloidogenic proteins is a critical step in the etiology of neurodegenerative disorders such as Alzheimer and Parkinson diseases. There is major interest in the therapeutic intervention on such aberrant aggregation phenomena, and the utilization of polyaromatic scaffolds has lately received considerable attention. In this regard, the molecular and structural basis of the anti-amyloidogenicity of polyaromatic compounds, required to evolve this molecular scaffold toward therapeutic drugs, is not known in detail. We present here biophysical and biochemical studies that have enabled us to characterize the interaction of metal-substituted, tetrasulfonated phthalocyanines (PcTS) with α-synuclein (AS), the major protein component of amyloid-like deposits in Parkinson disease. The inhibitory activity of the assayed compounds on AS amyloid fibril formation decreases in the order PcTS[Ni(II)] ∼ PcTS > PcTS[Zn(II)] ≫ PcTS[Al(III)] ≈ 0. Using NMR and electronic absorption spectroscopies we demonstrated conclusively that the differences in binding capacity and anti-amyloid activity of phthalocyanines on AS are attributed to their relative ability to self-stack through π-π interactions, modulated by the nature of the metal ion bound at the molecule. Low order stacked aggregates of phthalocyanines were identified as the active amyloid inhibitory species, whose effects are mediated by residue specific interactions. Such sequence-specific anti-amyloid behavior of self-stacked phthalocyanines contrasts strongly with promiscuous amyloid inhibitors with self-association capabilities that act via nonspecific sequestration of AS molecules. The new findings reported here constitute an important contribution for future drug discovery efforts targeting amyloid formation. PMID:21795682

  3. Microwave-induced formation of oligomeric amyloid aggregates.

    PubMed

    Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung

    2018-08-24

    Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.

  4. Long-Term Treatment of Thalidomide Ameliorates Amyloid-Like Pathology through Inhibition of β-Secretase in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    He, Ping; Cheng, Xin; Staufenbiel, Matthias; Li, Rena; Shen, Yong

    2013-01-01

    Thalidomide is a tumor necrosis factor alpha (TNFα) inhibitor which has been found to have abilities against tumor growth, angiogenesis and inflammation. Recently, it has been applied in clinic for the treatment of multiple myeloma as well as some inflammatory diseases. However, whether thalidomide has any therapeutic effects on neurodegenerative disorders, i.e. Alzheimer’s disease (AD) is not clear. AD is characterized by excessive amount of amyloid β peptides (Aβ), which results in a significant release of inflammatory factors, including TNFα in the brain. Studies have shown that inhibition of TNFα reduces amyloid-associated pathology, prevents neuron loss and improves cognition. Our recent report showed that genetic inhibition of TNFα/TNF receptor signal transduction down-regulates β amyloid cleavage enzyme 1 (BACE1) activity, reduces Aβ generation and improves learning and memory deficits. However, the mechanism of thalidomide involving in the mitigation of AD neuropathological features remains unclear. Here, we chronically administrated thalidomide on human APPswedish mutation transgenic (APP23) mice from 9 months old (an onset of Aβ deposits and early stage of AD-like changes) to 12 months old. We found that, in addition of dramatic decrease in the activation of both astrocytes and microglia, thalidomide significantly reduces Aβ load and plaque formation. Furthermore, we found a significant decrease in BACE1 level and activity with long-term thalidomide application. Interestingly, these findings cannot be observed in the brains of 12-month-old APP23 mice with short-term treatment of thalidomide (3 days). These results suggest that chronic thalidomide administration is an alternative approach for AD prevention and therapeutics. PMID:23405115

  5. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts.

    PubMed

    Martin, Emily B; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J; Wall, Jonathan S

    2013-06-21

    In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Amyloid substance within stenotic aortic valves promotes mineralization.

    PubMed

    Audet, Audrey; Côté, Nancy; Couture, Christian; Bossé, Yohan; Després, Jean-Pierre; Pibarot, Philippe; Mathieu, Patrick

    2012-10-01

    Accumulation of apolipoproteins may play an important role in the pathobiology of calcific aortic valve disease (CAVD). We aimed to explore the hypothesis that apolipoprotein-derived amyloid could play a role in the development of CAVD. In 70 explanted CAVD valves and 15 control non-calcified aortic valves, we assessed the presence of amyloid by using Congo red staining. Immunohistochemistry was performed to document the presence of apolipoprotein AI (Apo-AI). Apoptosis was documented by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) studies performed in control and CAVD valves. Control valves were free of amyloid. Deposition of amyloid was detected in all CAVD valves, and the amount was positively correlated with plasma high-density lipoprotein and Apo-AI levels. Apo-AI within CAVD valves co-localized with intense staining of fibrillar amyloid. In turn, deposition of amyloid co-localized with apoptosis near mineralized areas. Isolation of amyloid fibrils confirmed that Apo-AI is a major component of amyloid deposits in CAVD. In vitro, CAVD-derived amyloid extracts increased apoptosis and mineralization of isolated aortic valvular interstitial cells. Apo-AI is a major component of amyloid substance present within CAVD valves. Furthermore, amyloid deposits participate in mineralization in CAVD by promoting apoptosis of valvular interstitial cells. © 2012 Blackwell Publishing Ltd.

  7. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production.

    PubMed

    Cam, Judy A; Zerbinatti, Celina V; Knisely, Jane M; Hecimovic, Silva; Li, Yonghe; Bu, Guojun

    2004-07-09

    The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.

  8. The stability of monomeric intermediates controls amyloid formation: Abeta25-35 and its N27Q mutant.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2006-05-15

    The structure and stabilities of the intermediates affect protein folding as well as misfolding and amyloid formation. By applying Kramer's theory of barrier crossing and a Morse-function-like energy landscape, we show that intermediates with medium stability dramatically increase the rate of amyloid formation; on the other hand, very stable and very unstable intermediates sharply decrease amyloid formation. Remarkably, extensive molecular dynamics simulations and conformational energy landscape analysis of Abeta25-35 and its N27Q mutant corroborate the mathematical description. Both experimental and current simulation results indicate that the core of the amyloid structure of Abeta25-35 formed from residues 28-35. A single mutation of N27Q of Abeta25-35 makes the Abeta25-35 N27Q amyloid-free. Energy landscape calculations show that Abeta25-35 has extended intermediates with medium stability that are prone to form amyloids, whereas the extended intermediates for Abeta25-35 N27Q split into stable and very unstable species that are not disposed to form amyloids. The results explain the contribution of both alpha-helical and beta-strand intermediates to amyloid formation. The results also indicate that the structure and stability of the intermediates, as well as of the native folded and the amyloid states can be targeted in drug design. One conceivable approach is to stabilize the intermediates to deter amyloid formation.

  9. Importance of adhesins in the recurrence of pharyngeal infections caused by Streptococcus pyogenes.

    PubMed

    Wozniak, Aniela; Scioscia, Natalia; Geoffroy, Enrique; Ponce, Iván; García, Patricia

    2017-04-01

    Pharyngo-amygdalitis is the most common infection caused by Streptococcus pyogenes (S. pyogenes). Reinfection with strains of different M types commonly occurs. However, a second infection with a strain of the same M type can still occur and is referred to as recurrence. We aimed to assess whether recurrence of S. pyogenes could be associated to erythromycin resistance, biofilm formation or surface adhesins like fibronectin-binding proteins and pilus proteins, both located in the fibronectin-binding, collagen-binding, T-antigen (FCT) region. We analyed clinical isolates of S. pyogenes obtained from children with multiple positive cultures of throat swabs. We analysed potential associations between M types, clonal patterns, biofilm production and FCT types with their capacity of producing a recurrent infection. We genetically defined recurrence as an infection with the same M type (same strain) and reinfection as an infection with a different M type. No differences were observed between recurrent and reinfection isolates in relation to erythromycin resistance, presence and number of domains of prtF1 gene, and biofilm formation capacity; the only significant difference was the higher frequency of FCT-4 type among recurrent isolates. However, when all the factors that could contribute to recurrence (erythromycin resistance, biofilm production, presence of prtF1 gene and FCT-4 type) were analysed together, we observed that recurrent isolates have a higher number of factors than reinfection isolates. Recurrence seems not to be associated with biofilm formation. However, pili and fibronectin-binding proteins could be associated with recurrence because FCT-4 isolates which harbour two fibronectin-binding proteins are more frequent among recurrent isolates.

  10. Consequences of inhibiting amyloid precursor protein processing enzymes on synaptic function and plasticity.

    PubMed

    Wang, Hui; Megill, Andrea; He, Kaiwen; Kirkwood, Alfredo; Lee, Hey-Kyoung

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of β- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aβ alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aβ generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aβ-producing enzymes suggest that Aβ itself may have normal physiological functions which are disrupted by abnormal accumulation of Aβ during AD pathology. This interpretation suggests that AD therapeutics targeting the β- and γ-secretases should be developed to restore normal levels of Aβ or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.

  11. True and apparent inhibition of amyloid fibril formation.

    PubMed

    Martins, Pedro M

    2013-01-01

    A possible therapeutic strategy for amyloid diseases involves the use of small molecule compounds to inhibit protein assembly into insoluble aggregates. According to the recently proposed Crystallization-Like Model, the kinetics of amyloid fibrillization can be retarded by decreasing the frequency of new fibril formation or by decreasing the elongation rate of existing fibrils. To the compounds that affect the nucleation and/or the growth steps we call true inhibitors. An apparent inhibition mechanism may however result from the alteration of thermodynamic properties such as the solubility of the amyloidogenic protein. Apparent inhibitors markedly influence protein aggregation kinetics measured in vitro, yet they are likely to lead to disappointing results when tested in vivo. This is because cells and tissues media are in general much more buffered against small variations in composition than the solutions prepared in lab. Here we show how to discriminate between true and apparent inhibition mechanisms from experimental data on protein aggregation kinetics. The goal is to be able to identify false positives much earlier during the drug development process.

  12. [Behavioural problems and personality change related to cerebral amyloid angiopathy].

    PubMed

    Gahr, Maximilian; Connemann, Bernhard J; Schönfeldt-Lecuona, Carlos

    2012-11-01

    Cerebral amyloid angiopathy (CAA) belongs to the group of amyloidoses that are characterized by the deposition of insoluble and tissue-damaging amyloid proteins. Spontaneous intracerebral hemorrhage is the common clinical presentation of CAA resulting from the degenerative effect of beta amyloid on the cerebral vascular system. Though CAA is rather a neurological disease psychiatric symptoms can occur and even dominate the clinical picture. A case report is presented in order to illustrate the association between CAA and psychiatric symptoms. We report the case of a 54-year-old female patient with radiologic references to a probable CAA and mild cognitive impairment who developed behavioural difficulties and personality change that necessitated a psychiatric treatment. Psychiatric symptoms were most likely due to CAA. CAA can be associated with psychiatric symptoms and hence should be considered in the treatment of elderly patients with behavioural problems or personality changes. Diagnostic neuroimaging and examination of cerebrospinal fluid is recommended. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    PubMed

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans▿ †

    PubMed Central

    Argimón, Silvia; Wishart, Jill A.; Leng, Roger; Macaskill, Susan; Mavor, Abigail; Alexandris, Thomas; Nicholls, Susan; Knight, Andrew W.; Enjalbert, Brice; Walmsley, Richard; Odds, Frank C.; Gow, Neil A. R.; Brown, Alistair J. P.

    2007-01-01

    Candida albicans expresses specific virulence traits that promote disease establishment and progression. These traits include morphological transitions between yeast and hyphal growth forms that are thought to contribute to dissemination and invasion and cell surface adhesins that promote attachment to the host. Here, we describe the regulation of the adhesin gene ALS3, which is expressed specifically during hyphal development in C. albicans. Using a combination of reporter constructs and regulatory mutants, we show that this regulation is mediated by multiple factors at the transcriptional level. The analysis of ALS3 promoter deletions revealed that this promoter contains two activation regions: one is essential for activation during hyphal development, while the second increases the amplitude of this activation. Further deletion analyses using the Renilla reniformis luciferase reporter delineate the essential activation region between positions −471 and −321 of the promoter. Further 5′ or 3′ deletions block activation. ALS3 transcription is repressed mainly by Nrg1 and Tup1, but Rfg1 contributes to this repression. Efg1, Tec1, and Bcr1 are essential for the transcriptional activation of ALS3, with Tec1 mediating its effects indirectly through Bcr1 rather than through the putative Tec1 sites in the ALS3 promoter. ALS3 transcription is not affected by Cph2, but Cph1 contributes to full ALS3 activation. The data suggest that multiple morphogenetic signaling pathways operate through the promoter of this adhesin gene to mediate its developmental regulation in this major fungal pathogen. PMID:17277173

  15. Quantitative appraisal of the Amyloid Imaging Taskforce appropriate use criteria for amyloid-PET.

    PubMed

    Altomare, Daniele; Ferrari, Clarissa; Festari, Cristina; Guerra, Ugo Paolo; Muscio, Cristina; Padovani, Alessandro; Frisoni, Giovanni B; Boccardi, Marina

    2018-04-18

    We test the hypothesis that amyloid-PET prescriptions, considered appropriate based on the Amyloid Imaging Taskforce (AIT) criteria, lead to greater clinical utility than AIT-inappropriate prescriptions. We compared the clinical utility between patients who underwent amyloid-PET appropriately or inappropriately and among the subgroups of patients defined by the AIT criteria. Finally, we performed logistic regressions to identify variables associated with clinical utility. We identified 171 AIT-appropriate and 67 AIT-inappropriate patients. AIT-appropriate and AIT-inappropriate cases did not differ in any outcomes of clinical utility (P > .05). Subgroup analysis denoted both expected and unexpected results. The logistic regressions outlined the primary role of clinical picture and clinical or neuropsychological profile in identifying patients benefitting from amyloid-PET. Contrary to our hypothesis, also AIT-inappropriate prescriptions were associated with clinical utility. Clinical or neuropsychological variables, not taken into account by the AIT criteria, may help further refine criteria for appropriateness. Copyright © 2018. Published by Elsevier Inc.

  16. Ferret islet amyloid polypeptide (IAPP): characterization of in vitro and in vivo amyloidogenicity.

    PubMed

    Paulsson, Johan F; Benoit-Biancamano, Marie-Odile; Schäffer, Lauge; Dahl, Kirsten

    2011-12-01

    Diabetes in the domestic ferret (Mustela putorius furo) has previously been described and the purpose of this study was to evaluate if the ferret could serve as a model for the study of β-cell degeneration associated with formation of islet amyloid. The nucleotide and amino acid sequence of ferret islet amyloid polypeptide (IAPP) 1-37 was identified and the synthesized peptide was studied with regards to in vitro amyloidogenicity and potential cellular toxicity in a comparative approach to human, cat and the nonamyloidogenic rat IAPP. Ferret IAPP forms amyloid-like fibrils, but with a longer lag phase than human and cat IAPP and the aggregation process was shown to reduce cell viability of cultured β-cells, but with less potency than these two amyloidogenic counterparts. Immunohistochemistry of ferret pancreas confirmed IAPP expression in the islets of Langerhans, but no islet amyloid was found in a very limited sample size of one diabetic and five healthy ferrets. Islet amyloid has never been described in ferrets, and it is not possible to determine if it is due to lack of studies/material or to the fact that the ferret's life span is too short to present with such pathology.

  17. Prions, amyloids, and RNA: Pieces of a puzzle.

    PubMed

    Nizhnikov, Anton A; Antonets, Kirill S; Bondarev, Stanislav A; Inge-Vechtomov, Sergey G; Derkatch, Irina L

    2016-05-03

    Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.

  18. Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC).

    PubMed

    Dai, Jianjun; Wang, Shaohui; Guerlebeck, Doreen; Laturnus, Claudia; Guenther, Sebastian; Shi, Zhenyu; Lu, Chengping; Ewers, Christa

    2010-09-09

    Extraintestinal pathogenic E. coli (ExPEC) represent a phylogenetically diverse group of bacteria which are implicated in a large range of infections in humans and animals. Although subgroups of different ExPEC pathotypes, including uropathogenic, newborn meningitis causing, and avian pathogenic E. coli (APEC) share a number of virulence features, there still might be factors specifically contributing to the pathogenesis of a certain subset of strains or a distinct pathotype. Thus, we made use of suppression subtractive hybridization and compared APEC strain IMT5155 (O2:K1:H5; sequence type complex 95) with human uropathogenic E. coli strain CFT073 (O6:K2:H5; sequence type complex 73) to identify factors which may complete the currently existing model of APEC pathogenicity and further elucidate the position of this avian pathotype within the whole ExPEC group. Twenty-eight different genomic loci were identified, which are present in IMT5155 but not in CFT073. One of these loci contained a gene encoding a putative autotransporter adhesin. The open reading frame of the gene spans a 3,498 bp region leading to a putative 124-kDa adhesive protein. A specific antibody was raised against this protein and expression of the adhesin was shown under laboratory conditions. Adherence and adherence inhibition assays demonstrated a role for the corresponding protein in adhesion to DF-1 chicken fibroblasts. Sequence analyses revealed that the flanking regions of the chromosomally located gene contained sequences of mobile genetic elements, indicating a probable spread among different strains by horizontal gene transfer. In accordance with this hypothesis, the adhesin was found to be present not only in different phylogenetic groups of extraintestinal pathogenic but also of commensal E. coli strains, yielding a significant association with strains of avian origin. We identified a chromosomally located autotransporter gene in a highly virulent APEC strain which confers increased

  19. New fluorescent probes for detection and characterization of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Gorbenko, Galyna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Vasilev, Aleksey; Kaloyanova, Stefka; Deligeorgiev, Todor

    2010-08-01

    The applicability of the novel fluorescent probes, aminoderivative of benzanthrone ABM, squaraine dye SQ-1 and polymethine dye V2 to identification and structural analysis of amyloid fibrils has been evaluated using the lysozyme model system in which fibrillar aggregates have been formed in concentrated ethanol solution. The association constant, binding stoichiometry and molar fluorescence of the bound dye have been determined. ABM was found to surpass classical amyloid marker ThT in the sensitivity to the presence of fibrillar aggregates. Resonance energy transfer measurements involving ABM-SQ-1 and SQ-1-V2 donor-acceptor pairs yielded the limits for fractal-like dimension of lysozyme fibrils.

  20. Contribution of trimeric autotransporter C-terminal domains of oligomeric coiled-coil adhesin (Oca) family members YadA, UspA1, EibA, and Hia to translocation of the YadA passenger domain and virulence of Yersinia enterocolitica.

    PubMed

    Ackermann, Nikolaus; Tiller, Maximilian; Anding, Gisela; Roggenkamp, Andreas; Heesemann, Jürgen

    2008-07-01

    The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.

  1. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    PubMed

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  2. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ha Young, E-mail: hayoung@skku.edu; Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714; Kim, Sang Doo

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foammore » cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.« less

  3. PET Imaging of Tau Pathology and Relationship to Amyloid, Longitudinal MRI, and Cognitive Change in Down Syndrome: Results from the Down Syndrome Biomarker Initiative (DSBI).

    PubMed

    Rafii, Michael S; Lukic, Ana S; Andrews, Randolph D; Brewer, James; Rissman, Robert A; Strother, Stephen C; Wernick, Miles N; Pennington, Craig; Mobley, William C; Ness, Seth; Matthews, Dawn C

    2017-01-01

    Adults with Down syndrome (DS) represent an enriched population for the development of Alzheimer's disease (AD), which could aid the study of therapeutic interventions, and in turn, could benefit from discoveries made in other AD populations. 1) Understand the relationship between tau pathology and age, amyloid deposition, neurodegeneration (MRI and FDG PET), and cognitive and functional performance; 2) detect and differentiate AD-specific changes from DS-specific brain changes in longitudinal MRI. Twelve non-demented adults, ages 30 to 60, with DS were enrolled in the Down Syndrome Biomarker Initiative (DSBI), a 3-year, observational, cohort study to demonstrate the feasibility of conducting AD intervention/prevention trials in adults with DS. We collected imaging data with 18F-AV-1451 tau PET, AV-45 amyloid PET, FDG PET, and volumetric MRI, as well as cognitive and functional measures and additional laboratory measures. All amyloid negative subjects imaged were tau-negative. Among the amyloid positive subjects, three had tau in regions associated with Braak stage VI, two at stage V, and one at stage II. Amyloid and tau burden correlated with age. The MRI analysis produced two distinct volumetric patterns. The first differentiated DS from normal (NL) and AD, did not correlate with age or amyloid, and was longitudinally stable. The second pattern reflected AD-like atrophy and differentiated NL from AD. Tau PET and MRI atrophy correlated with several cognitive and functional measures. Tau accumulation is associated with amyloid positivity and age, as well as with progressive neurodegeneration measurable using FDG and MRI. Tau correlates with cognitive decline, as do AD-specific hypometabolism and atrophy.

  4. Amyloids and prions in plants: Facts and perspectives.

    PubMed

    Antonets, K S; Nizhnikov, A A

    2017-09-03

    Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.

  5. β-hairpin-mediated nucleation of polyglutamine amyloid formation

    PubMed Central

    Kar, Karunakar; Hoop, Cody L.; Drombosky, Kenneth W.; Baker, Matthew A.; Kodali, Ravindra; Arduini, Irene; van der Wel, Patrick C. A.; Horne, W. Seth; Wetzel, Ronald

    2013-01-01

    The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington’s disease (HD). Here we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (trpzip, disulfide, D-Pro-Gly, Coulombic attraction, L-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well-correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n* = 4 for a simple, unbroken Q23 sequence to approximate unitary n* values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of SSNMR 13C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn* values remain quite low (~ 10−10) and there is no evidence for significant embellishment of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases. PMID:23353826

  6. Insight into Amyloid Structure Using Chemical Probes

    PubMed Central

    Reinke, Ashley A.; Gestwicki, Jason E.

    2011-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and the number of Aβ peptides they contain. Recent theories suggest that these different amyloid conformations may play distinct roles in disease, although their relative contributions are still being discovered. Here, we review how chemical probes, such as congo red, thioflavin T and their derivatives, have been powerful tools for better understanding amyloid structure and function. Moreover, we discuss how design and deployment of conformationally selective probes might be used to test emerging models of AD. PMID:21457473

  7. Acute γ-secretase Inhibition of Nonhuman Primate CNS Shifts Amyloid Precursor Protein (APP) Metabolism from Amyloid-β Production to Alternative APP Fragments without Amyloid-β Rebound

    PubMed Central

    Cook, Jacquelynn J.; Wildsmith, Kristin R.; Gilberto, David B.; Holahan, Marie A.; Kinney, Gene G.; Mathers, Parker D.; Michener, Maria S.; Price, Eric A.; Shearman, Mark S.; Simon, Adam J.; Wang, Jennifer X.; Wu, Guoxin; Yarasheski, Kevin E.; Bateman, Randall J.

    2010-01-01

    The accumulation of amyloid beta (Aβ) in Alzheimer’s disease is caused by an imbalance of production and clearance, which leads to increased soluble Aβ species and extracellular plaque formation in the brain. Multiple Aβ-lowering therapies are currently in development: an important goal is to characterize the molecular mechanisms of action and effects on physiological processing of Aβ, as well as other amyloid precursor protein (APP) metabolites, in models which approximate human Aβ physiology. To this end, we report the translation of the human in vivo stable-isotope-labeling kinetics (SILK) method to a rhesus monkey cisterna magna ported (CMP) nonhuman primate model, and use the model to test the mechanisms of action of a γ-secretase inhibitor (GSI). A major concern of inhibiting the enzymes which produce Aβ (β- and γ-secretase) is that precursors of Aβ may accumulate and cause a rapid increase in Aβ production when enzyme inhibition discontinues. In this study, the GSI MK-0752 was administered to conscious CMP rhesus monkeys in conjunction with in vivo stable isotope labeling, and dose-dependently reduced newly generated CNS Aβ. In contrast to systemic Aβ metabolism, CNS Aβ production was not increased after the GSI was cleared. These results indicate that most of the CNS APP was metabolized to products other than Aβ, including C-terminal truncated forms of Aβ: 1–14, 1–15 and 1–16; this demonstrates an alternative degradation pathway for CNS amyloid precursor protein during γ-secretase inhibition. PMID:20463236

  8. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    PubMed

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Circulating Neprilysin Clears Brain Amyloid

    PubMed Central

    Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M. Paul; Klein, Ronald L.; Hersh, Louis B.

    2010-01-01

    The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer’s disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Aβ. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Aβ by 30%, soluble brain Aβ by ~28%, insoluble brain Aβ by ~55%, and Aβ oligomers by 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Aβ was due to plasma NEP which altered blood-brain Aβ transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. PMID:20558294

  10. Circulating neprilysin clears brain amyloid.

    PubMed

    Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M Paul; Klein, Ronald L; Hersh, Louis B

    2010-10-01

    The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer's disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Critical review of the Appropriate Use Criteria for amyloid imaging: Effect on diagnosis and patient care.

    PubMed

    Apostolova, Liana G; Haider, Janelle M; Goukasian, Naira; Rabinovici, Gil D; Chételat, Gael; Ringman, John M; Kremen, Sarah; Grill, Joshua D; Restrepo, Lucas; Mendez, Mario F; Silverman, Daniel H

    2016-01-01

    The utility of the Appropriate Use Criteria (AUC) for amyloid imaging is not established. Fifty-three cognitively impaired patients with clinical F 18 -florbetapir imaging were classified as early and late onset, as well as AUC-consistent or AUC-inconsistent. Chi-square statistics and t test were used to compare demographic characteristics and clinical outcomes as appropriate. Early-onset patients were more likely to be amyloid positive. Change in diagnosis was more frequent in late-onset cases. Change in therapy was more common in early-onset cases. AUC-consistent and AUC-inconsistent cases had comparable rates of amyloid positivity. We saw no difference in the rate of treatment changes in the AUC-consistent group as opposed to the AUC-inconsistent group. The primary role of amyloid imaging in the early-onset group was to confirm the clinically suspected etiology, and in the late-onset group in detecting amyloid-negative cases. The rate of therapeutic changes was significantly greater in the early-onset cases.

