These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS  

EPA Science Inventory

EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

2

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-print Network

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase II - A Survey who took concrete steps to install an anaerobic digestion (AD) facility and documentation motivated by being able to reduce odor and use the digested solids as animal bedding. Neither

3

FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT  

EPA Science Inventory

The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

4

Economic viability of anaerobic digestion  

SciTech Connect

The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

1996-01-01

5

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-print Network

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase I - A Survey of U concrete steps to install an anaerobic digestion (AD) facility and documentation of the factors to reduce odor and use the digested solids as animal bedding. Neither of these factors was a motivator

6

The anaerobic digestion process  

SciTech Connect

The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

1996-01-01

7

Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China  

PubMed Central

Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton?1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471

DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.

2013-01-01

8

Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China.  

PubMed

Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed. PMID:21348471

Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V

2011-03-15

9

Batch load anaerobic digestion of dairy manure  

E-print Network

be the minimum size required for economic feasibility of methane production. Morris et al. (1975) concluded that anaerobic digestion was not feasible for a 100 cow dairy. Ifeadi and Brown (1975) estimated that the break even size for methane production from a... and resource recovery. Anaerobic digestion of manure has re- ceived much attention as a method to reduce the pollution threat to the environment while reclaiming energy in the form of methane gas from the biomass. Currently there is one commercial anaerobic...

Egg, Richard P

2012-06-07

10

TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS AT THE YONKERS, NY, WASTEWATER TREATMENT PLANT  

EPA Science Inventory

The paper summarizes the results of a 2-year field test to assess the performance of a specially modified commercial phosphoric acid 200 kW fuel cell power plant to recover energy from anaerobic digester gas (ADG) which has been cleansed of contaminants (sulfur and halide compoun...

11

Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils  

SciTech Connect

Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application, indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

2013-12-15

12

Anaerobic digestion in rural China  

SciTech Connect

The People`s Republic of China has been promoting underground, individual, anaerobic digesters to process rural organic materials. This strategy has resulted in approximately five million household anaerobic digesters installed in China today. Simple reactors provide energy and fertilizer for Chinese farms and villages. Another benefit includes improved household sanitation. Reactor design has evolved over time. In the standard modern design, effluent is removed from the reactor at the top of the water column, meaning that supernatant is collected rather than sludge. Additionally, no mixing of the system occurs when effluent is removed. In some systems, a vertical cylindrical pull-rod port is added to the base of the effluent port. Effluent is removed by moving the pull-rod - simply a wooden shaft with a metal disk on the bottom - up and down in the port. A bucket can be placed directly under the pull-rod port, simplifying effluent removal, while the movement of the wooden shaft provides some mixing in the reactor. The gas primarily is used for cooking and lighting. A digester can provide approximately 60 percent of a family`s energy needs. Effluent from the reactors is an odorless, dark colored slurry, primarily used as an agricultural fertilizer. 3 figs.

Henderson, J.P. [City of Vancouver (Canada)

1997-01-01

13

Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.  

PubMed

The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes. PMID:23739470

Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

2013-06-01

14

Anaerobic digestion of cellulosic wastes  

SciTech Connect

Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester.

Lee, D.D.; Donaldson, T.L.

1985-01-01

15

Anaerobic digestion of cellulosic wastes  

SciTech Connect

Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table.

Donaldson, T.L.; Lee, D.D.

1984-01-01

16

Economic feasibility of anaerobic digesters  

SciTech Connect

Farms which have existing adequate manure utilization, such as storage and field application, would normally only consider an anaerobic digestion system based on its energy producing benefits relative to all costs of the system. This paper presents an economic feasibility analysis of a particular on-farm anaerobic digestion system and assesses the impact on feasibility of varying the oil and electricity prices. (Refs. 2).

Criner, G.K.

1987-01-01

17

Anaerobic Digestion of Piggery Waste  

Microsoft Academic Search

Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the

Velsen van A. F. M

1981-01-01

18

Apparatus for the anaerobic digestion of natural organic waste  

SciTech Connect

The title system consists of a feed tank, from which sewage is provided to a digester tank at an adjustable continuous weight, in which the sewage is anaerobically digested. The gas produced in the anaerobic digester is collected at the top and pumped to a diffuser at the bottom of the digester. The supernatent from the treated sewage is transferred to an outlet tank, and sludge is removed from the bottom of the digester tank.

Hawkes, D.L.; Horton, R.; Stafford, D.A.

1980-11-11

19

Application of enzymes in anaerobic digestion.  

PubMed

Owing to the very low economic value of brewer's spent grains, its utilisation for biogas production is very promising. The hydrolysis of ligno-cellulose is the rate limiting step in anaerobic digestion. Enzymatic pre-treatment promotes the hydrolysis of ligno-cellulose, breaking it down to lower molecular weight substances which are ready to be utilised by the bacteria. A cheap raw multi-enzyme produced by a solid state fermentation (SSF) process is a good substitute for expensive conventional enzyme. The SSF enzyme application to spent grain has been investigated by carrying out enzymatic solubility tests, hydrolytic experiments and two-step anaerobic fermentation of spent grain. Gas chromatograph analysis was conducted to quantify fatty acids concentrations, while CH(4), CO(2), O(2), H(2) and H(2)S were measured to determine biogas quality by means of a gas analyser. DS, oDS, pH were also measured to analyse the anaerobic digestion. The result shows that enzyme application promotes the hydrolysis of ligno-cellulose, indicated by higher enzymatic solubility and fatty acid concentration in a hydrolytic bioreactor. Moreover, biogas production is also increased. The quality of the gases produced is also enhanced. Since the anaerobic digestion can be operated in a stable performance, it can also be concluded that SSF enzyme is compatible with anaerobic digestion. PMID:18048974

Bochmann, G; Herfellner, T; Susanto, F; Kreuter, F; Pesta, G

2007-01-01

20

Module 12: Biogas/Anaerobic Digesters  

NSDL National Science Digital Library

Eastern Iowa Community College provides this learning module to teach students anaerobic digester basics, the benefits of anaerobic digesters, the anaerobic digester process, and a variety of related topics. Users can download a zip file in which they will find a syllabus, student handouts, a quiz, and 55 slide PowerPoint presentation.

2014-09-02

21

Anaerobic Digestion of Biowaste in Developing Countries  

E-print Network

Anaerobic Digestion of Biowaste in Developing Countries Practical Information and Case Studies Sandec: Department of Water and Sanitation in Developing Countries #12;Anaerobic Digestion of Biowaste-3-906484-58-7 Bibliographic reference: Vögeli Y., Lohri C. R., Gallardo A., Diener S., Zurbrügg C. (2014). Anaerobic Digestion

Wehrli, Bernhard

22

Kinetic modeling and experimentation of anaerobic digestion  

E-print Network

Anaerobic digesters convert organic waste (agricultural and food waste, animal or human manure, and other organic waste), into energy (in the form of biogas or electricity). An added benefit to bio-digestion is a leftover ...

Rea, Jonathan (Jonathan E.)

2014-01-01

23

Control of interspecies electron transfer flow during anaerobic digestion: dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs.  

PubMed

Dynamic reaction diffusion models were used to analyze the consequences of aggregation for syntrophic reactions in methanogenic ecosystems. Flocs from a whey digestor were used to measure all model parameters under the in situ conditions of a particular defined biological system. Fermentation simulations without adjustable parameters could precisely predict the kinetics of H(2) gas production of digestor flocs during syntrophic methanogenesis from ethanol. The results demonstrated a kinetic compartmentalization of H(2) metabolism inside the flocs. The interspecies electron transfer reaction was mildly diffusion controlled. The H(2) gas profiles across the flocs showed high H (2) concentrations inside the flocs at any time. Simulations of the syntrophic metabolism at low substrate concentrations such as in digestors or sediments showed that it is impossible to achieve high H(2) gas turnovers at simultaneously low steady-state H(2) concentrations. This showed a mechanistic contradiction in the concept of postulated low H(2) microenvironments for the anaerobic digestion process. The results of the computer experiments support the conclusion that syntrophic H(2) production may only be a side reaction of H(2) independent interspecies electron transfer in methanogenic ecosystems. PMID:18587976

Ozturk, S S; Palsson, B O; Thiele, J H

1989-02-01

24

Microbial activity measurements for anaerobic sludge digestion  

Microsoft Academic Search

The use of particulate substrate in the anaerobic sludge digestion process makes it difficult to measure the biomass in these reactors. Adenosine triphosphate (ATP) and dehydrogenase activity (DHA) were investigated as indicators of the sludge activity for the anaerobic sludge digestion process. ATP measures the energy pools in the biomass and is therefore a measure of the total sludge activity.

Chung

1988-01-01

25

DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY  

EPA Science Inventory

The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

26

Toxicants inhibiting anaerobic digestion: a review.  

PubMed

Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion. PMID:25457225

Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

2014-12-01

27

Anaerobic digestion of crop and waste biomass: Impact of feedstock characteristics on process performance.  

E-print Network

??Anaerobic digestion provides an array of positive environmental benefits such as reducing greenhouse gas emissions, replacing mineral fertilizers, producing renewable energy and treating waste. However,… (more)

Ivo Achu, Nges

2012-01-01

28

FERTILITY AND TOXICITY OF POTTING SOILS PREPARED FOR GINNING AND DAIRY WASTES ANAEROBIC DIGESTATE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Methane gas resulting from combining cotton gin trash and dairy manure in a two phase anaerobic digester is easily marketed. Digestate solids are not. This study was conducted to determine anaerobic digestate toxicity and its potential as a soil amendment. The same mixture of dairy manure and cot...

29

Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry  

Microsoft Academic Search

Biogas treatment of animal manures is an upcoming technology because it is a way of producing renewable energy (biogas). However, little is known about effects of this management strategy on greenhouse gas (GHG) emissions during fermentation, storage, and field application of the substrates compared to untreated slurries. In this study, we compared cattle slurry and cattle slurry with potato starch

Joachim Clemens; Manfred Trimborn; Peter Weiland; Barbara Amon

2006-01-01

30

Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.  

PubMed

As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH4 and N2O) from the manure generated from 140 beef heifers confined for 90days in the scope "housing to field application" by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14±0.06kg of carbon dioxide equivalent (CO2eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19±0.07kg of CO2eq per kglwg(-1)). However, 2.4MWh and 658.0kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13±0.01kg of CO2eqkglwg(-1) or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems. PMID:25461102

Costa Junior, Ciniro; Cerri, Carlos E P; Pires, Alexandre V; Cerri, Carlos C

2015-02-01

31

Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm  

Technology Transfer Automated Retrieval System (TEKTRAN)

Anaerobic digestion of manure for biogas production is one of many options for reducing the carbon footprint of milk production. This process reduces greenhouse gas emissions but increases the potential nitrogen and phosphorus losses from the farm. An anaerobic digester component was added to the In...

32

Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion  

E-print Network

Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion Sudeep C Thermophilic anaerobic digestion Pathogen inactivation Ascaris suum Helminth eggs Poliovirus Enteric viruses a b s t r a c t Thermophilic anaerobic sludge digestion is a promising process to divert waste

33

Characterization of food waste as feedstock for anaerobic digestion  

Microsoft Academic Search

Food waste collected in the City of San Francisco, California, was characterized for its potential for use as a feedstock for anaerobic digestion processes. The daily and weekly variations of food waste composition over a two-month period were measured. The anaerobic digestibility and biogas and methane yields of the food waste were evaluated using batch anaerobic digestion tests performed at

Ruihong Zhang; Hamed M. El-Mashad; Karl Hartman; Fengyu Wang; Guangqing Liu; Chris Choate; Paul Gamble

2007-01-01

34

Renewable methane from anaerobic digestion of biomass  

Microsoft Academic Search

Production of methane via anaerobic digestion of energy crops and organic wastes would benefit society by providing a clean fuel from renewable feedstocks. This would replace fossil fuel-derived energy and reduce environmental impacts including global warming and acid rain. Although biomass energy is more costly than fossil fuel-derived energy, trends to limit carbon dioxide and other emissions through emission regulations,

David P Chynoweth; John M Owens; Robert Legrand

2001-01-01

35

Anaerobic Digestion of Primary Sewage Effluent  

E-print Network

at an existing wastewater treatment plant. Based on scale-up evaluation, the test system should yield an energy.6 acre, which is on the same scale currently used at the host wastewater treatment facility to treat Activated Sludge Treatment This report presents results for an anaerobic digestion system operated

36

Anaerobic Digestion in a Flooded Densified Leachbed  

NASA Technical Reports Server (NTRS)

A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

2009-01-01

37

Use of biochars in anaerobic digestion.  

PubMed

This study investigated the behavior of biochars from pyrolysis (pyrochar) and hydrothermal carbonization (hydrochar) in anaerobic digestion regarding their degradability and their effects on biogas production and ammonia inhibition. A batch fermentation experiment (42°C, 63 days) was conducted in 100mL syringes filled with 30 g inoculum, 2g biochar and four levels of total ammonium nitrogen (TAN). For pyrochar, no clear effect on biogas production was observed, whereas hydrochar increased the methane yield by 32%. This correlates with the hydrochar's larger fraction of anaerobically degradable carbon (10.4% of total carbon, pyrochar: 0.6%). Kinetic and microbiota analyses revealed that pyrochar can prevent mild ammonia inhibition (2.1 g TANk g(-1)). Stronger inhibitions (3.1-6.6 g TAN kg(-1)) were not mitigated, neither by pyrochar nor by hydrochar. Future research should pay attention to biochar-microbe interactions and the effects in continuously-fed anaerobic digesters. PMID:24859210

Mumme, Jan; Srocke, Franziska; Heeg, Kathrin; Werner, Maja

2014-07-01

38

Photoenhanced anaerobic digestion of organic acids  

DOEpatents

A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

Weaver, Paul F. (Golden, CO)

1990-01-01

39

Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy  

E-print Network

Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria ...

Zaks, David P. M.

40

High-rate thermophilic anaerobic digestion of agricultural wastes  

SciTech Connect

There are many settlements in Israel known as Kibbutzim which provide an interface between the agricultural sector, the industrial sector, and a community with a high per capita energy consumption. Hence, these settlements provide an ideal site for the operation of anaerobic digestion for the treatment of agricultural wastes and the utilization of the resultant energy supply. While the substrate initially used in this study was dairy-cow manure collected from the concrete floors of corrals, the contribution of other organic wastes such as straw, cotton plants, and chicken manure was also evaluated. It has been reported in the literature that some materials when added to the anaerobic digestion process lead to enhancement of gas production and improvement in digester operation. Hence, the effects on the performance of highly loaded thermophilic digesters of several materials such as activated carbon, cobalt salts, and calcium hydroxide were examined in this study. Pilot-plant units of 1000 and 10,000 liter were an intergral part of the study program. These units were used to verify results obtained with the 4-liter laboratory units. An energy survey was conducted on the larger units. These units were also used to supply large quantities of gas for utilization experiments and to provide the large quantities of digested sludge required for animal-feeding trials and fertilizer experiments. The pilot-plant units also afforded the opportunity to solve technical problems which would arise in full-size units.

Shelef, G.; Kimchie, S.; Grynberg, H.

1980-01-01

41

Effect of pectin on anaerobic digestion of cattle dung  

SciTech Connect

It is therefore desirable to discover procedures to increase the rate of digestion. It has been reported that addition of powdered activated carbon results in an increase in total gas production with high methane content. Based on a review of the literature, it is evident that carbon is responsible for improved digestion. The surface of the activated carbon provides adsorption sites where substrate can accumulate, thereby providing high localized substrate concentration. These areas of adsorption provide a more favorable growth environment for bacterial-substrate systems. No study, however, seems to have been made so far on the effect of other additives like pectin on anaerobic digestion of cattle dung. Since pectin is also used as one of the adsorbents in many cases, it appears desirable to study the effect of pectin on anaerobic digestion of cattle dung with the ultimate aim of improving the production of gas with increased methane content. Experiments carried out with this object in view are reported in this paper. The impact of pectin on volatile acid, pH, and process stability has also been examined. This paper presents the results of two sets of experiments involving pectin addition to bench-scale digesters. One set of experiments is carried out at a controlled temperature of 38 +/- 1 degree C, while the other is carried out at ambient temperature-ambient temperature varied from 40 to 15 degrees C, that is from August to November. 14 references.

Madamwar, D.B.; Mithal, B.M.

1986-04-01

42

Flow pattern visualization in a mimic anaerobic digester using CFD.  

PubMed

Three-dimensional steady-state computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The gas phase was simulated with air and the liquid phase with water. The CFD results were first evaluated using experimental data obtained by computer automated radioactive particle tracking (CARPT). The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However, increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat-bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have an appreciable effect on the flow pattern of the digesters at the range of gas flow rates used. PMID:15685599

Vesvikar, Mehul S; Al-Dahhan, Muthanna

2005-03-20

43

Processing anaerobic sludge for extended storage as anaerobic digester inoculum.  

PubMed

Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples. PMID:24907580

Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

2014-08-01

44

Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.  

PubMed

Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-? Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-?, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-? models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). PMID:23624047

Coughtrie, A R; Borman, D J; Sleigh, P A

2013-06-01

45

DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES  

E-print Network

DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES Simeonov, I variables of anaerobic digestion processes. For this purpose, different mathematical models of anaerobic digestion and different theoretical approaches (differential algebraic approach, Kalman filter modifications

Boyer, Edmond

46

DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM AN ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY  

EPA Science Inventory

The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. he fuel cell is being used for this application becaus...

47

Foaming phenomenon in bench-scale anaerobic digesters.  

PubMed

The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues. PMID:23697241

Siebels, Amanda M; Long, Sharon C

2013-04-01

48

State Of The Science On Cogeneration Of Heat And Power From Anaerobic Digestion Of Municipal Biosolids  

EPA Science Inventory

This presentation will report on work underway to inventory facilities currently utilizing biogas from anaerobic digestion and speak with practitioners to learn: techniques for preparing residuals for digestion, methods to use for cleaning biogas (e.g., of siloxane), and how gas...

49

Anaerobic Digestion II. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.  

ERIC Educational Resources Information Center

This lesson is the second of a two-part series on anaerobic digestion. Topics discussed include classification of digester by function, roof design, and temperature range, mixing systems, gas system components, operational control basics, and general safety considerations. The lesson includes an instructor's guide and student workbook. The…

Arasmith, E. E.

50

Anaerobic digestion of municipal solid waste: Technical developments  

SciTech Connect

The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

1996-01-01

51

Anaerobic Digestion of Food Waste-recycling Wastewater  

NASA Astrophysics Data System (ADS)

Food waste-recycling (FWR) wastewater was evaluated as feedstock for two-stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two-stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10-25 days. In the acidogenic reactor, the total carbohydrate reduction efficiency and volatile fatty acid production dramatically decreased when acidogenic HRT was <2.5 days (i.e., total two-stage HRT = 15 days). High organic removal ratios of 75.5-85.9% for COD and 68.8-83.6% for VS were achieved throughout the two-stage process. Methane production rate of 1.7-3.6 L-gas/L-reactor?d was observed. These results suggested that two-stage anaerobic process was successful at the laboratory scale with FWR wastewater as feedstock.

Han, Gyuseong; Shin, Seung Gu; Lim, Juntaek; Jo, Minho; Hwang, Seokhwan

2010-11-01

52

Cellulase production by the anaerobic digestion process  

SciTech Connect

An anaerobic digestion process is described for the production of cellulolytic enzymes using a methanogenic cellulose-enrichment culture. After a heat treatment designed to destroy all but spore-forming bacteria, this culture produced cellulase from a variety of cellulosic materials as well as from cellobiose. The enzyme system contained endo- and exoglucanase, acted on filter paper, and showed cellobiase and xylanase activities. It was stable at 2/sup 0/C under aerobic conditions and showed a pH optimum at 5 and a temperature optimum at 50/sup 0/C. Endoglucanase and filter paper activities were mostly exogenic, whereas cellobiase and xylanase activities were cell associated. The cellulolytic activity produced by this mixed culture was comparable to that of commercially available fungal preparations, and the process could be useful as an alternate source for these enzymes.

Khan, A.W.; van den Berg, L.

1981-01-01

53

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production  

E-print Network

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen Anaerobic digestion-bioammonia to hydrogen (ADBH) a b s t r a c t During anaerobic digestion, organic matter

54

40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters  

Code of Federal Regulations, 2013 CFR

...Efficiencies of Anaerobic Digesters Anaerobic digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank to bank, impermeable 0.975 Modular, impermeable 0.70 Complete mix, fixed film, or plug...

2013-07-01

55

40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters  

Code of Federal Regulations, 2012 CFR

...Efficiencies of Anaerobic Digesters Anaerobic digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank to bank, impermeable 0.975 Modular, impermeable 0.70 Complete mix, fixed film, or plug...

2012-07-01

56

40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters  

Code of Federal Regulations, 2011 CFR

...Efficiencies of Anaerobic Digesters Anaerobic digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank to bank, impermeable 0.975 Modular, impermeable 0.70 Complete mix, fixed film, or plug...

2011-07-01

57

Economic implications of anaerobic digesters on dairy farms in Texas  

E-print Network

are forcing dairies and policymakers to balance environmental concerns with farm profitability. Dairies are entering a realm filled with technologies to combat waste concerns. Anaerobic digester technology may play a role in helping dairies balance profit...

Jackson, Randy Scott, Jr.

2007-09-17

58

Design of an anaerobic digester in Quebec, Canada  

E-print Network

.In response to the future Quebec, Canada regulations prohibiting landfilling of organic matter by 2020, EBI, a waste management company located near Montreal is considering constructing an anaerobic digester. This thesis ...

Bouaziz, Alexandre N. (Alexandre Nathanel)

2014-01-01

59

Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment  

SciTech Connect

This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

1996-01-01

60

Using contaminated plants involved in phytoremediation for anaerobic digestion.  

PubMed

This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation. PMID:25397976

Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

2015-01-01

61

A mixed plug flow anaerobic digester for dairy manure  

SciTech Connect

In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

1985-01-01

62

Effect of alkaline pretreatment on anaerobic digestion of solid wastes  

SciTech Connect

The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

Lopez Torres, M. [National Center for Scientific Researcher (CNIC), Environmental Pollution Department (DECA), Ave. 25 y 158, Cubanacan, Playa, Havana City (Cuba)], E-mail: matilde.lopez@cnic.edu.cu; Espinosa Llorens, Ma. del C. [National Center for Scientific Researcher (CNIC), Environmental Pollution Department (DECA), Ave. 25 y 158, Cubanacan, Playa, Havana City (Cuba)

2008-11-15

63

Biogasification of sorghum in a novel anaerobic digester  

SciTech Connect

The Institute of Gas Technology (IGT) conducted pilot-scale anaerobic digestion experiments with ensiled sorghum in a 160 ft/sup 3/ digester at the experimental test unit (ETU) facility at the Walt Disney World Resort Complex in Florida. The study focused on improving bioconversion efficiencies and process stability by employing a novel reactor concept developed at IGT. Steady-state performance data were collected from the ETU as well as from a laboratory-scale conventional stirred tank reactor (CSTR) at loading rates of 0.25 and 0.50 lb organic matter/ft/sup 3/-day at mesophilic and thermophilic temperatures, respectively. This paper will describe the ETU facility, novel digester design and operating techniques, and the results obtained during 12 months of stable and uninterrupted operation of the ETU and the CSTR which showed that methane yields anad rates from the ETU were 20% to 50% higher than those of the CSTR. 10 refs., 7 figs., 5 tabs.

Srivastava, V.J.; Biljetina, R.; Isaacson, H.R.; Hayes, T.D.

1987-01-01

64

Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery  

E-print Network

LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION). The anaerobic digestion of food waste and animal manure (El-Mashad and Zhang, 2010; Neves et al., 2008; Ahn et

Paris-Sud XI, Université de

65

Thermochemical liquidization of anaerobically digested and dewatered sludge and anaerobic retreatment  

Microsoft Academic Search

The pretreatment effect of thermochemical liquidization for the anaerobic retreatment of anaerobically digested and dewatered sludge was studied. The digested sludge (dry matter; 15.7%) was thermochemically liquidized at 175°C and 4 MPa with a holding time of 1 h. The liquidized sludge was separated by centrifugation to produce a supernatant of 44.7% (w\\/w) and precipitate of 52.3%. The liquidized sludge

Shigeki Sawayama; Seiichi Inoue; Kenichiro Tsukahara; Tomoko Ogi

1996-01-01

66

Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods.  

PubMed

Treatment of food waste by anaerobic digestion can lead to an energy production coupled to a reduction of the volume and greenhouse gas emissions from this waste type. According to EU Regulation EC1774/2002, food waste should be pasteurized/sterilized before or after anaerobic digestion. With respect to this regulation and also considering the slow kinetics of the anaerobic digestion process, thermal and chemical pretreatments of food waste prior to mesophilic anaerobic digestion were studied. A series of batch experiments to determine the biomethane potential of untreated as well as pretreated food waste was carried out. All tested conditions of both thermal and ozonation pretreatments resulted in an enhanced biomethane production. The kinetics of the anaerobic digestion process were, however, accelerated by thermal pretreatment at lower temperatures (<120 °C) only. The best result of 647.5 ± 10.6 mlCH4/gVS, which is approximately 52% higher as compared to the specific biomethane production of untreated food waste, was obtained with thermal pretreatment at 80 °C for 1.5 h. On the basis of net energy calculations, the enhanced biomethane production could cover the energy requirement of the thermal pretreatment. In contrast, the enhanced biomethane production with ozonation pretreatment is insufficient to supply the required energy for the ozonator. PMID:25169646

Ariunbaatar, Javkhlan; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N L; Pirozzi, Francesco

2014-12-15

67

Anaerobic Digestion and Combined Heat and Power Study  

SciTech Connect

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz; Rob Taylor; Grant Davies

2011-12-30

68

Anaerobic co-digestion of dairy manure and potato waste  

NASA Astrophysics Data System (ADS)

Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ? The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ? In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow) operating at thermophilic temperatures are recommended. • The ratio of DM:PW-90:10 or 80:20 is recommended while operating low cost plug flow digesters at thermophilic temperatures. ? In cases of anaerobic digesters operated without electricity generation equipment (generators), completely mixed or high or low cost plug flow digesters can be used. • The ratio of DM:PW-80:20 is recommended for completely mixed digesters operated at thermophilic temperatures; • The ratio of DM:PW-90:10 or 80:20 is recommended for high cost plug flow digesters (capital cost of 1,000/cow) operated at thermophilic temperatures; • All of the four co-digested mixing ratios (i.e. DM:PW-90:10 or 80:20 or 60:40 or 40:60) are good for low cost plug flow digesters (capital cost of $600/cow) operated at thermophilic temperatures. The ratio of DM:PW-90:10 is recommended for positive cash flow within the ten year period if the low cost plug flow digesters are operated at mesophilic temperatures.

Yadanaparthi, Sai Krishna Reddy

69

Computer simulation of control strategies for optimal anaerobic digestion.  

PubMed

Three previously published control strategies for anaerobic digestion were implemented in Simulink/Matlab using Anaerobic Digestion Model No. 1 (ADM1) to model the biological process. The controllers' performance were then simulated and evaluated based on their responses from five different types of process scenarios i.e. start-up and steady state performance as well as disturbances from concentration, pH and ammonia in the inflow. Of the three evaluated control strategies, the extremum-seeking variable gain controller gave the best overall performance. However, a proportional feedback controller based on the pH-level, used as a reference case in the evaluation, proved to give as good results as the extremum-seeking variable gain controller but with a lower wear on the pump. It was therefore concluded that a fast proportional control of the reactor pH is a key element for optimally controlling a low-buffering anaerobic digestion process. PMID:23202565

Strömberg, S; Possfelt, M O; Liu, J

2013-01-01

70

Anaerobic digestion as a waste disposal option for American Samoa  

SciTech Connect

Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

Rivard, C

1993-01-01

71

Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste  

Microsoft Academic Search

The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of

W. Hao; W. Hongtao

2008-01-01

72

Anaerobic digestion of dairy manure with enhanced ammonia removal.  

PubMed

Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4 x 6H2O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect on anaerobic bacteria. The results indicated that up to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2 x 6H2O to the anaerobic reactor. PMID:17257738

Uludag-Demirer, S; Demirer, G N; Frear, C; Chen, S

2008-01-01

73

Detoxifying CO2 capture reclaimer waste by anaerobic digestion.  

PubMed

The decrease in toxicity of carbon capture reclaimer monoethanolamine (MEA) waste (MEAw) during anaerobic degradation of such waste together with easily degradable organics was investigated. Samples were collected from a bioreactor at steady state with 86 % organic chemical oxygen demand removal at room temperature, which had been running on MEAw for 2 years. The toxicity of the digester effluents were 126, 42 and 10 times lower than that of the MEAw to the tested freshwater trophic groups of Pseudokirchneriella subcapitata, Daphnia magna and embryos of Danio rerio, respectively. The toxicity of the tested taxonomic groups after anaerobic digestion was mainly attributed to the ammonia generated by the degradation of MEAw. PMID:24122630

Wang, Shuai; Hovland, Jon; Brooks, Steven; Bakke, Rune

2014-01-01

74

Animal and industrial waste anaerobic digestion: USA status report  

SciTech Connect

Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries with a waste steam characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, mil, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the U.S. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

Lusk, P.D. [Resource Development Associates, Washington, DC (United States)

1995-11-01

75

Animal and industrial waste anaerobic digestion: USA status report  

SciTech Connect

Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

Lusk, P.D. [Resource Development Associates, Washington, DC (United States)

1996-01-01

76

Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.  

PubMed

The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data. PMID:25311887

Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

2015-04-01

77

Single stage anaerobic digester at Tarleton State University. Final report  

SciTech Connect

The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

Not Available

1980-01-01

78

Anaerobic digestion of animal waste: effect of mixing.  

PubMed

Six laboratory scale biogas mixed anaerobic digesters were operated to study the effect of biogas recycling rates and draft tube height on their performance. The digesters produced methane at 0.40-0.45 L per liter of digester volume per day. A higher methane production rate was observed in unmixed digesters, while increased biogas circulation rate reduced methane production. However, different draft tube heights caused no difference in the methane production rate. Air infiltration (up to 15% oxygen in the biogas) was observed in the digesters mixed by biogas recirculation. Slight air permeability of tubing or leakage on the vacuum side of the air pump may have caused the observed air infiltration. The similar performance of the mixed and unmixed digesters might be the result of the low solids concentration (50 g dry solids per liter of slurry) in the fed animal slurry, which could be sufficiently mixed by the naturally produced biogas. PMID:15978994

Karim, Khursheed; Thomas Klasson, K; Hoffmann, Rebecca; Drescher, Sadie R; Depaoli, David W; Al-Dahhan, M H

2005-09-01

79

Optimisation of the anaerobic digestion of agricultural resources.  

PubMed

It is in the interest of operators of anaerobic digestion plants to maximise methane production whilst concomitantly reducing the chemical oxygen demand of the digested material. Although the production of biogas through anaerobic digestion is not a new idea, commercial anaerobic digestion processes are often operated at well below their optimal performance due to a variety of factors. This paper reviews current optimisation techniques associated with anaerobic digestion and suggests possible areas where improvements could be made, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor. Optimisation of environmental conditions within the digester such as temperature, pH, buffering capacity and fatty acid concentrations is also discussed. The methane-producing potential of various agriculturally sourced feedstocks has been examined, as has the advantages of co-digestion to improve carbon-to-nitrogen ratios and the use of pre-treatments and additives to improve hydrolysis rates or supplement essential nutrients which may be limiting. However, perhaps the greatest shortfall in biogas production is the lack of reliable sensory equipment to monitor key parameters and suitable, parallelised control systems to ensure that the process continually operates at optimal performance. Modern techniques such as software sensors and powerful, flexible controllers are capable of solving these problems. A direct comparison can be made here with, for instance, oil refineries where a more mature technology uses continuous in situ monitoring and associated feedback procedures to routinely deliver continuous, optimal performance. PMID:18406612

Ward, Alastair J; Hobbs, Phil J; Holliman, Peter J; Jones, David L

2008-11-01

80

Anaerobic Digestion Analysis. Training Module 5.120.2.77.  

