Science.gov

Sample records for anaerobic digester gas

  1. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  2. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  3. Membrane controlled anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Omstead, D. R.

    In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  4. Anaerobic digester gas fueling of spark ignition engines

    SciTech Connect

    Clark, S.J.; Marr, J.; Schrock, M.

    1985-01-01

    Results of 400 hours of engine tests on gas from swine and beef manure digesters are presented. Equipped with a methane gas carburetor, a Continental spark ignition engine delivered 80 to 95 percent of power levels achieved with natural gas. Suggestions for spark timing, carburetion, and oil change interval are given.

  5. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    EPA Science Inventory

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  6. Determination of greenhouse gas emission reductions from sewage sludge anaerobic digestion in China.

    PubMed

    Liu, H-T; Kong, X-J; Zheng, G-D; Chen, C-C

    2016-01-01

    Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS(-1) (wet sludge). PMID:26744944

  7. Minimization of greenhouse gas emission by application of anaerobic digestion process with biogas utilization.

    PubMed

    Yasui, H; Komatsu, K; Goel, R; Matsuhashi, R; Ohashi, A; Harada, H

    2005-01-01

    To assess the impact on greenhouse gas emission, different process schemes for municipal sludge treatment were evaluated based on the data from pilot-scale experiments and review of annual operation reports. A modified anaerobic digestion process with partial ozonation of digested sludge to improve biological degradability and the conventional anaerobic digestion process were compared with respect to the energy demand in each process schemes. Options for beneficial use of biogas included (1) application of biogas for power production and (2) recovery as an alternative to natural gas utilization. The analysis indicated that the partial ozonation process with power production led to minimal greenhouse gas emission because the extra energy production from this scheme was expected to cover all of the energy demand for the plant operation. Moreover, the final amount of dewatered sludge cake was only 40% of that expected from the conventional process, this significantly minimizes the potential for greenhouse gas emission in the subsequent sludge incineration processes. PMID:16180476

  8. Enhancement of methane gas production using an industrial waste in anaerobic digestion

    SciTech Connect

    Fradkin, L.; Kremer, F.

    1980-12-01

    One method of recycling that may aid in the solution of the current energy problems is anaerobic digestion. Chromium shavings are a solid waste produced by the leather tanning industry. Chromium can block enzymatic systems or interfere with essential cellular metabolites of most oxidizing bacteria. In general, heavy metals coagulate and precipitate proteins, many of which are denatured by this action. This study examines the effects on anaerobic digestion of chromium shavings from leather tanning. Leather chrome shavings contain proteins, nitrogen, and fats. These shavings were added to two of three digesters at various rates. The methane gas production of the experimental units improved significantly compared to the control. In addition, the presence of a toxic loading or change of feed had no harmful effect on the digester performance.

  9. Enhancement of methane gas production using an industrial waste in anaerobic digestion

    SciTech Connect

    Fradkin, L.; Kremer, F.

    1980-01-01

    One method of recycling that may aid in the solution of the current energy problems is anaerobic digestion. Chromium shavings are a solid waste produced by the leather tanning industry. Chromium can block enzymatic systems or interfere with essential cellular metabolites of most oxidizing bacteria. In general, heavy metals coagulate and precipitate proteins, many of which are denatured by this action. This study examines the effects on anaerobic digestion of chromium shavings from leather tanning. Leather chrome shavings contain proteins, nitrogen, and fats. These shavings were added to two of three digesters at various rates. The methane gas production of the experimental units improved significantly compared to the control. In addition, the presence of a toxic loading or change of feed had no harmful effect on the digester performance.

  10. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  11. Liquid-gas partitioning of selected volatile organic sulfur compounds in anaerobically digested sludges.

    PubMed

    Du, Weiwei; Parker, Wayne

    2012-01-01

    The gas phase partitioning of volatile organic sulfur compounds (VOSCs) in anaerobic sludge digesters contributes to odors and can impact upon the suitability of biogases for use in alternative energy recovery technologies. In the present study, effective Henry's law coefficients (H') were estimated for methyl mercaptan (MM), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS) in both deionized water and deactivated digested sludge. It was found that the complex matrix of digested sludge did not significantly affect the partitioning of VOSCs. Therefore, partitioning of VOSCs in digesters could be represented by their partitioning in clean water. A regression model was developed for the linear relationship between ln H' and 1/T in the gas-water system. The H' values of MM, DMS, and DMDS were able to be calculated over a temperature range of 12-58 C. PMID:22744688

  12. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.

    PubMed

    Dapelo, Davide; Alberini, Federico; Bridgeman, John

    2015-11-15

    A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. PMID:26379205

  13. Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal.

    PubMed

    Yasui, H; Matsuhashi, R; Noike, T; Harada, H

    2006-01-01

    A novel anaerobic digestion process combined with partial ozonation on digested sludge was demonstrated for improving sludge digestion and biogas recovery by full-scale testing for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The novel process requires two essential modifications, which are ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Based on the performance, its energy demands and contribution for minimisation of greenhouse gas emission was evaluated throughout an entire study of sludge treatment and disposal schemes in a municipality for 130,000 p.e. The analysis indicated that the novel process with power generation from biogas would lead to minimal greenhouse gas emission because the extra energy production from the scheme was expected to cover all of the energy demand for the plant operation, and the remarkable reduction in dewatered sludge cake volumes makes it possible to reduce N2O discharge and consumption of fossil fuel in the subsequent sludge incineration processes. PMID:16605039

  14. An evaluation of the social and private efficiency of adoption: anaerobic digesters and greenhouse gas mitigation.

    PubMed

    Manning, D T; Hadrich, J C

    2015-05-01

    Climate science has begun to recognize the important role of non-carbon dioxide greenhouse gas emissions, including methane. Given the important contribution of methane, anaerobic digesters (ADs) on dairy farms in the U.S. present an opportunity to reduce greenhouse gas (GHG) emissions. We quantify the social and private costs and benefits of ADs that have been adopted in California and find that, despite high initial costs, large reductions in GHG emissions bring significant social benefits and represent good social investments given a $36 per-ton social cost of carbon. Subsidies that lower the initial private investment cost can help align socially and privately optimal adoption decisions. PMID:25706409

  15. Bibliography on anaerobic digestion

    SciTech Connect

    Ramakrishna, J.; Pruett, D.M.; Santerre, M.T.; Toyoshiba, T.S.

    1980-09-01

    The priority assigned to biogas systems by participants in A.I.D's Energy for Rural Development Program spurred the compilation of this 373-item bibliography on anaerobic digestion. The materials focus on energy technologies that are especially suited to the social, economic, and institutional concerns of rural Asia and the Pacific. Entries are presented in two sections. The first presents largely non-technical reports on anaerobic digesters in South and Southeast Asia, for the years 1956-80, with emphasis on the period 1970-80. The second section, which includes both technical and non-technical references, is a condensation of a computerized search of the U.S. Department of Energy's Energy Research Abstracts published during the period 1977-80. The search revealed a lack of reliable data, pointing to the need for further research on the technology and potential of anaerobic digestion.

  16. Fuel cell operation on anaerobic digester gas: Conceptual design and assessment

    SciTech Connect

    Spiegel, R.J.; Thorneloe, S.A.; Trocciola, J.C.; Preston, J.L.

    1999-11-01

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at wastewater treatment plants during the process of treating sewage anaerobically to reduce solids. The economic feasibility study shows the fuel cell is economical where plant electricity costs are 5 [cents]/kW h or higher, based on entry level fuel cell costs of $3,000/kW. FCs are one of the cleanest energy technologies available, and the widespread use of this concept should result in a significant reduction in global warming gas and acid rain air emissions. Additionally, technology evaluation focused on improving a commercial phosphoric acid FC power plant operation on ADG is described.

  17. Fuel cell operation on anaerobic digester gas: Conceptual design and assessment

    SciTech Connect

    Spiegel, R.J.; Thorneloe, S.A. . National Risk Management Research Lab.); Trocciola, J.C.; Preston, J.L. )

    1999-01-01

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at wastewater treatment plants during the process of treating sewage anaerobically to reduce solids. The economic feasibility study shows the fuel cell is economical where plant electricity costs are 5 [cents]/kW h or higher, based on entry level fuel cell costs of $3,000/kW. FCs are one of the cleanest energy technologies available, and the widespread use of this concept should result in a significant reduction in global warming gas and acid rain air emissions. Additionally, technology evaluation focused on improving a commercial phosphoric acid FC power plant operation on ADG is described.

  18. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  19. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China

    PubMed Central

    DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.

    2013-01-01

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471

  20. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China.

    PubMed

    Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V

    2011-03-15

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed. PMID:21348471

  1. Modeling anaerobic digestion

    SciTech Connect

    Li, Yanlong.

    1988-01-01

    A computer model was developed for a completely-mixed swine-manure digester operated at 35 C. It satisfactorily predicted polymer degradation, gas production, VFA concentration, and VS reduction at steady state. It accurately predicted digester instability under conditions of shock loading, changing HRT, and step loading. The model was also able to predict polymer degradation in a batch culture. Inhibitory effects of VFA, ammonia, and hydrogen were investigated. VFA and ammonia did not necessarily cause digester failure directly. However, at high concentrations, they resulted in an increase in hydrogen concentration. The increase in hydrogen concentration, in turn, caused digester instability and eventually digester failure. The feedback inhibition of hydrogen on acidogens was crucial in the instability process. Influence of LR and HRT on the digestion process were evaluated in the region where experimental data were not available. Better digester performance were achieved by increasing LR or HRT until a significantly high LR or HRT caused digester failure.

  2. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) can be recovered from different types of wastewaters. Among these wastewaters, anaerobically digested swine manure (digestate) is one with the highest N content in ammonia form. It is desirable to reduce the high ammonia content in swine manure because it reduces biogas production by in...

  3. TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS AT THE YONKERS, NY, WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    The paper summarizes the results of a 2-year field test to assess the performance of a specially modified commercial phosphoric acid 200 kW fuel cell power plant to recover energy from anaerobic digester gas (ADG) which has been cleansed of contaminants (sulfur and halide compoun...

  4. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect

    Rigby, H.; Smith, S.R.

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application, indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  5. Anaerobic digestion in rural China

    SciTech Connect

    Henderson, J.P.

    1997-01-01

    The People`s Republic of China has been promoting underground, individual, anaerobic digesters to process rural organic materials. This strategy has resulted in approximately five million household anaerobic digesters installed in China today. Simple reactors provide energy and fertilizer for Chinese farms and villages. Another benefit includes improved household sanitation. Reactor design has evolved over time. In the standard modern design, effluent is removed from the reactor at the top of the water column, meaning that supernatant is collected rather than sludge. Additionally, no mixing of the system occurs when effluent is removed. In some systems, a vertical cylindrical pull-rod port is added to the base of the effluent port. Effluent is removed by moving the pull-rod - simply a wooden shaft with a metal disk on the bottom - up and down in the port. A bucket can be placed directly under the pull-rod port, simplifying effluent removal, while the movement of the wooden shaft provides some mixing in the reactor. The gas primarily is used for cooking and lighting. A digester can provide approximately 60 percent of a family`s energy needs. Effluent from the reactors is an odorless, dark colored slurry, primarily used as an agricultural fertilizer. 3 figs.

  6. Anaerobic digestion of cellulosic wastes

    SciTech Connect

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table.

  7. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Ptsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes. PMID:23739470

  8. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.

    PubMed

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C

    2016-03-01

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097mgNH4(+)-NL(-1) were treated using submerged membranes (0.13cm(2)cm(-3)), low-rate aeration (120mL airL-manure(-1)min(-1)) and nitrification inhibitor (22mgL(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. PMID:26739456

  9. Application of enzymes in anaerobic digestion.

    PubMed

    Bochmann, G; Herfellner, T; Susanto, F; Kreuter, F; Pesta, G

    2007-01-01

    Owing to the very low economic value of brewer's spent grains, its utilisation for biogas production is very promising. The hydrolysis of ligno-cellulose is the rate limiting step in anaerobic digestion. Enzymatic pre-treatment promotes the hydrolysis of ligno-cellulose, breaking it down to lower molecular weight substances which are ready to be utilised by the bacteria. A cheap raw multi-enzyme produced by a solid state fermentation (SSF) process is a good substitute for expensive conventional enzyme. The SSF enzyme application to spent grain has been investigated by carrying out enzymatic solubility tests, hydrolytic experiments and two-step anaerobic fermentation of spent grain. Gas chromatograph analysis was conducted to quantify fatty acids concentrations, while CH(4), CO(2), O(2), H(2) and H(2)S were measured to determine biogas quality by means of a gas analyser. DS, oDS, pH were also measured to analyse the anaerobic digestion. The result shows that enzyme application promotes the hydrolysis of ligno-cellulose, indicated by higher enzymatic solubility and fatty acid concentration in a hydrolytic bioreactor. Moreover, biogas production is also increased. The quality of the gases produced is also enhanced. Since the anaerobic digestion can be operated in a stable performance, it can also be concluded that SSF enzyme is compatible with anaerobic digestion. PMID:18048974

  10. Anaerobic digestion of ultrasonicated sludge at different solids concentrations - Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; Yan, S; Tyagi, R D; Surampalli, R Y

    2016-01-15

    Two cases of anaerobic digestion (AD) of sludge, namely (i) with pre-treatment and (ii) without pre-treatment, were assessed using mass-energy balance and the corresponding greenhouse gas (GHG) emissions. For a digestion period of 30 days, volatile solids degradation of the control sludge and the ultrasonicated secondary sludge was 51.4% and 60.1%, respectively. Mass balance revealed that the quantity of digestate required for dewatering, transport and land application was the lowest (20.2 × 10(6) g dry sludge/day) for ultrasonicated secondary sludge at 31.4 g TS/L. Furthermore, for ultrasonicated secondary sludge at 31.4 g TS/L, the maximum net energy (energy output - energy input) of total dry solids (TDS) was 7.89 × 10(-6) kWh/g and the energy ratio (output/input) was 1.0. GHG emissions were also reduced with an increase in the sludge solids concentration (i.e., 40.0 g TS/L < 30.0 g TS/L < 20.0 g TS/L). Ultrasonication pre-treatment proved to be efficient and beneficial for enhancing anaerobic digestion efficiency of the secondary sludge when compared to the primary and mixed sludge. PMID:26546884

  11. Anaerobic digestion of woody biomass

    SciTech Connect

    Chynoweth, D.P.; Jerger, D.E.

    1984-01-01

    Woody biomass without pretreatment is generally considered to be refractive to anaerobic decomposition. This refractory property is attributed to its low moisture content, crystalline nature of the cellulose, and complex association of the component carbohydrates with lignin. This study investigated the methane fermentation (anaerobic digestion) of various wood species using conventional anaerobic digestion and batch anaerobic biogasification potential assays. Most experiments were conducted at 35/sup 0/C with a particle size in the range of 1 to 2 mm, and with a full complement of inorganic nutrient supplements. Conventional CSTR semicontinuous feed anaerobic digestion resulted in low methane yields and low conversion (less than 5% organic reduction). Significantly higher conversion (as high as 54%) and higher methane yields (as high as 5.4 SCF/lb VS added) were observed for several hardwood species in ABP assays employing low loading and long residence times (60 days). One softwood (loblolly pine) and eucalyptus were refractory under these conditions. Pretreatments, including particle size reduction and NaOH, increased rates but not total conversion. These results demonstrate that woody biomass can be decomposed by the methane fermentation and support the potential for development of this process for commercial wood conversion applications. 24 refs., 4 figs., 3 tabs.

  12. Identification and characterization of odorous gas emission from a full-scale food waste anaerobic digestion plant in China.

    PubMed

    Kong, Xin; Liu, Jianguo; Ren, Lianhai; Song, Minying; Wang, Xiaowei; Ni, Zhe; Nie, Xiaoqin

    2015-10-01

    Odorous gas emission characteristic along with the successive processes of a typical full-scale food waste (FW) anaerobic digestion plant in China was investigated in September and January. Seasonal variations in pollutant concentration and principal component analysis (PCA) showed markedly different characteristics between the two months. However, the main reason for the seasonal difference at the sorting process differed from the reason for the seasonal difference at other treatment units. Most odorous volatile organic compound (VOC) concentrations tested near an anaerobic digestion tank were similar and low in both months. Odor indices, including odor contribution (OC) and odor activity value (OAV) of various odorants, were further calculated to evaluate the malodor degree and contribution to the nuisance smell of any odorant. Brought about by people's different dietary habits, H2S and sulfocompounds were found to be dominant contributors to the large total OVA in the January test. By contrast, oxygenated organic compounds played an important role on the sum of OVA in September. PMID:26364066

  13. Anaerobic digestion of space mission wastes.

    PubMed

    Chynoweth, D P; Owens, J M; Teixeira, A A; Pullammanappallil, P; Luniya, S S

    2006-01-01

    The technical feasibility of applying leachbed high-solids anaerobic digestion for reduction and stabilization of the organic fraction of solid wastes generated during space missions was investigated. This process has the advantages of not requiring oxygen or high temperature and pressure while producing methane, carbon dioxide, nutrients, and compost as valuable products. Anaerobic biochemical methane potential assays run on several waste feedstocks expected during space missions resulted in ultimate methane yields ranging from 0.23 to 0.30 L g-1 VS added. Modifications for operation of a leachbed anaerobic digestion process in space environments were incorporated into a new design, which included; (1) flooded operation to force leachate through densified feedstock beds; and (2) separation of biogas from leachate in a gas collection reservoir. This mode of operation resulted in stable performance with 85% conversion of a typical space solid waste blend, and a methane yield of 0.3 Lg per g VS added after a retention time of 15 days. These results were reproduced in a full-scale prototype system. A detailed analysis of this process was conducted to design the system sized for a space mission with a six-person crew. Anaerobic digestion compared favorably with other technologies for solid waste stabilization. PMID:16784202

  14. Anaerobic digestion of kitchen wastes in a single-phased anaerobic sequencing batch reactor (ASBR) with gas-phased absorb of CO2.

    PubMed

    Zhang, Bo; He, Zheng-guang; Zhang, Li-li; Xu, Jian-bo; Shi, Hong-zhuan; Cai, Wei-min

    2005-01-01

    The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L x d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L x d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L x d) respectively. The operation of the reactor with gas-phased absorb of CO2 was stable in spite of the low pH (2.6-3.9) and high concentration of TS (142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7-4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO2 became acidified when the total COD loading rate was increased to 5.1 g/(L x d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor. PMID:16295899

  15. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.

    PubMed

    Racharaks, Ratanachat; Ge, Xumeng; Li, Yebo

    2015-09-01

    The potential of shale gas flowback water and anaerobic digestion (AD) effluent to reduce the water and nutrient requirements for marine microalgae cultivation was evaluated with the following strains: Nannochloropsis salina, Dunaliella tertiolecta, and Dunaliella salina. N. salina and D. tertiolecta achieved the highest biomass productivity in the medium composed of flowback water and AD effluent (6% v/v). Growth in the above unsterilized medium was found to be comparable to that in sterilized commercial media with similar initial inorganic nitrogen concentrations, salinity, and pH levels. Specific growth rates of 0.293 and 0.349 day(-1) and average biomass productivities of 225 and 275 mg L(-1)day(-1) were obtained for N. salina and D. tertiolecta, respectively. The lipid content and fatty acid profile of both strains in the medium were also comparable to those obtained with commercial nutrients and salts. PMID:25989090

  16. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  17. Evaluating anaerobic digestion for reduction of organic wastes

    SciTech Connect

    Hartung, H.A.

    1994-12-31

    A small-scale anaerobic digestion test has been developed for monitoring start-up work with inoperative digesters. The test is described and variables critical to its consistent operation are detailed. The method has been used in many anaerobic digestion studies, including evaluation of the digestibility of various municipal solid wastes like grass and hedge clippings, garbage and newspapers. Digestion rates are expressed in terms of the rate of production of combustible gas and the retention time needed for a fixed degree of volatile solids destruction. An example shows the advantage of digesting selected combined charges, and it is suggested that this approach might be fruitful with many toxic organic materials. Application of this test to find the digestion rates of some high-yield biomass crops is also described.

  18. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    SciTech Connect

    Mendes, Carlos Esquerre, Karla Matos Queiroz, Luciano

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  19. Anaerobic treatment in novel contact digester

    SciTech Connect

    Oleszkiewicz, J.A.; Koziarski, S.

    1982-01-01

    Treatment of diluted pigpen wastewaters in an ANCONT reactor, which is an anaerobic contact digester combining high rate jet gas mixing and upflow sludge blanket biofiltration-clarification stages, significantly decreased the digester volume. The CH/sub 4/-production conditions were achieved at a hydraulic retention time (HRT) of 0.5 days and at a corresponding organic load of 38 kg COD per meters cubed per day. Satisfactory secondary treatment was attained at an HRT of 3.5 days and a load of 4 kg per metre cubed per day. The removal efficiency was greater than 85% for nonfiltered COD and filtered effluent COD and BOD5 are 1200 and 500 mg O/L respectively. The biogas production under such conditions was 3.15 meters cubed per meters cubed-day (75% CH/sub 4/), which corresponds to 0.17 meters cubed per kg nonfiltered COD removed.

  20. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  1. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion. PMID:26337848

  2. On-farm anaerobic digester and fuel alcohol plant

    SciTech Connect

    Not Available

    1985-01-01

    An anaerobic digestion system was constructed and set up on a southern Illinois farm. The anaerobic digestion system was designed to be coupled with a fuel alcohol plant constructed by the farm family as part of an integrated farm energy system. The digester heating can be done using waste hot water from the alcohol plant and biogas from the digester can be used as fuel for the alcohol production. The anaerobic digestion system is made up of the following components. A hog finishing house, which already had a slotted floor and manure pit beneath it, was fitted with a system to scrape the manure into a feed slurry pit constructed at one end of the hog house. A solids handling pump feeds the manure from the feed slurry pit into the digester, a 13,000 gallon tank car body which has been insulated with styrofoam and buried underground. Another pump transfers effluent (digested manure) from the digester to a 150,000 gallon storage tank. The digested manure is then applied to cropland at appropriate times of the year. The digester temperature is maintained at the required level by automated hot water circulation through an internal heat exchanger. The biogas produced in the digester is pumped into a 32,000 gallon gas storage tank.

  3. DESIGN INFORMATION REPORT: ANAEROBIC DIGESTER MIXING SYSTEMS

    EPA Science Inventory

    The design information report discusses the current problems and potential solutions associated with the selection, design, and operation of anaerobic digester mixing systems. The report describes the four major types of mixing systems and presents their advantages and disadvanta...

  4. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  5. FERTILITY AND TOXICITY OF POTTING SOILS PREPARED FOR GINNING AND DAIRY WASTES ANAEROBIC DIGESTATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane gas resulting from combining cotton gin trash and dairy manure in a two phase anaerobic digester is easily marketed. Digestate solids are not. This study was conducted to determine anaerobic digestate toxicity and its potential as a soil amendment. The same mixture of dairy manure and cot...

  6. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  7. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9months for energy, 3months for greenhouse gases, and 3years 3months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis. PMID:26709050

  8. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.

    PubMed

    Costa Junior, Ciniro; Cerri, Carlos E P; Pires, Alexandre V; Cerri, Carlos C

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH4 and N2O) from the manure generated from 140 beef heifers confined for 90 days in the scope "housing to field application" by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO₂eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO₂eq per kg lwg(-1)). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO₂eq kg lwg(-1) or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems. PMID:25461102

  9. Thermophilic anaerobic digestion of high strength wastewaters

    SciTech Connect

    Wiegant, W.M.; Claassen, J.A.; Lettinga, G.

    1985-09-01

    Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/mT) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55C is comparable with that at 30C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors.

  10. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value and dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.

  11. Evaluation of thermophilic anaerobic digestion

    SciTech Connect

    Shamskhorzani, R.

    1989-01-01

    The objectives of this study were to examine the effect of temperature on the digestion of a synthetic substrate, alone and with waste activated sludge (WAS), and to determine the effect of nickel, cobalt and molybdenum on thermophilic digestion. Two different types of reactors, batch fed and continuous flow, were operated in four separate phases for over two years. The data indicated that thermophilic digestion could be established from digesting mesophilic domestic sewage sludge by setting the temperature at 50C. An additional acclimation period of about 15 days was required for stimulation of thermophilic bacteria at 60C. Thermophilic digestion at temperatures up to 75C could easily be established in a few days, provided that the digester was well adapted at 60C. The rate of metabolism increased with temperature, reaching an optimum between 60C and 65C. It was possible to shift from 50C to 37C and back to thermophilic temperatures with a minimum of difficulties. Temperature fluctuation of less than 5C did not cause any upset in the performance of the thermophilic digesters operating at 50C to 65C. Addition of Ni, Co and Mo at 1 mg/L appeared to be satisfactory with the suspended solids maintained in the system at long SRT periods. The best substrate removal at 50C was 99.6% reduction at 10 g/L/d COD and 99.6% reduction at 14 g/L/d COD at 55C. The limits for COD loading under a once daily batch fed operations were 24 g/d at 50C and 33 g/d at 55C. The continuous flow fixed-film digester was able to digest WAS with liquid detention times as short as 8 hours. Thirty percent digestion of the volatile solids in WAS was obtained at a 3-day LDT and 16% at an 8-hr LDT.

  12. Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion of manure for biogas production is one of many options for reducing the carbon footprint of milk production. This process reduces greenhouse gas emissions but increases the potential nitrogen and phosphorus losses from the farm. An anaerobic digester component was added to the In...

  13. Anaerobic Digestion in a Flooded Densified Leachbed

    NASA Technical Reports Server (NTRS)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  14. Use of biochars in anaerobic digestion.

    PubMed

    Mumme, Jan; Srocke, Franziska; Heeg, Kathrin; Werner, Maja

    2014-07-01

    This study investigated the behavior of biochars from pyrolysis (pyrochar) and hydrothermal carbonization (hydrochar) in anaerobic digestion regarding their degradability and their effects on biogas production and ammonia inhibition. A batch fermentation experiment (42C, 63 days) was conducted in 100mL syringes filled with 30 g inoculum, 2g biochar and four levels of total ammonium nitrogen (TAN). For pyrochar, no clear effect on biogas production was observed, whereas hydrochar increased the methane yield by 32%. This correlates with the hydrochar's larger fraction of anaerobically degradable carbon (10.4% of total carbon, pyrochar: 0.6%). Kinetic and microbiota analyses revealed that pyrochar can prevent mild ammonia inhibition (2.1 g TANk g(-1)). Stronger inhibitions (3.1-6.6 g TAN kg(-1)) were not mitigated, neither by pyrochar nor by hydrochar. Future research should pay attention to biochar-microbe interactions and the effects in continuously-fed anaerobic digesters. PMID:24859210

  15. Operational characteristics of anaerobic digesters at selected wastewater-treatment facilities in the United States

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The effectiveness of powered activated carbon in improving volatile solids destruction and gas production in anaerobic digesters that are operating at less than normally expected levels of efficiency was studied. Digester operating characteristics were surveyed and the number of stressed digesters estimated. It is shown that although median values of the operating parameters conformed with those of a well operated digester, 30 percent of the digesters surveyed were stressed with regard to at least one important parameter. Digester gas production and usage are examined to determine the importance of methane off gas as an energy source. Onsite uses include heating digesters and buildings, incinerating sludge, operating equipment, and generating electricity.

  16. Ultrasonic treatment to improve anaerobic digestibility of dairy waste streams.

    PubMed

    Palmowski, L; Simons, L; Brooks, R

    2006-01-01

    The dairy-processing industry generates various types of organic wastes, which are utilised as stock feed, for anaerobic digestion, spread on land or alternatively land-filled at high costs. Owing to the generation of renewable energy, anaerobic digestion is an attractive option for many factories. To enhance the biological degradation process, a mechanical disintegration of various waste dairy streams was undertaken. While the successful application of ultrasonic treatment has been reported for various municipal waste streams, limited information was available for dairy industry applications. The results of this study showed that ultrasonic treatment can improve the digestibility of the more problematic dairy waste streams, such as sludges, by breaking down micro-organisms' cell walls and releasing soluble cell compounds. For more soluble streams, such as dairy factory effluent, an increased gas production was observed and attributed to the reduced particle size of the fat globules. PMID:16784213

  17. Pulse power enhancement of the anaerobic digester process

    SciTech Connect

    Greene, H.W.

    1996-12-31

    A pilot study of the effects of Pulse Power Processing on an anaerobic digester system was completed at the Decatur Utilities Dry Creek Wastewater Treatment Plant, in Decatur Alabama, in September, 1995. This patented method generates several significant effects when all biosolids material is treated as it enters the anaerobic system. Intense, high peak-power plasma arcs are created, one at each end of the parabolic processing chamber, to produce an amplified synergy of alterations to the digester sludge flowing between them. The millisecond electric discharges generate localized temperatures as high as 30,000 K{degrees}, followed by a rapid cooling of the flowing liquid, which produces acoustic shock waves with pressures approaching 5,000 atmospheres. This destructive force: ruptures many of the cell walls of the bacteria and other single-cell organisms, releasing their vacuole fluids; breaks carbon bonds to form smaller organic compounds; and pulverizes large particle conglomerates, increasing the overall surface area of the solids. These beneficial results serve to boost the nutrient source for the anaerobes in the digester. In conjunction with LTV radiation, the formation of excited chemical radicals (including OH{sup -}), and the changes in ionic charge through alteration of the zeta potential, the bioreactor system is turbocharged to enhance the conversion of volatile biosolids to methane gas, which is the natural respiratory by-product of anaerobic digestion.

  18. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  19. Photoenhanced anaerobic digestion of organic acids

    SciTech Connect

    Weaver, P.F.

    1989-08-25

    A process is described for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion of organic acids and alcohols into methane with low levels of light energy input. 8 figs.

  20. Photoenhanced anaerobic digestion of organic acids

    SciTech Connect

    Weaver, P.F.

    1990-04-24

    This patent describes a process for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  1. Anaerobic digestion for household organics

    SciTech Connect

    Sinclair, R.; Kelleher, M.

    1995-04-01

    Considerable success in using anaerobic technology for processing household organics is being reported by several recently constructed facilities in Europe. Organic residuals collected separately in a Belgian town are processed to produce biogas and a compost-like material in less than one month. The dry anaerobic conversion process (DRANCO) was developed by Organic Waste Systems (OWS) in the 1980s, with the collaboration of Professor Willy Verstraete at the University of Ghent`s Laboratory of Applied Microbial Ecology. The patented process converts solid and semisolid organic residuals into biogas (for energy recovery) and a stable humus like product. The plant has competing odor sources such as the active landfill and the surrounding farmland - in fact, the smell of livestock manure is quite prevalent in this heavily agricultural area. Addition of the nonrecyclable paper fraction to the feedstock improves the carbon/nitrogen ratio, soaks up moisture, and absorbs odor. The entire Brecht facility does not occupy much space and total material retention time at the site is one month, compared to a number of months for aerobic systems. It also has a low staffing requirement, provides energy self-sufficiency, and the final soil enhancement product meets established quality standards.

  2. Anaerobic digestion of municipal solid waste

    SciTech Connect

    Dasgupta, A.; Nemerow, N.L.; Farooq, S.; Daly, E.L.Jr.; Sengupta, S.; Gerrish, H.P.; Wong, K.F.

    1981-01-01

    Filtrate from an anaerobic municipal waste digestion plant at Pompano Beach, Florida, has BOD, COD, and total organic C contents of 1075, 6855, and 1655 mg/L, respectively. The treatment does not inactivate total coliforms; that of the digester slurry and filtrate are 2.3 X 10 to the power of 6 and 1.7 X 10 to the power of 6/100 mL, respectively. The average concentrations of Cr, Cu, Mn, Fe, Ni, and Zn in the filtrate are 0.48, 1.29, 7.29, 32, 0.35, and 11 mg/L, respectively. The filtrate requires treatment prior to discharge.

  3. Improvement of anaerobic digestion of sludge.

    PubMed

    Dohányos, M; Zábranská, J; Kutil, J; Jenícek, P

    2004-01-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of the process conditions, pretreatment of input sludge and increase of process temperature is frequently used. The thermophilic process brings a higher solids reduction and biogas production, a high resistance to foaming, no problems with odour, better pathogens destruction and an improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in a lysate centrifuge was proved to cause increase of biogas production in full-scale conditions. The rapid thermal conditioning of digested sludge is an acceptable method of particulate matter disintegration and solubilization. PMID:15259942

  4. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control. PMID:25913466

  5. A methane production feasibility model for central anaerobic digesters

    NASA Astrophysics Data System (ADS)

    Sullivan, J. L.; Peters, N.; Ostrovski, C. M.

    1981-01-01

    A mathematical model was developed for prediction of the practicability of building and operating large centrally located anaerobic digesters for producing methane gas from animal manure. The assumptions were that the manure would be collected from the feedlots and that the product gas would be supplied to an existing pipeline. The model takes account of the farm locations and calculates transportation costs for various numbers of digesters. Digester sizes for each distribution and installation and operating costs are computed. Revenue was then determined on the basis of methane production and fertilizer value recovery. The utility of the model is shown through a study of farms in southwestern Ontario where many small feedlots exist. The results of the study indicate a gas production cost of roughly $0.18/cu m.

  6. High-rate thermophilic anaerobic digestion of agricultural wastes

    SciTech Connect

    Shelef, G.; Kimchie, S.; Grynberg, H.

    1980-01-01

    There are many settlements in Israel known as Kibbutzim which provide an interface between the agricultural sector, the industrial sector, and a community with a high per capita energy consumption. Hence, these settlements provide an ideal site for the operation of anaerobic digestion for the treatment of agricultural wastes and the utilization of the resultant energy supply. While the substrate initially used in this study was dairy-cow manure collected from the concrete floors of corrals, the contribution of other organic wastes such as straw, cotton plants, and chicken manure was also evaluated. It has been reported in the literature that some materials when added to the anaerobic digestion process lead to enhancement of gas production and improvement in digester operation. Hence, the effects on the performance of highly loaded thermophilic digesters of several materials such as activated carbon, cobalt salts, and calcium hydroxide were examined in this study. Pilot-plant units of 1000 and 10,000 liter were an intergral part of the study program. These units were used to verify results obtained with the 4-liter laboratory units. An energy survey was conducted on the larger units. These units were also used to supply large quantities of gas for utilization experiments and to provide the large quantities of digested sludge required for animal-feeding trials and fertilizer experiments. The pilot-plant units also afforded the opportunity to solve technical problems which would arise in full-size units.

  7. Flow pattern visualization in a mimic anaerobic digester using CFD.

    PubMed

    Vesvikar, Mehul S; Al-Dahhan, Muthanna

    2005-03-20

    Three-dimensional steady-state computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The gas phase was simulated with air and the liquid phase with water. The CFD results were first evaluated using experimental data obtained by computer automated radioactive particle tracking (CARPT). The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However, increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat-bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have an appreciable effect on the flow pattern of the digesters at the range of gas flow rates used. PMID:15685599

  8. The anaerobic digestion of solid organic waste.

    PubMed

    Khalid, Azeem; Arshad, Muhammad; Anjum, Muzammil; Mahmood, Tariq; Dawson, Lorna

    2011-08-01

    The accumulation of solid organic waste is thought to be reaching critical levels in almost all regions of the world. These organic wastes require to be managed in a sustainable way to avoid depletion of natural resources, minimize risk to human health, reduce environmental burdens and maintain an overall balance in the ecosystem. A number of methods are currently applied to the treatment and management of solid organic waste. This review focuses on the process of anaerobic digestion which is considered to be one of the most viable options for recycling the organic fraction of solid waste. This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields. The involvement of a diverse array of microorganisms and effects of co-substrates and environmental factors on the efficiency of the process has been comprehensively addressed. The recent literature indicates that anaerobic digestion could be an appealing option for converting raw solid organic wastes into useful products such as biogas and other energy-rich compounds, which may play a critical role in meeting the world's ever-increasing energy requirements in the future. PMID:21530224

  9. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples. PMID:24907580

  10. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.

    PubMed

    Coughtrie, A R; Borman, D J; Sleigh, P A

    2013-06-01

    Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-? Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-?, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-? models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). PMID:23624047

  11. Sequencing mesophilic and thermophilic anaerobic digesters. Final report

    SciTech Connect

    Not Available

    1982-12-01

    This project employed two laboratory bench scale, complete-mix anaerobic sludge digesters arranged in a series configuration. The first digester was operated at 35/sup 0/C (mesophilic) and the second at 50/sup 0/C (thermophilic). A portion of the thermophilic sludge was recycled through an aeration basin. As a comparison to the mesophilic-thermophilic sequencing, a mesophilic-mesophilic digester sequence, without sludge recycle to the aeration basin, was operated in parallel to the test units and loaded at an equivalent rate. Conclusions of this study are as follows: in establishing a thermophilic anaerobic digester, a slow-start procedure, in which the temperature is increased at a rate of 0.6/sup 0/C per day with loading, appears to produce a more stable thermophilic digester in a shorter period of time than a quick-start procedure, in which the temperature is increased rapidly with no loading. Even after a year, the slow-start thermophilic digester proved to be unstable once sequencing began. A greater volatile solids, COD, BOD, and grease reduction with a higher gas production was achieved using a mesophilic-mesophilic sequence, probably, in part, due to the instability (volatile acids in the effluent) of the thermophilic digester in the mesophilic-thermophilic sequence. A greater total kjeldahl N (TKN) and total coliform destruction was achieved in the thermophilic digester, however, poor dewatering characteristics, as indicated by the capillary suction time (CST), and an obnoxious odor were also evident. Other than an increase in effluent suspended solids, the recycle of thermophilic sludge to an aeration basin produced no discernable effect. 9 figs., 3 tabs.

  12. Balancing hygienization and anaerobic digestion of raw sewage sludge.

    PubMed

    Astals, S; Venegas, C; Peces, M; Jofre, J; Lucena, F; Mata-Alvarez, J

    2012-12-01

    The anaerobic digestion of raw sewage sludge was evaluated in terms of process efficiency and sludge hygienization. Four different scenarios were analyzed, i.e. mesophilic anaerobic digestion, thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a 60 C or by an 80 C hygienization treatment. Digester performance (organic matter removal, process stability and biogas yield) and the hygienization efficiency (reduction of Escherichia coli, somatic coliphages and F-specific RNA phages) were the main examined factors. Moreover, a preliminary economical feasibility study of each option was carried out throughout an energy balance (heat and electricity). The obtained results showed that both thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a hygienization step were able to produce an effluent sludge that fulfills the American and the European legislation for land application. However, higher removal efficiencies of indicators were obtained when a hygienization post-treatment was present. Regarding the energy balance, it should be noted that all scenarios have a significant energy surplus. Particularly, positive heat balances will be obtained for the thermophilic anaerobic digestion and for the mesophilic anaerobic digestion followed by 60 C hygienization post-treatment if an additional fresh-sludge/digested sludge heat exchanger is installed for energy recovery. PMID:23063441

  13. Critical analysis of PCDD/F emissions from anaerobic digestion.

    PubMed

    Rada, E C; Ragazzi, M

    2008-01-01

    This paper concerns a particular aspect of anaerobic digestion, that is the emission of PCDD/F in different scenarios where this biological process is present. The considered scenarios are: anaerobic digestion of automatically sorted Municipal Solid Waste, source separated organic fraction of Municipal Solid Waste treated in an anaerobic digester, anaerobic process developed in a Municipal Solid Waste sanitary landfill. Not always the emissions taken into account are related to combustion of biogas from anaerobic digestion: the loss of biogas from a landfill causes an uncontrolled emission of PCDD/F. The paper is completed with an analysis of the role of anaerobic digestion in PCDD/F inventories and health risk considerations. Indeed the most detailed inventories offer emission factors useful for a deep understanding of the phenomenon of PCDD/F release into the atmosphere. Concerning health risk, some suggestions in order to decrease it are proposed. PMID:19029711

  14. Generation pattern of sulfur containing gases from anaerobically digested sludge cakes.

    PubMed

    Novak, John T; Adams, Gregory; Chen, Yen-Chih; Erdal, Zeynep; Forbes, Robert H; Glindemann, Dietmar; Hargreaves, J Ronald; Hentz, Lawrence; Higgins, Matthew J; Murthy, Sudhir N; Witherspoon, Jay

    2006-08-01

    Eleven dewatered sludge cakes collected from anaerobic digesters at different treatment plants were evaluated for the amount, type, and pattern of odorous gas production. All but one of the sludge cakes were from mesophilic anaerobic digesters. One was from a thermophilic digester. The pattern and quantities of sulfur gases were found to be unique for each of the samples with regard to the products produced, magnitude, and subsequent decline. The main odor-causing chemicals were volatile sulfur compounds, which included hydrogen sulfide, methanethiol, and dimethyl sulfide. Volatile sulfur compound production peaked in 3 to 8 days and then declined. The decline was a result of conversion of organic sulfur compounds to sulfide. In one side-by-side test, a high-solids centrifuge cake generated more odorous compounds than the low-solids centrifuge cake. The data show that anaerobic digestion does not eliminate the odor potential of anaerobically digested dewatered cakes. PMID:17059135

  15. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM AN ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. he fuel cell is being used for this application becaus...

