Note: This page contains sample records for the topic anaerobic energy metabolism from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes  

PubMed Central

Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.

Muller, Miklos; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

2012-01-01

2

Metabolic models to investigate energy limited anaerobic ecosystems.  

PubMed

Anaerobic wastewater treatment is shifting from a philosophy of solely pollutants removal to a philosophy of combined resource recovery and waste treatment. Simultaneous wastewater treatment with energy recovery in the form of energy rich products, brings renewed interest to non-methanogenic anaerobic bioprocesses such as the anaerobic production of hydrogen, ethanol, solvents, VFAs, bioplastics and even electricity from microbial fuel cells. The existing kinetic-based modelling approaches, widely used in aerobic and methanogenic wastewater treatment processes, do not seem adequate in investigating such energy limited microbial ecosystems. The great diversity of similar microbial species, which share many of the fermentative reaction pathways, makes quantify microbial groups very difficult and causes identifiability problems. A modelling approach based on the consideration of metabolic reaction networks instead of on separated microbial groups is suggested as an alternative to describe anaerobic microbial ecosystems and in particular for the prediction of product formation as a function of environmental conditions imposed. The limited number of existing relevant fermentative pathways in conjunction with the fact that anaerobic reactions proceed very close to thermodynamic equilibrium reduces the complexity of such approach and the degrees of freedom in terms of product formation fluxes. In addition, energy limitation in these anaerobic microbial ecosystems makes plausible that selective forces associated with energy further define the system activity by favouring those conversions/microorganisms which provide the most energy for growth under the conditions imposed. PMID:19809129

Rodríguez, J; Premier, G C; Guwy, A J; Dinsdale, R; Kleerebezem, R

2009-01-01

3

Early anaerobic metabolisms  

PubMed Central

Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8?Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle.

Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

2006-01-01

4

Anaerobic energy metabolism in the oligochaete Lumbriculus variegatus Müller  

Microsoft Academic Search

Anoxia tolerance, glycogen degradation, free amino acid pool, adenylate energy charge and the accumulation and excretion of end products were monitored inLumbriculus variegatus Müller throughout 48 h of anoxia. A transition period lasting about 4 h could be distinguished from subsequent events during which malate, present in high amounts in the resting animals, is utilized, probably by conversion to succinate.

V. M. Putzer; A. Zwaan; W. Wieser

1990-01-01

5

The ultrastructure of the compartmentalized anaerobic ammonium-oxidizing bacteria is linked to their energy metabolism.  

PubMed

The most striking example of a complex prokaryotic intracytoplasmic organization can be found in the members of the phylum Planctomycetes. Among them are the anammox (anaerobic ammonium-oxidizing) bacteria, which possess a unique cell compartment with an unprecedented function in bacteria: the anammoxosome is a prokaryotic cell organelle evolved for energy metabolism. It is an independent entity, which is enclosed by a contiguous membrane. Several lines of evidence indicate its importance in the anammox reaction and the unusual subcellular organization may well be essential for the lifestyle of anammox bacteria. The present review summarizes our knowledge about the ultrastructure of anammox cells and the connection between the anammoxosome and the energy metabolism of the cell. In the future, much more research will be necessary to validate the current models and to answer questions on the functional cell biology of anammox bacteria. PMID:22103530

Neumann, Sarah; Jetten, Mike S M; van Niftrik, Laura

2011-12-01

6

Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations  

Microsoft Academic Search

The anaerobic metabolism of Enterobacter aerogenes was studied in batch culture at increasing initial glucose levels (9.0So -1). The ultimate concentrations of fermentation products were utilized to check a metabolic flux analysis based on simple carbon mass and energy balances that promise to be suitable for the study of different fermentation processes, either under aerobic or anaerobic conditions. The stoichiometric

A. Converti; P. Perego

2002-01-01

7

The Transition from Aerobic to Anaerobic Metabolism.  

ERIC Educational Resources Information Center

The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

Skinner, James S.; McLellan, Thomas H.