ERIC Educational Resources Information Center

This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

Kirkwood Community Coll., Cedar Rapids, IA.

81

A STUDY OF LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS  

EPA Science Inventory

A field-scale research project was conducted in 2004-2005 to evaluate land application of anaerobically digested biosolids at agronomic levels. Biosolids had not been applied to this land previously. For this study, biosolids wee applied in a 100-m diameter circle by a side dis...

82

Biogas production from anaerobic digestion of Spirulina maxima algal biomass  

Microsoft Academic Search

The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production

Rejean Samson; Anh LeDuy

1982-01-01

83

Anaerobic digestion of solid wastes of cane sugar industry  

Microsoft Academic Search

The cane sugar manufacturing industry generates large quantities of lignocellulosic solid wastes, namely bagasse and cachaza. Bagasse is the fibrous residue of the cane after extracting the juice. Cachaza is the filter cake of the precipitated insoluble sugars. This research investigates the feasibility of anaerobic digestion of a mixture of bagasse and cachaza to produce methane. Two rations of bagasse-cachaza

Dasgupta

1983-01-01

84

Biogas energy production from tropical biomass wastes by anaerobic digestion  

Technology Transfer Automated Retrieval System (TEKTRAN)

Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

85

Intermediate-scale high-solids anaerobic digestion system operational development  

SciTech Connect

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

Rivard, C.J.

1995-02-01

86

Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution.  

PubMed

Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain. PMID:19748957

Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H

2009-11-01

87

Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).  

PubMed

Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

2014-07-01

88

Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)  

PubMed Central

Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

2014-01-01

89

Anaerobic digestion of microalgal biomass after ultrasound pretreatment.  

PubMed

High rate algal ponds are an economic and sustainable alternative for wastewater treatment, where microalgae and bacteria grow in symbiosis removing organic matter and nutrients. Microalgal biomass produced in these systems can be valorised through anaerobic digestion. However, microalgae anaerobic biodegradability is limited by the complex cell wall structure and therefore a pretreatment step may be required to improve the methane yield. In this study, ultrasound pretreatment at a range of applied specific energy (16-67 MJ/kg TS) was investigated prior to microalgae anaerobic digestion. Experiments showed how organic matter solubilisation (16-100%), hydrolysis rate (25-56%) and methane yield (6-33%) were improved as the pretreatment intensity increased. Mathematical modelling revealed that ultrasonication had a higher effect on the methane yield than on the hydrolysis rate. A preliminary energy assessment indicated that the methane yield increase was not high enough as to compensate the electricity requirement of ultrasonication without biomass dewatering (8% VS). PMID:25002372

Passos, Fabiana; Astals, Sergi; Ferrer, Ivet

2014-11-01

90

Factors controlling pathogen destruction during anaerobic digestion of biowastes  

SciTech Connect

Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log{sub 10} reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.

Smith, S.R. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)]. E-mail: s.r.smith@imperial.ac.uk; Lang, N.L. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheung, K.H.M. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Spanoudaki, K. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

2005-07-01

91

Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.  

ERIC Educational Resources Information Center

This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

Arasmith, E. E.

92

Characterisation and anaerobic batch degradation of materials accumulating in anaerobic digesters treating poultry slaughterhouse waste.  

PubMed

We characterised materials accumulating in two failed mesophilic semi-continuous anaerobic digesters treating poultry slaughterhouse waste and, for reference, materials in the two well-performing digesters, to find the anaerobic degradability of these materials and the factors affecting their degradation. We also studied materials accumulating and stratifying in various layers in one of the two well-performing digesters. The material from the most severely failed digesters produced methane sluggishly and did not improve appreciably even with 33 percent dilution suggesting that the recovery of failed process is slow. The methane production was apparently affected by the accumulated long-chain fatty acids, totalling 8.1 g l-1, which degraded slowly. However, the material produced methane in the end, which shows that the failure was reversible. In the well-performing digester, considerable amounts of long-chain fatty acids already floated on top of the digester after 20 hours without mixing, a phenomenon which may have affected their bioavailability and toxicity. However, materials from the top, middle, and bottom layers of the digester were readily and largely methanised by the microbial populations present in them and additional inocula did not markedly enhance the methanation. The results indicate that long-chain fatty acids are apparently the main factor affecting both the failure and recovery of a poultry slaughterhouse waste digester. Thus excessive feeding of lipids into the digester should be avoided. PMID:11424735

Salminen, E; Einola, J; Rintala, J

2001-05-01

93

Anaerobically digested poultry slaughterhouse wastes as fertiliser in agriculture.  

PubMed

Chemical and physical analysis, 27-d plant growth assays with carrot (Daucus carota) and Chinese cabbage (Brassica campestris var. chinensis), and 5-d phytotoxicity assays with Chinese cabbage and perennial ryegrass (Lolium perenne) were used to investigate the suitability of anaerobically digested poultry slaughterhouse waste for fertiliser in agriculture and the effect of aerobic post-treatment on the properties of the digested material. The digested material appeared to be rich in nitrogen. In 27-d assays with digested material as nitrogen source, carrots grew almost as well as those fertilised with a commercial mineral fertiliser used as reference, whereas, the growth of Chinese cabbage was inhibited. In further 5-d phytotoxicity assays, the digested material inhibited the germination and root growth of ryegrass and Chinese cabbage, apparently because of organic acids present in it. Aerobic post-treatment of the material reduced its phytotoxicity but, probably due to the volatilisation of ammonia, resulted in loss of nitrogen. PMID:11265792

Salminen, E; Rintala, J; Härkönen, J; Kuitunen, M; Högmander, H; Oikari, A

2001-05-01

94

Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste.  

PubMed

To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning. PMID:25218457

Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya

2014-11-01

95

Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry.  

PubMed

Stillage is the main wastewater from ethanol production, containing a high chemical oxygen demand in addition to acidic and corrosive characteristics. Though stillage may be used as a soil fertilizer, its land application may be considered problematic due its high polluting potential. Anaerobic digestion represents an effective alternative treatment to reduce the pollution load of stillage. In addition, the methane gas produced within the process may be converted to energy, which can be directly applied to the treatment plant. The objective of this paper was to investigate the energetic potential of anaerobic digestion applied to stillage in the sugarcane ethanol industry. An overall analysis of the results indicates energy recovery capacity (ERC) values for methane ranging from 3.5% to 10%, respectively, for sugarcane juice and molasses. The processes employed to obtain the fermentable broth, as well as the distillation step, represent the main limiting factors to the energetic potential feasibility. Considering financial aspects the annual savings could reach up to US$ 30 million due to anaerobic digestion of stillage in relatively large-scale distilleries (365,000 m3 of ethanol per year). The best scenarios were verified for the association between anaerobic digestion of stillage and combustion of bagasse. In this case, the fossil fuels consumption in distilleries could be fully ceased, such the ERC of methane could reach values ranging from 140% to 890%. PMID:24600872

Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

2014-01-01

96

Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.  

PubMed

Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion. PMID:25401321

Ye, Fenxia; Liu, Xinwen; Li, Ying

2014-01-01

97

A mass transfer model of ammonia volatilization from anaerobic digestate.  

PubMed

Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilization from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilization was approximately 5.2 g Nm(-2)week(-1). The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high. PMID:19781929

Whelan, M J; Everitt, T; Villa, R

2010-10-01

98

Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester  

NASA Astrophysics Data System (ADS)

As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

Cram, Ana Catalina

99

Electrochemical mineralization of anaerobically digested olive mill wastewater.  

PubMed

A novel approach was developed for the energetic valorisation and treatment of olive mill wastewater (OMW), combining anaerobic digestion and electrochemical oxidation. The electrochemical treatment was proposed as the final step to mineralize the remaining OMW fraction from the anaerobic reactor. The electrooxidation of anaerobically digested OMW was investigated over dimensionally stable anodes (DSAs). RuO(2) based anode was significantly more efficient than IrO(2)-type DSA, mainly for the COD removal. IrO(2) based anode promoted a selective oxidation of phenols and colour removal. For instance, after an electrolysis charge of 10.4 × 10(4) C L(-1), COD removals of 14 and 99%, phenols removals of 91 and 100% and colour removals of 85 and 100% were obtained for IrO(2) and RuO(2) DSAs-type, respectively. The electrochemical post-treatment was effectively performed without using a supporting electrolyte and in the presence of the solids that remained from the anaerobic process. The achievement of the required effluent quality for sewer systems disposal depends on the operating conditions of the anaerobic process. Consequently, special care must be taken with the chloride and nitrogen levels that may surpass the legal discharge limits. The electrochemical oxidation over RuO(2) based DSA is an appropriate second-step treatment for OMW disposal, after the recovery of its energetic potential. PMID:22687524

Gonçalves, M R; Marques, I P; Correia, J P

2012-09-01

100

Anaerobic waste digestion in Germany--status and recent developments.  

PubMed

Anaerobic treatment processes are especially suited for the utilization of wet organic wastes from agriculture and industry as well as for the organic part of source-separated household wastes. Anaerobic degradation is a very cost-effective method for treating biogenic wastes because the formed biogas can be used for heat and electricity production and the digester residues can be recycled to agriculture as a secondary fertilizer. Anaerobic technology will also be used for the common treatment of wastes together with renewable energy crops in order to reduce the CO2-emissions according the Kyoto protocol. Various process types are applied in Germany which differ in material, reaction conditions and in the form of the used reactor systems. The widespread introduction of anaerobic digestion in Germany has shown that biogenic organic wastes are a valuable source for energy and nutrients. Anaerobic waste treatment is done today in approx. 850 biogas plants on small farm scale as well as on large industrial scale with the best beneficial and economic outcome. Due to some new environmental protection acts which promote the recycling of wastes and their utilization for renewable energy formation it can be expected that several hundreds new biogas plants will be built per year in Germany. In order to use the synergetic effects of a combined fermentation of wastes and energy crops new process types must be developed in order to optimize the substrate combinations and the process conditions for maximum biodegradation. PMID:11587446

Weiland, P

2000-01-01

101

Large eddy simulation of mechanical mixing in anaerobic digesters.  

PubMed

A comprehensive study of anaerobic digestion requires an advanced turbulence model technique to accurately predict mixing flow patterns because the digestion process that involves mass transfer between anaerobes and their substrates is primarily dependent on detailed information about the fine structure of turbulence in the digesters. This study presents a large eddy simulation (LES) of mechanical agitation of non-Newtonian fluids in anaerobic digesters, in which the sliding mesh method is used to characterize the impeller rotation. The three subgrid scale (SGS) models investigated are: (i) Smagorinsky-Lilly model, (ii) wall-adapting local eddy-viscosity model, and (iii) kinetic energy transport (KET) model. The simulation results show that the three SGS models produce very similar flow fields. A comparison of the simulated and measured axial velocities indicates that the LES profile shapes are in general agreement with the experimental data but they differ markedly in velocity magnitudes. A check of impeller power and flow numbers demonstrates that all the SGS models give excellent predictions, with the KET model performing the best. Moreover, the performance of six Reynolds-averaged Navier-Stokes turbulence models are assessed and compared with the LES results. PMID:22038563

Wu, Binxin

2012-03-01

102

Odor control during post-digestion processing of biosolids through bioaugmentation of anaerobic digestion.  

PubMed

The effects of bioaugmenting anaerobic biosolids digestion with a commercial product that contained selected strains of bacteria from genera Bacillus, Pseudomonas, and Actinomycetes, along with ancillary organic compounds containing various micronutrients were evaluated. The main objective of the study was to investigate the effects of bioaugmentation specifically on the performance of methanogenesis during anaerobic digestion, as well as on the generation and fate of odor-causing compounds during the storage of the digested biosolids. The bench-scale digester with 5 g/L bioaugment generated 29% more net CH4 than a control during the eight weeks of operation. In addition, the average residual propionic acid concentration in the bioaugmented digester was 46% lower than that in the control. The biosolids digested in the bioaugmented digester generated a negligible amount of methyl mercaptan (CH3SH) during 10 days of post-digestion storage, while CH3SH concentration in the control reached nearly 300 ppmv during the same period. Similarly peak dimethyl sulfide (CH3SCH3) generated by stored biosolids from the bioaugmented digester was only 37% of that from the control. Similar results were obtained in a subsequent short term study designed to confirm the repeatability of the findings. PMID:18360000

Tepe, N; Yurtsever, D; Mehta, R J; Bruno, C; Punzi, V L; Duran, M

2008-01-01

103

Anaerobic digestion of livestock manures: A current opportunities casebook  

SciTech Connect

Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

Lusk, P.D.

1995-08-01

104

Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion.  

PubMed

A molecular analysis found that poultry litter anaerobic digestion was dominated by hydrogenotrophic methanogens which suggests that bacterial acetate oxidation is the primary pathway in the thermophilic digestion of poultry litter. IWA Anaerobic Digestion Model No. 1 (ADM1) was modified to include the bacterial acetate oxidation process in the thermophilic anaerobic digestion (TAD). Two methods for ADM1 parameter estimation were applied: manual calibration with non-linear least squares (MC-NLLS) and an automatic calibration using differential evolution algorithms (DEA). In terms of kinetic parameters for acetate oxidizing bacteria, estimation by MC-NLLS and DEA were, respectively, km 1.12 and 3.25 ± 0.56 kg COD kg COD(-1)d(-1), KS 0.20 and 0.29 ± 0.018 kg COD m(-3) and Yac-st 0.14 and 0.10 ± 0.016 kg COD kg COD(-1). Experimental and predicted volatile fatty acids and biogas composition were in good agreement. Values of BIAS, MSE or INDEX demonstrate that both methods (MC-NLLS and DEA) increased ADM1 accuracy. PMID:25011081

Rivera-Salvador, Víctor; López-Cruz, Irineo L; Espinosa-Solares, Teodoro; Aranda-Barradas, Juan S; Huber, David H; Sharma, Deepak; Toledo, J Ulises

2014-09-01

105

Substrate type drives variation in reactor microbiomes of anaerobic digesters.  

PubMed

The goal of this study was to obtain causative information about beta-diversity (differentiation between microbiomes) by comparing sequencing information between studies rather than just knowledge about alpha-diversity (microbiome richness). Here, published sequencing data were merged representing 78 anaerobic digester samples originating from 28 different studies for an overall comparison of beta-diversity (measured using unweighted UniFrac). It was found that digester microbiomes based on bacterial sequences clustered by substrate type, independent of the study of origin, and that this clustering could be attributed to distinct bacterial lineages. PMID:24183494

Zhang, Wei; Werner, Jeffrey J; Agler, Matthew T; Angenent, Largus T

2014-01-01

106

The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure  

Microsoft Academic Search

In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35°C, with four feed loads of 5%, 10%, 20% and 40% (feed volume\\/digester volume). At a temperature of

K. J. Chae; Am Jang; S. K. Yim; In S. Kim

2008-01-01

107

Anaerobic Digestion for Mitigation of Biodiesel Production Byproducts  

NSDL National Science Digital Library

The Advanced Technology Environmental and Energy Center (ATEEC) provides this document, which was part of a workshop held on anaerobic digestion for mitigation of biodiesel production byproducts. It would be useful for instructors looking to develop their own curriculum on biofuels and biodiesel byproducts. Users must download this resource for viewing, which requires a free log-in. There is no cost to download the item.

108

Horsepower requirements for high-solids anaerobic digestion  

Microsoft Academic Search

Improved organic loading rates for anaerobic bioconversion of cellulosic feedstocks are possible through high-solids processing.\\u000a Additionally, the reduction in process water for such a system further improves the economics by reducing the overall size\\u000a of the digestion system. However, mixing of high-solids materials is often viewed as an energy-intensive part of the process.\\u000a Although the energy demand for high-solids mixing

C. J. Rivard; B. D. Kay; D. H. Kerbaugh; N. J. Nagle; M. E. Himmel

1995-01-01

109

Production of Methane Biogas as Fuel Through Anaerobic Digestion  

Microsoft Academic Search

\\u000a Anaerobic digestion (AD) is a biotechnology by which biomass is converted by microbes to methane (CH4) biogas, which can then be utilized as a renewable fuel to generate heat and electricity. A genetically and metabolically\\u000a diverse community of microbes (mainly bacteria and methanogens) drives the AD process through a series of complex microbiological\\u000a processes in the absence of oxygen. During

Zhongtang Yu; Floyd L. Schanbacher

110

The action of antibiotics on the anaerobic digestion process.  

PubMed

Antibiotics can disturb the production of biogas during anaerobic digestion. This study shows a systematic approach to understanding how the different bacterial populations involved in the final conversion of organic matter into methane are inhibited by 15 antimicrobial agents with different specificities and modes of action. The results obtained show the following trends: (i) some inhibitors, such as the macrolide erythromycin, lack any inhibitory effect on biogas production; (ii) some antibiotics, with different specificities, have partial inhibitory effects on anaerobic digestion and decrease methane production by interfering with the activity of propionic-acid- and butyric-acid-degrading bacteria, (e.g. antibiotics that interfere with cell wall synthesis, RNA polymerase activity and protein synthesis, especially the aminoglycosides); (iii) the protein synthesis inhibitors chlortetracycline (IC50 40 mg l-1) and chloramphenicol (IC50 15-20 mg l-1) are very powerful inhibitors of anaerobic digestion. The majority of the antibiotics tested lacked activity against acetoclastic methanogens, being active only on the acetogenic bacteria. However, chloramphenicol and chlortetracycline could cause the complete inhibition of the acetoclastic methanogenic archaea. PMID:9008891

Sanz, J L; Rodríguez, N; Amils, R

1996-12-01

111

Biogasification of rice straw with an anaerobic-phased solids digester system  

Microsoft Academic Search

Rice straw was converted into biogas using a high-rate anaerobic digestion system, anaerobic-phased solids digester system (APS-digester system). The system was stable and, with proper design, could become a space-efficient, high-rate solids digestion system. Ammonia is used as a supplemental nitrogen source for rice straw digestion. The effects of different pretreatment methods, physical (mechanical), thermal and chemical (ammonia) treatment, on

Ruihong Zhang; Zhiqin Zhang

1999-01-01

112

Critical comparison of different model structures for the applied simulation of the anaerobic digestion of agricultural energy crops.  

PubMed

Different model structures were compared to simulate the characteristic process variables of the anaerobic digestion of maize, sugar beet and grain silage. Depending on the type and number of the required components, it can be shown that in comparison to the complex Anaerobic Digestion Model No. 1 (ADM1) different simplified model structures can describe the gas production rate, ammonia nitrogen and acetate concentration or pH value equally well. Since the reduction of the predominantly fast kinetics of the methanogenesis, acetogenesis or acidogenesis will only have little effect on the simulation of the specific gas production, it can be proven that the hydrolysis is the rate-limiting step during the uninhibited anaerobic digestion of complex particulate substrates. However, the stoichiometric comparison reveals that the model protein gelatine is not suitable for a representative characterization of agricultural energy crops. PMID:25497056

Weinrich, Sören; Nelles, Michael

2015-02-01

113

Generalised modelling approach for anaerobic co-digestion of fermentable substrates.  

PubMed

A general methodology to implement fermentable soluble substrates in the IWA Anaerobic Digestion Model No. 1 (ADM1) that extends its application to anaerobic co-digestion of multiple substrates is presented. The approach considers the fermentation of new soluble substrates, not originally described in ADM1, as channelled through mass- and electron-balanced sugar fermentation equivalent reactions, and that fermentable substrates are degraded by a generic group of fermenters instead of the original ADM1 sugar fermenters. Therefore, no additional microbial group state is required. An additional term that modifies the ADM1 sugar fermentation kinetics equation was included to account for the competition among multiple substrates to be degraded by a particular biomass group. The model was validated at pilot scale treating a blend of pig manure (soluble fraction), wine and gelatine at mesophilic conditions. Only the ADM1 acetoclastic ammonia inhibition parameter was calibrated to obtain consistent model prediction of gas and liquid composition. PMID:24012848

García-Gen, Santiago; Lema, Juan M; Rodríguez, Jorge

2013-11-01

114

Digesters and demographics: identifying support for anaerobic digesters on dairy farms.  

PubMed

The dairy industry in the United States is amidst a long-running trend toward fewer, larger dairy farms. This development has created a backlash in some communities over concerns such as odor, waste management, and environmental degradation. Separately, anaerobic digestion has advanced as a waste management technology that potentially offers solutions to some of these issues, providing odor control and a combustible biogas among other things. These digesters require significant capital investments. Voluntary consumer premiums for the renewable energy produced have been used in some instances as a means to move adoption of such systems toward financial feasibility. This project employed a survey to measure Ohio consumers' willingness to pay a premium for renewable energy produced by anaerobic digesters on dairy farms. Cluster analysis was used to segment consumers by willingness to pay, age, education, income, self-identified political inclination, and a composite variable that served as a proxy for respondents' environmental stewardship. Four distinctive groups emerged from the data. Older, less educated respondents were found to have the least amount of support for digesters on dairy farms, whereas politically liberal, environmentally proactive respondents demonstrated the strongest support. Well-educated, affluent respondents and young respondents fell between these 2 groups. Most large dairy farms are generally met with fairly negative responses from their local communities; in contrast, this research finds some popular support for anaerobic digestion technology. Going forward, establishing a positive link between support for anaerobic digesters and for their use on large dairies could open up a new route for less-contested large dairy farm developments. Evaluation of community demographics could become an important part of finding an optimal location for a large dairy farm. PMID:20965366

Sanders, D J; Roberts, M C; Ernst, S C; Thraen, C S

2010-11-01

115

Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage.  

PubMed

Microalgal cultivation combined with anaerobic digestion at wastewater treatment plants is promising to recover energy. This study investigated the growth and anaerobic digestion characteristics of microalgae cultivated using nutrients in sewage. Microalgae were cultivated using primary effluent, secondary effluent, and dewatering filtrate. Microscopic observation indicated that Chlorella was cultivated using dewatering filtrate of anaerobic digestion without controlling the type of species. Batch anaerobic digestion experiments with digested sludge showed that the methane conversion ratio of the cultivated mixture was approximately 40-65%. Different cultivation time did not affect the microalgal contents. Methane recovery mass was 0.13NL-methane/L-cultivation liquor. The C/N ratio of the cultivated mixture was approximately 3-5, but the apparent ammonia release ratio was smaller than that of sewage sludge during digestion. These results proved the applicability of methane recovery from microalgae cultivated using nutrients included in anaerobically digested sludge. PMID:25127007

Hidaka, Taira; Inoue, Kenichiro; Suzuki, Yutaka; Tsumori, Jun

2014-10-01

116

Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion.  

PubMed

The world-wide increasing environmental awareness and its subsequent regulations have led to the application of improved technologies in wastewater purification plants. This has resulted in higher wastewater and sludge productions. Sludge is the by-product of such plants and it is not only rich in organic carbon and pathogens but also in heavy metals and other environmental pollutants. In Europe, agricultural application of dried sludge (bio-solids) is confronted with negative reactions from the citizens, governmental organisations, farmers and the food industry. Ultrasonic disruption of sludge is a popular mechanical disruption process in sludge treatment. During ultrasonic treatment, high frequency acoustic signals are used to initiate the cavitation process. The applied ultrasonic field leads to a breakdown of cohesive forces of the liquid molecules resulting in the generation of cavitation bubbles. A shock wave is released by the collapse of the cavitation bubbles and propagates in the surrounding medium forming jet streams that cause the disruption of cells in sludge. Disruption of sludge cells enables the release of light organic substances into the sludge water thereby exposing them for further anaerobic digestion. This paper presents results on the disruption of conventionally stabilised sludge through the application of the ultrasonic field. In order to reduce the specific energy input (i.e. ratio of the consumed energy during ultrasonic disruption to the input sludge mass) and improve biogas production, the total solids content of the stabilised sludge was increased before disruption. The anaerobic digestion of sludge samples was carried out in a set of specially constructed laboratory anaerobic digesters. Results showed that subsequent anaerobic digestion of the ultrasonically disrupted sludge could improve biogas production with reduced sludge quantity that is vital to the economic consideration of the wastewater treatment plants. This process encourages the exploitation of valuable materials and energy from stabilised sewage sludge just before its final disposal. The negative effects of mixing disrupted sludge with its separated sludge water are also shown in this paper. This expresses the microbiological instability of the anaerobic process caused by the mixing process. PMID:12159954

Onyeche, T I; Schläfer, O; Bormann, H; Schröder, C; Sievers, M

2002-05-01

117

Microbial ecology of anaerobic digesters: the key players of anaerobiosis.  

PubMed

Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

2014-01-01

118

Anaerobic digestion analysis model: User`s manual  

SciTech Connect

The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

Ruth, M.; Landucci, R.

1994-08-01

119

Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation.  

PubMed

Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 degrees C) and thermophilic (55 degrees C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of approximately 40 g l(-1). At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l(-1) day(-1), the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l(-1) day(-1) and an effluent VS concentration of 22.2 g VS l(-1) (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g(-1) VS fed and 0.47-0.48 l CH4 g(-1) VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4+) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. PMID:18188623

Bocher, Benjamin T; Agler, Matthew T; Garcia, Marcelo L; Beers, Allen R; Angenent, Largus T

2008-05-01

120

Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.  

PubMed

Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. PMID:21450457

Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

2011-05-01

121

Deploying anaerobic digesters: Current status and future possibilities  

SciTech Connect

Unmanaged pollutants from putrescible farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only provides pollution prevention but can also convert a disposal problem into a new profit center. This report is drawn from a special session of the Second Biomass Conference of the Americas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

Lusk, P. [International Energy Agency, Paris (France); Wheeler, P. [ETSU (United Kingdom); Rivard, C. [National Renewable Energy Lab., Golden, CO (United States)

1996-01-01

122

Deploying anaerobic digesters: Current status and future possibilities  

SciTech Connect

Unmanaged pollutants from organic farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, provides not only pollution prevention but can also convert a disposal problem into a new profit center. This report summarizes the current status of AD as a key technology that allows for both waste reduction and recovery of a fuel and other valuable co-products, and AD possibilities for the future.

Lusk, P.E.

1997-06-01

123

The role of anaerobic sludge recycle in improving anaerobic digester performance.  

PubMed

Solids retention time (SRT) is a critical parameter for the performance of anaerobic digesters (AD) in wastewater treatment plants. AD SRT should increase when active biomass is input to the AD by recycling anaerobic sludge via the wastewater-treatment tanks, creating a hybrid aerobic/anaerobic system. When 85% of the flow through the AD was recycled in pilot-scale hybrid systems, the AD SRT increased by as much as 9-fold, compared to a parallel system without anaerobic-sludge recycle. Longer AD SRTs resulted in increased hydrolysis and methanogenesis in the AD: net solids yield decreased by 39-96% for overall and 23-94% in the AD alone, and AD methane yield increased 1.5- to 5.5-fold. Microbial community assays demonstrated higher, more consistent Archaea concentrations in all tanks in the wastewater-treatment system with anaerobic-sludge recycle. Thus, multiple lines of evidence support that AD-sludge recycle increased AD SRT, solids hydrolysis, and methane generation. PMID:23265819

Young, Michelle N; Krajmalnik-Brown, Rosa; Liu, Wenjun; Doyle, Michael L; Rittmann, Bruce E

2013-01-01

124

Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development  

SciTech Connect

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

Rivard, C. J.

1995-02-01

125

Investigation of Poultry Waste for Anaerobic Digestion: A Case Study  

NASA Astrophysics Data System (ADS)

Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under mesophilic batch conditions all at 3 gVS/L loading were determined to be 148.6 +/- 7.82, 176.5 +/- 11.1 and 542.0 +/- 37.9 mL/ gVS, respectively and were 201.9 +/- 10.0, 210.4 +/- 29.3, and 419.3 +/- 12.1 mL/gVS, respectively, for initial loading of 6 gVS/L. Under thermophilic batch conditions, the top litter, mixed litter, and DAF waste had the biogas yields of 255.3 +/- 7.9, 313.4 +/- 30.1and 297.4 +/- 33.8 mL/gVS for loading rate of 3 gVS/L and 233.8 +/- 45.3, 306.5 +/- 11.8 and 185.1 +/- 0.85 mL/gVS for loading rate of 6 gVS/L. The biogas yields from co-digestion of the mixed litter and DAF waste at 3 gVS/L were 461.8 +/- 41.3 mL/gVS under thermophilic conditions. The results from batch anaerobic digestion tests were then used for designing continuous digestion experiments. All the continuous digestion experiments were conducted by using an Anaerobic Phase Solids (APS) digester system operated at a thermophilic temperature. The total volume of the continuous digester system was 4.8 L and the working volume was around 4.4 L. The APS digester system had two hydrolysis reactors and one biogasification reactor. Feedstock was loaded into the hydrolysis reactors in batches. The feedstock digestion time was 14 days and the average organic loading rate (OLR) of the system was 3 gVS/L/day. The experiment has three distinct feedstock stages, first with turkey litter waste, a co-digestion of DAF and turkey litter waste, followed by DAF waste. The biogas yields were determined to be 305.2 +/- 70.6 mL/gVS/d for turkey mixed litter, 455.8 +/- 77.2 mL/gVS/d during the mixture of mixed litter and DAF waste, and 382.0 +/- 39.6 mL/gVS for DAF waste. The biogas yields from the thermophilic batch test yields compare with that of the continuous digester yields. For experiments utilizing turkey litter, batch tests yielded 313.4 +/- 30.1mL/gVS biogas and 305.2 +/- 70.6 mL/gVS/d for continuous experiments. For experiments using codigestion of turkey litter and DAF waste, batches yielded 461.8 +/- 41.3 mL/gVS biogas comparing well to continuous digester operation that yielded 455.8 +/- 77.

Salam, Christopher R.

126

The anaerobic digestion of biologically and physicochemically pretreated oily wastewater.  

PubMed

To enhance the degradation of oily wastewater and its biogas production, a biological-physicochemical pretreatment was introduced prior to the anaerobic digestion system. The digestion thereafter proceeded more efficiently due to the inoculation by oil degrading bacteria (Bacillus). A 2-stage pre-mixing is more effective than directly mixing. The effects on the methane production were also investigated by pre-treatment with ultrasonic (US) treatment, combined with citric acid (CA) addition. US pre-treatment was found to improve the initial methane production, and CA pre-treatment could maintain this improvement during the whole digestion stage. Pre-mixing Bacillus at 9 wt.% inoculation, combined with US for 10 min and a CA concentration of 500 mg/L provided the optimum conditions. The most effective enhancement of methane yield was 1100.46 ml/g VS, exceeding that of the control by 280%. The change of coenobium shape and fatty acid content further proved that such pretreatment of oily wastewater can facilitate digestion. PMID:24240183

Peng, Liyu; Bao, Meidan; Wang, Qingfeng; Wang, Fangchao; Su, Haijia

2014-01-01

127

Horsepower requirements for high-solids anaerobic digestion  

SciTech Connect

Improved organic loading rates for anaerobic bioconversion of cellulosic feedstocks are possible through high-solids processing. Additionally, the reduction in process water for such a system further improves the economics by reducing the overall size of the digestion system. However, mixing of high-solids materials is often viewed as an energy-intensive part of the process. Although the energy demand for high-solids mixing may be minimized by improving the agitator configuration and reducing the mixing speed, relatively little information is available for the actual horsepower requirements of a mechanically mixed high-solids digester system. The effect of sludge total solids content and digester fill level on mixing power requirements was evaluated using a novel NREL laboratory-scale high-solids digester. Trends in horsepower requirements are shown that establish the optimum parameters for minimizing mixing energy requirements, while maintaining adequate solids blending for biological activity. The comparative relationship between laboratory-scale mixing energy estimates and those required for scale-up systems is also established.

Rivard, C.J.; Kay, B.D.; Kerbaugh, D.H. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-31

128

FACT SHEET Agriculture and Natural Resources AEX-653.1-11 Manure to Energy Through Anaerobic Digestion  

E-print Network

Manure is one of the most commonly digested materials to produce energy (EPA AgStar). (See Table 1.) The most desirable product of anaerobic digestion is biogas, which can be used for heating, lighting, electricity generation, and cooking. Biogas generally contains 60–70% methane and 30–40 % carbon dioxide (Beck). The energy content of biogas with 60 % methane content is about 600 Btu/ft3 compared to natural gas at 1,000 Btu/ft3 (Balsam). The effluent slurry from a biogas digester is another key by-product of anaerobic digestion. The effluent can be used as soil amendments and liquid fertilizers, and it can be composted and reused as a bedding material.