  16. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community.

    PubMed

    Tale, V P; Maki, J S; Zitomer, D H

    2015-03-01

    Adding beneficial microorganisms to anaerobic digesters for improved performance (i.e. bioaugmentation) has been shown to decrease recovery time after organic overload or toxicity upset. Compared to strictly anaerobic cultures, adding aerotolerant methanogenic cultures may be more practical since they exhibit higher methanogenic activity and can be easily dried and stored in ambient air for future shipping and use. In this study, anaerobic digesters were bioaugmented with both anaerobic and aerated, methanogenic propionate enrichment cultures after a transient organic overload. Digesters bioaugmented with anaerobic and moderately aerated cultures recovered 25 and 100 days before non-bioaugmented digesters, respectively. Increased methane production due to bioaugmentation continued a long time, with 50-120% increases 6 to 12 SRTs (60-120 days) after overload. In contrast to the anaerobic enrichment, the aerated enrichments were more effective as bioaugmentation cultures, resulting in faster recovery of upset digester methane and COD removal rates. Sixty days after overload, the bioaugmented digester archaeal community was not shifted, but was restored to one similar to the pre-overload community. In contrast, non-bioaugmented digester archaeal communities before and after overload were significantly different. Organisms most similar to Methanospirillum hungatei had higher relative abundance in well-operating, undisturbed and bioaugmented digesters, whereas organisms similar to Methanolinea tarda were more abundant in upset, non-bioaugmented digesters. Bioaugmentation is a beneficial approach to increase digester recovery rate after transient organic overload events. Moderately aerated, methanogenic propionate enrichment cultures were more beneficial augments than a strictly anaerobic enrichment. PMID:25528544

  17. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues. PMID:23697241

  18. State Of The Science On Cogeneration Of Heat And Power From Anaerobic Digestion Of Municipal Biosolids

    EPA Science Inventory

    This presentation will report on work underway to inventory facilities currently utilizing biogas from anaerobic digestion and speak with practitioners to learn: techniques for preparing residuals for digestion, methods to use for cleaning biogas (e.g., of siloxane), and how gas...

  19. Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

  20. Anaerobic Digestion of Food Waste-recycling Wastewater

    NASA Astrophysics Data System (ADS)

    Han, Gyuseong; Shin, Seung Gu; Lim, Juntaek; Jo, Minho; Hwang, Seokhwan

    2010-11-01

    Food waste-recycling (FWR) wastewater was evaluated as feedstock for two-stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two-stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10-25 days. In the acidogenic reactor, the total carbohydrate reduction efficiency and volatile fatty acid production dramatically decreased when acidogenic HRT was <2.5 days (i.e., total two-stage HRT = 15 days). High organic removal ratios of 75.5-85.9% for COD and 68.8-83.6% for VS were achieved throughout the two-stage process. Methane production rate of 1.7-3.6 L-gas/L-reactor?d was observed. These results suggested that two-stage anaerobic process was successful at the laboratory scale with FWR wastewater as feedstock.

  1. Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings.

    PubMed

    Xu, Fuqing; Wang, Feng; Lin, Long; Li, Yebo

    2016-01-01

    To select a proper inoculum for the solid state anaerobic digestion (SS-AD) of yard trimmings, digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters were compared at substrate-to-inoculum (S/I) ratios from 0.2 to 2 (dry basis), and total solids (TS) contents from 20% to 35%. The highest methane yield of around 244L/kg VSfeed was obtained at an S/I ratio of 0.2 and TS content of 20% for both types of inoculum. The highest volumetric methane productivity was obtained with dewatered effluent at an S/I ratio of 0.6 and TS content of 24%. The two types of inoculum were found comparable regarding methane yields and volumetric methane productivities at each S/I ratio, while using dewatered effluent as inoculum reduced the startup time. An S/I ratio of 1 was determined to be a critical level and should be set as the upper limit for mesophilic SS-AD of yard trimmings. PMID:26575617

  2. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.

    PubMed

    Sawatdeenarunat, Chayanon; Surendra, K C; Takara, Devin; Oechsner, Hans; Khanal, Samir Kumar

    2015-02-01

    Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion. PMID:25446783

  3. Anaerobic biodegradation of nitroglycerin by digester sludge

    SciTech Connect

    Christodoulatos, C.; Pal, N.; Bhaumik, S.

    1995-12-31

    Nitroglycerin (NG) is an energetic compound primarily present in gun and rocket propellants as a primary explosive. It was also abundantly found in spent wastes from several chemical or pharmaceutical industries and in the wastewater of munitions manufacturing facilities causing significant environmental pollution. Incineration, other thermal processes, and chemical treatment such as acid or alkaline hydrolysis can effectively destroy these high energy compounds but they are associated with high treatment costs. Moreover, chemical processes may generate waste streams which require further treatment prior to their discharge in the environment. There is therefore, a pressing need for the development of new technologies that can economically and effectively deal with the disposal of energetic compounds. Biological treatment of energetic compounds amenable to microbial degradation provides an alternative to costly thermal and chemical methods. NG can be aerobically biodegraded by several fungal and bacterial consortia in the presence of co-substrates. The decomposition proceeds through a number of intermediate products whose formation is catalyzed by extra-cellular enzymes. The anaerobic biodegradation of NG by a mixed bacterial culture from digester sludge was investigated in this study. the study focused on the ability of anaerobic bacteria to degrade NG and utilize it as sole carbon source, the identification of possible intermediates,and the effect of co-substrates on the rates of transformation.

  4. Parasite ova in anaerobically digested sludge

    SciTech Connect

    Arther, R.G.; Fitzgerald, P.R.; Fox, J.C.

    1981-08-01

    The Metropolitan Sanitary District of Greater Chicago produces anaerobically digested wastewater sludge from a 14-day continuous-flow process maintained at 35 degrees Celcius. Some of the sludge is ultimately applied to strip-mined lands in Central Illinois (Fulton County) as a soil conditioner and fertilizer. Parasitic nematode ova were isolated from freshly processed samples, as well as from samples collected from storage lagoons, using a system of continuous sucrose solution gradients. The mean number of ova per 100 g of dry sludge was 203 Ascaris spp., 173 Toxocara spp., 48 Toxascaris leonina, and 36 Trichuris spp. An assessment of the viability of these ova was determined by subjecting the ova to conditions favorable for embryonation. Recovered ova were placed in 1.5% formalin and aerated at 22 degrees Celcius for 21 to 28 days. Development of ova isolated from freshly digested sludge occurred in 64% of the Ascaris spp., 53% of the Toxocara, 63% of the Toxascaris leonina, and 20% of the Trichuris spp. Viability was also demonstrated in ova recovered from sludge samples held in storage lagoons for a period of up to 5 years; embryonation occurred in 24% of the Ascaris spp., 10% of the Toxocara spp., 43% of the Toxascaris leonina, and 6% of the Trichuris spp. (Refs. 24).

  5. Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system.

    PubMed

    Lindeboom, R E F; Fermoso, F G; Weijma, J; Zagt, K; van Lier, J B

    2011-01-01

    Conventional anaerobic digestion is a widely applied technology to produce biogas from organic wastes and residues. The biogas calorific value depends on the CH, content which generally ranges between 55 and 65%. Biogas upgrading to so-called 'green gas', with natural gas quality, generally proceeds with add-on technologies, applicable only for biogas flows > 100 m3/h. In the concept of autogenerative high pressure digestion (AHPD), methanogenic biomass builds up pressure inside the reactor. Since CO2 has a higher solubility than CH4, it will proportion more to the liquid phase at higher pressures. Therefore, AHPD biogas is characterised by a high CH4 content, reaching equilibrium values between 90 and 95% at a pressure of 3-90 bar. In addition, also H2S and NH3 are theoretically more soluble in the bulk liquid than CO2. Moreover, the water content of the already compressed biogas is calculated to have a dew point <--10 degrees C. Ideally, high-quality biogas can be directly used for electricity and heat generation, or injected in a local natural gas distribution net. In the present study, using sodium acetate as substrate and anaerobic granular sludge as inoculum, batch-fed reactors showed a pressure increase up to 90 bars, the maximum allowable value for our used reactors. However, the specific methanogenic activity (SMA) of the sludge decreased on average by 30% compared to digestion at ambient pressure (1 bar). Other results show no effect of pressure exposure on the SMA assessed under atmospheric conditions. These first results show that the proposed AHPD process is a highly promising technology for anaerobic digestion and biogas upgrading in a single step reactor system. PMID:22097043

  6. Methane enrichment digestion experiments at the anaerobic experimental test unit at Walt Disney World. Final report, March 1989-August 1990

    SciTech Connect

    Srivastava, V.J.; Hill, A.H.

    1993-06-01

    The goal of the project was to determine the technical feasibility of utilizing a novel concept in anaerobic digestion, in-situ methane enrichment digestion or MED for producing utility-grade gas from a pilot-scale anaerobic digester. MED tests conducted during this program consistently achieved digester product gas with a methane (CH4) content of greater than 90% (on a dry-, nitrogen-free basis). The MED concept, because it requires relatively simple equipment and modest energy input, has the potential to simplify gas cleanup requirements and substantially reduce the cost of converting wastes and biomass to pipeline quality gas.

  7. Enhanced recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membranes and aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric ammonia pollution from livestock wastes can be reduced using gas-permeable membrane technology by converting ammonia contained in the manure into ammonium salt for use in fertilizers. In this study, gas-permeable membrane technology was enhanced using aeration combined with nitrificatio...

  8. Anaerobic digestion of water hyacinth and sludge

    SciTech Connect

    Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.; Hayes, T.D.

    1986-01-01

    The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs., 5 figs., 5 tabs.

  9. INCREASE OF INDICATOR ORGANISMS FOLLOWING ANAEROBIC DIGESTION AND CENTRIFUGE DEWATERING.

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bac...

  10. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    PubMed

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation. PMID:25397976

  11. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.

    PubMed

    Wood, Brandon M; Jader, Lindsey R; Schendel, Frederick J; Hahn, Nicholas J; Valentas, Kenneth J; McNamara, Patrick J; Novak, Paige M; Heilmann, Steven M

    2013-10-01

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. PMID:23568780

  12. Thermal pretreatment of algae for anaerobic digestion.

    PubMed

    Marsolek, Michael D; Kendall, Elizabeth; Thompson, Phillip L; Shuman, Teodora Rutar

    2014-01-01

    The objective of this work was to determine the benefit of thermal pretreatment on biogas yield from microalgae-fed anaerobic digester mesocosms. Replicate Nanochloropsis oculata cultures were heated for 4h at 30, 60, and 90C, as well as at a constant temperature of 90C for 1, 3.5, and 12h. Net biogas production increased from 0.28L biogas/g volatile solids added (VSa) for the control to 0.39 L biogas/g VSa (p<0.01) when heated at 90C, but there was no improvement at 30 or 60C. Increased biogas production correlated with increased soluble chemical oxygen demand (COD). Net biogas production increased as a function of heating time, from 0.32 L biogas/g VSa for the control, to 0.41, 0.43, and 0.44 L biogas/g VSa (p<0.05 for all combinations vs. control) when preheated at 90C for 1, 3.5, and 12h, respectively. However, despite enhanced biogas production the energy balance is negative for thermal pretreatment. PMID:24189036

  13. Municipal Development of Anaerobic Digestion/ Combined Heat and Power in Massachusetts

    NASA Astrophysics Data System (ADS)

    Pike, Brenda

    With a commercial food waste ban going into effect in Massachusetts in October 2014, businesses, institutions, and municipalities are considering alternatives to landfills and incinerators for organic waste. Anaerobic digestion is one such alternative. Similar to composting, but in an environment devoid of oxygen, anaerobic digestion produces byproducts such as methane (which can be burned for heat or electricity) and liquid or solid digestate (which can be used as fertilizer, cattle bedding, and more). Thus, disposal of food waste and other organic materials can become a source of revenue rather than just an expense. Municipalities interested in developing anaerobic digestion/combined heat and power (AD/CHP) facilities have the benefit of desirable options for sites, such as landfill gas facilities and wastewater treatment plants, and potential feedstocks in source-separated residential or municipal food waste or wastewater. This thesis examines the opportunities and challenges for municipal development of AD/CHP facilities in Massachusetts.

  14. Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1).

    PubMed

    Boubaker, Fezzani; Ridha, Ben Cheikh

    2008-09-01

    The anaerobic digestion model No. 1 (ADM1), conceived by the international water association (IWA) task group for mathematical modelling of anaerobic digestion processes is a structured generic model which includes multiples steps describing biochemical and physicochemical processes encountered in the anaerobic degradation of complex organic substrates and a common platform for further model enhancement and validation of dynamic simulations for a variety of anaerobic processes. In this study the ADM1 model was modified and applied to simulate the mesophilic anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW). The ADM1 equations were coded and implemented using the simulation software package MATLAB/Simulink. The most sensitive parameters were calibrated and validated using updated experimental data of our previous work. The results indicated that the ADM1 model could simulate with good accuracy: gas flows, methane and carbon-dioxide contents, pH and total volatile fatty acids (TVFA) concentrations of effluents for various feed concentrations digested at different hydraulic retention times (HRTs) and especially at HRTs of 36 and 24 days. Furthermore, effluent alkalinity and ammonium nitrogen were successfully predicted by the model at HRTs of 12 and 24 days for some feed concentrations. PMID:18187320

  15. Denitrification in anaerobic digesters: A review of recent studies

    SciTech Connect

    Akunna, J.C.

    1996-11-01

    Wastewaters from food processing industries (and domestic activities) are usually treated principally for organic carbon removal. But recent standards have generated interests in nitrogen and phosphorus removal. This has led to the addition of nitrification, denitrification and phosphorus removal units in the existing treatment plants, thus increasing the cost of treatment operations. The need to reduce treatment costs has led to research on ways to carry out many treatment processes in a single system. One of these systems consists of anaerobic and aerobic units in series with effluent recycle. In the anaerobic unit, anaerobic digestion and denitrification take place simultaneously producing methane and nitrogen gas while in the aerobic unit, ammonia oxidation to nitrate (nitrification) takes place. This process configuration appears to give lesser problems associated with operations such as the addition of raw wastewater or external organic carbon to ensure complete denitrification. In this paper a review of the results of recent studies are presented, with special emphasis on the factors affecting treatment efficiencies (i.e., denitrification, ammonia production from nitrate, and methane production efficiencies).

  16. Anaerobic digestion of red and chum salmon wastes. Final report

    SciTech Connect

    Turner, G.L.

    1982-01-01

    This report is on the second and final phase of a project designed to investigate the feasibility of digesting fish wastes to reduce pollution and recover useable oils, solids, and liquids. The first part of the project was a literature search to determine which of two digestion methods, enzymatic or anaerobic, was the most feasible for fish wastes. The results indicated that anaerobic digestion, with production of combustible gases, was the more feasible process. Accordingly, a bench-scale system was set up to determine the potential of fish waste digestion, as the second phase. This report is on the results of that study. The study shows that anaerobic digestion will initiate utilizing salmon wastes; completion of digestion would be dependent upon the COD:N:P ratio of the wastes and their carbonate buffering capacity. The nutrient ratio would depend on the type of processing while the buffering capacity would depend on the carbonate content of the processing water. Both of these factors would be plant specific. From the data the feasibility of utilizing anaerobic digestion in that processing plant could be determined. The ratio might indicate that a small amount of fertilizer or carbonate addition would facilitate digestion. Because total digestion did not occur, we were not able to complete the part of the study dealing with the potential use of digested salmon wastes as fertilizer and animal feed supplement. The most likely factor for the failure to complete digestion was the low percentage of nitrogen and phosphorus in the wastes. Since digestion and methane production were initiated, the wastes should be capable of digestion if they were fertilized with nitrogen and phosphorus. The system also needs to be buffered to maintain the proper pH range. 14 refs., 4 figs., 5 tabs.

  17. Fate of 17B-estradiol in anaerobic lagoon digesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of [14C]17B-estradiol ([14C]E2) was monitored for 42 d in triplicate 10 L anaerobic digesters. Total radioactive residues (TRR) decreased rapidly in the liquid layer of the digesters and reached a steady-state value of 19-24% of the initial dose after 4 days. LC/MS/MS analyses of the liqu...

  18. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.

    PubMed

    Cecchi, Franco; Cavinato, Cristina

    2015-05-01

    Scientific and industrial experiences, together with economical and policies changes of last 30?years, bring anaerobic digestion among the most environmental friendly and economically advantageous technologies for organic waste treatment and management in Europe. In this short review, the role of anaerobic digestion of organic wastes is discussed, considering the opportunity of a territorial friendly approach, without barriers, where different organic wastes are co-treated. This objective can be achieved through two proposed strategies: one is the anaerobic digestion applied as a service for the agricultural and farming sector; the other as a service for citizen (biowaste, diapers and wastewater treatment integration). The union of these two strategies is an environmental- and territorial-friendly process that aims to produce renewable energy and fertiliser material, with a low greenhouse gas emission and nutrients recovery. The advantage of forthcoming application of anaerobic digestion of organic wastes, even for added value bioproducts production and new energy carriers, are finally discussed. Among several advantages of anaerobic digestion, the role of the environmental controller was evaluated, considering the ability of minimising the impacts exploiting the biochemical equilibrium and sensitivity as a quality assurance for digestate. PMID:25687916

  19. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment.

    PubMed

    Poh, P E; Chong, M F

    2009-01-01

    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed. PMID:18657414

  20. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  1. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  2. Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield.

    PubMed

    Liu, H W; Walter, H K; Vogt, G M; Vogt, H S; Holbein, B E

    2002-01-20

    Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials. PMID:11753918

  3. Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe.

    PubMed

    Banks, C J; Salter, A M; Chesshire, M

    2007-01-01

    The paper considers the role of anaerobic digestion in promoting good agricultural practice on farms and the contribution this would make to reducing the environmental impacts associated with manure management. There are no regulatory drivers to promote the use of digestion in Europe, and the technology has only been widely adopted where economic drivers and coherent policies have been implemented at a national level. These measures have included direct subsidy on the energy price paid for "green electricity", and exemption of tax when biogas is used as a vehicle fuel. In those countries where financial incentives are not available or where a financial penalty is incurred through the regulatory regime, the uptake of digestion has been poor. Even with subsidies, digestion of animal manures as a single substrate is not common, and countries with successful schemes have achieved this either by permitting the import of wastes onto the farm or offering bonus subsidies for the use of energy crops. Both of these measures improve the energy efficiency of the process by increasing the volumetric methane production, although concerns are expressed that attention could concentrate on energy production at the expense of improving manure management. PMID:17564382

  4. Economic evaluation of a swine farm covered anaerobic lagoon digester

    SciTech Connect

    Lusk, P.

    1996-12-31

    It is helpful to evaluate anaerobic digestion technologies using objective economic criteria. Options can then be ranked in terms of their relative cost effectiveness, leading to rational deployment decisions. This study presents the results of a hypothetical pro forma economic evaluation of one type of digestion system that could commonly be found on many swine farms; a covered anaerobic lagoon. The digester was assumed to be located in North Carolina, a major swine-producing state. Electricity generation with waste heat recovery was assumed to be the major end-use application of biogas manufactured from this process.

  5. Characterization of food waste as feedstock for anaerobic digestion.

    PubMed

    Zhang, Ruihong; El-Mashad, Hamed M; Hartman, Karl; Wang, Fengyu; Liu, Guangqing; Choate, Chris; Gamble, Paul

    2007-03-01

    Food waste collected in the City of San Francisco, California, was characterized for its potential for use as a feedstock for anaerobic digestion processes. The daily and weekly variations of food waste composition over a two-month period were measured. The anaerobic digestibility and biogas and methane yields of the food waste were evaluated using batch anaerobic digestion tests performed at 50 degrees C. The daily average moisture content (MC) and the ratio of volatile solids to total solids (VS/TS) determined from a week-long sampling were 70% and 83%, respectively, while the weekly average MC and VS/TS were 74% and 87%, respectively. The nutrient content analysis showed that the food waste contained well balanced nutrients for anaerobic microorganisms. The methane yield was determined to be 348 and 435 mL/gVS, respectively, after 10 and 28 days of digestion. The average methane content of biogas was 73%. The average VS destruction was 81% at the end of the 28-day digestion test. The results of this study indicate that the food waste is a highly desirable substrate for anaerobic digesters with regards to its high biodegradability and methane yield. PMID:16635571

  6. Biogasification of sorghum in a novel anaerobic digester

    SciTech Connect

    Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.; Hayes, T.D.

    1987-01-01

    The Institute of Gas Technology (IGT) conducted pilot-scale anaerobic digestion experiments with ensiled sorghum in a 160 ft/sup 3/ digester at the experimental test unit (ETU) facility at the Walt Disney World Resort Complex in Florida. The study focused on improving bioconversion efficiencies and process stability by employing a novel reactor concept developed at IGT. Steady-state performance data were collected from the ETU as well as from a laboratory-scale conventional stirred tank reactor (CSTR) at loading rates of 0.25 and 0.50 lb organic matter/ft/sup 3/-day at mesophilic and thermophilic temperatures, respectively. This paper will describe the ETU facility, novel digester design and operating techniques, and the results obtained during 12 months of stable and uninterrupted operation of the ETU and the CSTR which showed that methane yields anad rates from the ETU were 20% to 50% higher than those of the CSTR. 10 refs., 7 figs., 5 tabs.

  7. Anaerobic digestion of hog wastes: Principles and practice

    SciTech Connect

    Oleszkiewicz, J.A.; Bujoczek, G.

    1996-12-31

    The principles and overview of research, development and implementation of anaerobic digestion for hog wastes are discussed. Based on economic evaluations, an anaerobic technology is cost-effective, especially for a larger herd and becomes more competitive with aerobic treatment. Nevertheless, the rate of treatment is more sensitive and dependent on the particular fraction of manure being processed. Considering the different factors affecting anaerobic digestion, a complete mixed reactor with solids recycle (having high solids retention time and low hydraulic retention time) was found to be the more reliable system with regards to methane generation and manure stabilization. By solids recycle one can obtain significant saving in the reactor volume required, while still achieving the expected degree of treatment. It was also found that even though treatment using advanced anaerobic systems when compared with simple anaerobic systems is more expensive, the rate of return on investment and efficiency of the process are higher.

  8. Anaerobic Digesters Change the Phosphorus Leaching Behavior of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Marjerison, R.; Gooch, C.; Pronto, J.; Walter, M. T.

    2009-12-01

    This study analyzed how anaerobic digestion of dairy manure might change the amount, form, and rate of phosphorus (P) leached by rainfall. Anaerobic digestion has become an increasingly popular manure management option because it generates methane that can be used to make energy, but little is known about the behavior of P when digested manure is applied to fields. Leaching experiments were performed using simulated rainfall on digester influent (undigested manure) and effluent (digested manure) collected from a dairy farm near Ithaca, NY. A previously published manure-P model was applied to the experimental data to quantify rates of P leaching. Dissolved P-leaching from digested and undigested manures were similar to each other, although digested manures appear to generally leach more dissolved P. Interestingly, both digester influent and effluent leached dissolved P more rapidly and in greater quantities than fresh manure, i.e., manure from a dairy barn floor. It is suggested that the key difference between the liquid manures in this study and fresh manure is that fresh manure has a higher solids content, i.e., it is less liquid than the manure used in anaerobic digesters. The findings of this study suggest that it is important to avoid field spreading of liquid manures when rainfall is imminent or fields are wet in order to prevent nonpoint P loading to streams and lakes.

  9. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    PubMed

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate. PMID:25274086

  10. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine.

    PubMed

    Biernacki, Piotr; Steinigeweg, Sven; Borchert, Axel; Uhlenhut, Frank

    2013-01-01

    Anaerobic digestion of organic waste plays an important role for the development of sustainable energy supply based on renewable resources. For further process optimization of anaerobic digestion, biogas production with the commonly used substrates, grass, maize, and green weed silage, together with industrial glycerine, were analyzed by the Weender analysis/van Soest method, and a simulation study was performed, based on the International Water Association's (IWA) Anaerobic Digestion Model No. 1 (ADM1). The simplex algorithm was applied to optimize kinetic constants for disintegration and hydrolysis steps for all examined substrates. Consequently, new parameters were determined for each evaluated substrate, tested against experimental cumulative biogas production results, and assessed against ADM1 default values for disintegration and hydrolysis kinetic constants, where the ADM1 values for mesophilic high rate and ADM1 values for solids were used. Results of the optimization lead to a precise prediction of the kinetics of anaerobic degradation of complex substrates. PMID:23131640

  11. Surfactants in anaerobic digestion of cheese whey, poultry waste, and cattle dung for improved biomethanation

    SciTech Connect

    Desai, M.; Madamwar, D.

    1994-05-01

    To obtain enriched methane content and improve the anaerobic digestion of a mixture of cattle dung, poultry waste and cheese whey, with enriched methane content, the effect of various surfactants was studied. Among the surfactants tested, Tween 80 and sodium lauryl sulphate showed the maximum enhancement in gas production as well as methane content, indicating better process performance. The Tween 80 dosed digester (300 {mu}L/L) produced about 3.5 L gas/L of digester/d with 70% methane. Results also indicated increased percent COD reduction in the presence of Tween 80. 13 refs., 2 figs.

  12. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  13. Distinctive non-methanogen archaeal populations in anaerobic digestion.

    PubMed

    Chen, Si; He, Qiang

    2016-01-01

    Methanogens define the archaeal communities involved in anaerobic digestion. Recently, non-methanogen archaeal populations have been unexpectedly identified in anaerobic digestion processes. To gain insight into the ecophysiology of these uncharacterized archaeal populations, for the first time, a phylogenetic analysis was performed on a collection of non-methanogen archaeal 16S rRNA gene sequences from anaerobic digesters of broad geographic distribution, revealing a distinct clade formed by these sequences in subgroup 6 of the Miscellaneous Crenarchaeotal Group in the newly proposed archaeal phylum Bathyarchaeota. This exclusive phylogenetic assemblage enabled the development of a real-time quantitative PCR (qPCR) assay specifically targeting these non-methanogen archaeal populations in anaerobic digestion. Application of the qPCR assay in continuous anaerobic digesters indicated that these archaeal populations were minor constituents of the archaeal communities, and the abundance of these populations remained relatively constant irrespective of process perturbations. Analysis of the archaeal populations in methanogenic communities further revealed the co-occurrence of these non-methanogen archaea with acetoclastic methanogens. Nevertheless, the low abundance of non-methanogen archaea as compared with acetoclastic methanogens suggests that the non-methanogen archaeal populations were not major players in animal waste-fed methanogenic processes investigated in this study and the functions of these archaeal populations remain to be identified. PMID:26373725

  14. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow) operating at thermophilic temperatures are recommended. • The ratio of DM:PW-90:10 or 80:20 is recommended while operating low cost plug flow digesters at thermophilic temperatures. ▸ In cases of anaerobic digesters operated without electricity generation equipment (generators), completely mixed or high or low cost plug flow digesters can be used. • The ratio of DM:PW-80:20 is recommended for completely mixed digesters operated at thermophilic temperatures; • The ratio of DM:PW-90:10 or 80:20 is recommended for high cost plug flow digesters (capital cost of 1,000/cow) operated at thermophilic temperatures; • All of the four co-digested mixing ratios (i.e. DM:PW-90:10 or 80:20 or 60:40 or 40:60) are good for low cost plug flow digesters (capital cost of $600/cow) operated at thermophilic temperatures. The ratio of DM:PW-90:10 is recommended for positive cash flow within the ten year period if the low cost plug flow digesters are operated at mesophilic temperatures.

  15. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    PubMed

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. PMID:26253912

  16. Design of a municipal solid waste anaerobic digestion system at Folsom Prison

    SciTech Connect

    Williams, D.W.; Cavaletto, R.; Harrison, L.

    1994-12-31

    This paper describes the design of an anaerobic digestion system for the treatment of the organic fraction of the municipal solid waste (MSW) from the city of Folsom, California. This organic fraction, estimated to be 76 tons per day, will be separated from the total waste stream (100 tons per day of MSW) at the materials recovery facility (MRF) operated by inmate labor from the Return-to-Custody (RTC) facility at Folsom Prison. The organic fraction will be shredded, the solids content will be adjusted to 30% or less using wastewater, and the resulting influent loaded into an anaerobic digester. The anaerobic fermentation treatment process will reduce the solids content of the organic fraction of the solid waste, while producing valuable methane gas for use as fuel for electrical generation. The resulting digested effluent will be aerobically composted and marketed as a soil amendment.

  17. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Collection Efficiencies of Anaerobic Digesters JJ Table JJ-6 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management Pt. 98, Subpt....

  18. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Collection Efficiencies of Anaerobic Digesters JJ Table JJ-6 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management Pt. 98, Subpt....

  19. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Collection Efficiencies of Anaerobic Digesters JJ Table JJ-6 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management Pt. 98, Subpt....

  20. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Collection Efficiencies of Anaerobic Digesters JJ Table JJ-6 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management Pt. 98, Subpt....

  1. Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion

    PubMed Central

    2014-01-01

    Background In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. Results No lag phases were observed and a methane yield of 0.126 to 0.142 m3 kg-1 chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. Conclusions The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a novel methodology to toxic and recalcitrant cork processing wastewater was developed. PMID:24847378

  2. Computer simulation of control strategies for optimal anaerobic digestion.

    PubMed

    Strmberg, S; Possfelt, M O; Liu, J

    2013-01-01

    Three previously published control strategies for anaerobic digestion were implemented in Simulink/Matlab using Anaerobic Digestion Model No. 1 (ADM1) to model the biological process. The controllers' performance were then simulated and evaluated based on their responses from five different types of process scenarios i.e. start-up and steady state performance as well as disturbances from concentration, pH and ammonia in the inflow. Of the three evaluated control strategies, the extremum-seeking variable gain controller gave the best overall performance. However, a proportional feedback controller based on the pH-level, used as a reference case in the evaluation, proved to give as good results as the extremum-seeking variable gain controller but with a lower wear on the pump. It was therefore concluded that a fast proportional control of the reactor pH is a key element for optimally controlling a low-buffering anaerobic digestion process. PMID:23202565

  3. Biogas by semi-continuous anaerobic digestion of food waste.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Wang, Zhenbin; Tan, Tianwei; Qin, Peiyong

    2015-04-01

    The semi-continuous anaerobic digestion of food waste was investigated in 1-L and 20-L continuously stirred tank reactors (CSTRs), to identify the optimum operation condition and the methane production of the semi-continuous anaerobic process. Results from a 1-L digester indicated that the optimum organic loading rate (OLR) for semi-continuous digestion is 8 g VS/L/day. The corresponding methane yield and chemical oxygen demand (COD) reduction were 385 mL/g VS and 80.2 %, respectively. Anaerobic digestion was inhibited at high OLRs (12 and 16 g VS/L/day), due to volatile fatty acid (VFA) accumulation. Results from a 20-L digester indicated that a higher methane yield of 423 mL/g VS was obtained at this larger scale. The analysis showed that the methane production at the optimum OLR fitted well with the determined kinetics equation. An obvious decrease on the methane content was observed at the initial of digestion. The increased metabolization of microbes and the activity decrease of methanogen caused by VFA accumulation explained the lower methane content at the initial of digestion. PMID:25773980

  4. Anaerobic digestion as a waste disposal option for American Samoa

    SciTech Connect

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  5. SALE OF SURPLUS DIGESTER AND LANDFILL GAS TO PUBLIC UTILITIES

    EPA Science Inventory

    Methane gas produced by anaerobic digestion of wastewater sludge can be upgraded to pipeline quality and sold to a public utility for injection into a natural gas distribution system. Upgrading the gas typically involves treatment for removal of carbon dioxide and hydrogen sulfid...

  6. Detoxifying CO2 capture reclaimer waste by anaerobic digestion.

    PubMed

    Wang, Shuai; Hovland, Jon; Brooks, Steven; Bakke, Rune

    2014-01-01

    The decrease in toxicity of carbon capture reclaimer monoethanolamine (MEA) waste (MEAw) during anaerobic degradation of such waste together with easily degradable organics was investigated. Samples were collected from a bioreactor at steady state with 86 % organic chemical oxygen demand removal at room temperature, which had been running on MEAw for 2 years. The toxicity of the digester effluents were 126, 42 and 10 times lower than that of the MEAw to the tested freshwater trophic groups of Pseudokirchneriella subcapitata, Daphnia magna and embryos of Danio rerio, respectively. The toxicity of the tested taxonomic groups after anaerobic digestion was mainly attributed to the ammonia generated by the degradation of MEAw. PMID:24122630

  7. Comparative analysis of anaerobically digested wastes flow properties.

    PubMed

    Mbaye, S; Dieud-Fauvel, E; Baudez, J C

    2014-11-01

    The flow curve of anaerobically digested wastes from different origins was determined through rheological measurements. Regardless of their origin, samples can be divided into two families: simple non-Newtonian liquids well modelled by basic power law below 10%DC and viscoelastic liquids with a yield stress, well modelled by a Herschel-Bulkley model above. In all the cases, the rheological behaviour is driven by both the organic content and the volatile fraction (organic content/solid content), indicating that anaerobic digestion tends to smooth the rheological characteristics of organic wastes, whichever their origins. PMID:25052338

  8. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters.

    PubMed

    Bozkurt, Hande; Sanin, F Dilek

    2014-06-01

    Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties. Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge. In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol diethoxylate (NP2EO), for anaerobic digestion of sludge was determined. The test bottles were dosed with NP2EO in acetone, with concentrations ranging from 1 mg L(-1) to 30 mg L(-1). During the tests, gas productions and compositions in terms of methane and carbon dioxide were monitored. To be able to judge about the fate, the target compounds were extracted from water and sludge and analyzed using GC/MS. The sludge samples used for assembling the reactors were found to contain NP and NP1EO but no NP2EO. After the assay was completed, all the NP2EO spiked into the live reactors was found to disappear. The increase seen in NP1EO and NP and further accumulation of NP in the system, indicated the conversion of NP2EO to these metabolites. On the other hand, no conversion was observed in abiotic reactors. Inhibition of NP2EO for anaerobic microorganisms was not observed throughout the tests considering the biogas production of the test reactors in comparison to the control reactors. PMID:24268753

  9. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  10. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data. PMID:25311887

  11. Anaerobic digestion of animal waste: effect of mixing.

    PubMed

    Karim, Khursheed; Thomas Klasson, K; Hoffmann, Rebecca; Drescher, Sadie R; Depaoli, David W; Al-Dahhan, M H

    2005-09-01

    Six laboratory scale biogas mixed anaerobic digesters were operated to study the effect of biogas recycling rates and draft tube height on their performance. The digesters produced methane at 0.40-0.45 L per liter of digester volume per day. A higher methane production rate was observed in unmixed digesters, while increased biogas circulation rate reduced methane production. However, different draft tube heights caused no difference in the methane production rate. Air infiltration (up to 15% oxygen in the biogas) was observed in the digesters mixed by biogas recirculation. Slight air permeability of tubing or leakage on the vacuum side of the air pump may have caused the observed air infiltration. The similar performance of the mixed and unmixed digesters might be the result of the low solids concentration (50 g dry solids per liter of slurry) in the fed animal slurry, which could be sufficiently mixed by the naturally produced biogas. PMID:15978994

  12. Single stage anaerobic digester at Tarleton State University. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

  13. Experimental digester facility modifications and digester gas upgrading research

    SciTech Connect

    Srivastava, V.J.; Biljetina, R.; Akin, C.

    1989-01-01

    The Institute of Gas Technology (IGT) has been participating in an experimental program at the Community Waste Research Facility (CWRF) located at the Walt Disney World Resort Complex, Orlando, Florida. Four institutions have formed a team to provide solutions to community waste treatment and disposal programs. Of primary importance to this research effort is the implementation of low-cost, energy-efficient waste treatment and recovery technologies and the net production of energy (methane) from biomass and waste resources. The production of methane is being studied in a novel, high-rate digester. During 1988, we were responsible for modifying the Experimental Test Unit (ETU) to permit dry solids feeding of refuse-derived fuel (RDF) and for conducting bench-scale experiments to evaluate techniques for efficient removal of carbon dioxide produced during anaerobic digestion.

  14. Anaerobic digestion of municipal, industrial, and livestock wastes for energy recovery and disposal

    SciTech Connect

    Sax, R.I.; Lusk, P.D.

    1995-11-01

    The degradation of carbonaceous organic material by anaerobic bacteria leads to the production of methane gas (biogas) at the theoretical stoichiometric conversion rate of 0.35-cubic meters of methane per kilogram of Chemical Oxygen Demand (COD) reasonably close proximity to the site of this digestion process. The untreated biogas generated from anaerobic digestion typically contains from 55% to 75% methane content, with the balance consisting mainly of carbon dioxide and a small, but important, amount of hydrogen sulfide. The untreated biogas is normally saturated with water vapor at the temperature of the digestion process which typically is in the mesophilic range 25 to 38 degrees Celsius. This overview paper describes the types of anaerobic technologies which are presently used for the digestion of various type of municipal, industrial and livestock manure wastes, summarizes the principal developments which have taken place in the field during the past several years, and discusses the energy recovery economics for each of the three usage applications. The paper stratifies the use of anaerobic digestion technology for the treatment of wastewaters from industry (an application which has increased dramatically during the past decade) by geographical region, by industry type, very various categories of food processing, and by technology type, in all cases taking account of system size to emphasize the economics of energy production.

  15. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    PubMed

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size=5511nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.620.26h(-1) with its half-life of 0.260.03h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI. PMID:26521217

  16. Optimisation of the anaerobic digestion of agricultural resources.

    PubMed

    Ward, Alastair J; Hobbs, Phil J; Holliman, Peter J; Jones, David L

    2008-11-01

    It is in the interest of operators of anaerobic digestion plants to maximise methane production whilst concomitantly reducing the chemical oxygen demand of the digested material. Although the production of biogas through anaerobic digestion is not a new idea, commercial anaerobic digestion processes are often operated at well below their optimal performance due to a variety of factors. This paper reviews current optimisation techniques associated with anaerobic digestion and suggests possible areas where improvements could be made, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor. Optimisation of environmental conditions within the digester such as temperature, pH, buffering capacity and fatty acid concentrations is also discussed. The methane-producing potential of various agriculturally sourced feedstocks has been examined, as has the advantages of co-digestion to improve carbon-to-nitrogen ratios and the use of pre-treatments and additives to improve hydrolysis rates or supplement essential nutrients which may be limiting. However, perhaps the greatest shortfall in biogas production is the lack of reliable sensory equipment to monitor key parameters and suitable, parallelised control systems to ensure that the process continually operates at optimal performance. Modern techniques such as software sensors and powerful, flexible controllers are capable of solving these problems. A direct comparison can be made here with, for instance, oil refineries where a more mature technology uses continuous in situ monitoring and associated feedback procedures to routinely deliver continuous, optimal performance. PMID:18406612

  17. Thermophilic Anaerobic Digester Performance Under Different Feed-Loading Frequency

    NASA Astrophysics Data System (ADS)

    Bombardiere, John; Espinosa-Solares, Teodoro; Domaschko, Max; Chatfield, Mark

    The effect of feed-loading frequency on digester performance was studied on a thermophilic anaerobic digester with a working volume of 27.43 m3. The digester was fed 0.93 m3 of chicken-litter slurry/d, containing 50.9 g/L chemical oxygen demand. The treatments were loading frequencies of 1, 2, 6, and 12 times/d. The hourly pH, biogas production, and methane percent of the biogas were less stable at lower feed frequencies. There was no statistical difference among treatments in methanogenic activity. The feed-loading frequency of six times per day treatment provided the greatest biogas production.