1980-01-01

8

Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism  

Microsoft Academic Search

Disproportionation of thiosulfate is an important pathway in bacterial energy metabolism in anoxic sediments. It has been described as an inorganic fermentation process in which a part of the molecule is oxidized to sulfate, while the other stoichiometrically equivalent part is used as electron acceptor and reduced to sulfide. However, an intramolecular redox change is difficult to envisage because, according

A. Vairavamurthy; B. Manowitz; G. W. Luther III; Y. Jeon

1993-01-01

9

Aerobic and Anaerobic Starvation Metabolism in Methanotrophic Bacteria  

PubMed Central

The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic protein degradation (24% of total protein) took place almost exclusively during the initial 24 h of starvation. Metabolized carbon was recovered mainly as CO(inf2) during aerobic starvation. In contrast, cell biomass decreased by only 2.4% during anaerobic starvation, and metabolized carbon was recovered mainly as organic solutes in the starvation medium. During anaerobic starvation, only the concentration of intracellular low-molecular-weight compounds decreased, whereas no significant changes were measured for cellular protein, lipids, polysaccharides, and nucleic acids. Strain WP 12 was also capable of a limited anaerobic glucose metabolism in the absence of added electron acceptors. Small amounts of CO(inf2) and organic acids, including acetate, were produced from exogenous glucose under anoxic conditions. Addition of potential anaerobic electron acceptors (fumarate, nitrate, nitrite, or sulfate) to starved cultures of the methanotrophs Methylobacter albus BG8, Methylosinus trichosporium OB3b, and strain WP 12 did not stimulate anaerobic survival. However, anaerobic starvation of these bacteria generally resulted in better survival than did aerobic starvation. The results suggest that methanotrophic bacteria can enter a state of anaerobic dormancy accompanied by a severe attenuation of endogenous metabolism. In this state, maintenance requirements are presumably provided for by fermentation of certain endogenous substrates. In addition, low-level catabolism of exogenous substrates may support long-term anaerobic survival of some methanotrophic bacteria.

Roslev, P.; King, G. M.

1995-01-01

10

The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria.  

PubMed

Anammox bacteria convert ammonium and nitrite to dinitrogen gas under anaerobic conditions to obtain their energy for growth. The anammox reaction was deemed impossible until its discovery in the early 1990s. Now, anammox bacteria are recognized as major players in the global nitrogen cycle and estimated to be responsible for up to 50% of the nitrogen in the air that we breathe. In addition, anammox bacteria are extremely valuable for wastewater treatment where they are applied for the removal of ammonium. Besides their importance in industry and the environment, anammox bacteria defy some basic biological concepts. Whereas most other bacteria have only one cell compartment, the cytoplasm, anammox bacteria have three independent cell compartments bounded by bilayer membranes, from out- to inside; the paryphoplasm, riboplasm and anammoxosome. The anammoxosome is the largest compartment of the anammox cell and is proposed to be dedicated to energy conservation. As such it would be analogous to the mitochondria of eukaryotes. This review will discuss the anammox cell plan in detail, with the main focus on the anammoxosome. The identity of the anammoxosome as a prokaryotic organelle and the importance of this organelle for anammox bacteria are discussed as well as challenges these bacteria face by having three independent cell compartments. PMID:23615199

van Teeseling, Muriel C F; Neumann, Sarah; van Niftrik, Laura

2013-01-01

11

Oxidation state of sulfur in thiosulfate and implications for anaerobic energy metabolism  

SciTech Connect

Disproportionation of thiosulfate is an important pathway in bacterial energy metabolism in anoxic marine sediments. It has been described as an inorganic fermentation process in which a part of the molecule is oxidized to sulfate, while the other stoichiometrically equivalent part is used as electron acceptor and reduced to sulfide. However, an intramolecular redox change is difficult to envisage because, according to the currently held view, the two sulfur atoms of thiosulfate exist in the oxidation state of sulfate (+6) and sulfide ([minus]2) and do not change their respective oxidation states upon disproportionation. The results based on XANES spectroscopy indicate that the two different sulfur atoms in thiosulfate have charge densities corresponding to +5 and [minus]1 oxidation states which support a redox mechanism in the disproportionation of thiosulfate to sulfate and sulfide. 20 refs., 3 figs.