Phil Cherosky; Graduate Student

129

Biogas generation potential by anaerobic digestion for sustainable energy development in India  

Microsoft Academic Search

The potential of biogas generation from anaerobic digestion of different waste biomass in India has been studied. Renewable energy from biomass is one of the most efficient and effective options among the various other alternative sources of energy currently available. The anaerobic digestion of biomass requires less capital investment and per unit production cost as compared to other renewable energy

P. Venkateswara Rao; Saroj S. Baral; Ranjan Dey; Srikanth Mutnuri

2010-01-01

130

Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters  

Microsoft Academic Search

Quantitative changes in methanogenic community structures, associated with performance data, were investigated in three anaerobic batch digesters treating synthetic glucose medium, whey permeate, and liquefied sewage sludge. All digesters were initially seeded with anaerobic sludge obtained from a local municipal wastewater treatment plant. Dynamics of methanogenic populations were monitored, at order and family levels, using real-time PCR based on the

Changsoo Lee; Jaai Kim; Kwanghyun Hwang; Vincent O'Flaherty; Seokhwan Hwang

2009-01-01

131

On a Three Step Model of Anaerobic Digestion Including the Hydrolysis of  

E-print Network

On a Three Step Model of Anaerobic Digestion Including the Hydrolysis of Particulate Matter R of hydrolysis in the appearance of positive equilibrium points and the bistability is pointed out. If a non, the anaerobic digestion is generally considered as a three step process: hydrolysis and liquefaction

Paris-Sud XI, Université de

132

QUALITATIVE PROPERTIES OF A 3-STEPS MODEL OF ANAEROBIC DIGESTION INCLUDING HYDROLYSIS OF PARTICULATE MATTER  

E-print Network

QUALITATIVE PROPERTIES OF A 3-STEPS MODEL OF ANAEROBIC DIGESTION INCLUDING HYDROLYSIS, the anaerobic digestion is generally considered as a three step process: hydrolysis and liquefaction the hydrolysis is still an open problem. Many chemists claim that this is a pure enzymatic phenomena while

Paris-Sud XI, Université de

133

The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors  

Microsoft Academic Search

The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4%

D. I. Massé; F. Croteau; L. Masse

2007-01-01

134

Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Semi-annual report  

SciTech Connect

Anaerobic digestion of municipal waste has been demonstrated to be feasible in bench scale experiments by Pfeffer (1974). Approximately, 50% reduction in mass and production of 6000 ft/sup 3/ of gas/ton have been estimated. The gas composition is estimated to be 50% methane and 50% carbon monoxide. The technical and economic feasibility of anaerobic digestion with an ultimate objective of commercialization are discussed. A plant has been built at Pompano Beach, Florida on an existing shredding and landfill operation site. The plant design capacity is 100 tons/day. Two digesters have been constructed to be used in parallel. The process consists of primary shredding, metal separation, secondary shredding, air classification and digestion of light fraction. Sewage sludge was used to seed the initial mixture in the digester. The output slurry is vacuum filtered and the filter cake disposed on an existing landfill. The filtrate is recycled. Excess filtrate is sprayed on the landfill. At present the output gas is being flared. A flow chart for the plant is presented. It is imperative that environmental investigations be conducted on new energy technology prior to commercialization. A project was initiated to characterize all input and output streams and to assess the potential for ground water contamination by landfill disposal of effluents. Detailed chemical, biological and physical characterization efforts supported by leaching and modelling studies are being conducted to achieve the stated objectives. Some mutagenic studies were also conducted. The environmental investigations were started in August 1978. Sengupta et al (1979a) reported the first year's efforts.

Sengupta, S; Farooq, S; Gerrish, H P; Wong, K F; Daly, Jr, E L; Chriswell, C

1980-02-01

135

Repeated pulse feeding induces functional stability in anaerobic digestion  

PubMed Central

Summary Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain ‘elasticity’, i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTRstable) was fed on daily basis, whereas the second reactor (CSTRdynamic) was fed every 2 days. Average biogas production was 0.30?l CH4 l?1 day?1 in both reactors, although daily variation was up to four times higher in the CSTRdynamic compared with the CSTRstable during the first 50 days. Bacterial analysis revealed that this CSTRdynamic had a two times higher degree of bacterial community dynamics. The CSTRdynamic also appeared to be more tolerant to an organic shock load of 8?g COD l?1 and ammonium levels up to 8000?mg TAN l?1. These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion. PMID:23302421

De Vrieze, Jo; Verstraete, Willy; Boon, Nico

2013-01-01

136

Biogas generation from in-storage psychrophilic anaerobic digestion.  

PubMed

In-storage psychrophilic anaerobic digestion (ISPAD) is a technology allowing livestock producers to operate an anaerobic digester with minimum technological know-how and for the cost of a conventional storage cover. Nevertheless, the system is exposed to ambient temperatures and biogas production is expected to vary with climatic conditions. The objective of the project was therefore to measure ISPAD biogas production during the winter and fall seasons for a region east of Montreal, Canada. A calibrated biogas monitoring system was used to monitor biogas methane and carbon dioxide concentrations inside a two-year-old field installation with a 1000 m3 storage capacity. Despite a leaking pumping hatch, winter 2010 (January to March) methane concentrations varied directly with solar radiation and maximum exterior temperature, rather than with manure temperature at 2.4 and 1.2 m depths which remained relatively constant between 1 and 5 degrees C. During a six-month-period from November 2009 to April 2010, inclusively, the field ISPAD degraded 34% of the manure volatile solids corresponding to an average methane production of 40 m3/d. The ISPAD biogas production could be further increased by improving its air tightness and intrusion and by regularly pumping out the biogas. PMID:23837352

Giard, David; Choiniere, Denis; Cordeau, Sébastien; Barrington, Suzelle

2013-01-01

137

Engineering analysis of a Chinese-type anaerobic digester  

SciTech Connect

This study was undertaken to evaluate the performance of spherical Chinese digesters receiving dairy waste. Sixteen laboratory-scale (3l) reactors were operated in the mesophilic temperature range (35/sup 0/C +/- 2/sup 0/C) and were subjected to hydraulic retention times (HRT) of 8, 10, 15, and 20 days and influent substrate concentrations (Sc) of 40.1, 57.8, 62.3, and 71.2 g BVS/l. Preliminary tracer experiments were performed to identify digester flow characteristics. A two-microbial culture mathematical model incorporating incomplete mixing and intermittent feeding was developed to predict effluent quality and gas production. Stimulus-response data indicated that by positioning the outlet at the bottom of the digester, flow characteristics could be improved, leading to reductions in dead space and bypassing volumes by 47% and 91%, respectively. Digesters operated at HRT's of 10, 15, and 20 days performed normally. In these units, for a given Sc, as the HRT was increased the volumetric methane production decreased while the unit methane production increased. The improvement in effluent quality was substantial when the HRT was increased from 8 to 10 days, and was modest when the HRT was increased beyond 10 days. The 8-day digesters were inhibited due to overloading. pH drops in these digesters were concurrent with alkalinity deficit. The optimum values for operational parameters were found to be an HRT of 10 days, and a loading rate of 7.12 g BVS/l-d. The two-culture mathematical model predicted gas yield and effluent concentration under retarded and normal digester operations. The three-step feed model best described digester activity following feed addition.

Jeyanayagam, S.S.

1986-01-01

138

Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge  

Microsoft Academic Search

Batch anaerobic biodegradation tests with different alkylbenzene sulphonates (LAS) at increasing concentrations were performed in order to investigate the effect of LAS homologues on the anaerobic digestion process of sewage sludge. Addition of LAS homologues to the anaerobic digesters increased the biogas production at surfactant concentrations ?5–10g\\/kg dry sludge and gave rise to a partial or total inhibition of the

M. T. Garcia; E. Campos; J. Sánchez-Leal; I. Ribosa

2006-01-01

139

Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion  

Microsoft Academic Search

The anaerobic biodegradability and toxicity of olive mill waste-waters (OMW) were studied in batch anaerobic digestion experiments.\\u000a Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5–15% (V\\/V)\\u000a dilution corresponding to only 5–20 g\\/L COD. The washed suspended solids of OMW were toxic at up to 80 g\\/L COD; however, the

Moktar Hamdi

1992-01-01

140

Survival rates of parasite eggs in sludge during aerobic and anaerobic digestion.  

PubMed Central

The effects of mesothermic anaerobic or aerobic sludge digestion on survival of eggs from the roundworms Ascaris suum, toxocara canis, Trichuris vulpis, and Trichuris suis and from the rat tapeworm Hymenolepis diminuta were studied. Destruction of eggs throughout a 15-day treatment period, as well as their viabilities after reisolation, was analyzed. The laboratory model digesters used in this study were maintained at a 15-day retention schedule, partially simulating a continuously operating system. Ascaris eggs were destroyed in the anaerobic (23%) or aerobic (38%) digesters, and 11% Trichuris eggs were destroyed in the aerobic digesters. Trichuris eggs in anaerobic digesters and Toxocara eggs in either anaerobic or aerobic digesters were not destroyed. Destruction of eggs in digesters was correlated with the state of the eggs before subjection to the treatment processes; i.e., some Ascaris and Trichuris eggs were already embryonated in host intestinal contents or feces and hence past their most resistant stage. The viabilities of Ascaris and Toxocara eggs that survived the digestion processes were greater in anaerobically treated than in aerobically treated material. Eggs from Hymenolepis were nonviable before use in the experiments. However, they were more effectively destroyed in aerobic digesters than in anaerobic digesters. PMID:6891199

Black, M I; Scarpino, P V; O'Donnell, C J; Meyer, K B; Jones, J V; Kaneshiro, E S

1982-01-01

141

Biogas energy production from tropical biomass wastes by anaerobic digestion.  

PubMed

Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

2014-10-01

142

Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure  

Microsoft Academic Search

The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low

M Murto; L Björnsson; B Mattiasson

2004-01-01

143

Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives  

Microsoft Academic Search

The technology of anaerobic digestion of organic solid wastes is, in many aspects, mature. Topics such as fundamentals (kinetics, modelling, etc.), process aspects (performance, two- and single-phase systems, wet and dry technologies), digestion enhancement (several pre-treatments), co-digestion with other substrates and its relation to composting technology are examined in this review. Special attention is paid to the advantages of anaerobic

J Mata-Alvarez; S Macé; P Llabrés

2000-01-01

144

Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.  

PubMed

This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (?=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (?=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. PMID:25181698

Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

2014-11-01

145

Anaerobic digestion of autoclaved and untreated food waste  

SciTech Connect

Highlights: • Autoclaving decreased the formation of NH4-N and H{sub 2}S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m{sup 3}day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH{sub 4} yields were observed at OLR 3 kg VS/m{sup 3}day with untreated FW. • Autoclaved FW produced highest CH{sub 4} yields during OLR 4 kgVS/m{sup 3}day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m{sup 3} d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m{sup 3} CH{sub 4}/kg VS at 3 kg VS/m{sup 3} d) than autoclaved FW (maximum 0.439 ± 0.020 m{sup 3} CH{sub 4}/kg VS at 4 kg VS/m{sup 3} d). The residual methane potential of both digestates at all OLRs was less than 0.110 m{sup 3} CH{sub 4}/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

Tampio, Elina, E-mail: elina.tampio@mtt.fi [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland); Ervasti, Satu; Paavola, Teija [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland); Heaven, Sonia; Banks, Charles [University of Southampton, Faculty of Engineering and the Environment, Southampton SO17 1BJ (United Kingdom); Rintala, Jukka [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland)

2014-02-15

146

The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste.  

PubMed

Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process. PMID:24814768

Lindmark, Johan; Eriksson, Per; Thorin, Eva

2014-08-01

147

Solubilization of particulate organic carbon during the acid phase of anaerobic digestion  

Microsoft Academic Search

Hydrolysis of particulates to soluble substrates rather than bacterial growth was the rate-limiting step during the acid phase of anaerobic digestion of sewage sludge, and pH had a greater effect on the process than did influent solids concentrations, suggesting that digestability can be improved for highly variable feed sludges by separate phase digestion for acid production and CHâ production. Carbohydrates

J. A. Eastman; J. F. Ferguson

1981-01-01

148

Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production  

Microsoft Academic Search

Biogas production in anaerobic digestion in farm-scale units is typically performed under mesophilic conditions when used for producing domestic fuel and stabilizing animal waste for the use of digested manure as a fertilizer. Previous studies on the digestion of llama and cow manure have shown the feasibility of producing biogas under altiplano conditions (low pressure and low temperature) and of llama

René Alvarez; Gunnar Lidén

2009-01-01

149

Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW  

SciTech Connect

While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

none,

1992-10-01

150

Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge  

PubMed Central

The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (?80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851

Battersby, Nigel S.; Wilson, Valerie

1989-01-01

151

Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.  

PubMed

Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy. PMID:23827782

Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

2013-12-01

152

Microbial kinetic for In-Storage-Psychrophilic Anaerobic Digestion (ISPAD).  

PubMed

In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is a wastewater storage tank converted into an anaerobic digestion (AD) system by means of an airtight floating geo-membrane. For process optimization, ISPAD requires modelling with well-established microbial kinetics coefficients. The present objectives were to: obtain kinetics coefficients for the modelling of ISPAD; compare the prediction of the conventional and decomposition fitting approach, an innovative fitting technique used in other fields of science, and; obtain equations to predict the maximum growth rate (?max) of microbial communities as a function of temperature. The method consisted in conducting specific Substrate Activity Tests (SAT) using ISPAD inoculum to monitor the rate of degradation of specific substrates at 8, 18 and 35 °C. Microbial kinetics coefficients were obtained by fitting the Monod equations to SAT. The statistical procedure of Least Square Error analysis was used to minimize the Sum of Squared Errors (SSE) between the measured ISPAD experimental data and the Monod equation values. Comparing both fitting methods, the decomposition approach gave higher correlation coefficient (R) for most kinetics values, as compared to the conventional approach. Tested to predict ?max with temperature, the Square Root equation better predicted temperature dependency of both acidogens and propionate degrading acetogens, while the Arrhenius equation better predicted that of methanogens and butyrate degrading acetogens. Increasing temperature from 18 to 35 °C did not affect butyrate degrading acetogens, likely because of their dominance, as demonstrated by microbial population estimation. The estimated ISPAD kinetics coefficients suggest a robust psychrophilic and mesophilic coexisting microbial community demonstrating acclimation to ambient temperature. PMID:25156266

Madani-Hosseini, Mahsa; Mulligan, Catherine N; Barrington, Suzelle

2014-12-15

153

Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.  

PubMed

The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. PMID:25280599

Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

2014-11-01

154

Anaerobic digestion of wheat straw--performance of continuous solid-state digestion.  

PubMed

In this study the upflow anaerobic solid-state (UASS) reactor was operated at various conditions to optimize the process parameters for anaerobically digesting wheat straw in a continuous process. Additionally, particle size effects have been studied in the operation at 55 and 60°C. Moreover, the incremental effect of the organic loading rate (OLR) to the system was examined from 2.5 to 8 gVS L(-1) d(-1). It was found that the UASS operating at 60 °C with a small OLR yields highest methane production, but the advantage over thermophilic operation is negligible. The rise in OLR reduces the systems yields, as expected. From OLR=8 gVS L(-1) d(-1) a second stage is necessary to circumvent volatile fatty acids accumulation. PMID:23954246

Pohl, Marcel; Heeg, Kathrin; Mumme, Jan

2013-10-01

155

Anaerobic co-digestion of coffee waste and sewage sludge.  

PubMed

The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24-0.28 m3 CH4(STP)/kg VS(initial) and 76-89% of the theoretical methane yield was achieved. Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the range of 0.035-0.063 d(-1). One of the solid wastes, composed of 100% barley, achieved a methane yield of 0.02 m3 CH4(STP)/kg VS(initial), reductions of 31% in total solids, 40% in volatile solids and achieved only 11% of the theoretical methane yield. However, this waste presented the highest hydrolysis rate constant. Considering all the wastes, an inverse linear correlation was obtained between methane yield and the hydrolysis rate constant, suggesting that hydrolysis was not the limiting factor in the anaerobic biodegradability of this type of waste. PMID:16310117

Neves, L; Oliveira, R; Alves, M M

2006-01-01

156

Anaerobic digestion of autoclaved and untreated food waste.  

PubMed

Anaerobic digestion of autoclaved (160°C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids(VS)/m(3)d. Methane yields at all OLR were 5-10% higher for untreated FW (maximum 0.483±0.013 m(3) CH4/kg VS at 3 kg VS/m(3) d) than autoclaved FW (maximum 0.439±0.020 m(3) CH4/kg VS at 4 kg VS/m(3) d). The residual methane potential of both digestates at all OLRs was less than 0.110 m(3) CH4/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components. PMID:24238799

Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

2014-02-01

157

CFD simulation of mixing for high-solids anaerobic digestion.  

PubMed

A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included. PMID:22422446

Wu, Binxin

2012-08-01

158

Microbial reduction of sulfur dioxide with anaerobically digested municipal sewage biosolids as electron donors.  

PubMed

A concentrated stream of sulfur dioxide (SO2) is produced by regeneration of the sorbent in certain new regenerable processes for the desulfurization of flue gas. We have previously proposed that this SO2 can be converted to elemental sulfur for disposal or byproduct recovery using a microbial/Claus process. In this process, two-thirds of the SO2-reducing gas stream would be contacted with a mixed culture containing sulfate-reducing bacteria (SRB), where SO2 would act as an electron acceptor with reduction to hydrogen sulfide (H2S). This H2S could then be recombined with the remaining SO2 and sent to a Claus unit to produce elemental sulfur. The sulfate-reducing bacterium, Desulfovibrio desulfuricans, has been immobilized by coculture with flocforming heterotrophs from an anaerobic digester, resulting in a SO2-reducing floc that may be collected from the effluent of a continuous reactor for recycle by gravity sedimentation. The carbon and energy source for these cultures was anaerobically digested municipal sewage solids. The maximum specific activity for SO2 reduction in these cultures, in terms of dry weight of D. desulfuricans biomass, was 9.1 mmol of SO2/h.g. The stoichiometry with respect to the electron donor was 15.5 mg of soluble COD/mmol of SO2 reduced. PMID:7766099

Selvaraj, P T; Sublette, K L

1995-01-01

159

[Effect of TS loading rates of biogas residue of Spartina alterniflora for secondary anaerobic digestion].  

PubMed

Biogas residue of Spartina alterniflora treated by NaOH solution for 48h at room temperature was used for secondary anaerobic digestion with TS loading rates were 8%, 10%, 12% at (35 +/- 1) degrees C. The biogas yield, pH, and volatile fatty acid (VFA) were analyzed during the anaerobic digestion. The peak of daily gas production were 10, 14, 13 mL x g(-1) and the rates of cumulate gas production were 217, 227, 228 mL x g(-1) respectively. The methane content exceeded 65% and the lowest pH value was 7.04 during the process. The concentrations of acetic acid concentrations were 3 364, 3 286, 5 728 mg x L(-1) respectively while propionic acid and butyric acid concentrations were below 1 100 mg x L(-1). Biogas residue as a non-degradation organic compound with high potential biogas yield was decomposed slowly and no acid accumulation was not observed. PMID:22295645

Luo, Yan; Luo, Xing-Zhang; Zheng, Zheng; Chen, Guang-Yin; Liang, Yue-Gan

2011-11-01

160

Anaerobic Digestion of Alkaline Bleaching Wastewater from a Kraft Pulp and Paper Mill Using UASB Technique.  

PubMed

Abstract Anaerobic digestion of alkaline kraft ECF (elemental chlorine free) bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed (UASB) reactors resulted in significantly higher biogas production (250±50 vs. 120±30 NmL g TOCIN(-1)) and reduction of filtered TOC (fTOC) (60±5 vs. 43±6 %) for wastewater from processing of hardwood (HW) compared to softwood (SW). In all cases the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics a stable anaerobic process was maintained with hydraulic retention times (HRT) between 7 and14?h. Lowering the HRT (from 13.5 to 8.5?h) did not significantly affect the process, and the stable performance at 8.5?h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation but, the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization. PMID:25441833

Larsson, Madeleine; Truong, Xu-Bin; Björn, Annika; Ejlertsson, Jörgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

2014-12-01

161

Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance.  

PubMed

A new way of generating Class A sludge using microwaves was evaluated through a series of laboratory-scale experiments. Microwaves provide rapid and uniform heating throughout the material. Other benefits of microwave treatment include instant and accurate control and selective and concentrated heating on materials, such as sludge, that have a high dielectric loss factor. Sludge was irradiated with 2450-MHz microwaves, and fecal coliforms were counted. Fecal coliforms were not detected at 65 degrees C for primary sludge and anaerobic digester sludge and at 85 degrees C for waste activated sludge when sludge was irradiated with 2450-MHz microwaves. During the bench-scale anaerobic digester operation, the highest average log reduction of fecal coliforms was achieved by the anaerobic digester fed with microwave-pretreated sludge (> or = 2.66 log removal). The anaerobic digester fed with microwave-irradiated sludge was more efficient in inactivation of fecal coliforms than the other two digesters fed with raw sludge and externally heated sludge, respectively. It took more than three hydraulic retention times for a bench-scale mesophilic anaerobic digester to meet Class A sludge requirements after feeding microwave-irradiated sludge. Class A sludge can be produced consistently with a continuously fed mesophilic anaerobic digester if sludge is pretreated with microwaves to reach 65 degrees C. PMID:16553169

Hong, Seung M; Park, Jae K; Teeradej, N; Lee, Y O; Cho, Y K; Park, C H

2006-01-01

162

Recovery of energy from Taro (Colocasia esculenta) with solid-feed anaerobic digesters (SOFADs).  

PubMed

We present studies on solid-feed anaerobic digesters (SOFADs) in which chopped Colocasia esculenta was fed without any other pretreatment, in an attempt to develop an efficient means of utilizing the semi-aquatic weed that is otherwise an environmental nuisance. Two types of SOFADs were studied. The first type had a single vessel with two compartments. The lower portion of the digester, 25% of the total volume, was separated from the upper by a perforated PVC disk. The weed was charged from the top and inoculated with anaerobically digested cow dung-water slurry. The fermentation of the weed in the digester led to the formation of volatile fatty acids (VFAs) plus some biogas. The bioleachate, rich in the VFAs, passed through the perforated PVC disk and was collected in the lower compartment of the digester. The other type of digesters, referred to as anaerobic multi-phase high-solids digesters (AMHDs), had the same type of compartmentalized digester unit as the first type and an additional methaniser unit. Up-flow anaerobic filters (UAFs) were used as methaniser units, which converted the bioleachate into combustible biogas consisting of approximately 60% methane. All SOFADs developed a consistent performance in terms of biogas yield within 20 weeks from the start. Among the two types of digesters studied, the AMHDs were found to perform better with a twofold increase in biogas yield compared to the first type of digesters. PMID:17382532

Bindu, T; Ramasamy, E V

2008-01-01

163

Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process  

PubMed Central

Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330

2010-01-01

164

DESTRUCTION BY ANAEROBIC MESOPHILIC AND THERMOPHILIC DIGESTION OF VIRUSES AND INDICATOR BACTERIA INDIGENOUS TO DOMESTIC SLUDGES  

EPA Science Inventory

In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria are poor quantitative r...

165

Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge.  

PubMed

Pharmaceutical sludge is considered as a hazardous substance with high treatment and disposal fees. Anaerobic digestion could not only transform the hazardous substance into activated sludge, but also generate valuable biogas. This research had two objectives. First: studying the feasibility of anaerobic digestion and determining the biochemical methane potential (BMP) of pharmaceutical sludge under different Inoculum to substrate TS ratios (ISRs) of 0, 0.65, 2.58 and 10.32 in mesophilic condition of 37±1°C. Secondly, investigating the removal efficiency of colistin sulphate during anaerobic digestion. The results showed that the use of anaerobic digestion to treat the pharmaceutical sludge is feasible and that it can completely eliminate the colistin sulphate. The highest biogas production from pharmaceutical sludge is 499.46mL/gTS at an ISR of 10.32. PMID:25490101

Yin, Fubin; Wang, Dongling; Li, Zifu; Ohlsen, Thomas; Hartwig, Peter; Czekalla, Sven

2015-02-01

166

Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.  

PubMed

A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process. PMID:24191456

Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

2013-01-01

167

Continuous anaerobic digestion of food waste and design of digester with lipid removal.  

PubMed

Separation of municipal solid waste has been implemented in many cities in China. As a major component of municipal solid waste, food waste can be treated by anaerobic digestion (AD) for energy production. To provide reference data for disposing of food waste through engineering applications, continuous AD was carried out under various organic loading rates (OLRs) at 27 +/- 2 degrees C in the laboratory. The anaerobic reactor was stable with pH 7.0-7.1, total volatile fatty acid (VFA) concentrations of 206-746 mg/L, and NH4+ -N concentrations of 525-1293 mg/L when the OLR was 1.118-5.588 kg volatile solids (VS)/m(3) x d. The maximum volumetric biogas production rate was 4.41 L/L x d when the OLR was increased to 5.588 kg VS/m(3) x d with a hydraulic retention time of 30 d. When the OLR was increased to 6.706 and 8.382 kg VS/m(3) x d, biogas production was seriously inhibited by VFAs, with maximum total VFA and propionate concentrations of 8738 mg/L and 2864 mg/L, respectively. Due to the incomplete degradation of lipids, the specific methane production rate of 353-488 L/kg VS accounted for 55.2-76.3% of the theoretical methane potential calculated based on the component composition. A retrofitted anaerobic digester with lipid removal was designed to improve the efficiency. PMID:24350467

Li, Dong; Sun, Yongming; Guo, Yanfeng; Yuan, Zhenhong; Wang, Yao; Zhen, Feng

2013-01-01

168

Anaerobic Digesters: From Waste to Energy Crops as an Alternative Energy Source  

Microsoft Academic Search

The main objective of the present study is to investigate the integrated organic waste-anaerobic digester-energy crop production system as a eco-agricultural system and to use anaerobically digested cattle slurry as fertilizer for safflower production. The value of slurry as fertilizer for growing safflower was compared with commercial organic and chemical fertilizers. According to the results of this study, higher yields

G. Kocar

2008-01-01

169

Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors  

Microsoft Academic Search

Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine

I. Angelidaki; B. K. Ahring; H. Deng; J. E. Schmidt

2002-01-01

170

Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process  

Microsoft Academic Search

BACKGROUND: Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based

Zsolt Barta; Kati Reczey; Guido Zacchi

2010-01-01

171

Biodegradability and change of physical characteristics of particles during anaerobic digestion of domestic sewage.  

PubMed

At the high-rate anaerobic treatment of domestic sewage, both biological and physical processes play an important role. Therefore, the anaerobic biodegradability of raw, paper-filtered and membrane-filtered sewage and black water has been investigated in batch experiments. Additionally, the effect of anaerobic digestion on physical characteristics, like particle size, surface tension and zeta-potential, of the present particles is studied. The biodegradability of domestic sewage and black water at 30 degrees C is almost similar (71-74%). Moreover, a high methanogenesis of the colloidal fraction in domestic sewage (86 +/- 3%) is achieved, showing that the low removal of colloidal particles in continuous high-rate anaerobic reactors is due to low physical removal rather than biodegradability. The lowest biodegradability is demonstrated for the dissolved fraction (62%). The results show that after anaerobic digestion the average radius of particles with diameter < 4.4 and < 0.45 microns increased for domestic sewage, while it decreased for black water. Part of the surface-active components in domestic sewage is not biodegraded during anaerobic batch digestion, as indicated by the development of the surface tension. The negative zeta-potential of all particles hardly changes during digestion, showing that colloidal interactions were not affected by anaerobic digestion. PMID:11268851

Elmitwalli, T A; Soellner, J; De Keizer, A; Bruning, H; Zeeman, G; Lettinga, G

2001-04-01

172

Anaerobic digestibility of the waste activated sludge discharged from large-scale membrane bioreactors.  

PubMed

Anaerobic digestibility of the waste activated sludge (WAS) discharged from large-scale membrane bioreactors (MBRs) and conventional activated sludge processes (CASs) were compared using batch trials. Four wastewater treatment plants were sampled. Results showed that the sludge from MBRs had poor anaerobic digestibility as it had lower volatile solid (VS) reduction rate and lower maximum biogas production rate. The partial sludge stabilization during the long sludge retention time (SRT) typically applied in MBRs was the possible reason. On the other hand, the difference in wastewater composition had a great impact on the properties of activated sludge and the downstream sludge digestion. Inorganic matter accumulation in the WAS may hinder the access of microorganisms to substrate. The humic-like substances accumulating in the activated sludge was expected to contribute to the worse digestibility and these substances were observed to be released during anaerobic digestion through three-dimensional excitation-emission matrix (EEM) fluorescence spectra. PMID:23131311

Yu, Zhiyong; Wen, Xianghua; Xu, Meilan; Qi, Meng; Huang, Xia

2012-12-01

173

Anaerobic digestion of distillery spent wash: Influence of enzymatic pre-treatment of intact yeast cells.  

PubMed

The potential benefits of enzymatic digestion of intact yeast cells on anaerobic digestion of Scotch whisky distillery spent wash and pot ale were investigated. Various yeast cell wall hydrolytic enzymes were studied based on their effect on dissolution of cell wall glucan and mannoprotein. The synergistic activity of beta-glucanase and protease showed greater than 90% yeast cell digestion at 37 degrees C in 24h. The widely-used industrial enzyme papain showed 95% yeast cell digestion in spent wash at 1% enzyme concentration within 22h at 50 degrees C. Anaerobic digestion of pot ale residues containing intact yeast cells pre-treated with lytic enzymes showed COD reductions of 87%, compared with only 13% without enzymes. Similar results were observed with distillery spent wash centrate. The hydrolysis of intact yeast cells in distillery liquid residues was found to be a rate-limiting step in anaerobic treatment of such residues. PMID:19884003

Mallick, P; Akunna, J C; Walker, G M

2010-03-01

174

A hybrid anaerobic solid-liquid bioreactor for food waste digestion  

Microsoft Academic Search

A hybrid anaerobic solid-liquid (HASL) bioreactor is an enhanced two-phase anaerobic system, that consists of a solid waste reactor as the acidification reactor and a wastewater reactor, i.e. an upflow anaerobic sludge blanket (UASB) reactor as the methanogenic reactor. Food waste digestion in HASL bioreactors with pre-acidification and HASL operation stages was investigated in two separate runs. After 8 days

Xu Hai-Lou; Wang Jing-Yuan; Tay Joo-Hwa

2002-01-01

175

Comparative performance of anaerobic digesters operating on ice-cream wastewater  

Microsoft Academic Search

Pilot-scale anaerobic digesters were operated on ice-cream wastewater for over three years. The performance of four reactor designs, an anaerobic filter, contact process and UASB of capacity 5 m3, and a 0.5 m3 fluidised bed, was compared. The anaerobic filter, with a 3.3 m3 Pall ring bed, operated stably at organic loading rates (Bv) around 6 kg COD m?3d?1, giving

Freda R. Hawkes; T. Donnelly; G. K. Anderson

1995-01-01

176

Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge  

PubMed Central

Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

2012-01-01

177

Thermal pre-treatment of primary and secondary sludge at 70 8 8C prior to anaerobic digestion  

Microsoft Academic Search

In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated biochemical reactions and higher growth rate of microorganisms resulting in an increased methanogenic potential at lower hydraulic retention times. Furthermore,

I. V. Skiadas; H. N. Gavala; J. Lu; B. K. Ahring

178

Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids  

Microsoft Academic Search

Laboratory anaerobic and aerobic digestion studies were conducted using waste activated sludges from two municipal wastewater treatment plants in order to gain insight into the mechanisms of floc destruction that account for changes in sludge conditioning and dewatering properties when sludges undergo anaerobic and aerobic digestion. Batch digestion studies were conducted at 20°C and the dewatering properties, solution biopolymer concentration

John T. Novak; Mary E. Sadler; Sudhir N. Murthy

2003-01-01

179

An examination of the effects of detergents on anaerobic digestion.  