  18. Rapid fluorescence-based measurement of toxicity in anaerobic digestion.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Xiao, Yeyuan; Steele, Terry W J; Stuckey, David C

    2015-05-15

    A rapid fluorescence measurement based on resazurin reduction was developed and applied for the detection of toxicants/inhibitors to anaerobic digestion metabolism. By initially using a pure facultative anaerobic strain, Enterococcus faecalis as a model organism, this technique proved to be fast and sensitive when detecting the model toxicant, pentachlorophenol (PCP). The technique revealed significant metabolic changes in Enterococcus faecalis with a PCP spike ranging from 0.05 to 100 mg/L, and could detect PCP's toxicity to E. faecalis at a concentration of only 0.05 mg/L in 8 min. Furthermore, by extending this technique to a mixed anaerobic sludge, not only could the effect of 0.05-100 mg/L PCP be determined on anaerobic digestion metabolism within 10 min, but also its rate of biogas production. These results suggest that a resazurin-based fluorescence measurement can potentially be incorporated into a microfluidic system to develop a biosensor for the real-time monitoring, control and early warning of toxicant/inhibitor loads in the influent to an anaerobic digestion system. PMID:25768985

  19. STABILIZATION OF SEWAGE SLUDGE BY TWO-PHASE ANAEROBIC DIGESTION

    EPA Science Inventory

    The research described in the report was concerned with evaluation of alternative approaches to anaerobic digestion, a process commonly used on the residual stream from wastewater treatment. The principal approach studied was that of separating the acid- and methane-forming phase...

  20. Anaerobic digestion of the liquid fraction of dairy manure

    SciTech Connect

    Haugen, V.; Dahlberg, S.; Lindley, J.A.

    1983-06-01

    The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

  1. Anaerobic Digestion Analysis. Training Module 5.120.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

  2. INCREASE OF INDICATOR ORGANISMS FOLLOWING ANAEROBIC DIGESTION AND CENTRIFUGE DEWATERING.

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled “Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges”. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bac...

  3. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  4. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  5. A STUDY OF LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS

    EPA Science Inventory

    A field-scale research project was conducted in 2004-2005 to evaluate land application of anaerobically digested biosolids at agronomic levels. Biosolids had not been applied to this land previously. For this study, biosolids wee applied in a 100-m diameter circle by a side dis...

  6. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  7. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 103, 3.6 105, 7.4 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  8. Intermediate-scale high-solids anaerobic digestion system operational development

    SciTech Connect

    Rivard, C.J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

  9. Anaerobic digestion of yard waste with hydrothermal pretreatment.

    PubMed

    Li, Wangliang; Zhang, Guangyi; Zhang, Zhikai; Xu, Guangwen

    2014-03-01

    The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79%, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions. PMID:24425302

  10. Effect of ultrasonication on anaerobic degradability of solid waste digestate.

    PubMed

    Boni, M R; D'Amato, E; Polettini, A; Pomi, R; Rossi, A

    2016-02-01

    This paper evaluates the effect of ultrasonication on anaerobic biodegradability of lignocellulosic residues. While ultrasonication has been commonly applied as a pre-treatment of the feed substrate, in the present study a non-conventional process configuration based on recirculation of sonicated digestate to the biological reactor was evaluated at the lab-scale. Sonication tests were carried out at different applied energies ranging between 500 and 50,000kJ/kg TS. Batch anaerobic digestion tests were performed on samples prepared by mixing sonicated and untreated substrate at two different ratios (25:75 and 75:25 w/w). The results showed that when applied as a post-treatment of digestate, ultrasonication can positively affect the yield of anaerobic digestion, mainly due to the dissolution effect of complex organic molecules that have not been hydrolyzed by biological degradation. A good correlation was found between the CH4 production yield and the amount of soluble organic matter at the start of digestion tests. The maximum gain in biogas production was 30% compared to that attained with the unsonicated substrate, which was tentatively related to the type and concentration of the metabolic products. PMID:26586420

  11. Factors controlling pathogen destruction during anaerobic digestion of biowastes

    SciTech Connect

    Smith, S.R. . E-mail: s.r.smith@imperial.ac.uk; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K.

    2005-07-01

    Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log{sub 10} reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.

  12. [Effect of alkaline treatment on anaerobic digestion of rice straw].

    PubMed

    Chen, Guang-Yin; Zheng, Zheng; Luo, Yan; Zou, Xing-Xing; Fang, Cai-Xi

    2010-09-01

    The biogas yields of rice straw during anaerobic digestion can be improved by alkaline pretreatment, while it increased the cost because of large amount of alkaline. In order to decrease the amount, 3 sets of experiments were performed using straw with alkaline treatment (pretreatment), digested straw with alkaline treatment (post-treatment) and straw digested directly (control). The results showed that cell wall of straw was destroyed by 5% NaOH treated for 48h, the COD (chemical oxygen demand), total nitrogen, NO(3-) -N and NH(4+) -N were increased from 2 311.11, 175.40, 5.02 and 117.82 mg/L to 10488.89, 417.84, 248.64 and 141.44 mg/L respectively. It suggested that not only lignocellulose but also some nitrogenous materials were destroyed or broken down by alkaline treatment. The lignin structure was destroyed through alkaline treatment that caused the decreased lignin, but the crystallinity index (C(r)I) of cellulose increased from 0.592 3 to 0.662 2. The results of anaerobic digestion showed that the total solid of straw decreased 50.47% after anaerobic digestion treatment leading to less workload and only 50% alkaline used. However, the biogas yield of post-treatment and pretreatment were 382.32 mL/g of TS(added) and 375.84 mL/g of TS(added). Lignin content of control increased while decreased in pretreatment and post-treatment. After anaerobic digestion, crystalline of cellulose was destroyed significantly, and crystalline and amorphous of post-treatment were destroyed more severely than that of pretreatment. From all those mentioned above, post-treatment of straw with alkaline was economical and feasible for biogas production. PMID:21072948

  13. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  14. Optimizing the Logistics of Anaerobic Digestion of Manure

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad; Flynn, Peter C.

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.

  15. Study of Resource Recovery and Epidemiology in an Anaerobic Digester

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Cao, Song; Hunt, M. D.; Fu, Xuping

    1995-01-01

    Three 4-liter packed bed anaerobic digesters were fabricated and operated at 35 degrees C, pH around 7, and hydraulic retention time (HRT) of 20, 10 and 5 days to study the resource recovery and epidemiology in a controlled ecological life support system (CELSS). A simulated wastewater, consisted of shower water, clothwash water, dishwasher water, handwash water, and urine flush water was used as the feeding solution. Under steady-state operation, chemical oxygen demand (COD), total organic carbon (TOC), pH, nitrogen, phosphorus, and potassium wer monitored in the digester input and output solutions. The volume and the CH4/CO2 ratios in the biogas produced from the anaerobic digesters were measured. The results indicate about 90 percent of TOC is converted while only 5-8 percent of N-P-K are consumed in the digester. A multi-drug resistant strain of Salmonella choleraesuis was used as the indicator bacterium in the epidemiology study. The levels of Salmonella choleraesuis in the influent and the effluent wer determined and decimal decay rate constants, k(d), were estimated. The k(d) values were greater at higher initial doses than lower doses for the same HR, and greater for batch digestion (7.89/d) than for continuous digestion (4.28, 3.82, and 3.82/d for 20, 10, and 5 d HRT, respectively).

  16. A mass transfer model of ammonia volatilisation from anaerobic digestate

    SciTech Connect

    Whelan, M.J.; Everitt, T.; Villa, R.

    2010-10-15

    Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

  17. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste.

    PubMed

    Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya

    2014-11-01

    To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning. PMID:25218457

  18. Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-01-01

    Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. PMID:24600872

  19. The role of anaerobic digestion in the emerging energy economy.

    PubMed

    Batstone, Damien John; Virdis, Bernardino

    2014-06-01

    Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas. PMID:24534620

  20. Dynamic simulation model for anaerobic digestion of cellulose

    SciTech Connect

    Lee, D.D.; Donaldson, T.L.

    1984-01-01

    A simple yet useful dynamic simulator for the anaerobic digestion of cellulosic feedstock has been developed. The incentive for this simulator is a need for guidance in design and optimization of an anaerobic digestin process for volume reduction and stabilization of low-level radioactive wastes generated at Oak Ridge National Laboratory. These wastes are primarily blotter and other paper and cotton/polyester clothing. Anaerobic digestion will convert a substantial mass (and hence volume) of waste to gaseous products which can be flared or simply released. The remaining sludge will contain the radionuclides and is expected to have only 5 to 10% of the original waste volume. This stabilized sludge will be more suitable for disposal by shallow land burial than is the original untreated waste. The liquid effluent will go to existing treatment facilities for hot liquids at Oak Ridge National Laboratory (ORNL). An anaerobic digestion process can be scaled to handle small or modest quantities of waste and is expected to be vastly superior to incineration in this regard.

  1. Electrochemical mineralization of anaerobically digested olive mill wastewater.

    PubMed

    Gonalves, M R; Marques, I P; Correia, J P

    2012-09-01

    A novel approach was developed for the energetic valorisation and treatment of olive mill wastewater (OMW), combining anaerobic digestion and electrochemical oxidation. The electrochemical treatment was proposed as the final step to mineralize the remaining OMW fraction from the anaerobic reactor. The electrooxidation of anaerobically digested OMW was investigated over dimensionally stable anodes (DSAs). RuO(2) based anode was significantly more efficient than IrO(2)-type DSA, mainly for the COD removal. IrO(2) based anode promoted a selective oxidation of phenols and colour removal. For instance, after an electrolysis charge of 10.4 10(4) C L(-1), COD removals of 14 and 99%, phenols removals of 91 and 100% and colour removals of 85 and 100% were obtained for IrO(2) and RuO(2) DSAs-type, respectively. The electrochemical post-treatment was effectively performed without using a supporting electrolyte and in the presence of the solids that remained from the anaerobic process. The achievement of the required effluent quality for sewer systems disposal depends on the operating conditions of the anaerobic process. Consequently, special care must be taken with the chloride and nitrogen levels that may surpass the legal discharge limits. The electrochemical oxidation over RuO(2) based DSA is an appropriate second-step treatment for OMW disposal, after the recovery of its energetic potential. PMID:22687524

  2. Anaerobic digestion for energy production and environmental protection

    SciTech Connect

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  3. Large eddy simulation of mechanical mixing in anaerobic digesters.

    PubMed

    Wu, Binxin

    2012-03-01

    A comprehensive study of anaerobic digestion requires an advanced turbulence model technique to accurately predict mixing flow patterns because the digestion process that involves mass transfer between anaerobes and their substrates is primarily dependent on detailed information about the fine structure of turbulence in the digesters. This study presents a large eddy simulation (LES) of mechanical agitation of non-Newtonian fluids in anaerobic digesters, in which the sliding mesh method is used to characterize the impeller rotation. The three subgrid scale (SGS) models investigated are: (i) Smagorinsky-Lilly model, (ii) wall-adapting local eddy-viscosity model, and (iii) kinetic energy transport (KET) model. The simulation results show that the three SGS models produce very similar flow fields. A comparison of the simulated and measured axial velocities indicates that the LES profile shapes are in general agreement with the experimental data but they differ markedly in velocity magnitudes. A check of impeller power and flow numbers demonstrates that all the SGS models give excellent predictions, with the KET model performing the best. Moreover, the performance of six Reynolds-averaged Navier-Stokes turbulence models are assessed and compared with the LES results. PMID:22038563

  4. Marine biomass program: anaerobic digestion systems development and stability study. Final report 1 Feb-31 Dec 82

    SciTech Connect

    Fannin, K.F.; Srivastava, V.J.; Mensinger, J.D.; Chynoweth, D.P.

    1983-07-01

    Marine biomass represents a significant potential worldwide energy resource that can be converted to methane by anaerobic digestion. Through efficient biomass production, harvesting, and conversion techniques, competitive methane gas costs are achievable. The objective of this research project is to develop and define an anaerobic digestion process for producing methane from giant brown kelp (Macrocystis pyrifera). Kelp continues to show superior performance as a feedstock for gas production when compared with other particulate biomass feedstocks. Further work on upflow solids reactors and two-phase reactor systems is expected to improve gas cost estimates over those made using other state-of-the-art reactors.

  5. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    NASA Astrophysics Data System (ADS)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  6. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated sludge) and primary sludge is still in its infancy. Current research is mainly focused on developing efficient pretreatment methods that enable fast hydrolysis of complex organic matter, shorter sludge residence times and as a consequence, smaller sludge digesters. Previous experimental studies indicate that the anaerobic digestibility of non-pretreated biosludge from pulp and paper mills varies widely, with volatile solids (VS) removal rates of 21-55% and specific methane yields ranging between 40 and 200 mL g(-1) VS fed. Pretreatment can increase the digestibility to some extent, however in almost all reported cases, the specific methane yield of pretreated biosludge did not exceed 200 mL g(-1) VS fed. Increases in specific methane yield mostly range between 0 and 90% compared to non-pretreated biosludge, whereas larger improvements were usually achieved with more difficult-to-digest biosludge. Thermal treatment and microwave treatment are two of the more effective methods. The heat required for the elevated temperatures applied in both methods may be provided from surplus heat that is often available at pulp and paper mills. Given the large variability in specific methane yield of non-pretreated biosludge, future research should focus on the links between anaerobic digestibility and sludge properties. Research should also involve mill-derived primary sludge. Although biosludge has been the main target in previous studies, primary sludge often constitutes the bulk of mill-generated sludge, and co-digestion of a mixture between both types of sludge may become practical. The few laboratory studies that have included mill primary sludge indicate that, similar to biosludge, the digestibility can range widely. Long-term studies should be conducted to explore the potential of microbial adaptation to lignocellulosic material which can constitute more than half of the organic matter in pulp and paper mill sludge. PMID:25150519

  7. Novel anaerobic digestion process with sludge ozonation for economically feasible power production from biogas.

    PubMed

    Komatsu, K; Yasui, H; Goel, R; Li, Y Y; Noike, T

    2011-01-01

    A novel process scheme was developed to achieve economically feasible energy recovery from anaerobic digestion. The new process scheme employs a hybrid configuration of mesophilic and thermophilic anaerobic digestion with sludge ozonation: the ozonated sludge is first degraded in a thermophilic digester and then further degraded in a mesophilic digester. In small-scale pilot experiments of the new process scheme, degradation of VSS improved by 3.5% over the control (mesophilic-only configuration) with 20% less ozone consumption. Moreover, biogas conversion also improved by 7.1% over the control. Selective enrichment of inorganic compounds during centrifugation produced a dewatered sludge cake with very low water content (59.4%). This low water content in the sludge cake improved its auto-thermal combustion potential during incineration and added to the overall energy savings. We conducted a case study to evaluate power generation from biogas for a municipal wastewater treatment plant with an average dry weather flow of 43,000 m3/d. Electricity production cost was 5.2 ¢/kWh for the advanced process with power generation, which is lower than the current market price of 7.2 ¢/kWh. The new anaerobic digestion scheme with power generation may reduce greenhouse gas emissions by about 1,000 t-CO(2)/year compared with the conventional process without power generation. PMID:21508552

  8. Anaerobic digestion of livestock manures: A current opportunities casebook

    SciTech Connect

    Lusk, P.D.

    1995-08-01

    Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

  9. Two-stage upflow anaerobic digestion of concentrated sludge

    SciTech Connect

    Ghosh, S.; Sajjad, A.; Henry, M.P.; Bleakney, R.A.

    1983-01-01

    The development of an innovative fermentation mode and the application of novel upflow reactors for biogasification of high-solids-content sludges are described; anaerobic digestion is conducted at higher loading rates and lower hydraulic residence times (HRT's) to obtain higher methane yields and production rates and better effluent qualities than those of conventional single-stage continuously stirred tank reactor digesters. Digestion of primary sludge in a two-phase upflow system at a 5.6-day HRT (1.2 days for stage 1 and 4.4 days for stage 2) exhibited a methane yield of 6.8 supercritical fluid/lb volatile solids added, which was significantly higher than those from conventional digestion at much higher HRT's. 27 references, 7 figures, 6 tables.

  10. Modeling fatty acid relationships in animal waste anaerobic digesters

    SciTech Connect

    Hill, D.T.; Bolte, J.P.

    1987-01-01

    Volatile fatty acid (VFA) relationships are important in the anaerobic digestion of animal wastes as they (acetic, propionic and butyric) are direct precursors of methane, either through direct conversion of acetate or through the intermediate formation of hydrogen and carbon dioxide. Thus, they are essential compounds in the biological conversion of heterogenous wastes to useable products. VFA's are also known inhibitors in the biological conversion process if their concentrations are sufficiently high. Thus, VFA's are simultaneously essential for the process and can be toxic agents should they be present in excess quantities. This relationship makes quantifying VFA's in the modeling studies essential to accurately predicting digester failure or success. A highly correlated relationship between the level of acetic acid and/or the propionic to acetic acid ratio in digesters that were successful and in digesters that failed has been shown. These data have been used to calibrate an original comprehensive methanogenesis model and along with the addition of dual-use substrate kinetics for the simultaneous catalysis of propionate and butyrate, have produced a much improved prediction of the VFA relationships observed in operating anaerobic digesters. This manuscript describes the addition of the dual-use substrate kinetics and the modification of the kinetic parameters of the original methanogenic model and compared the simulated output of the original and modified models to demonstrate the improved predictive ability. (Refs. 12).

  11. Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion.

    PubMed

    Rivera-Salvador, Víctor; López-Cruz, Irineo L; Espinosa-Solares, Teodoro; Aranda-Barradas, Juan S; Huber, David H; Sharma, Deepak; Toledo, J Ulises

    2014-09-01

    A molecular analysis found that poultry litter anaerobic digestion was dominated by hydrogenotrophic methanogens which suggests that bacterial acetate oxidation is the primary pathway in the thermophilic digestion of poultry litter. IWA Anaerobic Digestion Model No. 1 (ADM1) was modified to include the bacterial acetate oxidation process in the thermophilic anaerobic digestion (TAD). Two methods for ADM1 parameter estimation were applied: manual calibration with non-linear least squares (MC-NLLS) and an automatic calibration using differential evolution algorithms (DEA). In terms of kinetic parameters for acetate oxidizing bacteria, estimation by MC-NLLS and DEA were, respectively, km 1.12 and 3.25 ± 0.56 kg COD kg COD(-1)d(-1), KS 0.20 and 0.29 ± 0.018 kg COD m(-3) and Yac-st 0.14 and 0.10 ± 0.016 kg COD kg COD(-1). Experimental and predicted volatile fatty acids and biogas composition were in good agreement. Values of BIAS, MSE or INDEX demonstrate that both methods (MC-NLLS and DEA) increased ADM1 accuracy. PMID:25011081

  12. Conversion of carbohydrates in herbaceous crops during anaerobic digestion.

    PubMed

    Pakarinen, Annukka; Kymalainen, Maritta; Stoddard, Frederick L; Viikari, Liisa

    2012-08-15

    The methane yields and conversion of pentoses (xylose) and hexoses (cellulose) in hemp, maize, and white lupin were studied over 30 days of anaerobic digestion. Preservation of hemp increased the methane yield by 23% compared with the fresh hemp. The increased methane yield of hemp was verified by the enhanced conversion of C6 sugars, increasing from 48% to about 70%, whereas the conversion of C5 sugars increased from only 9% to nearly 50%. The consumption of all carbohydrates in fresh maize was almost complete in the 30 days of anaerobic digestion. Hence, there was no major difference in carbohydrate consumption between fresh and preserved maize during biogas production. Fresh white lupin produced the highest methane yield (343 33 dm(3) kg(-1) TS) in this work, mainly due to its highest amount of proteins. Conversion of C6 sugars was 80%, but that of C5 sugars was notably less at 46%. PMID:22788699

  13. Influent Fractionation for Modeling Continuous Anaerobic Digestion Processes.

    PubMed

    Lübken, Manfred; Kosse, Pascal; Koch, Konrad; Gehring, Tito; Wichern, Marc

    2015-01-01

    The first dynamic model developed to describe anaerobic digestion processes dates back to 1969. Since then, considerable improvements in identifying the underlying biochemical processes and associated microorganisms have been achieved. These have led to an increasing complexity of both model structure and the standard set of stoichiometric and kinetic parameters. Literature has always paid attention to kinetic parameter estimation, as this determines model accuracy with respect to predicting the dynamic behavior of biogas systems. As sufficient computing power is easily available nowadays, sophisticated linear and nonlinear parameter estimation techniques are applied to evaluate parameter uncertainty. However, the uncertainty of influent fractionation in these parameter optimization procedures is generally neglected. As anaerobic digestion systems are currently increasingly used to convert a broad variety of organic biomass to methane, the lack of generally accepted guidelines for input characterization adapted to the simulation model's characteristics is a considerable limitation of model application to these substrates. Directly after the introduction of the standardized Anaerobic Digestion Model No. 1 (ADM1), several publications pointed out that the model's requirement of a detailed influent characterization can hardly be fulfilled. The main shortcoming of the model application was addressed in the reliable and practical identification of the model's input state variables for particulate and soluble carbohydrates, proteins and lipids, as well as for the inerts. Several authors derived biomass characterization procedures, most of them dedicated to a particular substrate, and some of them being of general nature, but none of these approaches have resulted in a practical standard protocol so far. This review provides an overview of existing approaches that improve substrate influent characterization to be used for state of the art anaerobic digestion models. PMID:26337847

  14. Cogeneration using methane from sewage treatment waste digester gas

    SciTech Connect

    Johnsen, H.L.; Greenway, A.R.

    1985-01-01

    This paper describes the efforts undertaken at the Joint Meeting of Essex and Union Counties sewage treatment plant in Elizabeth, New Jersey, to generate electricity using the gas generated by anaerobic sludge digestion. The approach taken for the Joint Meeting Plant was to design a digester-gas-fired cogeneration system using internal combustion engines with waste heat recovery systems. This paper also describes the anaerobic sludge digestion process, waste gas characteristics, previous practices for disposal and use of waste gas, a discussion of why the selected cogeneration technology was chosen, and a discussion of the environmental effects and permitting requirements of the project. Finally, initial operating results of the cogeneration system are discussed.

  15. Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs.

    PubMed

    Gonzalez-Fernandez, Cristina; Sialve, Bruno; Molinuevo-Salces, Beatriz

    2015-12-01

    Integration of anaerobic digestion (AD) with microalgae processes has become a key topic to support economic and environmental development of this resource. Compared with other substrates, microalgae can be produced close to the plant without the need for arable lands and be fully integrated within a biorefinery. As a limiting step, anaerobic hydrolysis appears to be one of the most challenging steps to reach a positive economic balance and to completely exploit the potential of microalgae for biogas and fertilizers production. This review covers recent investigations dealing with microalgae AD and highlights research opportunities and needs to support the development of this resource. Novel approaches to increase hydrolysis rate, the importance of the reactor design and the noteworthiness of the microbial anaerobic community are addressed. Finally, the integration of AD with microalgae processes and the potential of the carboxylate platform for chemicals and biofuels production are reviewed. PMID:26454349

  16. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    PubMed

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. PMID:26365369

  17. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  18. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    SciTech Connect

    Michele, Pognani; Giuliana, D’Imporzano; Carlo, Minetti; Sergio, Scotti; Fabrizio, Adani

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.

  19. Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment

    SciTech Connect

    Achkari-Begdouri, A.

    1989-01-01

    A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencing the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.

  20. Anaerobic digestion of livestock manures in the USA: A current opportunities casebook

    SciTech Connect

    Lusk, P.D.

    1994-12-31

    Growth and concentration of the livestock industry creates opportunities for the proper disposal of the large quantities of manures generated at dairy, swine and poultry farms. One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective alternative fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. An introduction to the engineering economies of these technologies is provided and possible end-use applications for methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

  1. The Effect of Enzyme Addition on Anaerobic Digestion of Jose Tall Wheat Grass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of the addition of enzyme products containing cellulase, hemicellulase, and Beta-glucosidase to anaerobic digestion systems were studied. Anaerobic digestion tests were performed using batch reactors operated at 35C. The application of enzyme products in three digestion configurations w...

  2. Impact of physical pre-treatment of source-sorted organic fraction of municipal solid waste on greenhouse-gas emissions and the economy in a Swedish anaerobic digestion system.

    PubMed

    Carlsson, My; Holmstrm, David; Bohn, Irene; Bisaillon, Mattias; Morgan-Sagastume, Fernando; Lagerkvist, Anders

    2015-04-01

    Several methods for physical pre-treatments of source sorted organic fraction of municipal solid waste (SSOFMSW) before for anaerobic digestion (AD) are available, with the common feature that they generate a homogeneous slurry for AD and a dry refuse fraction for incineration. The selection of efficient methods relies on improved understanding of how the pre-treatment impacts on the separation and on the slurry's AD. The aim of this study was to evaluate the impact of the performance of physical pre-treatment of SSOFMSW on greenhouse-gas (GHG) emissions and on the economy of an AD system including a biogas plant with supplementary systems for heat and power production in Sweden. Based on the performance of selected Swedish facilities, as well as chemical analyses and BMP tests of slurry and refuse, the computer-based evaluation tool ORWARE was improved as to accurately describe mass flows through the physical pre-treatment and anaerobic degradation. The environmental and economic performance of the evaluated system was influenced by the TS concentration in the slurry, as well as the distribution of incoming solids between slurry and refuse. The focus to improve the efficiency of these systems should primarily be directed towards minimising the water addition in the pre-treatment provided that this slurry can still be efficiently digested. Second, the amount of refuse should be minimised, while keeping a good quality of the slurry. Electricity use/generation has high impact on GHG emissions and the results of the study are sensitive to assumptions of marginal electricity and of electricity use in the pre-treatment. PMID:25661691

  3. Using volatile fatty acid relationships to predict anaerobic digester failure

    SciTech Connect

    Hill, D.T.; Cobb, S.A.; Bolte, J.P.

    1987-01-01

    During recent years, a number of observations have been made in the literature regarding the level and ratio of certain organic acids and the correlation of these acid relationships with anaerobic digester performance, either complete failure or operation in a stressed state. It is an accepted fact that levels of organic acid are important in digestion for two reasons: (a) organic acids (particularly acetic) are the immediate precursors in the metabolic chain leading to methane formation and (b) if present in high concentration, acids are known to cause stress in the microbial population and can ultimately lead to complete process failure. The recent literature (approximately the last 7 years) was searched for digester performance data and organic acid levels. Seventy observations were used in arriving at a relationship between acetic acid level and propionic to acetic acid ratio and digester failure or success. Methane productivity (L CH4/g VS added) was used as the parameter determining digester performance. A definite trend was recognized that suggests acetic acid levels in excess of 800 mg/L or a propionic to acetic acid ratio greater than 1.4 indicate impending digester failure. A laboratory scale study was then conductd to verify this phenomenon. (Refs. 22).

  4. Digesters and demographics: identifying support for anaerobic digesters on dairy farms.

    PubMed

    Sanders, D J; Roberts, M C; Ernst, S C; Thraen, C S

    2010-11-01

    The dairy industry in the United States is amidst a long-running trend toward fewer, larger dairy farms. This development has created a backlash in some communities over concerns such as odor, waste management, and environmental degradation. Separately, anaerobic digestion has advanced as a waste management technology that potentially offers solutions to some of these issues, providing odor control and a combustible biogas among other things. These digesters require significant capital investments. Voluntary consumer premiums for the renewable energy produced have been used in some instances as a means to move adoption of such systems toward financial feasibility. This project employed a survey to measure Ohio consumers' willingness to pay a premium for renewable energy produced by anaerobic digesters on dairy farms. Cluster analysis was used to segment consumers by willingness to pay, age, education, income, self-identified political inclination, and a composite variable that served as a proxy for respondents' environmental stewardship. Four distinctive groups emerged from the data. Older, less educated respondents were found to have the least amount of support for digesters on dairy farms, whereas politically liberal, environmentally proactive respondents demonstrated the strongest support. Well-educated, affluent respondents and young respondents fell between these 2 groups. Most large dairy farms are generally met with fairly negative responses from their local communities; in contrast, this research finds some popular support for anaerobic digestion technology. Going forward, establishing a positive link between support for anaerobic digesters and for their use on large dairies could open up a new route for less-contested large dairy farm developments. Evaluation of community demographics could become an important part of finding an optimal location for a large dairy farm. PMID:20965366

  5. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor.

    PubMed

    Li, Lin; Feng, Lu; Zhang, Ruihong; He, Yanfeng; Wang, Wen; Chen, Chang; Liu, Guangqing

    2015-06-01

    Anaerobic digestion (AD) of vinegar residue was investigated in continuously stirred tank reactor (CSTR). The influence of organic loading rate (OLR) and effluent recirculation on AD performance of vinegar residue was tested. Five OLRs, 1.0, 1.5, 2.0, 2.5, and 3.0 g(vs) L(-1) d(-1), were used. The highest volumetric methane productivity of 581.88 mL L(-1) was achieved at OLR of 2.5 g(vs) L(-1) d(-1). Effluent reflux ratio was set as 50%, the results showed that effluent recirculation could effectively neutralize the acidity of vinegar residue, raise the pH of the feedstock, and enhance the buffering capacity of the AD system. Anaerobic digestion of vinegar residue could be a promising way not only for converting this waste into gas energy but also alleviating environmental pollution which might be useful for future industrial application. PMID:25838040

  6. Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage.

    PubMed

    Hidaka, Taira; Inoue, Kenichiro; Suzuki, Yutaka; Tsumori, Jun

    2014-10-01

    Microalgal cultivation combined with anaerobic digestion at wastewater treatment plants is promising to recover energy. This study investigated the growth and anaerobic digestion characteristics of microalgae cultivated using nutrients in sewage. Microalgae were cultivated using primary effluent, secondary effluent, and dewatering filtrate. Microscopic observation indicated that Chlorella was cultivated using dewatering filtrate of anaerobic digestion without controlling the type of species. Batch anaerobic digestion experiments with digested sludge showed that the methane conversion ratio of the cultivated mixture was approximately 40-65%. Different cultivation time did not affect the microalgal contents. Methane recovery mass was 0.13NL-methane/L-cultivation liquor. The C/N ratio of the cultivated mixture was approximately 3-5, but the apparent ammonia release ratio was smaller than that of sewage sludge during digestion. These results proved the applicability of methane recovery from microalgae cultivated using nutrients included in anaerobically digested sludge. PMID:25127007

  7. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach.

    PubMed

    Michele, Pognani; Giuliana, D'Imporzano; Carlo, Minetti; Sergio, Scotti; Fabrizio, Adani

    2015-01-01

    Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18-1:0.9 w/w waste/digestate; 21d of hydraulic retention time - HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium. PMID:25305682

  8. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    PubMed Central

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  9. Control strategy for maximum anaerobic co-digestion performance.

    PubMed

    García-Gen, Santiago; Rodríguez, Jorge; Lema, Juan M

    2015-09-01

    A control strategy for optimising the performance of anaerobic co-digestion in terms of methane productivity, digestate quality and process stability is presented. A linear programming approach is adopted to calculate the feeding of multiple substrates for maximum methane productivity, subjected to restrictions based on experimental and heuristic knowledge. Process stability is quantitatively assessed by an empirical diagnosis function comparing alkalinity ratio measurements against reference values (outputs between (-1,1]). A second empirical diagnosis function is defined to compare methane flow rate measurements against a reference value of maximum capacity (outputs between (0,1]). A variable-gain control function (outputs between (-1,1]), derived from the diagnosis functions, is defined to determine the quantitative change applied to the most active constraint of the substrate blend optimisation problem leading to a new set-point of feeding substrates blend. The control strategy works in a closed-loop architecture under which the process performance for each blend of substrates is continuously assessed. The system was successfully validated in a 1 m(3) hybrid Upflow Anaerobic Sludge Blanket - Anaerobic Filter (UASB-AF) reactor, treating blends of substrates (gelatine, glycerine and pig manure supernatant) at OLR values between 0.71 and 6.33 gCOD/L d over a period of 210 days at mesophilic conditions. PMID:26001824

  10. Anaerobic digestion of solid wastes of cane sugar industry

    SciTech Connect

    Dasgupta, A.

    1983-01-01

    The cane sugar manufacturing industry generates large quantities of lignocellulosic solid wastes, namely bagasse and cachaza. Bagasse is the fibrous residue of the cane after extracting the juice. Cachaza is the filter cake of the precipitated insoluble sugars. This research investigates the feasibility of anaerobic digestion of a mixture of bagasse and cachaza to produce methane. Two rations of bagasse-cachaza mix as substrates were investigated. The first one was 8:1 which represents the average ratio of bagasse and cachaza produced in a raw sugar mill. The second ratio investigated was 2.4:1 which represents the proportion of bagasse and cachaza wastes after 70% of the bagasse is burned in sugar mill boilers. An acclimated microbial culture for this substrate was developed. Organic Loading-Detention Time relationships were established for an optimum system. Pre-treatment techniques of the substrate were investigated as a means of enhancing the digestibility of the cellulosic substrate. Recirculation of the filtrate was evaluated as a method for increasing solids retention time without increasing hydraulic detention time. The kinetics of the digestion process for bagasse-cachaza mixed substrate was investigated and growth constants were determined. The bionutritional characteristics of the substrate used for the digestion were evaluated. Based on the results obtained, mass balances and preliminary economic analysis of the digestion system were developed.

  11. Hydrolytic activity of alpha-amylase in anaerobic digested sludge.

    PubMed

    Higuchi, Y; Ohashi, A; Imachi, H; Harada, H

    2005-01-01

    Hydrolysis is usually considered to be a rate-limiting step in anaerobic digestion. For improving anaerobic solid waste treatments, it is essential to elucidate the mechanism of hydrolysis. In this study, alpha-amylase, one of the hydrolytic enzymes, was investigated for the elucidation of more precise mechanism of hydrolysis. Alpha-amylase activity of solid starch-degrading bacteria (SDB) was estimated through batch experiments with several different substrates and with distinction between cell-bound and cell-free alpha-amylase. Monitoring of newly isolated strains of SDB was done by fluorescence in situ hybridization. Results indicated that cell-bound alpha-amylase is chiefly responsible for the hydrolysis in the digested sludge, providing very useful information that the contact between microbial cells and solids is significantly important. The activity of alpha-amylase of the digested sludge remained quite low when not required, but increased as they recognized appropriate substrates. Several-fold higher activity was obtained for starch or maltose as compared to glucose only. PMID:16180437

  12. Anaerobic digestion analysis model: User`s manual

    SciTech Connect

    Ruth, M.; Landucci, R.

    1994-08-01

    The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

  13. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ≈46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ≈30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ≈50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (≈1.5%) were only significant during the first 7days of incubations. PMID:25987287

  14. Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation.

    PubMed

    Bocher, Benjamin T; Agler, Matthew T; Garcia, Marcelo L; Beers, Allen R; Angenent, Largus T

    2008-05-01

    Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 degrees C) and thermophilic (55 degrees C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of approximately 40 g l(-1). At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l(-1) day(-1), the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l(-1) day(-1) and an effluent VS concentration of 22.2 g VS l(-1) (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g(-1) VS fed and 0.47-0.48 l CH4 g(-1) VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4+) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. PMID:18188623

  15. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  16. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review.

    PubMed

    Dub, Charles-David; Guiot, Serge R

    2015-01-01

    Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate. As more and more microorganisms show a capacity for electron exchange, either to export or import them, it becomes obvious that DIET is a syntrophic metabolism that is much more present in nature than previously thought. This article reviews literature related to DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal organisms grow together in close proximity. Exoelectrogenic bacteria degrading organic substrates or intermediates need an electron sink and electrotrophic methanogens represent perfect partners to assimilate those electrons and produce methane. The granule extracellular polymeric substances by making the biofilm matrix more conductive, play a role as electrons carrier in DIET. PMID:26337845

  17. Tegoprens in anaerobic digestion of a mixture of cheese whey, poultry waste, and cattle dung for improved biomethanation

    SciTech Connect

    Patel, C.; Sastry, V.; Madamwar, D.

    1996-01-01

    To obtain enriched methane content and improve the anaerobic digestion of a mixture of cattle dung, poultry waste, and cheese whey, the effect of various doses of Tegoprens: T-3012, T-3099, T-5842, T-5843, T-5851, T-5852 has been studied, in bench-scale digesters. Among them, Tegoprens 3022 showed more than a 45% increase in gas production with higher methane content. 18 refs., 1 fig.

  18. Enrichment and specific quantification of Methanocalculus in anaerobic digestion.

    PubMed

    Chen, Si; He, Qiang

    2015-12-01

    Members of the genus Methanocalculus are characterized as hydrogenotrophic methanogens and present in diverse natural and engineered environments. Methanocalculus populations were enriched from anaerobic digesters treating dairy waste using formate as the substrate. Methanocalculus sequences retrieved from the enrichment cultures were subsequently used to develop a Methanocalculus-specific TaqMan qPCR assay to determine the abundance of Methanocalculus populations in the environment, representing the first quantitative tool specifically targeting Methanocalculus. The Methanocalculus-specific primer/probe set was shown to have high coverage with perfect match to >80% of all Methanocalculus 16S rRNA gene sequences in the Ribosomal Database Project (RDP). High specificity of the qPCR assay was also validated by both in silico and experimental analyses. Amplification efficiency of the qPCR assay was determined to be 91.9%, which is satisfactory for quantitative applications. Results from the Methanocalculus-specific qPCR analysis of formate-enriched methanogenic cultures were consistent with those from clone library analysis of the same cultures, validating the accuracy of the qPCR assay. Subsequent field application of the qPCR assay found low relative abundance of Methanocalculus in anaerobic digesters treating dairy waste, accounting for 0.01% of the archaeal populations. The qPCR results were consistent with the lack of detection of Methanocalculus in previous studies of the same anaerobic digesters with clone library analyses, which are less sensitive than qPCR. Thus, the Methanocalculus-specific qPCR assay developed in this study is a highly sensitive tool for the rapid and efficient quantification of Methanocalculus populations in methanogenic environments and understanding of the ecological functions of these methanogens. PMID:26059102

  19. Flow pattern visualization in a mimic anaerobic digester: experimental and computational studies.

    PubMed

    Vesvikar, M S; Varma, R; Karim, K; Al-Dahhan, M

    2005-01-01

    Advanced non-invasive experiments like computer automated radioactive particle tracking and computed tomography along with computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have appreciable effect on the flow pattern of the digesters. PMID:16180475

  20. Biogas plasticization coupled anaerobic digestion: batch test results.

    PubMed

    Schimel, Keith A

    2007-06-01

    Biogas has unique properties for improving the biodegradability of biomass solids during anaerobic digestion (AD). This report presents batch test results of the first investigation into utilizing biogas plasticization to "condition" organic polymers during active digestion of waste activated sludge (WAS). Preliminary design calculations based on polymer diffusion rate limitation are presented. Analysis of the 20 degrees C batch test data determined the first order (k(1)) COD conversion coefficient to be 0.167 day(-1) with a maximum COD utilization rate of 11.25 g L(-1) day(-1). Comparison of these batch test results to typical conventional AD performance parameters showed orders of magnitude improvement. These results show that biogas plasticization during active AD could greatly improve renewable energy yields from biomass waste materials such as MSW RDF, STP sludges, food wastes, animal manure, green wastes, and agricultural crop residuals. PMID:17054122

  1. Interactive model to assess economics of anaerobic digestion of the farm

    NASA Astrophysics Data System (ADS)

    1981-08-01

    An interactive computer model, to provide economic assessment for on the farm anaerobic digestion systems was designed. The model is accessed as part of the MASEC Models Library. It consists of two phases: engineering analysis and economic analysis. User inputs are stored in a data base and may be retained for future use. Model outputs include a recap of user inputs, calculations for gas production, digester heat requirements, system revenues, yearly cash flow, and a graph of the net present value of the investment. The model is generalized so that nonfarm applications may also be analyzed. The program will work equally well for various digester designs such as continuously stirred reactors, plug flow systems, and fluidized bed columns.

  2. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    SciTech Connect

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  3. Horsepower requirements for high-solids anaerobic digestion

    SciTech Connect

    Rivard, C.J.; Kay, B.D.; Kerbaugh, D.H.

    1995-12-31

    Improved organic loading rates for anaerobic bioconversion of cellulosic feedstocks are possible through high-solids processing. Additionally, the reduction in process water for such a system further improves the economics by reducing the overall size of the digestion system. However, mixing of high-solids materials is often viewed as an energy-intensive part of the process. Although the energy demand for high-solids mixing may be minimized by improving the agitator configuration and reducing the mixing speed, relatively little information is available for the actual horsepower requirements of a mechanically mixed high-solids digester system. The effect of sludge total solids content and digester fill level on mixing power requirements was evaluated using a novel NREL laboratory-scale high-solids digester. Trends in horsepower requirements are shown that establish the optimum parameters for minimizing mixing energy requirements, while maintaining adequate solids blending for biological activity. The comparative relationship between laboratory-scale mixing energy estimates and those required for scale-up systems is also established.

  4. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment.