Vairavamurthy, A.; Manowitz, B.; Jeon, Y. (Brookhaven National Lab., Upton, NY (United States)); Luther, G.W. III (Univ. of Delaware, Lewes (United States))

1993-04-01

12

Endogenous Metabolism of Anaerobic Bacteria.  

National Technical Information Service (NTIS)

An investigation of the possible role of the tricarboxylic acid cycle in the anaerobe Zymomonas anaerobia has been carried out. he enzymic constitution of cells grown in both complex and defined medium has been examined and only four enzymes of the cycle,...

E. A. Dawes M. Ishaq M. Midgley

1970-01-01

13

Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism.  

PubMed Central

The phs chromosomal locus of Salmonella typhimurium is essential for the dissimilatory anaerobic reduction of thiosulfate to hydrogen sulfide. Sequence analysis of the phs region revealed a functional operon with three open reading frames, designated phsA, phsB, and phsC, which encode peptides of 82.7, 21.3, and 28.5 kDa, respectively. The predicted products of phsA and phsB exhibited significant homology with the catalytic and electron transfer subunits of several other anaerobic molybdoprotein oxidoreductases, including Escherichia coli dimethyl sulfoxide reductase, nitrate reductase, and formate dehydrogenase. Simultaneous comparison of PhsA to seven homologous molybdoproteins revealed numerous similarities among all eight throughout the entire frame, hence, significant amino acid conservation among molybdoprotein oxidoreductases. Comparison of PhsB to six other homologous sequences revealed four highly conserved iron-sulfur clusters. The predicted phsC product was highly hydrophobic and similar in size to the hydrophobic subunits of the molybdoprotein oxidoreductases containing subunits homologous to phsA and phsB. Thus, phsABC appears to encode thiosulfate reductase. Single-copy phs-lac translational fusions required both anaerobiosis and thiosulfate for full expression, whereas multicopy phs-lac translational fusions responded to either thiosulfate or anaerobiosis, suggesting that oxygen and thiosulfate control of phs involves negative regulation. A possible role for thiosulfate reduction in anaerobic respiration was examined. Thiosulfate did not significantly augment the final densities of anaerobic cultures grown on any of the 18 carbon sources tested. on the other hand, washed stationary-phase cells depleted of ATP were shown to synthesize small amounts of ATP on the addition of the formate and thiosulfate, suggesting that the thiosulfate reduction plays a unique role in anaerobic energy conservation by S typhimurium.

Heinzinger, N K; Fujimoto, S Y; Clark, M A; Moreno, M S; Barrett, E L

1995-01-01

14

Anaerobic  

MedlinePLUS

Anaerobic means "without oxygen." The term has many uses in medicine. Anaerobic bacteria are able to survive and grow in ... types of illness such as tetanus or gangrene. Anaerobic exercise, such as weight lifting, uses energy produced ...

15

Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil  

NASA Astrophysics Data System (ADS)

Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

Boopathy, Raj

16

Transhydrogenase and the anaerobic mitochondrial metabolism of adult Hymenolepis diminuta.  

PubMed

The adult cestode, Hymenolepis diminuta, is essentially anaerobic energetically. Carbohydrate dissimilation results in acetate, lactate and succinate accumulation with succinate being the major end product. Succinate accumulation results from the anaerobic, mitochondrial, 'malic' enzyme-dependent utilization of malate coupled to ATP generation via the electron transport-linked fumarate reductase. A lesser peroxide-forming oxidase is apparent, however, fumarate reduction to succinate predominates even in air. The H. diminuta matrix-localized 'malic' enzyme is NADP-specific whereas the inner membrane (IM)-associated electron transport system prefers NADH. This dilemma is circumvented by the mitochondrial, IM-associated NADPH-->NAD+ transhydrogenase in catalyzing hydride ion transfer from NADPH to NAD+ on the IM matrix surface. Hydride transfer is reversible and phospholipid-dependent. NADP+ reduction occurs as a non energy-linked and energy-linked reaction with the latter requiring electron transport NADH utilization or ATP hydrolysis. With NAD+ reduction, the cestode transhydrogenase also engages in concomitant proton translocation from the mitochondrial matrix to the intermembrane space and supports net ATP generation. Thus, the cestode NADPH-->NAD+ system can serve not only as a metabolic connector, but an additional anaerobic phosphorylation site. Although its function(s) is unknown, a separate IM-associated NADH--> NAD+ transhydrogenation, catalyzed by the lipoamide and NADH dehydrogenases, is noted. PMID:19765334