  12. Cross-seeding and cross-competition in mouse apolipoprotein A-II amyloid fibrils and protein A amyloid fibrils.

    PubMed

    Yan, Jingmin; Fu, Xiaoying; Ge, Fengxia; Zhang, Beiru; Yao, Junjie; Zhang, Huanyu; Qian, Jinze; Tomozawa, Hiroshi; Naiki, Hironobu; Sawashita, Jinko; Mori, Masayuki; Higuchi, Keiichi

    2007-07-01

    Murine senile [apolipoprotein A-II amyloid (AApoAII)] and reactive [protein A amyloid (AA)] amyloidosis are reported to be transmissible diseases via a seeding mechanism similar to that observed in the prion-associated disorders, although de novo amyloidogenesis and the progression of AApoAII or AA amyloidosis remain unclear. We examined the effect of co-injection of AApoAII and AA fibrils and multiple inflammatory stimuli in R1.P1-Apoa2(c) mice with the amyloidogenic Apoa2(c) allele. Both AApoAII and AA amyloidosis could be induced in this system, but the two types of amyloid fibrils preferentially promote the formation of the same type of fibrils while inhibiting the formation of the other. Furthermore, we demonstrate that AA or AApoAII amyloidosis could be cross-seeded by predeposited AApoAII or AA fibrils and that the predeposited amyloid fibrils were degraded when the fibril formation was reduced or stopped. In addition, a large proportion of the two amyloid fibrils colocalized during the formation of new fibrils in the spleen and liver. Thus, we propose that AApoAII and AA can both cross-seed and cross-compete with regard to amyloid formation, depending on the stage of amyloidogenesis. These results will aid in the clarification of the mechanisms of pathogenesis and progression of amyloid disorders.

  13. Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach

    PubMed Central

    Toni, Mattia; Massimino, Maria L.; De Mario, Agnese; Angiulli, Elisa; Spisni, Enzo

    2017-01-01

    Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the β sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression “prion-like diseases” refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid β, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and

  14. Mouse senile amyloid deposition is suppressed by adenovirus-mediated overexpression of amyloid-resistant apolipoprotein A-II.

    PubMed

    Chiba, T; Kogishi, K; Wang, J; Xia, C; Matsushita, T; Miyazaki, J; Saito, I; Hosokawa, M; Higuchi, K

    1999-10-01

    Apolipoprotein A-II (apoA-II), the second most abundant apolipoprotein of serum high density lipoprotein, deposits as an amyloid fibril (AApoAII) in old mice. Mouse strains with a high incidence of senile amyloidosis have the type C apoA-II gene (Apoa2(c)), whereas the strains with a low incidence of amyloidosis have the type B apoA-II gene (Apoa2(b)). In this study, to investigate whether the type B apoA-II protein inhibits the extension of amyloid fibrils, we constructed an adenovirus vector bearing the Apoa2(b) cDNA (Adex1CATApoa2(b)), which is expressed under the control of a hepatocyte-specific promoter. The mice were infected with Adex1CATApoa2(b) before induction of amyloidosis by the injection of AApoAII amyloid fibril seeds. Compared with the mice infected with the control virus, amyloid deposition was suppressed significantly in the mice infected with Adex1CATApoa2(b). Fluorometry using thioflavine T also revealed that AApoAII fibril extension was inhibited by the addition of type B apoA-II in vitro. Thus, we propose that Apoa2(b) contributes as an active inhibitor of amyloid fibril extension and overexpression of amyloid-resistant gene variant may be an attractive therapeutic target in amyloidosis.

  15. Natural product-based amyloid inhibitors.

    PubMed

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R; Xu, Bin

    2017-09-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Natural product-based amyloid inhibitors

    PubMed Central

    Velander, Paul; Wu, Ling; Henderson, Frances; Zhang, Shijun; Bevan, David R.; Xu, Bin

    2018-01-01

    Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned. PMID:28390938

  17. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  18. Amyloid beta peptide immunotherapy in Alzheimer disease.

    PubMed

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Effect of Surfaces on Amyloid Fibril Formation

    PubMed Central

    Moores, Bradley; Drolle, Elizabeth; Attwood, Simon J.; Simons, Janet; Leonenko, Zoya

    2011-01-01

    Using atomic force microscopy (AFM) we investigated the interaction of amyloid beta (Aβ) (1–42) peptide with chemically modified surfaces in order to better understand the mechanism of amyloid toxicity, which involves interaction of amyloid with cell membrane surfaces. We compared the structure and density of Aβ fibrils on positively and negatively charged as well as hydrophobic chemically-modified surfaces at physiologically relevant conditions. We report that due to the complex distribution of charge and hydrophobicity amyloid oligomers bind to all types of surfaces investigated (CH3, COOH, and NH2) although the charge and hydrophobicity of surfaces affected the structure and size of amyloid deposits as well as surface coverage. Hydrophobic surfaces promote formation of spherical amorphous clusters, while charged surfaces promote protofibril formation. We used the nonlinear Poisson-Boltzmann equation (PBE) approach to analyze the electrostatic interactions of amyloid monomers and oligomers with modified surfaces to complement our AFM data. PMID:22016789

  20. Polymer–Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; Moore, Edwin G.; Guo, Yanshu

    Amyloid aggregation and deposition are associated with many intractable human diseases. Although the inhibition of amyloid protein aggregation has been well-studied, the disaggregation and dissolution of existing amyloid fibrils is less known. Taking a fibrillar assembly of amyloid β (Aβ) peptide as the model system, in this paper we report multivalent polymer–peptide conjugates (mPPCs) that disassemble preformed Aβ fibrils into dispersible sub-100 nm structures. Atomic force microscopy and dynamic light scattering studies show that the disassembly rate of preformed Aβ fibrils is controlled by the molecular weight of mPPCs. Rate equations on fibril disappearance are deduced from a simple model,more » which indicate that the disassembly reaction is first-order in the concentration of Aβ fibrils and a pseudo-first-order reaction in the concentration of peptide moieties on mPPCs, respectively. We eliminate the possibility that the disassembly occurs by the association between mPPCs and Aβ monomer/oligomers based on circular dichroism and Thioflavin T fluorescence assays. It is mostly likely that the mPPCs disassemble Aβ fibrils through a direct interaction. Finally, the mPPCs may thus offer a general macromolecular design concept that breaks down existing amyloid fibrils in a predictable fashion.« less

  1. Polymer–Peptide Conjugates Disassemble Amyloid β Fibrils in a Molecular-Weight Dependent Manner

    DOE PAGES

    Song, Yang; Moore, Edwin G.; Guo, Yanshu; ...

    2017-03-14

    Amyloid aggregation and deposition are associated with many intractable human diseases. Although the inhibition of amyloid protein aggregation has been well-studied, the disaggregation and dissolution of existing amyloid fibrils is less known. Taking a fibrillar assembly of amyloid β (Aβ) peptide as the model system, in this paper we report multivalent polymer–peptide conjugates (mPPCs) that disassemble preformed Aβ fibrils into dispersible sub-100 nm structures. Atomic force microscopy and dynamic light scattering studies show that the disassembly rate of preformed Aβ fibrils is controlled by the molecular weight of mPPCs. Rate equations on fibril disappearance are deduced from a simple model,more » which indicate that the disassembly reaction is first-order in the concentration of Aβ fibrils and a pseudo-first-order reaction in the concentration of peptide moieties on mPPCs, respectively. We eliminate the possibility that the disassembly occurs by the association between mPPCs and Aβ monomer/oligomers based on circular dichroism and Thioflavin T fluorescence assays. It is mostly likely that the mPPCs disassemble Aβ fibrils through a direct interaction. Finally, the mPPCs may thus offer a general macromolecular design concept that breaks down existing amyloid fibrils in a predictable fashion.« less

  2. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.

    2008-11-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  3. Electron tomography of early melanosomes: Implications for melanogenesis and the generation of fibrillar amyloid sheets

    PubMed Central

    Hurbain, Ilse; Geerts, Willie J. C.; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J.; Marks, Michael S.; Raposo, Graç

    2008-01-01

    Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models. PMID:19033461

  4. Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets.

    PubMed

    Hurbain, Ilse; Geerts, Willie J C; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J; Marks, Michael S; Raposo, Graç

    2008-12-16

    Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models.

  5. Disclosure of positron emission tomography amyloid imaging results: A preliminary study of safety and tolerability.

    PubMed

    Lim, Yen Ying; Maruff, Paul; Getter, Christine; Snyder, Peter J

    2016-04-01

    Three (18)F-labeled radiopharmaceuticals have been Food and Drug Administration-approved for the identification of cortical amyloidosis in clinical settings. Although there has been strong debate among professionals as to the ethical and social consequences of disclosing such information, increasing numbers of participants are being recruited into secondary prevention trials for which they are likely to, and/or desire to, receive their positron emission tomography (PET) imaging results. Healthy older adults (n = 63, mean age = 62 years) enrolled in a preclinical Alzheimer's disease (AD) biomarkers trial, and 11 requested disclosure of PET amyloid imaging results to their treating neurologist, per institutional review board-approved study protocol. These individuals completed a follow-up psychoeducational program and structured interviews to assess impact of disclosure on several key psychological factors. Four of 11 subjects demonstrated increased amyloid aggregation and reported that they were not surprised, particularly given their family histories and subjective memory concerns. All indicated that they had shared this information with pertinent significant others; they were satisfied with their level of social support, and the imaging results had motivated them to change their lifestyle by exercising more, changing their diet, and planning ahead. Amyloid-positive participants showed little change in levels of depressive, anxiety, and stress symptoms, subjective sense of memory impairment, or on measures of intrusion, avoidance, and hyperarousal, and reported risk of self-harm. Disclosure of PET amyloid status did not significantly impact mood, subjective sense of memory impairment, or perceived risk of developing AD; nor was this associated with significant emotional impact, irrespective of actual amyloid burden status. Those subjects with increased amyloid burden were more likely than those without significant amyloidosis to make positive changes to their

  6. Raman fingerprints of amyloid structures.

    PubMed

    Flynn, Jessica D; Lee, Jennifer C

    2018-06-21

    Structural differences in pathological and functional amyloid fibrils have been investigated by Raman microspectroscopy. Second-derivative analyses of amide-I and amide-III bands distinguish parallel in-register β-sheets from a β-solenoid. Further, spatially resolved Raman spectra reveal molecular heterogeneity in amyloid structures.

  7. Towards Alzheimer's beta-amyloid vaccination.

    PubMed

    Frenkel, D; Solomon, B

    2001-01-01

    Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. Copyright 2001 The International Association for Biologicals.

  8. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins.

    PubMed

    Bensing, Barbara A; Khedri, Zahra; Deng, Lingquan; Yu, Hai; Prakobphol, Akraporn; Fisher, Susan J; Chen, Xi; Iverson, Tina M; Varki, Ajit; Sullam, Paul M

    2016-11-01

    Serine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity. Here we examine the binding properties of four additional BRs from Streptococcus sanguinis or Streptococcus mitis and characterize the molecular determinants of ligand selectivity and affinity. Each BR has two domains that are essential for sialoglycan binding by GspB. One domain is structurally similar to the glycan-binding module of mammalian Siglecs (sialic acid-binding immunoglobulin-like lectins), including an arginine residue that is critical for glycan recognition, and that resides within a novel, conserved YTRY motif. Despite low sequence similarity to GspB, one of the BRs selectively binds sialyl-T antigen. Although the other three BRs are highly similar to Hsa, each displayed a unique ligand repertoire, including differential recognition of sialyl Lewis antigens and sulfated glycans. These differences in glycan selectivity were closely associated with differential binding to salivary and platelet glycoproteins. Specificity of sialoglycan adherence is likely an evolving trait that may influence the propensity of streptococci expressing Siglec-like adhesins to cause infective endocarditis. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Association of Higher Cortical Amyloid Burden With Loneliness in Cognitively Normal Older Adults.

    PubMed

    Donovan, Nancy J; Okereke, Olivia I; Vannini, Patrizia; Amariglio, Rebecca E; Rentz, Dorene M; Marshall, Gad A; Johnson, Keith A; Sperling, Reisa A

    2016-12-01

    status, depression, anxiety, and social network, we found that higher amyloid burden was significantly associated with greater loneliness: compared with individuals in the amyloid-negative group, those in the amyloid-positive group were 7.5-fold (95% CI, 1.7-fold to 34.0-fold) more likely to be classified as lonely than nonlonely (β = 3.3, partial r = 0.4, P = .002). Furthermore, the association of high amyloid burden and loneliness was stronger in APOEε4 carriers than in noncarriers. We report a novel association of loneliness with cortical amyloid burden in cognitively normal older adults, suggesting that loneliness is a neuropsychiatric symptom relevant to preclinical AD. This work will inform new research into the neural underpinnings and disease mechanisms involved in loneliness and may enhance early detection and intervention research in AD.

  10. Adaptive template generation for amyloid PET using a deep learning approach.

    PubMed

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  11. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix

    PubMed Central

    Borlee, Bradley R; Goldman, Aaron D; Murakami, Keiji; Samudrala, Ram; Wozniak, Daniel J; Parsek, Matthew R

    2010-01-01

    Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a β-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural

  12. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance.

    PubMed

    Charidimou, Andreas; Farid, Karim; Tsai, Hsin-Hsi; Tsai, Li-Kai; Yen, Rouh-Fang; Baron, Jean-Claude

    2018-04-01

    We performed a meta-analysis to synthesise current evidence on amyloid-positron emission tomography (PET) burden and presumed preferential occipital distribution in sporadic cerebral amyloid angiopathy (CAA). In a PubMed systematic search, we identified case-control studies with extractable data on global and occipital-to-global amyloid-PET uptake in symptomatic patients with CAA (per Boston criteria) versus control groups (healthy participants or patients with non-CAA deep intracerebral haemorrhage) and patients with Alzheimer's disease. To circumvent PET studies' methodological variation, we generated and used 'fold change', that is, ratio of mean amyloid uptake (global and occipital-to-global) of CAA relative to comparison groups. Amyloid-PET uptake biomarker performance was then quantified by random-effects meta-analysis on the ratios of the means. A ratio >1 indicates that amyloid-PET uptake (global or occipital/global) is higher in CAA than comparison groups, and a ratio <1 indicates the reverse. Seven studies, including 106 patients with CAA (>90% with probable CAA) and 138 controls (96 healthy elderly, 42 deep intracerebral haemorrhage controls) and 72 patients with Alzheimer's disease, were included. Global amyloid-PET ratio between patients with CAA and controls was above 1, with an average effect size of 1.18 (95% CI 1.08 to 1.28; p<0.0001). Occipital-to-global amyloid-PET uptake ratio did not differ between patients with CAA versus patients with deep intracerebral haemorrhage or healthy controls. By contrast, occipital-to-global amyloid-PET uptake ratio was above 1 in patients with CAA versus those with Alzheimer's disease, with an average ratio of 1.10 (95% CI 1.03 to 1.19; p=0.009) and high statistical heterogeneity. Our analysis provides exploratory actionable data on the overall effect sizes and strength of amyloid-PET burden and distribution in patients with CAA, useful for future larger studies. © Article author(s) (or their employer(s) unless

  13. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.

    PubMed

    Honda, Ryo; Kuwata, Kazuo

    2018-02-01

    Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.

  14. Amyloid load and neural elements in Alzheimer's disease and nondemented individuals with high amyloid plaque density.

    PubMed

    Mochizuki, A; Peterson, J W; Mufson, E J; Trapp, B D

    1996-11-01

    The amyloid burden and relationship between amyloid deposits and neural elements were investigated in sections of prefrontal neocortex from eight Alzheimer's disease (AD) patients and four age-matched nondemented controls with high amyloid plaque density (HPND). Computer-based image analysis revealed that the total area occupied by betaA4 immunoreactivity was significantly greater (P < 0.031) in AD (27.1%) than in HPND (14.5%) sections. The total betaA4-positive area occupied by nondiffuse plaques was significantly greater (P < 0.05) in AD (13.6%) than in HPND (5.2%) sections. The percentage of diffuse (DPs) and nondiffuse plaques (NDPs) which contained neurons, astrocytes, microglia, dystrophic neurites, and amyloid precursor protein (APP) was also determined. The frequency of association between betaA4 and these neural elements was similar between AD and HPND cases in both diffuse and nondiffuse plaques. Forty percent of DPs in AD and HPND sections contained neuronal perikarya. Microglia, dystrophic neurites, and APP were detected in most nondiffuse plaques in both AD and HPND sections. While astrocyte cell bodies were not present in either diffuse or nondiffuse plaques, their processes were detected in most. These findings indicate that amyloid deposition and nondiffuse plaques are greater in AD than in HPND sections. The association between microglia and nondiffuse plaques supports the hypothesis that these resident immune cells participate in aggregation and redistribution of amyloid deposits and possibly formation of dystrophic neurites.

  15. Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation.

    PubMed

    Valiente-Gabioud, Ariel A; Riedel, Dietmar; Outeiro, Tiago F; Menacho-Márquez, Mauricio A; Griesinger, Christian; Fernández, Claudio O

    2018-03-13

    The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ 40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ 40 -PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ 40 -PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ 40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of

  16. Cyanobacteria as efficient producers of mycosporine-like amino acids.

    PubMed

    Jain, Shikha; Prajapat, Ganshyam; Abrar, Mustari; Ledwani, Lalita; Singh, Anoop; Agrawal, Akhil

    2017-09-01

    Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-folding and aggregation of amyloid nanofibrils

    NASA Astrophysics Data System (ADS)

    Paparcone, Raffaella; Cranford, Steven W.; Buehler, Markus J.

    2011-04-01

    Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin films. Despite recent progress in understanding amyloid structure and behavior, the latent self-assembly mechanism and the underlying adhesion forces that drive the aggregation process remain poorly understood. On the basis of previous full atomistic simulations, here we report a simple coarse-grain model to analyze the competition between adhesive forces and elastic deformation of amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical issue in linking the biochemical (Angstrom) to micrometre scales relevant for larger-scale states of functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on the structure and stability of self-folded nanorackets and nanorings and demonstrate that these aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively weak, given that the constituting amyloid fibril length exceeds a critical fibril length-scale of several hundred nanometres. We further present a simple approach to directly determine the interfibril adhesion strength from geometric measures. In addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering of the adhesive forces responsible of the self-assembly process of

  18. Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid.

    PubMed

    Gosal, Walraj S; Morten, Isobel J; Hewitt, Eric W; Smith, D Alastair; Thomson, Neil H; Radford, Sheena E

    2005-08-26

    Despite its importance in biological phenomena, a comprehensive understanding of the mechanism of amyloid formation remains elusive. Here, we use atomic force microscopy to map the formation of beta2-microglobulin amyloid fibrils with distinct morphologies and persistence lengths, when protein concentration, pH and ionic strength are varied. Using the resulting state-diagrams, we demonstrate the existence of two distinct competitive pathways of assembly, which define an energy landscape that rationalises the sensitivity of fibril morphology on the solution conditions. Importantly, we show that semi-flexible (worm-like) fibrils, which form rapidly during assembly, are kinetically trapped species, formed via a non-nucleated pathway that is explicitly distinct from that leading to the formation of the relatively rigid long-straight fibrils classically associated with amyloid. These semi-flexible fibrils also share an antibody epitope common to other protein oligomers that are known to be toxic species linked to human disease. The results demonstrate the heterogeneity of amyloid assembly, and have important implications for our understanding of the importance of oligomeric states in amyloid disease, the origins of prion strains, and the development of therapeutic strategies.

  19. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease

    PubMed Central

    Koronyo, Yosef; Biggs, David; Barron, Ernesto; Boyer, David S.; Pearlman, Joel A.; Au, William J.; Kile, Shawn J.; Blanco, Austin; Fuchs, Dieu-Trang; Frautschy, Sally; Cole, Gregory M.; Miller, Carol A.; Hinton, David R.; Verdooner, Steven R.; Black, Keith L.

    2017-01-01

    BACKGROUND. Noninvasive detection of Alzheimer’s disease (AD) with high specificity and sensitivity can greatly facilitate identification of at-risk populations for earlier, more effective intervention. AD patients exhibit a myriad of retinal pathologies, including hallmark amyloid β-protein (Aβ) deposits. METHODS. Burden, distribution, cellular layer, and structure of retinal Aβ plaques were analyzed in flat mounts and cross sections of definite AD patients and controls (n = 37). In a proof-of-concept retinal imaging trial (n = 16), amyloid probe curcumin formulation was determined and protocol was established for retinal amyloid imaging in live patients. RESULTS. Histological examination uncovered classical and neuritic-like Aβ deposits with increased retinal Aβ42 plaques (4.7-fold; P = 0.0063) and neuronal loss (P = 0.0023) in AD patients versus matched controls. Retinal Aβ plaque mirrored brain pathology, especially in the primary visual cortex (P = 0.0097 to P = 0.0018; Pearson’s r = 0.84–0.91). Retinal deposits often associated with blood vessels and occurred in hot spot peripheral regions of the superior quadrant and innermost retinal layers. Transmission electron microscopy revealed retinal Aβ assembled into protofibrils and fibrils. Moreover, the ability to image retinal amyloid deposits with solid-lipid curcumin and a modified scanning laser ophthalmoscope was demonstrated in live patients. A fully automated calculation of the retinal amyloid index (RAI), a quantitative measure of increased curcumin fluorescence, was constructed. Analysis of RAI scores showed a 2.1-fold increase in AD patients versus controls (P = 0.0031). CONCLUSION. The geometric distribution and increased burden of retinal amyloid pathology in AD, together with the feasibility to noninvasively detect discrete retinal amyloid deposits in living patients, may lead to a practical approach for large-scale AD diagnosis and monitoring. FUNDING. National Institute on Aging award

  20. Immunotherapy alleviates amyloid-associated synaptic pathology in an Alzheimer’s disease mouse model

    PubMed Central

    Dorostkar, Mario M.; Burgold, Steffen; Filser, Severin; Barghorn, Stefan; Schmidt, Boris; Anumala, Upendra Rao; Hillen, Heinz; Klein, Corinna

    2014-01-01

    Cognitive decline in Alzheimer’s disease is attributed to loss of functional synapses, most likely caused by synaptotoxic, oligomeric forms of amyloid-β. Many treatment options aim at reducing amyloid-β levels in the brain, either by decreasing its production or by increasing its clearance. We quantified the effects of immunotherapy directed against oligomeric amyloid-β in Tg2576 mice, a mouse model of familial Alzheimer’s disease. Treatment of 12-month-old mice with oligomer-specific (A-887755) or conformation-unspecific (6G1) antibodies for 8 weeks did not affect fibrillar plaque density or growth. We also quantified densities of DLG4 (previously known as PSD95) expressing post-synapses and synapsin expressing presynapses immunohistochemically. We found that both pre- and post-synapses were strongly reduced in the vicinity of plaques, whereas distant from plaques, in the cortex and hippocampal CA1 field, only post-synapses were reduced. Immunotherapy alleviated this synapse loss. Synapse loss was completely abolished distant from plaques, whereas it was only attenuated in the vicinity of plaques. These results suggest that fibrillar plaques may act as reservoirs for synaptotoxic, oligomeric amyloid-β and that sequestering oligomers suffices to counteract synaptic pathology. Therefore, cognitive function may be improved by immunotherapy even when the load of fibrillar amyloid remains unchanged. PMID:25281869

  1. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  2. The Haemophilus ducreyi trimeric autotransporter adhesin DsrA protects against an experimental infection in the swine model of chancroid.

    PubMed

    Fusco, William G; Choudhary, Neelima R; Routh, Patty A; Ventevogel, Melissa S; Smith, Valerie A; Koch, Gary G; Almond, Glen W; Orndorff, Paul E; Sempowski, Gregory D; Leduc, Isabelle

    2014-06-24

    Adherence of pathogens to cellular targets is required to initiate most infections. Defining strategies that interfere with adhesion is therefore important for the development of preventative measures against infectious diseases. As an adhesin to host extracellular matrix proteins and human keratinocytes, the trimeric autotransporter adhesin DsrA, a proven virulence factor of the Gram-negative bacterium Haemophilus ducreyi, is a potential target for vaccine development. A recombinant form of the N-terminal passenger domain of DsrA from H. ducreyi class I strain 35000HP, termed rNT-DsrAI, was tested as a vaccine immunogen in the experimental swine model of H. ducreyi infection. Viable homologous H. ducreyi was not recovered from any animal receiving four doses of rNT-DsrAI administered with Freund's adjuvant at two-week intervals. Control pigs receiving adjuvant only were all infected. All animals receiving the rNT-DsrAI vaccine developed antibody endpoint titers between 3.5 and 5 logs. All rNT-DsrAI antisera bound the surface of the two H. ducreyi strains used to challenge immunized pigs. Purified anti-rNT-DsrAI IgG partially blocked binding of fibrinogen at the surface of viable H. ducreyi. Overall, immunization with the passenger domain of the trimeric autotransporter adhesin DsrA accelerated clearance of H. ducreyi in experimental lesions, possibly by interfering with fibrinogen binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid.