    PubMed

    Wang, Qilin; Zhou, Xu; Peng, Lai; Wang, Dongbo; Xie, Guo-Jun; Yuan, Zhiguo

    2016-05-01

    Post aerobic digestion of anaerobically digested sludge (ADS) has been extensively applied to the wastewater treatment plants to enhance sludge reduction. However, the degradation of ADS in the post aerobic digester itself is still limited. In this work, an innovative free nitrous acid (HNO2 or FNA)-based pretreatment approach is proposed to improve full-scale ADS degradation in post aerobic digester. The post aerobic digestion was conducted by using an activated sludge to aerobically digest ADS for 4 days. Degradations of the FNA-treated (treated at 1.0 and 2.0 mg N/L for 24 h) and untreated ADSs were then determined and compared. The ADS was degraded by 26% and 32%, respectively, in the 4-day post aerobic digestion period while being pretreated at 1.0 and 2.0 mg HNO2-N/L. In comparison, only 20% of the untreated ADS was degraded. Economic analysis demonstrated that the implementation of FNA pretreatment can be economically favourable or not depending on the sludge transport and disposal cost. PMID:26901471

  5. State estimation for anaerobic digesters using the ADM1.

    PubMed

    Gaida, D; Wolf, C; Meyer, C; Stuhlsatz, A; Lippel, J; Bck, T; Bongards, M; McLoone, S

    2012-01-01

    The optimization of full-scale biogas plant operation is of great importance to make biomass a competitive source of renewable energy. The implementation of innovative control and optimization algorithms, such as Nonlinear Model Predictive Control, requires an online estimation of operating states of biogas plants. This state estimation allows for optimal control and operating decisions according to the actual state of a plant. In this paper such a state estimator is developed using a calibrated simulation model of a full-scale biogas plant, which is based on the Anaerobic Digestion Model No.1. The use of advanced pattern recognition methods shows that model states can be predicted from basic online measurements such as biogas production, CH4 and CO2 content in the biogas, pH value and substrate feed volume of known substrates. The machine learning methods used are trained and evaluated using synthetic data created with the biogas plant model simulating over a wide range of possible plant operating regions. Results show that the operating state vector of the modelled anaerobic digestion process can be predicted with an overall accuracy of about 90%. This facilitates the application of state-based optimization and control algorithms on full-scale biogas plants and therefore fosters the production of eco-friendly energy from biomass. PMID:22797239

  6. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams.

    PubMed

    Münch, E V; Barr, K

    2001-01-01

    Enhanced biological phosphorus removal wastewater treatment plants that use anaerobic digesters for sludge treatment, have high phosphorus concentrations in the sidestreams from their sludge dewatering equipment. To remove phosphorus from such sidestreams controlled struvite crystallisation can be used. Struvite (or MAP) is a naturally occurring crystal of magnesium, ammonium and phosphate. We present operational results obtained with a continuously operated pilot-scale MAP reactor. The pilot-scale reactor (143 l) was an air agitated column reactor with a reaction and a settling zone, based on the Phosnix process of Unitika Ltd., Japan. The influent to the MAP reactor was centrate from the centrifuge that dewaters anaerobically digested sludge at the Oxley Creek wastewater treatment plant in Brisbane. We used a 60% magnesium hydroxide slurry to add the required magnesium to the process and to obtain the alkaline pH value required. The pilot-scale MAP process achieved an ortho-P removal ratio of 94% from an average influent ortho-P concentration of 61 mg/l. The reactor was operated at a pH of around 8.5. Insufficient dosing of magnesium reduced the P removal performance. There was no influence of the hydraulic residence time on the process in the range of 1-8 h. The dry MAP product had cadmium, lead and mercury concentrations well below the legal limits for fertilisers in Queensland, Australia and can be reused as a valuable slow-release fertiliser. PMID:11257869

  7. Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste

    NASA Astrophysics Data System (ADS)

    Hao, W.; Hongtao, W.

    2008-02-01

    The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 C under alkaline condition.

  8. Household anaerobic digester for bioenergy production in developing countries: opportunities and challenges.

    PubMed

    Surendra, K C; Takara, Devin; Jasinski, Jonas; Khanal, Samir Kumar

    2013-01-01

    Access to clean and affordable energy is vital for advancing development objectives, particularly in rural areas of developing countries. There are some three billion people in these regions, however, who lack consistent access to energy and rely on traditional solid fuels such as firewood, cattle manure, and crop residues for meeting cooking and heating needs. Excessive use of such highly polluting resources creates serious environmental, social and public health issues. In this context, household digesters (which convert readily available feedstocks such as cattle manure, human excreta, and crop residues into biogas) have the potential to play a significant role in supplying methane as a clean, renewable energy resource for remote geographies. In addition to bioenergy production, the slurry generated from anaerobic digestion is rich in nutrients and can improve the physical, chemical, and biological attributes of soil when applied to agricultural land. This type of approach has the potential to significantly reduce greenhouse gas emissions while simultaneously improving the quality of life. Despite a long history of research and innovation for the development and optimization of household digesters, little is known and has been reported for the application of these systems in decentralized communities. The primary purpose of this paper seeks to review the dearth of literature pertaining to small-scale anaerobic digesters in remote geographies and in regions where much of the world's population reside. PMID:24350427

  9. Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Semi-annual report

    SciTech Connect

    Sengupta, S; Farooq, S; Gerrish, H P; Wong, K F; Daly, Jr, E L; Chriswell, C

    1980-02-01

    Anaerobic digestion of municipal waste has been demonstrated to be feasible in bench scale experiments by Pfeffer (1974). Approximately, 50% reduction in mass and production of 6000 ft/sup 3/ of gas/ton have been estimated. The gas composition is estimated to be 50% methane and 50% carbon monoxide. The technical and economic feasibility of anaerobic digestion with an ultimate objective of commercialization are discussed. A plant has been built at Pompano Beach, Florida on an existing shredding and landfill operation site. The plant design capacity is 100 tons/day. Two digesters have been constructed to be used in parallel. The process consists of primary shredding, metal separation, secondary shredding, air classification and digestion of light fraction. Sewage sludge was used to seed the initial mixture in the digester. The output slurry is vacuum filtered and the filter cake disposed on an existing landfill. The filtrate is recycled. Excess filtrate is sprayed on the landfill. At present the output gas is being flared. A flow chart for the plant is presented. It is imperative that environmental investigations be conducted on new energy technology prior to commercialization. A project was initiated to characterize all input and output streams and to assess the potential for ground water contamination by landfill disposal of effluents. Detailed chemical, biological and physical characterization efforts supported by leaching and modelling studies are being conducted to achieve the stated objectives. Some mutagenic studies were also conducted. The environmental investigations were started in August 1978. Sengupta et al (1979a) reported the first year's efforts.

  10. Speciation modeling of ammonia and other major solutes in anaerobic digesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion of high-nitrogen wastes can be inhibited by high concentrations of un-ionized ammonia, NH**3 (aq). Understanding the toxicity of NH**3 (aq) to anaerobic digestion requires an understanding of the mechanisms controlling its concentration. Previous work on ammonia toxicity in an...

  11. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  12. Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...

  13. Anaerobic digestion of high-strength cheese whey utilizing semicontinuous digesters and chemical flocculant addition

    SciTech Connect

    Barford, J.P.; Cail, R.G.; Callander, I.J.; Floyd, E.J.

    1986-11-01

    Semicontinuous digesters were used to anaerobically treat high-strength whey (70 kg/cubic m COD). A maximum loading of 16.1 kg COD/cubic m/day was obtained with soluble COD removal efficiencies greater than 99%. The use of a chemical flocculant resulted in an increased biomass concentration in the digester compared to a control, thus enabling correspondingly higher space loadings to be applied. With the onset of substantial levels of granulation of the biomass, flocculant dosage was able to be discontinued. This article discusses the performance of the digesters in detail and, briefly, the long-term operational difficulties experienced and the control strategies employed on such systems. 24 references.

  14. Development of an advanced anaerobic digester design and a kinetic model for biogasification of water hyacinth/sludge blends

    SciTech Connect

    Srivastava, V.; Fannin, K.F.; Biljetina, R.; Chynoweth, D.P.; Hayes, T.D.

    1986-07-01

    The Institute of Gas Technology (IGT) conducted a comprehensive laboratory-scale research program to develop and optimize the anaerobic digestion process for producing methane from water hyacinth and sludge blends. This study focused on digester design and operating techniques, which gave improved methane yields and production rates over those observed using conventional digesters. The final digester concept and the operating experience was utilized to design and operate a large-scale experimentla test unit (ETU) at Walt Disney World, Florida. This paper describes the novel digester design, operating techniques, and the results obtained in the laboratory. The paper also discusses a kinetic model which predicts methane yield, methane production rate, and digester effluent solids as a function of retention time. This model was successfully utilized to predict the performance of the ETU. 15 refs., 6 figs., 6 tabs.

  15. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    SciTech Connect

    Lindmark, Johan Eriksson, Per; Thorin, Eva

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  16. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    NASA Astrophysics Data System (ADS)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under mesophilic batch conditions all at 3 gVS/L loading were determined to be 148.6 +/- 7.82, 176.5 +/- 11.1 and 542.0 +/- 37.9 mL/ gVS, respectively and were 201.9 +/- 10.0, 210.4 +/- 29.3, and 419.3 +/- 12.1 mL/gVS, respectively, for initial loading of 6 gVS/L. Under thermophilic batch conditions, the top litter, mixed litter, and DAF waste had the biogas yields of 255.3 +/- 7.9, 313.4 +/- 30.1and 297.4 +/- 33.8 mL/gVS for loading rate of 3 gVS/L and 233.8 +/- 45.3, 306.5 +/- 11.8 and 185.1 +/- 0.85 mL/gVS for loading rate of 6 gVS/L. The biogas yields from co-digestion of the mixed litter and DAF waste at 3 gVS/L were 461.8 +/- 41.3 mL/gVS under thermophilic conditions. The results from batch anaerobic digestion tests were then used for designing continuous digestion experiments. All the continuous digestion experiments were conducted by using an Anaerobic Phase Solids (APS) digester system operated at a thermophilic temperature. The total volume of the continuous digester system was 4.8 L and the working volume was around 4.4 L. The APS digester system had two hydrolysis reactors and one biogasification reactor. Feedstock was loaded into the hydrolysis reactors in batches. The feedstock digestion time was 14 days and the average organic loading rate (OLR) of the system was 3 gVS/L/day. The experiment has three distinct feedstock stages, first with turkey litter waste, a co-digestion of DAF and turkey litter waste, followed by DAF waste. The biogas yields were determined to be 305.2 +/- 70.6 mL/gVS/d for turkey mixed litter, 455.8 +/- 77.2 mL/gVS/d during the mixture of mixed litter and DAF waste, and 382.0 +/- 39.6 mL/gVS for DAF waste. The biogas yields from the thermophilic batch test yields compare with that of the continuous digester yields. For experiments utilizing turkey litter, batch tests yielded 313.4 +/- 30.1mL/gVS biogas and 305.2 +/- 70.6 mL/gVS/d for continuous experiments. For experiments using codigestion of turkey litter and DAF waste, batches yielded 461.8 +/- 41.3 mL/gVS biogas comparing well to continuous digester operation that yielded 455.8 +/- 77.2 mL/gVS/d. It was mainly in the case for DAF that batch vs. continuous digester testing yielded a significant difference in performance. For experiments using DAF waste, batches yielded 297.4 +/- 33.8 mL/gVS biogas and continuous digester operation yielded 455.8 +/- 77.2 mL/gVS/d. For a case study on the APS digester system, mesophilic DAF waste was chosen as the optimum substrate. Using this material and reactor condition, a case study was built using provided information and experimental results to build a simulation. A reactor site needed to process 11,800 kgVS of DAF waste would require 4,800 m3 of tank volume, and use nearly 4,000 m3 as working volume. This reactor was modeled after a 2 stage APS reactor, with 2 hydrolysis reactors and 1 biogasification reactor, and had a 14 day retention time and a 3 gVS/L/d organic loading rate. The expected biogas output was 550 mL/gVS, and expected waste reduction was 20%. The reactor would produce 7,113 m3/d of biogas, and would be burned for 127,223 MJ/d.

  17. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  18. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    PubMed Central

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO43− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  19. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts. PMID:27014689

  20. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    PubMed Central

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts. PMID:27014689

  1. Unconventional anaerobic digester designs for improving methane yields from sea kelp

    SciTech Connect

    Fannin, K.F.; Srivastava, V.J.; Chynoweth, D.P.

    1982-01-01

    Studies were performed as part of an ongoing comprehensive research program to develop and optimize the anaerobic digestion process for producing methane from sea kelp (Macrocystis pyrifera). Laboratory-scale studies focused on digester design and operating techniques applicable toward the goal of increasing methane yields and production rates over those observed in previous studies using conventional stirred tank reactors (STR). Two unconventional anaerobic digesters, an upflow solids reactor and a baffle flow reactor, were used to study the anaerobic digestion performance of kelp; both digesters permit solids retention times that are longer than the hydraulic retention times. The performance of the unconventional digesters was compared with that of the STR on the basis of methane yield and process stability. These studies demonstrated that, although digester performance was markedly affected by kelp variability, the methane yield in both unconventional digesters exceeded 70% of the theoretical yield and was substantialy higher than that of the STR. Utilization of simple digester designs that promoted long solids retention times improved the anaerobic digester performance significantly over that observed in conventional anaerobic digestion processes.

  2. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    PubMed

    Grbel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production. PMID:20099626

  3. Anaerobic digestion of autoclaved and untreated food waste

    SciTech Connect

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

    2014-02-15

    Highlights: • Autoclaving decreased the formation of NH4-N and H{sub 2}S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m{sup 3}day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH{sub 4} yields were observed at OLR 3 kg VS/m{sup 3}day with untreated FW. • Autoclaved FW produced highest CH{sub 4} yields during OLR 4 kgVS/m{sup 3}day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m{sup 3} d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m{sup 3} CH{sub 4}/kg VS at 3 kg VS/m{sup 3} d) than autoclaved FW (maximum 0.439 ± 0.020 m{sup 3} CH{sub 4}/kg VS at 4 kg VS/m{sup 3} d). The residual methane potential of both digestates at all OLRs was less than 0.110 m{sup 3} CH{sub 4}/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

  4. Stabilization and gasification of soft-drink manufacturing waste by conventional and two-phase anaerobic digestion

    SciTech Connect

    Ghosh, S.; Henry, M.P.

    1981-01-01

    Energy recovery and waste stabilization accomplished simultaneously in the beverage industry by anaerobic digestion are investigated. The applicability and limitation of the conventional high-rate anaerobic digestion process are tested. A rapid-rate waste conversion process, two-phase anaerobic digestion, developed for enhanced net energy production with COD reduction comparable to that obtainable by application of a conventional digestion process is discussed. The high-rate digestion run was developed from a mixed MSW-sludge-biomass-fed inoculum.

  5. Two-stage upflow anaerobic digestion of concentrated sludge

    SciTech Connect

    Ghosh, S.; Sajjad, A.; Henry, M.P.; Bleakney, R.A.

    1983-01-01

    The development of an innovative fermentation mode, two-stage digestion, and the application of a novel upflow reactor design to permit biogasification of high-solids-content wastewater sludges at higher loading rates and lower-than-normal hydraulic residence times (HRT) to obtain higher gas and methane yields and production rates and better effluent qualities than those achieved with conventional single-stage continuously stirred tank reactor (CSTR) digesters are presented. A bench-scale two-stage upflow system operated with primary sludge at a 5.6-day HRT (1.2 days for Stage 1 and 4.4 days for Stage 2) exhibited a methane yield of 6.8 SCF/lb VS added, which was about 350% higher than that from conventional digestion at the same HRT.

  6. Anaerobic co-digestion of kitchen waste and pig manure with different mixing ratios.

    PubMed

    Tian, Hailin; Duan, Na; Lin, Cong; Li, Xue; Zhong, Mingzhu

    2015-07-01

    Anaerobic co-digestion of kitchen waste (KW) and pig manure (PM) with seven different PM to KW total solids (TS) ratios of 1:0, 5:1, 3:1, 1:1, 1:3, 1:5 and 0:1 was conducted at mesophilic temperature (35 ± 1 °C) to investigate the feasibility and process performance. The co-digestion of PM and KW was found to be an available way to enhance methane production compared with solo-digestion of PM or KW. The ratio of PM to KW of 1:1 got the highest biodegradability (BDA) of 85.03% and a methane yield of 409.5 mL/gVS. For the co-digestion of KW and PM, there was no obvious inhibition of ammonia nitrogen because it was in an acceptable range from 1380 mg/L to 2020 mg/L in the whole process. However, severe methane inhibition and long lag phase due to the accumulation of volatile fatty acids (VFAs) was observed while the KW content was over 50%, and in the lag phase, propionic acid and butyric acid made up the major constituents of the total VFAs. The technical digestion time (T80: the time it takes to produce 80% of the digester's maximum gas production) of the above 7 ratios was 15, 21, 22, 27, 49, 62 and 61 days, respectively. In this study, a mixing ratio of 1:1 for PM and KW was found to maximize BDA and methane yield, provided a short digestion time and stable digestion performance and was therefore recommended for further study and engineering application. PMID:25617184

  7. Do two-phase biogas plants separate anaerobic digestion phases? - a mathematical model for the distribution of anaerobic digestion phases among reactor stages.

    PubMed

    Muha, Ivo; Zielonka, Simon; Lemmer, Andreas; Schnberg, Mandy; Linke, Bernd; Grillo, Alfio; Wittum, Gabriel

    2013-03-01

    In this article a mathematical model is introduced, which estimates the distribution of the four anaerobic digestion phases (hydrolysis, acidogenesis, acetogenesis and methanogenesis) that occur among the leach bed reactor and the anaerobic filter of a biogas plant. It is shown that only the hydrolysis takes place in the first stage (leach bed reactor), while all other anaerobic digestion phases take place in both reactor stages. It turns out that, besides the usually measured raw materials of the acetogenesis and the methanogenesis phases (organic acids), it is also necessary to analyze the process liquid for raw materials of the acidogenesis phase, i.e., sugars, fatty acids, amino acids, etc. The introduced model can be used to monitor the inhibition of the anaerobic digestion phases in reactor stages and can, thus, help to improve the control system of biogas plants. PMID:23290872

  8. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    PubMed

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (?=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (?=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. PMID:25181698

  9. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    PubMed Central

    Smith, Bryan JK; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 107 copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 104 copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 107 copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  10. Anaerobic digestion of a nonionic surfactant: inhibition effect and biodegradation.

    PubMed

    Jimnez-Gonzlez, A; Salazar-Gonzlez, M; Gutirrez-Rojas, M; Monroy, O

    2001-01-01

    Nonionic surfactants are used worldwide in various industrial and household applications. Since these compounds are used in aqueous solutions, they primarily enter the environment through sewage and industrial wastewater treatment plants. The objective of this work was to evaluate the inhibitory effect of Triton X-100, a commercial nonionic surfactant, on the anaerobic digestion of lactose. Thus non-ionic surfactants acts as a non-competitive inhibitor with K1 = 250 mgL-1 and a inhibition order of 2.4. Nonetheless if give enough time the sludge was able to degrade 79% of Triton at 0.1 gL-1 d-1 in a UASB reactor. An activity test of this sludge showed that Triton inhibited the acetogenic (both propionic and butyric) and acetoclastic activities, while there were high fermentative and hydrogenotrophic activities (80% and 95%, respectively). PMID:11575082

  11. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters.

    PubMed

    Smith, Bryan Jk; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  12. Investigation of Non-Newtonian Flow in Anaerobic Digesters

    NASA Astrophysics Data System (ADS)

    Langner, Jeremy M.

    This thesis examines how the non-Newtonian characteristics of liquid hog manure affect the flow conditions within a steady-flow anaerobic digester. There are three main parts to this thesis. In the first part of this thesis, the physical properties of liquid hog manure and their variation with temperature and solids concentration are experimentally determined. Naturally-settled manure sampled from an outdoor storage lagoon is studied, and density, viscosity, and particle size distribution are measured. Hog manure with total solids concentrations of less than 3.6% exhibits Newtonian behaviour; manure between 3.6% and 6.5% total solids is pseudoplastic, and fits the power law; manure with more than 6.5% total solids exhibits non-Newtonian and time-dependent characteristics. The second part of this thesis investigates the flow of Newtonian and non-Newtonian fluids---represented by tap water and xanthan gum solution, respectively---within four lab-scale reactor geometries, using residence time distribution (RTD) experiments. The effect of reactor geometry, flow rate, and fluid viscosity are evaluated. In the third part of this thesis, flow conditions within lab-scale and pilot-scale anaerobic digester reactors are simulated using three-dimensional modeling techniques. The RTDs of lab-scale reactors as predicted by the 3D numerical models compare well to the experimental results. The 3D models are also validated using data from particle image velocimetry (PIV) experiments. Finally, the viscous properties of liquid hog manure at 3% and 8% total solids are incorporated into the models, and the results are evaluated.

  13. Microbial kinetic for In-Storage-Psychrophilic Anaerobic Digestion (ISPAD).

    PubMed

    Madani-Hosseini, Mahsa; Mulligan, Catherine N; Barrington, Suzelle

    2014-12-15

    In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a wastewater storage tank converted into an anaerobic digestion (AD) system by means of an airtight floating geo-membrane. For process optimization, ISPAD requires modelling with well-established microbial kinetics coefficients. The present objectives were to: obtain kinetics coefficients for the modelling of ISPAD; compare the prediction of the conventional and decomposition fitting approach, an innovative fitting technique used in other fields of science, and; obtain equations to predict the maximum growth rate (μmax) of microbial communities as a function of temperature. The method consisted in conducting specific Substrate Activity Tests (SAT) using ISPAD inoculum to monitor the rate of degradation of specific substrates at 8, 18 and 35 °C. Microbial kinetics coefficients were obtained by fitting the Monod equations to SAT. The statistical procedure of Least Square Error analysis was used to minimize the Sum of Squared Errors (SSE) between the measured ISPAD experimental data and the Monod equation values. Comparing both fitting methods, the decomposition approach gave higher correlation coefficient (R) for most kinetics values, as compared to the conventional approach. Tested to predict μmax with temperature, the Square Root equation better predicted temperature dependency of both acidogens and propionate degrading acetogens, while the Arrhenius equation better predicted that of methanogens and butyrate degrading acetogens. Increasing temperature from 18 to 35 °C did not affect butyrate degrading acetogens, likely because of their dominance, as demonstrated by microbial population estimation. The estimated ISPAD kinetics coefficients suggest a robust psychrophilic and mesophilic coexisting microbial community demonstrating acclimation to ambient temperature. PMID:25156266

  14. Two combined techniques to enhance anaerobic digestion of sludge.

    PubMed

    Moeller-Chávez, G; González-Martínez, S

    2002-01-01

    The rate-limiting step during anaerobic digestion is the hydrolysis of the particulate organic matter and methanogenesis. Certain elements, such as iron, nickel and cobalt and some growth factors such as coenzymes are needed for the adequate growth of the organisms. The main objective of this research was to enhance anaerobic digestion of primary sludge combining thermal and alkaline pre-treatment with stimulation of the methanogenic activity by adding yeast extract. Primary sludge was exposed, separately, to alkaline and thermal pre-treatment procedures. After this pre-treatment, different amounts of yeast extract were added to the sludge. The best COD, TSS and VSS removal rates were observed without pre-treatment and with the addition of 0.1% in weight of yeast extract. The highest specific methane production was obtained with thermal pre-treatment and 0.1% yeast addition. A second experimental stage was run for a closer analysis of the preliminary results. Thermal pre-treatment and 0.1% yeast addition was tested. The best results regarding both COD, TSS and VSS removal rates and methane production were obtained without thermal pre-treatment and with addition of yeast extract. The calculated F-values for the ANOVA-test show that the main influencing factor was the addition of yeast extract where the Biochemical Methane Production was doubled compared with the blank. The highest values for the hydrolysis constants were obtained at hydraulic retention times of six days after adding 0.1% of yeast extract. PMID:12479467

  15. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  16. Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Semi-annual report

    SciTech Connect

    Sengupta, S.; Wong, K.F.V.; Gerrish, H.P.; Nemerow, N.; Daly, E.L. Jr.; Chriswell, C.

    1981-02-01

    This report summarizes the results of routine monitoring of gas quality, airborne particulates, and solid and liquid phases of the Refcom facility at Pompano Beach, Florida. The plant produces methane from municipal wastes by anaerobic digestion. Bacteriological analysis of residual liquids and process streams were performed. Leaching studies with selected soils, filtrates and bottom layer muck were also conducted. A two-dimensional time model was developed. The first appendix contains the results of trace organic analysis of effluents from the facility. The results of environental studies on methane production are presented in the second appendix. The third appendix describes the gas analysis procedure and the gas composition of gas produced at the facility.

  17. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  18. Biomass production, anaerobic digestion, and nutrient recycling of small benthic or floating seaweeds

    SciTech Connect

    Ryther, J.H.

    1982-02-01

    A number of experiments have been carried out supporting the development of a seaweed-based ocean energy farm. Beginning in 1976, forty-two species of seaweed indigenous to the coastal waters of Central Florida were screened for high biomass yields in intensive culture. Gracilaria tikvahiae achieved the highest annual yield of 34.8 g dry wt/m/sup 2/ day. Yield has been found to vary inversely with seawater exchange rate, apparently because of carbon dioxide limitation at low exchange rates. Gracilaria was anaerobically digested in 120 liter and 2 liter reactors. Gas yields in the large digesters averaged 0.4 1/g volatile solids (.24 1 CH/sub 4//gv.s.) with a bioconversion efficiency of 48%. Studies of the suitability of digester residue as a nutrient source for growing Gracilaria have been conducted. Nitrogen recycling efficiency from harvested plant through liquid digestion residue to harvested plant approached 75%. Studies of nutrient uptake and storage by Gracilaria, Ascophyllum, and Sargassum showed that nutrient starved plants are capable of rapidly assimilating and storing inorganic nutrients which may be used later for growth when no nutrients are present in the medium. A shallow water seaweed farm was proposed which would produce methane from harvested seaweed and use digester residues as a concentrated source of nutrients for periodic fertilizations.

  19. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Lindmark, Johan; Eriksson, Per; Thorin, Eva

    2014-08-01

    Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 2.9, 317 1.9 and 304 2.8N ml/g VS added during digestion of fresh feed and 113 1.3, 134 1.1 and 130 2.3N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process. PMID:24814768

  20. Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge

    PubMed Central

    Battersby, Nigel S.; Wilson, Valerie

    1989-01-01

    The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (?80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851

  1. A distributed model of solid waste anaerobic digestion: sensitivity analysis.

    PubMed

    Vavilin, V A; Rytov, S V; Pavlostathis, S G; Jokela, J; Rintala, J

    2003-01-01

    A distributed model of anaerobic digestion of solid waste was developed to describe the balance between the rates of polymer hydrolysis and methanogenesis during the anaerobic conversion of rich and lean wastes in batch and continuous-flow reactors. Waste, volatile fatty acids (VFAs), methanogenic biomass and sodium concentrations are the model variables. Diffusion and advection of VFAs inhibiting both polymer hydrolysis and methanogenesis were considered. A sensitivity analysis by changing the key model parameter values was carried out. The model simulations showed that the effective distance between the areas of hydrolysis/acidogenesis and methanogenesis is very important. An initial spatial separation of rich waste and inoculum enhances the methane production and waste degradation at high waste loading if relatively low VFA diffusion into the methanogenic area is taking place. When both hydrolysis and methanogenesis are strongly inhibited by high levels of VFA, fluctuations in biomass concentration are thought to be responsible for initiating the expansion of methanogenic area over the reactor space. PMID:14531433

  2. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy. PMID:23827782

  3. Enhancement of the conventional anaerobic digestion of sludge: comparison of four different strategies.

    PubMed

    Pérez-Elvira, S I; Fdz-Polanco, M; Fdz-Polanco, F

    2011-01-01

    Anaerobic digestion (AD) is the preferred option to stabilize sludge. However, the rate limiting step of solids hydrolysis makes it worth modifing the conventional mesophilic AD in order to increase the performance of the digester. The main strategies are to introduce a hydrolysis pre-treatment, or to modify the digestion temperature. Among the different pre-treatment alternatives, the thermal hydrolysis (TH) at 170 degrees C for 30 min, and the ultrasounds pre-treatment (US) at 30 kJ/kg TS were selected for the research, while for the non-conventional anaerobic digestion, the thermophilic (TAD) and the two-stage temperature phased AD (TPAD) were considered. Four pilot plants were operated, with the same configuration and size of anaerobic digester (200 L, continuously fed). The biogas results show a general increase compared to the conventional digestion, being the highest production per unit of digester for the process combining the thermal pre-treatment and AD (1.4 L biogas/L digester day compared to the value of 0.26 obtained in conventional digesters). The dewaterability of the digestate became enhanced for processes TH + AD and TPAD when compared with the conventional digestate, while it became worse for processes US + AD and TAD. In all the research lines, the viscosity in the digester was smaller compared to the conventional (which is a key factor for process performance and economics), and both thermal pre-treatment and thermophilic digestion (TAD and TPAD) assure a pathogen free digestate. PMID:22097010

  4. Enhancement on biodegradation and anaerobic digestion efficiency of activated sludge using a dual irradiation process.

    PubMed

    Yang, Yingnan; Tsukahara, Kenichiro; Yang, Rongyong; Zhang, Zhenya; Sawayama, Shigeki

    2011-11-01

    A dual irradiation process involving aerobic thermophilic irradiation pretreatment (ATIP) and intermittent irradiation anaerobic digestion was developed to improve the digestion of waste-activated sludge. First, the effect of ATIP on further anaerobic digestion of activated sludge in batch mode was investigated. When exposed to ATIP for 24 h, the digestion reactor gave the highest methane yield, removed the most dissolved organic carbon (DOC) and showed the most effective reduction of VS compared to other irradiation times. This process was further enhanced by using an anaerobic fluidised-bed reactor packed with carbon felt in semi-continuous mode for digesting the pretreated activated sludge under intermittent irradiation conditions. Dual irradiation for 24 h followed by 60 min of anaerobic irradiation processing per day turned out to be optimal. This resulted in 65.3% of VS reduction, 83.9% of DOC removal ratio and 538 ml/g-VS of methane yield. PMID:21945660

  5. Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues.

    PubMed

    Elliott, Allan; Mahmood, Talat

    2007-11-01

    While anaerobic digestion is commonly practiced in the municipal sector, it has not gained popularity in the pulp and paper industry mainly because of its long sludge residence time requirement of 20-30 days. The construction of large digesters to provide such extended residence times is capital-intensive and thus the implementation of anaerobic digestion has remained economically prohibitive. A review of the literature suggests that recent developments in sludge preconditioning technologies have substantially reduced the sludge residence time requirement to the order of 7 days. Also, the preconditioned sludges have been reported to hold potential for higher methane recovery with reduced excess sludge production requiring disposal. Such advantages, coupled with escalating fuel prices and the introduction of carbon credits under the Kyoto Accord, have significantly improved the economics of anaerobic digestion. As the cost of sludge management varies from one mill to another, mill-specific economic assessment of anaerobic digestion could identify cost-saving opportunities. PMID:17628630

  6. Effect of pretreatments on the semicontinuous anaerobic digestion of sunflower heads

    SciTech Connect

    Polat, H.; Selcuk, N.; Soyupak, S. )

    1992-10-01

    In this paper, the effects of hydraulic retention time and alkali treatment on methane production rate from the semicontinuous anaerobic digestion of 2% sunflower-head/water mixtures are investigated. The experiments were carried out in laboratory-scale fermenters, fed with 1 liter of untreated, 2 g of NaOH/100 g total solids (TS), and 5 g NaOH/100 g TS alkali-treated sunflower-head/water mixtures, respectively, and maintained at 55{degrees} C. Digestion experiments were performed for hydraulic retention times of 8, 10, and 15 days. The amount and composition of produced gas were measured until steady state was attained in each run. The steady-state methane production rates were found to decrease with hydraulic retention time and increase with alkali dosage used for pretreatment.

  7. Efficiency of the anaerobic digestion of amine wastes.

    PubMed

    Wang, Shuai; Hovland, Jon; Bakke, Rune

    2013-12-01

    Laboratory-scale anaerobic degradation of monoethanolamine waste (MEAw) with co-substrate organics was conducted at room temperature and organic loading rates from 0.19 to 5.03 kg COD/m(3) day for 486 days in a hybrid digester. 90 % feed COD conversion to methane was obtained at the lower loads and only 45 % at the highest MEA waste/COD ratio (MEAwr) of 0.62 due to inhibition of methanogenesis. Inhibition at comparable loads decreased with time, implying that the culture adapted to the challenging feed. Methane yield was negatively correlated to MEAwr applied and inhibition avoided at MEAwr <0.5. Acetate accumulation implies inhibition of acetoclastic methanogenesis that can be caused by ammonia, a product of MEAw degradation. Moderate total ammonia nitrogen and free ammonia nitrogen accumulation, maximum 2.2 g N/l and 90 mg N/l, respectively suggests, however, that other components of MEAw, and/or degradation products of such, also inhibit methanogenesis, disturbing the digester performance. PMID:23912885

  8. Anaerobic digestion of sunflower oil cake: a current overview.

    PubMed

    De la Rubia, M A; Fernndez-Cegr, V; Raposo, F; Borja, R

    2013-01-01

    Due to the chemical and physical structure of a lignocellulosic biomass, its anaerobic digestion (AD) is a slow and difficult process. In this paper, the results obtained from a batch biochemical methane potential (BMP) test and fed-batch mesophilic AD assays of sunflower oil cake (SuOC) are presented. Taking into account the low digestibility shown during one-stage experiments the methane yield decreased considerably after increasing the organic loading rate (OLR) from 2 to 3 g VS L(-1) d(-1), SuOC was subjected to a two-stage AD process (hydrolytic-acidogenic and methanogenic stages), in two separate reactors operating in series where the methanogenic stage became acidified (with >1,600 mg acetic acid L(-1)) at an OLR as low as 2 g VS L(-1) d(-1). More recently, BMP assays were carried out after mechanical, thermal, and ultrasonic pre-treatments to determine the best option on the basis of the methane yield obtained. PMID:23168643

  9. Anaerobic digestion of spent bedding from deep litter piggery housing.

    PubMed

    Tait, Stephan; Tamis, Jelmer; Edgerton, Bruce; Batstone, Damien J

    2009-04-01

    This paper investigates spent litter from deep litter piggery housing as a potential substrate for farm-scale anaerobic digestion. Degradability and degradation rates were evaluated under mesophilic conditions for unused, lightly soiled (used by weaner/small pigs), and heavily soiled (used by finishing/large pigs) wheat straw, barley straw, and rice husks bedding. Apparent first order hydrolysis rate coefficients varied, but were comparable across all samples analysed (<0.1 day(-1)). Spent wheat straw was generally more degradable (approximately 60%) than spent barley straw, while spent barley straw was comparable to raw straw (40-50%), but with higher hydrolysis rates, indicating better accessibility. Rice husks were relatively poorly degradable (<20%), but degradability was improved by weathering in a pig shed. Digestion of spent barley and wheat straw litter was significantly faster (approximately twice the rate) at low (8% solids) than high (14% solids) solids loading. Rice husks degradation kinetics were not significantly influenced by solids concentration. Intrinsic methanogenic activity of heavily soiled spent wheat straw and rice husks bedding was initially poor, but achieved full activity after 40-60 days, indicating that reactor operation without external inoculum may be possible with care. PMID:19097776

  10. In-storage psychrophilic anaerobic digestion: acclimated microbial kinetics.

    PubMed

    King, Susan; Courvoisier, Pierre; Guiot, Serge; Barrington, Suzelle

    2012-01-01

    In-storage psychrophilic anaerobic digestion develops by microbial acclimation in covered swine-manure storage tanks, producing CH4 and stabilizing organic matter. To optimize the system's performance, the process kinetics must be understood. The objective of this study was to evaluate kinetic parameters describing the major stages in the digestion process, and to investigate the effect of temperature acclimation on these parameters. Specific activity tests were performed using manure inocula and five substrates at three incubation temperatures. Extant substrate activities were determined analytically for each case, and intrinsic kinetic parameters for glucose uptake were estimated by grid search fitting to the Monod model. The results demonstrate that this acclimated microbial community exhibits different kinetic parameters to those of the mesophilic communities currently modelled in the literature, with increased activity at low temperatures, varying with substrate and temperature. For glucose, the higher uptake is accompanied by lower microbial yield and half-saturation constant. Decomposing these values suggests that active psychrophilic and mesophilic microbial populations co-exist within the community. This work also confirms that a new method of assessing microbial substrate kinetics must be developed for manure microbial communities, separating microbial mass from other suspended organics. PMID:22988638

  11. Anaerobic digestion of autoclaved and untreated food waste.

    PubMed

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

    2014-02-01

    Anaerobic digestion of autoclaved (160C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids(VS)/m(3)d. Methane yields at all OLR were 5-10% higher for untreated FW (maximum 0.4830.013 m(3) CH4/kg VS at 3 kg VS/m(3) d) than autoclaved FW (maximum 0.4390.020 m(3) CH4/kg VS at 4 kg VS/m(3) d). The residual methane potential of both digestates at all OLRs was less than 0.110 m(3) CH4/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components. PMID:24238799

  12. CFD simulation of mixing for high-solids anaerobic digestion.

    PubMed

    Wu, Binxin

    2012-08-01

    A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39 impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included. PMID:22422446

  13. Inhibition of anaerobic digestion by organic priority pollutants

    SciTech Connect

    Johnson, L.D.

    1981-01-01

    Process instability caused by toxic inhibition is a major problem with anaerobic waste treatment systems. A batch bioassay technique was used to determine inhibitory effects from the twenty-four representative organic pollutants selected for testing. Only seven produced significant inhibition of gas production at concentrations of 100 mg/l or less. These seven were (a) nitrobenzene, (b) 4-nitrophenol, (c) 2-nitrophenol, (d) hexachloroethane, (e) hexachlorocyclopentadiene, (f) 2,4-dichlorophenol, and (g) hexachloro-1,3-butadiene. Reversible inhibition was observed for all of these except (f) and (g). The recovery of methane production inhibited by the nitro organics was due to biological reduction of the nitro group to a relatively nontoxic amine group. Recovery of gas production in cultures inhibited by (d) was due to acclimation of the microorganisms to the low concentrations of this compound remaining in solution after removal by adsorption onto the solids in the cultures. A combination of adsorption and anaerobic dechlorination of (e) caused the removal of this compound from solution and thus the recovery of gas production. The concentration of (g) was significantly reduced by adsorption, but gas production did not recover in cultures inhibited by this compound.

  14. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw.

    PubMed

    Liang, Jiajin; Lin, Yunqin; Wu, Shubin; Liu, Chao; Lei, Ming; Zeng, Chao

    2015-04-01

    This study investigated the thermal decomposition characteristics and pyrolytic products of anaerobic digested rice straw (ADRS) by thermogravimetric (TG) and pyrolysis-gas chromatograph/mass spectrometry (Py-GC/MS) analysis. Compared with the raw rice straw (RS), the thermal decomposition temperature of ADRS was shifted to higher temperature zone and the second decomposition zone of cellulose (Toffset(c)-Tpeak) became narrower (14 C less), which indicated that the composition of rice straw were changed significantly by the anaerobic digestion pretreatment. Py-GC/MS analysis showed that the quality of the bio-oil and the selectivity of pyrolytic products could be obviously improved by anaerobic digestion. The total yields of alcohols, acids, aldehydes, furans, anhydrosugars, and ketones pyrolysis substances decreased, while the yield of phenols increased. The yield of 4-Vinylphenol (4-VP) increased from 29.33%, 8.21% and 5.76% to 34.93%, 12.46% and 7.68% at 330, 450 and 650 C, respectively, after anaerobic digestion. PMID:25647031

  15. Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge

    SciTech Connect

    Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.; Henry, M.P.; Jerger, D.E.; Srivastava, V.J.

    1982-01-01

    A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields can be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.

  16. Enhanced anaerobic digestion of waste activated sludge of low organic content in a novel digester.

    PubMed

    Wu, J; Jiang, Y; Cao, Z P; Li, Z H; Hu, Y Y; Li, H Z; Zuo, J E; Wang, K J

    2015-01-01

    A novel digester, termed an internal circulation anaerobic digester (ICAD), was developed to intensify sludge digestion. It consists of reaction zone, settling zone, thickening zone, riser and downcomer. Internal circulation in the digester is intensified by backflow biogas. The mesophilic ICAD treating thermal pretreated waste activated sludge with volatile suspended solids (VSS)/suspended solids (SS) of 0.45-0.49 was conducted in this study to reduce and stabilize the low organic content sludge. The results showed that the VSS removal rate and biogas rate reached 46.0% and 0.72 m(3)/kg VSS(fed) at hydraulic retention time (HRT) of 15 days. VSS/SS and soluble chemical oxygen demand (SCOD) of the effluent sludge ranged from 0.39 to 0.41 and 274 mg/L to 473 mg/L, respectively, under various HRTs from 10 to 27 days. The degradation ability of ICAD derived from the improved mass transfer by internal circulation and long solid retention time at short HRT is compared with continuous stirred tank reactor. PMID:26360757

  17. On-farm anaerobic digester and fuel-alcohol plant. Final report

    SciTech Connect

    Bengtson, H.H.