Fioravanti, C F; Vandock, K P

2010-03-01

17

Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria  

Microsoft Academic Search

Several types of extremely thermophilic archaebacteria have recently been isolated from solfataric water holes, hot springs and hot sea floors1-6. It has been shown that some of them can live using sulphur respiration of reduced carbon substrates as a source of energy, a type of metabolism previously described for the eubacterium Desulfuromonas7. We report here that several extremely thermophilic archaebacteria

F. Fischer; W. Zillig; K. O. Stetter; G. Schreiber

1983-01-01

18

Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation  

Microsoft Academic Search

Monitoring programs for intrinsic bioremediation of fuel hydrocarbonsrequire indicators that can convincingly demonstrate in situ metabolism. In this evaluation of potential indicators of in situ anaerobic alkylbenzene metabolism, laboratory and field data are reviewed for two classes of aromatic acids: (i) benzylsuccinate, E-phenylitaconate, and their methyl homologs, and (ii) benzoate, and methyl-, dimethyl-, and trimethylbenzoates. The review includes previously unpublished

Harry R. Beller

2000-01-01

19

The tangled past of eukaryotic enzymes involved in anaerobic metabolism  

PubMed Central

There is little doubt that genes can spread across unrelated prokaryotes, eukaryotes and even between these domains. It is expected that organisms inhabiting a common niche may exchange their genes even more often due to their physical proximity and similar demands. One such niche is anaerobic or microaerophilic environments in some sediments and intestines of animals. Indeed, enzymes advantageous for metabolism in these environments often exhibit an evolutionary history incoherent with the history of their hosts indicating potential transfers. The evolutionary paths of some very basic enzymes for energy metabolism of anaerobic eukaryotes (pyruvate formate lyase, pyruvate:ferredoxin oxidoreductase, [FeFe]hydrogenase and arginine deiminase) seems to be particularly intriguing and although their histories are not identical they share several unexpected features in common. Every enzyme mentioned above is present in groups of eukaryotes that are unrelated to each other. Although the enzyme phylogenies are not always robustly supported, they always suggest that the eukaryotic homologues form one or two clades, in which the relationships are not congruent with the eukaryotic phylogeny. Finally, these eukaryotic enzymes are never specifically related to homologues from ?-proteobacteria, ancestors of mitochondria. The most plausible explanation for evolution of this pattern expects one or two interdomain transfers to one or two eukaryotes from prokaryotes, who were not the mitochondrial endosymbiont. Once the genes were introduced into the eukaryotic domain they have spread to other eukaryotic groups exclusively via eukaryote-to-eukaryote transfers. Currently, eukaryote-to-eukaryote gene transfers have been regarded as less common than prokaryote-to-eukaryote transfers. The fact that eukaryotes accepted genes for these enzymes solely from other eukaryotes and not prokaryotes present in the same environment is surprising.

Stairs, Courtney W; Roger, Andrew J

2011-01-01

20

Redesigning Escherichia coli Metabolism for Anaerobic Production of Isobutanol?†  

PubMed Central

Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.

Trinh, Cong T.; Li, Johnny; Blanch, Harvey W.; Clark, Douglas S.

2011-01-01

21

Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans  

Microsoft Academic Search

Under anaerobic circumstances in the presence of nitrateParacoccus denitrificans is able to denitrify. The properties of the reductases involved in nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase are described. For that purpose not only the properties of the enzymes ofP. denitrificans are considered but also those fromEscherichia coli, Pseudomonas aeruginosa, andPseudomonas stutzeri. Nitrate reductase consists of

A. H. Stouthamer

1991-01-01

22

Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes  

PubMed Central

Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.

Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

2011-01-01

23

Toxicity effects of organosulfur compounds on anaerobic microbial metabolism  

SciTech Connect

Four classes of organosulfur compounds were tested for their effects on anaerobic microbial activity as indicated by rates of lactate degradation, nitrate or sulfate reduction, and methanogenesis. Each class consisted of five to eight chemically related compounds that were added concurrently to anaerobic cultures established with an oily sludge inoculum. Effects on anaerobic activities were evaluated at different amounts of the chemicals and were concentration dependent in all cases. Thiophenes and thiols inhibited microbial activity under methanogenic conditions of {ge}5 mmol/L; the former compounds has less effect under nitrate-reducing conditions, and the latter had less effect under sulfate-reducing conditions. Thiophenic acids did not influence most microbial processes at the lower concentrations tested. Aromatic sulfides were inhibitory to microbial activity under all three conditions at {ge} mmol/L and had a greater effect on electron acceptor reduction than lactate oxidation. The authors conclude that the inhibitory effect of organosulfur compounds on microbial metabolism could potentially influence the assessment of anaerobic biodegradation activities in either the laboratory or anoxic environments.

Londry, K.L.; Suflita, J.M. [Univ. of Oklahoma, Norman, OK (United States)

1998-07-01

24

Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth.  

PubMed

Nitrosomonas europaea can grow under conditions of chemolithoautotrophic aerobic (oxygen as oxidant) as well as anaerobic [nitrogen dioxide (NO(2)) as oxidant] nitrification or chemoorganotrophic anaerobic pyruvate-dependent denitrification. In this study, the adaptation of the transcription (mRNA synthesis/concentration) of N. europaea to aerobic and anaerobic growth conditions was evaluated and the transcription of genes coding for metabolic key functions was analyzed: nitrogen and energy metabolism (amoA, hao, rh1, nirK, norB, nsc, aceE, ldhA, ppc, gltA, odhA, coxA), carbon dioxide fixation (cbbL), gluconeogenesis (ppsA), cell growth (ftsZ), and oxidative stress (sodB). During aerobic ammonia oxidation the specific activities of ammonia oxidation, nitrite reduction, and the growth rates correlated with the transcription level of the corresponding genes amoA/hao, nirK/norB/nsc, and cbbL/ftsZ. In anaerobically ammonia-oxidizing cells of N. europaea, the cellular mRNA concentrations of amoA, hao, rh1,coxA, cbbL, ftsZ, and sodB were reduced compared with aerobically nitrifying cells, but the mRNA levels of nirK, norB, and nsc were significantly increased. During anaerobic pyruvate-dependent denitrification, the mRNA abundance of nirK, norB, nsc, aceE, gltA, and odhA was increased, while the concentrations of amoA,hao, rh1, coxAcbbL, ftsZ, and sodB were significantly reduced. Temperature, pH value, and NH(4)(+), O(2), NO, and NO(2) concentrations had comparatively small effects on the transcription of the studied genes. PMID:18594130

Beyer, Sonja; Gilch, Stefan; Meyer, Ortwin; Schmidt, Ingo

2009-01-01

25

One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production  

SciTech Connect

This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

Zeikus, J.G.; Jain, M.K.

1992-01-01

26

Environmental factors affecting indole metabolism under anaerobic conditions.  

PubMed Central

The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35 degrees C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15 degrees C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction.

Madsen, E L; Francis, A J; Bollag, J M

1988-01-01

27

The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features  

PubMed Central

Clostridium kluyveri is unique among the clostridia; it grows anaerobically on ethanol and acetate as sole energy sources. Fermentation products are butyrate, caproate, and H2. We report here the genome sequence of C. kluyveri, which revealed new insights into the metabolic capabilities of this well studied organism. A membrane-bound energy-converting NADH:ferredoxin oxidoreductase (RnfCDGEAB) and a cytoplasmic butyryl-CoA dehydrogenase complex (Bcd/EtfAB) coupling the reduction of crotonyl-CoA to butyryl-CoA with the reduction of ferredoxin represent a new energy-conserving module in anaerobes. The genes for NAD-dependent ethanol dehydrogenase and NAD(P)-dependent acetaldehyde dehydrogenase are located next to genes for microcompartment proteins, suggesting that the two enzymes, which are isolated together in a macromolecular complex, form a carboxysome-like structure. Unique for a strict anaerobe, C. kluyveri harbors three sets of genes predicted to encode for polyketide/nonribosomal peptide synthetase hybrides and one set for a nonribosomal peptide synthetase. The latter is predicted to catalyze the synthesis of a new siderophore, which is formed under iron-deficient growth conditions.