    PubMed

    Todd, Krysti; Ghiso, Jorge; Rostagno, Agueda

    2016-01-01

    Familial Danish Dementia (FDD), an early-onset non-amyloid-β (Aβ) cerebral amyloidosis, is neuropathologically characterized by widespread cerebral amyloid angiopathy, parenchymal amyloid and preamyloid deposits, as well as neurofibrillary degeneration indistinguishable to that seen in Alzheimer's disease (AD). The main amyloid subunit composing FDD lesions, a 34-amino acid de-novo generated peptide ADan, is the direct result of a genetic defect at the 3'-end of the BRI2 gene and the physiologic action of furin-like proteolytic processing at the C-terminal region of the ADan precursor protein. We aimed to study the impact of the FDD mutation, the additional formation of the pyroglutamate (pE) posttranslational modification as well as the relevance of C-terminal truncations -all major components of the heterogeneous FDD deposits- on the structural and neurotoxic properties of the molecule. Our data indicates that whereas the mutation generated a β-sheet-rich hydrophobic ADan subunit of high oligomerization/fibrillization propensity and the pE modification further enhanced these properties, C-terminal truncations had the opposite effect mostly abolishing these features. The potentiation of pro-amyloidogenic properties correlated with the initiation of neuronal cell death mechanisms involving oxidative stress, perturbation of mitochondrial membrane potential, release of mitochondrial cytochrome c, and downstream activation of caspase-mediated apoptotic pathways. The amyloid-induced toxicity was inhibited by targeting specific components of these detrimental cellular pathways, using reactive oxygen scavengers and monoclonal antibodies recognizing the pathological amyloid subunit. Taken together, the data indicate that the FDD mutation and the pE posttranslational modification are both primary elements driving intact ADan into an amyloidogenic/neurotoxic pathway while truncations at the C-terminus eliminate the pro-amyloidogenic characteristics of the molecule

  4. Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid

    PubMed Central

    Todd, Krysti; Ghiso, Jorge; Rostagno, Agueda

    2015-01-01

    Familial Danish Dementia (FDD), an early-onset non-amyloid-β (Aβ) cerebral amyloidosis, is neuropathologically characterized by widespread cerebral amyloid angiopathy, parenchymal amyloid and preamyloid deposits, as well as neurofibrillary degeneration indistinguishable to that seen in Alzheimer’s disease (AD). The main amyloid subunit composing FDD lesions, a 34-amino acid de-novo generated peptide ADan, is the direct result of a genetic defect at the 3’-end of the BRI2 gene and the physiologic action of furin-like proteolytic processing at the C-terminal region of the ADan precursor protein. We aimed to study the impact of the FDD mutation, the additional formation of the pyroglutamate (pE) posttranslational modification as well as the relevance of C-terminal truncations –all major components of the heterogeneous FDD deposits–on the structural and neurotoxic properties of the molecule. Our data indicates that whereas the mutation generated a β-sheet-rich hydrophobic ADan subunit of high oligomerization/fibrillization propensity and the pE modification further enhanced these properties, C-terminal truncations had the opposite effect mostly abolishing these features. The potentiation of pro-amyloidogenic properties correlated with the initiation of neuronal cell death mechanisms involving oxidative stress, perturbation of mitochondrial membrane potential, release of mitochondrial cytochrome c, and downstream activation of caspase-mediated apoptotic pathways. The amyloid-induced toxicity was inhibited by targeting specific components of these detrimental cellular pathways, using reactive oxygen scavengers and monoclonal antibodies recognizing the pathological amyloid subunit. Taken together, the data indicate that the FDD mutation and the pE posttranslational modification are both primary elements driving intact ADan into an amyloidogenic/neurotoxic pathway while truncations at the C-terminus eliminate the pro-amyloidogenic characteristics of the molecule

  5. Suppression and dissolution of amyloid aggregates using ionic liquids.

    PubMed

    Takekiyo, Takahiro; Yoshimura, Yukihiro

    2018-04-25

    Amyloid aggregates are composed of protein fibrils with a dominant β-sheet structure, are water-insoluble, and are involved in the pathogenesis of many neurodegenerative diseases. Development of pharmaceuticals to treat these diseases and the design of recovery agents for amyloid-type inclusion bodies require the successful suppression and dissolution of such aggregates. Since ionic liquids (ILs) are composed of both a cation and anion and are known to suppress protein aggregation and to dissolve water-insoluble compounds such as cellulose; they may also have potential use as suppression/dissolution agents for amyloid aggregates. In the following review, we present the suppression and dissolution effects of ILs on amyloid aggregates so far reported. The protein-IL affinity (the ability of ILs to interact with amyloid proteins) was found to be the biochemical basis for ILs' suppression of amyloid formation, and the hydrogen-bonding basicity of ILs might be the basis for their ability to dissolve amyloid aggregates. These findings present the potential of ILs to serve as novel pharmaceuticals to treat neurodegenerative diseases and as recovery agents for various amyloid aggregates.

  6. Multimodal PET Imaging of Amyloid and Tau Pathology in Alzheimer Disease and Non-Alzheimer Disease Dementias.

    PubMed

    Xia, Chenjie; Dickerson, Bradford C

    2017-07-01

    Biomarkers of the molecular pathology underpinning dementia syndromes are increasingly recognized as crucial for diagnosis and development of disease-modifying treatments. Amyloid PET imaging is an integral part of the diagnostic assessment of Alzheimer disease. Its use has also deepened understanding of the role of amyloid pathology in Lewy body disorders and aging. Tau PET imaging is an imaging biomarker that will likely play an important role in the diagnosis, monitoring, and treatment in dementias. Using tau PET imaging to examine how tau pathology relates to amyloid and other markers of neurodegeneration will serve to better understand the pathophysiologic cascade that leads to dementia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology.

    PubMed

    Marek, Peter; Abedini, Andisheh; Song, BenBen; Kanungo, Mandakini; Johnson, Megan E; Gupta, Ruchi; Zaman, Warda; Wong, Stanislaus S; Raleigh, Daniel P

    2007-03-20

    Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.

  8. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  9. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    PubMed

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  10. Cable Pili and the Associated 22 Kda Adhesin Contribute to Burkholderia Cenocepacia Persistence In Vivo

    PubMed Central

    Goldberg, Joanna B.; Ganesan, Shyamala; Comstock, Adam T.; Zhao, Ying; Sajjan, Uma S.

    2011-01-01

    Background Infection by Burkholderia cenocepacia in cystic fibrosis (CF) patients is associated with poor clinical prognosis. Previously, we demonstrated that one of the highly transmissible strains, BC7, expresses cable pili and the associated 22 kDa adhesin, both of which contribute to BC7 binding to airway epithelial cells. However, the contribution of these factors to induce inflammation and bacterial persistence in vivo is not known. Methodology/Principal Findings Wild-type BC7 stimulated higher IL-8 responses than the BC7 cbl and BC7 adhA mutants in both CF and normal bronchial epithelial cells. To determine the role of cable pili and the associated adhesin, we characterized a mouse model of B. cenocepacia, where BC7 are suspended in Pseudomonas aeruginosa alginate. C57BL/6 mice were infected intratracheally with wild-type BC7 suspended in either alginate or PBS and were monitored for lung bacterial load and inflammation. Mice infected with BC7 suspended in PBS completely cleared the bacteria by 3 days and resolved the inflammation. In contrast, mice infected with BC7 suspended in alginate showed persistence of bacteria and moderate lung inflammation up to 5 days post-infection. Using this model, mice infected with the BC7 cbl and BC7 adhA mutants showed lower bacterial loads and mild inflammation compared to mice infected with wild-type BC7. Complementation of the BC7 cblS mutation in trans restored the capacity of this strain to persist in vivo. Immunolocalization of bacteria revealed wild-type BC7 in both airway lumen and alveoli, while the BC7 cbl and BC7 adhA mutants were found mainly in airway lumen and peribronchiolar region. Conclusions and Significance B. cenocepacia suspended in alginate can be used to determine the capacity of bacteria to persist and cause lung inflammation in normal mice. Both cable pili and adhesin contribute to BC7-stimulated IL-8 response in vitro, and BC7 persistence and resultant inflammation in vivo. PMID:21811611

  11. Appropriate Use Criteria for Amyloid PET

    PubMed Central

    Johnson, Keith A.; Minoshima, Satoshi; Bohnen, Nicolaas I.; Donohoe, Kevin J.; Foster, Norman L.; Herscovitch, Peter; Karlawish, Jason H.; Rowe, Christopher C.; Carrillo, Maria C.; Hartley, Dean M.; Hedrick, Saima; Mitchell, Kristi; Pappas, Virginia; Thies, William H.

    2013-01-01

    Positron Emission Tomography (PET) of brain amyloid-beta is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. In order to provide guidance to dementia care practitioners, patients and caregivers, the Alzheimer Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be appropriately used. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. While empirical evidence of impact on clinical outcomes is not yet available, a set of specific Appropriate Use Criteria (AUC) were agreed upon that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes. PMID:23360977

  12. Obstructive Sleep Apnea Severity Affects Amyloid Burden in Cognitively Normal Elderly. A Longitudinal Study.

    PubMed

    Sharma, Ram A; Varga, Andrew W; Bubu, Omonigho M; Pirraglia, Elizabeth; Kam, Korey; Parekh, Ankit; Wohlleber, Margaret; Miller, Margo D; Andrade, Andreia; Lewis, Clifton; Tweardy, Samuel; Buj, Maja; Yau, Po L; Sadda, Reem; Mosconi, Lisa; Li, Yi; Butler, Tracy; Glodzik, Lidia; Fieremans, Els; Babb, James S; Blennow, Kaj; Zetterberg, Henrik; Lu, Shou E; Badia, Sandra G; Romero, Sergio; Rosenzweig, Ivana; Gosselin, Nadia; Jean-Louis, Girardin; Rapoport, David M; de Leon, Mony J; Ayappa, Indu; Osorio, Ricardo S

    2018-04-01

    Recent evidence suggests that obstructive sleep apnea (OSA) may be a risk factor for developing mild cognitive impairment and Alzheimer's disease. However, how sleep apnea affects longitudinal risk for Alzheimer's disease is less well understood. To test the hypothesis that there is an association between severity of OSA and longitudinal increase in amyloid burden in cognitively normal elderly. Data were derived from a 2-year prospective longitudinal study that sampled community-dwelling healthy cognitively normal elderly. Subjects were healthy volunteers between the ages of 55 and 90, were nondepressed, and had a consensus clinical diagnosis of cognitively normal. Cerebrospinal fluid amyloid β was measured using ELISA. Subjects received Pittsburgh compound B positron emission tomography scans following standardized procedures. Monitoring of OSA was completed using a home sleep recording device. We found that severity of OSA indices (AHIall [F 1,88  = 4.26; P < 0.05] and AHI4% [F 1,87  = 4.36; P < 0.05]) were associated with annual rate of change of cerebrospinal fluid amyloid β 42 using linear regression after adjusting for age, sex, body mass index, and apolipoprotein E4 status. AHIall and AHI4% were not associated with increases in AD PiB -mask (Alzheimer's disease vulnerable regions of interest Pittsburg compound B positron emission tomography mask) most likely because of the small sample size, although there was a trend for AHIall (F 1,28  = 2.96, P = 0.09; and F 1,28  = 2.32, not significant, respectively). In a sample of cognitively normal elderly, OSA was associated with markers of increased amyloid burden over the 2-year follow-up. Sleep fragmentation and/or intermittent hypoxia from OSA are likely candidate mechanisms. If confirmed, clinical interventions for OSA may be useful in preventing amyloid build-up in cognitively normal elderly.

  13. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks.

    PubMed

    Xiao, Senbo; Xiao, Shijun; Gräter, Frauke

    2013-06-14

    Stacking of β-sheets results in a protein super secondary structure with remarkable mechanical properties. β-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine β-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; β-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing β-strands apart, while β-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid β-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between β-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine β-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker β-sheet arrangement as they are missing a softening amorphous matrix.

  14. A method for probing the mutational landscape of amyloid structure.

    PubMed

    O'Donnell, Charles W; Waldispühl, Jérôme; Lis, Mieszko; Halfmann, Randal; Devadas, Srinivas; Lindquist, Susan; Berger, Bonnie

    2011-07-01

    Proteins of all kinds can self-assemble into highly ordered β-sheet aggregates known as amyloid fibrils, important both biologically and clinically. However, the specific molecular structure of a fibril can vary dramatically depending on sequence and environmental conditions, and mutations can drastically alter amyloid function and pathogenicity. Experimental structure determination has proven extremely difficult with only a handful of NMR-based models proposed, suggesting a need for computational methods. We present AmyloidMutants, a statistical mechanics approach for de novo prediction and analysis of wild-type and mutant amyloid structures. Based on the premise of protein mutational landscapes, AmyloidMutants energetically quantifies the effects of sequence mutation on fibril conformation and stability. Tested on non-mutant, full-length amyloid structures with known chemical shift data, AmyloidMutants offers roughly 2-fold improvement in prediction accuracy over existing tools. Moreover, AmyloidMutants is the only method to predict complete super-secondary structures, enabling accurate discrimination of topologically dissimilar amyloid conformations that correspond to the same sequence locations. Applied to mutant prediction, AmyloidMutants identifies a global conformational switch between Aβ and its highly-toxic 'Iowa' mutant in agreement with a recent experimental model based on partial chemical shift data. Predictions on mutant, yeast-toxic strains of HET-s suggest similar alternate folds. When applied to HET-s and a HET-s mutant with core asparagines replaced by glutamines (both highly amyloidogenic chemically similar residues abundant in many amyloids), AmyloidMutants surprisingly predicts a greatly reduced capacity of the glutamine mutant to form amyloid. We confirm this finding by conducting mutagenesis experiments. Our tool is publically available on the web at http://amyloid.csail.mit.edu/. lindquist_admin@wi.mit.edu; bab@csail.mit.edu.

  15. Exploring the early steps of aggregation of amyloid-forming peptide KFFE

    NASA Astrophysics Data System (ADS)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-11-01

    It has been shown recently that even a tetrapeptide can form amyloid fibrils sharing all the characteristics of amyloid fibrils built from large proteins. Recent experimental studies also suggest that the toxicity observed in several neurodegenerative diseases, such as Alzheimer's disease and Creutzfeldt-Jakob disease, is not only related to the mature fibrils themselves, but also to the soluble oligomers formed early in the process of fibrillogenesis. This raises the interest in studying the early steps of the aggregation process. Although fibril formation follows the nucleation-condensation process, characterized by the presence of lag phase, the exact pathways remain to be determined. In this study, we used the activation-relaxation technique and a generic energy model to explore the process of self-assembly and the structures of the resulting aggregates of eight KFFE peptides. Our simulations show, starting from different states with a preformed antiparallel dimer, that eight chains can self-assemble to adopt, with various orientations, four possible distant oligomeric well-aligned structures of similar energy. Two of these structures show a double-layer β-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction; another two are mixtures of dimers and trimers. Our results also suggest that octamers are likely to be below the critical size for nucleation of amyloid fibrils for small peptides.

  16. All-atom Simulation of Amyloid Aggregates

    NASA Astrophysics Data System (ADS)

    Berhanu, Workalemahu M.; Alred, Erik J.; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.

    Molecular simulations are now commonly used to complement experiments in the investigation of amyloid formation and their role in human diseases. While various simulations based on enhanced sampling techniques are used in amyloid formation simulations, this article will focus on those using standard atomistic simulations to evaluate the stability of fibril models. Such studies explore the limitations that arise from the choice of force field or polymorphism; and explore the stability of in vivo and in vitro forms of Aβ fibril aggregates, and the role of heterologous seeding as a link between different amyloid diseases.

  17. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.

    PubMed

    Sorrentino, Vincenzo; Romani, Mario; Mouchiroud, Laurent; Beck, John S; Zhang, Hongbo; D'Amico, Davide; Moullan, Norman; Potenza, Francesca; Schmid, Adrien W; Rietsch, Solène; Counts, Scott E; Auwerx, Johan

    2017-12-14

    Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer's disease.

  18. Distinct position-specific sequence features of hexa-peptides that form amyloid-fibrils: application to discriminate between amyloid fibril and amorphous β-aggregate forming peptide sequences

    PubMed Central

    2013-01-01

    Background Comparison of short peptides which form amyloid-fibrils with their homologues that may form amorphous β-aggregates but not fibrils, can aid development of novel amyloid-containing nanomaterials with well defined morphologies and characteristics. The knowledge gained from the comparative analysis could also be applied towards identifying potential aggregation prone regions in proteins, which are important for biotechnology applications or have been implicated in neurodegenerative diseases. In this work we have systematically analyzed a set of 139 amyloid-fibril hexa-peptides along with a highly homologous set of 168 hexa-peptides that do not form amyloid fibrils for their position-wise as well as overall amino acid compositions and averages of 49 selected amino acid properties. Results Amyloid-fibril forming peptides show distinct preferences and avoidances for amino acid residues to occur at each of the six positions. As expected, the amyloid fibril peptides are also more hydrophobic than non-amyloid peptides. We have used the results of this analysis to develop statistical potential energy values for the 20 amino acid residues to occur at each of the six different positions in the hexa-peptides. The distribution of the potential energy values in 139 amyloid and 168 non-amyloid fibrils are distinct and the amyloid-fibril peptides tend to be more stable (lower total potential energy values) than non-amyloid peptides. The average frequency of occurrence of these peptides with lower than specific cutoff energies at different positions is 72% and 50%, respectively. The potential energy values were used to devise a statistical discriminator to distinguish between amyloid-fibril and non-amyloid peptides. Our method could identify the amyloid-fibril forming hexa-peptides to an accuracy of 89%. On the other hand, the accuracy of identifying non-amyloid peptides was only 54%. Further attempts were made to improve the prediction accuracy via machine learning

  19. Mapping the surface charge distribution of amyloid fibril

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Woo Lee, Sang; Sung Yoon, Dae; Eom, Kilho; Kwon, Taeyun

    2012-07-01

    It is of high importance to measure and map the surface charge distribution of amyloids, since electrostatic interaction between amyloidogenic proteins and biomolecules plays a vital role in amyloidogenesis. In this work, we have measured and mapped the surface charge distributions of amyloids (i.e., β-lactoglobulin fibril) using Kelvin probe force microscopy. It is shown that the surface charge distribution is highly dependent on the conformation of amyloids (e.g., the helical pitch of amyloid fibrils) as well as the pH of a solvent.

  20. A Novel Amyloid Designable Scaffold and Potential Inhibitor Inspired by GAIIG of Amyloid Beta and the HIV-1 V3 loop.

    PubMed

    Kokotidou, C; Jonnalagadda, S V R; Orr, A A; Seoane-Blanco, M; Apostolidou, C P; van Raaij, M J; Kotzabasaki, M; Chatzoudis, A; Jakubowski, J M; Mossou, E; Forsyth, V T; Mitchell, E P; Bowler, M W; Llamas-Saiz, A L; Tamamis, P; Mitraki, A

    2018-05-17

    The GAIIG sequence, common to the amyloid beta peptide (residues 29-33) and to the HIV gp 120 (residues 24-28 in a typical V3 loop) self-assembles into amyloid fibrils, as suggested by theory and the experiments presented here. The longer YATGAIIGNII sequence from the V3 loop also self-assembles into amyloid fibrils, of which the first three and the last two residues are outside the amyloid GAIIG core. We postulate that this sequence, with suitable selected replacements at the flexible positions, can serve as a designable scaffold for novel amyloid-based materials. Moreover, we report the single X-ray crystal structure of the beta-breaker peptide GAIPIG at 1.05 Å resolution. This structural information could serve as the basis for structure-based design of potential inhibitors of amyloid formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation

    PubMed Central

    Pashley, Clare L.; Hewitt, Eric W.; Radford, Sheena E.

    2016-01-01

    The mouse and human β2-microglobulin protein orthologs are 70 % identical in sequence and share 88 % sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH 2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3 M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation. PMID:26780548

  2. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer’s disease mouse models

    PubMed Central

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2012-01-01

    Amyloid-β plaques are an Alzheimer’s disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer’s disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1–1000, amyloid burden from 0–10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source–detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source–detector pairs). PMID:19794239

  3. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA

    PubMed Central

    Fusco, William G.; Choudhary, Neelima R.; Stewart, Shelley M.; Alam, S. Munir; Sempowski, Gregory D.; Elkins, Christopher

    2015-01-01

    Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrAI) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine. PMID:25897604

  4. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA.

    PubMed

    Fusco, William G; Choudhary, Neelima R; Stewart, Shelley M; Alam, S Munir; Sempowski, Gregory D; Elkins, Christopher; Leduc, Isabelle

    2015-04-01

    Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrA(I)) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine.

  5. Magnetic fluid - a novel approach to treat amyloid-related diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Siposova, Katarina; Koneracka, Martina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fedunova, Diana; Bagelova, Jaroslava; Kopcansky, Peter; Gazova, Zuzana

    Protein amyloid aggregates are associated with several human pathologies termed amyloid-related diseases. We have investigated effect of two magnetic fluids (MFs) - electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate with adsorbed BSA (MF2) on amyloid aggregation of two proteins - human insulin and hen egg lysozyme. We have found that both MF1 and MF2 are able to interact with amyloid fibrils in vitro resulting into decreasing of amyloid aggregates. The extent of fibril disruption depends on MF concentration with extensive reduction of amyloid aggregates, 90% for lysozyme and 70% for insulin (ratio protein: MF=1:5). The obtained results suggest that magnetite component of MF play significant role in the process of amyloid fibril depolymerisation. Our findings indicate that MF1 and MF2 have potential to be used for treatment of amyloid diseases.

  6. Establishing and validating the fluorescent amyloid ligand h-FTAA (heptamer formyl thiophene acetic acid) to identify transthyretin amyloid deposits in carpal tunnel syndrome.

    PubMed

    Hahn, Katharina; Nilsson, K Peter R; Hammarström, Per; Urban, Peter; Meliss, Rolf Rüdiger; Behrens, Hans-Michael; Krüger, Sandra; Röcken, Christoph

    2017-06-01

    Transthyretin-derived (ATTR) amyloidosis is a frequent finding in carpal tunnel syndrome. We tested the following hypotheses: the novel fluorescent amyloid ligand heptameric formic thiophene acetic acid (h-FTAA) has a superior sensitivity for the detection of amyloid compared with Congo red-staining; Amyloid load correlates with patient gender and/or patient age. We retrieved 208 resection specimens obtained from 184 patients with ATTR amyloid in the carpal tunnel. Serial sections were stained with Congo red, h-FTAA and an antibody directed against transthyretin (TTR). Stained sections were digitalized and forwarded to computational analyses. The amount of amyloid was correlated with patient demographics. Amyloid stained intensely with h-FTAA and an anti-TTR-antibody. Congo red-staining combined with fluorescence microscopy was significantly less sensitive than h-FTAA-fluorescence and TTR-immunostaining: the highest percentage area was found in TTR-immunostained sections, followed by h-FTAA and Congo red. The Pearson correlation coefficient was .8 (Congo red vs. h-FTAA) and .9 (TTR vs. h-FTAA). Amyloid load correlated with patient gender, anatomical site and patient age. h-FTAA is a highly sensitive method to detect even small amounts of ATTR amyloid in the carpal tunnel. The staining protocol is easy and h-FTAA may be a much more sensitive procedure to detect amyloid at an earlier stage.

  7. A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils

    PubMed Central

    Roessle, Manfred; Kastrup, Jette S; van de Weert, Marco; Flink, James M; Frokjaer, Sven; Gajhede, Michael; Svergun, Dmitri I

    2007-01-01

    Although amyloid fibrillation is generally believed to be a nucleation-dependent process, the nuclei are largely structurally uncharacterized. This is in part due to the inherent experimental challenge associated with structural descriptions of individual components in a dynamic multi-component equilibrium. There are indications that oligomeric aggregated precursors of fibrillation, and not mature fibrils, are the main cause of cytotoxicity in amyloid disease. This further emphasizes the importance of characterizing early fibrillation events. Here we present a kinetic x-ray solution scattering study of insulin fibrillation, revealing three major components: insulin monomers, mature fibrils, and an oligomeric species. Low-resolution three-dimensional structures are determined for the fibril repeating unit and for the oligomer, the latter being a helical unit composed of five to six insulin monomers. This helical oligomer is likely to be a structural nucleus, which accumulates above the supercritical concentration used in our experiments. The growth rate of the fibrils is proportional to the amount of the helical oligomer present in solution, suggesting that these oligomers elongate the fibrils. Hence, the structural nucleus and elongating unit in insulin amyloid fibrillation may be the same structural component above supercritical concentrations. A novel elongation pathway of insulin amyloid fibrils is proposed, based on the shape and size of the fibrillation precursor. The distinct helical oligomer described in this study defines a conceptually new basis of structure-based drug design against amyloid diseases. PMID:17472440

  8. Complexation of amyloid fibrils with charged conjugated polymers.

    PubMed

    Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K

    2014-04-08

    It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.

  9. An Environmentally Sensitive Fluorescent Dye as a Multidimensional Probe of Amyloid Formation

    PubMed Central

    2016-01-01

    We have explored amyloid formation using poly(amino acid) model systems in which differences in peptide secondary structure and hydrophobicity can be introduced in a controlled manner. We show that an environmentally sensitive fluorescent dye, dapoxyl, is able to identify β-sheet structure and hydrophobic surfaces, structural features likely to be related to toxicity, as a result of changes in its excitation and emission profiles and its relative quantum yield. These results show that dapoxyl is a multidimensional probe of the time dependence of amyloid aggregation, which provides information about the presence and nature of metastable aggregation intermediates that is inaccessible to the conventional probes that rely on changes in quantum yield alone. PMID:26865546

  10. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation.

    PubMed

    Pashley, Clare L; Hewitt, Eric W; Radford, Sheena E

    2016-02-13

    The mouse and human β2-microglobulin protein orthologs are 70% identical in sequence and share 88% sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells.

    PubMed

    Balder, Rachel; Lipski, Serena; Lazarus, John J; Grose, William; Wooten, Ronald M; Hogan, Robert J; Woods, Donald E; Lafontaine, Eric R

    2010-09-28

    Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages

  12. Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly

    PubMed Central

    Aizenstein, Howard Jay; Nebes, Robert D.; Saxton, Judith A.; Price, Julie C.; Mathis, Chester A.; Tsopelas, Nicholas D.; Ziolko, Scott K.; James, Jeffrey A.; Snitz, Beth E.; Houck, Patricia R.; Bi, Wenzhu; Cohen, Ann D.; Lopresti, Brian J.; DeKosky, Steven T.; Halligan, Edythe M.; Klunk, William E.

    2009-01-01

    Objective To characterize the prevalence of amyloid deposition in a clinically unimpaired elderly population, as assessed by Pittsburgh Compound B (PiB) positron emission tomography (PET) imaging, and its relationship to cognitive function, measured with a battery of neuropsychological tests. Design Subjects underwent cognitive testing and PiB PET imaging (15 mCi for 90 minutes with an ECAT HR + scanner). Logan graphical analysis was applied to estimate regional PiB retention distribution volume, normalized to a cerebellar reference region volume, to yield distribution volume ratios (DVRs). Setting University medical center. Participants From a community-based sample of volunteers, 43 participants aged 65 to 88 years who did not meet diagnostic criteria for Alzheimer disease or mild cognitive impairment were included. Main Outcome Measures Regional PiB retention and cognitive test performance. Results Of 43 clinically unimpaired elderly persons imaged, 9 (21%) showed evidence of early amyloid deposition in at least 1 brain area using an objectively determined DVR cutoff. Demographic characteristics did not differ significantly between amyloid-positive and amyloid-negative participants, and neurocognitive performance was not significantly worse among amyloid-positive compared with amyloid-negative participants. Conclusions Amyloid deposition can be identified among cognitively normal elderly persons during life, and the prevalence of asymptomatic amyloid deposition may be similar to that of symptomatic amyloid deposition. In this group of participants without clinically significant impairment, amyloid deposition was not associated with worse cognitive function, suggesting that an elderly person with a significant amyloid burden can remain cognitively normal. However, this finding is based on relatively small numbers and needs to be replicated in larger cohorts. Longitudinal follow-up of these subjects will be required to support the potential of PiB imaging to

  13. Serotonin augmentation therapy by escitalopram has minimal effects on amyloid-β levels in early-stage Alzheimer's-like disease in mice.