    1985-12-01

    An anaerobic-digestion system, coupled with a fuel-alcohol plant, was constructed and set up on a southern Illinois farm as part of an integrated farm-energy system. The digester heating can be done using waste hot water from the alcohol plant and biogas from the digester can be used as fuel for the alcohol production. The anaerobic digestion system is made up of the following components; a hog finishing house with a manure pit; a solids handling pump to feed the manure; and a 13,000-gallon railroad tank car as the main digester vessel and pump to transfer effluent from the digester to a 150,000 gallon storage tank. The digester was operated for sufficient time to demonstrate the use of hot water in an automated digester temperature control system. Sufficient biogas was produced to demonstrate the use of biogas in a converted propane boiler.

  18. Changes in bacterial and archaeal communities in anaerobic digesters treating different organic wastes.

    PubMed

    Kim, Young Mo; Jang, Hyun Min; Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Park, Ki Young

    2015-12-01

    The goal of this study was to characterize microbial communities in anaerobic batch digesters treating different representative organic sources (sewage sludge, food waste, septage). Among the digesters, the anaerobic digester of food waste had the highest methanogen density, producing a peak value methane yield of 813.2mLCH4/gVS. In all the digesters, acetoclastic Methanosarcinales and hydrogenotrophic Methanomicrobiales were the most dominant methanogen groups, but their proportion among the methanogens varied depending on the organic sources. The bacteria community in the anaerobic digestion (AD) of food waste and septage was distinctly different from that found in the AD of sewage sludge (primary sludge and waste activated sludge). Shifts in both bacterial and archaeal community structures could be related to differences in chemical properties, production, and accumulation of intermediates digested from organic wastes having different characteristics. These findings could prove useful in optimizing the microbial community to enhance AD process treating organic wastes. PMID:26184789

  19. Evaluation of a four year experience with a fully instrumented anaerobic digestion process.

    PubMed

    Steyer, J P; Bouvier, J C; Conte, T; Gras, P; Sousbie, P

    2002-01-01

    For several years, a 1 m3 fixed bed anaerobic digestion process has been operated for the treatment of distillery vinasses. This reactor has been fully instrumented with the following variables available on-line: pH, temperature, liquid and gas flow rates, gas composition (i.e., CH4, CO2 and H2), concentration of bicarbonate, chemical oxygen demand, total organic carbon, volatile fatty acids and partial and total alkalinity, these last four variables being measured twice by different techniques (i.e., using a TOC analyzer, a titrimetric sensor and an infrared spectrometer). The purpose of this paper is to compare the respective benefits of advanced instrumentation for the monitoring of wastewater treatment processes in general, and for anaerobic digestion in particular. It will also provide some statistical analysis of the time required to operate a fully instrumented wastewater treatment process. It is indeed well admitted in the literature that instrumentation is usually the main limitation step for using closed-loop control. However, it is our opinion that, in the near future, this situation will change. This point is discussed based on our four years practical experience. PMID:11936672

  20. Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique.

    PubMed

    Larsson, Madeleine; Truong, Xu-Bin; Bjrn, Annika; Ejlertsson, Jrgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

    2015-01-01

    Anaerobic digestion of alkaline kraft elemental chlorine-free bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed reactors resulted in significantly higher biogas production (25050 vs. 12030 NmL g [Formula: see text]) and reduction of filtered total organic carbon (fTOC) (605 vs. 436%) for wastewater from processing of hardwood (HW) compared with softwood (SW). In all cases, the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics, a stable anaerobic process was maintained with hydraulic retention times (HRTs) between 7 and 14?h. Lowering the HRT (from 13.5 to 8.5?h) did not significantly affect the process, and the stable performance at 8.5?h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation, but the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization. PMID:25441833

  1. Recovery of energy from Taro (Colocasia esculenta) with solid-feed anaerobic digesters (SOFADs).

    PubMed

    Bindu, T; Ramasamy, E V

    2008-01-01

    We present studies on solid-feed anaerobic digesters (SOFADs) in which chopped Colocasia esculenta was fed without any other pretreatment, in an attempt to develop an efficient means of utilizing the semi-aquatic weed that is otherwise an environmental nuisance. Two types of SOFADs were studied. The first type had a single vessel with two compartments. The lower portion of the digester, 25% of the total volume, was separated from the upper by a perforated PVC disk. The weed was charged from the top and inoculated with anaerobically digested cow dung-water slurry. The fermentation of the weed in the digester led to the formation of volatile fatty acids (VFAs) plus some biogas. The bioleachate, rich in the VFAs, passed through the perforated PVC disk and was collected in the lower compartment of the digester. The other type of digesters, referred to as anaerobic multi-phase high-solids digesters (AMHDs), had the same type of compartmentalized digester unit as the first type and an additional methaniser unit. Up-flow anaerobic filters (UAFs) were used as methaniser units, which converted the bioleachate into combustible biogas consisting of approximately 60% methane. All SOFADs developed a consistent performance in terms of biogas yield within 20 weeks from the start. Among the two types of digesters studied, the AMHDs were found to perform better with a twofold increase in biogas yield compared to the first type of digesters. PMID:17382532

  2. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    PubMed

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO=0.20 and fE_PAO=0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly from those calculated with the AD models. Therefore in plant wide wastewater treatment models the characterization of PS and WAS as defined by the AS models can be applied without modification in AD models. The observed rate limiting hydrolysis/acidogenesis rates of the sludges are listed. PMID:24699419

  3. Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge.

    PubMed

    Yin, Fubin; Wang, Dongling; Li, Zifu; Ohlsen, Thomas; Hartwig, Peter; Czekalla, Sven

    2015-02-01

    Pharmaceutical sludge is considered as a hazardous substance with high treatment and disposal fees. Anaerobic digestion could not only transform the hazardous substance into activated sludge, but also generate valuable biogas. This research had two objectives. First: studying the feasibility of anaerobic digestion and determining the biochemical methane potential (BMP) of pharmaceutical sludge under different Inoculum to substrate TS ratios (ISRs) of 0, 0.65, 2.58 and 10.32 in mesophilic condition of 371C. Secondly, investigating the removal efficiency of colistin sulphate during anaerobic digestion. The results showed that the use of anaerobic digestion to treat the pharmaceutical sludge is feasible and that it can completely eliminate the colistin sulphate. The highest biogas production from pharmaceutical sludge is 499.46 mL/g TS at an ISR of 10.32. PMID:25490101

  4. DESTRUCTION BY ANAEROBIC MESOPHILIC AND THERMOPHILIC DIGESTION OF VIRUSES AND INDICATOR BACTERIA INDIGENOUS TO DOMESTIC SLUDGES

    EPA Science Inventory

    In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria are poor quantitative r...

  5. Anaerobic digestion of wood ethanol stillage using upflow anaerobic sludge blanket reactor

    SciTech Connect

    Callander, I.J.; Clark, T.A.; McFarlane, P.N.

    1987-01-01

    The anaerobic digestion of wood ethanol stillage in a UASB reactor was studied. At organic loading rates below 16 kg COD/m/sup 3/ day the reactor performed effectively, achieving soluble COD and BOD removals in excess of 86 and 93%, respectively. Removal of color averaged 40%. At a loading rate of 16 kg COD/m/sup 3/ day the methane yield was 0.302 L CH/sub 4/ (STP)/g COD removed, and the observed cell yield was 0.112 g VSS/g COD removed. Operation of the reactor at higher loading rates was unsuccessful. Nitrogen, phosphorus, and alkalinity were supplemented. No additions of the essential trace elements Fe, Co, and Ni were required.

  6. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    PubMed Central

    2010-01-01

    Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330

  7. Biogas plasticization coupled anaerobic digestion: continuous flow anaerobic pump test results.

    PubMed

    Schimel, Keith A; Boone, David R

    2010-03-01

    In this investigation, the Anaerobic Pump (TAP) and a conventional continuous flow stirred tank reactor (CFSTR) were tested side by side to compare performance. TAP integrates anaerobic digestion (AD) with biogas plasticization-disruption cycle to improve mass conversion to methane. Both prototypes were fed a "real world" 50:50 mixture of waste-activated sludge (WAS) and primary sludge and operated at room temperature (20 degrees Celsius). The quantitative results from three steady states show TAP peaked at 97% conversion of the particulate COD in a system hydraulic residence time (HRT) of only 6 days. It achieved a methane production of 0.32 STP cubic meter CH(4) per kilogram COD fed and specific methane yield of 0.78 m(3) CH(4) per cubic meter per day. This was more than three times the CFSTR specific methane yield (0.22 m(3) CH(4) per cubic meter per day) and more than double the CFSTR methane production (0.15 m(3) CH(4) per kilogram COD fed). A comparative kinetics analysis showed the TAP peak substrate COD removal rate (R (o)) was 2.24 kg COD per cubic meter per day, more than three times the CFSTR substrate removal rate of 0.67 kg COD per cubic meter per day. The three important factors contributing to the superior TAP performance were (1) effective solids capture (96%) with (2) mass recycle and (3) stage II plasticization-disruption during active AD. The Anaerobic Pump (TAP) is a high rate, high efficiency-low temperature microbial energy engine that could be used to improve renewable energy yields from classic AD waste substrates like refuse-derived fuels, treatment plant sludges, food wastes, livestock residues, green wastes and crop residuals. PMID:19455433

  8. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    PubMed

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. PMID:26437100

  9. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review.

    PubMed

    Choong, Yee Yaw; Norli, Ismail; Abdullah, Ahmad Zuhairi; Yhaya, Mohd Firdaus

    2016-06-01

    This paper critically reviews the impacts of supplementing trace elements on the anaerobic digestion performance. The in-depth knowledge of trace elements as micronutrients and metalloenzyme components justifies trace element supplementation into the anaerobic digestion system. Most of the earlier studies reported that trace elements addition at (sub)optimum dosages had positive impacts mainly longer term on digester stability with greater organic matter degradation, low volatile fatty acids (VFA) concentration and higher biogas production. However, these positive impacts and element requirements are not fully understood, they are explained on a case to case basis because of the great variance of the anaerobic digestion operation. Iron (Fe), nickel (Ni) and cobalt (Co) are the most studied and desirable elements. The right combination of multi-elements supplementation can have greater positive impact. This measure is highly recommended, especially for the mono-digestion of micronutrient-deficient substrates. The future research should consider the aspect of trace element bioavailability. PMID:27005788

  10. Rheology of sludge from double phase anaerobic digestion of organic fraction of municipal solid waste.

    PubMed

    Battistoni, P; Pavan, P; Mata-Alvarez, J; Prisciandaro, M; Cecchi, F

    2000-01-01

    In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes. In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description. PMID:11382008

  11. Anaerobic digestion challenge of raw olive mill wastewater.

    PubMed

    Sampaio, M A; Gonalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  12. Biological carbon dioxide utilisation in food waste anaerobic digesters.

    PubMed

    Bajón Fernández, Y; Green, K; Schuler, K; Soares, A; Vale, P; Alibardi, L; Cartmell, E

    2015-12-15

    Carbon dioxide (CO2) enrichment of anaerobic digesters (AD) was previously identified as a potential on-site carbon revalorisation strategy. This study addresses the lack of studies investigating this concept in up-scaled units and the need to understand the mechanisms of exogenous CO2 utilisation. Two pilot-scale ADs treating food waste were monitored for 225 days, with the test unit being periodically injected with CO2 using a bubble column. The test AD maintained a CH4 production rate of 0.56 ± 0.13 m(3) CH4·(kg VSfed d)(-1) and a CH4 concentration in biogas of 68% even when dissolved CO2 levels were increased by a 3 fold over the control unit. An additional uptake of 0.55 kg of exogenous CO2 was achieved in the test AD during the trial period. A 2.5 fold increase in hydrogen (H2) concentration was observed and attributed to CO2 dissolution and to an alteration of the acidogenesis and acetogenesis pathways. A hypothesis for conversion of exogenous CO2 has been proposed, which requires validation by microbial community analysis. PMID:26143589

  13. An examination of the effects of detergents on anaerobic digestion.

    PubMed

    Mensah, Kojo Arthur; Forster, Christopher F

    2003-11-01

    An anaerobic filter was used to examine the treatability of wastewater formulated to simulate that from the manufacture of detergents. The detergent element was a mixture (1:1:1 v/v) of concentrated washing up liquid, a non-biological hand washing detergent and a fabric softener and, thus contained a combination of cationic surfactants, anionic surfactants, non-ionic surfactants and amphoteric surfactants. A concentration of 2 ml/l caused a deterioration in the performance of the digester which was pronounced after 7 days. When the packing of the filter was modified to include two layers of granular activated carbon, 320 g in total, the reactor was capable of treating a feed containing 10 ml/l. The amount of detergent removed during this second trial was greater than the Langmuir monolayer capacity of the carbon, indicating that both adsorption and degradation were occurring. The results also showed that, at detergent concentrations greater than 1 ml/l, the theoretical COD removal was lower than the actual COD removal. This was compatible with there being an element of adsorption by the activated carbon. PMID:12895555

  14. Sensors network diagnosis in anaerobic digestion processes using evidence theory.

    PubMed

    Steyer, J P; Lardon, L; Bernard, O

    2004-01-01

    Instrumentation defines a sensors network on a process. Hardware sensors indeed allow one to get different information sources that can be often cross-checked to provide reliable data. However, each of these sources of information contains some uncertainties, either due to the hardware sensors' measurement principles, to their possible fouling, to the estimated parameters of the models used in software sensors and/or to the specific structures of the software sensors. This paper demonstrates that, in this context, the evidence theory is a very well suited formalism for fault detection and diagnosis. This theory indeed allows one to take into account the exact knowledge supported by each source of information and to combine them in order to detect the occurring faults. Moreover, this combination guarantees the best fault isolability from a practical point of view and is suitable for multiple faults occurring at the same time. Finally, the evidence theory is a highly modular formalism since new information sources can be very easily added and old ones can be removed. Validation is performed using real-life experiments from a 1 m3 anaerobic digestion fixed bed process used applied to the treatment of winery wastewaters. PMID:15685976

  15. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  16. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion.

    PubMed

    Zhang, Yuan; Yu, Guangren; Yu, Liang; Siddhu, Muhammad Abdul Hanan; Gao, Mengjiao; Abdeltawab, Ahmed A; Al-Deyab, Salem S; Chen, Xiaochun

    2016-03-01

    Computational fluid dynamics (CFD) was applied to investigate mixing mode and power consumption in anaerobic mono- and co-digestion. Cattle manure (CM) and corn stover (CS) were used as feedstock and stirred tank reactor (STR) was used as digester. Power numbers obtained by the CFD simulation were compared with those from the experimental correlation. Results showed that the standard k-ε model was more appropriate than other turbulence models. A new index, net power production instead of gas production, was proposed to optimize feedstock ratio for anaerobic co-digestion. Results showed that flow field and power consumption were significantly changed in co-digestion of CM and CS compared with those in mono-digestion of either CM or CS. For different mixing modes, the optimum feedstock ratio for co-digestion changed with net power production. The best option of CM/CS ratio for continuous mixing, intermittent mixing I, and intermittent mixing II were 1:1, 1:1 and 1:3, respectively. PMID:26722816

  17. Extension of the anaerobic digestion model No. 1 (ADM1) to include phenolic compounds biodegradation processes for the simulation of anaerobic co-digestion of olive mill wastes at thermophilic temperature.

    PubMed

    Fezzani, Boubaker; Cheikh, Ridha Ben

    2009-03-15

    This paper describes for the first time the extension of the anaerobic digestion model No. 1 (ADM1) to handle and simulate the anaerobic degradation processes of phenol compounds and homologues in olive mill wastewater (OMW) and olive mill solid waste (OMSW) at thermophilic temperature (55 degrees C). The general structure of the ADM1 was not changed except for the modifications related to the inclusion of phenolic compounds degradation processes into acetate and further into methane and CO(2). The effect of soluble phenolic compounds upon pH was taken into account in the pH simulation equations. The inhibitory effect of phenolic compounds on the fermenting process and methanogenic sub-populations was accounted for by the use of non-competitive inhibition functions. The most sensitive and new phenolic parameters were calibrated and validated using experimental data from our previous study dealing with the thermophilic anaerobic co-digestion of OMW with OMSW in semi-continuous tubular digesters. The simulation results indicated that the extended ADM1 was able to predict with reasonable accuracy effluent phenol concentrations and gas flow rates and effluent pH of various influent concentrations digested at hydraulic retention times (HRTs) of 36 and 24 days. PMID:18774218

  18. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters.

    PubMed

    Fuchs, W; Drosg, B

    2013-01-01

    Anaerobic digestion is widely used as an important source of renewable energy. With the increasing number and capacity of biogas plants also, adequate treatment technologies for whole digestate - the residue from anaerobic digestion - are gaining attention. In this study the state of the art of digestate processing is analysed, and currently used treatment schemes and the various technological processes involved are evaluated. The study combines data and experiences from existing large-scale digestate processing facilities in Austria, Germany, Switzerland and Italy, as well as know-how from technology providers and relevant research projects. However, the field of digestate processing is still quite new and little detailed information about the performance of different technologies at industrial scale is available. Digestate processing is gaining importance since digestate utilisation can become an important bottleneck when increasing biogas production. In addition, the production of renewable fertiliser from digestate is increasingly of interest to replace fossil fertilisers. This study is the first profound attempt to establish an assessment of the state-of-the-art technologies in use. PMID:23656941

  19. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  20. Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge.

    PubMed

    Xia, Yun; Wang, Ding-Kang; Kong, Yunhong; Ungerfeld, Emilio M; Seviour, Robert; Massé, Daniel I

    2015-04-01

    Anaerobic digestion is an effective method for treating animal by-products, generating at the same time green energy as methane (CH4). However, the methods and mechanisms involved in anaerobic digestion of α-keratin wastes like hair, nails, horns and hooves are still not clear. In this study we investigated the feasibility of anaerobically co-digesting ground beef hooves in the presence of swine manure or slaughterhouse sludge at 25 °C using eight 42-L Plexiglas lab-scale digesters. Our results showed addition of beef hooves statistically significantly increased the rate of CH4 production with swine manure, but only increased it slightly with slaughterhouse sludge. After 90-day digestion, 73% of beef hoof material added to the swine manure-inoculated digesters had been converted into CH4, which was significantly higher than the 45% level achieved in the slaughterhouse sludge inoculated digesters. BODIPY-Fluorescent casein staining detected proteolytic bacteria in all digesters with and without added beef hooves, and their relative abundances corresponded to the rate of methanogenesis of the digesters with the different inocula. Fluorescence in situ hybridization in combination with BODIPY-Fluorescent casein staining identified most proteolytic bacteria as members of genus Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. They thus appear to be the bacteria mainly responsible for digestion of beef hooves. PMID:25595391

  1. ENERGY AND ECONOMIC ASSESSMENT OF ANAEROBIC DIGESTERS AND BIOFUELS FOR RURAL WASTE MANAGEMENT

    EPA Science Inventory

    A technological and socioeconomic assessment of anaerobic digester feasibility for small to mid-size livestock operations was undertaken. Three full scale digesters and one pilot scale facility were under various degrees of monitoring and evaluation to assess design and operation...

  2. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances.

    PubMed

    Tao, Wendong; Fattah, Kazi P; Huchzermeier, Matthew P

    2016-03-15

    Anaerobically digested dairy manure is rich in ammonium, orthophosphates, and magnesium, indicating a high potential for struvite recovery. Continuous generation of large amounts of dairy manure plus increasing global interest in anaerobic digestion of dairy manure suggest a huge market for struvite production with anaerobically digested dairy manure. However, the complex chemical composition of digested dairy manure presents hindrances to struvite recovery. This review paper assesses the significance and potential of struvite recovery from anaerobically digested dairy manure, identifies the factors hindering struvite recovery, and discusses the methods to overcome hindrances and the measures to improve phosphorus speciation of dairy manure for struvite formation. This paper proposes using "struvite recovery potential" or Pstruvite based on the least molar activity of struvite component ions in addition to "supersaturation ratio" to identify the potential for struvite recovery. The probable hindrances mainly include high Ca(2+) concentration and molar activity ratios of Ca(2+): Mg(2+) and Ca(2+): PO4(3-), high ionic strength, and high alkalinity. Struvite formation and purity is likely a function of all the interfering variables, rather than just a single factor with digested dairy manure. Potential enhancement measures need to be tested for technical and economic feasibility and applicability to various sources of digested dairy manure. This review paper provides guidance to overcoming the hindrances of digested dairy manure to struvite formation. PMID:26720329

  3. Biochar produced from anaerobically-digested fiber reduces phosphorus in dairy lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus from dairy lagoons. The ADF was collected from a plugged flow digester, air dried to < 8% water content, and pelletized. Biochar was produced by slow pyrolysis in a barrel retort. The potential...

  4. Pilot plant study of the effects of quebracho and wattle on anaerobic digestion

    SciTech Connect

    Eye, J.D.; Ficker, C.F.

    1982-01-01

    Quebracho and wattle tannin adversely affected the operational control required for the systems as well as CH4 production. The anaerobic organisms however degraded the tannins and the characteristic red color was effectively removed from the supernatant (liquid phase of digested sludge) during digestion.

  5. Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater.

    PubMed

    Barrera, Ernesto L; Spanjers, Henri; Solon, Kimberly; Amerlinck, Youri; Nopens, Ingmar; Dewulf, Jo

    2015-03-15

    This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57kg [Formula: see text] m(-3) d(-1) and from 7.66 to 12kg CODm(-3)d(-1), respectively. PMID:25589435

  6. Production of biogas from solid organic wastes through anaerobic digestion: a review.

    PubMed

    Muhammad Nasir, Ismail; Mohd Ghazi, Tinia I; Omar, Rozita

    2012-07-01

    Anaerobic digestion treatments have often been used for biological stabilization of solid wastes. These treatment processes generate biogas which can be used as a renewable energy sources. Recently, anaerobic digestion of solid wastes has attracted more interest because of current environmental problems, most especially those concerned with global warming. Thus, laboratory-scale research on this area has increased significantly. In this review paper, the summary of the most recent research activities covering production of biogas from solid wastes according to its origin via various anaerobic technologies was presented. PMID:22622840

  7. The environmental sustainability of anaerobic digestion as a biomass valorization technology.

    PubMed

    De Meester, Steven; Demeyer, Jens; Velghe, Filip; Peene, Andy; Van Langenhove, Herman; Dewulf, Jo

    2012-10-01

    This paper studies the environmental sustainability of anaerobic digestion from three perspectives. First, reference electricity is compared to electricity production from domestic organic waste and energy crop digestion. Second, different digester feed possibilities in an agricultural context are studied. Third, the influence of applying digestate as fertilizer is investigated. Results highlight that biomass is converted at a rational exergy (energy) efficiency ranging from 15.3% (22.6) to 33.3% (36.0). From a life cycle perspective, a saving of over 90% resources is achieved in most categories when comparing biobased electricity to conventional electricity. However, operation without heat valorization results in 32% loss of this performance while using organic waste (domestic and agricultural residues) as feedstock avoids land resources. The use of digestate as a fertilizer is beneficial from a resource perspective, but causes increased nitrogen and methane emissions, which can be reduced by 50%, making anaerobic digestion an environmentally competitive bioenergy technology. PMID:22864176

  8. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    PubMed

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

  9. Modelling start-up performance of anaerobic digestion of saline-rich macro-algae.

    PubMed

    Hierholtzer, A; Akunna, J C

    2014-01-01

    Some of the key factors affecting the adaptation of anaerobic digestion processes to increasing levels of salinity were determined in batch tests using brown seaweed as a feedstock. It was found that cultures seeded with non-saline anaerobic inoculum required an adaptation period of up to two months to reach the same level of methane production rate as in those cultures seeded with saline-adapted inoculum. The Anaerobic Digestion Model No.1 (ADM1) was modified to include an extra inhibition function to account for the effect of salinity, and calibrated using a set of experimental data obtained from batch biochemical methane potential tests. After calibration, the model was able to accurately predict methane production rates. Thus, the results show that, in the absence of saline-adapted inoculum, non-saline inoculum can be used for the start-up of anaerobic digestion systems treating saline-rich feedstocks. PMID:24845321

  10. Microbial-chemical indicator for anaerobic digester performance assessment in full-scale wastewater treatment plants for biogas production.

    PubMed

    Traversi, Deborah; Romanazzi, Valeria; Degan, Raffaella; Lorenzi, Eugenio; Carraro, Elisabetta; Gilli, Giorgio

    2015-06-01

    Anaerobic digestion was introduced into wastewater treatment plants several years ago, but anaerobic digestion performance has not yet been achieved. The variability of the microbial community in digesters is poorly understood, and despite the crucial role of anaerobic digestion reactors, the microbial equilibrium that yields the best performance in these reactors has only recently been hypothesised. In this study, two full-scale continuous anaerobic reactors, placed in Torino's main wastewater treatment plant in northern Italy, were followed to develop a summary indicator for measuring anaerobic digestion performance. A total of 100 sludge samples were collected. The samples were characterised chemically and physically, and microbial groups were quantified by qRT-PCR. A chemical biological performance index strictly correlated to specific biogas production (rho=0.739, p<0.01) is proposed. This approach will produce new management tools for anaerobic digestion in wastewater treatment plants. PMID:25817028

  11. Aeration of anaerobically digested sewage sludge for COD and nitrogen removal: optimization at large-scale.

    PubMed

    Parravicini, V; Svardal, K; Hornek, R; Kroiss, H

    2008-01-01

    The paper will report about the experiences at an Austrian large wastewater treatment plant of 720,000 population equivalents, where anaerobically digested sewage sludge is further stabilised under aerobic conditions. Enhanced stabilisation of the anaerobically digested sludge was required at the plant in order to get a permit for landfill disposal of the dewatered stabilized sludge. By implementing a post-aeration treatment (SRT approximately 6d; 36 degrees C) after anaerobic digestion the organic content of the anaerobically well digested sludge can be decreased by 16%. Investigations on site showed that during digested sludge post-aeration anoxic phases for denitrification are needed to provide stable process conditions. In this way the pH value can be kept in a more favourable range for micro-organisms and concrete structures. Additionally, inhibition of the biological process due to nitrite accumulation can be avoided. By optimising the aeration/pause ratio approximately 45% of total nitrogen in digested sludge can be removed. This significantly improves nitrogen removal efficiency at the wastewater treatment plant. NH(4)-removal occurs mainly through nitritation and denitritation with an efficiency of 98%. The costs/benefit analysis shows that post-aeration of digested sludge results in an increase of total annual costs for wastewater treatment of only 0.84%, corresponding to 0.19 Euro/pe/a. Result of molecular biological analyses (DGGE) indicate that all four ammonium-oxidizing bacteria species present in activated sludge can survive anaerobic digestion, but only two of them can adapt in the digested sludge post-aeration tanks. Additionally, in the post-aerated digested sludge a further ammonium-oxidizing bacteria species was identified. PMID:18235180

  12. Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance

    SciTech Connect

    Illmer, P. Gstraunthaler, G.

    2009-01-15

    A 750,000 l digester located in Roppen/Austria was studied over a 2-year period. The concentrations and amounts of CH{sub 4}, H{sub 2}, CO{sub 2} and H{sub 2}S and several other process parameters like temperature, retention time, dry weight and input of substrate were registered continuously. On a weekly scale the pH and the concentrations of NH{sub 4}{sup +}-N and volatile fatty acids (acetic, butyric, iso-butyric, propionic, valeric and iso-valeric acid) were measured. The data show a similar pattern of seasonal gas production over 2 years of monitoring. The consumption of VFA and not the hydrogenotrophic CH{sub 4} production appeared to be the limiting factor for the investigated digestion process. Whereas the changes in pH and the concentrations of most VFA did not correspond with changes in biogas production, the ratio of acetic to propionic acid and the concentration of H{sub 2} appeared to be useful indicators for reactor performance. However, the most influential factors for the anaerobic digestion process were the amount and the quality of input material, which distinctly changed throughout the year.

  13. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.

    PubMed

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  14. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells

    PubMed Central

    Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di; Ascenzioni, Fiorentina

    2015-01-01

    Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609

  15. Feasibility assessment tool for urban anaerobic digestion in developing countries.

    PubMed

    Lohri, Christian Riuji; Rodić, Ljiljana; Zurbrügg, Christian

    2013-09-15

    This paper describes a method developed to support feasibility assessments of urban anaerobic digestion (AD). The method not only uses technical assessment criteria but takes a broader sustainability perspective and integrates technical-operational, environmental, financial-economic, socio-cultural, institutional, policy and legal criteria into the assessment tool developed. Use of the tool can support decision-makers with selecting the most suitable set-up for the given context. The tool consists of a comprehensive set of questions, structured along four distinct yet interrelated dimensions of sustainability factors, which all influence the success of any urban AD project. Each dimension answers a specific question: I) WHY? What are the driving forces and motivations behind the initiation of the AD project? II) WHO? Who are the stakeholders and what are their roles, power, interests and means of intervention? III) WHAT? What are the physical components of the proposed AD chain and the respective mass and resource flows? IV) HOW? What are the key features of the enabling or disabling environment (sustainability aspects) affecting the proposed AD system? Disruptive conditions within these four dimensions are detected. Multi Criteria Decision Analysis is used to guide the process of translating the answers from six sustainability categories into scores, combining them with the relative importance (weights) attributed by the stakeholders. Risk assessment further evaluates the probability that certain aspects develop differently than originally planned and assesses the data reliability (uncertainty factors). The use of the tool is demonstrated with its application in a case study for Bahir Dar in Ethiopia. PMID:23722149

  16. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome.

    PubMed

    De Vrieze, Jo; Saunders, Aaron Marc; He, Ying; Fang, Jing; Nielsen, Per Halkjaer; Verstraete, Willy; Boon, Nico

    2015-05-15

    Anaerobic digestion is regarded as a key environmental technology in the present and future bio-based economy. The microbial community completing the anaerobic digestion process is considered complex, and several attempts already have been carried out to determine the key microbial populations. However, the key differences in the anaerobic digestion microbiomes, and the environmental/process parameters that drive these differences, remain poorly understood. In this research, we hypothesized that differences in operational parameters lead to a particular composition and organization of microbial communities in full-scale installations. A total of 38 samples were collected from 29 different full-scale anaerobic digestion installations, showing constant biogas production in function of time. Microbial community analysis was carried out by means of amplicon sequencing and real-time PCR. The bacterial community in all samples was dominated by representatives of the Firmicutes, Bacteroidetes and Proteobacteria, covering 86.1 ± 10.7% of the total bacterial community. Acetoclastic methanogenesis was dominated by Methanosaetaceae, yet, only the hydrogenotrophic Methanobacteriales correlated with biogas production, confirming their importance in high-rate anaerobic digestion systems. In-depth analysis of operational and environmental parameters and bacterial community structure indicated the presence of three potential clusters in anaerobic digestion. These clusters were determined by total ammonia concentration, free ammonia concentration and temperature, and characterized by an increased relative abundance of Bacteroidales, Clostridiales and Lactobacillales, respectively. None of the methanogenic populations, however, could be significantly attributed to any of the three clusters. Nonetheless, further experimental research will be required to validate the existence of these different clusters, and to which extent the presence of these clusters relates to stable or sub-optimal anaerobic digestion. PMID:25819618

  17. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes. PMID:17915737

  18. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass--animal manure mixtures.

    PubMed

    Ahn, H K; Smith, M C; Kondrad, S L; White, J W

    2010-02-01

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure-switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 degrees C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4/g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop. PMID:19462259

  19. Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters.

    PubMed

    Idrus, S; Banks, C J; Heaven, S

    2012-01-01

    Wheat straw is a major potential source of waste biomass for renewable energy production, but its high salt content causes problems in combustion. The salts can be removed by washing, but this process also removes a proportion of the organic material which could potentially be recovered by anaerobic digestion of the washwater leachate. This approach would maximise the overall energy yield in an integrated process in which washwater could be recycled after further desalting. Leachate from cold water washing with a chemical oxygen demand (COD) of 1.2 g l? was fed to mesophilic upflow anaerobic sludge blanket (UASB) digesters at a loading rate of 1 g COD l? day? to determine the energy yield and any detrimental effects of the leached salts on the process. The specific methane production was 0.29 l CH? g? COD(added), corresponding to a COD removal rate of 84%. Light metal cations in the leachate, especially potassium, were found to accumulate in the digesters and appeared to have a synergistic effect up to a concentration of ?6.5 mg K g? wet weight of the granular sludge, but further accumulation caused inhibition of methanogenesis. It was shown that gas production in the inhibited digesters could be restored within 12 days by switching the feed to a synthetic sewage, which washed the accumulated K out of the digesters. PMID:23109593

  20. Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing--an overview.

    PubMed

    Magr, Albert; Bline, Fabrice; Dabert, Patrick

    2013-12-15

    Completely autotrophic nitrogen removal (ANR) is based on the combination of partial nitritation (PN) and anaerobic ammonium oxidation (anammox). It is a promising alternative for the subsequent treatment of biogas digester supernatants in livestock manure processing and nitrogen surplus scenarios. However, as no full-scale experiences in the treatment of manure digestates by ANR have been published to date, future field studies addressing treatment of this kind of effluent would be of great interest. Some topics to be considered in these studies would be coupling anaerobic digestion and ANR, analysis of the factors that affect the process, comparing reactor configurations, microbial ecology, gas emissions, and achieving robust performance. This paper provides an overview of published studies on ANR. Specific issues related to the applicability of the process for treating manure digestates are discussed. The energy requirements of ANR are compared with those of other technological alternatives aimed at recovering nitrogen from digester supernatants. The results of the assessment were shown to depend on the composition of the supernatant. In this regard, the PN-anammox process was shown to be more competitive than other alternatives particularly at concentrations of up to 2kg NH4(+)-Nm(-3). PMID:24161806

  1. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.

    PubMed

    Gerin, Patrick A; Vliegen, François; Jossart, Jean-Marc

    2008-05-01

    Energy crops can be used to feed anaerobic digesters and produce renewable energy. However, sustainability of this option requires that it contributes to a net production of renewable energy and a net reduction of fossil CO2 emission. In this paper, the net balance of CO2 emission and renewable energy production is assessed for maize and grass energy crops produced in several agricultural systems relevant for Southern Belgium and surrounding areas. The calculated net energy yields are 8-25 (maize) and 7.4-15.5 (grass) MWh of renewable CH4 per MWh of fossil energy invested, depending on the agricultural option considered. After conversion to electricity, the specific CO2 emissions range from 31 to 104 kg(CO2)MWhelectricity(-1), depending on the case considered. This corresponds to a significant reduction in CO2 emissions compared to the current reference gas-steam turbine technology which produces 456 kg(CO2)MWhelectricity(-1). PMID:17574409

  2. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry.

    PubMed

    Nartker, Steven; Ammerman, Michelle; Aurandt, Jennifer; Stogsdil, Michael; Hayden, Olivia; Antle, Chad

    2014-12-01

    In an effort to convert waste streams to energy in a green process, glycerol from biodiesel manufacturing has been used to increase the gas production and methane content of biogas within a mesophilic anaerobic co-digestion process using primary sewage sludge. Glycerol was systematically added to the primary digester from 0% to 60% of the organic loading rate (OLR). The optimum glycerol loading range was from 25% to 60% OLR. This resulted in an 82-280% improvement in specific gas production. Following the feeding schedule described, the digesters remained balanced and healthy until inhibition was achieved at 70% glycerol OLR. This suggests that high glycerol loadings are possible if slow additions are upheld in order to allow the bacterial community to adjust properly. Waste water treatment plant operators with anaerobic digesters can use the data to increase loadings and boost biogas production to enhance energy conversion. This process provides a safe, environmentally friendly method to convert a typical waste stream to an energy stream of biogas. PMID:25249492

  3. MICROBIAL DESTRUCTIONS ACHIEVED BY FULL-SCALE ANAEROBIC DIGESTION

    EPA Science Inventory

    As part of studies undertaken to investigate the pathogen reducing capabilities of conventional sludge stabilization procedures, microbial reductions produced by mesophilic and thermophilic digestion at the Los Angeles Hyperion Plant were examined. Samples from the digester feed ...

  4. Extension of the anaerobic digestion model No. 1 (ADM1) to include phenol compounds biodegradation processes for simulating the anaerobic co-digestion of olive mill wastes at mesophilic temperature.

    PubMed

    Fezzani, Boubaker; Ben Cheikh, Ridha

    2009-12-30

    The anaerobic digestion model No. 1 (ADM1) was extended and enhanced to describe the anaerobic degradation processes of phenol compounds and homologues in olive mill wastewater (OMW) and olive mill solid waste (OMSW) at mesophilic temperature (37 degrees C). The original ADM1 basic structure was extended by to the inclusion of phenolic compounds degradation processes into benzoate and then into acetate. The inhibitory effect of phenolic compounds on the fermenting process was accounted for by the use of non-competitive inhibition functions. New sensitive phenolic and benzoate parameters were calibrated and validated using updated experimental data from our previous study dealing with the mesophilic anaerobic co-digestion of OMW with OMSW in semi-continuous tubular digesters. The simulating results revealed that the extended ADM1 could predict with adequate accuracy the steady-state results of gas flow rate, effluent pH and soluble phenol concentrations of various influent concentrations at different hydraulic retention times (HRTs). PMID:19783366

  5. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature.

    PubMed

    Fezzani, Boubaker; Ben Cheikh, Ridha

    2010-03-01

    This study investigates for the first time, on laboratory scale, the possible exploitation of the advantages of two-phase anaerobic digestion for treating a mixture of olive mill wastewater (OMW) and olive mill solid waste (OMSW) using two sequencing semi-continuous digesters operated at mesophilic temperature (37+/-2 degrees C). The experiments were conducted at hydraulic retention times (HRTs) of 14 and 24 days corresponding to organic loading rates (OLRs) ranging from 5.54 to 14 g COD/L/day in the first stage (acidifier) and at HRTs of 18, 24 and 36 days corresponding to OLRs ranging from 2.28 to 9.17 g COD/L/day in the second stage (methanizer). The results indicated that volatile fatty acids (VFA) concentrations increased with the increase of either HRT or feed concentration and their high values were obtained with the most concentrated influent (196+/-5 g COD/L) digested at the longest HRT (24 days) corresponded to an OLR of 8.17 g COD/L/d. Furthermore, two-phase anaerobic digestion system has given the best performances concerning methane productivity, soluble COD (SCOD) and phenol removal efficiencies and effluent quality compared to those given by conventional one-phase anaerobic digestion (AD) reactors. PMID:19896368

  6. Small scale units testing low cost anaerobic digestion (AD) systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  7. Blending anaerobic co-digestates: synergism and economics.

    PubMed

    Navaneethan, N; Topczewski, P; Royer, S; Zitomer, D

    2011-01-01

    Co-digestion is the process in which wastes from various sources are treated together. Therefore, more organic carbon is added to make efficient use of existing digesters. The objectives of this study were to compare potential co-digestates, determine synergistic and antagonistic co-digestion outcomes and estimate economic benefits for preliminary screening. Over 80 wastes were identified from 54 facilities within 160 km of an existing municipal digester. Synergistic, antagonistic and neutral co-digestion outcomes were observed for the various wastes. A simple economic comparison resulted in the greatest potential benefits for four co-digestates: yeast flavorings production waste, meat production dissolved air flotation float, acid whey from cheese production and thin stillage from corn ethanol production. Performance was investigated using bench-scale digesters receiving primary sludge with and without co-digestates. Methane production rates were 105 and 66% higher when co-digestates were present, but were anticipated to increase only 57 and 23% due to the additional chemical oxygen demand. Therefore, significant synergistic outcomes were observed during co-digestion. Co-digestion of the most promising wastes with primary sludge in full scale was estimated to generate enough electricity to power more than 2,500 houses. PMID:22049719

  8. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  9. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs.

    PubMed

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W C; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  10. Long-term anaerobic digestion of food waste stabilized by trace elements

    SciTech Connect

    Zhang Lei; Jahng, Deokjin

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  11. [Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes ].