Seedorf, Henning; Fricke, W. Florian; Veith, Birgit; Bruggemann, Holger; Liesegang, Heiko; Strittmatter, Axel; Miethke, Marcus; Buckel, Wolfgang; Hinderberger, Julia; Li, Fuli; Hagemeier, Christoph; Thauer, Rudolf K.; Gottschalk, Gerhard

2008-01-01

28

Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism  

USGS Publications Warehouse

An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

Coates, J. D.; Councell, T.; Ellis, D. J.; Lovley, D. R.

1998-01-01

29

Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.  

PubMed

Comparative genome analysis of Shewanella strains predicted that the strains metabolize preferably two- and three-carbon carbohydrates as carbon/electron source because many Shewanella genomes are deficient of the key enzymes in glycolysis (e.g., glucokinase). In addition, all Shewanella genomes are known to have only one set of genes associated with the phosphotransferase system required to uptake sugars. To engineer Shewanella strains that can utilize five- and six-carbon carbohydrates, we constructed glucose-utilizing Shewanella oneidensis MR-1 by introducing the glucose facilitator (glf; ZMO0366) and glucokinase (glk; ZMO0369) genes of Zymomonas mobilis. The engineered MR-1 strain was able to grow on glucose as a sole carbon/electron source under anaerobic conditions. The glucose affinity (Ks) and glucokinase activity in the engineered MR-1 strain were 299.46 mM and 0.259 ± 0.034 U/g proteins. The engineered strain was successfully applied to a microbial fuel cell system and exhibited current generation using glucose as the electron source. PMID:24384311

Choi, Donggeon; Lee, Sae Bom; Kim, Sohyun; Min, Byoungnam; Choi, In-Geol; Chang, In Seop

2014-02-01

30

Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria  

Microsoft Academic Search

Aromatic and aliphatic hydrocarbons are the main constituents of petroleum and its refined products. Whereas degradation of hydrocarbons by oxygen-respiring microorganisms has been known for about a century, utilization of hydrocarbons under anoxic conditions has been investigated only during the past decade. Diverse strains of anaerobic bacteria have been isolated that degrade toluene anaerobically, using nitrate, iron(III), or sulfate as

Alfred M. Spormann; Friedrich Widdel

2000-01-01

31

Anaerobic Fermentation of Glycerol in Paenibacillus macerans: Metabolic Pathways and Environmental Determinants  

Microsoft Academic Search

Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paeniba- cillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic

Ashutosh Gupta; Abhishek Murarka; Paul Campbell; Ramon Gonzalez

2009-01-01

32

Effects of pulp and paper mill effluent extracts on liver anaerobic and aerobic metabolic enzymes in rainbow trout.  

PubMed

This study investigates whether pulse exposure to Chilean pulp and paper mill effluent solid phase extracted (SPE) extracts via intraperitoneal injection (IP), would result in changes in the activities of the respiratory metabolic enzymes citrate synthase (CS) and lactate dehydrogenase (LDH) in rainbow trout livers. It also investigated if an alteration in liver metabolic capacity influenced the liver detoxification processes and estrogenic effects previously reported. Besides, a comparison of those enzymatic activities with fish IP injected with SPE extracts of two model effluents coming from industries that process 100% different type of feedstock (softwood, SW and hardwood, HW) was also evaluated. An initial induction of the anaerobic metabolism (increase in LDH enzymatic activity) was detected in all Chilean pulp mill effluent extracts evaluated, contrary to the initial unaltered aerobic metabolism (CS enzymatic activity) observed. A compensatory relationship in energy metabolism (Pasteur effect) was observed when comparing both enzymatic activities of fish exposed to those effluent extracts. LDH and CS activities observed in fish injected with Chilean extracts seem to be related to the effects observed in fish injected with SW extracts. This study showed that intraperitoneal injection of pulp and paper mill effluent extracts affected the anaerobic and aerobic metabolic capacities in rainbow trout livers, but this metabolic alteration did not affect detoxification capability or estrogenic effect previously reported. PMID:21095004

Orrego, Rodrigo; Pandelides, Zacharias; Guchardi, John; Holdway, Douglas

2011-05-01

33

Anaerobic Metabolism of Aromatic Compounds by Phototrophic Bacteria: Progress Report.  