    PubMed

    von Linstow, Christian Ulrich; Waider, Jonas; Grebing, Manuela; Metaxas, Athanasios; Lesch, Klaus Peter; Finsen, Bente

    2017-09-12

    Dysfunction of the serotonergic (5-HTergic) system has been implicated in the cognitive and behavioural symptoms of Alzheimer's disease (AD). Accumulation of toxic amyloid-β (Aβ) species is a hallmark of AD and an instigator of pathology. Serotonin (5-HT) augmentation therapy by treatment with selective serotonin reuptake inhibitors (SSRIs) in patients with AD has had mixed success in improving cognitive function, whereas SSRI administration to mice with AD-like disease has been shown to reduce Aβ pathology. The objective of this study was to investigate whether an increase in extracellular levels of 5-HT induced by chronic SSRI treatment reduces Aβ pathology and whether 5-HTergic deafferentation of the cerebral cortex could worsen Aβ pathology in the APP swe /PS1 ΔE9 (APP/PS1) mouse model of AD. We administered a therapeutic dose of the SSRI escitalopram (5 mg/kg/day) in the drinking water of 3-month-old APP/PS1 mice to increase levels of 5-HT, and we performed intracerebroventricular injections of the neurotoxin 5,7-dihydroxytryptamine (DHT) to remove 5-HTergic afferents. We validated the effectiveness of these interventions by serotonin transporter autoradiography (neocortex 79.7 ± 7.6%) and by high-performance liquid chromatography for 5-HT (neocortex 64% reduction). After 6 months of escitalopram treatment or housing after DHT-induced lesion, we evaluated brain tissue by mesoscale multiplex analysis and sections by IHC analysis. Amyloid-β-containing plaques had formed in the neocortex and hippocampus of 9-month-old APP/PS1 mice after 6 months of escitalopram treatment and 5-HTergic deafferentation. Unexpectedly, levels of insoluble Aβ42 were unaffected in the neocortex and hippocampus after both types of interventions. Levels of insoluble Aβ40 increased in the neocortex of SSRI-treated mice compared with those treated with vehicle control, but they were unaffected in the hippocampus. 5-HTergic deafferentation was without effect on the levels of

  14. Amyloid Precursor-like Protein 2 Increases the Endocytosis, Instability, and Turnover of the H2-Kd MHC Class I Molecule1

    PubMed Central

    Tuli, Amit; Sharma, Mahak; McIlhaney, Mary M.; Talmadge, James E.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2008-01-01

    The defense against the invasion of viruses and tumors relies on the presentation of viral and tumor-derived peptides to cytotoxic T lymphocytes by cell surface major histocompatibility complex (MHC) class I molecules. Previously, we showed that the ubiquitously expressed protein amyloid precursor-like protein 2 (APLP2) associates with the folded form of the MHC class I molecule Kd. In the current study, APLP2 was found to associate with folded Kd molecules following their endocytosis and to increase the amount of endocytosed Kd. In addition, increased expression of APLP2 was shown to decrease Kd surface expression and thermostability. Correspondingly, Kd thermostability and surface expression were increased by down-regulation of APLP2 expression. Overall, these data suggest that APLP2 modulates the stability and endocytosis of Kd molecules. PMID:18641335

  15. Morphological Characterization of Thioflavin-S-Positive Amyloid Plaques in Transgenic Alzheimer Mice and Effect of Passive Aβ Immunotherapy on Their Clearance

    PubMed Central

    Bussière, Thierry; Bard, Frédérique; Barbour, Robin; Grajeda, Henry; Guido, Terry; Khan, Karen; Schenk, Dale; Games, Dora; Seubert, Peter; Buttini, Manuel

    2004-01-01

    Transgenic mice mimicking certain features of Alzheimer’s disease (AD)-pathology, namely amyloid plaques and neurofibrillary tangles, have been developed in an effort to better understand the mechanism leading to the formation of these characteristic cerebral lesions. More recently, these animal models have been widely used to investigate emergent therapies aimed at the reduction of the cerebral amyloid load. Several studies have shown that immunotherapy targeting the amyloid peptide (Aβ) is efficacious at clearing the amyloid plaques or preventing their formation, and at reducing the memory/behavior impairment observed in these animals. In AD, different types of plaques likely have different pathogenic significance, and further characterization of plaque pathology in the PDAPP transgenic mice would enhance the evaluation of potential therapeutics. In the present study, a morphological classification of amyloid plaques present in the brains of PDAPP mice was established by using Thioflavin-S staining. Neuritic dystrophy associated with amyloid plaques was also investigated. Finally, the efficacy of passive immunization with anti-Aβ antibodies on the clearance of Thio-S positive amyloid plaques was studied. Our results show that distinct morphological types of plaques are differentially cleared depending upon the isotype of the antibody. PMID:15331422

  16. Silencing of Amyloid Precursor Protein Expression Using a New Engineered Delta Ribozyme

    PubMed Central

    Ben Aissa, Manel; April, Marie-Claude; Bergeron, Lucien-Junior; Perreault, Jean-Pierre; Levesque, Georges

    2012-01-01

    Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ 40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD. PMID:22482079

  17. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology.

    PubMed

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-02-29

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.

  18. Conformational dynamics of amyloid proteins at the aqueous interface

    NASA Astrophysics Data System (ADS)

    Armbruster, Matthew; Horst, Nathan; Aoki, Brendy; Malik, Saad; Soto, Patricia

    2013-03-01

    Amyloid proteins is a class of proteins that exhibit distinct monomeric and oligomeric conformational states hallmark of deleterious neurological diseases for which there are not yet cures. Our goal is to examine the extent of which the aqueous/membrane interface modulates the folding energy landscape of amyloid proteins. To this end, we probe the dynamic conformational ensemble of amyloids (monomer prion protein and Alzheimer's Ab protofilaments) interacting with model bilayers. We will present the results of our coarse grain molecular modeling study in terms of the existence of preferential binding spots of the amyloid to the bilayer and the response of the bilayer to the interaction with the amyloid. NSF Nebraska EPSCoR First Award

  19. Multiple Myeloma Presenting as Massive Amyloid Deposition in a Parathyroid Gland Associated with Amyloid Goiter: A Medullary Thyroid Carcinoma Mimic on Intra-operative Frozen Section.

    PubMed

    Hill, Kirk; Diaz, Jason; Hagemann, Ian S; Chernock, Rebecca D

    2018-06-01

    Clinical examples of amyloid deposition in parathyroid glands are exceedingly rare and usually present as an incidental finding in a patient with amyloid goiter. Here, we present the first histologically documented case of parathyroid amyloid deposition that presented as a mass. The patient did not have hyperparathyroidism. The parathyroid gland was submitted for intra-operative frozen section and concern for medullary thyroid carcinoma was raised. An important histologic clue arguing against medullary thyroid carcinoma was the evenly dispersed nature of the amyloid. Histologic perinuclear clearing and parathyroid hormone immunohistochemistry confirmed parathyroid origin on permanent sections. The patient was also found to have associated amyloid goiter. Mass spectrometry of the amyloid showed it to be composed of kappa light chains. On further work-up, the patient was diagnosed with multiple myeloma. Awareness of parathyroid amyloid deposition is important as it is a histologic mimic of medullary thyroid carcinoma, especially on frozen section. Amyloid typing with evaluation for multiple myeloma in any patient with kappa or lambda light chain restriction is also important.

  20. Recent progress on understanding the mechanisms of amyloid nucleation.

    PubMed

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  1. Transcriptional organization of the Escherichia coli pilus adhesin K99.

    PubMed

    Inoue, O J; Lee, J H; Isaacson, R E

    1993-11-01

    The production of the Escherichia coli pilus adhesin K99 requires the expression of eight unique proteins: FanA-H. The transcriptional organization of the K99 operon was investigated by Northern blot analysis. Four RNAs of 0.54, 1.4, 2.5 and 3.5 kb were detected. When a fanC probe was used all four RNAs were detected while the use of fanD, fanF and fanG probes detected two RNAs each. Using several deletion and TnphoA insertion mutants it was concluded that there were seven unique K99-specific transcripts, several of which were of the same approximate sizes (1.4 and 2.5 kb). It also was concluded that K99 was comprised of at least three complementation groups, two of which were regulated by catabolite repression.

  2. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease

    PubMed Central

    DeMattos, Ronald B.; O'dell, Mark A.; Parsadanian, Maia; Taylor, Jennie W.; Harmony, Judith A. K.; Bales, Kelly R.; Paul, Steven M.; Aronow, Bruce J.; Holtzman, David M.

    2002-01-01

    Studies have shown that clusterin (also called apolipoprotein J) can influence the structure and toxicity of amyloid-β (Aβ) in vitro. To determine whether endogenous clusterin plays a role in influencing Aβ deposition, structure, and toxicity in vivo, we bred PDAPP mice, a transgenic mouse model of Alzheimer's disease, to clusterin−/− mice. By 12 months of age, PDAPP, clusterin−/− mice had similar levels of brain Aβ deposition as did PDAPP, clusterin+/+ mice. Although Aβ deposition was similar, PDAPP, clusterin−/− mice had significantly fewer fibrillar Aβ (amyloid) deposits than PDAPP mice expressing clusterin. In the absence of clusterin, neuritic dystrophy associated with the deposited amyloid was markedly reduced, resulting in a dissociation between fibrillar amyloid formation and neuritic dystrophy. These findings demonstrate that clusterin markedly influences Aβ structure and neuritic toxicity in vivo and is likely to play an important role in Alzheimer's disease pathogenesis. PMID:12145324

  3. Molecular simulation aspects of amyloid peptides at membrane interface.

    PubMed

    Liu, Yonglan; Ren, Baiping; Zhang, Yanxian; Sun, Yan; Chang, Yung; Liang, Guizhao; Xu, Lijian; Zheng, Jie

    2018-02-06

    The interactions of amyloid peptides with cell membranes play an important role in maintaining the integrity and functionality of cell membrane. A thorough molecular-level understanding of the structure, dynamics, and interactions between amyloid peptides and cell membranes is critical to amyloid aggregation and toxicity mechanisms for the bench-to-bedside applications. Here we review the most recent computational studies of amyloid peptides at model cell membranes. Different mechanisms of action of amyloid peptides on/in cell membranes, targeted by different computational techniques at different lengthscales and timescales, are rationally discussed. Finally, we have proposed some new insights into the remaining challenges and perspectives for future studies to improve our understanding of the activity of amyloid peptides associated with protein-misfolding diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Tau and Amyloid Positron Emission Tomography Imaging Predict Driving Performance Among Older Adults with and without Preclinical Alzheimer's Disease.

    PubMed

    Roe, Catherine M; Babulal, Ganesh M; Mishra, Shruti; Gordon, Brian A; Stout, Sarah H; Ott, Brian R; Carr, David B; Ances, Beau M; Morris, John C; Benzinger, Tammie L S

    2018-01-01

    Abnormal levels of Alzheimer's disease (AD) biomarkers, measured by positron emission tomography imaging using amyloid-based radiotracers and cerebrospinal fluid, are associated with impaired driving performance in older adults. We examined whether preclinical AD staging, defined using amyloid imaging and tau imaging using the radiotracer T807 (AKA flortaucipir or AV-1451), was associated with receiving a marginal/fail rating on a standardized road test (n = 42). Participants at Stage 2 (positive amyloid and tau scans) of preclinical AD were more likely to receive a marginal/fail rating compared to participants at Stage 0 or 1. Stage 2 preclinical AD may manifest in worse driving performance.

  5. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    PubMed

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  6. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun

    2018-07-01

    Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics.

  7. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils.

    PubMed

    Lee, Gyudo; Lee, Wonseok; Baik, Seunghyun; Kim, Yong Ho; Eom, Kilho; Kwon, Taeyun

    2018-04-12

    Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy (AFM) experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their radial bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics. © 2018 IOP Publishing Ltd.

  8. Amyloid formation reduces protein kinase B phosphorylation in primary islet β-cells which is improved by blocking IL-1β signaling

    PubMed Central

    Zhang, Yun; Warnock, Garth L.; Ao, Ziliang; Park, Yoo Jin; Safikhan, Nooshin; Ghahary, Aziz

    2018-01-01

    Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet β-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1β (IL-1β) signaling in islets can restore the changes in β-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1β signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). β-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1β levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced β-cell phospho-PKB levels and increased islet IL-1β levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved β-cell survival. Furthermore, inhibition of IL-1β signaling by treatment with anakinra or exenatide increased β-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in β-cells which is associated with elevated islet IL-1β levels. Inhibitors of amyloid or amyloid-induced IL-1β production may provide a new approach to restore phospho-PKB levels thereby

  9. Nearly reversible conformational change of amyloid fibrils as revealed by pH-jump experiments.

    PubMed

    Yamaguchi, Kei-ichi; Kamatari, Yuji O; Fukuoka, Mayuko; Miyaji, Reiji; Kuwata, Kazuo

    2013-10-01

    pH-jump induced conformational transitions between substates of preformed amyloid fibrils made by a fragmented peptide of helix 2 (H2 peptide) of MoPrP were detected, and their kinetics were analyzed using a novel pH-jump apparatus specially designed for observing amyloids. Previously, we reported that H2 peptide formed ordered fibrils with a minimum at 207 nm on CD spectra at pH 2.9 (named pH 2.9 fibrils), but formed aggregate-like fibrils with a minimum at 220 nm at pH 7.5 (named pH 7.5 fibrils). When pH-jump from 2.9 to 7.5 was performed, the CD spectrum changed instantly, but the finally observed ellipticities were clearly distinct from those of pH 7.5 fibrils. Thus, the finally observed state is termed 'pH 7.5-like fibrils'. However, pH 7.5-like fibrils reverted to the conformation very similar to that of the pH 2.9 fibrils when the pH of the solution was restored to 2.9. Then, we examined the kinetics of the nearly reversible conformational changes between pH 2.9 fibrils and pH 7.5-like fibrils using ANS fluorescence stopped-flow, and we observed relatively fast phases (0.7-18 s(-1)). In contrast, the conversion between pH 7.5-like fibrils and pH 7.5 fibrils never occurred (<0.2 day(-1)). Thus, H2 fibrils can be switched readily between distinct conformations separated by a low energy barrier, while a large energy barrier clearly separated the different conformations. These conformational varieties of amyloid fibrils may explain the physical basis of the diversity in prion.

  10. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    PubMed

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: from hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species.

    PubMed

    Hunt, Kevin W; Cook, Adam W; Watts, Ryan J; Clark, Christopher T; Vigers, Guy; Smith, Darin; Metcalf, Andrew T; Gunawardana, Indrani W; Burkard, Michael; Cox, April A; Geck Do, Mary K; Dutcher, Darrin; Thomas, Allen A; Rana, Sumeet; Kallan, Nicholas C; DeLisle, Robert K; Rizzi, James P; Regal, Kelly; Sammond, Douglas; Groneberg, Robert; Siu, Michael; Purkey, Hans; Lyssikatos, Joseph P; Marlow, Allison; Liu, Xingrong; Tang, Tony P

    2013-04-25

    A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aβ), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aβ is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aβ in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aβ lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aβ in rodents and in monkey.

  12. The Staphylococcal Biofilm: Adhesins, regulation, and host response

    PubMed Central

    Paharik, Alexandra E.; Horswill, Alexander R.

    2015-01-01

    The Staphylococci comprise a diverse genus of Gram-positive, non-motile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, Staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. S. aureus and S. epidermidis are a major source of hospital-acquired infections and are the most common causes of surgical site infections and central line-associated bloodstream infections. The ability of Staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device implants, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of Staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how Staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the Staphylococcus genus and how this mode of growth impacts the host. PMID:27227309

  13. Serum Amyloid A Promotes E-Selectin Expression via Toll-Like Receptor 2 in Human Aortic Endothelial Cells.

    PubMed

    Nishida, Eisaku; Aino, Makoto; Kobayashi, Shu-Ichiro; Okada, Kosuke; Ohno, Tasuku; Kikuchi, Takeshi; Hayashi, Jun-Ichiro; Yamamoto, Genta; Hasegawa, Yoshiaki; Mitani, Akio

    2016-01-01

    Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro . Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease.

  14. Serum Amyloid A Promotes E-Selectin Expression via Toll-Like Receptor 2 in Human Aortic Endothelial Cells

    PubMed Central

    2016-01-01

    Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro. Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease. PMID:27799725

  15. Alzheimer's Aβ(1-40) Amyloid Fibrils Feature Size-Dependent Mechanical Properties

    PubMed Central

    Xu, Zhiping; Paparcone, Raffaella; Buehler, Markus J.

    2010-01-01

    Abstract Amyloid fibrils are highly ordered protein aggregates that are associated with several pathological processes, including prion propagation and Alzheimer's disease. A key issue in amyloid science is the need to understand the mechanical properties of amyloid fibrils and fibers to quantify biomechanical interactions with surrounding tissues, and to identify mechanobiological mechanisms associated with changes of material properties as amyloid fibrils grow from nanoscale to microscale structures. Here we report a series of computational studies in which atomistic simulation, elastic network modeling, and finite element simulation are utilized to elucidate the mechanical properties of Alzheimer's Aβ(1-40) amyloid fibrils as a function of the length of the protein filament for both twofold and threefold symmetric amyloid fibrils. We calculate the elastic constants associated with torsional, bending, and tensile deformation as a function of the size of the amyloid fibril, covering fibril lengths ranging from nanometers to micrometers. The resulting Young's moduli are found to be consistent with available experimental measurements obtained from long amyloid fibrils, and predicted to be in the range of 20–31 GPa. Our results show that Aβ(1-40) amyloid fibrils feature a remarkable structural stability and mechanical rigidity for fibrils longer than ≈100 nm. However, local instabilities that emerge at the ends of short fibrils (on the order of tens of nanometers) reduce their stability and contribute to their disassociation under extreme mechanical or chemical conditions, suggesting that longer amyloid fibrils are more stable. Moreover, we find that amyloids with lengths shorter than the periodicity of their helical pitch, typically between 90 and 130 nm, feature significant size effects of their bending stiffness due the anisotropy in the fibril's cross section. At even smaller lengths (⪅50 nm), shear effects dominate lateral deformation of amyloid fibrils

  16. Tg-SwDI Transgenic Mice Exhibit Novel Alterations in AβPP Processing, Aβ Degradation, and Resilient Amyloid Angiopathy

    PubMed Central

    Van Vickle, Gregory D.; Esh, Chera L.; Daugs, Ian D.; Kokjohn, Tyler A.; Kalback, Walter M.; Patton, R. Lyle; Luehrs, Dean C.; Walker, Douglas G.; Lue, Lih-Fen; Beach, Thomas G.; Davis, Judianne; Van Nostrand, William E.; Castaño, Eduardo M.; Roher, Alex E.

    2008-01-01

    Alzheimer’s disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-β (Aβ) peptides. We characterized the chemical composition of the Aβ peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Aβ accumulation. The processing of the N- and C-terminal regions of mutant AβPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AβPP transgene expression levels, suggests that inefficient Aβ proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AβPP processing and fundamental insights into the faulty degradation and clearance of Aβ in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents. PMID:18599612

  17. The role of novel chitin-like polysaccharides in Alzheimer disease.

    PubMed

    Castellani, Rudy J; Perry, George; Smith, Mark A

    2007-12-01

    While controversy over the role of carbohydrates in amyloidosis has existed since the initial recognition of amyloid, current understanding of the role of polysaccharides in the pathogenesis of amyloid deposition of Alzheimer disease and other amyloidoses is limited to studies of glyco-conjugates such as heparin sulfate proteoglycan. We hypothesized that polysaccharides may play a broader role in light of 1) the impaired glucose utilization in Alzheimer disease; 2) the demonstration of amylose in the Alzheimer disease brain; 3) the role of amyloid in Alzheimer disease pathogenesis. Specifically, as with glucose polymers (amyloid), we wanted to explore whether glucosamine polymers such as chitin were being synthesized and deposited as a result of impaired glucose utilization and aberrant hexosamine pathway activation. To this end, using calcofluor histochemistry, we recently demonstrated that amyloid plaques and blood vessels affected by amyloid angiopathy in subjects with sporadic and familial Alzheimer disease elicit chitin-type characteristics. Since chitin is a highly insoluble molecule and a substrate for glycan-protein interactions, chitin-like polysaccharides within the Alzheimer disease brain could provide a scaffolding for amyloid-beta deposition. As such, glucosamine may facilitate the process of amyloidosis, and /or provide neuroprotection in the Alzheimer disease brain.

  18. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins.

    PubMed

    Nienaber, Juhsien J C; Sharma Kuinkel, Batu K; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H; Barriere, Steve; Woods, Christopher W; Chu, Vivian H; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R; Reller, L Barth; Fowler, Vance G

    2011-09-01

    Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.

  19. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid

    PubMed Central

    2014-01-01

    Background Alzheimer’s disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. Results We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to

  20. Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease.

    PubMed

    Dean, Douglas C; Hurley, Samuel A; Kecskemeti, Steven R; O'Grady, J Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B

    2017-01-01

    The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging. To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content. Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction. The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were

  1. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.

    PubMed

    Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær

    2015-08-14

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids*

    PubMed Central

    Dueholm, Morten S.; Larsen, Poul; Finster, Kai; Stenvang, Marcel R.; Christiansen, Gunna; Vad, Brian S.; Bøggild, Andreas; Otzen, Daniel E.; Nielsen, Per Halkjær

    2015-01-01

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. PMID:26109065

  3. Is Congo red an amyloid-specific dye?

    PubMed

    Khurana, R; Uversky, V N; Nielsen, L; Fink, A L

    2001-06-22

    Congo red (CR) binding, monitored by characteristic yellow-green birefringence under crossed polarization has been used as a diagnostic test for the presence of amyloid in tissue sections for several decades. This assay is also widely used for the characterization of in vitro amyloid fibrils. In order to probe the structural specificity of Congo red binding to amyloid fibrils we have used an induced circular dichroism (CD) assay. Amyloid fibrils from insulin and the variable domain of Ig light chain demonstrate induced CD spectra upon binding to Congo red. Surprisingly, the native conformations of insulin and Ig light chain also induced Congo red circular dichroism, but with different spectral shapes than those from fibrils. In fact, a wide variety of native proteins exhibited induced CR circular dichroism indicating that CR bound to representative proteins from different classes of secondary structure such as alpha (citrate synthase), alpha + beta (lysozyme), beta (concavalin A), and parallel beta-helical proteins (pectate lyase). Partially folded intermediates of apomyoglobin induced different Congo red CD bands than the corresponding native conformation, however, no induced CD bands were observed with unfolded protein. Congo red was also found to induce oligomerization of native proteins, as demonstrated by covalent cross-linking and small angle x-ray scattering. Our data suggest that Congo red is sandwiched between two protein molecules causing protein oligomerization. The fact that Congo red binds to native, partially folded conformations and amyloid fibrils of several proteins shows that it must be used with caution as a diagnostic test for the presence of amyloid fibrils in vitro.

  4. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  5. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: Summary of principles and its application to amyloid fiber monolayers

    PubMed Central

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L.; Skoff, David R.; Zhang, Tianqi; Zanni, Martin T.

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl 4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a−) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrates the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure. PMID:25611039

  6. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: summary of principles and its application to amyloid fiber monolayers.

    PubMed

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L; Skoff, David R; Zhang, Tianqi; Zanni, Martin T

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl-4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a-) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrate the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure.

  7. Individual antigenic specificity and cross-reactions among amyloid preparations from different individuals

    PubMed Central

    Husby, G.; Natvig, J. B.

    1972-01-01

    Amyloid fibrils were isolated from eleven amyloid-laden organs of six patients. By alkaline degradation, soluble units were obtained which gave antibody formation in rabbits. Gel precipitation and haemagglutination inhibition were used to characterize antigens of the amyloid. Evidence was obtained that amyloids from different organs of the same individual were identical in the antigenicity. In contrast, amyloids from different individuals each showed unique individual specificity. Besides this, antigenic cross-reactions were noted between the amyloid preparations. Finally, evidence for antigenic cross-reactivity between certain amyloid preparations and immunoglobulin light chains was obtained. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:4624554

  8. Preparation of Amyloid Fibrils Seeded from Brain and Meninges.

    PubMed

    Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C

    2016-01-01

    Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.

  9. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    PubMed

    De Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-07-03

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  10. Fish β-parvalbumin acquires allergenic properties by amyloid assembly.

    PubMed

    Martínez, Javier; Sánchez, Rosa; Castellanos, Milagros; Fernández-Escamilla, Ana M; Vázquez-Cortés, Sonia; Fernández-Rivas, Montserrat; Gasset, María

    2015-01-01

    Amyloids are highly cross-β-sheet-rich aggregated states that confer protease resistance, membrane activity and multivalence properties to proteins, all essential features for the undesired preservation of food proteins transiting the gastrointestinal tract and causing type I allergy. Amyloid propensity of β-parvalbumin, the major fish allergen, was theoretically analysed and assayed under gastrointestinal-relevant conditions using the binding of thioflavin T, the formation of sodium dodecyl sulphate- (SDS-) resistant aggregates, circular dichroism spectroscopy and atomic force microscopy fibril imaging. Impact of amyloid aggregates on allergenicity was assessed with dot blot. Sequences of β-parvalbumin from species with commercial value contain several adhesive hexapeptides capable of driving amyloid formation. Using Atlantic cod β-parvalbumin (rGad m 1) displaying high IgE cross-reactivity, we found that formation of amyloid fibres under simulated gastrointestinal conditions accounts for the resistance to acid and neutral proteases, for the presence of membrane active species under gastrointestinal relevant conditions and for the IgE-recognition in the sera of allergic patients. Incorporation of the anti-amyloid compound epigallocatechin gallate prevents rGad m 1 fibrillation, facilitates its protease digestion and impairs its recognition by IgE. the formation of amyloid by rGad m 1 explains its degradation resistance, its facilitated passage across the intestinal epithelial barrier and its epitope architecture as allergen.