PubMed

An anaerobic filter was used to examine the treatability of wastewater formulated to simulate that from the manufacture of detergents. The detergent element was a mixture (1:1:1 v/v) of concentrated washing up liquid, a non-biological hand washing detergent and a fabric softener and, thus contained a combination of cationic surfactants, anionic surfactants, non-ionic surfactants and amphoteric surfactants. A concentration of 2 ml/l caused a deterioration in the performance of the digester which was pronounced after 7 days. When the packing of the filter was modified to include two layers of granular activated carbon, 320 g in total, the reactor was capable of treating a feed containing 10 ml/l. The amount of detergent removed during this second trial was greater than the Langmuir monolayer capacity of the carbon, indicating that both adsorption and degradation were occurring. The results also showed that, at detergent concentrations greater than 1 ml/l, the theoretical COD removal was lower than the actual COD removal. This was compatible with there being an element of adsorption by the activated carbon. PMID:12895555

Mensah, Kojo Arthur; Forster, Christopher F

2003-11-01

180

Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor.  

PubMed

The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM. PMID:22005739

Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy

2012-01-01

181

ENERGY AND ECONOMIC ASSESSMENT OF ANAEROBIC DIGESTERS AND BIOFUELS FOR RURAL WASTE MANAGEMENT  

EPA Science Inventory

A technological and socioeconomic assessment of anaerobic digester feasibility for small to mid-size livestock operations was undertaken. Three full scale digesters and one pilot scale facility were under various degrees of monitoring and evaluation to assess design and operation...

182

COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION. PHASE 2. STEADY STATE STUDIES  

EPA Science Inventory

A study was conducted of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

183

Pilot plant study of the effects of quebracho and wattle on anaerobic digestion  

SciTech Connect

Quebracho and wattle tannin adversely affected the operational control required for the systems as well as CH4 production. The anaerobic organisms however degraded the tannins and the characteristic red color was effectively removed from the supernatant (liquid phase of digested sludge) during digestion.

Eye, J.D.; Ficker, C.F.

1982-01-01

184

Influence of methane enrichment by aeration of recirculated supernatant on microbial activities during anaerobic digestion  

Microsoft Academic Search

A methane enrichment process (MEP) was evaluated that involved air purging of recycled digester contents to strip CO2 and increase biogas methane content. The objective of this work was to determine if the aeration resulted in oxygen inhibition of microbial activities involved in anaerobic digestion of municipal solid waste. To assess the degree of biological perturbation associated with the MEP,

D. M O'Keefe; R. L Brigmon; D. P Chynoweth

2000-01-01

185

Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.  

PubMed

The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

2014-11-13

186

Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance  

SciTech Connect

A 750,000 l digester located in Roppen/Austria was studied over a 2-year period. The concentrations and amounts of CH{sub 4}, H{sub 2}, CO{sub 2} and H{sub 2}S and several other process parameters like temperature, retention time, dry weight and input of substrate were registered continuously. On a weekly scale the pH and the concentrations of NH{sub 4}{sup +}-N and volatile fatty acids (acetic, butyric, iso-butyric, propionic, valeric and iso-valeric acid) were measured. The data show a similar pattern of seasonal gas production over 2 years of monitoring. The consumption of VFA and not the hydrogenotrophic CH{sub 4} production appeared to be the limiting factor for the investigated digestion process. Whereas the changes in pH and the concentrations of most VFA did not correspond with changes in biogas production, the ratio of acetic to propionic acid and the concentration of H{sub 2} appeared to be useful indicators for reactor performance. However, the most influential factors for the anaerobic digestion process were the amount and the quality of input material, which distinctly changed throughout the year.

Illmer, P. [University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck (Austria)], E-mail: Paul.Illmer@uibk.ac.at; Gstraunthaler, G. [Abfallbeseitigungsverband Westtirol, Breite Mure, A-6426 Roppen (Austria)

2009-01-15

187

Relationship between anaerobic digestion of biodegradable solid waste and spectral characteristics of the derived liquid digestate.  

PubMed

The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion. PMID:24686373

Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing

2014-06-01

188

Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.  

PubMed

The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater. PMID:24742289

Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

2014-05-20

189

Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment.  

PubMed

Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m(3)CH4 kgCODvinasse (-1). The highest productivity of Chlorella vulgaris biomass (70 mg l(-1) day(-1)) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l(-1) day(-1). Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively. PMID:24013860

Marques, Sheyla Santa Isabel; Nascimento, Iracema Andrade; de Almeida, Paulo Fernando; Chinalia, Fábio Alexandre

2013-12-01

190

Involvement of a novel fermentative bacterium in acidification in a thermophilic anaerobic digester.  

PubMed

Acidification results from the excessive accumulation of volatile fatty acids and the breakthrough of buffering capacity in anaerobic digesters. However, little is known about the identity of the acidogenic bacteria involved. Here, we identified an active fermentative bacterium during acidification in a thermophilic anaerobic digester by sequencing and phylogenetic analysis of isotopically labeled rRNA. The digestion sludge retrieved from the beginning of pH drop in the laboratory-scale anaerobic digester was incubated anaerobically at 55 °C for 4 h during which (13) C-labeled glucose was supplemented repeatedly. (13) CH4 and (13) CO2 were produced after substrate addition. RNA extracts from the incubated sludge was density-separated by ultracentrifugation, and then bacterial communities in the density fractions were screened by terminal restriction fragment length polymorphism and clone library analyses based on 16S rRNA transcripts. Remarkably, a novel lineage within the genus Thermoanaerobacterium became abundant with increasing the buoyant density and predominated in the heaviest fraction of RNA. The results in this study indicate that a thermoacidophilic bacterium exclusively fermented the simple carbohydrate glucose, thereby playing key roles in acidification in the thermophilic anaerobic digester. PMID:25273502

Hori, Tomoyuki; Akuzawa, Masateru; Haruta, Shin; Ueno, Yoshiyuki; Ogata, Atsushi; Ishii, Masaharu; Igarashi, Yasuo

2014-10-01

191

[Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes ].  

PubMed

To improve anaerobic digestion and dewatering of sludge, impacts of sludge pretreated by microwave (MW) and its combined processes on sludge anaerobic digestion and dewatering were investigated. The results showed that microwave and its combined processes could effectively enhance anaerobic sludge digestion. Not only the cumulative methane production in the test of the MW-H2O2-alkaline (0. 2) was increased by 13. 34% compared with the control, but also its methane production rate was much higher than that of the control. Compared with the single MW process, the addition of both H2O2 and alkaline enhanced the solubilization of particle COD( >0. 45 micron) , indicating that synergistically generated soluble organics were faster to biodegrade which resulted in the enhancement of anaerobic digestion. The MW-acid process was effective in improving sludge dewaterability, e. g. , Capillary Suction Time (CST) at only 9. 85 s. The improvement of sludge dewatering was significantly correlated with sludge physical properties such as zeta potential, surface charge density and particle size. Under different sludge pretreatment conditions, the sludge dewatering after anaerobic digestion was similar, though the difference of sludge dewatering to some degrees was observed for pretreated sludge. PMID:25518665

Liu, Ji-bao; Ni, Xiao-tang; Wei, Yuan-song; Tong, Juan; Wang, Ya-wei

2014-09-01

192

Long-term anaerobic digestion of food waste stabilized by trace elements  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

Zhang Lei, E-mail: wxzyfx@yahoo.com [Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China); Jahng, Deokjin, E-mail: djahng@mju.ac.kr [Department of Environmental Engineering and Biotechnology, Myongji University, San 38-2, Namdong, Cheoin-Gu, Yongin, Gyeonggi-Do 449-728 (Korea, Republic of)

2012-08-15

193

Performance assessment of two-stage anaerobic digestion of kitchen wastes.  

PubMed

This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process. PMID:24701925

Bo, Zhang; Pin-Jing, He

2014-01-01

194

Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.  

PubMed

Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. PMID:24736207

Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

2014-06-01

195

Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.  

PubMed

This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (? 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion. PMID:24410687

Jin, Guang; Bierma, Tom; Walker, Paul M

2014-01-01

196

Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.  

PubMed

Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion. PMID:23685650

Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

2013-07-01

197

Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilisation.  

PubMed

Energy crops (willow, sugar beet and grass silage) were digested in pilot scale two-stage anaerobic digesters. The specific methane yields obtained were 0.16, 0.38 and 0.39 m3 kg(-1) added volatile solids (VSadded) for willow, sugar beet and grass, respectively, corresponding to yearly gross energy yields of 15, 53 and 26 megawatt-hours (MWh) per hectare. With grass and sugar beets as substrate, 84-85% of the harvestable methane was obtained within 30 days. In pilot scale two-stage digestion of willow and sugar beet, 56 and 85% of the laboratory scale methane yields were obtained, but digestion of grass in two-stage reactors yielded 5% more methane than digestion in laboratory scale completely mixed low solids systems, possibly due to the pH conditions favourable to hydrolysis in the two-stage system. In digestion of grass and sugar beet the liquid at the end of digestion was rich in ammonium nitrogen, and the nitrogen in the substrate was efficiently mineralised. The results show that heavy metal concentrations are not likely to limit the utilisation of residues from digestion of nonmetal accumulating crops. Efficient mobilisation of heavy metals during the acidic phase of digestion revealed the possibility of removing metals from leachate generated in two-stage anaerobic digestion of phytoextracting crops. PMID:16506517

Lehtomäki, A; Björnsson, L

2006-02-01

198

MICROBIAL DESTRUCTIONS ACHIEVED BY FULL-SCALE ANAEROBIC DIGESTION  

EPA Science Inventory

As part of studies undertaken to investigate the pathogen reducing capabilities of conventional sludge stabilization procedures, microbial reductions produced by mesophilic and thermophilic digestion at the Los Angeles Hyperion Plant were examined. Samples from the digester feed ...

199

Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery.  

PubMed

Sewage sludge management is an energy intensive process. Anaerobic digestion contributes to energy efficiency improvement but is limited by the biological process. A review has been conducted prior to experimentation in order to evaluate the mass and energy balances on anaerobic digestion followed by gasification of digested sludge. The purpose was to improve energy recovery and reuse. Calculations were based on design parameters and tests that are conducted with the anaerobic digester of a local wastewater treatment plant and a small commercial gasification system. Results showed a very significant potential of energy recovery. More than 90% of the energy content from sludge was extracted. Also, approximately the same amount of energy would be transferred in both directions between the digester (biogas) and the gasifier (thermal energy). This extraction resulted in the same use of biogas as the reference scenario but final product was a totally dry biochar, which represented a fraction of the initial mass. Phosphorus was concentrated and significantly preserved. This analysis suggests that anaerobic digestion followed by dehydration, drying and gasification could be a promising and viable option for energy and nutrient recovery from municipal sludge in replacement of conventional paths. PMID:24972600

Lacroix, Nicolas; Rousse, Daniel R; Hausler, Robert

2014-06-27

200

Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.  

PubMed

The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided. PMID:23583791

Franchetti, Matthew

2013-07-15

201

Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.  

PubMed

Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 ?g/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 ?g/kg dm (aerobically-digested sludge), 63 ?g/kg dm (lagoon sludge), 12 ?g/kg dm (composted sludge) and 8 ?g/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 ?g/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17?-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non-effect concentration, were lower than 1 for all the pharmaceutically active compounds so no significant risks are expected to occur due to the application of sewage sludge onto soils, except for 17?-ethinylestradiol when chronic toxicity was considered. PMID:24909712

Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

2015-01-15

202

Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system  

SciTech Connect

The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

Kheradmand, S. [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Sartaj, M. [Department of Civil Engineering, Isfahan University of Technology, Isfahan 841568311 (Iran, Islamic Republic of)

2010-06-15

203

Occurrence and reactivation of viable but non-culturable E. coli in sewage sludge after mesophilic and thermophilic anaerobic digestion.  

PubMed

The occurrence and reactivation of viable but non-culturable (VBNC) Escherichia coli after different anaerobic digestions and the subsequent dewatering and storage were evaluated and compared. Culturable E. coli in digested sludge increased by two to four orders of magnitudes immediately after dewatering. However, counts of both the total and viable E. coli indicated that the increase of E. coli was attributed to its reactivation from the VBNC state to the culturable state. The VBNC pathogen incidences of thermophilic digestion were two to three orders of magnitude higher than those of mesophilic digestion. Accordingly, culturable E. coli in thermophilic, digested sludge after storage were one order of magnitude higher than mesophilic digestion. Anaerobic digestion thus mainly alters the culturable state of pathogens rather than killing them; therefore the biological safety of digested sludge, especially temperature-phased anaerobic digestion, should be carefully assessed. PMID:24101245

Fu, Bo; Jiang, Qian; Liu, Hongbo; Liu, He

2014-02-01

204

Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates  

Microsoft Academic Search

Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionicsurfactants. They are anthropogenic, toxic compounds and are found in the primarysludge generated in municipal wastewater treatment plants. Primary sludge is usuallystabilized anaerobically and therefore it is important to investigate the effect of thesexenobiotic compounds on an anaerobic environment. The inhibitory effect of LinearAlkylbenzene Sulfonates (LAS) on the acetogenic and

Hariklia N. Gavala; Birgitte K. Ahring

2002-01-01

205

Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste.  

PubMed

This study aims to compare the efficiency of sonolysis and ozonation in improving anaerobic biodegradability of source sorted organic fraction of municipal solid waste, for the enhancing of biogas production and energy recovery as well. The methane yield of solid organic material anaerobic digestion is significantly affected by substrate availability, which can be favoured by pretreatments. In this investigation, both sonolysis and ozonation effects on substrate solubilisation and anaerobic biodegradability were evaluated under different treatment conditions. Results show that both pretreatments can significantly improve the solubilisation of organic solid waste. However, during ozonation experiments, no correlation was observed between increased solubilisation and biogas production: the application of higher ozone doses led to the formation of by-products less biodegradable than untreated substrate. This evidence makes the ultrasound process more efficient than ozonation and addresses further studies for sonolysis optimisation as pretreatment for solid waste anaerobic digestion. PMID:23231941

Cesaro, Alessandra; Belgiorno, Vincenzo

2013-05-01

206

Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover.  

PubMed

The inhibitive effect of total ammonia nitrogen (TAN) (including NH3 and NH4(+)) on solid-state anaerobic digestion of corn stover was investigated in batch reactors at 37°C. The highest methane yield of 107.0 L/kg VS(feed) was obtained at a TAN concentration of 2.5 g/kg (based on total weight). TAN concentrations greater than 2.5 g/kg resulted in decreased methane yields, with a 50% reduction observed at a concentration of 6.0 g/kg. Reduced reaction rates and microbial activities for hydrolysis of cellulose and methanogenesis from acetate were observed at TAN concentrations higher than 4.3 g/kg. Strong ammonia stress was indicated at butyrate concentrations higher than 300 mg/kg. Result showed that the effluent of liquid anaerobic digestion can provide enough nitrogen for solid-state anaerobic digestion of corn stover. PMID:23880129

Wang, Zhongjiang; Xu, Fuqing; Li, Yebo

2013-09-01

207

In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.  

PubMed

Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes. PMID:24811447

Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

2014-07-01

208

Enhanced stabilization of digested sludge during long-term storage in anaerobic lagoons.  

PubMed

The goal of this work was to study changes in anaerobically stored digested sludge under different lengths of storage time to evaluate the quality of final product biosolids. The analyses of collected data suggest the organic matter degradation occurrence in the anaerobic environment of the lagoon approximately within the first year. After that, the degradation becomes very slow, which is likely caused by unfavorable environmental conditions. The performance of lagoon aging of digested sludge was also compared to the performance of lagoon aging of anaerobically digested and dewatered sludge. It was concluded that both of these processes result in biosolids of comparative quality and that the former provides more economical solution to biosolids handling by eliminating the need for mechanical dewatering. PMID:24851324

Lukicheva, Irina; Pagilla, Krishna; Tian, Guanglong; Cox, Albert; Granato, Thomas

2014-04-01

209

Should we build "obese" or "lean" anaerobic digesters?  

PubMed

Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a 'diet' that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in lean mice. PMID:24831948

Briones, Aurelio; Coats, Erik; Brinkman, Cynthia

2014-01-01

210

Should We Build “Obese” or “Lean” Anaerobic Digesters?  

PubMed Central

Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a ‘diet’ that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in lean mice. PMID:24831948

Briones, Aurelio; Coats, Erik; Brinkman, Cynthia

2014-01-01

211

Biochemical methane potential and solid state anaerobic digestion of Korean food wastes  

Microsoft Academic Search

In order to develop an anaerobic digestion process for Korean food wastes containing 15–30% total solids (TS) the biochemical methane potentials (BMP) of their components and mixture (mixed food waste, MFW) were measured. The methane yields of cooked meat, cellulose (as control), boiled rice, fresh cabbage and MFW were 482, 356, 294, 277 and 472 ml CH4\\/gVS added and anaerobic

Ho Nam Chang; Soon Chul Park

1995-01-01

212

Performance of a two-phase anaerobic digestion system when treating dairy wastewater  

Microsoft Academic Search

Performance of a laboratory-scale two-phase anaerobic digestion system treating dairy wastewater was investigated using the pre-determined operating criteria for the anaerobic acidification reactor. The results, obtained from a 9month operation, showed that overall, 90% COD and 95% BOD removal efficiencies at an organic loading rate (OLR) of 5kg COD\\/m3d and a hydraulic retention time (HRT) of 2days were achieved. The

O. Ince

1998-01-01

213

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.  

PubMed

Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. PMID:21975301

Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

2012-01-01

214

Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city  

E-print Network

Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal-Milwaukee, Milwaukee, WI, USA ABSTRACT: Composting industry is a progressive and innovative industry that has been and processes on composting and anaerobic digestion are compiled, showing the versatility and multivariable

Wisconsin-Milwaukee, University of

215

AN INNOVATIVE DESIGN FOR ANAEROBIC CO-DIGESTION OF ANIMAL WASTES FOR SUSTAINABLE DEVELOPMENT IN RURAL COMMUNITIES  

EPA Science Inventory

With the aim of the Phase I project to develop an innovative anaerobic co-digestion design for the treatment of dairy manure and poultry waste, our Phase I team has evaluated the technical and economic feasibility of the anaerobic co-digestion design concept with a thorough in...

216

Inoculum selection is crucial to ensure operational stability in anaerobic digestion.  

PubMed

Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion. PMID:25261127

De Vrieze, Jo; Gildemyn, Sylvia; Vilchez-Vargas, Ramiro; Jáuregui, Ruy; Pieper, Dietmar H; Verstraete, Willy; Boon, Nico

2015-01-01

217

Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris.  

PubMed

The main goal of this present study is to investigate the feasibility of coupling algae production (Chlorella vulgaris) to an anaerobic digestion unit. An intermediate settling device was integrated in order to adapt the feed-flow concentration and the flow rate. Digestion of C. vulgaris was studied under 16 and 28 days hydraulic retention times (HRT), with a corresponding organic loading rate of 1g(COD)L(-1). Increasing the HRT achieved 51% COD removal with a methane production measured at 240 mL g(VSS)(-1). Performing different HRTs and dynamic monitoring during degradation highlighted differential hydrolysis of microalgae compartments. However, 50% of the biomass did not undergo anaerobic digestion, even under long retention times. This points out the interest for further studies on pre-treatment performances and more generally speaking on the need for intensifying microalgae biomass digestion. PMID:20678925

Ras, Monique; Lardon, Laurent; Bruno, Sialve; Bernet, Nicolas; Steyer, Jean-Philippe

2011-01-01

218

Characterization of the methanogen community in a household anaerobic digester fed with swine manure in China.  

PubMed

Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production. PMID:23649353

Qin, Huibin; Lang, Huihua; Yang, Hongjiang

2013-09-01

219

Contribution of anaerobic digesters to emissions mitigation and electricity generation under U.S. climate policy.  

PubMed

Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880

Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M

2011-08-15

220

Anaerobic co-digestion of sewage sludge: Application to the macroalgae from the Venice lagoon  

Microsoft Academic Search

Possibilities of co-digestion of sewage sludge (SS) with other organic wastes are examined in this paper. Anaerobic co-digestion of macroalgae of the Venice lagoon (A) with SS, in wastewater treatment plants is studied in detail. This approach can contribute to the solution of the final disposal of the 50 000 m3 of macrophytes harvested each season. These are mainly Ulva

F. Cecchi; P. Pavan; J. Mata-Alvarez

1996-01-01

221

Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures  

Microsoft Academic Search

This study investigated methane yield via anaerobic digestion of multi-component substrates based on mixtures of biodegradable single-component substrates with cow dung as main component. Bench and full-scale digestion experiments were carried out for both single and multi-component substrates to identify the relationship between methane yield and substrate composition. Results from both bench- and full-scale experiments corresponded well and showed that

S. M. Ashekuzzaman; Tjalfe G. Poulsen

2011-01-01

222

[Research advances in anaerobic co-digestion of biogas fermentation substrates].  

PubMed

With global climate change, more and more attention has been paid to the development of bio-energy. Biogas fermentation, as a fairly mature technology of bio-matter energy transformation, has received considerable attention and experienced much development. How to improve the efficiency of biogas fermentation and promote its industrialization is a pressing issue. Anaerobic co-digestion is a simple, low-cost, and high-efficiency method for enhancing the efficiency of biogas fermentation, and received increasing attention from related researchers. This paper summarized the characteristics of various fermentation substrates, reviewed the research advances in the co-digestion of animal manure, sewage sludge, and industrial waste, with the focus on the advantages of co-digestion and the factors affecting the rate and efficiency of co-digestion, and prospected the future research of co-digestion and its application, aimed to provide theoretical guidance for the promotion and application of co-digestion techniques. PMID:23173482

Dong, Fei-Qing; Li, Xia; Lu, Jian-Bo

2012-07-01

223

Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids  

Microsoft Academic Search

Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer.\\u000a Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also\\u000a referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated.

Omoanghe S. Isikhuemhen; Nona A. Mikiashvilli

2009-01-01

224

Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass  

Technology Transfer Automated Retrieval System (TEKTRAN)

: Constructed wetlands (CW) offer a mechanism to meet regulatory standards for wastewater treatment while minimizing energy inputs. To optimize CW wastewater polishing activities and investigate integration of CW with energy production from anaerobic digestion we constructed a pair of three-tier ch...

225

Water as a leaching medium for hydrolysis of sorghum in anaerobic digestion systems  

SciTech Connect

Laboratory experiments were conducted to determine the effect of using water to leach hydrolysis products from sorghum used as an anaerobic digestion feedstock. The pH of the leachate had no effect on the cumulative COD measured in the leachate. Milling the sorghum with a three roll mill prior to leaching appeared to slightly increase the hydrolysis of structural carbohydrates in the sorghum.

Egg, R.; Coble, C.G.

1986-01-01

226

Semicontinuous anaerobic digestion of soft drink wastewater in immobilised cell bioreactors  

Microsoft Academic Search

Summary Saponite support considerably increased the kinetics of a. semicontinuous anaerobic digestion process treating soft drink wastewater showing values of the µmax andK kinetic parameters (Chen and Hashimoto model) 2.5 and 1.4 times higher than for bentonite and polyurethane support, respectively. This was significant at 95% confidence level.

R. Borja; C. J. Banks

1993-01-01

227

Improvement of anaerobic digester performance by wastewater recirculation through an aerated membrane.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Swine wastewater from an anaerobic digester was recirculated through a silicone hose located in an external aeration chamber to determine its effect on wastewater malodorants and biogas composition. The silicone hose acted as a semipermeable membrane for the passage of small molecules. In the first...

228

Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media  

Technology Transfer Automated Retrieval System (TEKTRAN)

Various formulations are used in horticultural potting media, with sphagnum peat moss, vermiculite and perlite currently among the most common components. We are examining a dried anaerobic digestate remaining after the fermentation of potato processing wastes to replace organic components such as p...

229

Intelligent control of an anaerobic digester: fuzzy-based gain scheduling for a geometrical approach  

Microsoft Academic Search

In this paper, an intelligent control scheme for a class of anaerobic digester, for wastewater treatment, is proposed. The control scheme results from the combination of nonlinear output feedback control and a fuzzy-based gain scheduling scheme. Such a controller achieves the substrate regulation in the face of modeling errors (which are mainly related to the kinetic terms). In addition, the

H. O. Mendez-Acosta; D. U. Campos-Delgado; R. Femat

2003-01-01

230

Design of Small Scale Anaerobic Digesters for Application in Rural Developing Countries  

Microsoft Academic Search

The high incidence of upper respiratory diseases, contamination of waterways due to pathogens and nutrients from human and animal wastes, unsustainable deforestation, gender disparities in burden of disease due to unequal exposure to indoor air pollutants, and carbon black emissions from the burning of solid fuels are interrelated problems in many developing countries. Small scale anaerobic digestion provides a means

Laurel Erika Rowse

2011-01-01

231

Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe  

Microsoft Academic Search

There is increasing international interest in developing low carbon renewable energy technologies. Biomass is increasingly being utilized as an energy source throughout the world. Several modern technologies have been developed that convert biomass to bioenergy. Anaerobic digestion is a mature energy technology for converting biomass to biogas, which is a renewable primary energy source. Biogas is a robust fuel that

Raphael M. Jingura; Rutendo Matengaifa

2009-01-01

232

Department of Agricultural and Biological Engineering Fall 2011 Small Scale Anaerobic Digestion by PENERGY Solutions  

E-print Network

with less feed cost outlay and with little or no fossil fuel consumption and hence energy costs. Ideally, the system would not require any fossil fuels for energy consumption to run the operation. Energy would by wood-fired boilers. By generating biogas through anaerobic digestion of swine manure, fuel can

Demirel, Melik C.

233

ANAEROBIC DIGESTION OF FOOD WASTE AND DAIRY MANURE FOR BIOENERGY PRODUCTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

The performance of continuously mixed anaerobic digesters was evaluated in the laboratory for treating manure, food waste and their mixtures at 35 ± 2oC and a hydraulic retention time of 20 days. The first mixture was composed of 32% and 68%, and the second was composed of 48% and 52% food waste and...

234

Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid  

Microsoft Academic Search

An automatically controlled, glucose-fed, anaerobic digester was deliberately inhibited by addition of phenol. To overcome the phenol inhibition the feed dilution rate was lowered in such a way that the methane yield from glucose was kept the same as that under normal conditions. The concentrations of acetic and butyric acids remained below 100 mg\\/l, however, propionic acid accumulated to 2750

Pratap C. Pullammanappallil; David P. Chynoweth; Gerasimos Lyberatos; Spyros A. Svoronos

2001-01-01

235

Utilization of Re-processed Anaerobically Digested Fiber from Dairy Manure as a Container Media Substrate  

Technology Transfer Automated Retrieval System (TEKTRAN)

The solid fraction (fiber) from the effluent of the anaerobic digestion of dairy manure by plug flow technology yields material that has consistent physical properties (total porosity, air filled porosity at saturation, and water holding capacity) to perform satisfactorily as a plant growth media su...

236

ENZYME ADDITION TO THE ANAEROBIC DIGESTION OF MUNICIPAL WASTEWATER PRIMARY SLUDGE  

EPA Science Inventory

The study evaluates the effects of enzyme augmentation on municipal wastewater (MWW) sludge anaerobic digestion. The primary objective was to examine the impact of using enzymes to enhance the degradation of the cellulosic and the oil- and grease-rich sludge fractions. The additi...

237

Anaerobic digestion of semi-solid organic waste: biogas production and its purification  

Microsoft Academic Search

The main objective of the present experimental investigation was to evaluate the effects of using different bacteria inoculums at identical technical settings on the anaerobic digestion process for the treatment of semi-solid organic waste available from the orthofruit market. As a possible means to improve the biogas production, as well as reduce their pollution potential, the idea of using recycled

G. Lastella; C. Testa; G. Cornacchia; M. Notornicola; F. Voltasio; Vinod Kumar Sharma

2002-01-01

238

Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.  

PubMed

The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea. PMID:21917290

Mu, Hui; Chen, Yinguang

2011-11-01

239

Testing the profitability of Anaerobic Digestion in a large-scale UK dairy farm   

E-print Network

of installing and operating a 500kWe anaerobic digestion plant in a large scale UK dairy farm. A discounted cash flow analysis was the utilised method to quantify the farm business value and profitability, and understand how attractive an investment of this type...

Coz Leniz, Luis Fernando

2011-11-24

240

Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS  

Microsoft Academic Search

There is growing interest in installing anaerobic digesters (ADs) on farms to use animal wastes as a biomass resource for both economic value and environmental benefit. This potential expansion prompts the need for land suitability assessment. In this paper, a GIS model is proposed for land-suitability assessment of potential energy systems featuring an AD coupled with an energy generator. A

Jianguo Ma; Norman R. Scott; Stephen D. DeGloria; Arthur J. Lembo

2005-01-01

241

Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes  

Microsoft Academic Search

The performance of temperature-phased anaerobic digestion (TPAD) system in the stabilization of dairy cattle wastes at high solids concentrations has never been evaluated, though the process has been established as a feasible alternative to conventional mesophilic processes for the treatment of municipal wastewater sludges. In this study, the TPAD system operating at a retention time of 14 days was subjected

Shihwu Sung; Harikishan Santha

2003-01-01

242

Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion.  

PubMed

The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion. PMID:24345568

Zhu, Pei; Chen, Daijie; Liu, Wenbin; Zhang, Jianbin; Shao, Lei; Li, Ji-an; Chu, Ju

2014-02-01

243

Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment  

SciTech Connect

Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residues increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.

Rivard, C.J.; Nagle, N.J.; Kay, B.D. [National Renewable Energy Labs., Golden, CO (United States)] [and others

1995-12-31

244

Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion  

SciTech Connect

The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA), tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.

Hamdi, M. (Centre de Biotechnologie, Sfax (Tunisia) Universite de Provence, Marseille (France))

1992-11-01

245

Thermophilic anaerobic digestion of livestock waste: the effect of ammonia  

Microsoft Academic Search

Ammonia concentrations of 4 g N\\/l or more inhibited thermophilic digestion of cattle manure. A stable digestion of cattle manure could be maintained with ammonia concentrations up to 6 g N\\/l after 6 months of operation. However, the methane yield was reduced and the concentration of volatile fatty acids increased from 1 to 3 g\\/l as acetate, compared to controls

I. Angelidaki; B. K. Ahring

1993-01-01

246

Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors.  

PubMed

In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35±1°C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369-466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000-3000 mgNH4-N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation-emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production. PMID:25062938

Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

2014-11-01

247

Anaerobic digestion of ice-cream wastewater: A comparison of single and two-phase reactor systems  

SciTech Connect

The anaerobic digestion of ice-cream wastewater, a complex substrate which includes milk proteins, carbohydrates, and lipids, has received little attention. Work using an aerobic contact system showed that at a 7.5-d hydraulic retention time (HRT), with an organic loading rate of 1.7 g COD/Ld and influent TSS (total suspended solids) of 5870 mg/L, the effluent COD was 628 mg/L, BOD was 91 mg/L and TSS was 674. Anaerobic filters have also been used at organic loadings of 6 kg COD/m{sup 3}d applied at a HRT of 0.42 day, with COD removals of 80%. Goodwing showed that this waste was capable of being treated by the UASB process with granulation commencing after 60-70 days, and gas production ranging between 0.73 and 0.93 L CH{sub 4}/g COD removed with loading rates between 0.7 and 3.0 g TOC/Ld. Two-phase anaerobic digestion is an innovative fermentation mode that has recently received increased attention. The kinetically dissimilar fermentation phases, hydrolysis-acidification and acetogenesis-methanation are operated in two separate reactors; the first of which is maintained at a very short HRT. The effluent from the first, acid-forming, phase is used as the substrate for the methane-phase reactor which has a longer HRT or cell immobilization. The aim of this work was to compare the methane production capability and performance of a single-phase upflow fixed bed reactor with a two-phase digestion system. The two-phase digestion system consists of a completely mixed reactor for the acidogenic reaction and an upflow fixed bed reactor for the methanogenic reaction. Because of the high lipid content and COD of ice cream wastewater off site disposal has proved to be both expensive and poses problems to the receiving effluent treatment plant. For this reason the potential for a rapid anaerobic stabilization of the waste, with energy recovery in the form of methane gas, has been investigated in an attempt to minimize plant size and maximize gas production. 9 refs., 2 tabs.