    PubMed

    Liu, Ji-bao; Ni, Xiao-tang; Wei, Yuan-song; Tong, Juan; Wang, Ya-wei

    2014-09-01

    To improve anaerobic digestion and dewatering of sludge, impacts of sludge pretreated by microwave (MW) and its combined processes on sludge anaerobic digestion and dewatering were investigated. The results showed that microwave and its combined processes could effectively enhance anaerobic sludge digestion. Not only the cumulative methane production in the test of the MW-H2O2-alkaline (0. 2) was increased by 13. 34% compared with the control, but also its methane production rate was much higher than that of the control. Compared with the single MW process, the addition of both H2O2 and alkaline enhanced the solubilization of particle COD( >0. 45 micron) , indicating that synergistically generated soluble organics were faster to biodegrade which resulted in the enhancement of anaerobic digestion. The MW-acid process was effective in improving sludge dewaterability, e. g. , Capillary Suction Time (CST) at only 9. 85 s. The improvement of sludge dewatering was significantly correlated with sludge physical properties such as zeta potential, surface charge density and particle size. Under different sludge pretreatment conditions, the sludge dewatering after anaerobic digestion was similar, though the difference of sludge dewatering to some degrees was observed for pretreated sludge. PMID:25518665

  12. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    SciTech Connect

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping Liao, Li

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  13. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    PubMed

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. PMID:26946439

  14. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge.

    PubMed

    Devlin, D C; Esteves, S R R; Dinsdale, R M; Guwy, A J

    2011-03-01

    Waste activated sludge (WAS) is difficult to degrade in anaerobic digestion systems and pretreatments have been shown to speed up the hydrolysis stage. Here the effects of acid pretreatment (pH 6-1) using HCl on subsequent digestion and dewatering of WAS have been investigated. Optimisation of acid dosing was performed considering digestibility benefits and level of acid required. Pretreatment to pH 2 was concluded to be the most effective. In batch digestion this yielded the same biogas after 13 days as compared to untreated WAS at 21 days digestion. In semi-continuous digestion experiments (12 day hydraulic retention time at 35C) it resulted in a 14.3% increase in methane yield compared to untreated WAS, also Salmonella was eradicated in the digestate. Dewatering investigations suggested that the acid pretreated WAS required 40% less cationic polymer addition to achieve the same cake solid content. A cost analysis was also carried out. PMID:21236662

  15. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  16. Should we build "obese" or "lean" anaerobic digesters?

    PubMed

    Briones, Aurelio; Coats, Erik; Brinkman, Cynthia

    2014-01-01

    Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a 'diet' that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in lean mice. PMID:24831948

  17. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.

    PubMed

    Franchetti, Matthew

    2013-07-15

    The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided. PMID:23583791

  18. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity. PMID:26942526

  19. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    PubMed

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes. PMID:24811447

  20. Rate determination of supercritical water gasification of primary sewage sludge as a replacement for anaerobic digestion.

    PubMed

    Wilkinson, Nikolas; Wickramathilaka, Malithi; Hendry, Doug; Miller, Andrew; Espanani, Reza; Jacoby, William

    2012-11-01

    Supercritical water gasification of primary sewage sludge sampled from a local facility was undertaken at different solids content. The performance of the process was compared with the anaerobic digestion system in use at the facility where the samples were taken. The mass and composition of the vapor products documented showed that the process generates more energy per gram of feed while rapidly destroying more volatile solids relative to the anaerobic digestion process. However, the energy input requirements are greater for supercritical water gasification. This study defines parameters for a model of the gasification reaction using the power law and Arrhenius equation. The activation energy was estimated to be 15 kJ/mol, and the reaction order was estimated to be 0.586. This model allows estimation of the size of a supercritical water reactor needed to replace the anaerobic digesters that are currently used at the wastewater treatment plant. PMID:22989654

  1. High-solids anaerobic digestion of mixed municipal and industrial waste

    SciTech Connect

    Oleszkiewicz, J.A.; Poggi-Varaldo, H.M.

    1997-11-01

    Laboratory studies on dry anaerobic digestion of mixture of paper, kitchen food waste, and sewage sludge have demonstrated the optimum performance at total solids (TS) at the range of 30--35% TS. The thermophilic process (at 55 C) was found to be superior to a mesophilic (35 C) one, both in terms of volatile solid (VS) reduction and specific gas production, but was somewhat less stable at short mass retention times (MRT). The efficiency of total volatile solids destruction and the decrease in the oxygen demand were found to be proportional to the product of the mass retention time and temperature (d {center_dot} C). Pilot studies, conducted on a mixture of sewage sludge, mixed paper, food waste, and solids from a potato processing conducted on site in Portage la Prairie, Manitoba, Canada, have demonstrated the feasibility of running the process at loads exceeding 9 kg TS/m{sup 3} {center_dot} d and producing biogas at 140 m{sup 3} of wet solids fed to the composter. The residual oxygen demand per unit mass of the dry compost was 20 mg O{sub 2}/g {center_dot} h, which indicated a need for aerobic postcuring of the anaerobically produced compost.

  2. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology.

    PubMed

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-09-17

    Syngas is produced by thermal gasification of both nonrenewable and renewable sources including biomass and coal, and it consists mainly of CO, CO2, and H2. In this paper we aim to bioconvert CO in the syngas to CH4. A novel technology for simultaneous sewage sludge treatment and CO biomethanation in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high-throughput sequencing analysis showed clear differences of the microbial community structures between the samples from liquid and biofilm on the HFM in the reactor with CO addition. Species close to Methanosarcina barkeri and Methanothermobacter thermautotrophicus were the two main archaeal species involved in CO biomethanation. However, the two species were distributed differently in the liquid phase and in the biofilm. Although the carboxidotrophic activities test showed that CO was converted by both archaea and bacteria, the bacterial species responsible for CO conversion are unknown. PMID:23952148

  3. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35C) and thermophilic (55C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65% resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80%, and pH7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p?digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions. PMID:26300352

  4. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Bjrnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. PMID:21975301

  5. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    PubMed

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively. PMID:19555991

  6. Modeling and Application of a Rapid Fluorescence-Based Assay for Biotoxicity in Anaerobic Digestion.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2015-11-17

    The sensitivity of anaerobic digestion metabolism to a wide range of solutes makes it important to be able to monitor toxicants in the feed to anaerobic digesters to optimize their operation. In this study, a rapid fluorescence measurement technique based on resazurin reduction using a microplate reader was developed and applied for the detection of toxicants and/or inhibitors to digesters. A kinetic model was developed to describe the process of resazurin reduced to resorufin, and eventually to dihydroresorufin under anaerobic conditions. By modeling the assay results of resazurin (0.05, 0.1, 0.2, and 0.4 mM) reduction by a pure facultative anaerobic strain, Enterococcus faecalis, and fresh mixed anaerobic sludge, with or without 10 mg L(-1) spiked pentachlorophenol (PCP), we found it was clear that the pseudo-first-order rate constant for the reduction of resazurin to resorufin, k1, was a good measure of "toxicity". With lower biomass density and the optimal resazurin addition (0.1 mM), the toxicity of 10 mg L(-1) PCP for E. faecalis and fresh anaerobic sludge was detected in 10 min. By using this model, the toxicity differences among seven chlorophenols to E. faecalis and fresh mixed anaerobic sludge were elucidated within 30 min. The toxicity differences determined by this assay were comparable to toxicity sequences of various chlorophenols reported in the literature. These results suggest that the assay developed in this study not only can quickly detect toxicants for anaerobic digestion but also can efficiently detect the toxicity differences among a variety of similar toxicants. PMID:26457928

  7. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  8. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  9. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure.

    PubMed

    Wang, Ming; Sun, Xianli; Li, Pengfei; Yin, Lili; Liu, Dan; Zhang, Yingwei; Li, Wenzhe; Zheng, Guoxiang

    2014-07-01

    A novel alternate feeding mode was introduced to study the possibilities of improving methane yield from anaerobic co-digestion of food waste (FW) with chicken manure (CM). Two kinds of feeding sequence (a day FW and next day CM (FM/CM), two days FM and the third day CM (FW/FM/CM)) were investigated in semi-continuous anaerobic digestion and lasted 225 days, and the mono-digestions of FW and CM were used as control group, respectively. The feeding sequence of FW/CM and mono-digestion of CM were observed to fail to produce gas at hydraulic retention time (HRT) of 70 days due to the ammonia inhibition, however, the mode of FW/FM/CM was proved to successfully run at HRT of 35 days with a higher OLR of 2.50 kg L(-1)d(-1) and obtain a higher methane production rate of 507.58 ml g(-1) VS and volumetric biogas production rate of 2.1 L L(-1)d(-1). PMID:24865323

  10. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    PubMed

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  11. Gas in the Digestive Tract

    MedlinePLUS

    ... and small intestine do not fully digest some carbohydrates—sugars, starches, and fiber found in many foods. ... intestine to the large intestine. Once there, undigested carbohydrates are broken down by bacteria in the large ...

  12. Anaerobic Biodegradation of Raw and Pre-treated Brewery Spent Grain Utilizing Solid State Anaerobic Digestion.

    PubMed

    Panji?ko, Mario; Zupan?i?, Gregor Drago; Zeli?, Bruno

    2015-01-01

    The brewery spent grain (BSG) represents approximately 85% of the total quantity of by-products from the brewing industry. The biogas production from the BSG has been the subject of several studies in recent years, due to relatively high energy consumption in the brewing process and due to the increasing energy costs. The biodegradability of raw and pre-treated BSG in a single-stage and two-stage solid-state anaerobic digestion (SS-AD) system was determined in this study. The results show that the BSG have a biogas potential of 120 L/kg(-1). In the single-stage system, the biogas yield obtained from raw BSG (87.4 L/kg(-1)) was almost equal to the yield obtained from the pre-treated BSG (89.1 L/kg(-1)), while the methane yield was 51.9 and 55.3 L/kg(-1) and the biodegradation was 62.0% and 62.2% for raw and pre-treated BSG, respectively. In two-stage SS-AD the pre-treated BSG showed better results, with the biogas yield of 103.2 L/kg(-1) and the biodegradation of 73.6%, while the biogas yield obtained from raw BSG was 89.1 L/kg(-1), with the biodegradation of 63.5%. In two-stage process the obtained methane yields from raw and pre-treated BSG were identical (58.7 L/kg(-1)). PMID:26680709

  13. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.

    PubMed

    Tansel, Berrin; Surita, Sharon C

    2014-11-01

    The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si-O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si-O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups. PMID:25160660

  14. Inoculum selection is crucial to ensure operational stability in anaerobic digestion.

    PubMed

    De Vrieze, Jo; Gildemyn, Sylvia; Vilchez-Vargas, Ramiro; Juregui, Ruy; Pieper, Dietmar H; Verstraete, Willy; Boon, Nico

    2015-01-01

    Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion. PMID:25261127

  15. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country. PMID:23381970

  16. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

    PubMed

    Zhao, Zisheng; Zhang, Yaobin; Quan, Xie; Zhao, Huimin

    2016-01-01

    Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. PMID:26492177

  17. Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model

    SciTech Connect

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-05-01

    The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.

  18. AN INNOVATIVE DESIGN FOR ANAEROBIC CO-DIGESTION OF ANIMAL WASTES FOR SUSTAINABLE DEVELOPMENT IN RURAL COMMUNITIES

    EPA Science Inventory

    With the aim of the Phase I project to develop an innovative anaerobic co-digestion design for the treatment of dairy manure and poultry waste, our Phase I team has evaluated the technical and economic feasibility of the anaerobic co-digestion design concept with a thorough in...

  19. Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain.

    PubMed

    Blanco, David; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Anaerobic digestion (AD) is being established as a standard technology to recover some of the energy contained in the sludge in wastewater treatment plants (WWTPs) as biogas, allowing an economy in electricity and heating and a decrease in climate gas emission. The purpose of this study was to quantify the contributions to the total environmental impact of the plant using life cycle assessment methodology. In this work, data from real operation during 2012 of a municipal WWTP were utilized as the basis to determine the impact of including AD in the process. The climate change human health was the most important impact category when AD was included in the treatment (Scenario 1), especially due to fossil carbon dioxide emissions. Without AD (Scenario 2), increased emissions of greenhouse gases, mostly derived from the use of electricity, provoked a rise in the climate change categories. Biogas utilization was able to provide 47% of the energy required in the WWTP in Scenario 1. Results obtained make Scenario 1 the better environmental choice by far, mainly due to the use of the digested sludge as fertilizer. PMID:26901726

  20. Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy

    PubMed Central

    2011-01-01

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880

  1. Contribution of anaerobic digesters to emissions mitigation and electricity generation under U.S. climate policy.

    PubMed

    Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M

    2011-08-15

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880

  2. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded. PMID:26393620

  3. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  4. Is the continuous two-stage anaerobic digestion process well suited for all substrates?

    PubMed

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2016-01-01

    Two-stage anaerobic digestion systems are often considered to be advantageous compared to one-stage processes. Although process conditions and fermenter setups are well examined, overall substrate degradation in these systems is controversially discussed. Therefore, the aim of this study was to investigate how substrates with different fibre and sugar contents (hay/straw, maize silage, sugar beet) influence the degradation rate and methane production. Intermediates and gas compositions, as well as methane yields and VS-degradation degrees were recorded. The sugar beet substrate lead to a higher pH-value drop 5.67 in the acidification reactor, which resulted in a six time higher hydrogen production in comparison to the hay/straw substrate (pH-value drop 5.34). As the achieved yields in the two-stage system showed a difference of 70.6% for the hay/straw substrate, and only 7.8% for the sugar beet substrate. Therefore two-stage systems seem to be only recommendable for digesting sugar rich substrates. PMID:26519699

  5. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    PubMed

    Prez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 /yr for scenario A and 132,373 /yr for B. This value can be increased to 223,867 /yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant. PMID:22546800

  6. Impact of alkaline-hydrolyzed biosolids (Lystek) addition on the anaerobic digestibility of TWAS in lab--and full-scale anaerobic digesters.

    PubMed

    Elbeshbishy, Elsayed; Aldin, Saad; Nakhla, George; Singh, Ajay; Mullin, Bill

    2014-11-01

    The effect of different Lystek biosolids doses on the anaerobic digestability of thickened waste activated sludge (TWAS) was evaluated in a lab- and full-scale anaerobic digester. The overall findings of this study emphasize the beneficial impact of Lystek addition to the lab- and full-scale anaerobic digesters in terms of enhanced biogas production and increased volatile suspended solids reduction (VSSR) efficiency. Lystek added at 4% by volume to TWAS increased the methane yield from 0.22 to 0.26 L CH4/g VSSadded at an solids retention time (SRT) of 10 days, and from 0.27 to 0.29 L CH4/g VSS(added) at an SRT of 15 days. Furthermore, the VSSRs of 37% and 47% were observed for the TWAS, and the TWAS with 4% Lystek, while at an SRT of 15 days, the observed VSSR were 49% and 58%, respectively. The lab-scale study showed that the influence of Lystek addition on methane yield and solids destruction efficiencies was more pronounced at the shorter SRT, 20% enhancement (SRT of 10d) vs. 9% enhancement (SRT of 15 d) for methane yield, and 27% (SRT of 10d) vs. 22% (SRT of 15 d) for VSS destruction efficiency improvement. Furthermore, addition of 4% of Lystek to the feed of the full-scale anaerobic digester at St. Marys wastewater treatment plant (WWTP) resulted in a 50% increase in the average specific methanogenic activity and 23% increase in methane yield of the biochemical methane potential tests after eight months. The results showed that Lystek degradation kinetics were 40% faster than the TWAS, as reflected by first order kinetic coefficients of 0.053 d(-1) and 0.073 d(-1) for TWAS and Lystek at an SRT of 10 days. PMID:25154917

  7. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    SciTech Connect

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  8. Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus.

    PubMed

    Carballa, Marta; Regueiro, Leticia; Lema, Juan M

    2015-06-01

    Anaerobic reactors are mostly operated based on the monitoring of process parameters and empirical expert knowledge due to the limitations of microbial-based management. This review analyzes the requirements to conduct microbial management in anaerobic digestion, emphasizing the importance of understanding the anaerobic microbiome and the need of establishing microbial indicators of optimal performance. The strategies currently applied to shape the reactor microbiome are explored and we assess critically the different types of management (retrospective, prospective and proactive). We conclude that future research should lead to more useful data or insights to accomplish proactive management, seen as stimulation and anticipation rather than remediation. PMID:25682574

  9. DEMONSTRATION OF THERMOPHILIC AEROBIC-ANAEROBIC DIGESTION AT HAGERSTOWN, MARYLAND

    EPA Science Inventory

    This report describes the successful operation of a new and novel approach to digestion of sludge at the Hagerstown wastewater treatment plant. The process, known as dual digestion, involved the coupling of a full-scale experimental aerobic reactor to an existing full-scale anaer...

  10. Effect of inoculum sources on the anaerobic digestion of rice straw.

    PubMed

    Gu, Yu; Chen, Xiaohua; Liu, Zhanguang; Zhou, Xuefei; Zhang, Yalei

    2014-04-01

    The aim of this study was to evaluate the effect of different inoculum sources on the rice straw anaerobic digestion. Six different digestates (DM, SM, CM, MS, AGS and PS) were applied as inoculums and their effects were evaluated in batch reactors. The results indicated that digested manures were more suitable than sludge. Reactors inoculated with digested manures achieved higher, biogas production and lignocellulose degradation. The better adaptability of digested manures had relationship with its higher cellulase and xylanase activities and sufficient nutrients content. DM had the best effect among all three digested manures. Reactors inoculated with DM achieved the highest biogas production (325.3 mL/g VS) and enzymes activities. The synergism between cellulase and xylanase activities played an important role in lignocellulose degradation. PMID:24589383

  11. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    SciTech Connect

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  12. Effective reduction of enteric bacteria and viruses during the anaerobic digestion of biomass and wastes

    SciTech Connect

    Fannin, K.F.; Hsu, P.H.; Mensinger, J.; Cahill, C.

    1984-01-01

    Natural resource depletion increases the amount of waste requiring efficient and affordable disposal alternatives. Through effective management, many of these so-called wastes can be utilized as important energy and agricultural resources. One such management approach involves the utilization of emergent aquatic plant species, such as water hyacinth, to remove nutrients from the wastewater during growth. This process produces an energy-containing biomass that can then be anaerobically digested either separately or with other waste components to produce energy-containing methane and an effluent residue containing significant quantities of protein and nutrients. This residue can be utilized as an effective fertilizer, soil conditioner, or animal feed supplement provided it is rendered reasonably safe from such contaminants as enteric microorganisms. This study was conducted to identify the digester operating parameters that affect the survival of enteric bacteria and viruses during the anaerobic digestion of blends of water hyacinth and primary sewage sludge. Solids retetion time and temperature were demonstrated to be important parameters affecting the survival of poliovirus, f-2 coliphage, Streptoccus fecalis, and Escherichia coli during anaerobic digestion. The die-off rates of the coliphages were similar to those of the poliovirus at 35/sup 0/C. S. fecalis appeared to be the most stable of any of the bacteria and viruses studied. All organisms were more stable at 25 than at 35/sup 0/C. The data demonstrate that the concentration of enteric bacteria and viruses can be effectively reduced during anaerobic digestion using techniques, such as increased solids retention times and mesophilic temperatures, that are consistent with achieving high methane yields. The survival of enteric viruses during anaerobic digestion may be affected by the characteristics of the feedstock as well as by the process operating conditions.

  13. Improvement of anaerobic digester performance by wastewater recirculation through an aerated membrane.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine wastewater from an anaerobic digester was recirculated through a silicone hose located in an external aeration chamber to determine its effect on wastewater malodorants and biogas composition. The silicone hose acted as a semipermeable membrane for the passage of small molecules. In the first...

  14. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Constructed wetlands (CW) offer a mechanism to meet regulatory standards for wastewater treatment while minimizing energy inputs. To optimize CW wastewater polishing activities and investigate integration of CW with energy production from anaerobic digestion we constructed a pair of three-tier ch...

  15. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various formulations are used in horticultural potting media, with sphagnum peat moss, vermiculite and perlite currently among the most common components. We are examining a dried anaerobic digestate remaining after the fermentation of potato processing wastes to replace organic components such as p...

  16. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    PubMed

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (352C) reactor as a control, thermophilic anaerobic digestion (552C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  17. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  18. ENZYME ADDITION TO THE ANAEROBIC DIGESTION OF MUNICIPAL WASTEWATER PRIMARY SLUDGE

    EPA Science Inventory

    The study evaluates the effects of enzyme augmentation on municipal wastewater (MWW) sludge anaerobic digestion. The primary objective was to examine the impact of using enzymes to enhance the degradation of the cellulosic and the oil- and grease-rich sludge fractions. The additi...

  19. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  20. Anaerobic Digestion. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Townsend, Robert D., Comp.

    Focusing specifically on the wastewater treatment process of anaerobic digestion, this document identifies instructional and reference materials for use by professionals in the field in the development and implementation of new programs or in the updating of existing programs. It is designed to help trainers, plant operators, educators, engineers,…

  1. Utilization of Re-processed Anaerobically Digested Fiber from Dairy Manure as a Container Media Substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solid fraction (fiber) from the effluent of the anaerobic digestion of dairy manure by plug flow technology yields material that has consistent physical properties (total porosity, air filled porosity at saturation, and water holding capacity) to perform satisfactorily as a plant growth media su...

  2. ANAEROBIC DIGESTION OF FOOD WASTE AND DAIRY MANURE FOR BIOENERGY PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of continuously mixed anaerobic digesters was evaluated in the laboratory for treating manure, food waste and their mixtures at 35 ± 2oC and a hydraulic retention time of 20 days. The first mixture was composed of 32% and 68%, and the second was composed of 48% and 52% food waste and...

  3. Test/QA Plan For Verification Of Anaerobic Digester For Energy Production And Pollution Prevention

    EPA Science Inventory

    The ETV-ESTE Program conducts third-party verification testing of commercially available technologies that improve the environmental conditions in the U.S. A stakeholder committee of buyers and users of such technologies guided the development of this test on anaerobic digesters...

  4. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the existing animal waste management processes to control manure-borne pathogens.

  5. Effects of aerobic and anaerobic digestion systems on pathogen and pathogen indicator reduction in municipal sludge.

    PubMed

    Dahab, M F; Surampalli, R Y

    2002-01-01

    In this study, the effectiveness of anaerobic treatment systems in reducing pathogenic density levels was evaluated under the US EPA municipal sludge rule (40 CFR Part 503 Rule). Wastewater and sludge samples were analyzed for both pathogens and pathogenic indicator organisms from six different existing wastewater treatment systems. The results indicate that Class B sludge requirements under the US 503 Rule are reasonable and can be achievable by the existing treatment systems while Class A sludge requirements under the same rule may not be easily achieved by the existing treatment systems. The effects of volatile solids loading rates on anaerobic digester performance were investigated. Under anaerobic digestion conditions, it appears that the log reductions in fecal coliform and fecal streptococcus appeared to be dependent on VSS loading rates. On the other hand, Salmonella sp. density reductions did not appear to be dependent on VSS loading rates. PMID:12479469

  6. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    SciTech Connect

    Hamdi, M. Universite de Provence, Marseille )

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA), tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.

  7. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    SciTech Connect

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residues increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.

  8. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.

    PubMed

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H; Hao, Xiying

    2015-09-01

    A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8gVSL(-1)day(-1) with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213Lg(-1)VS and CH4 production rate of 0.600LL(-1)day(-1) were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30days at 40°C recovered 0.067Lg(-1)VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K(+), Ca(2+) and Mg(2+) were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system. PMID:26037058

  9. Biogas production from different substrates in an experimental Continuously Stirred Tank Reactor anaerobic digester.

    PubMed

    Fantozzi, Francesco; Buratti, Cinzia

    2009-12-01

    Different mixtures were digested in a single-stage, batch, mixed, laboratory scale mesophilic anaerobic digester at the Biomass Research Centre Laboratory (University of Perugia). The yield and the composition of biogas from the different substrates were evaluated and the cumulative curves were estimated. Two experimental campaigns were carried out, the first on three mixtures (chicken, pig and bovine manures), the second on animal and vegetal biomasses (chicken and cow manure, olive husk) with different inocula (rumen fluid and digested sludge). In the first campaign pig manure mixture showed the maximum biogas production (0.35 N m(3)/kg) and energy content (1.35 kWh/kg VS); in the second one the differences in produced biogas from the different inocula were analyzed: olive husk with piggery manure anaerobically digested as inoculum showed the higher biogas (0.28 N m(3)/kg VS) and methane yield (0.11 N m(3)/kg VS), corresponding to an energetic content of 1.07 kWh/kg VS. All data obtained from the laboratory scale anaerobic digester are comparable to the values in literature for several biomass and in particular for olive husk, dairy manure and chicken manure. PMID:19595588

  10. Application of protein misfolding cyclic amplification to detection of prions in anaerobic digestate.

    PubMed

    Gilroyed, Brandon H; Braithwaite, Shannon L; Price, Luke M; Reuter, Tim; Czub, Stefanie; Graham, Catherine; Balachandran, Arumuga; McAllister, Tim A; Belosevic, Miodrag; Neumann, Norman F

    2015-11-01

    The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ≤1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays. PMID:26272376

  11. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment.

    PubMed

    Wei, Yufang; Li, Xiujin; Yu, Liang; Zou, Dexun; Yuan, Hairong

    2015-12-01

    Biological and chemical pretreatment methods using liquid fraction of digestate (LFD), ammonia solution (AS), and NaOH were compared in the process of mesophilic anaerobic co-digestion of cattle manure and corn stover. The results showed that LFD pretreatment could achieve the same effect as the chemical pretreatment (AS, NaOH) at the performance of anaerobic digestion (AD). Compared with the untreated corn stover, the cumulative biomethane production (CBP) and the volatile solid (VS) removal rate of three pretreatment methods were increased by 25.40-30.12% and 14.48-16.84%, respectively, in the co-digestion of cattle manure and corn stover. T80 was 20-37.14% shorter than that of the control test (351days). LFD pretreatment not only achieved the same effect as chemical pretreatment, but also reduced T80 and improved buffer capacity of anaerobic digestion system. Therefore, this study provides meaningful insight for exploring efficient pretreatment strategy to stabilize and enhance AD performance for practical application. PMID:26409855

  12. A full-scale study of mixing and foaming in egg-shaped anaerobic digesters.

    PubMed

    Subramanian, Bhargavi; Miot, Alexandre; Jones, Bonnie; Klibert, Corey; Pagilla, Krishna R

    2015-09-01

    Seasonal foaming in full-scale egg-shaped digesters (ESD) at the Oceanside Water Pollution Control Plant was investigated over a two-year period. The causes and contributors of anaerobic digestion (AD) foaming, namely, Gordonia amarae filaments and mixing effects were evaluated in these ESDs. The seasonal presence of high levels of G. amarae as a primary cause and excessive induced mixing as an important contributor of AD foaming has been established. The induced mixing frequency in the ESDs was gradually reduced and eventually shut off in a series of controlled experimental phases. Total solids and temperature profiles indicated that reducing mixing frequency did not significantly impact digester performance or disrupt the homogeneity of digester contents, although it did reduce the occurrence of foam in the digesters. Excessive induced mixing, a contributor to foaming, increased foam events at G. amarae thresholds above 10(6)intersections/mg VSS in the mixed liquor. PMID:26080103

  13. Microbial Ecology in Anaerobic Digestion at Agitated and Non-Agitated Conditions

    PubMed Central

    Tian, Zhuoli; Cabrol, Léa; Ruiz-Filippi, Gonzalo; Pullammanappallil, Pratap

    2014-01-01

    To investigate the distribution and dynamics of microbial community in anaerobic digestion at agitated and non-agitated condition, 454 pyrosequencing of 16s rRNA was conducted. It revealed the distinct community compositions between the two digesters and their progressive shifting over time. Methanogens and syntrophic bacteria were found much less abundant in the agitated digester, which was mainly attributed to the presence of bacterial genera Acetanaerobacterium and Ruminococcus with relatively high abundance. The characterization of the microbial community corroborated the digestion performance affected at the agitated condition, where lower methane yield and delayed methane production rate were observed. This was further verified by the accumulation of propionic acid in the agitated digester. PMID:25313520

  14. Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature.

    PubMed

    Boubaker, Fezzani; Cheikh Ridha, Ben

    2007-03-01

    Anaerobic co-digestion is a well established process for treating many types of organic wastes, both solid and liquid. In this study we have investigated, on a laboratory scale, the anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW) using semi-continuous, feeding, tubular digesters operated at mesophilic temperatures. Each digester was fed with an influent, composed of OMW and OMSW, at an organic loading rate (OLR) varying between 0.67 and 6.67 g COD/l/d. The hydraulic retention times (HRT) were 12, 24 and 36 days. The TCOD concentrations of OMW used as the main substrate were 24, 56 and 80 g COD/l; the amount of the dry OMSW used as a co-substrate was fixed to approximately 56 g/l of OMW. The results indicated that the best methane production was about 0.95 l/l/day obtained at an OLR = 4.67 g COD/l/d, corresponding to influent TCOD = 56 g COD/l at an HRT = 12d. In contrast, the maximum TCOD removal efficiency (89%) was achieved at an OLR = 0.67 g COD/l/d, corresponding to influent TCOD = 24 g COD/l at an HRT = 36 d. Moreover, the inhibition of biogas production was observed at the highest OLR studied. PMID:16806910

  15. Influence of phenylacetic acid pulses on anaerobic digestion performance and archaeal community structure in WWTP sewage sludge digesters.

    PubMed

    Cabrol, La; Urra, Johana; Rosenkranz, Francisca; Kroff, Pablo Araya; Plugge, Caroline M; Lesty, Yves; Chamy, Rolando

    2015-01-01

    The effect of phenylacetic acid (PAA) pulses on anaerobic digestion (AD) performance and archaeal community structure was evaluated in anaerobic digesters treating sewage sludge from a wastewater treatment plant (WWTP). Four pilot-scale continuous stirred tank reactors were set up at a full-scale municipal WWTP in Santiago de Chile, and fed with either primary or mixed sewage sludge. AD performance was evaluated by volatile fatty acid (VFA) and biogas production monitoring. Archaeal community structure was characterized by 16S rRNA denaturing gradient gel electrophoresis and band sequencing. In the primary sludge digester, a single PAA pulse at 200 mg L(-1) was sufficient to affect AD performance and archaeal community structure, resulting in long-term VFA accumulation, reduced biogas production and community shift from dominant acetoclastic (Methanosaeta concilii) to hydrogenotrophic (Methanospirillum hungatei) methanogens. By contrast, AD performance and archaeal community structure in the mixed sludge digester were stable and resistant to repeated PAA pulses at 200 and 600 mg L(-1). This work demonstrated that the effect of PAA pulses on methanogenic activity and archaeal community structure differed according to AD substrate, and suggests that better insights of the correlations between archaeal population dynamics and functional performance could help to better face toxic shocks in AD. PMID:26067498

  16. Integration of pyrolysis and anaerobic digestion--use of aqueous liquor from digestate pyrolysis for biogas production.

    PubMed

    Hbner, Tobias; Mumme, Jan

    2015-05-01

    Anaerobic digestion of aqueous pyrolysis liquor derived from pyrolysis of solid digestate was tested in batch mode using an un-adapted inoculum. Three pyrolysis liquors produced at 330C, 430C and 530C in four COD-based concentrations of 3, 6, 12 and 30 g L(-1) were investigated. The three lower concentrations showed considerable biogas production, whereas the 30 g L(-1) dosage caused process inhibition. The highest methane yield of 199.118.5 mL g(COD)(-1) (COD removal: 56.95.3%) was observed for the 330C pyrolysis liquor, followed by the 430C sample with only slightly lower values. The 530C sample dropped to a yield of 129.319.7 mL g(COD)(-1) (COD removal: 36.95.6%). Most VOCs contained in the pyrolysis liquor (i.e. furfural, phenol, catechol, guaiacol, and levoglucosan) were reduced below detection limit (cresol by 10-60%). Consequently, integrated pyrolysis and anaerobic digestion in addition to thermochemical conversion of digestate also promises bioconversion of pyrolysis liquors. PMID:25725406

  17. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  18. CO{sub 2} level control by anthropogenic peat: The anaerobic digestion of biomass

    SciTech Connect

    Hartung, H.A.

    1995-12-31

    Anthropogenic Peat (AP) has been described as an effective and economical way to control the level of CO{sub 2} in the atmosphere without adverse effect on economic activity and development. All elements of the proposal are separately at work, but one, anaerobic digestion, is not widely known nor has it been applied to biomass as AP requires. Anaerobic digestion is described here, with some of its current large-scale applications. Results of lab studies of the digestion of other materials, including biomass especially grown for this purpose are presented, and the methods used to find them are explained. The preferred biomass source for AP is sugar cane, and extended studies have been run on a close relative, sorghum; preliminary work on cane itself and on various sugar sources is also reported.

  19. Nonlinear Autoregressive Exogenous modeling of a large anaerobic digester producing biogas from cattle waste.

    PubMed

    Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra

    2014-10-01

    In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within 8% deviation. PMID:25151079

  20. Citrus essential oils and their influence on the anaerobic digestion process: an overview.

    PubMed

    Ruiz, B; Flotats, X

    2014-11-01

    Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24-192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively. PMID:25081855

  1. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids

    SciTech Connect

    Griffin, M.E.; McMahon, K.D.; Mackie, R.I.; Raskin, L.

    1998-02-05

    An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 C) and thermophilic (55 C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect US production rates. The design organic loading rate was 3.1 kg volatile solids/m{sup 3}/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum.

  2. Characterization and single-stage denitrification anaerobic digestion of spent stream from the hydrolysis-fermentation-combustion process

    NASA Astrophysics Data System (ADS)

    Singh, Ramnik

    The demand for ethanol as an oxygenate and octane booster in automobile fuel is growing. A number of processes are being investigated for conversion of biomass to ethanol. The Hydrolysis-Fermentation-Combustion (HFC) process for fuel ethanol production developed at the University of California Forest Products Laboratory, Richmond, California is at the stage of technology transfer following over two decades of research and development. This study addresses the technology to be used in treatment of spent streams to be discharged from this process. The treatment design combines a single stage denitrification and anaerobic digestion (SSDAD) for the biological treatment of a representative stream from this process. A typical spent stream contained a wide range of soluble organic materials including: unfermented sugars, components of the feedstocks solubilized in the hydrolysis, acid degradation products of carbohydrates, cleavage products of lignin, water-soluble extractives and phenolics, terpenes and other unfermented organic material, and nitrate ion from the nitric acid used as a catalyst in the hydrolysis reaction. Three sets of experiments were conducted in laboratory scale anaerobic digesters. Commonly available anaerobic sludge from local sewage treatment plants was used as a starter seed and was successfully acclimated to the high nitrate substrate leading to enrichment of denitrifiers. Necessary nutrients and trace elements were identified and supplied to satisfy the obligatory requirements of different groups of bacterial groups present. A major finding was the unique role of ammonium hydroxide in controlling pH leading to steady-state operation of the digester. At steady state operation the reduction in COD was 65%, the nitrate reduction was 88% and the nitrite reduction was 100%. Nitrate was reduced to safe nitrogen gas without buildup of any intermediate products. Organic material was converted to useful methane gas and carbon dioxide. The SSDAD system was shown to be effective in treating spent streams having high COD and nitrate concentrations.

  3. Anaerobic digestion of ice-cream wastewater: A comparison of single and two-phase reactor systems

    SciTech Connect

    Borja, R.; Banks, C.J.

    1995-03-01

    The anaerobic digestion of ice-cream wastewater, a complex substrate which includes milk proteins, carbohydrates, and lipids, has received little attention. Work using an aerobic contact system showed that at a 7.5-d hydraulic retention time (HRT), with an organic loading rate of 1.7 g COD/Ld and influent TSS (total suspended solids) of 5870 mg/L, the effluent COD was 628 mg/L, BOD was 91 mg/L and TSS was 674. Anaerobic filters have also been used at organic loadings of 6 kg COD/m{sup 3}d applied at a HRT of 0.42 day, with COD removals of 80%. Goodwing showed that this waste was capable of being treated by the UASB process with granulation commencing after 60-70 days, and gas production ranging between 0.73 and 0.93 L CH{sub 4}/g COD removed with loading rates between 0.7 and 3.0 g TOC/Ld. Two-phase anaerobic digestion is an innovative fermentation mode that has recently received increased attention. The kinetically dissimilar fermentation phases, hydrolysis-acidification and acetogenesis-methanation are operated in two separate reactors; the first of which is maintained at a very short HRT. The effluent from the first, acid-forming, phase is used as the substrate for the methane-phase reactor which has a longer HRT or cell immobilization. The aim of this work was to compare the methane production capability and performance of a single-phase upflow fixed bed reactor with a two-phase digestion system. The two-phase digestion system consists of a completely mixed reactor for the acidogenic reaction and an upflow fixed bed reactor for the methanogenic reaction. Because of the high lipid content and COD of ice cream wastewater off site disposal has proved to be both expensive and poses problems to the receiving effluent treatment plant. For this reason the potential for a rapid anaerobic stabilization of the waste, with energy recovery in the form of methane gas, has been investigated in an attempt to minimize plant size and maximize gas production. 9 refs., 2 tabs.

  4. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  5. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters.

    PubMed

    Belle, Ashley J; Lansing, Stephanie; Mulbry, Walter; Weil, Ray R

    2015-02-01

    Pilot-scale digesters (850 L) were used to quantify CH4 and H2S production when using forage radish cover crops as a co-digestion feedstock in dairy manure-based digesters. During two trials, triplicate mixed digesters were operated in batch mode with manure-only or radish+manure (27% and 13% radish by wet weight in Trial 1 and 2, respectively). Co-digestion increased CH4 production by 11% and 39% in Trial 1 and 2, respectively. As H2S production rapidly declined in the radish+manure digesters, CH4 production increased reaching high levels of CH4 (?67%) in the biogas. Over time, radish co-digestion lowered the H2S concentration in the biogas (0.20%) beyond that of manure-only digestion (0.34-0.40%), although cumulative H2S production in the radish+manure digesters was higher than manure-only. Extrapolated to a farm-scale (200 cows) continuous mixed digester, co-digesting with radish could generate 3150 m(3) CH4/month, providing a farmer additional revenue up to $3125/month in electricity sales. PMID:25278111

  6. ANAEROBIC DIGESTION OF ANIMAL WASTE: EFFECT OF MODE OF MIXING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory-scale digesters were operated to study the effect of mixing (via biogas recirculation, impeller mixing, and slurry recirculation) on biogas production. Three sets of experiments were performed using cow manure slurry feed with either 50, 100, or 150 g/L total solids (TS) concentrations (r...

  7. Improving composting as a post-treatment of anaerobic digestate.

    PubMed

    Zeng, Yang; De Guardia, Amaury; Dabert, Patrick

    2016-02-01

    This work investigated the influences of practical parameters upon composting of digestate. The yardsticks for evaluation were digestate stabilization, nitrogenous emissions mitigation and self-heating potential. The results suggest choosing an "active" bulking agent like dry wood chips (WC) which served as free-water and nitrogen sink through composting. At an optimal volumetric WC:digestate mixing ratio of 4:1, nearly 90% of the initial NH4(+)/NH3 were fixed, which reduced significantly nitrogenous emissions. This mixing ratio also improved the stabilization and self-heating potential. Using small particle size WC increased narrowly O2 consumption and reduced NH3 emission. Storing used WC prior to recycling reduced 40% N2O emission compared to directly recycled WC. Recycling compost helped to decrease NH3 emission, but quadrupled N2O emission. The optimal aeration rate (15Lh(-1)kg OM0) which was lower compared to composting of organic waste, was enough to ensure the O2 supply and ameliorate the self-heating potential through composting of digestate. PMID:26684176

  8. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    PubMed

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery. PMID:21099053

  9. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnrer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6g VS L(-1)d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. PMID:24534902

  10. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors.

    PubMed

    A?da?, Osman Nuri; Sponza, Delia Teresa

    2007-02-01

    In this study, the feasibility of the anaerobic co-digestion of a mixed industrial sludge with municipal solid wastes (MSW) was investigated in three simulated anaerobic landfilling bioreactors during a 150-day period. All of the reactors were operated with leachate recirculation. One of them was loaded only with MSW (control reactor); the second reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:1 (based on dry solid) (Run 1); the third reactor was loaded with mixed industrial sludge and MSW, the weight ratio of the MSW to mixed industrial sludge was 1:2 (based on dry solid) (Run 2). The VFA concentrations decreased significantly in Run 1 and Run 2 reactors at the end of 150 days. The pH values were higher in Run 1 and Run 2 reactors compared to control reactor. The differences between leachate characteristics, the biodegradation and the bioefficiency of the reactors were compared. The NH(4)-N concentrations released to leachate from mixed sludge in Run 1 and Run 2 reactors were lower than that of control reactor. The BOD(5)/COD ratios in Run 1 and Run 2 reactors were lower than that of control reactor at the end of 150 days. Cumulative methane gas productions and methane percentages were higher in Run 1 and Run 2 reactors. Reductions in waste quantity, carbon percentage and settlement of the waste were better in Run 1 and Run 2 reactors compared to control reactor at the end of 150 days. Furthermore, TN and TP removals in waste were higher in reactors containing industrial sludge compared to control. The toxicity test results showed that toxicity was observed in reactors containing industrial mixed sludge. PMID:16884847

  11. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    PubMed

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-01

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg). PMID:26588246

  12. TIME-SETTLEMENT BEHAVIOR OF PROCESSED REFUSE. PART III: ANAEROBIC DIGESTION OF MILLED REFUSE

    EPA Science Inventory

    The objectives of this laboratory investigation were to gain an understanding of the decomposition of milled refuse under anaerobic conditions, the rates of decomposition, and the gas production and composition. The rates of decomposition of cellulose and cellulosic materials, ga...