  11. Structure-Based Design of Functional Amyloid Materials

    DOE PAGES

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; ...

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In amore » second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.« less

  12. Cold denaturation of α-synuclein amyloid fibrils.

    PubMed

    Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József; Saiki, Miyu; Yagi, Hisashi; Kawata, Yasushi; Goto, Yuji

    2014-07-21

    Although amyloid fibrils are associated with numerous pathologies, their conformational stability remains largely unclear. Herein, we probe the thermal stability of various amyloid fibrils. α-Synuclein fibrils cold-denatured to monomers at 0-20 °C and heat-denatured at 60-110 °C. Meanwhile, the fibrils of β2-microglobulin, Alzheimer's Aβ1-40/Aβ1-42 peptides, and insulin exhibited only heat denaturation, although they showed a decrease in stability at low temperature. A comparison of structural parameters with positive enthalpy and heat capacity changes which showed opposite signs to protein folding suggested that the burial of charged residues in fibril cores contributed to the cold denaturation of α-synuclein fibrils. We propose that although cold-denaturation is common to both native proteins and misfolded fibrillar states, the main-chain dominated amyloid structures may explain amyloid-specific cold denaturation arising from the unfavorable burial of charged side-chains in fibril cores. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cerebral Amyloid Angiopathy and Parenchymal Amyloid Deposition in Transgenic Mice Expressing the Danish Mutant Form of Human BRI2

    PubMed Central

    Vidal, Ruben; Barbeito, Ana G; Miravalle, Leticia; Ghetti, Bernardino

    2009-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease clinically characterized by the presence of cataracts, hearing impairment, cerebellar ataxia and dementia. Neuropathologically, FDD is characterized by the presence of widespread cerebral amyloid angiopathy (CAA), parenchymal amyloid deposition and neurofibrillary tangles. FDD is caused by a 10-nucleotide duplication-insertion in the BRI2 gene that generates a larger-than-normal precursor protein, of which the Danish amyloid subunit (ADan) comprises the last 34 amino acids. Here, we describe a transgenic mouse model for FDD (Tg-FDD) in which the mouse Prnp (prion protein) promoter drives the expression of the Danish mutant form of human BRI2. The main neuropathological findings in Tg-FDD mice are the presence of widespread CAA and parenchymal deposition of ADan. In addition, we observe the presence of amyloid-associated gliosis, an inflammatory response and deposition of oligomeric ADan. As the animals aged, they showed abnormal grooming behavior, an arched back, and walked with a wide-based gait and shorter steps. This mouse model may give insights on the pathogenesis of FDD and will prove useful for the development of therapeutics. Moreover, the study of Tg-FDD mice may offer new insights into the role of amyloid in neurodegeneration in other disorders, including Alzheimer disease. PMID:18410407

  14. Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2.

    PubMed

    Vidal, Ruben; Barbeito, Ana G; Miravalle, Leticia; Ghetti, Bernardino

    2009-01-01

    Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease clinically characterized by the presence of cataracts, hearing impairment, cerebellar ataxia and dementia. Neuropathologically, FDD is characterized by the presence of widespread cerebral amyloid angiopathy (CAA), parenchymal amyloid deposition and neurofibrillary tangles. FDD is caused by a 10-nucleotide duplication-insertion in the BRI(2) gene that generates a larger-than-normal precursor protein, of which the Danish amyloid subunit (ADan) comprises the last 34 amino acids. Here, we describe a transgenic mouse model for FDD (Tg-FDD) in which the mouse Prnp (prion protein) promoter drives the expression of the Danish mutant form of human BRI(2). The main neuropathological findings in Tg-FDD mice are the presence of widespread CAA and parenchymal deposition of ADan. In addition, we observe the presence of amyloid-associated gliosis, an inflammatory response and deposition of oligomeric ADan. As the animals aged, they showed abnormal grooming behavior, an arched back, and walked with a wide-based gait and shorter steps. This mouse model may give insights on the pathogenesis of FDD and will prove useful for the development of therapeutics. Moreover, the study of Tg-FDD mice may offer new insights into the role of amyloid in neurodegeneration in other disorders, including Alzheimer disease.

  15. Switch-peptides: design and characterization of controllable super-amyloid-forming host-guest peptides as tools for identifying anti-amyloid agents.

    PubMed

    Camus, Marie-Stéphanie; Dos Santos, Sonia; Chandravarkar, Arunan; Mandal, Bhubaneswar; Schmid, Adrian W; Tuchscherer, Gabriele; Mutter, Manfred; Lashuel, Hilal A

    2008-09-01

    Several amyloid-forming proteins are characterized by the presence of hydrophobic and highly amyloidogenic core sequences that play critical roles in the initiation and progression of amyloid fibril formation. Therefore targeting these sequences represents a viable strategy for identifying candidate molecules that could interfere with amyloid formation and toxicity of the parent proteins. However, the highly amyloidogenic and insoluble nature of these sequences has hampered efforts to develop high-throughput fibrillization assays. Here we describe the design and characterization of host-guest switch peptides that can be used for in vitro mechanistic and screening studies that are aimed at discovering aggregation inhibitors that target highly amyloidogenic sequences. These model systems are based on a host-guest system where the amyloidogenic sequence (guest peptide) is flanked by two beta-sheet-promoting (Leu-Ser)(n) oligomers as host sequences. Two host-guest peptides were prepared by using the hydrophobic core of Abeta comprising residues 14-24 (HQKLVFFAEDV) as the guest peptide with switch elements inserted within (peptide 1) or at the N and C termini of the guest peptide (peptide 2). Both model peptides can be triggered to undergo rapid self-assembly and amyloid formation in a highly controllable manner and their fibrillization kinetics is tuneable by manipulating solution conditions (for example, peptide concentration and pH). The fibrillization of both peptides reproduces many features of the full-length Abeta peptides and can be inhibited by known inhibitors of Abeta fibril formation. Our results suggest that this approach can be extended to other amyloid proteins and should facilitate the discovery of small-molecule aggregation inhibitors and the development of more efficacious anti-amyloid agents to treat and/or reverse the pathogenesis of neurodegenerative and systemic amyloid diseases.

  16. Subjective cognitive complaints, personality and brain amyloid-beta in cognitively normal older adults

    PubMed Central

    Snitz, Beth E.; Weissfeld, Lisa A.; Cohen, Ann D.; Lopez, Oscar L.; Nebes, Robert D.; Aizenstein, Howard J.; McDade, Eric; Price, Julie C.; Mathis, Chester A.; Klunk, William E.

    2015-01-01

    Objectives Subjective cognitive complaints in otherwise normal aging are common but may be associated with preclinical Alzheimer Disease in some individuals. Little is known about who is mostly likely to show associations between cognitive complaints and preclinical Alzheimer pathology. We sought to 1) demonstrate associations between subjective complaints and brain amyloid-β in cognitively normal older adults; 2) to explore personality factors as potential moderators of this association. Design Cross-sectional observational study. Setting Clinical neuroimaging research center. Participants Community volunteer sample of 92 healthy older adults, screened for normal cognition with comprehensive neuropsychological evaluation. Measurements Subjective cognitive self-report measures included the Memory Functioning Questionnaire, Cognitive Failures Questionnaire, and the Subjective Cognitive Complaint Scale. Personality was measured with the NEO Five Factor Inventory. Brain amyloid-β deposition was assessed with Pittsburgh compound B (PiB)-PET imaging. Results One of three cognitive complaint measures, the Memory Functioning Questionnaire, was associated with global PiB retention (standardized beta =−.230, p=.046, adjusting for age, sex and depressive symptoms). Neuroticism moderated this association such that only high neuroticism individuals showed the predicted pattern of high complaint – high amyloid-β association. Conclusions Evidence for association between subjective cognition and brain amyloid-β deposition in healthy older adults is demonstrable but measure-specific. Neuroticism may moderate the MFQ – amyloid-β association such that it is observed in the context of higher trait neuroticism. Subjective cognitive complaints and neuroticism may reflect a common susceptibility toward psychological distress and negative affect, which are in turn risk factors for cognitive decline in aging and incident Alzheimer Disease. PMID:25746485

  17. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images

    NASA Astrophysics Data System (ADS)

    Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele

    2010-06-01

    The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.

  18. Detection of isolated cerebrovascular beta-amyloid with Pittsburgh compound B.

    PubMed

    Greenberg, Steven M; Grabowski, Thomas; Gurol, M Edip; Skehan, Maureen E; Nandigam, R N Kaveer; Becker, John A; Garcia-Alloza, Monica; Prada, Claudia; Frosch, Matthew P; Rosand, Jonathan; Viswanathan, Anand; Smith, Eric E; Johnson, Keith A

    2008-11-01

    Imaging of cerebrovascular beta-amyloid (cerebral amyloid angiopathy) is complicated by the nearly universal overlap of this pathology with Alzheimer's pathology. We performed positron emission tomographic imaging with Pittsburgh Compound B on 42-year-old man with early manifestations of Iowa-type hereditary cerebral amyloid angiopathy, a form of the disorder with little or no plaque deposits of fibrillar beta-amyloid. The results demonstrated increased Pittsburgh Compound B retention selectively in occipital cortex, sparing regions typically labeled in Alzheimer's disease. These results offer compelling evidence that Pittsburgh Compound B positron emission tomography can noninvasively detect isolated cerebral amyloid angiopathy before overt signs of tissue damage such as hemorrhage or white matter lesions.

  19. Regulation of amyloid precursor protein processing by its KFERQ motif.

    PubMed

    Park, Ji-Seon; Kim, Dong-Hou; Yoon, Seung-Yong

    2016-06-01

    Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy. [BMB Reports 2016; 49(6): 337-342].

  20. Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.

    2015-09-01

    In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.

  1. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis

    NASA Astrophysics Data System (ADS)

    Dubey, Kriti; Anand, Bibin G.; Shekhawat, Dolat Singh; Kar, Karunakar

    2017-02-01

    Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.

  2. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

    PubMed

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E

    2010-09-10

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  3. Curcumin Decreases Amyloid-β Peptide Levels by Attenuating the Maturation of Amyloid-β Precursor Protein*

    PubMed Central

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-β (Aβ), the principal component of senile plaques. Aβ is an ∼4-kDa peptide generated via cleavage of the amyloid-β precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Aβ-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Aβ levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Aβ levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-β pathology. PMID:20622013

  4. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  5. Laser-induced propagation and destruction of amyloid beta fibrils.

    PubMed

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  6. Rapid deposition of amyloid in human islets transplanted into nude mice.

    PubMed

    Westermark, P; Eizirik, D L; Pipeleers, D G; Hellerström, C; Andersson, A

    1995-05-01

    Human islets of Langerhans were transplanted to the subcapsular space of the kidneys of nude mice which were either normoglycaemic or made diabetic with alloxan. After 2 weeks, the transplants were processed for light and electron microscopical analyses. In all transplants, islet amyloid polypeptide (IAPP)-positive cells were found with highest frequency in normoglycaemic animals. IAPP-positive amyloid was seen in 16 out of 22 transplants (73%), either by polarisation microscopy after Congo red staining or by immune electron microscopy. At variance with previous findings of amyloid deposits exclusively in the extracellular space of islets of non-insulin-dependent diabetic patients, the grafted islets contained intracellular amyloid deposits as well. There was no clear difference in occurrence of amyloid between diabetic and non-diabetic animals. The present study indicates that human islets transplanted into nude mice very soon present IAPP-positive amyloid deposits. This technique may provide a valuable model for studies of the pathogenesis of islet amyloid and its impact on islet cell function.

  7. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease.

    PubMed

    Helmfors, Linda; Boman, Andrea; Civitelli, Livia; Nath, Sangeeta; Sandin, Linnea; Janefjord, Camilla; McCann, Heather; Zetterberg, Henrik; Blennow, Kaj; Halliday, Glenda; Brorsson, Ann-Christin; Kågedal, Katarina

    2015-11-01

    The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease. Copyright © 2015. Published by Elsevier Inc.

  8. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    PubMed

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for <1% of all patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows

  9. Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

    NASA Astrophysics Data System (ADS)

    Bernini, Fabrizio; Malferrari, Daniele; Pignataro, Marcello; Bortolotti, Carlo Augusto; di Rocco, Giulia; Lancellotti, Lidia; Brigatti, Maria Franca; Kayed, Rakez; Borsari, Marco; Del Monte, Federica; Castellini, Elena

    2016-10-01

    The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.

  10. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta.

    PubMed

    Holton, Janice L; Lashley, Tammaryn; Ghiso, Jorge; Braendgaard, Hans; Vidal, Ruben; Guerin, Christopher J; Gibb, Graham; Hanger, Diane P; Rostagno, Agueda; Anderton, Brian H; Strand, Catherine; Ayling, Hilary; Plant, Gordon; Frangione, Blas; Bojsen-Møller, Marie; Revesz, Tamas

    2002-03-01

    Familial Danish dementia (FDD) is pathologically characterized by widespread cerebral amyloid angiopathy (CAA), parenchymal protein deposits, and neurofibrillary degeneration. FDD is associated with a mutation of the BRI2 gene located on chromosome 13. In FDD there is a decamer duplication, which abolishes the normal stop codon, resulting in an extended precursor protein and the release of an amyloidogenic fragment, ADan. The aim of this study was to describe the major neuropathological changes in FDD and to assess the distribution of ADan lesions, neurofibrillary pathology, glial, and microglial response using conventional techniques, immunohistochemistry, confocal microscopy, and immunoelectron microscopy. We showed that ADan is widely distributed in the central nervous system (CNS) in the leptomeninges, blood vessels, and parenchyma. A predominance of parenchymal pre-amyloid (non-fibrillary) lesions was found. Abeta was also present in a proportion of both vascular and parenchymal lesions. There was severe neurofibrillary pathology, and tau immunoblotting revealed a triplet electrophoretic migration pattern comparable with PHF-tau. FDD is a novel form of CNS amyloidosis with extensive neurofibrillary degeneration occurring with parenchymal, predominantly pre-amyloid rather than amyloid, deposition. These findings support the notion that parenchymal amyloid fibril formation is not a prerequisite for the development of neurofibrillary tangles. The significance of concurrent ADan and Abeta deposition in FDD is under further investigation.

  11. Diagnostic utility and limitations of glutamine synthetase and serum amyloid-associated protein immunohistochemistry in the distinction of focal nodular hyperplasia and inflammatory hepatocellular adenoma.

    PubMed

    Joseph, Nancy M; Ferrell, Linda D; Jain, Dhanpat; Torbenson, Michael S; Wu, Tsung-Teh; Yeh, Matthew M; Kakar, Sanjay

    2014-01-01

    Inflammatory hepatocellular adenoma can show overlapping histological features with focal nodular hyperplasia, including inflammation, fibrous stroma, and ductular reaction. Expression of serum amyloid-associated protein in inflammatory hepatocellular adenoma and map-like pattern of glutamine synthetase in focal nodular hyperplasia can be helpful in this distinction, but the pitfalls and limitations of these markers have not been established. Morphology and immunohistochemistry were analyzed in 54 inflammatory hepatocellular adenomas, 40 focal nodular hyperplasia, and 3 indeterminate lesions. Morphological analysis demonstrated that nodularity, fibrous stroma, dystrophic blood vessels, and ductular reaction were more common in focal nodular hyperplasia, while telangiectasia, hemorrhage, and steatosis were more common in inflammatory hepatocellular adenoma, but there was frequent overlap of morphological features. The majority of inflammatory hepatocellular adenomas demonstrated perivascular and/or patchy glutamine synthetase staining (73.6%), while the remaining cases had diffuse (7.5%), negative (3.8%), or patchy pattern of staining (15%) that showed subtle differences from the classic map-like staining pattern and was designated as pseudo map-like staining. Positive staining for serum amyloid-associated protein was seen in the majority of inflammatory hepatocellular adenomas (92.6%) and in the minority of focal nodular hyperplasia (17.5%). The glutamine synthetase staining pattern was map-like in 90% of focal nodular hyperplasia cases, with the remaining 10% of cases showing pseudo map-like staining. Three cases were labeled as indeterminate and showed focal nodular hyperplasia-like morphology but lacked map-like glutamine synthetase staining pattern; these cases demonstrated a patchy pseudo map-like glutamine synthetase pattern along with the expression of serum amyloid-associated protein. Our results highlight the diagnostic errors that can be caused by variant

  12. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    PubMed Central

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-01-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  13. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    NASA Astrophysics Data System (ADS)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  14. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth.

    PubMed

    Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-28

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  15. PSD-93 Attenuates Amyloid-β-Mediated Cognitive Dysfunction by Promoting the Catabolism of Amyloid-β.

    PubMed

    Yu, Linjie; Liu, Yi; Yang, Hui; Zhu, Xiaolei; Cao, Xiang; Gao, Jun; Zhao, Hui; Xu, Yun

    2017-01-01

    Amyloid-β (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Postsynaptic density protein 93 (PSD-93) is a key scaffolding protein enriched at postsynaptic sites. The aim of the present study was to examine whether PSD-93 overexpression could alleviate Aβ-induced cognitive dysfunction in APPswe/PS1dE9 (APP/PS1) mice by reducing Aβ levels in the brain. The level of PSD-93 was significantly decreased in the hippocampus of 6-month-old APP/PS1 mice compared with that in wild-type mice. Following lentivirus-mediated PSD-93 overexpression, cognitive function, synaptic function, and amyloid burden were investigated. The open field test, Morris water maze test, and fear condition test revealed that PSD-93 overexpression ameliorated spatial memory deficits in APP/PS1 mice. The facilitation of long-term potentiation induction was observed in APP/PS1 mice after PSD-93 overexpression. The expression of somatostatin receptor 4 (SSTR4) and neprilysin was increased, while the amyloid plaque load and Aβ levels were decreased in the brains of APP/PS1 mice. Moreover, PSD-93 interacted with SSTR4 and affected the level of SSTR4 on cell membrane, which was associated with the ubiquitination. Together, these findings suggest that PSD-93 attenuates spatial memory deficits and decreases amyloid levels in APP/PS1 mice, which might be associated with Aβ catabolism, and overexpression of PSD-93 might be a potential therapy for AD.

  16. Protein-induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Wolfe; M Calabrese; A Nath

    2011-12-31

    The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less

  17. Protein-induced photophysical changes to the amyloid indicator dye thioflavin T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Leslie S.; Calabrese, Matthew F.; Nath, Abhinav

    2010-10-04

    The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less

  18. The amyloid interactome: Exploring protein aggregation

    PubMed Central

    Mastrokalou, Chara V.; Hamodrakas, Stavros J.

    2017-01-01

    Protein-protein interactions are the quintessence of physiological activities, but also participate in pathological conditions. Amyloid formation, an abnormal protein-protein interaction process, is a widespread phenomenon in divergent proteins and peptides, resulting in a variety of aggregation disorders. The complexity of the mechanisms underlying amyloid formation/amyloidogenicity is a matter of great scientific interest, since their revelation will provide important insight on principles governing protein misfolding, self-assembly and aggregation. The implication of more than one protein in the progression of different aggregation disorders, together with the cited synergistic occurrence between amyloidogenic proteins, highlights the necessity for a more universal approach, during the study of these proteins. In an attempt to address this pivotal need we constructed and analyzed the human amyloid interactome, a protein-protein interaction network of amyloidogenic proteins and their experimentally verified interactors. This network assembled known interconnections between well-characterized amyloidogenic proteins and proteins related to amyloid fibril formation. The consecutive extended computational analysis revealed significant topological characteristics and unraveled the functional roles of all constituent elements. This study introduces a detailed protein map of amyloidogenicity that will aid immensely towards separate intervention strategies, specifically targeting sub-networks of significant nodes, in an attempt to design possible novel therapeutics for aggregation disorders. PMID:28249044

  19. Optical properties of large amyloid spherulites

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Sharp, James

    2012-02-01

    Amyloid Spherulites, consisting of a central core surrounded by radially oriented birefringent fibres (known as amyloid fibrils), have been found to occur in certain pathologies, such as Alzheimer's disease. Typically ˜5 30 m in diameter they can be observed by optical microscopy and easily distinguished by their characteristic maltese cross pattern, seen when viewed under crossed polarisers. Here we report the existence of much larger amyloid spherulites formed from bovine insulin, which grow under a particular set of conditions (10 mgml-1 BPI, pH ˜2.8, T ˜67^oC, 25mM NaCl) to diameters of up to ˜500 m. These huge spherulites when viewed under crossed polarisers in addition to the maltese cross feature beautiful coloured rings which change with the size and density of the spherulite. Such rings have been observed in other systems such as fish eye lenses and nematic liquid crystal drops and appear to be related to the rather unusual radially oriented birefringence of their internal structure. Using a ray tracing technique we model the optical path of rays through these spherulites. Taking into account refraction and the radially oriented birefringence of the amyloid fibrils, we elucidate the origin of these beautiful patterns.

  20. The Fusobacterium nucleatum Outer Membrane Protein RadD Is an Arginine-Inhibitable Adhesin Required for Inter-Species Adherence and the Structured Architecture of Multi-Species Biofilm

    PubMed Central

    Kaplan, Christopher W.; Lux, Renate; Haake, Susan Kinder; Shi, Wenyuan

    2009-01-01

    Summary A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central “bridging organisms” in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum. Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive “early oral colonizers”. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation. PMID:19007407

  1. Amino group of salicylic acid exhibits enhanced inhibitory potential against insulin amyloid fibrillation with protective aptitude toward amyloid induced cytotoxicity.

    PubMed

    Zaman, Masihuz; Khan, Mohsin Vahid; Zakariya, Syed Mohammad; Nusrat, Saima; Meeran, Syed Mustapha; Alam, Parvez; Ajmal, Mohammad Rehan; Wahiduzzaman, Wahiduzzaman; Shahein, Yasser E; Abouelella, Amira M; Khan, Rizwan Hasan

    2018-05-01

    Protein misfolding and aggregation lead to amyloid generation that in turn may induce cell membrane disruption and leads to cell apoptosis. In an effort to prevent or treat amyloidogenesis, large number of studies has been paying attention on breakthrough of amyloid inhibitors. In the present work, we aim to access the effect of two drugs, that is, acetylsalicylic acid and 5-amino salicylic acid on insulin amyloids by using various biophysical, imaging, cell viability assay, and computational approaches. We established that both drugs reduce the turbidity, light scattering and fluorescence intensity of amyloid indicator dye thioflavin T. Premixing of drugs with insulin inhibited the nucleation phase and inhibitory potential was boosted by increasing the concentration of the drug. Moreover, addition of drugs at the studied concentrations attenuated the insulin fibril induced cytotoxicity in breast cancer cell line MDA-MB-231. Our results highlight the amino group of salicylic acid exhibited enhanced inhibitory effects on insulin fibrillation in comparison to acetyl group. It may be due to presence of amino group that helps it to prolong the nucleation phase with strong binding as well as disruption of aromatic and hydrophobic stacking that plays a key role in amyloid progression. © 2017 Wiley Periodicals, Inc.

  2. C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice

    PubMed Central

    Sawashita, Jinko; Zhang, Beiru; Hasegawa, Kazuhiro; Mori, Masayuki; Naiki, Hironobu; Kametani, Fuyuki; Higuchi, Keiichi

    2015-01-01

    In murine senile amyloidosis, misfolded serum apolipoprotein (apo) A-II deposits as amyloid fibrils (AApoAII) in a process associated with aging. Mouse strains carrying type C apoA-II (APOA2C) protein exhibit a high incidence of severe systemic amyloidosis. Previously, we showed that N- and C-terminal sequences of apoA-II protein are critical for polymerization into amyloid fibrils in vitro. Here, we demonstrate that congenic mouse strains carrying type F apoA-II (APOA2F) protein, which contains four amino acid substitutions in the amyloidogenic regions of APOA2C, were absolutely resistant to amyloidosis, even after induction of amyloidosis by injection of AApoAII. In vitro fibril formation tests showed that N- and C-terminal APOA2F peptides did not polymerize into amyloid fibrils. Moreover, a C-terminal APOA2F peptide was a strong inhibitor of nucleation and extension of amyloid fibrils during polymerization. Importantly, after the induction of amyloidosis, we succeeded in suppressing amyloid deposition in senile amyloidosis-susceptible mice by treatment with the C-terminal APOA2F peptide. We suggest that the C-terminal APOA2F peptide might inhibit further extension of amyloid fibrils by blocking the active ends of nuclei (seeds). We present a previously unidentified model system for investigating inhibitory mechanisms against amyloidosis in vivo and in vitro and believe that this system will be useful for the development of novel therapies. PMID:25675489

  3. Mouse senile amyloid fibrils deposited in skeletal muscle exhibit amyloidosis-enhancing activity.

    PubMed

    Qian, Jinze; Yan, Jingmin; Ge, Fengxia; Zhang, Beiru; Fu, Xiaoying; Tomozawa, Hiroshi; Sawashita, Jinko; Mori, Masayuki; Higuchi, Keiichi

    2010-05-20

    Amyloidosis describes a group of protein folding diseases in which amyloid proteins are abnormally deposited in organs and/or tissues as fine fibrils. Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (apoA-II) deposits as amyloid fibrils (AApoAII) and can be transmitted from one animal to another both by the feces and milk excreted by mice with amyloidosis. Thus, mouse AApoAII amyloidosis has been demonstrated to be a "transmissible disease". In this study, to further characterize the transmissibility of amyloidosis, AApoAII amyloid fibrils were injected into transgenic Apoa2(c)Tg(+/-) and normal R1.P1-Apoa2(c) mice to induce AApoAII systemic amyloidosis. Two months later, AApoAII amyloid deposits were found in the skeletal muscles of amyloid-affected mice, primarily in the blood vessels and in the interstitial tissues surrounding muscle fibers. When amyloid fibrils extracted from the skeletal muscles were subjected to Western blot analysis, apoA-II was detected. Amyloid fibril fractions isolated from the muscles not only demonstrated the structure of amyloid fibrils but could also induce amyloidosis in young mice depending on its fibril conformation. These findings present a possible pathogenesis of amyloidosis: transmission of amyloid fibril conformation through muscle, and shed new light on the etiology involved in amyloid disorders.