Borja, R. [Institute of Fat and Its Derivatives (C.S.I.C.), Sevilla (Spain); Banks, C.J. [Environmental Technology Centre, Manchester (United Kingdom)

1995-03-01

248

Microbial Ecology in Anaerobic Digestion at Agitated and Non-Agitated Conditions  

PubMed Central

To investigate the distribution and dynamics of microbial community in anaerobic digestion at agitated and non-agitated condition, 454 pyrosequencing of 16s rRNA was conducted. It revealed the distinct community compositions between the two digesters and their progressive shifting over time. Methanogens and syntrophic bacteria were found much less abundant in the agitated digester, which was mainly attributed to the presence of bacterial genera Acetanaerobacterium and Ruminococcus with relatively high abundance. The characterization of the microbial community corroborated the digestion performance affected at the agitated condition, where lower methane yield and delayed methane production rate were observed. This was further verified by the accumulation of propionic acid in the agitated digester. PMID:25313520

Tian, Zhuoli; Cabrol, Léa; Ruiz-Filippi, Gonzalo; Pullammanappallil, Pratap

2014-01-01

249

Nonlinear Autoregressive Exogenous modeling of a large anaerobic digester producing biogas from cattle waste.  

PubMed

In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. PMID:25151079

Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra

2014-10-01

250

Citrus essential oils and their influence on the anaerobic digestion process: an overview.  

PubMed

Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24-192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively. PMID:25081855

Ruiz, B; Flotats, X

2014-11-01

251

Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide  

SciTech Connect

Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

Ghaly, A.E.; Ramkumar, D.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Biological Engineering Dept.

1999-07-01

252

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15

253

ANAEROBIC DIGESTION OF SWINE MANURE: INHIBITION BY AMMONIA  

Microsoft Academic Search

A stable anaerobic degradation of swine manure with ammonia concentration of 6 g-N\\/litre was obtained in continuously stirred tank reactors with a hydraulic retention time of 15 days, at four different temperatures. Methane yields of 188, 141, 67 and 22 ml-CH4\\/g-VS were obtained at 37, 45, 55 and 60°C, respectively. The yields were significantly lower than the potential biogas yield

KAARE HVID HANSEN; IRINI ANGELIDAKI; BIRGITTE KIÆR AHRING

1998-01-01

254

The effect of managing nutrients in the performance of anaerobic digesters of municipal wastewater treatment plants.  

PubMed

Is it possible to create conditions in the anaerobic digesters to control nutrients without changing the performance of a reactor? This study investigates an answer for this question. To this purpose, anaerobic reactors are operated at high concentrations of Mg(2+) ion to harvest the nutrient ions (NH4 (+) and PO4 (3-)) in the form of struvite, that is, magnesium ammonium phosphate. The effects of this modification on the anaerobic digestion of sewage sludge were investigated in terms of chemical oxygen demand (COD) removal and cumulative CH4 production as well as the changes in the biological diversity. The results showed that approximately 50 % of the nutrients (NH4 (+) and PO4 (3-)) were removed regardless of the method adopted for the addition of Mg(2+) ion, slug or daily dosing. The numbers of Methanosaeta and Methanosarcina in the samples withdrawn prior to and after the addition of Mg(2+) did not show significant difference according to the results obtained from qPCR analyses. The research results showed that the addition of Mg(2+) into the anaerobic digesters in municipal wastewater treatment facilities may help to remove the nutrients from the effluent while recovering in their solid forms. PMID:23090053

Demirer, Sibel Uludag; Taskin, Bilgin; Demirer, Goksel N; Duran, Metin

2013-09-01

255

Characterization of the curing process from high-solids anaerobic digestion.  

PubMed

A laboratory-scale study was completed to simulate aerobic curing of solid-phase residue (digestate) from an anaerobic reactor fed a mixture of food and landscape wastes. The degree of organic stabilization was determined through routine analysis of oxygen uptake rates, percent O(2), temperature, volatile solids, and Solvita Maturity Index; measurements of ammonia and volatile fatty acid (VFA) concentrations served as indicators of phytotoxicity. Results suggest that stabilization of organics and elimination of phytotoxic compounds from anaerobic digestate preceded significant reduction of each volatile sulfur compound (VSC) detected (hydrogen sulfide, methanethiol, and dimethyl sulfide). Within 10-15 days of curing, stabilization of organics was achieved and phytotoxic compounds were eliminated, whereas reduction of VSCs to low levels required 15-20 days of curing. Based on these results, incomplete curing and anaerobic microenvironments within a curing facility may increase odor potential via formation of VSCs, whereas sufficiently cured digestate will resist VSC formation, despite the onset of anaerobic conditions. PMID:19748775

Drennan, Margaret F; DiStefano, Thomas D

2010-01-01

256

Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.  

PubMed

The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. PMID:24534902

Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

2014-04-01

257

Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.  

PubMed

The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. PMID:24794850

Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan

2014-10-01

258

Anaerobic Co-Digestion on Dairies in Washington State  

E-print Network

in manure and other feedstock to methane-rich biogas, a source of renewable energy (US-EPA 2006) (Figure 1 also create additional reductions in GHG emissions by collecting methane (a powerful GHG). As a result (US-EPA 2011). In total, these digesters were processing manure from approximately 266,000 wet cow

Collins, Gary S.

259

Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters.  

PubMed

Pilot-scale digesters (850L) were used to quantify CH4 and H2S production when using forage radish cover crops as a co-digestion feedstock in dairy manure-based digesters. During two trials, triplicate mixed digesters were operated in batch mode with manure-only or radish+manure (27% and 13% radish by wet weight in Trial 1 and 2, respectively). Co-digestion increased CH4 production by 11% and 39% in Trial 1 and 2, respectively. As H2S production rapidly declined in the radish+manure digesters, CH4 production increased reaching high levels of CH4 (?67%) in the biogas. Over time, radish co-digestion lowered the H2S concentration in the biogas (0.20%) beyond that of manure-only digestion (0.34-0.40%), although cumulative H2S production in the radish+manure digesters was higher than manure-only. Extrapolated to a farm-scale (200 cows) continuous mixed digester, co-digesting with radish could generate 3150m(3)CH4/month, providing a farmer additional revenue up to $3125/month in electricity sales. PMID:25278111

Belle, Ashley J; Lansing, Stephanie; Mulbry, Walter; Weil, Ray R

2015-02-01

260

Hyperspectral imaging techniques applied to the monitoring of wine waste anaerobic digestion process  

NASA Astrophysics Data System (ADS)

An anaerobic digestion process, finalized to biogas production, is characterized by different steps involving the variation of some chemical and physical parameters related to the presence of specific biomasses as: pH, chemical oxygen demand (COD), volatile solids, nitrate (NO3-) and phosphate (PO3-). A correct process characterization requires a periodical sampling of the organic mixture in the reactor and a further analysis of the samples by traditional chemical-physical methods. Such an approach is discontinuous, time-consuming and expensive. A new analytical approach based on hyperspectral imaging in the NIR field (1000 to 1700 nm) is investigated and critically evaluated, with reference to the monitoring of wine waste anaerobic digestion process. The application of the proposed technique was addressed to identify and demonstrate the correlation existing, in terms of quality and reliability of the results, between "classical" chemical-physical parameters and spectral features of the digestate samples. Good results were obtained, ranging from a R2=0.68 and a RMSECV=12.83 mg/l for nitrate to a R2=0.90 and a RMSECV=5495.16 mg O2/l for COD. The proposed approach seems very useful in setting up innovative control strategies allowing for full, continuous control of the anaerobic digestion process.

Serranti, Silvia; Fabbri, Andrea; Bonifazi, Giuseppe

2012-11-01

261

High-solids centrifuge is a boon and a curse for managing anaerobically digested biosolids.  

PubMed

High-solids centrifugation can reduce the cost of managing or disposing of anaerobically digested biosolids. High-solids centrifuges can increase relative cake solids by as much as 5% DS compared with other dewatering devices, such as belt filter presses, with a resulting 15-20% reduction in overall mass of hauled biosolids. Cost reductions can be similar (15-20%) or more, depending on the type of disposal or management involved. For example, the additional removal of water from the cake increases the energy content in the biosolids, thereby facilitating incineration or heat drying processes. For land application, the benefits are more mixed. As explained in this paper, increases in biosolids odours associated with high-solids centrifuges may increase digestion requirements and may compel producers to transport biosolids to more remote, distant sites, potentially increasing transportation costs. High-solids centrifuges shear anaerobically digested biosolids. The shear results in a net increase in labile protein, an odour precursor. Additionally, high-solids centrifugation also results in the inhibition of methanogenesis, a major mechanism for degradation of organosulphur odours. Therefore, the risks and benefits should both be weighed when considering high-solids centrifuges for land application of anaerobically digested biosolids. PMID:16605038

Murthy, S; Higgins, M; Chen, Y C; Peot, C; Toffey, W

2006-01-01

262

Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production  

PubMed Central

Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

2014-01-01

263

Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?  

PubMed

The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency. PMID:24185054

Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

2013-01-01

264

Foam formation in biogas plants caused by anaerobic digestion of sugar beet.  

PubMed

The use of sugar beet in anaerobic digestion (AD) during biogas production can lead to process upsets such as excessive foaming in fermenters. In the present study, foam formation in sugar beet-fed digestates was studied in foaming tests. The increasing disintegration grade of sugar beet was observed to have a promoting effect on foaming in the digestate but did not affect the biogas yield. Chemical analysis of foam and digestate from sugar beet silage AD showed high concentrations of pectin, other carbohydrates and N-containing substances in the foam. Both pectin and sucrose showed little foaming in AD. Nevertheless, sucrose and calcium chloride had a promoting effect on foaming for pectin AD. Salts of divalent ions also enhanced the foam intensity in the case of sugar beet silage AD, whereas ammonium chloride and urea had a lessening effect on sugar beet-based foaming. PMID:25446785

Moeller, Lucie; Lehnig, Marcus; Schenk, Joachim; Zehnsdorf, Andreas

2015-02-01

265

Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.  

PubMed

The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. PMID:19959355

Dumas, C; Perez, S; Paul, E; Lefebvre, X

2010-04-01

266

Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge.  

PubMed

The conventional anaerobic digestion process, requiring long solids retention times (SRTs) to digest solids, is currently viewed as impractical for the pulp and paper industry because of high capital costs associated with the construction of new digesters. Recent developments in sludge solubilization technology could be promising in reducing digester size, which also allows for the potential use of decommissioned tanks, both of which can reduce the capital cost. Three pretreatment technologies for use with anaerobic digestion were tested on laboratory-scale to investigate their feasibility. The SRTs in all three digesters systematically decreased from 20 to 3 days. The reference digester was fed waste activated sludge (WAS) to serve as the control at the same SRTs. The other digesters were fed WAS that had been preconditioned using mechanical shearing, sonication, or high-pressure homogenization technology. Anaerobic digestion with high-pressure homogenization produced as much methane at 3-day mean SRT as that from the reference digester operated at 20-day SRT. Therefore, a new digester can theoretically be 85% smaller than a conventional digester. An added benefit of WAS to methane conversion is the recovery of nutrients nitrogen and phosphorus. PMID:22866390

Elliott, Allan; Mahmood, Talat

2012-06-01

267

Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester  

NASA Astrophysics Data System (ADS)

An investigation on the feasibility of co-digesting Sewage Sludge with Palm Oil Mill Effluent for enhancing the biogas production and the corresponding effect of the co-digestion substrate ratio on the biogas production has been evaluated. Anaerobic co-digestion of POME with SS was performed at ratios of 100:0, 70:30, 60:40 and 0:100 to find the optimum blend required for enhanced waste digestion and biogas production. Single stage batch digestion was carried out for 12 days in a laboratory scale anaerobic digester. Co-digestion of sludge's at the 70:30 proportion resulted in optimal COD and C: N ratio which subsequently recorded the highest performance with regards to biogas production at 28.1 L's compared to the 1.98 L's of biogas produced from digestion of SS alone. From the results obtained, it is evident that co-digestion of POME and SS is an attractive option to be explored for enhancement of biogas production in anaerobic digesters.

Sivasankari, R.; Kumaran, P.; Normanbhay, Saifuddin; Halim Shamsuddin, Abd

2013-06-01

268

Study of the operational conditions for anaerobic digestion of urban solid wastes  

SciTech Connect

This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

Castillo M, Edgar Fernando [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia)]. E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia); Victor Arellano, A. [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia)

2006-07-01

269

Anaerobic biodegradation of phenolic compounds in digested sludge  

SciTech Connect

The authors examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol),and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO/sub 2/ groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production. o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. (Refs. 14).

Boyd, S.A.; Shelton, D.R.; Berry, D.; Tiedje, J.M.

1983-07-01

270

Two-stage anaerobic digestion of biodegradable municipal solid waste using a rotating drum mesh filter bioreactor and anaerobic filter.  

PubMed

A rotating drum mesh filter bioreactor (RDMFBR) with a 100 microm mesh coupled to an anaerobic filter was used for the anaerobic digestion of biodegradable municipal solid waste (BMW). Duplicate systems were operated for 72 days at an organic loading rate (OLR) of 7.5 g VS l(-1) d(-1). Early in the experiment most of the methane was produced in the 2nd stage. This situation gradually reversed as methanogenesis became established in the 1st stage digester, which eventually produced 86-87% of the total system methane. The total methane production was 0.2 l g(-1) VS(added) with 60-62% volatile solids destruction. No fouling was experienced during the experiment at a transmembrane flux rate of 3.5 l m(-2) h(-1). The system proved to be robust and stably adjusted to a shock loading increase to 15 g VS l(-1) d(-1), although this reduced the overall methane production to 0.15 l g(-1) VS(added). PMID:19406634

Walker, M; Banks, C J; Heaven, S

2009-09-01

271

Greenhouse and laboratory studies on the effects of an anaerobic digester sludge on growth and nutrient uptake of sorghum  

E-print Network

GREENHOUSE AND LABORATORI STUDIES ON THE EFFECTS OF AN ANAEROBIC DIGESTER SLUDGE ON GROWTH AND NUTRIENT UPTAKE OF SORGHUM A Thesis By John Cooper Vincent Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1989 Major Subject: Agronomy GREENHOUSE AND LABORATORy STUDIES ON THE EFFECTS OF AN ANAEROBIC DIGESTER SLUDGE ON GROWTH AND NUTRIENT UPTAKE OF SORGHUM A Thesis by John Cooper Vincent Approved...

Vincent, John Cooper

1989-01-01

272

Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Annual report  

SciTech Connect

Municipal solid wastes contain numerous substances of potential environmental concern. While some understanding of the composition of raw municipal waste and its leachate products is available, no information regarding characteristics of solid, liquid and gaseous outputs from anaerobic digestion exists. If centralized anaerobic digestion plants are to be environmentally viable, the characteristics and environmental effects of effluents from these plants must be acceptable. The environmental concerns are particularly acute where ground water supplies are precariously low and the water table is high, South Florida is such a location. A characterization and environmental study was initiated by the Resource Recovery Group on August 1978. The specific objectives are: (1) systematic characterization of solid, liquid and gaseous inputs and outputs; (2) investigations of leaching characteristic of output solid and liquid effluents, and the transport of pollutants to and through ground water systems; and (3) analysis of environmental and process parameters to obtain causal relationships.

Sengupta, S; Gerrish, H P; Wong, K F; Nemerow, N; Daly, Jr, E L; Farooq, S; Chriswell, C

1980-08-01

273

Kinetics of anaerobic digestion of soft drink wastewater in immobilized cell bioreactors.  

PubMed

A kinetic study of the anaerobic digestion of soft drink wastewater was undertaken, using bioreactors containing various suspended supports (bentonite, zeolite, sepiolite, saponite and polyurethane foam), on to which the microorganisms effecting the purification were immobilized. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constants, K0, derived from the reactors with saponite and sepiolite (magnesium silicates) were approximately twice those from bentonite and zeolite (aluminium silicates) and almost five times higher than in the control reactor (without support); the polyurethane support showed an intermediate behaviour. The methanogenic activity increased linearly with COD load, with saponite and sepiolite supports showing the highest values. The average yield coefficient of methane was 325 cm3 CH4 STP g-1 COD and the percentage elimination of COD was 77.8%; these values were not significantly altered by the type of support used. PMID:7764995

Borja, R; Banks, C J

1994-07-01

274

Low-cost additive improved silage quality and anaerobic digestion performance of napiergrass.  

PubMed

Effects of molasses-alcoholic wastewater on the ensiling quality of napiergrass were investigated at ambient temperature, and its anaerobic digestion performance was assessed at mesophilic temperature. Results showed that the molasses-alcoholic wastewater had positive effect on silage quality and anaerobic digestion performance. Lower pH values of 5.20-5.28, lower NH3-N contents of 32.65-36.60 g/kg and higher lactic acid contents of 56-61 mg/kg FM were obtained for the silage samples with molasses-alcoholic wastewater addition. Higher specific biogas yield of 273 mL/g VS was obtained for the sample with 11% molasses-alcoholic wastewater added. Therefore 11% molasses-alcoholic wastewater addition was recommended. PMID:25443806

Lianhua, Li; Feng, Zhen; Yongming, Sun; Zhenhong, Yuan; Xiaoying, Kong; Xianyou, Zhou; Hongzhi, Niu

2014-12-01

275

Electrochemical treatment of anaerobic digestion effluent using a Ti/Pt-IrO2 electrode.  

PubMed

Electrochemical treatment of the anaerobic digestion effluents using a Ti/Pt-IrO(2) electrode was evaluated in this study. The effects of electric current, NaCl dosage, and initial pH on ammonia, nitrate, total organic carbon (TOC), inorganic carbon (IC), final pH, and turbidity variations were studied in a series of batch experiments. It was found that the electric current and NaCl dosage had a considerably larger effect on the oxidization of ammonia; this was less for the effect of the initial pH. In addition, electroflotation was the main mechanism for turbidity, TOC, and IC removals. Further, the IC removal was mainly affected by the pH of wastewater. The electrochemical treatment using Ti/Pt-IrO(2) electrode without pretreatment was feasible for the anaerobic digestion effluent. PMID:17207618

Lei, Xiaohui; Maekawa, Takaaki

2007-12-01

276

Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis.  

PubMed

The performance of dry anaerobic digestion (AD) of food waste was investigated under mesophilic conditions and the methanogenic community was investigated using 454 pyrosequencing. Stable dry AD was achieved by hydraulic retention time (HRT) control without the addition of alkali agents. The average CH4 production rate, CH4 content, and volatile solid reduction rate were 2.51±0.17m(3)/m(3)/d, 66±2.1%, and 65.8±1.22%, respectively, at an HRT of 40d. The methanogenic community of the seed sludge experienced a significant reduction in genus diversity from 18 to 4 and a dominant methanogenic shift from hydrogenotrophic to acetoclastic groups after the acclimation under dry condition. Almost all sequences of the dry anaerobic digester were closely related with those of Methanosarcina thermophila with similarity of 96.4-99.1%. The experimental results would serve as useful information to understand the dry AD system. PMID:23347929

Cho, Si-Kyung; Im, Wan-Taek; Kim, Dong-Hoon; Kim, Moon-Hwan; Shin, Hang-Sik; Oh, Sae-Eun

2013-03-01

277

Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion.  

PubMed

Feature objects aided strategy was used to predict and evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. The kinetics of co-digestion and mono-digestion of food waste and/or corn stalk was also analyzed. The results indicated that the compositions of food waste and corn stalk were significantly different. The anaerobic digestion of three feature objects at different mixing ratios showed the different biomethane yields and kinetic constants. Food waste and corn stalk co-digestion enhanced the digestion rate and achieved 22.48% and 41.55% higher biomethane production than those of food waste and corn stalk mono-digestion, respectively. PMID:25575585

Zhou, Qi; Yuan, Hairong; Liu, Yanping; Zou, Dexun; Zhu, Baoning; Chufo, Wachemo A; Jaffar, Muhammad; Li, Xiujin

2015-03-01

278

Digest Your Food!  

NSDL National Science Digital Library

In a multi-week experiment, student teams gather biogas data from the mini-anaerobic digesters that they build to break down different types of food waste with microbes. Using plastic soda bottles for the mini-anaerobic digesters and gas measurement devices, they compare methane gas production from decomposing hot dogs, diced vs. whole. They monitor and measure the gas production, then graph and analyze the collected data. Students learn how anaerobic digestion can be used to biorecycle waste (food, poop or yard waste) into valuable resources (nutrients, biogas, energy).

Membrane Biotechnology Laboratory,

279

Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors.  

PubMed

Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates. Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds such as mequinol, phenyl ethyl alcohol and ethyl methyl phenol. After anaerobic treatment the concentration of these compounds was reduced between 75 and 100%. However, the concentration of some degradation products such as methyl phenol and ethyl phenol were detected in significantly higher concentrations after treatment, indicating that the process has to be further optimised to achieve satisfactory removal of all xenobiotic compounds. PMID:12188547

Aangelidaki, I; Ahrin, B K; Deng, H; Schmidt, J E

2002-01-01

280

Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control.  

PubMed

The objective of this study was to evaluate the effects of bioaugmenting anaerobic biosolids digestion with a commercial product containing selected strains of bacteria from genera Bacillus, Pseudomonas, and Actinomycetes, along with ancillary organic compounds containing various micronutrients. Specifically, the effects of the bioaugment in terms of volatile solids destruction and generation and fate of odor-causing compounds during anaerobic digestion and during storage of the digested biosolids were studied. Two bench-scale anaerobic digesters receiving primary and secondary clarifier biosolids from various full-scale biological wastewater treatment plants were operated. One of the digesters received the bioaugment developed by Organica Biotech, while the other was operated as control. The bioaugmented digester generated 29% more net CH(4) during the 8 weeks of operation. In addition, the average residual propionic acid concentration in the bioaugmented digester was 54% of that in the control. The monitoring of two organic sulfide compounds, methyl mercaptan (CH(3)SH) and dimethyl sulfide (CH(3)SCH(3)), clearly demonstrated the beneficial effects of the bioaugmentation in terms of odor control. The biosolids digested in the bioaugmented digester generated a negligible amount of CH(3)SH during 10 days of post-digestion storage, while CH(3)SH concentration in the control reached nearly 300 ppm(v) during the same period. Similarly, peak CH(3)SCH(3) generated by stored biosolids from the bioaugmented digester was only 37% of that from the control. PMID:16977468

Duran, Metin; Tepe, Nalan; Yurtsever, Deniz; Punzi, Vito L; Bruno, Charles; Mehta, Raj J

2006-12-01

281

Electrochemical treatment of anaerobic digestion effluent using a Ti\\/Pt–IrO 2 electrode  

Microsoft Academic Search

Electrochemical treatment of the anaerobic digestion effluents using a Ti\\/Pt–IrO2 electrode was evaluated in this study. The effects of electric current, NaCl dosage, and initial pH on ammonia, nitrate, total organic carbon (TOC), inorganic carbon (IC), final pH, and turbidity variations were studied in a series of batch experiments. It was found that the electric current and NaCl dosage had

Xiaohui Lei; Takaaki Maekawa

2007-01-01

282

Ammonia Emissions from Anaerobically-digested Slurry and Chemical Fertilizer Applied to Flooded Forage Rice  

Microsoft Academic Search

Ammonia fluxes from application of anaerobically-digested slurry (ADS) and chemical fertilizer (CF) to flooded forage rice\\u000a (Oryza sativa L.) in Japan were measured using a dynamic flow-through chamber method in lysimeters. The CF was applied at a rate of 300 N\\u000a ha?1 (three times) as ammoniacal-N fertilizer, and the ADS was applied to the lysimeters at total rates equivalent to 75,

Hong Hou; Sheng Zhou; Masaaki Hosomi; Koki Toyota; Kiori Yosimura; Yuuko Mutou; Taku Nisimura; Masao Takayanagi; Takashi Motobayashi

2007-01-01

283

Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite  

Microsoft Academic Search

The effect of bentonite-bound oil on thermophilic anaerobic digestion of cattle manure was investigated. In digestor experiments, addition of oil was found to be inhibitory during start-up and the inhibitory effect was less pronounced when the oil was added in the form of bentonite-bound oil compared to when the oil was added alone. After adaption of the digestors, very rapid

I. Angelidaki; S. P. Petersen; B. K. Ahring

1990-01-01

284

Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process  

Microsoft Academic Search

The inhibitory effect of long-chain fatty acids on the anaerobic digestion process was examined in batch experiments using synthetic substrates. The addition of long-chain fatty acids caused the appearance of the lag period in the methane production from acetate and in the degradation of both long-chain fatty acids and n-butyrate. Methane production from hydrogen proceeded without lag period although its

Keisuke Hanaki; Tomonori Matsuo; Michihiko Nagase

1981-01-01

285

Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge  

Microsoft Academic Search

Anaerobic co-digestion of food waste and sewage sludge for hydrogen production was performed in serum bottles under various volatile solids (VS) concentrations (0.5–5.0%) and mixing ratios of two substrates (0:100–100:0, VS basis). Through response surface methodology, empirical equations for hydrogen evolution were obtained. The specific hydrogen production potential of food waste was higher than that of sewage sludge. However, hydrogen

Sang-Hyoun Kim; Sun-Kee Han; Hang-Sik Shin

2004-01-01

286

A kinetic study of the anaerobic digestion of ice-cream wastewater  

Microsoft Academic Search

The process kinetics of the mesophilic (35°C) anaerobic digestion of ice-cream wastewater was investigated. The Monod equation and the Contois equation were used to develop two basic steady-state models. The kinetic parameters required for the application for the steady-state models were determined using a laboratory-scale continuously stirred tank reactor (5 l) fed with a synthetic ice-cream wastewater at a range

W. C Hu; K Thayanithy; C. F Forster

2002-01-01

287

Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production.  

PubMed

Microalgal biomass has been a focus in the sustainable energy field, especially biodiesel production. The purpose of this study was to assess the feasibility of treating microalgal biomass and cellulose by anaerobic digestion for H2 production. A microbial consortium, TC60, known to degrade cellulose and other plant polymers, was enriched on a mixture of cellulose and green microalgal biomass of Dunaliella tertiolecta, a marine species, or Chlorella vulgaris, a freshwater species. After five enrichment steps at 60°C, hydrogen yields increased at least 10% under all conditions. Anaerobic digestion of D. tertiolecta and cellulose by TC60 produced 7.7 mmol H2/g volatile solids (VS) which were higher than the levels (2.9-4.2 mmol/g VS) obtained with cellulose and C. vulgaris biomass. Both microalgal slurries contained satellite prokaryotes. The C. vulgaris slurry, without TC60 inoculation, generated H2 levels on par with that of TC60 on cellulose alone. The biomass-fed anaerobic digestion resulted in large shifts in short chain fatty acid concentrations and increased ammonium levels. Growth and H2 production increased when TC60 was grown on a combination of D. tertiolecta and cellulose due to nutrients released from algal cells via lysis. The results indicated that satellite heterotrophs from C. vulgaris produced H2 but the Chlorella biomass was not substantially degraded by TC60. To date, this is the first study to examine H2 production by anaerobic digestion of microalgal biomass. The results indicate that H2 production is feasible but higher yields could be achieved by optimization of the bioprocess conditions including biomass pretreatment. PMID:20878208

Carver, Sarah M; Hulatt, Chris J; Thomas, David N; Tuovinen, Olli H

2011-07-01

288

Inactivation of virus during anaerobic digestion of manure in laboratory scale biogas reactors  

Microsoft Academic Search

Reduction of porcine parvovirus, bovine enterovirus and faecal enterococci were measured in biogas reactors continuously run\\u000a on manure and manure supplemented with household waste at 35°C and 55°C and in batch test run at 70°C. The aim of the experiments\\u000a was to study the sanitation effect of anaerobic digestion and to evaluate the use of faecal enterococci as an indicator

Bente Lund; Vibeke Frøkjær Jensen; Per Have; Birgitte Ahring

1996-01-01

289

Designs of anaerobic digesters for producing biogas from municipal solid-waste  

Microsoft Academic Search

The production of biogas is of growing interest as fossil-fuel reserves decline. However, there exists a dearth of literature on the design considerations that would lead to process optimization in the development of anaerobic digesters aimed at creating useful commodities from the ever-abundant municipal solid-waste. Consequently, this paper provides a synthesis of the key issues and analyses concerning the design

A. Hilkiah Igoni; M. J. Ayotamuno; C. L. Eze; S. O. T. Ogaji; S. D. Probert

2008-01-01

290

Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.  

PubMed

Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes. PMID:16180412

Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

2005-01-01

291

Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles  

Microsoft Academic Search

Cereal distillers grains, a by-product from bioethanol industry, proved to be a suitable feedstock for biogas production in\\u000a laboratory scale anaerobic digesters. Five continuously stirred tank reactors were run under constant conditions and monitored\\u000a for biogas production and composition along with other process parameters. Iron additives for sulfide precipitation significantly\\u000a improved the process stability and efficiency, whereas aerobic pretreatment of

Ayrat M. Ziganshin; Thomas Schmidt; Frank Scholwin; Olga N. Il’inskaya; Hauke Harms; Sabine Kleinsteuber

2011-01-01

292

[Effect of iron hydroxide on the phosphate elimination during anaerobic digestion of active sludge].  

PubMed

Addition of iron (III) hydroxide during methanogenic digestion of active sludge by anaerobic sludge displaying an iron-reducing activity resulted in a microbial reduction of iron (III) with formation of iron (II), capable of precipitating phosphates. Feasibility of eliminating 66.6 to 99.6% of dissolved phosphate at initial concentrations of 1000 to 3500 mg PO4(3-)/l by adding 6420 mg/l iron (III) hydroxide into a reactor for anaerobic fermentation of active sludge. The optimal ratio of iron (III) added to dissolved phosphate eliminated (mg) providing a 95% elimination amounted to 2:1. These results may be used in a new technology for anaerobic wastewater treatment with phosphate elimination. PMID:15455717

Stabnikov, V P; Tay, T L; Tay, D K; Ivanov, V N

2004-01-01

293

Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis  

PubMed Central

The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

Jin, Jingwei; Dai, Xiaohu

2014-01-01

294

Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities  

PubMed Central

An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

2014-01-01

295

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15

296

A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus.  

PubMed

A novel process simulation model (PSM) was developed for biogas production in anaerobic digesters using Aspen Plus®. The PSM is a library model of anaerobic digestion, which predicts the biogas production from any substrate at any given process condition. A total of 46 reactions were used in the model, which include inhibitions, rate-kinetics, pH, ammonia, volume, loading rate, and retention time. The hydrolysis reactions were based on the extent of the reaction, while the acidogenic, acetogenic, and methanogenic reactions were based on the kinetics. The PSM was validated against a variety of lab and industrial data on anaerobic digestion. The P-value after statistical analysis was found to be 0.701, which showed that there was no significant difference between discrete validations and processing conditions. The sensitivity analysis for a ±10% change in composition of substrate and extent of reaction results in 5.285% higher value than the experimental value. The model is available at http://hdl.handle.net/2320/12358 (Rajendran et al., 2013b). PMID:24524857

Rajendran, Karthik; Kankanala, Harshavardhan R; Lundin, Magnus; Taherzadeh, Mohammad J

2014-09-01

297

Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation.  