  13. The effect of managing nutrients in the performance of anaerobic digesters of municipal wastewater treatment plants.

    PubMed

    Demirer, Sibel Uludag; Taskin, Bilgin; Demirer, Goksel N; Duran, Metin

    2013-09-01

    Is it possible to create conditions in the anaerobic digesters to control nutrients without changing the performance of a reactor? This study investigates an answer for this question. To this purpose, anaerobic reactors are operated at high concentrations of Mg(2+) ion to harvest the nutrient ions (NH4 (+) and PO4 (3-)) in the form of struvite, that is, magnesium ammonium phosphate. The effects of this modification on the anaerobic digestion of sewage sludge were investigated in terms of chemical oxygen demand (COD) removal and cumulative CH4 production as well as the changes in the biological diversity. The results showed that approximately 50% of the nutrients (NH4 (+) and PO4 (3-)) were removed regardless of the method adopted for the addition of Mg(2+) ion, slug or daily dosing. The numbers of Methanosaeta and Methanosarcina in the samples withdrawn prior to and after the addition of Mg(2+) did not show significant difference according to the results obtained from qPCR analyses. The research results showed that the addition of Mg(2+) into the anaerobic digesters in municipal wastewater treatment facilities may help to remove the nutrients from the effluent while recovering in their solid forms. PMID:23090053

  14. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    PubMed

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. PMID:25168914

  15. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials.

    PubMed

    Ziganshin, Ayrat M; Liebetrau, Jan; Pröter, Jürgen; Kleinsteuber, Sabine

    2013-06-01

    The influence of the feedstock type on the microbial communities involved in anaerobic digestion was investigated in laboratory-scale biogas reactors fed with different agricultural waste materials. Community composition and dynamics over 2 months of reactors' operation were investigated by amplicon sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Major bacterial taxa belonged to the Clostridia and Bacteroidetes, whereas the archaeal community was dominated by methanogenic archaea of the orders Methanomicrobiales and Methanosarcinales. Correlation analysis revealed that the community composition was mainly influenced by the feedstock type with the exception of a temperature shift from 38 to 55 °C which caused the most pronounced community shifts. Bacterial communities involved in the anaerobic digestion of conventional substrates such as maize silage combined with cattle manure were relatively stable and similar to each other. In contrast, special waste materials such as chicken manure or Jatropha press cake were digested by very distinct and less diverse communities, indicating partial ammonia inhibition or the influence of other inhibiting factors. Anaerobic digestion of chicken manure relied on syntrophic acetate oxidation as the dominant acetate-consuming process due to the inhibition of aceticlastic methanogenesis. Jatropha as substrate led to the enrichment of fiber-degrading specialists belonging to the genera Actinomyces and Fibrobacter. PMID:23624683

  16. Hyperspectral imaging techniques applied to the monitoring of wine waste anaerobic digestion process

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Fabbri, Andrea; Bonifazi, Giuseppe

    2012-11-01

    An anaerobic digestion process, finalized to biogas production, is characterized by different steps involving the variation of some chemical and physical parameters related to the presence of specific biomasses as: pH, chemical oxygen demand (COD), volatile solids, nitrate (NO3-) and phosphate (PO3-). A correct process characterization requires a periodical sampling of the organic mixture in the reactor and a further analysis of the samples by traditional chemical-physical methods. Such an approach is discontinuous, time-consuming and expensive. A new analytical approach based on hyperspectral imaging in the NIR field (1000 to 1700 nm) is investigated and critically evaluated, with reference to the monitoring of wine waste anaerobic digestion process. The application of the proposed technique was addressed to identify and demonstrate the correlation existing, in terms of quality and reliability of the results, between "classical" chemical-physical parameters and spectral features of the digestate samples. Good results were obtained, ranging from a R2=0.68 and a RMSECV=12.83 mg/l for nitrate to a R2=0.90 and a RMSECV=5495.16 mg O2/l for COD. The proposed approach seems very useful in setting up innovative control strategies allowing for full, continuous control of the anaerobic digestion process.

  17. Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

    PubMed Central

    Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-01-01

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

  18. Feasibility of spent metalworking fluids as co-substrate for anaerobic co-digestion.

    PubMed

    Rodriguez-Verde, Ivan; Regueiro, Leticia; Pena, Rocio; lvarez, Juan A; Lema, Juan M; Carballa, Marta

    2014-03-01

    In this paper, anaerobic co-digestion of spent metalworking fluids (SMWF) and pig manure (PM) was evaluated. Three SMWF:PM ratios were tested in order to find the highest process efficiency. The best results (COD removal efficiencies of 74%) were achieved co-digesting a mixture with a SMWF:PM ratio of 1:99, w/w(1) (corresponding to 3.75mL SMWF/Lreactor week), which indicates that SMWF did not affect negatively PM degradation. Furthermore, two different weekly SMWF pulse-frequencies were performed (one reactor received 1 pulse of 3.75mL/Lreactor and the other 3 pulses of 1.25mL/Lreactor) and no differences in COD removal efficiency were observed. Microbiology analysis confirmed that Pseudomonas was the predominant genus when treating anaerobically SMWF and the presence of a higher fraction of Archaea was indicative of good digester performance. This study confirms the feasibility of anaerobic co-digestion as an appropriate technology for treating and valorising SMWF. PMID:24457301

  19. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities.

    PubMed

    Oshita, Kazuyuki; Okumura, Takuya; Takaoka, Masaki; Fujimori, Takashi; Appels, Lise; Dewil, Raf

    2014-11-01

    Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509±72 mg/m(3)-influent (wastewater) and 7.1±2.6 mg/m(3)-influent, respectively. These values accounted for 22.4±3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant. PMID:25194911

  20. Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater.

    PubMed

    Huang, Lu; Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Liao, Xindi; Liang, Juanboo; Wu, Yinbao

    2014-10-01

    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester. PMID:25288543

  1. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel. PMID:26489344

  2. Foam formation in biogas plants caused by anaerobic digestion of sugar beet.

    PubMed

    Moeller, Lucie; Lehnig, Marcus; Schenk, Joachim; Zehnsdorf, Andreas

    2015-02-01

    The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming. PMID:25446785

  3. Selecting the most relevant variables for anaerobic digestion imbalances: two case studies.

    PubMed

    Dalmau, Jordi; Comas, Joaquim; Rodrguez-Roda, Ignasi; Latrille, Eric; Steyer, Jean-Philippe

    2010-06-01

    In this study, a wrapper approach was applied to objectively select the most important variables related to two different anaerobic digestion imbalances, acidogenic states and foaming. This feature selection method, implemented in artificial neural networks (ANN), was performed using input and output data from a fully instrumented pilot plant (1 m3 upflow fixed bed digester). Results for acidogenic states showed that pH, volatile fatty acids, and inflow rate were the most relevant variables. Results for foaming showed that inflow rate and total organic carbon were among the relevant variables, both of which were related to the feed loading of the digester. Because there is not a complete agreement on the causes of foaming, these results highlight the role of digester feeding patterns in the development of foaming. PMID:20572455

  4. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    PubMed

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. PMID:19959355

  5. Anaerobic biodegradation of phenolic compounds in digested sludge.

    PubMed Central

    Boyd, S A; Shelton, D R; Berry, D; Tiedje, J M

    1983-01-01

    We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. PMID:6614908

  6. Anaerobic waste activated sludge co-digestion with olive mill wastewater.

    PubMed

    Athanasoulia, E; Melidis, P; Aivasidis, A

    2012-01-01

    Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 l(biogas)/l(reactor)/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 l(biogas)/g tCOD removed and 1.1 l(biogas)/g TVS removed were measured. PMID:22643423

  7. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester

    NASA Astrophysics Data System (ADS)

    Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

    2013-06-01

    An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

  8. Shotgun metaproteomic profiling of biomimetic anaerobic digestion processes treating sewage sludge.

    PubMed

    Bize, Ariane; Cardona, Latitia; Desmond-Le Qumner, Elie; Battimelli, Audrey; Badalato, Nelly; Bureau, Chrystelle; Madigou, Cline; Chevret, Didier; Guillot, Alain; Monnet, Vronique; Godon, Jean-Jacques; Bouchez, Thodore

    2015-10-01

    Two parallel anaerobic digestion lines were designed to match a "bovid-like" digestive structure. Each of the lines consisted of two continuous stirred tank reactors placed in series and separated by an acidic treatment step. The first line was inoculated with industrial inocula whereas the second was seeded with cow digestive tract contents. After 3 months of continuous sewage sludge feeding, samples were recovered for shotgun metaproteomic and DNA-based analysis. Strikingly, protein-inferred and 16S ribosomal DNA tags based taxonomic community profiles were not consistent. PCA however revealed a similar clustering pattern of the samples, suggesting that reproducible methodological and/or biological factors underlie this observation. The performances of the two digestion lines did not differ significantly and the cow-derived inocula did not establish in the reactors. A low throughput metagenomic dataset (3.4נ10(6) reads, 1.1 Gb) was also generated for one of the samples. It allowed a substantial increase of the analysis depth (11 vs. 4% of spectral identification rate for the combined samples). Surprisingly, a high proportion of proteins from members of the "Candidatus Competibacter" group, a key microbial player usually found in activated sludge plants, was retrieved in our anaerobic digester samples. Data are available via ProteomeXchange with identifier PXD002420 (http://proteomecentral.proteomexchange.org/dataset/PXD002420). PMID:26260998

  9. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  10. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs. PMID:26031329

  11. Chemical and biological assessment of endocrine disrupting chemicals in a full scale dairy manure anaerobic digester with thermal pretreatment.

    PubMed

    Noguera-Oviedo, Katia; Aga, Diana S

    2016-04-15

    Concentrated animal feeding operations are important sources of estrogens and their conjugates, which are introduced into the environment through manure land application. In this study, concentrations of estrogens were measured in an anaerobic co-digestion system with thermal pasteurization pretreatment. Free estrogens (estrone (E1), 17α-estradiol (E2α), 17β-estradiol (E2β), estriol (E3)) were analyzed by gas chromatography with mass spectrometry (GC/MS), and conjugated estrogens (sulfate- and glucuronide-conjugates) were analyzed by liquid chromatography with tandem mass spectrometry (LC/MS/MS). Additionally, yeast estrogen screen assay was used to determine the estrogenic potential of the manure. The total hormone concentrations (mainly E1, E2α, E2β, and sulfated estrogens) were observed at concentrations up to a total of 7100ng/L in the liquid fraction, while free estrogen levels were 630ng/kg in the solid fraction of the untreated manure. The total hormone concentration did not decrease significantly during digestion, however, the relative composition of the estrogens changed from E2α (65%) being the predominant species before digestion to mostly E1 (72%) after digestion. This conversion process has important implications because E1 is more estrogenic than E2α. Total E2 equivalents associated with E1, E2α and E2β concentrations as determined by GC/MS indicate that E1 is the most important contributor to the endocrine-disruption activity of the treated manure. PMID:26849346

  12. Detailed study of anaerobic digestion of Spirulina maxima algae biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1986-07-01

    Biomass of the blue-green alga Spirulina maxima was converted to methane using continuous stirred tank digesters with an energy conversion efficiency of 59%. Digesters were operated using once-a-day feeding with a retention time (theta) between 5 and 40 days, volatile solid concentrations (Sto) between 20 and 100 kg VS/cubic m, and temperatures between 15 and 52/sup 0/C. The results indicated a maximum methane yield of 0.35 cubic m (STP)/kg VS added at theta = 30 days and Sto = 20 kg VS/cubic m. Under such conditions, the energy conversion of the algal biomass to methane was 59%. The maximum methane production rate of 0.80 cubic m (STP)/cubic m day was obtained with theta = 20 days and Sto = 100 kg VS/cubic m. The mesophilic condition at 35/sup 0/C produced the maximum methane yield and production rate. The process was stable and characterized by a high production of volatile acids (up to 23,200 mg/l), alkalinity (up to 20,000 mg/l), and ammonia (up to 7000 mg/l), and the high protein content of the biomass produced a well-buffered environment which reduced inhibitory effects. At higher loading rates, the inhibition of methanogenic bacteria was observed, but there was no clear-cut evidence that such a phenomenon was due to nonionized volatile acids or gaseous ammonia. The kinetic analysis using the model proposed by Chen and Hashimoto indicated that the minimum retention time was seven days. The optimum retention time increased gradually from 11 to 16 days with an increase in the initial volatile solid concentration. The kinetic constant K decreased with the improvement in the digester performance and increased in parallel with the ammonia concentration in the culture media. 32 references.

  13. Reduction of volatile fatty acids and odor offensiveness by anaerobic digestion and solid separation of dairy manure during manure storage.

    PubMed

    Page, Laura H; Ni, Ji-Qin; Zhang, Hao; Heber, Albert J; Mosier, Nathan S; Liu, Xingya; Joo, Hung-Soo; Ndegwa, Pius M; Harrison, Joseph H

    2015-04-01

    Volatile fatty acids (VFA) play an important role in the biodegradation of organic wastes and production of bioenergy under anaerobic digestion, and are related to malodors. However, little is known about the dynamics of VFA during dairy manure storage. This study evaluated the characteristics of VFA in dairy manure before and after anaerobic co-digestion in a laboratory experiment using eight lab-scale reactors. The reactors were loaded with four different types of dairy manure: (1) liquid dairy manure from a freestall barn, (2) mixture of dairy manure and co-digestion food processing wastes at the inlet of an anaerobic digester, (3) effluent from the digester outlet, and (4) the liquid fraction of effluent from a solid separator. Four VFA (acetic, propionic, butyric, and 2-methylbutyric acids) were identified and quantified in weekly manure samples from all reactors. Results showed that the dominant VFA was acetic acid in all four manure sources. The off-farm co-digestion wastes significantly increased the total VFA concentrations and the proportions of individual VFA in the influent. The dairy manure under storage demonstrated high temporal and spatial variations in pH and VFA concentrations. Anaerobic digestion reduced the total VFA by 86%-96%; but solid-liquid separation did not demonstrate a significant reduction in total VFA in this study. Using VFA as an indicator, anaerobic digestion exhibited an effective reduction of dairy manure odor offensiveness. PMID:25617873

  14. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature.

    PubMed

    Gavala, Hariklia N; Yenal, Umur; Skiadas, Ioannis V; Westermann, Peter; Ahring, Birgitte K

    2003-11-01

    Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pre-treatment at 70 degrees C on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pre-treatment step showed very positive effect on the methane potential and production rate upon subsequent thermophilic digestion of primary sludge. The methane production rate was mostly influenced by the pre-treatment of secondary sludge followed by mesophilic and thermophilic digestion whereas the methane potential only was positively influenced when mesophilic digestion followed. Our results suggest that the selection of the pre-treatment duration as well as the temperature of the subsequent anaerobic step for sludge stabilization should depend on the ratio of primary to secondary sludge. PMID:14568041

  15. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques.

    PubMed

    Vanwonterghem, Inka; Jensen, Paul D; Ho, Dang P; Batstone, Damien J; Tyson, Gene W

    2014-06-01

    Over the last decade there has been a rapid development in culture-independent techniques for exploring microbial communities, which have led to new insights into their structure and function in both natural environments and engineered systems. This review focuses on some of the most important recent advances and their applications to the diverse microbial communities associated with anaerobic digestion. The use of these approaches in combination with complementary imaging techniques, chemical isotope analyses and detailed reactor performance measurements provides a new opportunity to develop a fundamental understanding of how microbial community dynamics, interactions and functionality influence digester efficiency and stability. PMID:24863897

  16. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.

    PubMed

    Li, Chaoran; Mrtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2014-09-01

    Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 C and with 25% DM content at 37 and 55 C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. PMID:24656488

  17. REACTIVATION AND REGROWTH OF INDICATOR ORGANISMS ASSOCIATED WITH ANAEROBICALLY DIGESTED AND DEWATERED BIOSOLIDS: EPA’S PERSPECTIVE

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  18. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment.

    PubMed

    Calabr, Paolo S; Greco, Rosa; Evangelou, Alexandros; Komilis, Dimitrios

    2015-11-01

    The objective of the work was to assess the effect of mild alkaline pretreatment on the anaerobic biodegradability of tomato processing waste (TPW). Experiments were carried out in duplicate BMP bottles using a pretreatment contact time of 4 and 24h and a 1% and 5% NaOH dosage. The cumulative methane production during a 30 d period was recorded and modelled. The alkaline pretreatment did not significantly affect methane production in any of the treatments in comparison to the control. The average methane production for all runs was 320NmL/gVS. Based on first order kinetic modelling, the alkaline pretreatment was found to slow down the rate of methanogenesis, mainly in the two reactors with the highest NaOH dosage. The biodegradability of the substrates ranged from 0.75 to 0.82 and from 0.66 to 0.72 based on two different approaches. PMID:26292773

  19. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion.

    PubMed

    Miller, Jennifer H; Novak, John T; Knocke, William R; Young, Katherine; Hong, Yanjuan; Vikesland, Peter J; Hull, Matthew S; Pruden, Amy

    2013-05-01

    Water resource recovery facilities have been described as creating breeding ground conditions for the selection, transfer, and dissemination of antibiotic resistance genes (ARGs) among various bacteria. The objective of this study was to determine the effect of direct addition of antibiotic and silver nanoparticles (Ag NPs, or nanosilver) on the occurrence of ARGs in thermophilic anaerobic digesters. Test thermophilic digesters were amended with environmentally-relevant concentrations of Ag NP (0.01, 0.1, and 1.0 mg-Ag/L; corresponding to approximately 0.7, 7.0, and 70 mg-Ag/kg total solids) and sulfamethoxazole (SMX) that span susceptible to resistant classifications (1, 5, and 50 mg/L) as potential selection pressures for ARGs. Tetracycline (tet(O), tet(W)) and sulfonamide (sulI, sulII) ARGs and the integrase enzyme gene (intI1) associated with Class 1 integrons were measured in raw sludge, test thermophilic digesters, a control thermophilic digester, and a control mesophilic digester. There was no apparent effect of Ag NPs on thermophilic anaerobic digester performance. The maximum SMX addition (50 mg/L) resulted in accumulation of volatile fatty acids and low pH, alkalinity, and volatile solids reduction. There was no significant difference between ARG gene copy numbers (absolute or normalized to 16S rRNA genes) in amended thermophilic digesters and the control thermophilic digester. Antibiotic resistance gene copy numbers in digested sludge ranged from 10(3) to 10(6) copies per microL (approximately 8 x10(1) to 8 x 10(4) copies per microg) of sludge as result of a 1-log reduction of ARGs (2-log reduction for intI1). Quantities of the five ARGs in raw sludge ranged from 10(4) to 10(8) copies per microL (approximately 4 x 10(2) to 4 x 10(6) per microg) of sludge. Test and control thermophilic digesters (53 degrees C, 12-day solids retention time [SRT]) consistently reduced but did not eliminate levels of all analyzed genes. The mesophilic digester (37 degrees C, 20-day SRT) also reduced levels of sulI, sulII, and intI1 genes, but levels of tet(O) and tet(W) were the same or higher than in raw sludge. Antibiotic resistance gene reductions remained constant despite the application of selection pressures, which suggests that digester operating conditions are a strong governing factor of the bacterial community composition and thus the prevalence of ARGs. PMID:23789571

  20. Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas.

    PubMed

    Zhang, Guangyi; Li, Chunxing; Ma, Dachao; Zhang, Zhikai; Xu, Guangwen

    2015-09-01

    Antibiotic residues are difficult to be treated or utilized because of their high water content and residual antibiotics. This article is devoted to investigating the possibility of biogas production from cephalosporin C residue (CPCAR), one typical type of antibiotic residues, via anaerobic digestion in combination with hydrothermal pretreatment (HTPT). The results from the bench-scale experiments showed that the combination of HTPT and anaerobic digestion can provide a viable way to convert CPCAR into biogas, and the biogas and methane yields reached 290 and 200 ml(g TS)(-1), respectively. This article further evaluated the proposed technology in terms of energy balance and technical feasibility based on theoretical calculation using the data from a pilot HTPT test. It was shown that the process is totally self-sufficient in energy and its main challenging problem of ammonia inhibition can be solved via ammonia stripping. PMID:26038331

  1. Low-cost additive improved silage quality and anaerobic digestion performance of napiergrass.

    PubMed

    Lianhua, Li; Feng, Zhen; Yongming, Sun; Zhenhong, Yuan; Xiaoying, Kong; Xianyou, Zhou; Hongzhi, Niu

    2014-12-01

    Effects of molasses-alcoholic wastewater on the ensiling quality of napiergrass were investigated at ambient temperature, and its anaerobic digestion performance was assessed at mesophilic temperature. Results showed that the molasses-alcoholic wastewater had positive effect on silage quality and anaerobic digestion performance. Lower pH values of 5.20-5.28, lower NH3-N contents of 32.65-36.60 g/kg and higher lactic acid contents of 56-61 mg/kg FM were obtained for the silage samples with molasses-alcoholic wastewater addition. Higher specific biogas yield of 273 mL/g VS was obtained for the sample with 11% molasses-alcoholic wastewater added. Therefore 11% molasses-alcoholic wastewater addition was recommended. PMID:25443806

  2. Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: biodegradability and environmental impact assessment.

    PubMed

    Guo, M; Trzcinski, A P; Stuckey, D C; Murphy, R J

    2011-12-01

    The digestibility of a starch-polyvinyl alcohol (PVOH) biopolymer insulated cardboard coolbox was investigated under a defined anaerobic digestion (AD) system with key parameters characterized. Laboratory results were combined with industrial operational data to develop a site-specific life cycle assessment (LCA) model. Inoculated with active bacterial trophic groups, the anaerobic biodegradability of three starch-PVOH biopolymers achieved 58-62%. The LCA modeling showed that the environmental burdens of the starch-PVOH biopolymer packaging under AD conditions on acidification, eutrophication, global warming and photochemical oxidation potential were dominated by atmospheric emissions released from substrate degradation and fuel combustion, whereas energy consumption and infrastructure requirements were the causes of abiotic depletion, ozone depletion and toxic impacts. Nevertheless, for this bio-packaging, AD of the starch-PVOH biopolymer combined with recycling of the cardboard emerged as the environmentally superior option and optimization of the energy utilization system could bring further environmental benefits to the AD process. PMID:22001054

  3. Modelling of the production of gaseous by-products in anaerobic digestion.

    PubMed

    Strik, D P; Domnanovich, A M; Pfeiffer, B; Karlovitz, M; Zani, L; Braun, R; Holubar, P

    2003-01-01

    Goal of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Processes Behaviour towards Biogas Usage in Fuel Cells) is demonstration of the practical use of biogas in fuel cells. The right precondition is a biogas quality which fits into the fuel cells tolerances. Therefore the mission of the workgroup Environmental biotechnology is to control anaerobic digestion in a way that production of potential harmful by-products for fuel cells is reduced. A good understanding of the production of these by products is essential for an applicable decision support tool. This poster presents the modelling of hydrogen sulfide by means of hierarchical neural networks and a classical mathematical method. PMID:15296163

  4. Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Annual report

    SciTech Connect

    Sengupta, S; Gerrish, H P; Wong, K F; Nemerow, N; Daly, Jr, E L; Farooq, S; Chriswell, C

    1980-08-01

    Municipal solid wastes contain numerous substances of potential environmental concern. While some understanding of the composition of raw municipal waste and its leachate products is available, no information regarding characteristics of solid, liquid and gaseous outputs from anaerobic digestion exists. If centralized anaerobic digestion plants are to be environmentally viable, the characteristics and environmental effects of effluents from these plants must be acceptable. The environmental concerns are particularly acute where ground water supplies are precariously low and the water table is high, South Florida is such a location. A characterization and environmental study was initiated by the Resource Recovery Group on August 1978. The specific objectives are: (1) systematic characterization of solid, liquid and gaseous inputs and outputs; (2) investigations of leaching characteristic of output solid and liquid effluents, and the transport of pollutants to and through ground water systems; and (3) analysis of environmental and process parameters to obtain causal relationships.

  5. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate.

    PubMed

    Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo

    2016-02-01

    The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.430.00gL(-1)) and 48-h CH4 to methanol conversion (25.51.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. PMID:26630583

  6. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure.

    PubMed

    Cao, Yun; Chang, Zhizhou; Wang, Jidong; Ma, Yan; Fu, Guangqin

    2013-05-01

    The goals of the present study were to evaluate the suppressive capability of anaerobically digested slurry (ADS) against Phytophthora capsici and to determine the key factors of disease control in ADS. This was achieved by the investigations of the changes in microbial populations and the levels of antimicrobial compound during anaerobic digestion (AD). AD had no significant impact on the numbers of antagonistic fluorescent pseudomonads or Bacillus sp. The contents of total phenolics, volatile fatty acids and sugar fed with the raw slurries to the reactors were decreased by AD. However, the bioreactor effluents had higher concentrations of humic substances and ammonia than the feedstocks. Moreover, AD had a different influence on the content of amino acid in the pig manure compared to the dairy manure. The results obtained indicated that the key inhibitory factors of ADS might be attributed to ammonia and humic substances. PMID:23570714

  7. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  8. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments.

    PubMed Central

    Goodwin, S; Zeikus, J G

    1987-01-01

    The dynamics of anaerobic digestion were examined in the low-pH sediments of Crystal Bog in Wisconsin. The sediments (pH 4.9) contained 71% organic matter and the following concentrations of dissolved gases (micromoles per liter): CO2, 1,140; CH4, 490; and H2, 0.01. The rate of methane production was 6.2 mumol/liter of sediment per h, which is slower than eutrophic, neutral sediments. Microbial metabolic processes displayed the following pH optima: hydrolysis reactions, between 4.2 and 5.6; aceticlastic methanogenesis, 5.2; and hydrogen-consuming reactions, 5.6. The turnover rate constants for key intermediary metabolites were (h-1): glucose, 1.10; lactate, 0.277; acetate, 0.118; and ethanol, 0.089. The populations of anaerobes were low, with hydrolytic groups (10(6)/ml) several orders of magnitude higher than methanogens (10(2)/ml). The addition of carbon electron donors to the sediment resulted in the accumulation of hydrogen, whereas the addition of hydrogen resulted in the accumulation of fatty acids and the inhibition of hydrogen-producing acetogenic reactions. Strains of Lactobacillus, Clostridium, and Sarcina ventriculi were isolated from the bog, and their physiological attributes were characterized in relation to hydrolytic process functions in the sediments. The present studies provide evidence that the pH present in the bog sediments alter anaerobic digestion processes so that total biocatalytic activity is lower but the general carbon and electron flow pathways are similar to those of neutral anoxic sediments. PMID:3103534

  9. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 C) or thermophilic (55 C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen. PMID:26564276

  10. Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion.

    PubMed

    Zhou, Qi; Yuan, Hairong; Liu, Yanping; Zou, Dexun; Zhu, Baoning; Chufo, Wachemo A; Jaffar, Muhammad; Li, Xiujin

    2015-03-01

    Feature objects aided strategy was used to predict and evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. The kinetics of co-digestion and mono-digestion of food waste and/or corn stalk was also analyzed. The results indicated that the compositions of food waste and corn stalk were significantly different. The anaerobic digestion of three feature objects at different mixing ratios showed the different biomethane yields and kinetic constants. Food waste and corn stalk co-digestion enhanced the digestion rate and achieved 22.48% and 41.55% higher biomethane production than those of food waste and corn stalk mono-digestion, respectively. PMID:25575585

  11. Zinc and copper distribution in swine wastewater treated by anaerobic digestion.

    PubMed

    Cestonaro do Amaral, Andr; Kunz, Airton; Radis Steinmetz, Ricardo Lus; Justi, Karin Cristiane

    2014-08-01

    Swine wastewater contain high levels of metals, such as copper and zinc, which can cause a negative impact on the environment. Anaerobic digestion is a process commonly used to remove carbon, and can act on metal availability (e.g., solubility or oxidation state). The present study aimed to evaluate the influence of anaerobic digestion on total Zn and Cu contents, and their chemical fractioning due to the biodegradation of the effluent over different hydraulic retention times (HRTs). The sequential extraction protocol proposed by the Community Bureau of Reference (BCR), plus two additional fractions, was the method chosen for this study of Cu and Zn distribution evaluation in swine wastewater. The Zn and Cu concentrations in raw swine manure were 63.5827.72mgL(-1) and 8.983.99mgL(-1), respectively. The metal retention capacity of the bioreactor decreased when the HRT was reduced from 17.86d to 5.32d. Anaerobic digestion had a direct influence on zinc and copper distribution when raw manure (RM) and digested manure (DM) were compared. The reducible fraction showed a reduction of between 3.17% and 7.84% for Zn and between 2.52% and 11.92% for Cu when DM was compared with RM. However, the metal concentration increased in the oxidizable fraction of DM, viz. from 3.01% to 10.64% for Zn and from 4.49% to 16.71% for Cu, thus demonstrating the effect of anaerobic conditions on metal availability. PMID:24794386

  12. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  13. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    NASA Astrophysics Data System (ADS)

    Morel, Evangelina S.; Hernndez-Hernndes, Jos A.; Mndez-Contreras, Juan M.; Cant-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (?ap) and yield stress (?o) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 C with an increment rate of 2 C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Cal?g-mol-1.

  14. Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor.

    PubMed

    Tan, Xiaobo; Chu, Huaqiang; Zhang, Yalei; Yang, Libin; Zhao, Fangchao; Zhou, Xuefei

    2014-10-01

    To explore the integration of microalgae cultivation and anaerobic processing for wastewater treatment, we utilized an airlift circulation photobioreactor and a dynamic membrane reactor for microalgae cultivation in combination with an upflow anaerobic sludge bed (UASB) reactor for starch processing wastewater (SPW) treatment. Chlorella pyrenoidosa completely adapted to the digested SPW without any chemical additives, and it grew normally under a wide temperature range in different seasons. C. pyrenoidosa was always the dominant microorganism in the photobioreactors although bacteria and some wild type microalgae were observed. Optimal biomass growth and pollutants removal was achieved at temperatures between 35 and 38C in summer, removing 65.99% of COD, 83.06% of TN, 96.97% of TP and a biomass productivity of 0.37gL(-1)d(-1). Temperature fluctuation significantly influenced lipid contents and FAMEs compositions in biomass. The results demonstrate the successful integration of microalgae biomass production and anaerobic processing for wastewater treatment. PMID:25164347

  15. Detection of gas leaks in an anaerobic glove box.

    PubMed

    Jones, G L; Dever, S M

    1974-04-01

    An inert gas, Freon, can be added to the atmosphere of an anaerobic glove box without deleterious effect to cultures of anaerobic microorganisms. The sensitive probe of a Halogen Leak Detector passing over the outside surface of the box will pinpoint any escaping Freon and therefore locate the leak. PMID:4596756

  16. Do anaerobic digestates promote dispersion, acidification and water repellency in soils?

    NASA Astrophysics Data System (ADS)

    Voelkner, Amrei; Holthusen, Dörthe; Horn, Rainer

    2014-05-01

    Digestates are used as organic fertilizer on agricultural land due to their high amounts of nutrients (e.g. potassium, sodium). It is commonly expected that the application of sludge derived from anaerobic digestion can influence the soil structure and soil stability. Due to the fact that digestates contain large quantities of monovalent salts and long-chained fatty acids, the consequence of sludge amendment can be soil degradation caused by acidification, dispersion and increased water-repellency. Thus, water infiltration can be impeded which results in a preservation of stable soil aggregates. However, a diminished water infiltration can support water erosion and preferential flow of easy soluble nutrients into the groundwater. Our research was conducted with different digestates derived from maize, wheat and sugar beet to examine occurring processes in soils of two different textures after the application of anaerobic sludges. Particularly, we focused on the wetting properties of the soil. For this purpose, the wetting behavior was investigated by determining the sorptivity-based Repellency Index with moist samples and the contact angle with homogenized, air-dried soil material. Further surveys were carried out to assess the flow behavior of digestates application and the deformation of the particle-to-particle association by microscaled shearing. Additionally, the acidification process in the soil as a result of sludge application was investigated. To account for the dispersive impact of digestates, the turbidity of soil suspensions was ascertained. We summarize from the results that the digestates have a clear impact on the water repellency of the soil. We recognized a shift to more hydrophobic conditions. Partially, the pH remains on a high level due to the alkaline digestate, but several samples show a decline of pH, depending on the soil texture, respectively. However, soil structure was weakened as was shown by an increase of turbidity. As a conclusion, we point out the necessity to take into account the impact which anaerobic digestates might have on soil structure and stability in addition to their fertilizing effect to sustain the soil in a good state.

  17. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. PMID:25643955

  18. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.

    PubMed

    Ziemba, Christopher; Peccia, Jordan

    2011-10-15

    The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55C thermophilic and temperature-phased treatments. Incorporating a 60 or 70C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against improving the pathogen quality of biosolids. PMID:21764416

  19. Semi-continuous mesophilic anaerobic digester performance under variations in solids retention time and feeding frequency.

    PubMed

    Manser, Nathan D; Mihelcic, James R; Ergas, Sarina J

    2015-08-01

    The goal of this research was to understand the effect of solids retention time (SRT) and feeding frequency on the performance of anaerobic digesters used to recover bioenergy from swine waste. Semi-continuous mesophilic anaerobic digesters were operated at varying SRTs and feeding frequencies. Performance metrics included biogas and methane production rates, biomass robustness and functionality and removals of volatile solids, soluble chemical oxygen demand, the fecal-indicator bacteria Escherichia coli, and the human pathogen Salmonella. Biochemical methane formation potential and specific methanogenic activity assays were used to demonstrate biomass robustness and functionality. Results indicated that anaerobic digesters fed weekly had higher average methane yields (0.20 vs. 0.18m(3)CH4/kg-VSadded), specific methanogenic activities (40 vs. 35ml/day), and fecal indicator bacteria destruction (99.9% vs. 99.4%) than those fed every-other day. Salmonella, soluble COD, and VS destruction did not change with varied feeding frequency; however, higher removals were observed with longer SRT. PMID:25965953

  20. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano

    SciTech Connect

    Alvarez, Rene Liden, Gunnar

    2008-07-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

  1. Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation.

    PubMed

    Scherr, Kerstin E; Lundaa, Tserennyam; Klose, Viviana; Bochmann, Gnther; Loibner, Andreas P

    2012-02-20

    Anaerobic biodegradation of petroleum hydrocarbons (PHC) to methane has been recognized to occur in oil reservoirs and contaminated surface sites alike. This process could be employed efficiently for the treatment of contaminated materials, including petrochemical wastes and PHC-contaminated soil, since no external electron acceptor is required. Moreover, the controlled production of methane in digestion plants, similarly to the anaerobic digestion (AD) of energy crops or organic residues, would enable for energy recovery from these wastes. At present, little is known about the bacterial communities involved in and responsible for hydrocarbon fermentation, the initial step in PHC conversion to methane. In the present study, the fate of two different methanogenic communities derived from the AD of wastewater (WWT) and of biowaste, mixed with PHC-contaminated soil (SWT), was monitored during incubation with PHC using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA genes amplified with Bacteria-specific primers. During 11 months of incubation, slight but significant degradation of PHC occurred in both sludges and distinct bacterial communities were developing. In both sludges, Bacteroidetes were found. In addition, in WWT, the bacterial community was found to be dominated by Synergistetes and Proteobacteria, while Firmicutes and unidentified members were abundant in SWT. These results indicate that bacterial communities from anaerobic digesters can adapt to and degrade petroleum hydrocarbons. The decontamination of PHC-containing waste via fermentative treatment appears possible. PMID:21939698

  2. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    PubMed

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system. PMID:26219266

  3. Evaluation of a Ca-modified porphyritic andesite for ammonium removal in the anaerobic digestion process.

    PubMed

    Wang, Qinghong; Yang, Yingnan; Li, Dawei; Zhang, Zhenya

    2013-01-01

    In this study, a Ca-modified porphyritic andesite (wheat-rice-stone (WRS)) was developed for the anaerobic digestion of ammonium-rich wastes. The Ca-modified WRS was obtained with integrated Ca-salt treatment and calcination. Scanning electron microscope and Brunauer-Emmett-Teller surface area analyses were performed to characterize the Ca-modified WRS, and adsorption isotherms and kinetics were investigated to clarify the adsorption mechanism. The ammonium adsorption process was explained well with a pseudo-second-order kinetic model. The specific surface area of the Ca-modified WRS was determined to be 4.56 sq. m/g, and the maximum NH4(+)-N adsorption capacity was determined to be 45.45 mg/g. These values are improvements over those of natural WRS. The ammonium adsorption capacity remained constant at a pH range from 5.0 to 9.0, which indicates that Ca-modified WRS is a promising material for various applications. The methane-production and chemical oxygen demand-removal aspects of anaerobic digestion were much improved with the addition of Ca-modified WRS. Therefore, Ca-modified WRS could be developed into a viable ammonium adsorbent for the anaerobic digestion of ammonium-rich wastes. PMID:23837319

  4. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. PMID:24112851

  5. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  6. Mixing characteristics of sludge simulant in a model anaerobic digester.

    PubMed

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number. PMID:26739143

  7. Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery.

    PubMed

    Van Den Hende, Sofie; Laurent, Cedric; Bgu, Marine

    2015-11-01

    An outdoor raceway pond with microalgal bacterial flocs (MaB-flocs) is a novel sunlight-based system to treat pikeperch aquaculture wastewater while producing biomass. The harvested MaB-floc biomass (33tonTSha(-1)y(-1)) needs further valorization. Therefore, the biochemical methane yield (BMY) of MaB-floc biomass was determined in batch experiments. The results show significant differences between the BMY of MaB-flocs amongst their harvest dates (128-226NLCH4kg(-1)VS), a low anaerobic digestion conversion efficiency (25.0-36.2%), a moderate chlorophyll a removal (51.5-86.9%) and a low biogas profit (<0.01m(-3)wastewater). None of the pretreatment methods screened (freezing, thermal, microwave, ultrasonic and chlorination, flue gas sparging, and acid) can be recommended due to a low BMY improvement and/or unfavorable energy balance. Therefore, anaerobic digestion of this MaB-floc biomass should only be granted a supporting role within a biorefinery concept. PMID:26241837

  8. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Daz-Granados, Jos Snchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%. PMID:26360763

  9. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  10. Mesophilic anaerobic digestion of pulp and paper industry biosludge-long-term reactor performance and effects of thermal pretreatment.

    PubMed

    Kinnunen, V; Yl-Outinen, A; Rintala, J

    2015-12-15

    The pulp and paper industry wastewater treatment processes produce large volumes of biosludge. Limited anaerobic degradation of lignocellulose has hindered the utilization of biosludge, but the processing of biosludge using anaerobic digestion has recently regained interest. In this study, biosludge was used as a sole substrate in long-term (400d) mesophilic laboratory reactor trials. Nine biosludge batches collected evenly over a period of one year from a pulp and paper industry wastewater treatment plant had different solid and nutrient (nitrogen, phosphorus, trace elements) characteristics. Nutrient characteristics may vary by a factor of 2-11, while biomethane potentials (BMPs) ranged from 89 to 102 NL CH4kg(-1) VS between batches. The BMPs were enhanced by 39-88% with thermal pretreatments at 105-134C. Despite varying biosludge properties, stable operation was achieved in reactor trials with a hydraulic retention time (HRT) of 14d. Hydrolysis was the process limiting step, ceasing gas production when the HRT was shortened to 10 days. However, digestion with an HRT of 10 days was feasible after thermal pretreatment of the biosludge (20min at 121C) due to enhanced hydrolysis. The methane yield was 78 NL CH4kg(-1) VS for untreated biosludge and was increased by 77% (138 NL CH4kg(-1) VS) after pretreatment. PMID:26397452

  11. Electrical energy production from biosolids: a comparative study between anaerobic digestion and ultra-high-temperature gasification.