  4. Novel β-amyloid aggregation inhibitors possessing a turn mimic.

    PubMed

    Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki

    2015-04-01

    Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Nucleation and growth of a bacterial functional amyloid at single fiber resolution

    PubMed Central

    Feuillie, Cécile; Jonckheere, Wim; Valotteau, Claire; Dufrêne, Yves F.; Remaut, Han

    2017-01-01

    Curli are functional amyloids produced by proteobacteria like Escherichia coli, as part of the extracellular matrix that holds cells together into biofilms. The molecular events during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single fiber level, we show that curli display polar growth, and detect two kinetic regimes of fiber elongation. Single fibers exhibit stop-and-go dynamics characterized by bursts of steady-state growth alternated with periods of stagnation. At high subunit concentrations fibers show constant, unperturbed burst growth. Curli follow a one-step nucleation process, where monomers contemporaneously fold and oligomerize into minimal fiber units that have growth characteristics identical to the mature fibrils. Kinetic data and interaction studies of curli fibrillation in the presence of the natural inhibitor CsgC show the inhibitor binds curli fibers and predominantly acts at the level of fiber elongation. PMID:28628096

  6. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    PubMed

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-01-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. © 2016 by the Association of Clinical Scientists, Inc.

  7. Comorbid rat model of ischemia and β-amyloid toxicity: striatal and cortical degeneration.

    PubMed

    Amtul, Zareen; Whitehead, Shawn N; Keeley, Robin J; Bechberger, John; Fisher, Alicia L; McDonald, Robert J; Naus, Christian C; Munoz, David G; Cechetto, David F

    2015-01-01

    Levels of cerebral amyloid, presumably β-amyloid (Abeta), toxicity and the incidence of cortical and subcortical ischemia increases with age. However, little is known about the severe pathological condition and dementia that occur as a result of the comorbid occurrence of this vascular risk factor and Abeta toxicity. Clinical studies have indicated that small ischemic lesions in the striatum are particularly important in generating dementia in combination with minor amyloid lesions. These cognitive deficits are highly likely to be caused by changes in the cortex. In this study, we examined the viability and morphological changes in microglial and neuronal cells, gap junction proteins (connexin43) and neuritic/axonal retraction (Fer Kinase) in the striatum and cerebral cortex using a comorbid rat model of striatal injections of endothelin-1 (ET1) and Abeta toxicity. The results demonstrated ventricular enlargement, striatal atrophy, substantial increases in β-amyloid, ramified microglia and increases in neuritic retraction in the combined models of stroke and Abeta toxicity. Changes in connexin43 occurred equally in both groups of Abeta-treated rats, with and without focal ischemia. Although previous behavioral tests demonstrated impairment in memory and learning, the visual discrimination radial maze task did not show significant difference, suggesting the cognitive impairment in these models is not related to damage to the dorsolateral striatum. These results suggest an insight into the relationship between cortical/striatal atrophy, pathology and functional impairment. © 2014 International Society of Neuropathology.

  8. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia

    PubMed Central

    Jansen, Willemijn J.; Ossenkoppele, Rik; Knol, Dirk L.; Tijms, Betty M.; Scheltens, Philip; Verhey, Frans R. J.; Visser, Pieter Jelle

    2015-01-01

    IMPORTANCE Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOEε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and

  9. Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease

    PubMed Central

    Dean, Douglas C.; Hurley, Samuel A.; Kecskemeti, Steven R.; O’Grady, J. Patrick; Canda, Cristybelle; Davenport-Sis, Nancy J.; Carlsson, Cynthia M.; Zetterberg, Henrik; Blennow, Kaj; Asthana, Sanjay; Sager, Mark A.; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.

    2016-01-01

    IMPORTANCE The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging. OBJECTIVE To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content. DESIGN, SETTING, AND PARTICIPANTS Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals. MAIN OUTCOMES AND MEASURES Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction. RESULTS The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas

  10. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and

  11. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. As a result, we demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single

  12. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    DOE PAGES

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; ...

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinctmore » clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. As a result, we demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single

  13. Elasticity in Physically Cross-Linked Amyloid Fibril Networks.

    PubMed

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-13

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β-lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G∼c^{2.2} and G∼c^{2.5} for semiflexible and rigid fibrils, respectively) and ionic strength (G∼I^{4.4} and G∼I^{3.8} for β-lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  14. Coenzyme Q10 Protects Human Endothelial Cells from β-Amyloid Uptake and Oxidative Stress-Induced Injury

    PubMed Central

    Durán-Prado, Mario; Frontiñán, Javier; Santiago-Mora, Raquel; Peinado, Juan Ramón; Parrado-Fernández, Cristina; Gómez-Almagro, María Victoria; Moreno, María; López-Domínguez, José Alberto; Villalba, José Manuel; Alcaín, Francisco J.

    2014-01-01

    Neuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells. We analyzed the protective effect of CoQ against Aβ-induced injury in human umbilical vein endothelial cells (HUVECs) using fluorescence and confocal microscopy, biochemical techniques and RMN-based metabolomics. Our results show that CoQ pretreatment of HUVECs delayed Aβ incorporation into the plasma membrane and mitochondria. Moreover, CoQ reduced the influx of extracellular Ca2+, and Ca2+ release from mitochondria due to opening the mitochondrial transition pore after β-amyloid administration, in addition to decreasing O2 .− and H2O2 levels. Pretreatment with CoQ also prevented ß-amyloid-induced HUVECs necrosis and apoptosis, restored their ability to proliferate, migrate and form tube-like structures in vitro, which is mirrored by a restoration of the cell metabolic profile to control levels. CoQ protected endothelial cells from Aβ-induced injury at physiological concentrations in human plasma after oral CoQ supplementation and thus could be a promising molecule to protect endothelial cells against amyloid angiopathy. PMID:25272163

  15. Amyloid fibril protein AA in Papua New Guinean amyloidosis.

    PubMed Central

    Anders, R F; Price, M A; Wilkey, I S; Husby, G; Takitaki, F; Natvig, J B; McAdam, K P

    1976-01-01

    In this study of protein composition of amyloid fibrils isolated from eight patients representative of the spectrum of amyloidosis found in Papua New Guinea has been investigated. All fibril preparations, including three from patients with amyloidosis secondary to lepromatous leprosy and one from an unusual juvenile case of primary amyloidosis, contained the non-immunogobulin amyloid protein, protein AA. However, only 44% of thirty-six amyloid patients had detectable levels of the protein AA-related serum component, protein SAA. Alkali-degraded material from each of the fibril preparations failed to react in double immunodiffusion test with antiserum to the amyloid-related light chain VgammaV, but evidence was found for this immunoglobulin light chain-specificity in the serum of one patient. Images FIG. 1 PMID:820500

  16. Amyloid fibril protein AA in Papua New Guinean amyloidosis.

    PubMed

    Anders, R F; Price, M A; Wilkey, I S; Husby, G; Takitaki, F; Natvig, J B; McAdam, K P

    1976-04-01

    In this study of protein composition of amyloid fibrils isolated from eight patients representative of the spectrum of amyloidosis found in Papua New Guinea has been investigated. All fibril preparations, including three from patients with amyloidosis secondary to lepromatous leprosy and one from an unusual juvenile case of primary amyloidosis, contained the non-immunogobulin amyloid protein, protein AA. However, only 44% of thirty-six amyloid patients had detectable levels of the protein AA-related serum component, protein SAA. Alkali-degraded material from each of the fibril preparations failed to react in double immunodiffusion test with antiserum to the amyloid-related light chain VgammaV, but evidence was found for this immunoglobulin light chain-specificity in the serum of one patient.

  17. Amyloid precursor protein modulates macrophage phenotype and diet-dependent weight gain

    PubMed Central

    Puig, Kendra L.; Brose, Stephen A.; Zhou, Xudong; Sens, Mary A.; Combs, Gerald F.; Jensen, Michael D.; Golovko, Mikhail Y.; Combs, Colin K.

    2017-01-01

    It is well known that mutations in the gene coding for amyloid precursor protein are responsible for autosomal dominant forms of Alzheimer’s disease. Proteolytic processing of the protein leads to a number of metabolites including the amyloid beta peptide. Although brain amyloid precursor protein expression and amyloid beta production are associated with the pathophysiology of Alzheimer’s disease, it is clear that amyloid precursor protein is expressed in numerous cell types and tissues. Here we demonstrate that amyloid precursor protein is involved in regulating the phenotype of both adipocytes and peripheral macrophages and is required for high fat diet-dependent weight gain in mice. These data suggest that functions of this protein include modulation of the peripheral immune system and lipid metabolism. This biology may have relevance not only to the pathophysiology of Alzheimer’s disease but also diet-associated obesity. PMID:28262782

  18. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    PubMed

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  19. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer's disease.

    PubMed

    Chételat, Gaël; Ossenkoppele, Rik; Villemagne, Victor L; Perrotin, Audrey; Landeau, Brigitte; Mézenge, Florence; Jagust, William J; Dore, Vincent; Miller, Bruce L; Egret, Stéphanie; Seeley, William W; van der Flier, Wiesje M; La Joie, Renaud; Ames, David; van Berckel, Bart N M; Scheltens, Philip; Barkhof, Frederik; Rowe, Christopher C; Masters, Colin L; de La Sayette, Vincent; Bouwman, Femke; Rabinovici, Gil D

    2016-09-01

    See O'Sullivan and Vann (doi:10.1093/aww166) for a scientific commentary on this article.About 15% of patients clinically diagnosed with Alzheimer's disease do not show high tracer retention on amyloid positon emission tomography imaging. The present study investigates clinical and demographic features, patterns of brain atrophy and hypometabolism and longitudinal clinical trajectories of these patients. Forty amyloid-negative patients carrying a pre-scan diagnosis of Alzheimer's disease dementia from four centres were included (11/29 females/males; mean age = 67 ± 9). Detailed clinical histories, including the clinical diagnoses before and after the amyloid scan and at follow-up, were collected. Patients were classified according to their pre-scan clinical phenotype as amnestic (memory predominant), non-amnestic (predominant language, visuospatial or frontal symptoms), or non-specific (diffuse cognitive deficits). Demographic, clinical, neuropsychological, magnetic resonance imaging and (18)F-fluorodeoxyglucose positon emission tomography data were compared to 27 amyloid-positive typical Alzheimer's disease cases (14/13 females/males; mean age = 71 ± 10) and 29 amyloid-negative controls (15/14 females/males; mean age = 69 ± 12) matched for age, gender and education. There were 21 amnestic, 12 non-amnestic, and seven non-specific amyloid-negative Alzheimer's disease cases. Amyloid-negative subgroups did not differ in age, gender or education. After the amyloid scan, clinicians altered the diagnosis in 68% of amyloid-negative patients including 48% of amnestic versus 94% of non-amnestic and non-specific cases. Amnestic amyloid-negative cases were most often reclassified as frontotemporal dementia, non-amnestic as frontotemporal dementia or corticobasal degeneration, and non-specific as dementia with Lewy bodies or unknown diagnosis. The longer-term clinical follow-up was consistent with the post-scan diagnosis in most cases (90%), including in amnestic amyloid

  20. Methicillin-Susceptible Staphylococcus aureus Endocarditis Isolates Are Associated With Clonal Complex 30 Genotype and a Distinct Repertoire of Enterotoxins and Adhesins

    PubMed Central

    Nienaber, Juhsien J.C.; Sharma Kuinkel, Batu K.; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H.; Barriere, Steve; Woods, Christopher W.; Chu, Vivian H.; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G.Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R.; Reller, L. Barth

    2011-01-01

    Background. Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. Methods. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. Results. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). Conclusions. MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study. PMID:21844296

  1. Inhibition of insulin amyloid fibrillation by Morin hydrate.

    PubMed

    Patel, Palak; Parmar, Krupali; Das, Mili

    2018-03-01

    We report here the inhibition of amyloid fibrillation of human insulin in vitro by Morin hydrate, a naturally occurring small molecule. Using spectroscopic assays and transmission electron microscopy, we found that Morin hydrate effectively inhibits insulin amyloid fibrillation in a dose dependent manner with more than 80% inhibition occurring even at only a 1:1 concentration. As suggested by fluorescence spectroscopic titration studies, Morin hydrate binds to insulin with a fairly strong affinity of -26.436kJmol -1 . Circular dichroism (CD) spectroscopy was used to analyse structural changes of insulin in the presence of Morin hydrate demonstrating the ability of Morin hydrate to bind with the native monomeric protein and/or its near native state, intermediate oligomeric species and amyloid fibrils. Based on computational docking and molecular dynamics study, we propose that Morin hydrate binds to residues having greater aggregation propensity and prevent structural and/or conformational changes leading to amyloid fibrillation. Morin hydrate should also bind to fibrils by hydrogen bonding and/or hydrophobic forces throughout the surface, stabilize them and inhibit the release of oligomeric species which could be nuclei or template for further fibrillation. Overall results provide an insight into the mechanism of inhibition of insulin amyloid fibrillation by Morin hydrate. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microcin Amyloid Fibrils A Are Reservoir of Toxic Oligomeric Species

    PubMed Central

    Shahnawaz, Mohammad; Soto, Claudio

    2012-01-01

    Microcin E492 (Mcc), a low molecular weight bacteriocin produced by Klebsiella pneumoniae RYC492, has been shown to exist in two forms: soluble forms that are believed to be toxic to the bacterial cell by forming pores and non-toxic fibrillar forms that share similar biochemical and biophysical properties with amyloids associated with several human diseases. Here we report that fibrils polymerized in vitro from soluble forms sequester toxic species that can be released upon changing environmental conditions such as pH, ionic strength, and upon dilution. Our results indicate that basic pH (≥8.5), low NaCl concentrations (≤50 mm), and dilution (>10-fold) destabilize Mcc fibrils into more soluble species that are found to be toxic to the target cells. Additionally, we also found a similar conversion of non-toxic fibrils into highly toxic oligomers using Mcc aggregates produced in vivo. Moreover, the soluble protein released from fibrils is able to rapidly polymerize into amyloid fibrils under fibril-forming conditions and to efficiently seed aggregation of monomeric Mcc. Our findings indicate that fibrillar forms of Mcc constitute a reservoir of toxic oligomeric species that is released into the medium upon changing the environmental conditions. These findings may have substantial implications to understand the dynamic process of interconversion between toxic and non-toxic aggregated species implicated in protein misfolding diseases. PMID:22337880

  3. Functional Analysis of the Accessory Protein TapA in Bacillus subtilis Amyloid Fiber Assembly

    PubMed Central

    Romero, Diego; Vlamakis, Hera; Losick, Richard

    2014-01-01

    Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules. PMID:24488317

  4. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly.

    PubMed

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2014-04-01

    Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.

  5. Leptin Regulates Amyloid β Production Via the γ-Secretase Complex

    PubMed Central

    Niedowicz, Dana M.; Studzinski, Christa M.; Weidner, Adam M.; Platt, Thomas L.; Kingry, Kristen N.; Beckett, Tina L.; Bruce-Keller, Annadora J.; Keller, Jeffrey N.; Murphy, M. Paul

    2013-01-01

    Alzheimer’s Disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3 million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD. PMID:23274884

  6. Leptin regulates amyloid β production via the γ-secretase complex.

    PubMed

    Niedowicz, Dana M; Studzinski, Christa M; Weidner, Adam M; Platt, Thomas L; Kingry, Kristen N; Beckett, Tina L; Bruce-Keller, Annadora J; Keller, Jeffrey N; Murphy, M Paul

    2013-03-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al. (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Adherence of Non-O157 Shiga Toxin–Producing Escherichia coli to Bovine Recto-anal Junction Squamous Epithelial Cells Appears to Be Mediated by Mechanisms Distinct from Those Used by O157

    PubMed Central

    Hovde, Carolyn J.; John, Manohar

    2013-01-01

    Abstract This study presents evidence that the pattern (diffuse or aggregative) of adherence of clinically relevant non-O157 Shiga toxin–producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells is similar to that of E. coli O157, although the mechanisms of adherence appear to be distinct. Our results further suggest that novel adhesins, and not Intimin, are likely involved in non-O157 STEC adherence to bovine recto-anal junction squamous epithelial cells. These findings have important implications for the development of efficacious modalities for blocking adherence of non-O157 STEC to bovine gastrointestinal epithelial cells. PMID:23510495

  8. Molecular organization of amyloid protofilament-like assembly of betabellin 15D: helical array of beta-sandwiches.

    PubMed Central

    Inouye, Hideyo; Bond, Jeremy E; Deverin, Sean P; Lim, Amareth; Costello, Catherine E; Kirschner, Daniel A

    2002-01-01

    Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array. PMID:12202394

  9. Neurotoxicity of a Fragment of the Amyloid Precursor Associated with Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Dawes, Linda R.; Fisher, Shannon; Villa-Komaroff, Lydia; Oster-Granite, Mary Lou; Neve, Rachael L.

    1989-07-01

    Amyloid deposition in senile plaques and the cerebral vasculature is a marker of Alzheimer's disease. Whether amyloid itself contributes to the neurodegenerative process or is simply a by-product of that process is unknown. Pheochromocytoma (PC12) and fibroblast (NIH 3T3) cell lines were transfected with portions of the gene for the human amyloid precursor protein. Stable PC12 cell transfectants expressing a specific amyloid-containing fragment of the precursor protein gradually degenerated when induced to differentiate into neuronal cells with nerve growth factor. Conditioned medium from these cells was toxic to neurons in primary hippocampal cultures, and the toxic agent could be removed by immunoabsorption with an antibody directed against the amyloid polypeptide. Thus, a peptide derived from the amyloid precursor may be neurotoxic.

  10. Characterization of the modular design of the autolysin/adhesin Aaa from Staphylococcus aureus.

    PubMed

    Hirschhausen, Nina; Schlesier, Tim; Peters, Georg; Heilmann, Christine

    2012-01-01

    Staphylococcus aureus is a frequent cause of serious and life-threatening infections, such as endocarditis, osteomyelitis, pneumonia, and sepsis. Its adherence to various host structures is crucial for the establishment of diseases. Adherence may be mediated by a variety of adhesins, among them the autolysin/adhesins Atl and Aaa. Aaa is composed of three N-terminal repeated sequences homologous to a lysin motif (LysM) that can confer cell wall attachment and a C-terminally located cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain having bacteriolytic activity in many proteins. Here, we show by surface plasmon resonance that the LysM domain binds to fibrinogen, fibronectin, and vitronectin respresenting a novel adhesive function for this domain. Moreover, we demonstrated that the CHAP domain not only mediates the bacteriolytic activity, but also adherence to fibrinogen, fibronectin, and vitronectin, thus demonstrating for the first time an adhesive function for this domain. Adherence of an S. aureus aaa mutant and the complemented aaa mutant is slightly decreased and increased, respectively, to vitronectin, but not to fibrinogen and fibronectin, which might at least in part result from an increased expression of atl in the aaa mutant. Furthermore, an S. aureus atl mutant that showed enhanced adherence to fibrinogen, fibronectin, and endothelial cells also demonstrated increased aaa expression and production of Aaa. Thus, the redundant functions of Aaa and Atl might at least in part be interchangeable. Lastly, RT-PCR and zymographic analysis revealed that aaa is negatively regulated by the global virulence gene regulators agr and SarA. We identified novel functions for two widely distributed protein domains, LysM and CHAP, i.e. the adherence to the extracellular matrix proteins fibrinogen, fibronectin, and vitronectin. The adhesive properties of Aaa might promote S. aureus colonization of host extracellular matrix and tissue, suggesting a role for

  11. Solid-State NMR Studies of Amyloid Materials: A Protocol to Define an Atomic Model of Aβ(1-42) in Amyloid Fibrils.

    PubMed

    Xiao, Yiling; McElheny, Dan; Hoshi, Minako; Ishii, Yoshitaka

    2018-01-01

    Intense efforts have been made to understand the molecular structures of misfolded amyloid β (Aβ) in order to gain insight into the pathological mechanism of Alzheimer's disease. Solid-state NMR spectroscopy (SSNMR) is considered a primary tool for elucidating the structures of insoluble and noncrystalline amyloid fibrils and other amyloid assemblies. In this chapter, we describe a detailed protocol to obtain the first atomic model of the 42-residue human Aβ peptide Aβ(1-42) in structurally homogeneous amyloid fibrils from our recent SSNMR study (Nat Struct Mol Biol 22:499-505, 2015). Despite great biological and clinical interest in Aβ(1-42) fibrils, their structural details have been long-elusive until this study. The protocol is divided into four sections. First, the solid-phase peptide synthesis (SPPS) and purification of monomeric Aβ(1-42) is described. We illustrate a controlled incubation method to prompt misfolding of Aβ(1-42) into homogeneous amyloid fibrils in an aqueous solution with fragmented Aβ(1-42) fibrils as seeds. Next, we detail analysis of Aβ(1-42) fibrils by SSNMR to obtain structural restraints. Finally, we describe methods to construct atomic models of Aβ(1-42) fibrils based on SSNMR results through two-stage molecular dynamics calculations.

  12. Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis.

    PubMed

    Nallapareddy, Sreedhar R; Singh, Kavindra V; Murray, Barbara E

    2008-09-01

    Enterococcus faecium is a multidrug-resistant opportunist causing difficult-to-treat nosocomial infections, including endocarditis, but there are no reports experimentally demonstrating E. faecium virulence determinants. Our previous studies showed that some clinical E. faecium isolates produce a cell wall-anchored collagen adhesin, Acm, and that an isogenic acm deletion mutant of the endocarditis-derived strain TX0082 lost collagen adherence. In this study, we show with a rat endocarditis model that TX0082 Deltaacm::cat is highly attenuated versus wild-type TX0082, both in established (72 h) vegetations (P < 0.0001) and for valve colonization 1 and 3 hours after infection (P or=50-fold reduction relative to an Acm producer) were found in three of these five nonadherent isolates, including the sequenced strain TX0016, by quantitative reverse transcription-PCR, indicating that acm transcription is downregulated in vitro in these isolates. However, examination of TX0016 cells obtained directly from infected rat vegetations by flow cytometry showed that Acm was present on 40% of cells grown during infection. Finally, we demonstrated a significant reduction in E. faecium collagen adherence by affinity-purified anti-Acm antibodies from E. faecium endocarditis patient sera, suggesting that Acm may be a potential immunotarget for strategies to control this emerging pathogen.

  13. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  14. Amyloid fibrils as a nanoscaffold for enzyme immobilization.

    PubMed

    Pilkington, Sarah M; Roberts, Sarah J; Meade, Susie J; Gerrard, Juliet A

    2010-01-01

    Amyloid fibrils are a misfolded state, formed by many proteins when subjected to denaturing conditions. Their constituent amino acids make them ideally suited as a readily functionalized nanoscaffold for enzyme immobilization and their strength, stability, and nanometer size are attractive features for exploitation in the creation of new bionanomaterials. We report successful functionalization of amyloid fibrils by conjugation to glucose oxidase (GOD) using glutaraldehyde. GOD retained activity upon attachment and successful cross-linking was determined using electrophoresis, centrifugation, sucrose gradient centrifugation, and TEM. The resulting functionalized enzyme scaffold was then incorporated into a model poly(vinyl alcohol) (PVOH) film, to create a new bionanomaterial. The antibacterial effect of the functionalized film was then tested on E. coli, the growth of which was inhibited, demonstrating the incorporation of GOD antibacterial activity into the PVOH film. The incorporation of the GOD-functionalized amyloid fibrils into PVOH provides an excellent 'proof of concept' model for the creation of a new bionanomaterial using a functionalized amyloid fibril scaffold.

  15. Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide.

    PubMed

    Pilkington, Emily H; Gustafsson, Ove J R; Xing, Yanting; Hernandez-Fernaud, Juan; Zampronio, Cleidi; Kakinen, Aleksandr; Faridi, Ava; Ding, Feng; Wilson, Paul; Ke, Pu Chun; Davis, Thomas P

    2018-05-16

    Amyloids may be regarded as native nanomaterials that form in the presence of complex protein mixtures. By drawing an analogy with the physicochemical properties of nanoparticles in biological fluids, we hypothesized that amyloids should form a protein corona in vivo that would imbue the underlying amyloid with a modified biological identity. To explore this hypothesis, we characterized the protein corona of human islet amyloid polypeptide (IAPP) fibrils in fetal bovine serum using two complementary methodologies developed herein: quartz crystal microbalance and "centrifugal capture", coupled with nanoliquid chromatography tandem mass spectroscopy. Clear evidence for a significant protein corona was obtained. No trends were identified for amyloid corona proteins based on their physicochemical properties, whereas strong binding with IAPP fibrils occurred for linear proteins or multidomain proteins with structural plasticity. Proteomic analysis identified amyloid-enriched proteins that are known to play significant roles in mediating cellular machinery and processing, potentially leading to pathological outcomes and therapeutic targets.

  16. Specific Triazine Herbicides Induce Amyloid-β42 Production.

    PubMed

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloϊse; Oumata, Nassima; Galons, Hervé; Lee, Jung Yeol; Chang, Young-Tae; Stϋber, Kathrin; Koch, Philipp; Fontaine, Gaëlle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-10-18

    Proteolytic cleavage of the amyloid-β protein precursor (AβPP) by secretases leads to extracellular release of amyloid-β (Aβ) peptides. Increased production of Aβ42 over Aβ40 and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifying products of the 'human chemical exposome' (HCE) able to induce Aβ42 production may be a key to understanding some of the initiating causes of AD and to generate non-genetic, chemically-induced AD animal models. A cell model was used to screen HCE libraries for Aβ42 inducers. Out of 3500+ compounds, six triazine herbicides were found that induced a β- and γ-secretases-dependent, 2-10 fold increase in the production of extracellular Aβ42 in various cell lines, primary neuronal cells, and neurons differentiated from human-induced pluripotent stem cells (iPSCs). Immunoprecipitation/mass spectrometry analyses show enhanced production of Aβ peptides cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and lower, a characteristic of AD. Neurons derived from iPSCs obtained from a familial AD (FAD) patient (AβPP K724N) produced more Aβ42 versus Aβ40 than neurons derived from healthy controls iPSCs (AβPP WT). Triazines enhanced Aβ42 production in both control and AD iPSCs-derived neurons. Triazines also shifted the cleavage pattern of alcadeinα, another γ-secretase substrate, suggesting a direct effect of triazines on γ-secretase activity. In conclusion, several widely used triazines enhance the production of toxic, aggregation prone Aβ42/Aβ43 amyloids, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in late-onset AD.