PubMed

Anaerobic biodegradation of petroleum hydrocarbons (PHC) to methane has been recognized to occur in oil reservoirs and contaminated surface sites alike. This process could be employed efficiently for the treatment of contaminated materials, including petrochemical wastes and PHC-contaminated soil, since no external electron acceptor is required. Moreover, the controlled production of methane in digestion plants, similarly to the anaerobic digestion (AD) of energy crops or organic residues, would enable for energy recovery from these wastes. At present, little is known about the bacterial communities involved in and responsible for hydrocarbon fermentation, the initial step in PHC conversion to methane. In the present study, the fate of two different methanogenic communities derived from the AD of wastewater (WWT) and of biowaste, mixed with PHC-contaminated soil (SWT), was monitored during incubation with PHC using denaturing gradient gel electrophoresis (DGGE) of 16S rDNA genes amplified with Bacteria-specific primers. During 11 months of incubation, slight but significant degradation of PHC occurred in both sludges and distinct bacterial communities were developing. In both sludges, Bacteroidetes were found. In addition, in WWT, the bacterial community was found to be dominated by Synergistetes and Proteobacteria, while Firmicutes and unidentified members were abundant in SWT. These results indicate that bacterial communities from anaerobic digesters can adapt to and degrade petroleum hydrocarbons. The decontamination of PHC-containing waste via fermentative treatment appears possible. PMID:21939698

Scherr, Kerstin E; Lundaa, Tserennyam; Klose, Viviana; Bochmann, Günther; Loibner, Andreas P

2012-02-20

298

Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano  

SciTech Connect

Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

Alvarez, Rene [IIDEPROQ, UMSA, Plaza del Obelisco 1175, La Paz (Bolivia)], E-mail: Rene.alvarez@iideproq.org; Liden, Gunnar [Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund (Sweden)

2008-07-01

299

Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano.  

PubMed

Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 degrees C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m(-3) d(-1). Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process. PMID:18155895

Alvarez, René; Lidén, Gunnar

2008-01-01

300

Evaluation of a Ca-modified porphyritic andesite for ammonium removal in the anaerobic digestion process.  

PubMed

In this study, a Ca-modified porphyritic andesite (wheat-rice-stone (WRS)) was developed for the anaerobic digestion of ammonium-rich wastes. The Ca-modified WRS was obtained with integrated Ca-salt treatment and calcination. Scanning electron microscope and Brunauer-Emmett-Teller surface area analyses were performed to characterize the Ca-modified WRS, and adsorption isotherms and kinetics were investigated to clarify the adsorption mechanism. The ammonium adsorption process was explained well with a pseudo-second-order kinetic model. The specific surface area of the Ca-modified WRS was determined to be 4.56 sq. m/g, and the maximum NH4(+)-N adsorption capacity was determined to be 45.45 mg/g. These values are improvements over those of natural WRS. The ammonium adsorption capacity remained constant at a pH range from 5.0 to 9.0, which indicates that Ca-modified WRS is a promising material for various applications. The methane-production and chemical oxygen demand-removal aspects of anaerobic digestion were much improved with the addition of Ca-modified WRS. Therefore, Ca-modified WRS could be developed into a viable ammonium adsorbent for the anaerobic digestion of ammonium-rich wastes. PMID:23837319

Wang, Qinghong; Yang, Yingnan; Li, Dawei; Zhang, Zhenya

2013-01-01

301

Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.  

PubMed

The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70 °C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55 °C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55 °C thermophilic and temperature-phased treatments. Incorporating a 60 or 70 °C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70 °C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70 °C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70 °C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against improving the pathogen quality of biosolids. PMID:21764416

Ziemba, Christopher; Peccia, Jordan

2011-10-15

302

Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge  

SciTech Connect

Highlights: ? Microwave pretreatment of dairy WAS was studied. ? MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ? Biogas production and SS reduction was 35% and 14% higher than control. ? In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ? Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

Uma Rani, R.; Adish Kumar, S. [Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli 627 007, Tamil Nadu (India); Kaliappan, S. [Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil 629 003, Tamil Nadu (India); Yeom, IckTae [Department of Civil and Environmental Engineering, Sungkyunkwan University (Korea, Republic of); Rajesh Banu, J., E-mail: rajeshces@gmail.com [Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli 627 007, Tamil Nadu (India)

2013-05-15

303

Is phytoremediation without biomass valorization sustainable? - Comparative LCA of landfilling vs. anaerobic co-digestion.  

PubMed

This study examines the sustainability of phytoremediation for soils contaminated with heavy metals, especially the influence of management of the produced metal-enriched biomass on the environmental performance of the complete system. We examine a case study in Asturias (north of Spain), where the land was polluted with Pb by diffuse emissions from an adjacent steelmaking factory. A Phytoremediation scenario based on this case was assessed by performing a comparative life cycle assessment and by applying the multi-impact assessment method ReCiPe. Our Baseline scenario used the produced biomass as feedstock for an anaerobic digester that produces biogas, which is later upgraded cryogenically. The Baseline scenario was compared with two alternative scenarios: one considers depositing the produced biomass into landfill, and the other considers excavating the contaminated soil, disposing it in a landfill, and refilling the site with pristine soil. A sensitivity analysis was performed using different yields of biomass and biogas, and using different distances between site and biomass valorization/disposal center. Our results show that the impacts caused during agricultural activities and biomass valorization were compensated by the production of synthetic natural gas and the avoided impact of natural gas production. In addition, it was found that if the produced biomass was not valorized, the sustainability of phytoremediation is questionable. The distance between the site and the biomass processing center is not a major factor for determining the technology's sustainability, providing distances are less than 200-300km. However, distance to landfill or to the source of pristine soil is a key factor when deciding to use phytoremediation or other ex-situ conventional remediation techniques. PMID:25461087

Vigil, Miguel; Marey-Pérez, Manuel F; Martinez Huerta, Gemma; Alvarez Cabal, Valeriano

2015-02-01

304

Continuously-stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System Setup and Basic Operation  

PubMed Central

Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier 1-3. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications 4,5. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane 6,7. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures 8, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations 9. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation 10. PMID:22824993

Usack, Joseph G.; Spirito, Catherine M.; Angenent, Largus T.

2012-01-01

305

Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors.  

PubMed

The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%. PMID:7917066

Borja, R; Banks, C J

1994-08-01

306

Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production.  

PubMed

Microalgal biomass grown in wastewater treatment raceway ponds may be valorised producing bioenergy through anaerobic digestion. However, pretreatment techniques seem to be necessary for enhancing microalgae methane yield. In this study, hydrothermal pretreatment was studied prior to batch and continuous reactors. The pretreatment increased organic matter solubilisation (8-13%), anaerobic digestion rate (30-90%) and final methane yield (17-39%) in batch tests. The highest increase was attained with the pretreatment at 130 °C for 15 min, which was attested in a laboratory-scale continuous reactor operated at a hydraulic retention time of 20 days with an average organic loading rate of 0.7 g VS/L·day. The methane yield increased from 0.12 to 0.17 L CH4/g VS (41%) in the pretreated digester as compared to the control. Microscopic images of microalgal biomass showed that pretreated cells had unstructured organelles and disrupted cell wall external layer, which may enhance the hydrolysis. Indeed, images of the pretreated reactor digestate showed how cells were more degraded than in the control reactor. PMID:25462743

Passos, Fabiana; Ferrer, Ivet

2014-10-14

307

Influence of anaerobic digestion on particle surface charge and optimal polymer dosage.  

PubMed

Anaerobic digestion leads to significant changes of the sludge structural matrix, affecting particle size distribution and dewaterability. The surface charge, determined by means of streaming current, can be effectively used to monitor the complex phenomena of floc disruption, colloid formation and chemical conditioning. To study the relation between surface charge and optimal dosage, two different cationic polyelectrolytes were used: Praestol 644, polymer with high molecular weight and low charge density, and Poly Dadmac, with relatively low molecular weight but high charge density. The optimal Poly Dadmac dosage strictly met the value required to neutralise particle charge whereas the optimal dosage of Praestol 644 indicated that the relevant charge was considerably lower than the one required for charge neutralisation. Mechanisms of action are therefore clearly different. Another objective was to investigate the changes of dewatering characteristics of secondary sludge during anaerobic digestion tests at different inoculum content by determining charge density, and optimal polymer dosage. The optimal polyelectrolyte dosage remains almost constant during digestion at high inoculum, but a significant increase in the first period is observed at low inoculum, thus suggesting that the release of colloidal and supracolloidal material from sludge affects dewaterability, especially in the first days of digestion. PMID:17087368

Braguglia, C M; Mininni, G; Rolle, E

2006-01-01

308

Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.  

PubMed

This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process. PMID:23808751

Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

2014-09-01

309

Potential use of duckweed based anaerobic digester effluent as a feed source for heterotrophic growth of micro-algae  

NASA Astrophysics Data System (ADS)

Finding an alternative source of energy for the growing world's demand is a challenging task being considered by many scientists. Various types of renewable energy alternatives are being investigated by researchers around the world. The abundance of duckweed (i.e., Lemna and Wolfia sp.) in wetlands and wastewater lagoons, their rapid growth, and their capacity for nutrient, metal and other contaminant removal from wastewater suggests their potential as an inexpensive source of biomass for biofuel production. Another source of biomass for biofuel and energy production is micro-algae. The large-scale growth of micro-algae can potentially be achieved in a smaller footprint and at a higher rate and lower cost via heterotrophic growth compared to autotrophic growth for specific species that can grow under both conditions. Here we describe two types of research. First, two lab-scale, 5 L anaerobic digesters containing municipal raw wastewater that were set up, maintained and monitored over the course of 6 months using duckweed as the feed source. The pH, salinity, amount of gas production and gas composition were measured on a daily basis. The results from these measurements show that duckweed can be used as a good source of biofuel production in the form of methane gas. The second set of reactors consisted of two 1 L batch fed reactors containing algae (Chlorella vulgaris) grown in the lab environment heterotrophically. The pH and DO were monitored on a daily basis in order to investigate their effect on algae growth. Lipid analysis of the harvested algal biomass was done to investigate the efficiency of harvestable biofuel products. A nutrient solution containing glucose as an energy source was used as the initial feed solution, and the potential substitution of the glucose solution with the organic carbon residue from the duckweed digester effluent was investigated. Methane production, carbon stabilization, and gas composition results from the duckweed fed anaerobic digesters, and the growth and biolipid production of heterotrophic micro-algae fed pure substrate versus residual digester effluent carbon are discussed in detail in this study.

Ahmadi, L.; Dupont, R.

2013-12-01

310

SHORT COMMUNICATION Gas-Phase Separations of Protease Digests  

E-print Network

SHORT COMMUNICATION Gas-Phase Separations of Protease Digests Stephen J. Valentine, Anne E University, Bloomington, Indiana, USA A mixture of peptides from a complete tryptic digest of ubiquitin has and identify peptides from a tryptic digest of ubiquitin. The mixture was electrosprayed into the gas phase

Clemmer, David E.

311

Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

Liu Zhanguang; Zhou Xuefei [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhang Yalei, E-mail: zhangyalei2003@163.com [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu Hongguang [Institute of Modern Agricultural Science and Engineering, National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092 (China)

2012-01-15

312

Characterization and environmental studies on anaerobic digestion of solid wastes. Progress report, February 1, 1982-July 31, 1982  

SciTech Connect

Characterization of the following waste streams: air-classified light (ACL), digester slurry, filter cake, filtrate, washwater input and washwater effluent has been made for the Refcom facility in order to assess the effects of these waste streams, if discharged into the environment. Special laboratory studies to evaluate the effect of plastics on anaerobic digestion have been undertaken. A separate report has been furnished describing the studies of lab-model digesters. Data collected for ACL has been statistically analyzed.

Sengupta, S.; Wong, K.V.; Nemerow, N.; Streitfeld, M.; Tilles, A.; Narasimhan, R.; Muthuswamy, S.

1982-01-01

313

Thermal pre-treatment of primary and secondary sludge at 70 degrees C prior to anaerobic digestion.  

PubMed

In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated biochemical reactions and higher growth rate of microorganisms resulting in an increased methanogenic potential at lower hydraulic retention times. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization and could be realized at relatively low cost especially at low temperatures. The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic matter removal and methane recovery could be obtained at lower HRTs. PMID:16180423

Skiadas, I V; Gavala, H N; Lu, J; Ahring, B K

2005-01-01

314

Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor  

SciTech Connect

A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

Nopharatana, Annop [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia); Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok 10150 (Thailand); Pullammanappallil, Pratap C. [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia); Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Clarke, William P. [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia)], E-mail: billc@cheque.uq.edu.au

2007-07-01

315

Dynamics of biofilm formation during anaerobic digestion of organic waste.  

PubMed

Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 ?m with an average of 51 ?m and a median of 26 ?m. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production. PMID:24342346

Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

2014-10-01

316

Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i.e. hydrogenotrophic and acetoclastic methanogens is necessary to respond successfully to perturbation and leads to stable process performance.

Lerm, S.; Kleyboecker, A. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Miethling-Graff, R. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Johann Heinrich von Thuenen Institut, Bundesforschungsinstitut fuer Laendliche Raeume, Wald und Fischerei Institut fuer Biodiversitaet, 38116 Braunschweig (Germany); Alawi, M.; Kasina, M.; Liebrich, M. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Wuerdemann, H., E-mail: wuerdemann@gfz-potsdam.de [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany)

2012-03-15

317

Two-phase thermophilic anaerobic digestion process for biohythane production treating biowaste: preliminary results.  

PubMed

This paper deals with the optimization of a two-phase anaerobic process treating biowaste for hydrogen and methane production. Neither physical nor chemical pre-treatments were used to optimize the process. The work was carried out at pilot scale, using two CSTRs (200 and 380 L working volume respectively) both maintained at thermophilic temperature (55 C) and fed semi-continuously with biowaste. The experiment was divided into three periods; during the first two periods the organic loading rate was maintained at 20 kg TVS/m3 d and the hydraulic retention time was changed from 6.6 to 3.3 days, while in the last period the digestate of the second reactor was recirculated to the first reactor in order to buffer the system and control pH at levels around 5. The HRT was maintained at 3.3 days and the OLR was decreased at 16.5 kg TVS/m3 d. The best yield was obtained in the last period where a specific hydrogen production of 50.9 L/kg VSfed was reached, with a H2 content in biogas from the first reactor of 36%. The methanogenic stage after the hydrogen conversion reached a specific biogas production of 0.62 m3/kg VSfed and an overall organic removal above 70%, without any stability problem. The overall biogas production was some 1.5 m3 per day with a gas composition of 10% H2 and 50% CH4. PMID:22097052

Cavinato, C; Bolzonella, D; Fatone, F; Giuliano, A; Pavan, P

2011-01-01

318

The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge.  

PubMed

The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods) used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV), rotavirus species A (RVA), norovirus genogroup II (NoV GII) and the hepatitis A virus (HAV) from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR) was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%), RVA, NoV GII (45%) and HAV (18%), indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management. PMID:23440119

Prado, Tatiana; Guilayn, Wilma de Carvalho Pereira Bonet; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

2013-02-01

319

Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation.  

PubMed

This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13-16% total solids) has been anaerobically digested in 12 successive cycles (252days) at 21days treatment cycle length (TCL) and temperature of 20°C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9±24.0, 189.9±27.3, and 222±27.7 NLCH4kg(-1) of VSfed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0gTCODkg(-1)inoculumd(-1) and TCL of 21days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39±0.06, 0.48±.02, 0.53±0.05, respectively. Average methane production rate of 10±1.4 NLCH4kg(-1)VSfedd(-1) has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step. PMID:25434732

Massé, Daniel I; Cata Saady, Noori M

2014-11-27

320

The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge  

PubMed Central

The presence of enteric viruses in biosolids can be underestimated due to the inefficient methods (mainly molecular methods) used to recover the viruses from these matrices. Therefore, the goal of this study was to evaluate the different methods used to recover adenoviruses (AdV), rotavirus species A (RVA), norovirus genogroup II (NoV GII) and the hepatitis A virus (HAV) from biosolid samples at a large urban wastewater treatment plant in Brazil after they had been treated by mesophilic anaerobic digestion. Quantitative polymerase chain reaction (PCR) was used for spiking experiments to compare the detection limits of feasible methods, such as beef extract elution and ultracentrifugation. Tests were performed to detect the inhibition levels and the bacteriophage PP7 was used as an internal control. The results showed that the inhibitors affected the efficiency of the PCR reaction and that beef extract elution is a suitable method for detecting enteric viruses, mainly AdV from biosolid samples. All of the viral groups were detected in the biosolid samples: AdV (90%), RVA, NoV GII (45%) and HAV (18%), indicating the viruses' resistance to the anaerobic treatment process. This is the first study in Brazil to detect the presence of RVA, AdV, NoV GII and HAV in anaerobically digested sludge, highlighting the importance of adequate waste management. PMID:23440119

Prado, Tatiana; Guilayn, Wilma de Carvalho Pereira Bonet; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

2013-01-01

321

Modeling a solar-heated anaerobic digester for the developing world using system dynamics  

NASA Astrophysics Data System (ADS)

Much of the developing world lacks access to a dependable source of energy. Agricultural societies such as Mozambique and Papua New Guinea could sustain a reliable energy source through the microbacterial decomposition of animal and crop waste. Anaerobic digestion produces methane, which can be used directly for heating, cooking, and lighting. Adding a solar component to the digester provides a catalyst for bacteria activity, accelerating digestion and increasing biogas production. Using methane decreases the amount of energy expended by collecting and preparing firewood, eliminates hazardous health effects linked to inhalation of particles, and provides energy close to where it is needed. The purpose of this work is two fold: initial efforts focus on the development and validation of a computer-based system dynamics model that combines elements of the anaerobic digestion process in order to predict methane output; second, the model is flexed to explore how the addition of a solar component increases robustness of the design, examines predicted biogas generation as a function of varying input conditions, and determines how best to configure such systems for use in varying developing world environments. Therefore, the central components of the system: solar insolation, waste feedstock, bacteria population and consumption rates, and biogas production are related both conceptually and mathematically through a serious of equations, conversions, and a causal loop and feedback diagram. Given contextual constraints and initial assumptions for both locations, it was determined that solar insolation and subsequent digester temperature control, amount of waste, and extreme weather patterns had the most significant impact on the system as a whole. Model behavior was both reproducible and comparable to that demonstrated in existing experimental systems. This tool can thus be flexed to fit specific contexts within the developing world to improve the standard of living of many people, without significantly altering everyday activities.

Bentley, Johanna Lynn

322

Winery waste recycling through anaerobic co-digestion with waste activated sludge.  

PubMed

In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. PMID:25151445

Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

2014-11-01

323

Microalgae growth using high-strength wastewater followed by anaerobic co-digestion.  

PubMed

Integration of algal biofuel production to wastewater anaerobic digestion infrastructure has the potential to increase biogas production, decrease high and variable internal nitrogen loads, and improve sludge digestibility and dewaterability. In this research, two species of microalgae, Spirulina platensis and Chlorella sp., were grown on sludge centrate and a centrate and nitrified wastewater effluent mixture. Harvested algae were co-digested with waste activated sludge (WAS) at varying ratios. High-growth (6.8 g m(-2) x d(-1)), nitrogen (36.5 g m(-3) x d(-1)), and phosphorus (6.5 g m(-3) x d(-1)) uptake rates were achieved with Chlorella on centrate. No growth was observed with S. platensis under the same conditions; however, both organisms grew well on the centrate and effluent mixture. Co-digestion of algae with WAS improved volatile solids reduction. Although co-digestion with S. platensis improved biosolids dewaterability, Chlorella had a slight negative effect on dewaterability compared to WAS alone. The efficiency of energy conversion from photons to biogas generated from Chlorella was estimated at 1.4%. PMID:22852424

Yuan, Xin; Wang, Meng; Park, Chul; Sahu, Ashish K; Ergas, Sarina J

2012-05-01

324

Ammonia removal in food waste anaerobic digestion using a side-stream stripping process.  

PubMed

Three 35-L anaerobic digesters fed on source segregated food waste were coupled to side-stream ammonia stripping columns and operated semi-continuously over 300 days, with results in terms of performance and stability compared to those of a control digester without stripping. Biogas was used as the stripping medium, and the columns were operated under different conditions of temperature (55, 70, 85 °C), pH (unadjusted and pH 10), and RT (2-5 days). To reduce digester TAN concentrations to a useful level a high temperature (?70 °C) and a pH of 10 were needed; under these conditions 48% of the TAN was removed over a 138-day period without any detrimental effects on digester performance. Other effects of the stripping process were an overall reduction in digestate organic nitrogen-containing fraction compared to the control and a recovery in the acetoclastic pathway when TAN concentration was 1770±20 mg kg(-1). PMID:24300847

Serna-Maza, A; Heaven, S; Banks, C J

2014-01-01

325

Effects of transient temperature increases on odor production from thermophilic anaerobic digestion.  

PubMed

The City of Los Angeles, Bureau of Sanitation, has implemented thermophilic anaerobic sludge digestion at the Hyperion and Terminal Island Treatment Plants (HTP and TITP). A two-stage continuous-batch process was established at HTP, while a single-stage sequencing batch process was established at TITP. This was to evaluate compliance with the Class A pathogen reduction requirements of U.S. EPA 40 CFR Part 503. A rapid increase of the digester temperature at TITP from 57.5 to 65.5 degrees C caused an increase of the volatile fatty acid to alkalinity ratio, a decline in digester performance, and an elevated production of methyl mercaptan and hydrogen sulfide. A rapid increase of the digester temperature at HTP from 54 to 58 degrees C caused an elevated production of methyl mercaptan, but the effect on the volatile fatty acid to alkalinity ratio and digester performance was insignificant. It is likely that these effects observed at TITP and HTP were transient responses to rapid changes in temperature. PMID:16180433

Iranpour, R; Alatriste-Mondragon, F; Cox, H H J; Haug, R T

2005-01-01

326

Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.  

PubMed

At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production. PMID:11833757

Zitomer, D; Ferguson, N; McGrady, K; Schilling, J

2001-01-01

327

An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.  

PubMed

The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. PMID:24946772

Milani, M; Montorsi, L; Stefani, M

2014-06-19

328

Anaerobic digestion of food waste stabilized by lime mud from papermaking process.  

PubMed

The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production. PMID:25151070

Zhang, Jishi; Wang, Qinqing; Zheng, Pengwei; Wang, Yusong

2014-10-01

329

Digestion and dewatering characteristics of waste activated sludge treated by an anaerobic biofilm system.  

PubMed

Immobilization of microorganisms for sludge anaerobic digestion was investigated in this study. The effects of filler properties on anaerobic digestion and dewaterability of waste activated sludge were assessed at mesophilic temperature in batch mode. The results showed that the duration of the methanogenic stage of reactors without filler, with only filler, and with pre-incubated filler was 39days, 19days and 13days, respectively, during which time the protein was degraded by 45.0%, 29.4% and 30.0%, and the corresponding methane yield was 193.9, 107.2 and 108.2mL/g volatile suspended solids added, respectively. On day 39, the final protein degradation efficiency of the three reactors was 45.0%, 40.9% and 42.0%, respectively. The results of normalized capillary suction time and specific resistance to filtration suggested that the reactor incorporating pre-incubated filler could improve the dewaterability of digested sludge, while the effect of the reactor incorporating only filler on sludge dewaterability was uncertain. PMID:24355503

Wang, Tianfeng; Shao, Liming; Li, Tianshui; Lü, Fan; He, Pinjing

2014-02-01

330

Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion  

PubMed Central

Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS ?1 in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost. PMID:24695485

Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

2014-01-01

331

Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.  

PubMed

Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1). PMID:24861312

Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

2014-11-01

332

Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea  

PubMed Central

Background The hydrolysis of seaweed polysaccharides is the rate limiting step in anaerobic digestion (AD) of seaweeds. Seven different microbial inocula and a mixture of these (inoculum 8) were therefore compared in triplicate, each grown over four weeks in static culture for the ability to degrade Laminaria hyperborea seaweed and produce methane through AD. Results All the inocula could degrade L. hyperborea and produce methane to some extent. However, an inoculum of slurry from a human sewage anaerobic digester, one of rumen contents from seaweed-eating North Ronaldsay sheep and inoculum 8 used most seaweed volatile solids (VS) (means ranged between 59 and 68% used), suggesting that these each had efficient seaweed polysaccharide digesting bacteria. The human sewage inoculum, an inoculum of anaerobic marine mud mixed with rotting seaweed and inoculum 8 all developed to give higher volumes of methane (means between 41 and 62.5 ml g-1 of seaweed VS by week four) ,compared to other inocula (means between 3.5 and 27.5 ml g-1 VS). Inoculum 8 also gave the highest acetate production (6.5 mmol g-1 VS) in a single-stage fermenter AD system and produced most methane (8.4 mL mmol acetate-1) in phase II of a two-stage AD system. Conclusions Overall inoculum 8 was found to be the most efficient inoculum for AD of seaweed. The study therefore showed that selection and inclusion of efficient polysaccharide hydrolysing bacteria and methanogenic archaea in an inoculum offer increased methane productivity in AD of L. hyperborea. This inoculum will now being tested in larger scale (10L) continuously stirred reactors optimised for feed rate and retention time to determine maximum methane production under single-stage and two-stage AD systems. PMID:24456825

2014-01-01

333

Temporal variation in methanogen communities of four different full-scale anaerobic digesters treating food waste-recycling wastewater.  

PubMed

Methanogen communities were investigated using 454 pyrosequencing in four different full-scale anaerobic digesters treating food waste-recycling wastewater. Seasonal samples were collected for 2 years, and 24 samples were available for microbial analysis from a plug flow thermophilic (PT) digester, a continuously-stirred tank thermophilic (CT) digester, an upflow anerobic sludge blanket mesophilic (UM) digester, and a continuously-stirred tank mesophilic (CM) digester. Methanoculleus, Methanobacterium, Methanothermobacter, and Methanosaeta were revealed to be key methanogens in full-scale anaerobic digestion process treating food waste-recycling wastewater. In the PT digester, Methanoculleus was dominant (96.8%). In the CT digester, Methanoculleus was dominant (95.4%) during the first year of operation, but the dominant genus was shifted to Methanothermobacter (98.5%) due to pH increase. In the UM digester, Methanosaeta was dominant (87.2%). In the CM digester, Methanoculleus was constantly dominant (74.8%) except during CM5 when Methanosaeta was dominant (62.6%) due to the low residual acetate concentration (0.1 g/L). PMID:24767792

Lee, Joonyeob; Hwang, Byungchul; Koo, Taewoan; Shin, Seung Gu; Kim, Woong; Hwang, Seokhwan

2014-09-01

334

Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation.  

PubMed

The aim of this study was to increase the biogas production from different substrates by applying a mechanical treatment only to the non-degraded digestate after the fermentation process in order to feed it back into the process. To evaluate this approach, digestates were grounded with a ball mill for four different treatment time periods (0, 2, 5, 10min) and then the effects on the particle size, volatile organic substances, methane yield and degradation kinetic were measured. A decrease of volatile fatty acids based on this treatment was not detected. The mechanical treatment caused in maximum to a triplication of the methane yield and to a quadruplicating of the daily methane production. PMID:25451773

Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

2015-02-01

335

Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox  

Microsoft Academic Search

Abstract The outlook,to apply the highly energetic biogas,from,anaerobic,digestion into fuel cells will result in a significantly higher electrical efficiency and,can contribute,to an increase of renewable,energy,production. The practical bottleneck is the fuel cell poisoning,caused,by several gaseous,trace compounds,like hydrogen,sulfide and,ammonia.,Hence artificial neural networks,were developed,to predict these trace compounds.,The experiments,concluded,that ammonia,in biogas,can indeed,be present up to 93 ppm. Hydrogen,sulfide and ammonia,concentrations,in biogas were

David P. B. T. B. Strik; Alexander M. Domnanovich; Loredana Zani; Rudolf Braun; Peter Holubar

2005-01-01

336

Treatment of anaerobic digestion effluent of sewage sludge using soilless cultivation  

NASA Astrophysics Data System (ADS)

Soilless cultivation was carried out using anaerobic digestion effluent of sewage sludge as liquid fertilizer, with a preparation which cultures microorganisms in nutrient solution. As a result, ammonium ions contained in the effluent were nitrified into nitrate ions by the microorganisms. And then, Japanese mustard spinach (Brassica rapa var. perviridis) was cultivated by soilless cultivation system. The plants were grown well using microbial nutrient solution, which similar to the plants using conventional inorganic nutrient solution. In contrast, the plants were grown poorly using the effluent as liquid fertilizer without microorganisms.

Uchimura, Koki; Sago, Yuki; Kamahara, Hirotsugu; Atsuta, Yoichi; Daimon, Hiroyuki

2014-02-01

337

Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography.  

PubMed

Bio-ethanol and biogas produced during the anaerobic conversion of organic compounds has been a subject of great interest since the oil crisis of the 1970s. In ethanol fermentation and anaerobic treatment of wastewaters, end-product (ethanol) and intermediate-products (short-chain fatty acids, SCFA) cause inhibition that results in reduced process efficiency. Control of these constituents is of utmost importance for bioreactor optimization and process stability. Ethanol and SCFA can be detected with precision by capillary gas chromatography usually conducted in off-line measurements. In this work, an on-line monitoring and controlling system was developed and connected to the fermenter via an auto-sampling equipment, which could perform the feeding, filtration and dilution of the sample and final injection into the gas chromatograph through an automation-based programmed procedure. The sample was continuously pumped from the recycle stream of the bioreactor and treated using a microfiltration unit. The concentrate was returned to the reactor while the permeate was quantitatively mixed with an internal standard solution. The system comprised of a gas chromatograph with the flow cell and one-shot sampler and a PC with the appropriate software. The on-line measurement of ethanol and SCFA, directly from the liquid phase of an ethanol fermenter and a high-rate continuous mode anaerobic digester, was accomplished by gas chromatography. Also, this monitoring and controlling system was proved to be effective in the continuous fermentation of alcohol-free beer. PMID:17723523

Diamantis, V; Melidis, P; Aivasidis, A

2006-07-28

338

Agar medium for gas-liquid chromatography of anaerobes.  

PubMed

This study evaluates a method of performing gas-liquid chromatography (GLC) by direct extraction of fatty acids from agar for identification of clinically significant anaerobic bacteria. The potential use of agar cultures for GLC was studied by comparing chromatograms of 117 clinically isolated anaerobes grown in peptone yeast glucose broth and chopped meat carbohydrate broth, and on enriched brucella blood agar. For 98 of 117 anaerobes, fatty acid patterns from agar cultures were similar to those in broth. Significant differences were only found with Streptococcus intermedius, Clostridium perfringens, Clostridium tertium, and Actinomyces species, which produced less of certain fatty acids on agar than in broth. Results of this study indicate that GLC of short chain fatty acids produced on agar medium by anaerobes, combined with simple tests such as Gram's stain and colonial morphology, may allow fir direct presumptive genus identification from an initial pure agar culture. PMID:3940426

Pankuch, G A; Appelbaum, P C

1986-01-01

339

Anaerobic model for high-solids or high-temperature digestion - additional pathway of acetate oxidation.  

PubMed

Current anaerobic digestion models cannot properly simulate processes that are operated under high solids concentrations or high temperatures. A modification to existing models has been implemented by adding important missing degradation pathways, to accommodate these systems without artificially recalibrating the model parameters. Specifically, we implemented the alternate acetate oxidizing mechanism that is more tolerant to ammonia than the standard aceticlastic pathway. Inhibition values were estimated and an empirical function has been used to apply ammonia inhibition. The model also relates metabolic activity to un-ionised species such as undissociated acetic acid as substrate (although not obligatory for all organisms) and unionised ammonia as inhibitor. The model relies on an equilibrium chemistry module (e.g. including the phosphate buffer), resulting in more accurate pH predictions, which is crucial for proper modeling of CO2 and NH3 stripping. Calibration results from three case-studies modeling thermal hydrolysis and subsequent digestion of sludge are presented. PMID:24759522

Wett, B; Takács, I; Batstone, D; Wilson, C; Murthy, S

2014-01-01

340

Effects of thermobarical pretreatment of cattle waste as feedstock for anaerobic digestion.  

PubMed

Lab-scale experiments were conducted to assess the impact of thermobarical treatment of cattle waste on anaerobic digestion. Treatment was at temperatures of 140-220°C in 20K steps for a 5-min duration. Methane yields could be increased by up to 58% at a treatment temperature of 180°C. At 220°C the abundance of inhibitors and other non-digestible substances led to lower methane yields than those obtained from untreated material. In an extended analysis it could be demonstrated that there is a functional correlation between the methane yields after 30 days and the formation rate and methane yield in the acceleration phase. It could be proved in a regression of these correlation values that the optimum treatment temperature is 164°C and that the minimum treatment temperature should be above 115°C. PMID:24238801

Budde, Jörn; Heiermann, Monika; Quiñones, Teresa Suárez; Plöchl, Matthias

2014-02-01

341

Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions  

SciTech Connect

Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.