    PubMed

    Gikas, Petros

    2014-01-01

    Biosolids management is one of the most expensive and complicated processes in sanitation engineering. Anaerobic digestion (AD) is often employed for the stabilization ofbiomass and for energy production, as approximately 50% of the carbon entering the anaerobic digester is recovered as methane (CH4). Gasification has been used recently for the thermal reformation of biosolids to synthesis gas (syngas), which primarily consists ofcarbon monoxide (CO) and hydrogen (H2). In the present work, the net electrical energy production from biosolids has been calculated, for a typical activated sludge wastewater treatment plant, with an inlet flow rate of 75,708 m3/d (equal to 20 Mgd). The calculations suggest that the ultra-high-temperature gasification (UHTG) system can achieve a net electrical energy output of about 15.40 MJ/kg (dry biosolids), whereas the AD system can achieve values between 8.45 MJ/kg(dry biosolids). The latter values correspond to approximate net electrical energy power of 18.8 kW for UHTG, versus 9.9 kW for AD, for a wastewater treatment plant with capacity of 1000 m3/d; thus, the UHTG process yields approximately 190% of the energy that may be produced by the AD process. PMID:25145165

  12. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  13. Is phytoremediation without biomass valorization sustainable? - comparative LCA of landfilling vs. anaerobic co-digestion.

    PubMed

    Vigil, Miguel; Marey-Pérez, Manuel F; Martinez Huerta, Gemma; Álvarez Cabal, Valeriano

    2015-02-01

    This study examines the sustainability of phytoremediation for soils contaminated with heavy metals, especially the influence of management of the produced metal-enriched biomass on the environmental performance of the complete system. We examine a case study in Asturias (north of Spain), where the land was polluted with Pb by diffuse emissions from an adjacent steelmaking factory. A Phytoremediation scenario based on this case was assessed by performing a comparative life cycle assessment and by applying the multi-impact assessment method ReCiPe. Our Baseline scenario used the produced biomass as feedstock for an anaerobic digester that produces biogas, which is later upgraded cryogenically. The Baseline scenario was compared with two alternative scenarios: one considers depositing the produced biomass into landfill, and the other considers excavating the contaminated soil, disposing it in a landfill, and refilling the site with pristine soil. A sensitivity analysis was performed using different yields of biomass and biogas, and using different distances between site and biomass valorization/disposal center. Our results show that the impacts caused during agricultural activities and biomass valorization were compensated by the production of synthetic natural gas and the avoided impact of natural gas production. In addition, it was found that if the produced biomass was not valorized, the sustainability of phytoremediation is questionable. The distance between the site and the biomass processing center is not a major factor for determining the technology's sustainability, providing distances are less than 200-300 km. However, distance to landfill or to the source of pristine soil is a key factor when deciding to use phytoremediation or other ex-situ conventional remediation techniques. PMID:25461087

  14. Recurrence of fecal coliforms and Salmonella species in biosolids following thermophilic anaerobic digestion.

    PubMed

    Iranpour, Reza; Cox, Huub H J

    2006-09-01

    The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion. PMID:17120460

  15. Characterization of sulfur in raw and anaerobically digested municipal wastewater treatment sludges.

    PubMed

    Du, Weiwei; Parker, Wayne

    2013-02-01

    A microwave-enhanced acid digestion method that was integrated with inductively coupled plasma-atomic emission spectrometry was developed and validated for determining total, soluble, and precipitated sulfur in wastewater treatment sludges. The coefficient of variation of this method was less than 4.0%. The recovery of dosed sulfur from sludge samples was between 97.1% and 100.5%. The composition of sulfur in primary and waste-activated sludge (WAS) before and after anaerobic digestion at 35 and 55 degrees C was characterized by employing this developed method. There was not an apparent relationship between the precipitated sulfur and nonsoluble iron concentrations in sludges. Raw WAS had a more consistent organic sulfur fractionation because of its relatively homogeneous composition. The organic-sulfur-containing components (proteins) of WAS had reduced degradability as compared with that in primary sludge during anaerobic digestion. Digestion at 55 degrees C increased solubilization but not ultimate conversion of organic sulfur in sludge. PMID:23472328

  16. Effect of Calcium Ions on Dewaterability of Enzymatic-Enhanced Anaerobic Digestion Sludge.

    PubMed

    Luo, Kun; Yang, Qi; Li, Xiao-Ming; Zhang, Shi-Ying; Pang, Ya; Li, Xue; Liao, Xing-Sheng

    2015-08-01

    Waste-activated sludge (WAS) solubilized remarkably after enzymatic-enhanced anaerobic digestion, but its dewaterability was deteriorated. In this study, a novel method was performed to improve the dewaterability of enzymatic-enhanced anaerobic digestion sludge by adding CaCl2 (0.01~1.00 g/g total sludge). The capillary suction time (CST), moisture content, and filtrate turbidity were employed to characterize the dewaterability of WAS, and the possible mechanisms involved were clarified. The results showed the dewaterability did not worsen when CaCl2 was added before sludge digestion, and the CST, moisture content, and filtrate turbidity were notably reduced with the increase of CaCl2 dosage. It also shown that calcium ions played an important role in the bioflocculation of digested sludge by neutralizing negative charges on the surface of sludge. In addition, soluble protein initially lowered a little and then observably improved with the addition of CaCl2, while soluble carbohydrate was reduced sharply first and then bounced back afterwards. The interactions between calcium ions and the biopolymer further enhanced the dewatering of sludge through bridging of colloidal particles together. PMID:26129703

  17. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production.

    PubMed

    Passos, Fabiana; Ferrer, Ivet

    2015-01-01

    Microalgal biomass grown in wastewater treatment raceway ponds may be valorised producing bioenergy through anaerobic digestion. However, pretreatment techniques seem to be necessary for enhancing microalgae methane yield. In this study, hydrothermal pretreatment was studied prior to batch and continuous reactors. The pretreatment increased organic matter solubilisation (8-13%), anaerobic digestion rate (30-90%) and final methane yield (17-39%) in batch tests. The highest increase was attained with the pretreatment at 130 C for 15 min, which was attested in a laboratory-scale continuous reactor operated at a hydraulic retention time of 20 days with an average organic loading rate of 0.7 g VS/Lday. The methane yield increased from 0.12 to 0.17 L CH?/g VS (41%) in the pretreated digester as compared to the control. Microscopic images of microalgal biomass showed that pretreated cells had unstructured organelles and disrupted cell wall external layer, which may enhance the hydrolysis. Indeed, images of the pretreated reactor digestate showed how cells were more degraded than in the control reactor. PMID:25462743

  18. Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge.

    PubMed

    Phothilangka, P; Schoen, M A; Huber, M; Luchetta, P; Winkler, T; Wett, B

    2008-01-01

    Thermal hydrolysis is known for an efficient sludge disintegration capability to enhance biogas potential--but to which extent? Obviously, residual VSS concentration in digested sludge gives not sufficient information to predict additional biogas potential. In this paper, different types of waste activated sludge (WAS) were pre-hydrolysed by a full-scale Thermo-Pressure-Hydrolysis Process (Thermo-Druck-Hydrolyse, TDH) and break-down mechanisms on specific organic compounds were investigated. The IWA Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic analysis of monitoring data gained from experimental work. The TDH process combined with anaerobic digestion can be well described by a modified ADM1 model that includes an X(P)-fraction (inactivated aerobic biomass and their decay products). More rapid and more complete degradation of TDH-treated sludge is represented by calibrated disintegration rate and disintegration factors, while biokinetic parameters of acetogenesis and methanogenesis show no sensitivity. TDH process impacts mainly biomass and decay products while inerts Xi already contained in the raw wastewater are hardly converted. Final concentration of soluble inerts in digestion effluent has been increased from 2% to 9% of influent COD due to thermal hydrolysis. An increase in biogas generation (ca. +80%) and in ammonia release (ca. +75%) can be explained by complete degradation of cell mass. PMID:18957761

  19. Continuously-stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System Setup and Basic Operation

    PubMed Central

    Usack, Joseph G.; Spirito, Catherine M.; Angenent, Largus T.

    2012-01-01

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier 1-3. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications 4,5. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane 6,7. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures 8, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations 9. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation 10. PMID:22824993

  20. Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake.

    PubMed

    Hamid, Hanna; Eskicioglu, Cigdem

    2013-09-15

    Fate and removal of 16 steroidal (estrogenic, androgenic and progestogenic) hormones were studied during advanced anaerobic digestion of sludge cake using microwave (MW) pretreatment. Effect of pretreatment temperature (80, 120, 160 C), operating temperature (mesophilic at 35 2 C, thermophilic at 55 2 C) and sludge retention time (SRT: 20, 10, 5 days) were studied employing eight lab-scale semi-continuously fed digesters. To determine the potential effect of MW hydrolysis, hormones were quantified in total (sorbed + soluble) and supernatant (soluble) phases of the digester influent and effluent streams. Seven of 16 hormones were above the method reporting limit (RL) in one or more of the samples. Hormone concentrations in total phase of un-pretreated (control) and pretreated digester feeds ranged in <157-2491 ng/L and <157-749 ng/L, respectively. The three studied factors were found to be statistically significant (95% confidence level) in removal of one or more hormones from soluble and/or total phase. MW hydrolysis of the influent resulted in both release (from sludge matrix) and attenuation of hormones in the soluble phase. Accumulation of estrone (E1) as well as progesterone (Pr) and androstenedione (Ad) in most of the digesters indicated possible microbial transformations among the hormones. Compared to controls, all pretreated digesters had lower total hormone concentrations in their influent streams. At 20 days SRT, highest total removal (E1+E2+Ad +Pr) was observed for the thermophilic control digester (56%), followed by pretreated mesophilic digesters at 120 C and 160 C with around 48% efficiency. In terms of conventional performance parameters, relative (to control) improvements of MW pretreated digesters at a 5-d SRT ranged in 98-163% and 57-121%, for volatile solids removal and methane production, respectively. PMID:23866136

  1. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production/degradation and methane generation observed in the laboratory-scale AP reactor. The model was validated with historical data from the full-scale digesters. PMID:22020473

  2. Effect of sulfate on low-temperature anaerobic digestion

    PubMed Central

    Madden, Pádhraig; Al-Raei, Abdul M.; Enright, Anne M.; Chinalia, Fabio A.; de Beer, Dirk; O'Flaherty, Vincent; Collins, Gavin

    2014-01-01

    The effect of sulfate addition on the stability of, and microbial community behavior in, low-temperature anaerobic expanded granular sludge bed-based bioreactors was investigated at 15°C. Efficient bioreactor performance was observed, with chemical oxygen demand (COD) removal efficiencies of >90%, and a mean SO2−4 removal rate of 98.3%. In situ methanogensis appeared unaffected at a COD: SO2−4 influent ratio of 8:1, and subsequently of 3:1, and was impacted marginally only when the COD: SO2−4 ratio was 1:2. Specific methanogenic activity assays indicated a complex set of interactions between sulfate-reducing bacteria (SRB), methanogens and homoacetogenic bacteria. SO2−4 addition resulted in predominantly acetoclastic, rather than hydrogenotrophic, methanogenesis until >600 days of SO2−4-influenced bioreactor operation. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE) of 16S rRNA genes. Fluorescence in situ hybridizations (FISH), qPCR and microsensor analysis were combined to investigate the distribution of microbial groups, and particularly SRB and methanogens, along the structure of granular biofilms. qPCR data indicated that sulfidogenic genes were present in methanogenic and sulfidogenic biofilms, indicating the potential for sulfate reduction even in bioreactors not exposed to SO2−4. Although the architecture of methanogenic and sulfidogenic granules was similar, indicating the presence of SRB even in methanogenic systems, FISH with rRNA targets found that the SRB were more abundant in the sulfidogenic biofilms. Methanosaeta species were the predominant, keystone members of the archaeal community, with the complete absence of the Methanosarcina species in the experimental bioreactor by trial conclusion. Microsensor data suggested the ordered distribution of sulfate reduction and sulfide accumulation, even in methanogenic granules. PMID:25120534

  3. Co-occurence of Crenarchaeota, Thermoplasmata and methanogens in anaerobic sludge digesters.

    PubMed

    Chouari, Rakia; Guermazi, Sonda; Sghir, Abdelghani

    2015-05-01

    16S rRNA Crenarchaeota and Thermoplasmata sequences retrieved from 22 anaerobic digesters were analysed. 4.8 and 0.53% of archaeal sequences were simultaneously affiliated to these lineages. A core of 2 operational taxonomic units (OTUs) representing 0.6to -33.6% of all archaeal sequences were defined for the Crenarchaeotes and identified to already known but not yet cultivable organisms in almost half of the digesters sampled. For the Thermoplasmata, apparently less abundant with 0.7to -4.7% of the archaeal sequences, 3 OTUs were identified. We showed here that Crenarchaeotes coexist with methanogens and are particularly abundant when Arch I lineage (also called WSA2 by Hugenholtz) is dominant in digesters. Moreover, Thermoplasmata were detected when Crenarchaeota were present. Interactions between methanogens, Crenarchaeotea and Thermoplamata were thus discussed. PMID:25739565

  4. Anaerobic digestion of pre-fermented potato peel wastes for methane production.

    PubMed

    Liang, Shaobo; McDonald, Armando G

    2015-12-01

    This study investigated the feasibility of anaerobic digestion (AD) of potato peel waste (PPW) and its lactic acid fermentation residue (PPW-FR) for methane (CH4) production. The experimental results showed that about 60-70% CH4 content was obtained. The digester using PPW-FR as feedstock exhibited better performance and produced a highest cumulative CH4 production of 273 L/kg VS fed, followed by 239 L/kg VS fed using PPW under the same conditions. However, with increasing solid loadings of PPW-FR feedstock from 6.4% to 9.1%, the CH4 production was inhibited. The generation, accumulation, and degradation of volatile fatty acids (VFAs) in digesters were also investigated in this research. PMID:26421481

  5. Effect of fillers on key characteristics of sludge thermophilic anaerobic digestion.

    PubMed

    Shao, Liming; Xu, Yuanshun; Wang, Tianfeng; L, Fan; He, Pinjing

    2015-10-01

    In anaerobic digestion (AD) of sludge, AD efficiency and digested sludge (DS) dewaterability are critical factors. In this study, polyester non-woven fabric fillers were integrated into a sludge digester. The effect of such fillers on digestion was investigated in thermophilic temperature range in semi-continuous mode. Methane production of filler system and control reactor were significantly different (P < 0.05, paired t-test). At hydraulic retention times of 18 days and 12 days, the corresponding methane yields from filler system were 140% and 161%, respectively, of the yields from control digester without filler. Improvement of DS dewaterability was uncertain during 110 days of operation. While after a longer period of digestion, filler system resulted in a lower normalized capillary suction time of DS (76.5 21.6 s L/g total suspended solids) than control reactor (118.7 32.9 s L/g total suspended solids). The results showed that the filler could improve thermophilic AD performance, except at too short hydraulic retention times. PMID:26151853

  6. EVALUATION OF THE FULL-SCALE APPLICATION OF ANAEROBIC SLUDGE DIGESTION AT THE BLUE PLAINS WASTEWATER TREATMENT FACILITY, WASHINGTON, DC

    EPA Science Inventory

    The mesophilic-thermophilic digestion process is a new two-step concept for treating municipal wasterwater sludges. The first step operates under mesophilic process conditions (digestion with anaerobic microorganisms that thrive at 90 to 100F). The second step operates under ther...

  7. Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers in the industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate – AD supernatant) on milled eucalyptus...

  8. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    SciTech Connect

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  9. Green job bio-aerosol exposure during anaerobic digestion for biomass energetic valorisation.

    PubMed

    Traversi, Deborah; Gorrasi, Ilaria; Bonetta, Sara; Leinardi, Riccardo; Pietrangeli, Biancamaria; Carraro, Elisabetta; Gilli, Giorgio

    2015-04-01

    The continued expansion of the green economy increases the risk profile for green occupational jobs. One of the broadest green sectors in terms of growth is the anaerobic digestion of biomasses. In recent years, this development has also interested Italian regions. The management of biomass includes biological risk and the risk of particulate and endotoxin exposure. In the present study, we evaluated airborne exposure for anaerobic digestion workers at two real-scale plants. Digested biomass has different origins, ranging from cattle sludge and manure to poultry manure to agricultural harvesting or processing residues, particularly from maize and fruits. Two sampling points were chosen: at the first, the input biomasses were stored, and the hopper was loaded; at the second, the digested sludge exited the digester. The microbiological parameters, assessed using an active sampler and cultural method, were the total bacteria counts (at 22, 37, and 55°C), yeasts, fungi, Pseudomonaceae, Clostridia spp., Enterobacteriaceae and Actinomycetes. Moreover, at the same sampling points, we evaluated six PM10 fraction levels (10.0-7.2, 7.2-3.0, 3.0-1.5, 1.5-0.95, 0.95-0.49, and <0.49µm) and the endotoxin content of each fraction. In this investigation, the microbe contamination of the air varied from low to high levels, while the PM10 and endotoxin levels were limited, reaching rural environmental levels (61.40µg/m(3) and 18.88EU/m(3), respectively). However, contamination and occupational risk must be evaluated individually for each plant because numerous variables influence the risk magnitude, particularly digested sludge treatments, such as input biomass nature, storage, movement conditions, building configuration and technological processes. PMID:25791865

  10. Potential use of duckweed based anaerobic digester effluent as a feed source for heterotrophic growth of micro-algae

    NASA Astrophysics Data System (ADS)

    Ahmadi, L.; Dupont, R.

    2013-12-01

    Finding an alternative source of energy for the growing world's demand is a challenging task being considered by many scientists. Various types of renewable energy alternatives are being investigated by researchers around the world. The abundance of duckweed (i.e., Lemna and Wolfia sp.) in wetlands and wastewater lagoons, their rapid growth, and their capacity for nutrient, metal and other contaminant removal from wastewater suggests their potential as an inexpensive source of biomass for biofuel production. Another source of biomass for biofuel and energy production is micro-algae. The large-scale growth of micro-algae can potentially be achieved in a smaller footprint and at a higher rate and lower cost via heterotrophic growth compared to autotrophic growth for specific species that can grow under both conditions. Here we describe two types of research. First, two lab-scale, 5 L anaerobic digesters containing municipal raw wastewater that were set up, maintained and monitored over the course of 6 months using duckweed as the feed source. The pH, salinity, amount of gas production and gas composition were measured on a daily basis. The results from these measurements show that duckweed can be used as a good source of biofuel production in the form of methane gas. The second set of reactors consisted of two 1 L batch fed reactors containing algae (Chlorella vulgaris) grown in the lab environment heterotrophically. The pH and DO were monitored on a daily basis in order to investigate their effect on algae growth. Lipid analysis of the harvested algal biomass was done to investigate the efficiency of harvestable biofuel products. A nutrient solution containing glucose as an energy source was used as the initial feed solution, and the potential substitution of the glucose solution with the organic carbon residue from the duckweed digester effluent was investigated. Methane production, carbon stabilization, and gas composition results from the duckweed fed anaerobic digesters, and the growth and biolipid production of heterotrophic micro-algae fed pure substrate versus residual digester effluent carbon are discussed in detail in this study.

  11. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process. PMID:23808751

  12. Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover.

    PubMed

    Li, Yueh-Fen; Shi, Jian; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2016-01-01

    The objective of this study was to understand how the non-microbial factors of L-AD effluent affected the microbiome composition and successions in the SS-AD digesters using both Illumina sequencing and qPCR quantification of major genera of methanogens. The SS-AD digesters started with a feedstock/total effluent (F/Et) ratio 2.2 (half of the effluent was autoclaved) performed stably, while the SS-AD digesters started with a 4.4 F/Et ratio (no autoclaved effluent) suffered from digester acidification, accumulation of volatile fatty acids, and ceased biogas production two weeks after startup. Some bacteria and methanogens were affected by non-microbial factors of the L-AD fluent. Alkalinity, the main difference between the two F/Et ratios, may be the crucial factor when SS-AD digesters were started using L-AD effluent. PMID:26575616

  13. Effects of thermal pre-treatment on anaerobic co-digestion of municipal biowastes at high organic loading rate.

    PubMed

    Guo, Jianbin; Wang, Wei; Liu, Xiao; Lian, Songjian; Zheng, Lei

    2014-04-01

    Anaerobic co-digestion of thermal pre-treated municipal biowaste (MBW) is a field of research that has had limited contributions to date. In this study, laboratory-scale semi-continuously fed anaerobic digesters treating thermally treated and non-treated MBW were operated at high organic loading rates (OLR). The results show that the methanogenesis process was inhibited by the accumulated volatile fatty acids when 30% (w/w) of dewatered activated sludge (DAS) was co-digested with food waste (FW) and fruit/vegetable residue (FVR) at high OLR≥10 kg volatile solid m(-3) d(-1). Co-digestion with thermal hydrolysed DAS can significantly improve digester performance. In contrast to DAS, some adverse effects of thermal pretreatment on the biodegradability of FW and FVR were observed. Therefore, co-digestion of FW, FVR with thermally treated DAS is suggested as an alternative to promote high methane production and process stability. PMID:24374189

  14. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  15. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    SciTech Connect

    Liu Zhanguang; Zhou Xuefei; Zhang Yalei; Zhu Hongguang

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

  16. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    PubMed

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11)cellsml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45kgVSm(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160?m with an average of 51?m and a median of 26?m. Conversely, at lower organic loading (15kgVSm(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production. PMID:24342346

  17. Cogeneration system using digester gas for Macon-Bibb county water and sewerage authority

    SciTech Connect

    Priester, D.C.

    1984-05-01

    With rise in energy cost, there is renewed focus on alternate energy sources, and especially sources that previously were not feasible to utilize, but were readily available. One of these is methane gas generated in biomass conversion in wastewater treatment plant anaerobic digestion process. The gas generated has been historically wasted and only used where it has been convenient. Now it is economically feasible to engineer systems to make the best use of the gas. The combination of cogeneration and digester gas utilization is particularly attractive for medium to large wastewater treatment plants. This paper describes the system designed for the Poplar Street Water Pollution Control Plant of the Macon-Bibb County Water and Sewerage Authority. The system consists of gas collection, cleaning and drying systems, storage vessel, and a utilization system of gas turbine generators.

  18. Characterization and environmental studies on anaerobic digestion of solid wastes. Progress report, February 1, 1982-July 31, 1982

    SciTech Connect

    Sengupta, S.; Wong, K.V.; Nemerow, N.; Streitfeld, M.; Tilles, A.; Narasimhan, R.; Muthuswamy, S.

    1982-01-01

    Characterization of the following waste streams: air-classified light (ACL), digester slurry, filter cake, filtrate, washwater input and washwater effluent has been made for the Refcom facility in order to assess the effects of these waste streams, if discharged into the environment. Special laboratory studies to evaluate the effect of plastics on anaerobic digestion have been undertaken. A separate report has been furnished describing the studies of lab-model digesters. Data collected for ACL has been statistically analyzed.

  19. Thermal pre-treatment of primary and secondary sludge at 70 degrees C prior to anaerobic digestion.

    PubMed

    Skiadas, I V; Gavala, H N; Lu, J; Ahring, B K

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated biochemical reactions and higher growth rate of microorganisms resulting in an increased methanogenic potential at lower hydraulic retention times. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization and could be realized at relatively low cost especially at low temperatures. The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic matter removal and methane recovery could be obtained at lower HRTs. PMID:16180423

  20. Valorisation of biodiesel production wastes: Anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol.

    PubMed

    Santos-Ballardo, David U; Font-Segura, Xavier; Ferrer, Antoni Sánchez; Barrena, Raquel; Rossi, Sergio; Valdez-Ortiz, Angel

    2015-03-01

    One of the principal opportunity areas in the development of the microalgal biodiesel industry is the energy recovery from the solid microalgal biomass residues to optimise the fuel production. This work reports the cumulative methane yields reached from the anaerobic digestion of the solid microalgal biomass residues using different types of inocula, reporting also the improvement of biogas production using the co-digestion of microalgal biomass with glycerol. Results demonstrate that the solid microalgal biomass residues showed better biogas production using a mesophilic inoculum, reaching almost two-fold higher methane production than under thermophilic conditions. Furthermore, the solid microalgal biomass residues methane production rate showed an increase from 173.78 ± 9.57 to 438.46 ± 40.50 mL of methane per gram of volatile solids, when the co-digestion with glycerol was performed. These results are crucial to improve the energy balance of the biodiesel production from Tetraselmis suecica, as well as proposing an alternative way to treat the wastes derived from the microalgae biodiesel production. PMID:25737140

  1. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    SciTech Connect

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-07-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

  2. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. PMID:26141283

  3. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    PubMed

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrve, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. PMID:21227687

  4. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers are increasingly using forage radish as a winter cover crop to achieve multiple soil and environmental benefits. In this study, pilot-scale mixed digesters were used to quantify methane (CH4) and hydrogen sulfide (H2S) production when using forage radish, a sulfur-rich cover crop, as a co-d...

  5. Anaerobic digestion technology in poultry and livestock waste treatment--a literature review.

    PubMed

    Sakar, Suleyman; Yetilmezsoy, Kaan; Kocak, Emel

    2009-02-01

    A literature review has been undertaken to investigate the performance of the different anaerobic process configurations and operational conditions used in poultry and livestock waste treatment. The results of the extensive literature review showed that a wide range of different reactor volumes varying from 100 mL to 95 m3 were utilized in the investigation of anaerobic processing of poultry manure. Retention times studied were between 13.2 h and 91 days. Most of studies were carried out under mesophilic conditions maintained between 25 and 35 degrees C. Chemical oxygen demand (COD) removals and organic loading rate (OLR) ranged from 32 to 78%, and from 1.1 to 2.9 kg COD m(-3) day(-1), respectively. Biogas yields were achieved between 180 mL g(-1) COD added and 74 m3 day(-1) for a wide range of different reactor configurations. Up-flow anaerobic sludge blanket (UASB) seems to be a suitable process for the treatment of poultry manure wastewater and the liquid fraction of hen manure, due to its ability to maintain a sufficient amount of active biomass. The literature review showed that various reactor configurations such as fixed-film reactor, attached-film bioreactor, anaerobic rotating biological reactor, batch reactors, downflow anaerobic filter, fixed dome plant, UASB, continuously stirred tank reactor (CSTR), up-flow anaerobic filter (UAF), temperature-phased anaerobic digestion (TPAD), anaerobic hybrid reactor (AHR), and two-stage anaerobic systems are well suited to anaerobic processing of cattle manure. At both mesophilic and thermophilic conditions, high COD removals (87-95%) were achieved for treatment of cattle manure wastewaters. The COD and volatile solids (VS) reductions obtained were 37.9 to 94% and 9.6 to 92%, respectively. During the studies, OLR and retention times ranged between 0.117 and 7.3 g VS L(-1) day(-1) and between 0.5 and 140 days, respectively. In anaerobic processing of cattle manure, methane yields between 48 mmol CH4 L(-1) and 4681.3 m3 CH4 month(- 1) were found for the corresponding reactor volumes of 120 mL and 1300 m3, respectively. In anaerobic processing of swine manure, OLR ranged from 0.9 to 15.42 g VS L(-1) day(- 1) at mesophilic conditions (25-35 degrees C). The reactor volumes varied between 125 mL and 380 L. Temperature and retention times ranged from 25 to 60 degrees C, and 0.9 to 113 days, respectively. COD and VS reductions achieved were between 57 and 78% and between 34.5 and 61%, respectively. Moreover, methane yields were obtained between 22 and 360 mL CH4 g(-1) VS added. The results showed that UASB, anaerobic baffled reactors, CSTR, and anaerobic sequencing batch reactor (ASBR) were successfully utilized in anaerobic processing of swine manure at both mesophilic and thermophilic conditions. PMID:19220987

  6. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload.

    PubMed

    Lerm, S; Kleyböcker, A; Miethling-Graff, R; Alawi, M; Kasina, M; Liebrich, M; Würdemann, H

    2012-03-01

    Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i.e. hydrogenotrophic and acetoclastic methanogens is necessary to respond successfully to perturbation and leads to stable process performance. PMID:22192420

  7. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload

    SciTech Connect

    Lerm, S.; Kleyboecker, A.; Miethling-Graff, R.; Alawi, M.; Kasina, M.; Liebrich, M.; Wuerdemann, H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i.e. hydrogenotrophic and acetoclastic methanogens is necessary to respond successfully to perturbation and leads to stable process performance.

  8. Energy recovery from grass using two-phase anaerobic digestion.

    PubMed

    Yu, H W; Samani, Z; Hanson, A; Smith, G

    2002-01-01

    Municipal solid wastes are major sources of air, water and soil contamination. There is a need for alternative waste management techniques to better utilize the waste and minimize its adverse environmental impact. A two-phase pilot-scale bio-fermentation system was used to evaluate the feasibility of producing methane from grass waste, a major constituent of solid wastes. The bi-phasic system consists of a solid phase and a methane phase. Leachate is re-circulated through the solid phase until a desired level of volatile fatty acid (VFA) is accumulated in the leachate. The leachate is then transferred to the methane reactor where the VFA is converted to methane. The results showed that 67% of the volatile solids in the waste can be converted into soluble chemical oxygen demand in a period of six months. The system produced an average of 0.15 m3 of methane per kg of grass. The average methane concentration in the produced gas was 71%. A mathematical model was developed to estimate the methane and carbon dioxide concentrations in the gas phase as a function of reactor properties. PMID:11942700

  9. Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse.

    PubMed

    Boncz, M A; Formagini, E L; Santos, L da S; Marques, R D; Paulo, P L

    2012-01-01

    Pushed by demand for renewable energy, the ethanol industry in Brazil is expanding. However, production of 1 m(3) of ethanol generates around 13 m(3) of liquid residues (vinasse), so this expansion results in an increasing need for a more adequate destination of these residues. Nowadays the vinasse is dispersed on the sugar cane fields in the practice of fertirrigation, but anaerobic digestion of this residue may be a better solution, additionally offering an alternative source of energy, able to complement hydroelectric power supply in the dry season. However, when trying to digest vinasse at reduced hydraulic retention times, complications arise from its strong tendency toward acidification, upsetting the fragile balance of transformations normally occurring under anaerobic conditions. For successful operation of an anaerobic treatment process with acceptable hydraulic residence times, increasing alkalinity levels inside the reactor is neces-sary. In the present work we show that pH regulation by means of urea dosing, in spite of the risk posed by ammonia toxicity towards methanogenic biomass, can be a viable alternative to avoid vinasse acidification. The ammonia formed in urea conversion remains in solution, rather than escaping to the biogas, and so its use as fertiliser can offset its cost of application in the process. PMID:23032778

  10. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge.

    PubMed

    Prado, Tatiana; Guilayn, Wilma de Carvalho Pereira Bonet; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2013-02-01

    The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods) used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV), rotavirus species A (RVA), norovirus genogroup II (NoV GII) and the hepatitis A virus (HAV) from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR) was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%), RVA, NoV GII (45%) and HAV (18%), indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management. PMID:23440119

  11. Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester

    PubMed Central

    Ellis, Joshua T.; Tramp, Cody; Sims, Ronald C.; Miller, Charles D.

    2012-01-01

    The microbial diversity and metabolic potential of a methanogenic consortium residing in a 3785-liter anaerobic digester, fed with wastewater algae, was analyzed using 454 pyrosequencing technology. DNA was extracted from anaerobic sludge material and used in metagenomic analysis through PCR amplification of the methyl-coenzyme M reductase ? subunit (mcrA) gene using primer sets ML, MCR, and ME. The majority of annotated mcrA sequences were assigned taxonomically to the genera Methanosaeta in the order Methanosarcinales. Methanogens from the genus Methanosaeta are obligate acetotrophs, suggesting this genus plays a dominant role in methane production from the analyzed fermentation sample. Numerous analyzed sequences within the algae fed anaerobic digester were unclassified and could not be assigned taxonomically. Relative amplicon frequencies were determined for each primer set to determine the utility of each in pyrosequencing. Primer sets ML and MCR performed better quantitatively (representing the large majority of analyzed sequences) than primer set ME. However, each of these primer sets was shown to provide a quantitatively unique community structure, and thus they are of equal importance in mcrA metagenomic analysis. PMID:23724331

  12. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge

    PubMed Central

    Prado, Tatiana; Guilayn, Wilma de Carvalho Pereira Bonet; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2013-01-01

    The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods) used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV), rotavirus species A (RVA), norovirus genogroup II (NoV GII) and the hepatitis A virus (HAV) from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR) was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%), RVA, NoV GII (45%) and HAV (18%), indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management. PMID:23440119

  13. Effect of anaerobic digestion at 35, 55 and 60 C on pharmaceuticals and organic contaminants.

    PubMed

    Davidsson, A; Kjerstadius, H; Haghighatafshar, S; Fick, J; Olsson, M; Wachtmeister, H; Eriksson, E; la Cour Jansen, J

    2014-01-01

    The application of treated sewage sludge on farmland is a suggested method for recycling nutrients and reducing demand for commercial fertilizer. However, sludge needs to be safe from possible contaminants which can cause acute and long-term health and environmental problems. Residual pharmaceuticals and organic contaminants are mentioned as emerging threats since wastewater treatment plants are not designed to degrade these substances. The aim of this study was to screen and evaluate the presence, and reduction, of pharmaceuticals and polycyclic aromatic hydrocarbons (PAHs) during anaerobic digestion of mixed primary and waste-activated sludge at 35, 55 and 60 C and during pasteurization at 70 C. The study showed the difficulty of analysing pharmaceutical compounds in low concentrations in the sludge matrix. No general reduction of these compounds was seen during treatment, but for individual substances some reduction occurred. The PAHs were generally not reduced during digestion or pasteurization, but for three substances (indeno[1,2,3-cd]pyrene and dibenzo[a,h]anthracene (analysed together) and benzo[g,h,i]perylene) reduction (up to 60%) during digestion was seen. Digestion at 35 and 55 C resulted in about the same order of reduction of the three individual PAHs, which was higher than for digestion at 60 C. PMID:24647195

  14. State of the art and future perspectives of thermophilic anaerobic digestion.

    PubMed

    Ahring, B K; Mladenovska, Z; Iranpour, R; Westermann, P

    2002-01-01

    The state of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65 degrees C or more may be necessary in the future to meet the demands for full sanitation of the waste material before final disposal. We show data of anaerobic digestion at extreme thermophilic temperatures. PMID:12188561

  15. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process.

    PubMed

    Serna-Maza, A; Heaven, S; Banks, C J

    2014-01-01

    Three 35-L anaerobic digesters fed on source segregated food waste were coupled to side-stream ammonia stripping columns and operated semi-continuously over 300 days, with results in terms of performance and stability compared to those of a control digester without stripping. Biogas was used as the stripping medium, and the columns were operated under different conditions of temperature (55, 70, 85 C), pH (unadjusted and pH 10), and RT (2-5 days). To reduce digester TAN concentrations to a useful level a high temperature (?70 C) and a pH of 10 were needed; under these conditions 48% of the TAN was removed over a 138-day period without any detrimental effects on digester performance. Other effects of the stripping process were an overall reduction in digestate organic nitrogen-containing fraction compared to the control and a recovery in the acetoclastic pathway when TAN concentration was 177020 mg kg(-1). PMID:24300847

  16. Electrokinetic removal of Cu and Zn in anaerobic digestate: interrelation between metal speciation and electrokinetic treatments.

    PubMed

    Zhu, Neng-min; Chen, Mengjun; Guo, Xu-jing; Hu, Guo-quan; Yu-Deng

    2015-04-01

    In recent years, a potential controversy has arisen that whether the metal speciation in solid matrix determined its electrokinetic (EK) removal efficiency or by contrast. In present study, Cu and Zn in anaerobic digestate were selected as candidates to investigate the relation between the species of metal and EK treatment. The obtained results show that the removal efficiency for each fraction decreased in the order as follows: exchangeable ≥ bound to carbonates > bound to Fe-Mn oxides>bound to organic matters > residual. For both Cu and Zn, their total removal performance was dependent on their dominant fraction in the digestate. A constant pH maintenance around the digestate via circulation of acid electrolyte is an optional operation because a strong acid atmosphere (pH < 2) around the digestate can be formed automatically as EK time elapses. Despite that many reactions occurred during EK process, the species distribution of Cu and Zn in the digestate determined their total EK removal efficiency essentially. PMID:25562809

  17. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. PMID:25151445

  18. Modeling a solar-heated anaerobic digester for the developing world using system dynamics

    NASA Astrophysics Data System (ADS)

    Bentley, Johanna Lynn

    Much of the developing world lacks access to a dependable source of energy. Agricultural societies such as Mozambique and Papua New Guinea could sustain a reliable energy source through the microbacterial decomposition of animal and crop waste. Anaerobic digestion produces methane, which can be used directly for heating, cooking, and lighting. Adding a solar component to the digester provides a catalyst for bacteria activity, accelerating digestion and increasing biogas production. Using methane decreases the amount of energy expended by collecting and preparing firewood, eliminates hazardous health effects linked to inhalation of particles, and provides energy close to where it is needed. The purpose of this work is two fold: initial efforts focus on the development and validation of a computer-based system dynamics model that combines elements of the anaerobic digestion process in order to predict methane output; second, the model is flexed to explore how the addition of a solar component increases robustness of the design, examines predicted biogas generation as a function of varying input conditions, and determines how best to configure such systems for use in varying developing world environments. Therefore, the central components of the system: solar insolation, waste feedstock, bacteria population and consumption rates, and biogas production are related both conceptually and mathematically through a serious of equations, conversions, and a causal loop and feedback diagram. Given contextual constraints and initial assumptions for both locations, it was determined that solar insolation and subsequent digester temperature control, amount of waste, and extreme weather patterns had the most significant impact on the system as a whole. Model behavior was both reproducible and comparable to that demonstrated in existing experimental systems. This tool can thus be flexed to fit specific contexts within the developing world to improve the standard of living of many people, without significantly altering everyday activities.

  19. An evaluation of the USEPA calculations of greenhouse gas emissions from anaerobic lagoons.

    PubMed

    Lory, John A; Massey, R E; Zulovich, J M

    2010-01-01

    On 10 Apr. 2009, USEPA proposed and on 30 Oct. 2009 USEPA finalized reporting thresholds for a wide range of human-derived sources of greenhouse gas (GHG) as a first step in establishing emission limits in the United States. The only on-farm source category that required monitoring under the proposed and final rule was methane (CH(4)) and nitrous oxide (NO(2)) emissions from manure storage facilities. Our objective was to assess, through a literature review, the methodology used by USEPA to estimate current CH(4) emissions from uncovered anaerobic lagoons and the proposed methodology for reporting those emissions under the proposed rule. A review of the performance of uncovered anaerobic lagoons indicates that they are more effective at degrading volatile solids (VS) than predicted using parameters provided by USEPA that had been developed for anaerobic digesters. We also documented errors in the USEPA- and International Panel on Climate Change-estimated methane conversion factors for uncovered anaerobic lagoons. We suggest estimating CH(4) emissions from anaerobic lagoons based on VS degraded in the lagoon and B' (m(3) CH(4) generated kg(-1) VS destroyed). Our estimate of CH(4) released from uncovered anaerobic lagoons indicated the regulatory operation size threshold could be at least 65% smaller than predicted by USEPA in the proposed rule. Our calculated estimate of CH(4) emissions was substantially greater than the few estimates of CH(4) loss based on direct measurements on uncovered anaerobic lagoons. More research is needed before it will be possible to provide definitive estimates of CH(4) loss from uncovered anaerobic lagoons. PMID:20400573

  20. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion.

    PubMed

    De Vrieze, Jo; Gildemyn, Sylvia; Arends, Jan B A; Vanwonterghem, Inka; Verbeken, Kim; Boon, Nico; Verstraete, Willy; Tyson, Gene W; Hennebel, Tom; Rabaey, Korneel

    2014-05-01

    Anaerobic digestion (AD) is a well-established technology for energy recovery from organic waste streams. Several studies noted that inserting a bioelectrochemical system (BES) inside an anaerobic digester can increase biogas output, however the mechanism behind this was not explored and primary controls were not executed. Here, we evaluated whether a BES could stabilize AD of molasses. Lab-scale digesters were operated in the presence or absence of electrodes, in open (no applied potential) and closed circuit conditions. In the control reactors without electrodes methane production decreased to 50% of the initial rate, while it remained stable in the reactors with electrodes, indicating a stabilizing effect. After 91 days of operation, the now colonized electrodes were introduced in the failing AD reactors to evaluate their remediating capacity. This resulted in an immediate increase in CH4 production and VFA removal. Although a current was generated in the BES operated in closed circuit, no direct effect of applied potential nor current was observed. A high abundance of Methanosaeta was detected on the electrodes, however irrespective of the applied cell potential. This study demonstrated that, in addition to other studies reporting only an increase in methane production, a BES can also remediate AD systems that exhibited process failure. However, the lack of difference between current driven and open circuit systems indicates that the key impact is through biomass retention, rather than electrochemical interaction with the electrodes. PMID:24576697