  17. Nanoparticles and amyloid systems: A fatal encounter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, Bernd

    2014-10-06

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayersmore » in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.« less

  18. Infectious particles, stress, and induced prion amyloids

    PubMed Central

    2013-01-01

    Transmissible encephalopathies (TSEs) are believed by many to arise by spontaneous conversion of host prion protein (PrP) into an infectious amyloid (PrP-res, PrPSc) without nucleic acid. Many TSE agents reside in the environment, with infection controlled by public health measures. These include the disappearance of kuru with the cessation of ritual cannibalism, the dramatic reduction of epidemic bovine encephalopathy (BSE) by removal of contaminated feed, and the lack of endemic scrapie in geographically isolated Australian sheep with susceptible PrP genotypes. While prion protein modeling has engendered an intense focus on common types of protein misfolding and amyloid formation in diverse organisms and diseases, the biological characteristics of infectious TSE agents, and their recognition by the host as foreign entities, raises several fundamental new directions for fruitful investigation such as: (1) unrecognized microbial agents in the environmental metagenome that may cause latent neurodegenerative disease, (2) the evolutionary social and protective functions of different amyloid proteins in diverse organisms from bacteria to mammals, and (3) amyloid formation as a beneficial innate immune response to stress (infectious and non-infectious). This innate process however, once initiated, can become unstoppable in accelerated neuronal aging. PMID:23633671

  19. Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces

    PubMed Central

    2017-01-01

    Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance–dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface. PMID:29284092

  20. Clinical and imaging correlates of amyloid deposition in dementia with Lewy bodies.

    PubMed

    Donaghy, Paul C; Firbank, Michael J; Thomas, Alan J; Lloyd, Jim; Petrides, George; Barnett, Nicola; Olsen, Kirsty; O'Brien, John T

    2018-04-19

    Amyloid deposition is common in dementia with Lewy bodies, but its pathophysiological significance is unclear. The objective of this study was to investigate the relationship between amyloid deposition and clinical profile, gray matter volume, and brain perfusion in dementia with Lewy bodies. Dementia with Lewy bodies (n = 37), Alzheimer's disease (n = 20), and controls (n = 20) underwent a thorough clinical assessment, 3T MRI, and early- and late-phase 18 F-Florbetapir PET-CT to assess cortical perfusion and amyloid deposition, respectively. Amyloid scans were visually categorized as positive or negative. Image analysis was carried out using statistical parametric mapping (SPM) 8. There were no significant differences between amyloid-positive and amyloid-negative dementia with Lewy bodies cases in age (P = .78), overall cognitive impairment (P = .83), level of functional impairment (P = .80), or any other clinical or cognitive scale. There were also no significant differences in hippocampal or gray matter volumes. However, amyloid-positive dementia with Lewy bodies cases had lower medial temporal lobe perfusion (P = .03) than amyloid-negative cases, although a combination of medial temporal lobe perfusion, hippocampal volume, and cognitive measures was unable to accurately predict amyloid status in dementia with Lewy bodies. Amyloid deposition was not associated with differences in clinical or neuropsychological profiles in dementia with Lewy bodies, but was associated with imaging evidence of medial temporal lobe dysfunction. The presence of amyloid in dementia with Lewy bodies cannot be identified on the basis of clinical and other imaging features and will require direct assessment via PET imaging or CSF. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf

  1. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    PubMed

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new integrated dual time-point amyloid PET/MRI data analysis method.

    PubMed

    Cecchin, Diego; Barthel, Henryk; Poggiali, Davide; Cagnin, Annachiara; Tiepolt, Solveig; Zucchetta, Pietro; Turco, Paolo; Gallo, Paolo; Frigo, Anna Chiara; Sabri, Osama; Bui, Franco

    2017-11-01

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ( 18 F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative "dual time-point" indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between age and the indexes of the

  3. Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen

    PubMed Central

    Usmani, Shariq M.; Zirafi, Onofrio; Müller, Janis; Sandi-Monroy, Nathallie; Yadav, Jay K.; Meier, Christoph; Weil, Tanja; Roan, Nadia R.; Greene, Warner C.; Walther, Paul; Nilsson, K. Peter R.; Hammarström, Per; Wetzel, Ronald; Pilcher, Christopher D.; Gagsteiger, Friedrich; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan

    2014-01-01

    Naturally occurring fragments of the abundant semen proteins prostatic acid phosphatase (PAP) and semenogelins form amyloid fibrils in vitro. These fibrils boost HIV infection and may play a key role in the spread of the AIDS pandemic. However, the presence of amyloid fibrils in semen remained to be demonstrated. Here, we use state of the art confocal and electron microscopy techniques for direct imaging of amyloid fibrils in human ejaculates. We detect amyloid aggregates in all semen samples and find that they partially consist of PAP fragments, interact with HIV particles and increase viral infectivity. Our results establish semen as a body fluid that naturally contains amyloid fibrils that are exploited by HIV to promote its sexual transmission. PMID:24691351

  4. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  5. Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: a study with familial amyloid polyneuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, M.; Hirayama, J.; Fujii, T.

    1987-03-01

    To determine whether technetium-99m-pyrophosphate (Tc-99m-PYP) scanning or two-dimensional echocardiography can detect amyloid heart disease in an earlier stage of familial amyloid polyneuropathy, 15 patients were examined. Although 10 of the 15 patients had no clinical evidence of congestive heart failure, as well as normal ventricular wall thickness and normal values for left ventricular systolic function, five (50%) of them showed mild or moderate myocardial uptake. On the other hand, none had characteristic highly refractile myocardial echoes on the two-dimensional echocardiographic images (p less than 0.01), and values for diastolic function were reduced in four of the five and normal inmore » the remaining one. In 85 control subjects, diffuse positive pyrophosphate scans of the heart were found in four (5%) of them (three with dilated cardiomyopathy and one with sarcoidosis), and highly refractile granular sparkling echoes were observed in nine (11%) (five with hypertrophic cardiomyopathy, three with aortic stenosis, and one with hypereosinophilic syndrome). We conclude that Tc-99m-PYP scanning is a more sensitive and specific method and may have the potential ability to detect amyloid heart disease in the earlier stage of familial amyloid polyneuropathy than two-dimensional echocardiography.« less

  6. Detection of AA-type amyloid protein in labial salivary glands.

    PubMed

    Sacsaquispe, Sonia-Julia; Antúnez-de Mayolo, Eleazar-Antonio; Vicetti, Rodolfo; Delgado, Wilson-Alejandro

    2011-03-01

    Among the diverse forms of amyloidosis, secondary type is the most frequent one. Diagnosis of amyloid deposition is based on the identification of the fibrillary protein amyloid by means of Congo Red (CR) or crystal violet (CV) stains, but these techniques do not differentiate between the different types of amyloid fibrils. The aim of this study was to identify by immunofluorescence (IF) AA amyloid a pathological fibrillar low-molecular-weight protein formed by cleavage of serum amyloid A (SAA) protein in labial salivary gland (LSG) biopsies from patients with secondary amyloidosis. 98 LSG were studied, 65 were from patients with secondary amyloidosis and 33 from subjects with chronic inflammatory diseases without evidence of this anomaly. All sections were stained with hematoxylin and eosin (H &E), CV, CR and IF using anti-AA antibodies. Positive and negative controls were used for all techniques. CV and CR demonstrated that the amyloid substance was found mainly distributed periductally (93.8%), followed by periacinar and perivascular locations (p <0.001); however, the IF demonstrated that amyloid AA substance predominates in the periacinar area (73.8%), followed by periductal and perivascular locations (p <0.001). IF has a sensitivity of 83%, 100% of specificity, 100% of predictive positive value and 75% of predictive negative value. The results of this study confirm the efficacy of the LSG biopsy as a highly reliable method for diagnosis of secondary amyloidosis.

  7. Proteomics with Mass Spectrometry Imaging: Beyond Amyloid Typing.

    PubMed

    Lavatelli, Francesca; Merlini, Giampaolo

    2018-04-01

    Detection and typing of amyloid deposits in tissues are two crucial steps in the management of systemic amyloidoses. The presence of amyloid deposits is routinely evaluated through Congo red staining, whereas proteomics is now a mainstay in the identification of the deposited proteins. In article number 1700236, Winter et al. [Proteomics 2017, 17, Issue 22] describe a novel method based on MALDI-MS imaging coupled to ion mobility separation and peptide filtering, to detect the presence of amyloid in histology samples and to identify its composition, while preserving the spatial distribution of proteins in tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amyloid β-Protein as a Substrate Interacts with Extracellular Matrix to Promote Neurite Outgrowth

    NASA Astrophysics Data System (ADS)

    Koo, Edward H.; Park, Lisa; Selkoe, Dennis J.

    1993-05-01

    Progressive deposition of amyloid β-protein (Aβ) in brain parenchyma and blood vessels is a characteristic feature of Alzheimer disease. Recent evidence suggests that addition of solubilized synthetic Aβ to medium may produce toxic or trophic effects on cultured hippocampal neurons. Because soluble Aβ may not accumulate in significant quantities in brain, we asked whether immobilized Aβ peptide as a substrate alters neurite outgrowth from cultured rat peripheral sensory neurons. This paradigm may closely mimic the conditions in Alzheimer disease brain tissue, in which neurites contact insoluble, extracellular aggregates of β-amyloid. We detected no detrimental effects of Aβ substrate on neurite outgrowth. Rather, Aβ in combination with low doses of laminin or fibronectin enhanced neurite out-growth from these neuronal explants. Our results suggest that insoluble Aβ in the cerebral neuropil may serve as a neurite-promoting matrix, perhaps explaining the apparent regenerative response of neurites observed around amyloid plaques in Alzheimer disease. Moreover, in concert with the recent discovery of Aβ production by cultured neurons, our data suggest that Aβ plays a normal physiological role in brain by complexing with the extracellular matrix.

  9. Characterization of OXA-48-like carbapenemase producers in Canada, 2011-14.

    PubMed

    Mataseje, Laura F; Boyd, David A; Fuller, Jeffrey; Haldane, David; Hoang, Linda; Lefebvre, Brigitte; Melano, Roberto G; Poutanen, Susan; Van Caeseele, Paul; Mulvey, Michael R

    2017-12-18

    Since the first identification of the OXA-48 carbapenemase in 2001, Enterobacteriaceae harbouring OXA-48-like enzymes have been reported globally. Here, we applied WGS to characterize the molecular epidemiology of these bacterial isolates. Enterobacteriaceae non-susceptible to carbapenems isolated from patients between 2011 and 2014 were voluntarily submitted to the Canadian National Microbiology Laboratory where they were screened for carbapenemase genes. WGS was conducted on OXA-48-like producers using the Illumina MiSeq platform. WGS data were used for single nucleotide variant (SNV) analysis, MLST analysis, detection of resistance genes and partial plasmid characterization. Susceptibilities were determined using Vitek2 and Etest. Patient data provided from sites were reviewed. Sixty-seven non-duplicated cases were identified among Escherichia coli (n = 21) and Klebsiella pneumoniae (n = 46). Recent international travel was observed in 40.4% of cases. OXA-181 (52.2%) and OXA-48 (31.3%) were the most common variants, one E. coli OXA-48 producer was found to harbour the acquired colistin resistance gene mcr-1. The dominant STs were ST38 and ST410 in E. coli and ST14 in K. pneumoniae. Three common plasmid types were observed among isolates: IncL/M associated with OXA-48 producers, and ColKP3 and IncX3 associated with OXA-181/232 producers. Enterobacteriaceae with OXA-48-like carbapenemases are emerging in Canada. This study highlights the complexity of OXA-48-types identified in Canada owing to travel and the successful clones and plasmids harbouring the OXA-48-like enzyme. © Her Majesty the Queen in Right of Canada 2017. Reproduced with the permission of the Minister of Health.

  10. A Novel Liposomal Nanoparticle for the Imaging of Amyloid Plaque by Magnetic Resonance Imaging.

    PubMed

    Tanifum, Eric A; Ghaghada, Ketan; Vollert, Craig; Head, Elizabeth; Eriksen, Jason L; Annapragada, Ananth

    2016-01-01

    Amyloid binding molecules with greater hydrophilicity than existing ligands were synthesized. The lead candidate ET6-21 bound amyloid fibrils, and amyloid deposits in dog brain and human brain tissue ex vivo. The ligand was used to prepare novel amyloid-targeted liposomal nanoparticles. The preparation was tested in the Tg2576 and TetO/APP mouse models of amyloid deposition. Gd chelates and Indocyanine green were included in the particles for visualization by MRI and near-infrared microscopy. Upon intravenous injection, the particles successfully traversed the blood-brain barrier in these mice, and bound to the plaques. Magnetic resonance imaging (T1-MRI) conducted 4 days after injection demonstrated elevated signal in the brains of mice with amyloid plaques present. No signal was observed in amyloid-negative mice, or in amyloid-positive mice injected with an untargeted version of the same agent. The MRI results were confirmed by immunohistochemical and fluorescent microscopic examination of mouse brain sections, showing colocalization of the fluorescent tags and amyloid deposits.

  11. The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli

    PubMed Central

    Smith, Daniel R.; Price, Janet E.; Burby, Peter E.; Blanco, Luz P.; Chamberlain, Justin; Chapman, Matthew R.

    2017-01-01

    Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli. PMID:29088115

  12. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation

    PubMed Central

    Wang, Xin; Preston, James F.; Romeo, Tony

    2004-01-01

    Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched β-1,6-N-acetyl-d-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-β-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria. PMID:15090514

  13. Refractory Pain Management in Amyloid-Associated Peripheral Neuropathy.

    PubMed

    Warner, Nafisseh S; Watson, James C; Bendel, Markus A; Moeschler, Susan M

    2018-05-01

    Systemic amyloidosis is a disease that often involves multiple organ systems, including the peripheral nervous system. Patients may present with severe, refractory neuropathic pain; however, the optimal treatment approach for pain for these patients remains unclear. A man with severe, refractory neuropathic pain in his bilateral upper and lower extremities and the trunk secondary to amyloid neuropathy is presented. Multiple medication trials, including neuropathic and opioid agents, produced considerable adverse effects and minimal relief. Scrambler therapy, a novel electrical stimulation modality, was used and was associated with substantial short-term but nonsustained benefit. Spinal cord stimulation was considered, but given his diffuse symptoms, it was deemed a less-than-optimal approach. Ultimately, an intrathecal drug delivery system was placed with infusion of hydromorphone, resulting in substantial pain reduction in all involved areas and with an improved adverse effect profile. This intervention resulted in immense improvement in the patient's quality of life, despite progression of his systemic amyloidosis. Severe pain in the setting of amyloid neuropathy is often difficult to treat. To our knowledge, this represents the first report of Scrambler therapy or an implanted intrathecal drug delivery system used for a patient with refractory amyloidosis-related neuropathic pain, resulting in substantial analgesic benefit and improved quality of life.

  14. A Novel Small Molecule Modulator of Amyloid Pathology.

    PubMed

    Lovell, Mark A; Lynn, Bert C; Fister, Shuling; Bradley-Whitman, Melissa; Murphy, M Paul; Beckett, Tina L; Norris, Christopher M

    2016-05-04

    Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.

  15. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils?

    PubMed

    Kurouski, Dmitry; Lu, Xuefang; Popova, Ludmila; Wan, William; Shanmugasundaram, Maruda; Stubbs, Gerald; Dukor, Rina K; Lednev, Igor K; Nafie, Laurence A

    2014-02-12

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for "normal" left-hand-helical filaments and below pH 2 for "reversed" right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218-289) prion, and a short polypeptide fragment of transthyretin, TTR (105-115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases.

  16. Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?

    PubMed Central

    2015-01-01

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for “normal” left-hand-helical filaments and below pH 2 for “reversed” right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218–289) prion, and a short polypeptide fragment of transthyretin, TTR (105–115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases. PMID:24484302

  17. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    PubMed Central

    Stefani, Massimo; Rigacci, Stefania

    2013-01-01

    Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols. PMID:23765219

  18. Alternative Pathways for Production of Beta-Amyloid Peptides of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Schechter, Israel; Demuth, Hans-Ulrich; Hook, Gregory

    2009-01-01

    This highlight article describes three Alzheimer’s disease (AD) presentations made at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms that produce neurotoxic beta-amyloid (Aβ) peptides. One group described the poor kinetic properties of the BACE 1 β-secretase for cleaving the wild-type β-secretase site in the APP found in most AD patients. They demonstrated that cathepsin D displays BACE 1-like specificity, is 280-fold more abundant in human brain than BACE 1, and pepstatin A inhibits cleavage of β-secretase site peptides by brain extracts and cathepsin D, but not by BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the wild type β-secretase site, they suggested continuing the search for additional β-secretase candidate(s). The second group reported that cathepsin B is such an alternative β-secretase candidate possessing excellent kinetic efficiency and specificity for cleaving the wild-type β-secretase site. Significantly, they demonstrated that inhibitors of cathepsin B improved memory function with reduced amyloid plaque neuropathology and decreased brain Aβ(40/42) and β-secretase activity in AD animal models expressing APP containing the wild-type β-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Aβ that are present in AD brains, with evidence that cathepsin B, but not BACE 1, efficiently cleaves the wild-type β-secretase site containing isoaspartate. They also found that cyclization of N-terminal Glu by glutaminyl cyclase generates pGluAβ(3-40/42) peptides that are highly amyloidogenic. These presentations suggested that cathepsin B and glutaminyl cyclase are potential new AD therapeutic targets. PMID:18979625

  19. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  20. Oligomerization and neurotoxicity of the amyloid ADan peptide implicated in familial Danish dementia.

    PubMed

    Gibson, Gillian; Gunasekera, Nicola; Lee, Maria; Lelyveld, Victor; El-Agnaf, Omar M A; Wright, Andrew; Austen, Brian

    2004-01-01

    Familial Danish dementia (FDD) is a rare neurodegenerative disorder, which is pathologically characterized by widespread cerebral amyloid angiopathy, parenchymal protein deposits and neurofibrillary degeneration. FDD is associated with mutation in the BRI gene. In FDD a decamer duplication between codons 265 and 266 in the 3' region of the BRI gene originates an amyloid peptide named ADan, 11 residues longer than the wild-type peptide produced from the normal BRI gene. ADan deposits have been found widely distributed in the CNS of FDD cases. The deposits of ADan are predominantly non-fibrillar aggregates. We show here that synthetic ADan forms oligomers in vitro, seen by Tricine-PAGE and gel filtration, and higher aggregates, which are seen by atomic force spectroscopy and electron microscopy as carrot-shaped objects that bunch together. Here we report that oligomeric ADan is toxic to neuronal cell lines. We find that the soluble non-fibrillar oligomeric species of both the reduced and oxidized forms of ADan are toxic. These results support the idea that the non-fibrillar soluble aggregates are the pathogenic species, which may play a central role in the pathogenesis of FDD, and imply that similar mechanism may also be involved in other neurodegenerative diseases associated with amyloid deposits.

  1. X-ray crystal structures of Staphylococcus aureus collagen adhesin and sortases

    NASA Astrophysics Data System (ADS)

    Zong, Yinong

    For many gram-positive bacteria, adhesion to host tissues is the first critical step in developing an infection. The adhesion is mediated by a superfamily of bacterial surface proteins, called MSCRAMM (microbial surface components recognizing adhesive matrix molecules), which in most cases are covalently attached to the cell wall peptidoglycan. Collagen adhesin (CNA) from Staphylococcus aureus, one of the MSCRAMMs, is responsible for bacterial binding to collagen molecules. CNA and other MSCRAMMs are anchored to the cell wall by a transpeptidase, sortase. The knowledge about how bacterial surface proteins adhere to host molecules and how they are sorted onto the cell wall is crucial for the design of novel antibiotics against bacterial infections. The crystal structures of CNA31--344 (residue 31 to 334), a truncation of CNA's collagen binding region, and CNA31--344 in complex with a collagen peptide were determined. CNA31--344 contains two domains, and between them is a big hole formed by a loop connecting the two domains. In the structure of CNA31--344-collagen complex, the collagen peptide is locked in the hole formed by the two domains of CNA 31--344. We reason that the two domains of CNA31--344 are open in the physiological condition, and close up when binding to collagen. This binding mechanism may be common for other bacterial collagen adhesins. There are two known sortases in Staphylococcus aureus. Sortase A is responsible for anchoring most MSCRAMMs that have a LPXTG (X represents any amino acid) sorting motif and sortase B for a bacterial ion acquisition protein. The crystal structures of both sortases indicate that they share a common catalytic mechanism. Unlike typical cysteine transpeptidases, sortases may use a novel Cys-Arg catalytic dyad instead of a Cys-His pair. All other sortases found in gram-positive bacteria may have similar active site architecture and employ the same catalytic dyad because the critical residues are all conserved among them

  2. Revealing of Saccharomyces cerevisiae yeast cell wall proteins capable of binding thioflavin T, a fluorescent dye specifically interacting with amyloid fibrils.

    PubMed

    Gorkovskii, A A; Bezsonov, E E; Plotnikova, T A; Kalebina, T S; Kulaev, I S

    2009-11-01

    Proteins binding thioflavin T leading to its specific fluorescence were discovered in a fraction of noncovalently bound Saccharomyces cerevisiae yeast cell wall mannoproteins. Thioflavin-binding proteins display high resistance to trypsin digestion in solution. These data are the first experimental evidence for the presence of proteins whose properties are characteristic of amyloids in yeast cell wall, except for data on glucanotransferase Bgl2p that has amyloid properties. Our data suggest the anchoring of these proteins in the cell wall by a trypsin-sensitive part of the protein molecule. Experiments with a mutant strain devoid of the BGL2 gene suggest the compensation of absent amyloid-like protein Bgl2p by increase in contents of thioflavin-binding proteins in the cell wall.

  3. Variation of amino acid sequences of serum amyloid a (SAA) and immunohistochemical analysis of amyloid a (AA) in Japanese domestic cats.

    PubMed

    Tei, Meina; Uchida, Kazuyuki; Chambers, James K; Watanabe, Ken-Ichi; Tamamoto, Takashi; Ohno, Koichi; Nakayama, Hiroyuki

    2018-02-02

    Amyloid A (AA) amyloidosis, a fatal systemic amyloid disease, occurs secondary to chronic inflammatory conditions in humans. Although persistently elevated serum amyloid A (SAA) levels are required for its pathogenesis, not all individuals with chronic inflammation necessarily develop AA amyloidosis. Furthermore, many diseases in cats are associated with the elevated production of SAA, whereas only a small number actually develop AA amyloidosis. We hypothesized that a genetic mutation in the SAA gene may strongly contribute to the pathogenesis of feline AA amyloidosis. In the present study, genomic DNA from four Japanese domestic cats (JDCs) with AA amyloidosis and from five without amyloidosis was analyzed using polymerase chain reaction (PCR) amplification and direct sequencing. We identified the novel variation combination of 45R-51A in the deduced amino acid sequences of four JDCs with amyloidosis and five without. However, there was no relationship between amino acid variations and the distribution of AA amyloid deposits, indicating that differences in SAA sequences do not contribute to the pathogenesis of AA amyloidosis. Immunohistochemical analysis using antisera against the three different parts of the feline SAA protein-i.e., the N-terminal, central, and C-terminal regions-revealed that feline AA contained the C-terminus, unlike human AA. These results indicate that the cleavage and degradation of the C-terminus are not essential for amyloid fibril formation in JDCs.

  4. Mutation of the Alzheimer's Disease Amyloid Gene in Hereditary Cerebral Hemorrhage, Dutch Type

    NASA Astrophysics Data System (ADS)

    Levy, Efrat; Carman, Mark D.; Fernandez-Madrid, Ivan J.; Power, Michael D.; Lieberburg, Ivan; van Duinen, Sjoerd G.; Bots, Gerard Th. A. M.; Luyendijk, Willem; Frangione, Blas

    1990-06-01

    An amyloid protein that precipitates in the cerebral vessel walls of Dutch patients with hereditary cerebral hemorrhage with amyloidosis is similar to the amyloid protein in vessel walls and senile plaques in brains of patients with Alzheimer's disease, Down syndrome, and sporadic cerebral amyloid angiopathy. Cloning and sequencing of the two exons that encode the amyloid protein from two patients with this amyloidosis revealed a cytosine-to-guanine transversion, a mutation that caused a single amino acid substitution (glutamine instead of glutamic acid) at position 22 of the amyloid protein. The mutation may account for the deposition of this amyloid protein in the cerebral vessel walls of these patients, leading to cerebral hemorrhages and premature death.

  5. Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.

    PubMed

    Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong

    2017-06-01

    Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Repurposing Hsp104 to antagonize seminal amyloid and counter HIV infection

    PubMed Central

    Castellano, Laura M.; Bart, Stephen M.; Holmes, Veronica M.; Weissman, Drew; Shorter, James

    2015-01-01

    Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and 2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104A503V, directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection and could have therapeutic utility. PMID:26256479

  7. Failure of Alzheimer's Aβ(1-40) amyloid nanofibrils under compressive loading

    NASA Astrophysics Data System (ADS)

    Paparcone, Raffaella; Buehler, Markus J.

    2010-04-01

    Amyloids are associated with severe degenerative diseases and show exceptional mechanical properties, in particular great stiffhess. Amyloid fibrils, forming protein nanotube structures, are elongated fibers with a diameter of ≈8 nm with a characteristic dense hydrogen-bond (H-bond)patterning in the form of beta-sheets (β-sheets). Here we report a series of molecular dynamics simulations to study mechanical failure properties of a twofold symmetric Aβ(l-40) amyloid fibril, a pathogen associated with Alzheimer’s disease. We carry out computational experiments to study the response of the amyloid fibril to compressive loading. Our investigations reveal atomistic details of the failure process, and confirm that the breakdown of H-bonds plays a critical role during the failure process of amyloid fibrils. We obtain a Young’s modulus of ≈12.43 GPa, in dose agreement with earlier experimental results. Our simulations show that failure by buck-ling and subsequent shearing in one of the layers initiates at ≈1% compressive strain, suggesting that amyloid fibrils can be rather brittle mechanical elements.

  8. Cerebral Amyloid Angiopathy (CAA)-Related Inflammation: Comparison of Inflammatory CAA and Amyloid-β-Related Angiitis.