Kim, Dong-Hoon [Wastes Energy Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1, Duckmyoung-dong, Yuseong-gu, Daejeon (Korea, Republic of)

2011-09-15

342

Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions.  

PubMed

With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO(2) emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH(4) production yield (MPY) and VS reduction achieved in this condition were 5.0m(3)/m(3)/d, 0.25 m(3) CH(4)/g COD(added), and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m(3)/m(3)/d, MPY of 0.26 m(3) CH(4)/g COD(added), and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes. PMID:21684733

Kim, Dong-Hoon; Oh, Sae-Eun

2011-01-01

343

Can sludge dewatering reactivate microorganisms in mesophilically digested anaerobic sludge? Case of belt filter versus centrifuge.  

PubMed

The anaerobic digestion process that successfully reduces the organic content of sludge is one of the most common alternatives to meet pathogen reduction requirements for particular classes of biosolids. However, recently it was reported that, much higher densities of indicator bacteria were measured in dewatered cake samples compared to samples collected after anaerobic digestion. Additionally, this increase was commonly observed after centrifugation but not after belt filter dewatering. Several hypotheses were tested to explain this occurrence; however, much of the attention was given to the reactivation of the indicator bacteria which might enter a viable but non-culturable state (VBNC) during digestion. The objective of this research is to examine sludge samples from 5 different full-scale treatment plants in order to observe the effect of dewatering processes on the reactivation potential of indicator bacteria. The bacterial enumerations were performed by both Standard Culturing Methods (SCM) and quantitative polymerase chain (qPCR) on samples collected after digestion and dewatering. Results obtained by SCM indicated that in two investigated treatment plants operating belt filter dewatering, an average 0.6 log decrease was observed after the dewatering process. However, 0.7-1.4 log increases were observed immediately after centrifuge dewatering for the other three treatment plants. On the other hand, qPCR results gave 0.1-1.9 log higher numbers compared to SCM. Comparative evaluation of results obtained by two analytical methods for five treatment plants indicates that the differences observed might be originating from both reactivation of VBNC bacteria and amplification of DNA from dead cells found in the sludge. PMID:23141737

Erkan, M; Sanin, F D

2013-01-01

344

Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature.  

PubMed

In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53-70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409

Babaee, Azadeh; Shayegan, Jalal; Roshani, Anis

2013-01-01

345

A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.  

PubMed

A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. PMID:25540943

Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

2015-03-21

346

Dry anaerobic co-digestion of cow dung with pig manure for methane production.  

PubMed

The performance of dry anaerobic digestions of cow dung, pig manure, and their mixtures into different ratios were evaluated at 35?±?1 °C in single-stage batch reactors for 63 days. The specific methane yields were 0.33, 0.37, 0.40, 0.38, 0.36, and 0.35 LCH4/gVSr for cow dung to pig manure ratios of 1:0, 4:1, 3:2, 2:3, 1:4, and 0:1, respectively, while volatile solid (VS) and chemical oxygen demand (COD) removal efficiencies were 48.59, 50.79, 53.20, 47.73, 46.10, and 44.88 % and 55.44, 57.96, 60.32, 56.96, 53.32, and 50.86 %, respectively. The experimental results demonstrated that the co-digestions resulted in 5.10-18.01 % higher methane yields, 2.03-12.95 % greater VS removals, 2.98-12.52 % greater COD degradation and so had positive synergism. The various mixtures of pig manure with cow dung might persuade a better nutrient balance and dilution of high ammonia concentration in pig manure and therefore enhanced digester performance efficiency and higher biogas yields. The dry co-digestion of 60 % cow dung and 40 % pig manure achieved the highest methane yield and the greatest organic materials removal efficiency than other mixtures and controls. PMID:24818871

Li, Jianzheng; Jha, Ajay Kumar; Bajracharya, Tri Ratna

2014-07-01

347

Performance of uasb reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste  

Microsoft Academic Search

This study was conducted to investigate the performance of the upflow anaerobic sludge blanket (UASB) reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. The chemical oxygen demand (COD) removal efficiency was consistently over 96% up to the loading rates of 15.8gCOD\\/ld. The methane production rate increased to 5.5l\\/ld. Of all the COD removed, 92%

H. S Shin; S. K Han; Y. C Song; C. Y Lee

2001-01-01

348

Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.  

PubMed

In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology without the use of additives was developed in which the pH-regulation is executed by the pH-dependent recycling of effluent from the anaerobic filter into the acidification reactor. During this investigation, the influence of the different target pH-values (5.5, 6.0, 7.0 and 7.5) on the degradation rate, the gas composition and the methane yield of the substrate maize silage was determined. With an increase in the target pH-value from 5.5 to 7.5, the acetic acid equivalent decreased by 88.1% and the chemical oxygen demand-concentration by 18.3% in the hydrolysate. In response, there was a 58% increase in the specific methane yield of the overall system. Contrary to earlier studies, a marked increase in biogas production and in substrate degradation was determined with increasing pH-values. However, these led to a successive approximation of a single-phase process. Based on these results, pH-values above 7.0 seem to be favourable for the digestion of fibre-rich substrates. PMID:25413114

Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

2015-01-01

349

Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia.  

PubMed

Seasonal variations in the physical and chemical characteristics of leachate taken from Benowo landfill in Indonesia, including factors likely to inhibit anaerobic digestion, were investigated to determine the impacts on the stability of anaerobic treatment. To evaluate the biodegradability of the leachate, a continuous experiment was conducted by changing the organic loading rate (OLR). Chemical oxygen demand (COD) ranged between 2621 and 16,832 mg L(-1), and COD in the dry season was twice the level in the rainy season owing to reduced rainwater input and significant evaporation. COD, pH, and the concentrations of ammonium ion, and metals in the leachate were within acceptable ranges for decomposition by anaerobic digestion. However, the Na(+) and Cl(-) in the leachate are high enough to inhibit anaerobic digestion. From chemical investigation of leachate at six monitoring wells in Benowo, food waste accumulation and seawater intrusion might cause high salinity in the leachate. In the continuous experiment, COD removal efficiency was maintained at 40% regardless of OLR, suggesting that at least 40% of the leachate contained biodegradable substances. Based on these results, issues surrounding the biological treatment of saline and refractory substances in landfill leachate were discussed. It is suggested that high salinity and refractory substances in the leachate are common issues during the leachate treatment by anaerobic digestion as the implications for similar landfills in other countries around the world. PMID:22813759

Kawai, M; Purwanti, I F; Nagao, N; Slamet, A; Hermana, J; Toda, T

2012-11-15

350

Evaluation of biodegradability of phenol and bisphenol A during mesophilic and thermophilic municipal solid waste anaerobic digestion using 13C-labeled contaminants.  

PubMed

In this paper, the isotopic tracing using (13)C-labeled phenol and bisphenol A was used to study their biodegradation during anaerobic digestion of municipal solid waste. Microcosms were incubated anaerobically at 35 °C (mesophilic conditions) and 55 °C (thermophilic conditions) without steering. A continuous follow-up of the production of biogas (CH(4) and CO(2)), was carried out during 130 d until the establishment of stable methanogenesis. Then (13)C(12)-BPA, and (13)C(6)-phenol were injected in microcosms and the follow-up of their degradation was performed simultaneously by gas chromatography isotope-ratio mass spectrometry (GC-IRMS) and gas chromatography mass spectrometry (GC-MS). Moreover, Carbon-13 Nuclear Magnetic Resonance ((13)C-NMR) Spectroscopy is used in the identification of metabolites. This study proves that the mineralization of phenol to CO(2) and CH(4) occurs during anaerobic digestion both in mesophilic and thermophilic conditions with similar kinetics. In mesophilic condition phenol degradation occurs through the benzoic acid pathway. In thermophilic condition it was not possible to identify the complete metabolic pathway as only acetate was identified as metabolite. Our results suggest that mineralization of phenol under thermophilic condition is instantaneous explaining why metabolites are not observed as they do not accumulate. No biodegradation of BPA was observed. PMID:22985591

Limam, Intissar; Mezni, Mohamed; Guenne, Angéline; Madigou, Céline; Driss, Mohamed Ridha; Bouchez, Théodore; Mazéas, Laurent

2013-01-01

351

Inhibitory effects of fruit flavors on methane production during anaerobic digestion.  

PubMed

In order to improve biogas production from fruit wastes, the inhibitory effects of fruit flavors on anaerobic digestion were investigated. Batch anaerobic digestion was performed for 30 days using synthetic medium and thermophilic sludge. Three groups of flavor compounds i.e. aldehydes (hexanal, nonanal, and E-2-hexenal), terpenes (car-3-ene, ?-pinene, and myrcene), and alcohol (octanol) at concentration of 0.005%, 0.05%, and 0.5% were examined. All the flavor compounds showed inhibitory effect on methane production. The highest methane reduction was obtained at addition of 0.5% of flavor compounds. For terpenoids, the presence of 0.5% of car-3-ene, myrcene, and ?-pinene reduced 95%, 75%, and 77% of methane production, respectively. For aldehydes, addition of 0.5% concentration resulted in more than 99% methane reduction for hexanal and E-2-hexenal, and 84% methane reduction for nonanal. For alcohol, the presence of 0.5% octanol decreased 99% methane production. PMID:23422220

Wikandari, Rachma; Gudipudi, Sailaja; Pandiyan, Ishwarya; Millati, Ria; Taherzadeh, Mohammad J

2013-10-01

352

Flux analysis of the human proximal colon using anaerobic digestion model 1.  

PubMed

The colon can be regarded as an anaerobic digestive compartment within the gastro intestinal tract (GIT). An in silico model simulating the fluxes in the human proximal colon was developed on basis of the anaerobic digestion model 1 (ADM1), which is traditionally used to model waste conversion to biogas. Model calibration was conducted using data from in vitro fermentation of the proximal colon (TIM-2), and, amongst others, supplemented with the bio kinetics of prebiotic galactooligosaccharides (GOS) fermentation. The impact of water and solutes absorption by the host was also included. Hydrolysis constants of carbohydrates and proteins were estimated based on total short chain fatty acids (SCFA) and ammonia production in vitro. Model validation was established using an independent dataset of a different in vitro model: an in vitro three-stage continuous culture system. The in silico model was shown to provide quantitative insight in the microbial community structure in terms of functional groups, and the substrate and product fluxes between these groups as well as the host, as a function of the substrate composition, pH and the solids residence time (SRT). The model confirms the experimental observation that methanogens are washed out at low pH or low SRT-values. The in silico model is proposed as useful tool in the design of experimental setups for in vitro experiments by giving insight in fermentation processes in the proximal human colon. PMID:24880006

Motelica-Wagenaar, Anne Marieke; Nauta, Arjen; van den Heuvel, Ellen G H M; Kleerebezem, Robbert

2014-08-01

353

Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage.  

PubMed

Taihu blue algae after different storage time from 0 to 60 d were anaerobic fermented to evaluate their digestibility and process stability. Results showed that anaerobic digestion (AD) of blue algae under 15 d natural storage led to the highest CH4 production of 287.6 mL g(-1) VS at inoculum substrate ratio 2.0, demonstrating 36.69% improvement comparing with that from fresh algae. Storage of blue algae led to cell death, microcystins (MCs) release and VS reduction by spontaneous fermentation. However, it also played an important role in removing algal cell wall barrier, pre-hydrolysis and pre-acidification, leading to the improvement in CH4 yield. Closer examination of volatile fatty acids (VFA) variation, VS removal rates and key enzymes change during AD proved short storage time (? 15 d) of blue algae had higher efficiencies in biodegradation and methanation. Furthermore, AD presented significant biodegradation potential for MCs released from Taihu blue algae. PMID:24128398

Miao, Hengfeng; Lu, Minfeng; Zhao, Mingxing; Huang, Zhenxing; Ren, Hongyan; Yan, Qun; Ruan, Wenquan

2013-12-01

354

Continuous mesophilic anaerobic digestion of manure and rape oilcake - Experimental and modelling study.  

PubMed

Rape oilcake is a by-product formed after the removal of oil from rapeseed. Due to the high content of organic matter rape oilcake seems a good substrate for anaerobic digestion when it cannot be used as fodder. The aim of this work was to optimise the parameters used in a mathematical model of anaerobic digestion for rapeseed oilcake and cattle manure. The composition of these substrates was determined in order to estimate model inputs. Optimised kinetic constants of hydrolysis and decomposition for oilcake (Kdis=0.77, KhydCH=0.55, khydPr=0.57, khydLi=0.30) were estimated based on batch fermentation. The accuracy of the model with improved input parameters was confirmed by continuous fermentation. The average concentration of methane in biogas was about 50%. The biogas production efficiency from organic matter (defined as volatile solids) was 0.42m(3)kg(-1) with an organic substrate loading rate equal to 3.18kgm(-3)d(-1). The fermentation process demonstrated good stability and efficiency. The accuracy of the optimised model seems sufficient for use in modelling of a full scale process. PMID:25318701

Jab?o?ski, S?awomir J; Biernacki, Piotr; Steinigeweg, Sven; Lukaszewicz, Marcin

2015-01-01

355

Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings.  

PubMed

Biochar converted from agricultural residues or other carbon-rich wastes may provide new methods and materials for environmental management, particularly with respect to carbon sequestration and contaminant remediation. In this study, laboratory experiments were conducted to investigate the removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings (DSTC). Batch adsorption kinetic and equilibrium isotherm experiments and post-adsorption characterizations using SEM-EDS, XRD, and FTIR suggested that colloidal and nano-sized MgO (periclase) particles on the biochar surface were the main adsorption sites for aqueous phosphate. Batch adsorption experiments also showed that both initial solution pH and coexisting anions could affect the adsorption of phosphate onto the DSTC biochar. Of the mathematical models used to describe the adsorption kinetics of phosphate removal by the biochar, the Ritchie N_th-order (N=1.14) model showed the best fit. Two heterogeneous isotherm models (Freundlich and Langmuir-Freundlich) fitted the experimental isotherm of phosphate adsorption onto the biochar better than the Langmuir adsorption model. Our results suggest that biochar converted from anaerobically digested sugar beet tailings is a promising alternative adsorbent, which can be used to reclaim phosphate from water or reduce phosphate leaching from fertilized soils. In addition, there is no need to regenerate the exhausted biochar because the phosphate-laden biochar contains abundance of valuable nutrients, which may be used as a slow-release fertilizer to enhance soil fertility and to sequester carbon. PMID:21497441

Yao, Ying; Gao, Bin; Inyang, Mandu; Zimmerman, Andrew R; Cao, Xinde; Pullammanappallil, Pratap; Yang, Liuyan

2011-06-15

356

Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass.  

PubMed

Intermediate pyrolysis produces a two-phase liquid whose aqueous phase is characterized by low heating value and high water content (aqueous pyrolysis liquid, APL). Anaerobic digestion can be the straightest way to produce a fuel (methane) from this material. Batch tests showed poor performance in anaerobic digestion of APL, which underlined the inhibition of biological process. Nutrient supplementation was ineffective, whereas biochar addition increased yield of methane (60±15% of theoretical) with respect to pure APL (34±6% of theoretical) and improved the reaction rate. On the basis of batch results, a semi-continuous biomethanation test was set up, by adding an increasingly amount of APL in a 30ml reactor preloaded with biochar (0.8gml(-1)). With a daily input of 5gd(-1)l(-1) of APL (corresponding to overall amount of 0.1kgl(-1) added before the end of the study) the yield of methane was 65±5% of the theoretical. PMID:25277261

Torri, Cristian; Fabbri, Daniele

2014-11-01

357

Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters.  

PubMed

A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process to determine the relative role of niche and neutral theory on microbial community assembly, and to link community dynamics to system performance. AD is performed by a complex network of microorganisms and process stability relies entirely on the synergistic interactions between populations belonging to different functional guilds. In this study, three independent replicate anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate, ?-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic conditions. Selective pressure imposed by the operational conditions and model substrate caused large reproducible changes in community composition including an overall decrease in richness in the first month of operation, followed by synchronised population dynamics that correlated with changes in reactor performance. This included the synchronised emergence and decline of distinct Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype at day 178, when performance became stable in all reactors. These data suggest that many dynamic functional niches are predictably filled by phylogenetically coherent populations over long time scales. Neutral theory would predict that a complex community with a high degree of recognised functional redundancy would lead to stochastic changes in populations and community divergence over time. We conclude that deterministic processes may play a larger role in microbial community dynamics than currently appreciated, and under controlled conditions it may be possible to reliably predict community structural and functional changes over time. PMID:24739627

Vanwonterghem, Inka; Jensen, Paul D; Dennis, Paul G; Hugenholtz, Philip; Rabaey, Korneel; Tyson, Gene W

2014-10-01

358

Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters  

PubMed Central

Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

2014-01-01

359

Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge.  

PubMed

Methanogens in anaerobic ammonia-rich digesters show differential responses to ammonia stress. The mechanism for this is poorly understood. In the present study, we determined the rates of methane production, the composition of methanogen mcrA (the gene coding for the alpha subunit of methyl-coenzyme M reductase) and their transcripts in response to ammonium addition in the anaerobic sludge retrieved from a full-scale digester treating swine manure. The rate of CH4 production substantially reduced with increased addition of ammonium. The analysis of natural (13)C abundances of CH4 and CO2 indicated that the aceticlastic methanogenesis was more sensitive than hydrogenotrophic methanogenesis. Quantitative PCR analysis revealed that mcrA copy number decreased by one order of magnitude in the treatment with a large amount of ammonium (10 g NH4+-N L(-1)) but did not change much with treatments of smaller amounts (3 and 7 g NH4+-N L(-1)) compared with the control. T-RFLP analysis of mcrA compositions showed that the structure of the methanogen community remained highly stable, with Methanosaetaceae dominating the methanogen community in all incubations. The composition of mcrA transcripts, however, showed a substantial response to the addition of ammonium. The relative abundance of Methanosaetaceae transcripts declined with increasing amounts of ammonium, whereas the transcript level of Methanobacteriales mcrA was relatively resistant. The differential responses corresponded to the shift of methanogenic pathway inferred from (13)C isotope fractionation. Our study suggests that methanogens in anaerobic sludge have a strong mcrA transcriptional response to ammonia stress without a change in the community structure. PMID:24117957

Zhang, Chen; Yuan, Quan; Lu, Yahai

2014-02-01

360

Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters  

Microsoft Academic Search

The aim of this work was to develop simple and fast tests to predict anaerobic biogasification potential (ABP) of ingestates and digestates from a biogas plant. Forty-six samples of both ingestates and digestates were collected within an eight-month observation period and were analyzed in terms of biological and chemical parameters, namely, ABP test, oxygen demand in a 20-h respirometric test

Andrea Schievano; Michele Pognani; Giuliana D’Imporzano; Fabrizio Adani

2008-01-01

361

Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.  

PubMed

Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more favorable at an SRT of 10 d. PMID:23866153

Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

2013-09-15

362

Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability?  

PubMed

A long-term comparative study using continuously-stirred anaerobic digesters (CSADs) operated at mesophilic and thermophilic temperatures was conducted to evaluate the influence of the organic loading rate (OLR) and chemical composition on process performance and stability. Cow manure was co-digested with dog food, a model substrate to simulate a generic, multi-component food-like waste and to produce non-substrate specific, composition-based results. Cow manure and dog food were mixed at a lower - and an upper co-digestion ratio to produce a low-fiber, high-strength substrate, and a more recalcitrant, lower-strength substrate, respectively. Three increasing OLRs were evaluated by decreasing the CSADs hydraulic retention time (HRT) from 20 to 10 days. At longer HRTs and lower manure-to-dog food ratio, the thermophilic CSAD was not stable and eventually failed as a result of long-chain fatty acid (LCFA) accumulation/degradation, which was triggered by the compounded effects of temperature on reaction rates, mixing intensity, and physical state of LCFAs. At shorter HRTs and upper manure-to-dog food ratio, the thermophilic CSAD marginally outperformed the biomethane production rates and substrate stabilization of the mesophilic CSAD. The increased fiber content relative to lipids at upper manure-to-dog food ratios improved the stability and performance of the thermophilic process by decreasing the concentration of LCFAs in solution, likely adsorbed onto the manure fibers. Overall, results of this study show that stability of the thermophilic co-digestion process is highly dependent on the influent substrate composition, and particularly for this study, on the proportion of manure to lipids in the influent stream. In contrast, mesophilic co-digestion provided a more robust and stable process regardless of the influent composition, only with marginally lower biomethane production rates (i.e., 7%) for HRTs as short as 10 days (OLR = 3 g VS/L-d). PMID:24530545

Labatut, Rodrigo A; Angenent, Largus T; Scott, Norman R

2014-04-15

363

Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.  

PubMed

Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

2014-10-01

364

Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste  

SciTech Connect

A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

Nayono, Satoto E. [Department of Civil Engineering, Yogyakarta State University, Campus UNY Karangmalang Yogyakarta 55281 (Indonesia); Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Winter, Josef, E-mail: josef.winter@iba.uka.d [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Gallert, Claudia [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany)

2010-10-15

365

Super blue box recycling (SUBBOR) enhanced two-stage anaerobic digestion process for recycling municipal solid waste: laboratory pilot studies.  

PubMed

The super blue box recycling (SUBBOR) process is an enhanced, multi-stage anaerobic digestion process for mixed municipal solid waste (MSW) and other biomass feedstock materials. The technology centers on enhanced high solids, thermophilic digestion after steam-pressure disruption of the ligno-cellulosic fiber components that are recalcitrant to conventional anaerobic digestion. Mixed MSW, rich in organic components but also containing inorganic materials, such as glass, aluminum and steel, as well as non-digestible plastic materials, has been laboratory pilot tested with a fully integrated process train designed to treat and recycle all of the MSW components. Methane yields from the MSW were 0.36 m3 CH4/kg volatile solids (VS) representing a 40% increase over the yield obtained from conventional single stage digestion. The secondary digestion step after steam pressure disruption also provided a 40% improvement in total solids and VS reduction. The residual organic fraction following two-stage digestion was fine in texture and was recovered as a clean peat fraction with reduced contents of heavy metal and other fugitive non-digested contaminants. Mass and energy balance determinations indicated a high degree of MSW diversion from landfill disposal (>80%) was achievable by the SUBBOR process as well as substantial net electrical and thermal energy production. Continuous long-term trials of the SUBBOR process at 25,000 tonnes/year are underway. PMID:12365497

Vogt, G M; Liu, H W; Kennedy, K J; Vogt, H S; Holbein, B E

2002-12-01

366

Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure.  

PubMed

Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure. PMID:24701918

Fotidis, Ioannis A; Kougias, Panagiotis G; Zaganas, Ioannis D; Kotsopoulos, Thomas A; Martzopoulos, Gerasimos G

2014-01-01

367

Pilot-plant treatment of olive mill wastewaters by Phanerochaete chrysosporium coupled to anaerobic digestion and ultrafiltration  

Microsoft Academic Search

In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. A pilot plant was devised based on fungal pretreatment using Phanerochaete chrysosporium followed by anaerobic digestion. P. chrysosporium DSM 6909 was cultivated on pre-stored OMW as sole carbon and energy sources in

Abdelhafidh Dhouib; Fathi Aloui; Naima Hamad; Sami Sayadi

2006-01-01

368

Comparison of raw dairy manure slurry and anaerobically digested slurry as N sources for grass forage production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Our study was conducted to determine how raw dairy slurry and anaerobically digested slurry (dairy slurry and food waste) applied via broadcast and subsurface deposition to reed canary grass (Phalaris arundinacea) affected forage biomass, N uptake, apparent nitrogen recovery (ANR), and soil nitrate...

369

Quick Startup of EGSB Reactor Seeded with Anaerobic Digestion Sludge for the Treatment of Actual Domestic Sewage under Ambient Temperature  

Microsoft Academic Search

To obtain the rapid startup of EGSB reactor seeded with anaerobic digestion sludge for the treatment of actual domestic wastewater under ambient temperature, two startup methods i.e. A and B were tried out at 25°C. For method A, reactor A (RA) was fed with brewery wastewater to incubate granular sludge and then treated domestic sewage, for method B, reactor B

Dong Chunjuan; Li Qingwei; Geng Zhaoyu; Wang Haihui; Wang Zengzhang

2010-01-01

370

Control of organic loading rate using the specific methanogenic activity test during start-up of an anaerobic digestion system  

Microsoft Academic Search

The specific methanogenic activity test (SMA) was used to determine a suitable organic loading rate during the start-up phase of a crossflow ultrafiltration membrane anaerobic reactor system (CUMAR). The SMA test was immediately carried out after seeding the reactor with sludge taken from a municipal wastewater treatment plant digester in order to determine the most acceptable initial organic loading rate.

O. Ince; G. K. Anderson; B. Kasapgil

1995-01-01

371

ASSESSMENT OF THE UTILIZATION AND CONTROL OF DIGESTER GAS USING FUEL CELL TECHNOLOGY  

EPA Science Inventory

To conduct a 2-year assessment of the use of fuel cells to recover energy from anaerobic digester as a wastewater treatment facility. Will determine the environmental and economic benefits/impacts for the use of fuel cells to utilize waste methane from anaerobic digesters. Due ...

372

Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy  

PubMed Central

With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

2013-01-01

373

Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: Role of trace elements.  

PubMed

This study investigated the effects of trace elements (TEs) on the anaerobic digestion (AD) of food waste (FW) in laboratory-scale semi-continuously fed anaerobic digesters. The duration of digesters operation was approximately 400days. Organic loading rates (OLRs) ranged from 1.0 to 5.5gVSL(-1)d(-1) at 37°C. Results showed that methane production of the digester was severely inhibited at a volatile fatty acid (VFA) concentration of 30,000mgL(-1) at OLR of 4.0gVSL(-1)d(-1) in the absence of TEs. Contrary to the failed digesters, a stable performance was achieved in the TEs added digesters. High methane yield (approximately 465.4mLCH4g(-1)VSadded) was obtained, and no significant accumulation of VFA was observed in the TEs added digesters at OLR of 1.0-5.0gVSL(-1)d(-1) and HRT of 40days. These findings strongly indicated that the addition of TEs has an important impact on the operation stability of AD of FW. PMID:25160748

Zhang, Wanqin; Wu, Shubiao; Guo, Jianbin; Zhou, Jie; Dong, Renjie

2015-02-01

374

Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.  

PubMed

The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL?¹ d?¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g?¹ VS) than with SM alone (361 mL g?¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL?¹ d?¹ and hydraulic retention time of 20 days under mesophilic conditions. PMID:25176305

Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

2014-01-01

375

Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste.  

PubMed

Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45days in a lab-scale batch experiment for total solid concentration of 100g/L for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9L/kg VS (volatile solid) for the total solid (TS) concentration of 100g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249day(-1). PMID:25449607

Sajeena Beevi, B; Madhu, G; Sahoo, Deepak Kumar

2015-02-01

376

Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.  

PubMed

Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1). The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. PMID:24963093

Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

2014-06-24

377

Improved Design of Anaerobic Digesters for Household Biogas Production in Indonesia: One Cow, One Digester, and One Hour of Cooking per Day  

PubMed Central

A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.3?m diameter PVC pipe, which was operated as a conventional plug-flow system. The system generated enough methane to power a cooking stove for ?1?h. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance. Controlled experiments were performed using four 9-L laboratory-scale digesters operated at a temperature of 27 ± 1°C, a volatile solids loading rate of 2.0?g VS·L?1·day?1, and a 21-day hydraulic retention time. Two of the digesters were replicates of the original design (control digesters), while the other two digesters included internal mixing or effluent recycle (experimental digesters). The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of 311 days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies. PMID:24715809

Usack, Joseph G.; Wiratni, Wiratni; Angenent, Largus T.

2014-01-01

378

Improved design of anaerobic digesters for household biogas production in indonesia: one cow, one digester, and one hour of cooking per day.  

PubMed

A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.3 m diameter PVC pipe, which was operated as a conventional plug-flow system. The system generated enough methane to power a cooking stove for ? 1 h. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance. Controlled experiments were performed using four 9-L laboratory-scale digesters operated at a temperature of 27 ± 1 °C, a volatile solids loading rate of 2.0 g VS · L(-1) · day(-1), and a 21-day hydraulic retention time. Two of the digesters were replicates of the original design (control digesters), while the other two digesters included internal mixing or effluent recycle (experimental digesters). The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of 311 days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies. PMID:24715809

Usack, Joseph G; Wiratni, Wiratni; Angenent, Largus T

2014-01-01

379

Transition of microbial communities during the adaption to anaerobic digestion of carrot waste.  

PubMed

In this study a microbial community suitable for anaerobic digestion of carrot pomace was developed from inocula obtained from natural environmental sources. The changes along the process were monitored using pyrosequencing of the 16S rRNA gene. As the community adapted from a diverse natural community to a community with a definite function, diversity decreased drastically. Major bacterial groups remaining after enrichment were Bacilli (31-45.3%), Porphyromonadaceae (12.1-24.8%) and Spirochaetes (12.5-18.5%). The archaeal population was even less diverse and mainly represented by a single OTU that was 99.7% similar to Methanosarcina mazei. One enrichment which failed to produce large amounts of methane had shifts in the bacterial populations and loss of methanogenic archaea. PMID:21620691

Garcia, Sarahi L; Jangid, Kamlesh; Whitman, William B; Das, K C

2011-08-01

380

Liquid mixing and solid segregation in high-solid anaerobic digesters.  

PubMed

An experimental procedure (Residence Time Distribution technique) was used to characterize the macro-mixing of both liquid and solid phases of a laboratory-scale dry anaerobic digester using appropriate tracers. The effects of the waste origin and total solid content were studied. An increase in TS content from 22% to 30% TS (w/w) induced a macro-mixing mode closer to a theoretical Plug Flow Reactor. The segregation of particles having different densities was investigated regarding the RTD of the solid phase. Segregation of dense particles occurred at low TS content. By using different TS content and waste origins, it was also determined that the yield stress was a key parameter in the mechanism of segregation. At high yield stress, dense particles were more stable and thus less subjected to settling. As a consequence, operating at high TS content may permit to prevent the sedimentation of the denser particles. PMID:24001563

Benbelkacem, Hassen; Garcia-Bernet, Diana; Bollon, Julien; Loisel, Denis; Bayard, Rémy; Steyer, Jean-Philippe; Gourdon, Rémy; Buffière, Pierre; Escudié, Renaud

2013-11-01

381

Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition  

PubMed Central

Three of the four main stages of anaerobic digestion: acidogenesis, acetogenesis, and methanogenesis are described by a system of differential equations modelling the interaction of microbial populations in a chemostat. The microbes consume and/or produce simple substrates, alcohols and fatty acids, acetic acid, and hydrogen. Acetogenic bacteria and hydrogenotrophic methanogens interact through syntrophy. The model also includes the inhibition of acetoclastic and hydrogenotrophic methanogens due to sensitivity to varying pH-levels. To examine the effects of these interactions and inhibitions, we first study an inhibition-free model and obtain results for global stability using differential inequalities together with conservation laws. For the model with inhibition, we derive conditions for existence, local stability, and bistability of equilibria and present a global stability result. A case study illustrates the effects of inhibition on the regions of stability. Inhibition introduces regions of bistability and stabilizes some equilibria. PMID:23336708

Weedermann, Marion; Seo, Gunog; Wolkowicz, Gail S.K.

2013-01-01

382

Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors.  

PubMed

The objectives of this research were to elucidate the mechanisms for production and degradation of volatile organic sulfur compounds (VOSCs), key odor causing compounds produced by biosolids. These compounds included methanethiol (MT), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS). A series of experiments were used to probe various pathways hypothesized to produce and degrade these VOSCs. The production of MT was found to mainly occur from degradation of methionine and the methylation of hydrogen sulfide. DMS was formed through the methylation of MT. DMDS was formed by MT oxidation. All three of the VOSCs were readily degraded by methanogens and a cyclic pathway was proposed to describe the production and degradation of VOSCs. The research demonstrated that the main source of VOSCs was the biodegradation of protein within the biosolids and the results provided a framework for understanding the production of odor from anaerobically digested sludges before and after dewatering. PMID:16629264

Higgins, Matthew J; Chen, Yen-Chih; Yarosz, Douglas P; Murthy, Sudhir N; Maas, Nick A; Glindemann, Dietmar; Novak, John T

2006-03-01

383

Anaerobic co-digestion of dairy cattle manure and pear waste.  

PubMed

Anaerobic co-digestion of pre-treated dairy cattle manure (LCM) with pear waste after a storage period (PLF) was tested at four inclusion levels: 0%, 25%, 75% and 100%. Inclusion levels consisted in the replacement of the volatile solids (VS) from the LCM with the VS from PLF keeping the organic loading rate around 1.1 ± 0.4 g SVL(-1)d(-1). The introduction of the co-substrate clearly enhanced methane production rate (MPR) in comparison to single substrate (phase I) as phases II and III, respectively, achieving values 1.3 and 2.8 times higher than phase I. The overall performance was optimized for the mixture 25:75 (LCM:PLF; v:v). Moreover, storage of pear waste did not compromise its use in AD. This fact is important once it can improve waste management from pear production through its valorisation as co-substrate in AD process. PMID:24865319

Dias, T; Fragoso, R; Duarte, E

2014-07-01

384

Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.  

PubMed

This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment. PMID:25327023

Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

2014-09-01

385

New approach to control the methanogenic reactor of a two-phase anaerobic digestion system.  

PubMed

A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor. PMID:12553972

von Sachs, Jürgen; Meyer, Ulrich; Rys, Paul; Feitkenhauer, Heiko

2003-03-01

386

A model of anaerobic digestion for biogas production using Abel equations  

E-print Network

We consider a nonlinear mathematical model for the study of anaerobic digestion processes. We decompose the original system of nonlinear ordinary differential equations into subsystems. For these subsystems we prove existence of lower and upper solutions in reverse order for one of the va\\-ria\\-bles. The upper and lower solutions are constructed in analytical form. Furthermore, the upper solutions of subsystem for feeding bacteria are related with solutions of Abel equations of the first kind. Using numerical and theoretical arguments we examine how to obtain upper and lower solutions approximated to the numerical solution of the system. In this work we establish special techniques of lower-upper solution, which includes reverse order for non monotone systems, in contrast to the techniques used by H.L. Smith and P. Waltman on their monograph.

Primitivo B. Acosta-Humánez; Maximiliano Machado-Higuera; Alexander V. Sinitsyn

2014-11-27

387

A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.  

PubMed

High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9kg methane from 12.8kg dry dairy manure, 3.1kg dry food wastes and 12.2kg dry corn stover with a positive net energy of 57MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production. PMID:25543542

Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

2015-03-01

388

Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.  

PubMed

Digestion of crop silage (Zea mays L. and Miscanthus sacchariflorus) with 0%, 7.5%, 12.5% and 25% pig manure as co-substrate was performed in continuous stirred-tank reactors, for a constant hydraulic retention time of 45 d and organic load rate of 2.1 g L(-1)d(-1). A matrix of correlations between biogas/methane production and parameters of anaerobic digestion was created in order to estimate process stability. The values of the correlation coefficients indicated that the most stable anaerobic digestion was achieved using 7.5% and 12.5% pig manure. In contrast, the positive correlation between ammonium and volatile fatty acids (r=0.8698, p<0.001) at 25% pig manure showed process instability. Compared to crop silage alone, pig manure favored the production of biogas and methane; the highest production rates were obtained with 12.5% pig manure. PMID:23026336

Bu?kowska, K; Pokój, T; Klimiuk, E; Gusiatin, Z M

2012-12-01

389

Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors.  

PubMed

This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m2m(-3)) and their low energy requirements for fluidization (gas velocity of 1.5 mm s(-1), 5.4 m h(-1)). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kgCOD m(-3) d(-1), respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass. PMID:14733396

Arnaiz, C; Buffiere, P; Elmaleh, S; Lebrato, J; Moletta, R

2003-11-01

390

Liquefaction and methanization of solid and liquid coffee wastes by two phase anaerobic digestion process.  

PubMed

This study attempted to investigate the feasibility of volatile fatty acid (VFA) production from coffee pulp hydrolyse, and further to determine the potential of methanization of both the pre-acidified effluent and the coffee wastewater. The experiments were carried out in 2 completely mixed reactors, each one with a working volume of 4 litres. Coffee pulp was used as substrate in the acidogenic reactor and different mixtures of pulper and wash-water and pre-acidified effluent in the methanogenic one. The acidogenic and methanogenic reactors were operated at an organic loading rate of 5 COD g x l(-1) x d(-1) and 0.5 COD g x l(-1) x d(-1). The total, soluble and VFA's effluent COD concentrations of the acidogenic reactor present average values of 57.75, 17.00 and 13.92 g x l(-1) respectively. Under these experimental conditions, 23% (COD based) of coffee pulp was hydrolysed with a rate of 1.32 gCOD x l(-1) x d(-1) and the soluble fraction was transformed to VFA's with an acidification efficiency of 82%. Total VFA's concentration reached a value of 13.9 gCOD x l(-1), and acetate, propionate, butyrate and valerate represented 52%, 28%, 9% and 11% respectively of the liquid phase COD. In the methanogenic reactor, COD removal and methanization of fresh coffee wastewater, pre-acidified effluent and both combined occur with an efficiency of 85% to 95% respectively, with a characteristic biogas composition of 80% CH4 and 20% CO2. These results show that a humid coffee "Beneficio" processing daily 23 tons of cherry coffee (fresh fruit), equipped with a two stage anaerobic digestion process could generate at least 1,886 CH4 m3 x d(-1). This represents an increase in methane production by a factor 3 to 5 compared to a "Beneficio" using anaerobic digestion only for the treatment of its wastewater. PMID:14640226

Houbron, E; Larrinaga, A; Rustrian, E

2003-01-01

391

Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose.  

PubMed

Clones of the WWE1 (Waste Water of Evry 1) candidate division were retrieved during the exploration of the bacterial diversity of an anaerobic mesophilic (35 ± 0.5°C) digester. In order to investigate the metabolic function of WWE1 members, a 16S rRNA gene -based stable isotope probing (SIP) method was used. Eighty-seven percent of 16S r rRNA gene sequences affiliated to WWE1 candidate division were retrieved in a clone library obtained after polymerase chain reaction (PCR) amplification of enriched DNA fraction from anaerobic municipal solid waste samples incubated with (13) C-cellulose, at the end of the incubation (day 63) using a Pla46F-1390R primer pair. The design of a specific WWE1 probe associated with the fluorescence in situ hybridization (FISH) technique corroborated the abundant representation of WWE1 members in our (13) C-cellulose incubations. Secondary ion mass spectrometry-in situ hybridization (SIMSISH) using an iodine-labeled oligonucleotide probe combined with high-resolution nanometer-scale SIMS (NanoSIMS) observation confirmed the isotopic enrichment of members of WWE1 candidate division. The (13) C apparent isotopic composition of hybridized WWE1 cells reached the value of about 40% early during the cellulose degradation process, suggesting that these bacteria play a role either in an extracellular cellulose hydrolysis process and/or in the uptake fermentation products. PMID:24497501

Limam, Rim Driss; Chouari, Rakia; Mazéas, Laurent; Wu, Ting-Di; Li, Tianlun; Grossin-Debattista, Julien; Guerquin-Kern, Jean-Luc; Saidi, Mouldi; Landoulsi, Ahmed; Sghir, Abdelghani; Bouchez, Théodore

2014-04-01

392

Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose  

PubMed Central

Clones of the WWE1 (Waste Water of Evry 1) candidate division were retrieved during the exploration of the bacterial diversity of an anaerobic mesophilic (35 ± 0.5°C) digester. In order to investigate the metabolic function of WWE1 members, a 16S rRNA gene-based stable isotope probing (SIP) method was used. Eighty-seven percent of 16S r rRNA gene sequences affiliated to WWE1 candidate division were retrieved in a clone library obtained after polymerase chain reaction (PCR) amplification of enriched DNA fraction from anaerobic municipal solid waste samples incubated with 13C-cellulose, at the end of the incubation (day 63) using a Pla46F-1390R primer pair. The design of a specific WWE1 probe associated with the fluorescence in situ hybridization (FISH) technique corroborated the abundant representation of WWE1 members in our 13C-cellulose incubations. Secondary ion mass spectrometry–in situ hybridization (SIMSISH) using an iodine-labeled oligonucleotide probe combined with high-resolution nanometer-scale SIMS (NanoSIMS) observation confirmed the isotopic enrichment of members of WWE1 candidate division. The 13C apparent isotopic composition of hybridized WWE1 cells reached the value of about 40% early during the cellulose degradation process, suggesting that these bacteria play a role either in an extracellular cellulose hydrolysis process and/or in the uptake fermentation products. PMID:24497501

Limam, Rim Driss; Chouari, Rakia; Mazéas, Laurent; Wu, Ting-Di; Li, Tianlun; Grossin-Debattista, Julien; Guerquin-Kern, Jean-Luc; Saidi, Mouldi; Landoulsi, Ahmed; Sghir, Abdelghani; Bouchez, Théodore

2014-01-01

393

An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.  

PubMed

Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. PMID:23974530

Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

2013-10-15

394

Nitrification of anaerobic digester effluent for nitrogen management at swine farms.  

PubMed

Anaerobic digester effluent collected from a swine farm was nitrified in lab-scale bioreactors mimicking an innovative manure management system to understand factors relevant to a successful start-up. The effects of digester effluent strength, aeration time, nitrifying sludge inoculation, and initial pH control on the startup of the nitrification system were investigated. The results showed that initial NH4(+)-N concentrations higher than 800mgL(-1) could severely inhibit the onset of nitrification if relying on native bacterial populations. When aeration time was increased from 4 to 12hd(-1), ammonium oxidation occurred earlier, but nitrite oxidation was delayed. However, the delay was not observed when bioaugmentation with nitrifying sludge was conducted. Initial addition of acid for pH control was unsuccessful as initial depletion of alkalinity eventually resulted in self-inhibition of nitrification cause by decreasing pH over time. Overall, these results provide guidance on how to effectively start large-scale innovative animal waste treatment systems. PMID:25461938

Xu, Jiele; Vujic, Tatjana; Deshusses, Marc A

2014-11-01

395

Two-phase anaerobic co-digestion of food waste and sewage sludge.  

PubMed

The feasibility and performance of food waste and sewage sludge co-digestion were investigated to gain insight into their resource utilization. In this study, two-phase anaerobic digestion (TPAD) was operated under a total solids mixing ratio of 1:1 and different sludge retention times (SRTs). Results show that an acidogenic reactor with a 5-day SRT obtained the highest acidification efficiency, and its acetic acid content was dominant. The organic removal rate of a methanogenic reactor (MR) with a 20-day SRT and its corresponding TPAD system with a 25-day SRT were both the highest among the MRs and TPAD systems. Volatile solids and total chemical oxygen demand average removal efficiencies of the TPAD system with a 25-day SRT reached 64.7 and 60.8%, respectively. The MR with a 30-day SRT obtained the minimum ratio of volatile fatty acid to alkalinity (0.12). The methane content generated from the different MRs fluctuated at around 70%. All of the above results can provide reference for future research. PMID:25607669

Wang, Feng; Li, Wei-Ying; Yi, Xue-Nong

2015-01-01

396

Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge  

Microsoft Academic Search

Laboratory scale two-stage anaerobic digestion process model was operated for 280days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v\\/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5mL\\/mLfeedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the

Heguang Zhu; Wayne Parker; Daniela Conidi; Robert Basnar; Peter Seto

2011-01-01

397

Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge.  

PubMed

Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19days, 53±26 Nml/g of volatile solids as compared to municipal sewage sludge, 84±24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production. PMID:23294534

Hagelqvist, Alina

2013-04-01

398

Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.  

PubMed

Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production. PMID:22339023

Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

2012-01-01

399

Anaerobic digestion of residues from production and refining of vegetable oils as an alternative to conventional solutions.  

PubMed

The purpose of this work was to study the anaerobic digestion of by-products generated during the production and refining of oil with the objective of proposing an alternative solution (methanisation) to the conventional solutions while reducing the energy consumption of fossil origin on refinery sites. The production of sunflower oil was taken as example. Glycerine from the production of biodiesel was also included in this study. The results show that glycerine has a high potential for methanisation because of its high methane potential (465 ml CH4/g VS) and high metabolization rates (0.42 g VS/g VSS.d). The use of oil cake as substrate for anaerobic digestion is not interesting because it has a low methane potential of 215 ml CH4/g VS only and because it is easily recovered in animal feed. Six residues have quite a high methane potential (465 to 850 ml CH4/g VS) indicating a good potential for anaerobic digestion. However, they contain a mixture of rapidly and slowly biodegradable organic matter and the loading rates must remain quite low (0.03 to 0.09 g VS/g VSS.d) to prevent any accumulation of slowly biodegradable solids in the digesters. PMID:19029731

Torrijos, M; Thalla, Arun Kumar; Sousbie, P; Bosque, F; Delgenès, J P

2008-01-01

400

Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation.  

PubMed

Anaerobic digestion is commonly used for the stabilization of agricultural and animal wastes. However, owing to the stringent environmental criteria, anaerobic digester effluents need to be further treated to reduce nutrient loads to the receiving water bodies. Struvite precipitation is one of the promising techniques applied for this purpose. Yet, in the majority of cases, struvite precipitation is only applied to the liquid phase of anaerobic digester effluents. This study investigated the recovery of nutrients from both the liquid and the solid phases of the phase-separated effluent of a full-scale biogas plant co-digesting poultry manure and maize silage. Struvite precipitation in the liquid phase led to 72.1% and 95.1% average removal efficiencies of ammonium-nitrogen (NH4-N) and orthophosphate respectively. Changing the external phosphorus source did not make any statistically significant difference in nutrient removal. An acidic phosphorus-dissolution process was applied to the solid phase sample to obtain a phosphorus-enriched solution. More than 90.0% of both NH4-N and PO4-P were recovered from the phosphorus-enriched solution with the amendments of magnesium and phosphorus. In the experiments performed without any addition of external magnesium- and phosphorus-containing chemicals, almost complete (99.6%) PO4-P recovery and partial (14.6%) NH4-N recovery were obtained. The results of this study could contribute to the understanding of nutrient recovery from anaerobic digestion residues of manure and agricultural wastes by struvite precipitation. PMID:23774787

Yilmazel, Y Dilsad; Demirer, Goksel N

2013-08-01

401

Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.  

PubMed

Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. PMID:23419457

Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

2013-07-01

402

Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester recovery and stability.  

PubMed

This study investigated the effects of trace elements (TEs: Fe, Co, and Ni) on the anaerobic digestion of food waste in laboratory scale semi-continuously fed anaerobic digesters. The digesters were operated for approximately 460 d at organic loading rates (OLRs) ranging from 1.0 to 5.0 g VS L(-1)d(-1) at 37°C. Results showed that methane production was severely inhibited when volatile fatty acids (VFAs) concentration was 30,000 mg L(-1) at OLR of 4.0 g VS L(-1)d(-1) without the addition of TEs. However, the inhibition was gradually decreased and the methane production increased from 0.13 up to 0.44 L g(-1)VSadded when the TEs was added. Fe was proved to be the essential element in maintaining the stability of the digester. The conversion coefficient of substrate into biogas (YS/G) was 1.00 and 1.26 gVS removedL(-1) biogas with and without TEs addition, respectively. The estimated biomass yield with feeding TEs (0.06 g VSS g(-1)COD removed) was higher three times than that without TEs (0.02 gVSS g(-1)COD removed). PMID:25240722

Wei, Quanyuan; Zhang, Wanqin; Guo, Jianbin; Wu, Shubiao; Tan, Tianwei; Wang, Fang; Dong, Renjie

2014-12-01

403

Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge.  

PubMed

A small amount of ammonia is used in full-scale plants to partially sanitize sewage sludge, thereby allowing successive biological processes to enable the high biological stability of the organic matter. Nevertheless, ammonia and methane are both produced during the anaerobic digestion (AD) of sludge. This paper describes the evaluation of a lab-scale study on the ability of anaerobic process to sanitize sewage sludge and produce biogas, thus avoiding the addition of ammonia to sanitize sludge. According to both previous work and a state of the art full-scale plant, ammonia was added to a mixture of sewage sludge at a rate so that the pH values after stirring were 8.5, 9 and 9.5. This procedure determined an ammonia addition lower than that generally indicated in the literature. The same sludge was also subjected to an AD process for 60 days under psychrophilic, mesophilic and thermophilic conditions. The levels of fecal coliform, Salmonella spp. helmints ova, pH, total N, ammonia fractions and biogas production were measured at different times during each process. The results obtained suggested that sludge sanitation can be achieved using an AD process; however, the addition of a small amount of ammonia was not effective in sludge sanitation because the buffer ability of the sludge reduced the pH and thus caused ammonia toxicity. Mesophilic and thermophilic AD sanitized better than psychrophilic AD did, but the total free ammonia concentration under the thermophilic condition inhibited biogas production. The mesophilic condition, however, allowed for both sludge sanitation and significant biogas production. PMID:23973551

Scaglia, Barbara; D'Imporzano, Giuliana; Garuti, Gilberto; Negri, Marco; Adani, Fabrizio

2014-01-01

404

Modeling and optimization of anaerobic digested sludge converting starch to hydrogen.  

PubMed

The pH and hydraulic retention time (HRT) of a chemostat reactor were varied according to a central composite design methodology with the aim of modeling and optimizing the conversion of starch into hydrogen by microorganisms in an anaerobic digested sludge. Experimental results from 23 runs indicate that a maximum hydrogen production rate of 1600 L/m(3)/d under the organic loading rate of 6 kg starch m(3)/d obtained at pH = 5.2 and HRT = 17 h. Throughout this study, the hydrogen percentage in the biogas was approximately 60% and no methanogenesis was observed. while the reactor was operated with HRT of 17 h, hydrogen was produced within a pH range between 4.7 and 5.7. Alcohol production rate was greater than hydrogen production rate if the pH was lower than 4.3 or higher than 6.1. Supplementary experiments confirm that the optimum conditions evaluated in this study were highly reliable; while a hydrogen production yield of 1.29 l H(2)/g starch-COD was obtained. An examination of the response surfaces, including hydrogen, volatile fatty acids (VFA) and alcohols production, led us to the belief that clostridium sp. predominated in the anaerobic hydrogen-producing microorganisms in this study. Experiment results obtained emphasize that the response of metabolites was a more useful indicator than hydrogenic activity for obtaining efficient hydrogen production. Furthermore, expressions of contour plots indicate that Response-Surface Methodology may provide easily interpretable advice on the operation of a hydrogen-producing bioprocess. PMID:10745195

Lay, J J

2000-05-01

405

Effect of Anaerobic Digestion and Application Method on the Presence and Survivability of E. coli and Fecal Coliforms in Dairy Waste Applied to Soil  

Microsoft Academic Search

Animal wastes are commonly used in a sustainable manner to fertilize crops. However, manures contain numerous pathogenic bacteria\\u000a that can impact animal and human health. Treatment of animal waste by anaerobic digestion has the potential to reduce pathogen\\u000a loading to land. This study was conducted to determine the fate of bacteria applied in raw and anaerobically digested dairy\\u000a slurries that

Olivia Saunders; Joe Harrison; Ann Marie Fortuna; Elizabeth Whitefield; Andy Bary

406

Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.  

PubMed

The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). PMID:25442104

Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe

2015-01-01

407

Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system.  

PubMed

Polyacrylamide (PAM) used in sludge dewatering widely exists in high-solid anaerobic digestion. Degradation of polyacrylamide accompanied with accumulation of its toxic monomer is important to disposition of biogas residues. The potential of anaerobic digestion activity in microbial utilization of PAM was investigated in this study. The results indicated that the utilization rate of PAM (as nitrogen source) was influenced by accumulation of ammonia, while cumulative removal of amide group was accorded with zeroth order reaction in actual dewatered system. The adjoining amide group can combined into ether group after biodegradation. PAM can be broken down in different position of its carbon chain backbone. In actual sludge system, the hydrolytic PAM was liable to combined tyrosine-rich protein to form colloid complex, and then consumed as carbon source to form monomer when easily degradable organics were exhausted. The accumulation of acrylamide was leveled off ultimately, accompanied with the yield of methane. PMID:24345566

Dai, Xiaohu; Luo, Fan; Yi, Jing; He, Qunbiao; Dong, Bin

2014-02-01

408

Effect of Solids Retention Time on the Denitrification Potential of Anaerobically Digested Swine Waste  

NASA Astrophysics Data System (ADS)

Three continuously stirred tank reactors (CSTR) were operated in semi continuous mode treating swine waste using anaerobic digestion. The reactors were used to test the effect of solid retention time (SRT) on CH4 yield, total ammonia nitrogen (TAN) concentrations, % volatile solids (VS), chemical oxygen demand (COD) and volatile fatty acids (VFA) removal, readily biodegradable COD concentration and the denitrification potential for the effluent in a biological nutrient removal (BNR) system. During Phase I of the study, the three reactors were operated at the same 28 day SRT for 16 weeks. SRTs were then changed during the 12 week Phase II period. The SRTs studied were 14, 21 and 28 days, with the same organic loading rate (OLR) of 1.88 ± 0.2 kg VS/ m3-day. The reactor with the lowest SRT (14 days) had the highest VS and VFA removal at 73.6 and 67.6% and lowest TAN concentration at 0.78 g NH4+-N/L, followed by the 21 day and 28 day reactors. This was likely due to the fast microbial growth rates and substrate utilization rates in this reactor compared with the other two. The 14 day reactor had the highest CH4 yield at 0.33 m3CH 4/kg VS added and readily biodegradable COD concentration at 0.93 COD/L. The variations in CH4 yield and readily biodegradable COD concentrations between the three reactors were not statistically significant. Denitrification potential for the reactors was 1.20, 0.73 and 0.56 g COD/g N for 14, 21 and 28 day reactors, respectively, and the differences were statistically significant. None of the reactors achieved a denitrification potential of 5 g COD/g N, the amount required to use effluent of anaerobically digested swine waste as an internal carbon source in a BNR. This was attributed to operating conditions such as freezing and thawing of the raw swine waste that maximized CH4 yield and lowered the readily biodegradable COD concentration. In addition the 14 day reactor had low TAN concentrations thus increasing the denitrification potential of the centrate from that reactor.

Kinyua, Maureen Njoki

409

Palladium-Mediated Hydrogenation of Unsaturated Hydrocarbons with Hydrogen Gas Released during Anaerobic Cellulose Degradation  

PubMed Central

Among five hydrogenation catalysts, palladium on charcoal was the most reactive one when suspended in anaerobic culture medium, and Lindlar catalyst (Pd on CaCO3) was the most reactive one when suspended in the gas phase of culture tubes. Palladium on charcoal in the culture medium (40 to 200 mg 10 ml?1) completely inhibited growth of Neocallimastix frontalis and partly inhibited Ruminococcus albus. Lindlar catalyst (40 to 200 mg per tube) suspended in a glass pouch above the culture medium did not affect the rate of cellulose degradation or the ratio of fermentation products by these organisms. Acetylene added to tubes containing Lindlar catalyst in pouches, and either of the two organisms in monoculture or coculture with Methanospirillum hungatei, was reduced to ethylene and then ethane, followed by hydrogen production. Similar results were obtained with 1-pentene. Neither acetylene nor 1-pentene affected cellulose degradation but both inhibited methanogenesis. In the presence of Lindlar catalyst and propylene or 1-butene, fermenter-methanogen cocultures continued to produce methane at the same rate as controls and no olefin reduction occurred. Upon addition of bromoethanesulfonic acid, methanogenesis stopped and olefin reduction took place followed by hydrogen evolution. In a gas mixture consisting of propylene, 1-butene, and 1-pentene, the olefins were reduced at rates which decreased with increasing molecular size. These results demonstrate the technical feasibility of combining in one reactor the volatile fatty acid production by anaerobic digestion with chemical catalyst-mediated reductions, using the valuable by-product hydrogen. PMID:16347167

Mountfort, Douglas O.; Kaspar, Heinrich F.

1986-01-01

410

Anaerobic digestion of wastewater produced in the manufacture of cellulosic pulp from wheat straw in immobilised cell bioreactors  

Microsoft Academic Search

The kinetics of the anaerobic digestion of wastewater produced in the manufacture of cellulosic pulp from wheat straw (COD of 38.8 g\\/l) were studied. Laboratory experiments were carried out in 1-1 bioreactors containing supports of different chemical composition and features, namely: saponite, montmorillonite, bentogel, sepiolite (pansil) and PVC, to which the microorganisms responsible for the process adhered. The process was

V. Alonso; A. Martín; R. Borja

1995-01-01

411

Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste.  

PubMed

The purpose of this study was to investigate the impact of microaeration on the fermentation process during anaerobic co-digestion of brown water (BW) and food waste (FW). This was achieved by daily monitoring of reactor performance and the determination of its bacterial consortium towards the end of the study. Molecular cloning and sequencing results revealed that bacteria within phyla Firmicutes and Bacteriodetes represented the dominant phylogenetic group. As compared to anaerobic conditions, the fermentation of BW and FW under microaeration conditions gave rise to a significantly more diverse bacterial population and higher proportion of bacterial clones affiliated to the phylum Firmicutes. The acidogenic reactor was therefore able to metabolize a greater variety of substrates leading to higher hydrolysis rates as compared to the anaerobic reactor. Other than enhanced fermentation, microaeration also led to a shift in fermentation production pattern where acetic acid was metabolized for the synthesis of butyric acid. PMID:25194261

Lim, Jun Wei; Chiam, Jun An; Wang, Jing-Yuan

2014-11-01

412

Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.  

PubMed

Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1). PMID:17629620

Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

2008-03-01

413

Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW).  

PubMed

An innovative municipal solid waste separation technology - water separation was developed in China recently. The purpose of this study was to evaluate the feasibility of anaerobic digestion from water sorted organic fraction of municipal solid waste (WS-OFMSW) to methane. A group of bench-scale (35 L) mesophilic (30 + or - 2 degrees Celsius) batch anaerobic digestions were carried out with three total solids in reactor (TSr = 16.0%, 13.5% and 11.0%). The biodegradability of WS-OFMSW with VS/TS of 61.6% was better than that of mechanically sorted OFMSW but still poor than that of source sorted OFMSW. No inhibitions of metal ions, volatile fatty acids and ammonia on anaerobic digestion were found. The reactors with TSr 16.0%, 13.5% and 11.0% achieved methane yield of 273, 283 and 314 L/kgVS and VS removal rate of 26.1%, 35.8% and 41.8%, respectively. The average methane content in biogas was about 66% for all reactors. PMID:20042331

Dong, Li; Zhenhong, Yuan; Yongming, Sun

2010-04-01

414

Reducing waste contamination from animal-processing plants by anaerobic thermophilic fermentation and by flesh fly digestion.  

PubMed

There is currently no market in Israel for the large amounts of waste from fish- and poultry-processing plants. Therefore, this waste is incinerated, as part of the measures to prevent the spread of pathogens. Anaerobic methanogenic thermophilic fermentation (AMTF) of wastes from the cattle-slaughtering industry was examined previously, as an effective system to treat pathogenic bacteria, and in this article, we discuss a combined method of digestion by thermophilic anaerobic bacteria and by flesh flies, as a means of waste treatment. The AMTF process was applied to the wastes on a laboratory scale, and digestion by rearing of flesh fly (Phaenicia sericata) and housefly (Musca domestica) larvae on the untreated raw material was done on a small scale and showed remarkable weight conversion to larvae. The yield from degradation of poultry waste by flesh fly was 22.47% (SD = 3.89) and that from fish waste degradation was 35.34% (SD = 12.42), which is significantly higher than that from rearing houseflies on a regular rearing medium. Bacterial contents before and after thermophilic anaerobic digestion, as well as the changes in the chemical composition of the components during the rearing of larvae, were also examined. PMID:12794287

Marchaim, U; Gelman, A; Braverman, Y

2003-01-01

415

Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge.  

PubMed

To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound+thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90°C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90°C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H(2)S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90°C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments. PMID:22088959

Dhar, Bipro Ranjan; Nakhla, George; Ray, Madhumita B

2012-03-01

416

Anaerobic digestate from biogas production as a resource for improving soil fertility: effects on crop yield and soil properties  

NASA Astrophysics Data System (ADS)

Soil fertility is fundamental in determining crops productivity in all farming systems. Production of biogas through anaerobic digestion of energy crops generates residues that can represent a valuable resource to sustain and improve soil fertility and to increase soil organic matter content. Residues from anaerobic digestion contain organic fractions and available nutrients, that can thus be returned to the cultivation soil as fertilizer and soil conditioner. However, some unknown aspects of digested residues utilization remain to explore: i) the nutrient supply and the real potential for mineral fertilization substitution, ii) the impact on the structure and functioning of soil microbial communities, iii) the direct and indirect effects on soil structure, organic matter and C mineralization. The aim of the present research was to gain a better understanding of these aspects, evaluating the effects of anaerobic digestate application on soil properties and maize yield. With the main focus of comparing mineral fertilization (250 Kg N ha-1) with digested residues addition (at the dose of 25 % and 50 % of mineral fertilizer), a triplicate sets of plots were designed in a field experiment on a silty-clay loam soil in the southern Po Valley (Italy). The amount of applied residues was calculated according to its N content in order to fertilizer each plots with the same amount of total nitrogen. Residues from digestion showed a N content of 0.4 % (60 % as N-NH4) and a C/N ratio of 3. Changes in soil quality after residues application were studied with a holistic approach, involving microbiological, physical and chemical aspects of soil fertility. In particular, we determined: the abundance and diversity of bacterial and fungal soil communities; the soil organic matter content, its distribution within soil aggregates and the C mineralization potential; cation exchange capacity; the main macro and micro nutrients; bulk density; aggregate stability. No significant differences among treatments were registered in the above ground maize biomass. Molecular analysis conducted on microbial soil communities suggested that the application of digested residues to soil contributes to substantial modifications of both bacterial and fungal community structure. Soil organic C and total N increased in soils treated with digested residues addition, with no significant differences between the two doses of digestate. Cation exchange capacity did not show significant differences among treatments, remaining stable during the maize vegetative cycle. Differently, some variations occurred in the exchangeable cation pool. In particular, K content increased under digestate treatments, while Na and Mg contents increased with time irrespective of the fertilization treatment. No significant variations were observed in soil microelement levels, except for an increase in Zn content at the highest digestate dose. Moreover, digested residue addition had a positive impact on aggregates stability. From the first results, the absence of negative effects in plant productivity and soil fertility after residues application, at both doses, is a promising indication for the potential use of anaerobic digestate as substitute of mineral fertilizers.

Pastorelli, Roberta; Lagomarsino, Alessandra; Vignozzi, Nadia; Valboa, Giuseppe; Papini, Rossella; Fabiani, Arturo; Simoncini, Stefania; Mocali, Stefano; Piccolo, Raimondo

2013-04-01

417

Mesophilic anaerobic digestion with high-temperature microwave pretreatment and importance of inoculum acclimation.  

PubMed

Thickened waste activated sludge (TWAS) was pretreated with microwave irradiation to temperatures higher than the boiling point (between 110 and 175 degrees C) using different microwave intensities. Biochemical methane potential (BMP) assays demonstrated that, although mesophilic anaerobic digestion (MAD) inoculum used was acclimated for 4 months with microwave pretreated TWAS (to 175 degrees C), acute methanogenic inhibition was observed. Additionally, the microwave conditions applied increased the soluble chemical oxygen demand (sCOD)-to-total COD (tCOD) ratio; however, no significant enhancement in the rate or extent of TWAS stabilization was observed for the microwave-pretreated samples. Microwave pretreatment to between 110 and 175 degrees C at lower microwave intensity with a better acclimated MAD inoculum (acclimatized for an additional 3 months) resulted in minimal methanogenic inhibition (improved acclimation) and improved the rate and extent of TWAS biodegradation, as determined by volatile solids removal and biogas production (microwave applied at lower microwave intensity). The TWAS pretreated to 175 degrees C produced 31 +/- 6% more biogas than the control (raw TWAS) by the 18th day of the BMP test, whereas the highest improvement observed from the first set of BMP experiments was 13 +/- 1%. PMID:21751714

Toreci, Isil; Droste, Ronald L; Kennedy, Kevin J

2011-06-01

418