    PubMed

    Chu, Shuguang; Xu, Feijia; Su, Ya; Chen, Hong; Cheng, Xin

    2016-01-01

    Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a relatively rare syndrome of reversible encephalopathy and could be divided into two subtypes of inflammatory CAA (ICAA) and amyloid-β-related angiitis (ABRA) according to histopathology. We present a case of pathologically proved ABRA with partial seizures and headache, and a focal lesion in the right temporal lobes on magnetic resonance imaging. Summarized from previous 139 ABRA and ICAA cases, ABRA is preferred when the lesion is enhanced on MRI and requires combination drug therapy, while ICAA is highly suspected with ApoE genotype of ɛ4/ɛ4. More clinical markers for diagnosis of CAA-ri warrant further researches.

  9. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normalmore » protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.« less

  10. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  11. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    NASA Astrophysics Data System (ADS)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  12. Amyloid-β Peptide Exacerbates the Memory Deficit Caused by Amyloid Precursor Protein Loss-of-Function in Drosophila

    PubMed Central

    Bourdet, Isabelle; Lampin-Saint-Amaux, Aurélie; Preat, Thomas; Goguel, Valérie

    2015-01-01

    The amyloid precursor protein (APP) plays a central role in Alzheimer’s disease (AD). APP can undergo two exclusive proteolytic pathways: cleavage by the α-secretase initiates the non-amyloidogenic pathway while cleavage by the β-secretase initiates the amyloidogenic pathway that leads, after a second cleavage by the γ-secretase, to amyloid-β (Aβ) peptides that can form toxic extracellular deposits, a hallmark of AD. The initial events leading to AD are still unknown. Importantly, aside from Aβ toxicity whose molecular mechanisms remain elusive, several studies have shown that APP plays a positive role in memory, raising the possibility that APP loss-of-function may participate to AD. We previously showed that APPL, the Drosophila APP ortholog, is required for associative memory in young flies. In the present report, we provide the first analysis of the amyloidogenic pathway’s influence on memory in the adult. We show that transient overexpression of the β-secretase in the mushroom bodies, the center for olfactory memory, did not alter memory. In sharp contrast, β-secretase overexpression affected memory when associated with APPL partial loss-of-function. Interestingly, similar results were observed with Drosophila Aβ peptide. Because Aβ overexpression impaired memory only when combined to APPL partial loss-of-function, the data suggest that Aβ affects memory through the APPL pathway. Thus, memory is altered by two connected mechanisms—APPL loss-of-function and amyloid peptide toxicity—revealing in Drosophila a functional interaction between APPL and amyloid peptide. PMID:26274614

  13. Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril

    DOE PAGES

    Wälti, Marielle Aulikki; Ravotti, Francesco; Arai, Hiromi; ...

    2016-07-28

    Amyloid-β (Aβ) is present in humans as a 39- to 42-amino acid residue metabolic product of the amyloid precursor protein. Although the two predominant forms, Aβ(1–40) and Aβ(1–42), differ in only two residues, they display different biophysical, biological, and clinical behavior. Aβ(1–42) is the more neurotoxic species, aggregates much faster, and dominates in senile plaque of Alzheimer’s disease (AD) patients. Although small Aβ oligomers are believed to be the neurotoxic species, Aβ amyloid fibrils are, because of their presence in plaques, a pathological hallmark of AD and appear to play an important role in disease progression through cell-to-cell transmissibility. Here,more » we solved the 3D structure of a disease-relevant Aβ(1–42) fibril polymorph, combining data from solid-state NMR spectroscopy and mass-per-length measurements from EM. The 3D structure is composed of two molecules per fibril layer, with residues 15–42 forming a double-horseshoe–like cross–β-sheet entity with maximally buried hydrophobic side chains. Lastly, residues 1–14 are partially ordered and in a β-strand conformation, but do not display unambiguous distance restraints to the remainder of the core structure.« less

  14. Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wälti, Marielle Aulikki; Ravotti, Francesco; Arai, Hiromi

    Amyloid-β (Aβ) is present in humans as a 39- to 42-amino acid residue metabolic product of the amyloid precursor protein. Although the two predominant forms, Aβ(1–40) and Aβ(1–42), differ in only two residues, they display different biophysical, biological, and clinical behavior. Aβ(1–42) is the more neurotoxic species, aggregates much faster, and dominates in senile plaque of Alzheimer’s disease (AD) patients. Although small Aβ oligomers are believed to be the neurotoxic species, Aβ amyloid fibrils are, because of their presence in plaques, a pathological hallmark of AD and appear to play an important role in disease progression through cell-to-cell transmissibility. Here,more » we solved the 3D structure of a disease-relevant Aβ(1–42) fibril polymorph, combining data from solid-state NMR spectroscopy and mass-per-length measurements from EM. The 3D structure is composed of two molecules per fibril layer, with residues 15–42 forming a double-horseshoe–like cross–β-sheet entity with maximally buried hydrophobic side chains. Lastly, residues 1–14 are partially ordered and in a β-strand conformation, but do not display unambiguous distance restraints to the remainder of the core structure.« less

  15. Attachment of Actinobacillus suis H91-0380 and Its Isogenic Adhesin Mutants to Extracellular Matrix Components of the Tonsils of the Soft Palate of Swine

    PubMed Central

    Bujold, Adina R.

    2016-01-01

    Tonsils conduct immune surveillance of antigens entering the upper respiratory tract. Despite their immunological function, they are also sites of persistence and invasion of bacterial pathogens. Actinobacillus suis is a common resident of the tonsils of the soft palate in pigs, but under certain circumstances it can invade, causing septicemia and related sequelae. Twenty-four putative adhesins are predicted in the A. suis genome, but to date, little is known about how they might participate in colonization or invasion. To better understand these processes, swine tonsil lysates were characterized by mass spectrometry. Fifty-nine extracellular matrix (ECM) proteins were identified, including small leucine-rich proteoglycans, integrins, and other cell surface receptors. Additionally, attachment of the wild type and 3 adhesin mutants to 5 ECM components was evaluated. Exponential cultures of wild-type A. suis adhered significantly more than stationary cultures to all ECM components studied except collagen I. During exponential growth, the A. suis Δflp1 mutant attached less to collagen IV while the ΔompA mutant attached less to all ECMs. The ΔcomE1 strain attached less to collagen IV, fibronectin, and vitronectin during exponential growth and exhibited differential attachment to collagen I over short adherence time points. These results suggest that Flp1, OmpA, and ComE1 are important during early stages of attachment to ECM components found in tonsils, which supports the notion that other adhesins have compensatory effects during later stages of attachment. PMID:27481253

  16. O-mannosylation of the Mycobacterium tuberculosis Adhesin Apa Is Crucial for T Cell Antigenicity during Infection but Is Expendable for Protection

    PubMed Central

    Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Fang, Sunan; McDonald, Melissa A.; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V.; Plikaytis, Bonnie B.; Posey, James E.; Amara, Rama Rao

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis. PMID:24130497

  17. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Fang, Sunan; McDonald, Melissa A; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V; Plikaytis, Bonnie B; Posey, James E; Amara, Rama Rao; Sable, Suraj B

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.

  18. A molecular model for self-assembly of amyloid fibrils: Immunoglobulin light chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, F.J.; Myatt, E.A.; Westholm, F.A.

    1995-08-29

    The formation and pathological deposition of amyloid fibrils are defining features of many acquired and inherited disorders, including primary or light-chain-associated amyloidosis, Alzheimer`s disease, and adult-onset diabetes. No pharmacological methods exist to block this process or to effect the removal of fibrils from tissue, and thus, little can be done to prevent organ failure and ultimate death that result from deposition of amyloid. Knowledge of the pathogenesis, treatment, or prevention of these presently incurable diseases is limited due to the relative paucity of information regarding the biophysical basis of amyloid formation. Antibody light chains of different amino acid sequence showmore » differential amyloid-forming tendencies and, as such, can provide insight into the structural organization of amyloid fibrils as well as into basic mechanisms of protein self-assembly. We have compared primary structures of 180 human monoclonal light chains and have identified particular residues and positions within the variable domain that differentiate amyloid-from nonamyloid-associated proteins. We propose a molecular model that accounts for amyloid formation by antibody light chains and might also have implications for other forms of amyloidosis. 24 refs., 2 figs., 1 tab.« less

  19. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression.

    PubMed

    Cummings, Damian M; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélène; Ali, Shabinah S; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T; Matarin, Mar; Richardson, Jill C; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A; Salih, Dervis A; Edwards, Frances A

    2015-07-01

    Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-β. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-β peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-β peptides in a mouse model of increasing amyloid-β ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-β peptides were above the limit of detection, including amyloid-β40, amyloid-β38 and amyloid-β42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-β levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-β40 rose by ∼7-fold, but amyloid-β42 rose by 25-fold, increasing the amyloid-β42:amyloid-β40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-β) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-β levels and amyloid-β42:amyloid-β40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly

  20. Safety of disclosing amyloid status in cognitively normal older adults.

    PubMed

    Burns, Jeffrey M; Johnson, David K; Liebmann, Edward P; Bothwell, Rebecca J; Morris, Jill K; Vidoni, Eric D

    2017-09-01

    Disclosing amyloid status to cognitively normal individuals remains controversial given our lack of understanding the test's clinical significance and unknown psychological risk. We assessed the effect of amyloid status disclosure on anxiety and depression before disclosure, at disclosure, and 6 weeks and 6 months postdisclosure and test-related distress after disclosure. Clinicians disclosed amyloid status to 97 cognitively normal older adults (27 had elevated cerebral amyloid). There was no difference in depressive symptoms across groups over time. There was a significant group by time interaction in anxiety, although post hoc analyses revealed no group differences at any time point, suggesting a minimal nonsustained increase in anxiety symptoms immediately postdisclosure in the elevated group. Slight but measureable increases in test-related distress were present after disclosure and were related to greater baseline levels of anxiety and depression. Disclosing amyloid imaging results to cognitively normal adults in the clinical research setting with pre- and postdisclosure counseling has a low risk of psychological harm. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  1. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled coil.

    PubMed

    Rouse, Sarah L; Stylianou, Fisentzos; Grace Wu, H Y; Berry, Jamie-Lee; Sewell, Lee; Morgan, R Marc L; Sauerwein, Andrea C; Matthews, Steve

    2018-06-07

    Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits, the fibres of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialised outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8 Å resolution. This domain forms a novel asymmetric trimeric coiled-coil that possesses a single buried tyrosine residue as well as a extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail. Copyright © 2018. Published by Elsevier Ltd.

  2. Glycation induces formation of amyloid cross-beta structure in albumin.

    PubMed

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  3. Amyloid in bone marrow smears in systemic light-chain amyloidosis.

    PubMed

    Kimmich, Christoph; Schönland, Stefan; Kräker, Sandra; Andrulis, Mindaugas; Ho, Anthony D; Mayer, Gudrun; Dittrich, Tobias; Hundemer, Michael; Hegenbart, Ute

    2017-03-01

    We performed a prospective sensitivity analysis to detect amyloid in bone marrow (BM) smears stained with Congo red (CR) and according to Pappenheim of patients with systemic light-chain (AL) amyloidosis. Results were directly compared to routine BM histology and fat aspiration. We analysed 198 BM smears from patients with the diagnosis or suspicion of systemic AL amyloidosis. Ultimately, the diagnosis could be established for 168 patients. Amyloid was detected on BM smears with CR in 33% (56/168). All patients suspicious for amyloid on Pappenheim staining (n = 39) showed substantial amyloid infiltration on CR. No patient without systemic AL amyloidosis stained positive. Sensitivity for routine BM histology was 57% (74/129) and for fat aspiration 96% (134/140). Patients with amyloid on BM smears had significantly more hepatic (42 vs. 9%, p < .001), renal (78 vs. 43%, p < .001) and gastrointestinal involvement (40 vs. 22%, p < .01) and less commonly cardiac involvement (58 vs. 76%, p < .03) and consecutively no adverse prognosis. CR staining of BM smears cannot be recommended as a primary screening tool for systemic AL as its overall sensitivity is far inferior to BM histology and fat aspiration. However, we recommend using the technique when suspecting amyloid on Pappenheim staining to establish the diagnosis of systemic AL amyloidosis.

  4. The Circularization of Amyloid Fibrils Formed by Apolipoprotein C-II

    PubMed Central

    Hatters, Danny M.; MacRaild, Christopher A.; Daniels, Rob; Gosal, Walraj S.; Thomson, Neil H.; Jones, Jonathan A.; Davis, Jason J.; MacPhee, Cait E.; Dobson, Christopher M.; Howlett, Geoffrey J.

    2003-01-01

    Amyloid fibrils have historically been characterized by diagnostic dye-binding assays, their fibrillar morphology, and a “cross-β” x-ray diffraction pattern. Whereas the latter demonstrates that amyloid fibrils have a common β-sheet core structure, they display a substantial degree of morphological variation. One striking example is the remarkable ability of human apolipoprotein C-II amyloid fibrils to circularize and form closed rings. Here we explore in detail the structure of apoC-II amyloid fibrils using electron microscopy, atomic force microscopy, and x-ray diffraction studies. Our results suggest a model for apoC-II fibrils as ribbons ∼2.1-nm thick and 13-nm wide with a helical repeat distance of 53 nm ± 12 nm. We propose that the ribbons are highly flexible with a persistence length of 36 nm. We use these observed biophysical properties to model the apoC-II amyloid fibrils either as wormlike chains or using a random-walk approach, and confirm that the probability of ring formation is critically dependent on the fibril flexibility. More generally, the ability of apoC-II fibrils to form rings also highlights the degree to which the common cross-β superstructure can, as a function of the protein constituent, give rise to great variation in the physical properties of amyloid fibrils. PMID:14645087

  5. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes.

    PubMed

    Yamada, T; Wada, A; Itoh, K; Igari, J

    2000-07-01

    Serum amyloid A (SAA), an acute-phase protein and a precursor of fibrous components in reactive amyloid deposits, is synthesized mainly in the liver under the stimulation of inflammation-related cytokines. In addition, the SAA gene is expressed in monocytes/macrophages, which are believed to play a central role in amyloid fibrillogenesis. Consequently, the pathogenic implication of SAA produced from these cells has been of major concern. Because SAA synthesis at the protein level in such cells has never been analyzed quantitatively, in this study an enzyme-linked immunosorbent assay was generated with a detection level sufficiently high to measure SAA concentrations in the culture supernatants of the human monocytic leukaemia cell line THP-1. SAA secretion by THP-1 with interleukin (IL)-1beta required the presence of dexamethasone as proposed previously. We also found that unidentified components in fetal calf serum (FCS) could induce SAA production by THP-1 in the presence of dexamethasone. These findings are in contrast to the results obtained from hepatoma cell line HepG2, in which IL-1beta alone could induce SAA secretion, while dexamethasone-supplemented FCS could not. The method was able to quantify SAA secreted from cultured human peripheral monocytes. The findings suggest that monocytes produce SAA in almost the same manner as THP-1. Thus, THP-1 cells can be utilized to investigate a distinctive manner of SAA production from monocytes.

  6. Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection.

    PubMed

    Castellano, Laura M; Bart, Stephen M; Holmes, Veronica M; Weissman, Drew; Shorter, James

    2015-08-20

    Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A discrete mathematical model for the aggregation of β-Amyloid.

    PubMed

    Dayeh, Maher A; Livadiotis, George; Elaydi, Saber

    2018-01-01

    Dementia associated with the Alzheimer's disease is thought to be correlated with the conversion of the β - Amyloid (Aβ) peptides from soluble monomers to aggregated oligomers and insoluble fibrils. We present a discrete-time mathematical model for the aggregation of Aβ monomers into oligomers using concepts from chemical kinetics and population dynamics. Conditions for the stability and instability of the equilibria of the model are established. A formula for the number of monomers that is required for producing oligomers is also given. This may provide compound designers a mechanism to inhibit the Aβ aggregation.

  8. Curcumin as an amyloid-indicator dye in E. coli.

    PubMed

    McCrate, Oscar A; Zhou, Xiaoxue; Cegelski, Lynette

    2013-05-14

    We have demonstrated that curcumin is an amyloid-specific dye in E. coli. Curcumin binds to curliated whole cells and to isolated curli amyloid fibers. Similar to Congo red, curcumin exhibits a red-shift in absorbance and a significant increase in fluorescence upon binding to isolated curli.

  9. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    PubMed Central

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging

  10. Rapid amyloid fiber formation from the fast-folding WW domain FBP28.

    PubMed

    Ferguson, Neil; Berriman, John; Petrovich, Miriana; Sharpe, Timothy D; Finch, John T; Fersht, Alan R

    2003-08-19

    The WW domains are small proteins that contain a three-stranded, antiparallel beta-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-beta diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.

  11. Amyloid PET in pseudotumoral multiple sclerosis.

    PubMed

    Matías-Guiu, Jordi A; Cabrera-Martín, María Nieves; Cortés-Martínez, Ana; Pytel, Vanesa; Moreno-Ramos, Teresa; Oreja-Guevara, Celia; Carreras, José Luis; Matías-Guiu, Jorge

    2017-07-01

    Pseudotumoral multiple sclerosis is a rare form of demyelinating disease of the central nervous system. Positron emission tomography (PET) using amyloid-tracers has also been suggested as a marker of damage in white matter lesions in multiple sclerosis due to the nonspecific uptake of these tracers in white matter. We present the case of a 59 year-old woman with a pathological-confirmed pseudotumoral multiple sclerosis, who was studied with the amyloid tracer 18 F-florbetaben. The patient had developed word-finding difficulties and right hemianopia twelve years ago. In that time, MRI showed a lesion on the left hemisphere with an infiltrating aspect in frontotemporal lobes. Brain biopsy showed demyelinating areas and inflammation. During the following years, two new clinical relapses occurred. 18 F-florbetaben PET showed lower uptake in the white matter lesion visualized in the CT and MRI images. Decreased tracer uptake was also observed in a larger area of the left hemisphere beyond the lesions observed on MRI or CT. White matter lesion volume on FLAIR was 44.2mL, and tracer uptake change between damaged white matter and normal appearing white matter was - 40.5%. Standardized uptake value was inferior in the pseudotumoral lesion than in the other white matter lesions. We report the findings of amyloid PET in a patient with pseudotumoral multiple sclerosis. This case provides further evidence on the role of amyloid PET in the assessment of white matter and demyelinating diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Amyloid Precursor Protein and Alpha Synuclein Translation, Implications for Iron and Inflammation in Neurodegenerative diseases

    PubMed Central

    Cahill, Catherine M.; Lahiri, Debomoy K.; Huang, Xudong; Rogers, Jack T.

    2014-01-01

    Summary Recent studies that alleles in the hemochromatosis gene may accelerate the onset of Alzheimer's disease (AD) by five years have validated interest in the model in which metals (particularly iron) accelerate disease course. Biochemical and biophysical measurements demonstrated the presence of elevated levels of neurotoxic copper, zinc and iron in the brains of AD patients. Intracellular levels of amyloid precursor protein (APP) holoprotein were shown to be modulated via iron by a mechanism that is similar to the translation control of the ferritin L- and H mRNAs by Iron-responsive Element (IRE) RNA stem loops in their 5′untranslated regions (5′UTRs). Recently, we reported a putative IRE-like sequence to be present in the 5′UTR of the Parkinson's disease (PD) specific alpha synuclein (ASYN) transcript. ASYN encodes the non-Aβ component (NAC) of amyloid plaques. The demonstration of iron-dependent translation of APP mRNA, the involvement of metals in the plaque of AD patients and of increased iron in striatal neurons in the Substantia nigra (SN) of PD patients, have each encouraged the development of metal attenuating agents and iron chelators as a major new therapeutic strategy for the treatment of these neurodegenerative diseases. In the case of AD, metal based therapeutics may ultimately prove more cost effective than the use of an amyloid vaccine as the preferred anti-amyloid therapeutic strategy to ameliorate the cognitive decline of AD patients. PMID:19166904

  13. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains.

    PubMed

    Saiki, Masatoshi; Honda, Shinya; Kawasaki, Kazunori; Zhou, Deshan; Kaito, Akira; Konakahara, Takeo; Morii, Hisayuki

    2005-05-13

    Various mutants of the protein fragment, barnase module-1 (1-24) were investigated in order to reveal the structural principle of amyloid-like fibrils. By means of circular dichroism spectroscopy, X-ray diffraction, electron microscopy, and thioflavin T binding assay, we found that the molecules containing two beta-strands and an intervening turn structure are assembled to form a cross-beta structure. Stabilization by both the hydrophobic interactions and hydrogen bonding between the respective paired side-chains on the coupled beta-strands was essential for fibril formation. These two types of interaction can also arrange the corresponding residues in lines on both sheet surfaces of protofilaments with a cross-beta structure. This leads to the most probable fibril structure constructed with the line-matching interactions between protofilaments. Consideration of the geometrical symmetry resulted in our finding that a limited number of essential models for molecular packing in fibril structure are stable, which would rationally explain the occurrence of two or three morphologies from an identical molecular species. The ribbon-like fibrils exhibited striped texture along the axis, which was assigned to a stacked two-sheet repeat as a structural unit. The comprehensively proposed structural model, that is, the sheet-sheet interaction between left-handed cross-beta structures, results in a slightly right-handed twist of beta-sheet stacking, which reasonably elucidates the intrinsic sizes of the fibril width and its helical period along the fibril axis, as the bias in the orientation of the hydrogen-bonded beta-strand pair at the lateral edge is larger than that at the central protofilament.

  14. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    PubMed

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  15. Surface Mediated Self-Assembly of Amyloid Peptides

    NASA Astrophysics Data System (ADS)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  16. Amyloid-β Positron Emission Tomography Imaging Probes: A Critical Review

    PubMed Central

    Kepe, Vladimir; Moghbel, Mateen C.; Långström, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Høilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer’s disease (AD) in recent decades has made the imaging of amyloid-β (Aβ) deposits the focus of intense research. Several amyloid imaging probes with purported specificity for Aβ plaques are currently at various stages of FDA approval. However, a number of factors appear to preclude these probes from clinical utilization. As the available “amyloid specific” PET imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate on their significance has emerged. The aim of this review is to identify and discuss critically the scientific issues contributing to the extensive inconsistencies reported in the literature on their purported in vivo amyloid specificity and potential utilization in patients. PMID:23648516

  17. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides.

    PubMed

    Stokin, Gorazd B; Almenar-Queralt, Angels; Gunawardena, Shermali; Rodrigues, Elizabeth M; Falzone, Tomás; Kim, Jungsu; Lillo, Concepción; Mount, Stephanie L; Roberts, Elizabeth A; McGowan, Eileen; Williams, David S; Goldstein, Lawrence S B

    2008-11-15

    Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.

  18. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    PubMed Central

    Chen, Yuanxin; Bernas, Lisa; Kitzler, Hagen H.; Rogers, Kem A.; Hegele, Robert A.; Rutt, Brian K.

    2009-01-01

    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol

  19. Concordance Between Different Amyloid Immunoassays and Visual Amyloid Positron Emission Tomographic Assessment.

    PubMed

    Janelidze, Shorena; Pannee, Josef; Mikulskis, Alvydas; Chiao, Ping; Zetterberg, Henrik; Blennow, Kaj; Hansson, Oskar

    2017-12-01

    Visual assessment of amyloid positron emission tomographic (PET) images has been approved by regulatory authorities for clinical use. Several immunoassays have been developed to measure β-amyloid (Aβ) 42 in cerebrospinal fluid (CSF). The agreement between CSF Aβ42 measures from different immunoassays and visual PET readings may influence the use of CSF biomarkers and/or amyloid PET assessment in clinical practice and trials. To determine the concordance between CSF Aβ42 levels measured using 5 different immunoassays and visual amyloid PET analysis. The study included 262 patients with mild cognitive impairment or subjective cognitive decline from the Swedish BioFINDER (Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably) cohort (recruited from September 1, 2010, through December 31, 2014) who had undergone flutemetamol F 18 ([18F]flutemetamol)-labeled PET. Levels of CSF Aβ42 were analyzed using the classic INNOTEST and the newer modified INNOTEST, fully automated Lumipulse (FL), EUROIMMUN (EI), and Meso Scale Discovery (MSD) assays. Concentrations of CSF Aβ were assessed using an antibody-independent mass spectrometry-based reference measurement procedure. The concordance of CSF Aβ42 levels and Aβ42:Aβ40 and Aβ42:tau ratios with visual [18F]flutemetamol PET status. Of 262 participants (mean [SD] age, 70.9 [5.5] years), 108 were women (41.2%) and 154 were men (58.8%). The mass spectrometry-derived Aβ42 values showed higher correlations with the modified Aβ42-INNOTEST (r = 0.97), Aβ42-FL (r = 0.93), Aβ42-EI (r = 0.93), and Aβ42-MSD (r = 0.95) assays compared with the classic Aβ42-INNOTEST assay (r = 0.88; P ≤ .01). The signal in the classic Aβ42-INNOTEST assay was partly quenched by recombinant Aβ1-40 peptide. However, the classic Aβ42-INNOTEST assay showed better concordance with visual [18F]flutemetamol PET status (area under the receiver operating characteristic curve [AUC], 0.92) compared with the

  20. Inflammation in Alzheimer's disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors.

    PubMed

    Salminen, Antero; Ojala, Johanna; Kauppinen, Anu; Kaarniranta, Kai; Suuronen, Tiina

    2009-02-01

    The inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease (AD). Recent studies indicate that inflammation is not merely a bystander in neurodegeneration but a powerful pathogenetic force in the disease process. Increased production of amyloid-beta peptide species can activate the innate immunity system via pattern recognition receptors (PRRs) and evoke Alzheimer's pathology. We will focus on the role of innate immunity system of brain in the initiation and the propagation of inflammatory process in AD. We examine here in detail the significance of amyloid-beta oligomers and fibrils as danger-associated molecular patterns (DAMPs) in the activation of a wide array of PRRs in glial cells and neurons, such as Toll-like, NOD-like, formyl peptide, RAGE and scavenger receptors along with complement and pentraxin systems. We also characterize the signaling pathways triggered by different PRRs in evoking inflammatory responses. In addition, we will discuss whether AD pathology could be the outcome of chronic activation of the innate immunity defence in the brain of AD patients.