National Technical Information Service (NTIS)

Vast quantities of aromatic compounds in the form of lignin, lignin derivatives, and aromatic pollutants are continually being introduced into the biosphere and much of this material accumulates in anaerobic environments. This project seeks to elucidate a...

C. S. Harwood J. Gibson

1986-01-01

34

Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens  

PubMed Central

Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh K.; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

2014-01-01

35

Anaerobic Metabolism at Thermal Extremes: A Metabolomic Test of the Oxygen Limitation Hypothesis in an Aquatic Insect  

PubMed Central

Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress.

Verberk, W. C. E. P.; Sommer, U.; Davidson, R. L.; Viant, M. R.

2013-01-01

36

Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect.  

PubMed

Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress. PMID:23604617

Verberk, W C E P; Sommer, U; Davidson, R L; Viant, M R

2013-10-01

37

Osmotic repression of anaerobic metabolic systems in Escherichia coli.  

PubMed Central

The influence of the osmolarity of the growth medium on anaerobic fermentation and nitrate respiratory pathways was analyzed. The levels of several enzymes, including formate dehydrogenase, hydrogenase, and nitrate reductase, plus a nickel uptake system were examined, as was the expression of the corresponding structural and regulatory genes. While some functions appear to be only moderately affected by an increase in osmolarity, others were found to vary considerably. An increase in the osmolarity of the medium inhibits both fermentation and anaerobic respiratory pathways, though in a more dramatic fashion for the former. fnr expression is affected by osmolarity, but the repression of anaerobic gene expression was shown to be independent of FNR regulatory protein, at least for hyd-17 and fdhF. This repression could be mediated by the intracellular concentration of potassium and is reversed by glycine betaine.

Gouesbet, G; Abaibou, H; Wu, L F; Mandrand-Berthelot, M A; Blanco, C

1993-01-01

38

Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. [Pseudomonas sp  

SciTech Connect

The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate. Inducible acyl-coeznyme A synthetase activities for phthalates, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were detected in the cells grown on aromatic compounds. Simultaneous adaptation to these aromatic compounds also occurred. A similar phenomenon was observed in the aerobic metabolism of aromatic compounds by this strain. A new pathway for the anaerobic metabolism of phthalate and a series of other aromatic compounds by this strain was proposed. Some properties of the regulation of this pathway were also discussed.

Nozawa, T.; Maruyama, Y. (Univ. of Tokyo (Japan))

1988-12-01

39

Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae  

PubMed Central

Background To effectively convert lignocellulosic feedstocks to bio-ethanol anaerobic growth on xylose constitutes an essential trait that Saccharomyces cerevisiae strains normally do not adopt through the selective integration of a xylose assimilation route as the rate of ATP-formation is below energy requirements for cell maintenance (mATP). To enable cell growth extensive evolutionary and/or elaborate rational engineering is required. However the number of available strains meeting demands for process integration are limited. In this work evolutionary engineering in just two stages coupled to strain selection under strict anaerobic conditions was carried out with BP10001 as progenitor. BP10001 is an efficient (Yethanol?=?0.35 g/g) but slow (qethanol?=?0.05?±?0.01 g/gBM/h) xylose-metabolizing recombinant strain of Saccharomyces cerevisiae that expresses an optimized yeast-type xylose assimilation pathway. Results BP10001 was adapted in 5 generations to anaerobic growth on xylose by prolonged incubation for 91 days in sealed flasks. Resultant strain IBB10A02 displayed a specific growth rate ? of 0.025?±?0.002 h-1 but produced large amounts of glycerol and xylitol. In addition growth was strongly impaired at pH below 6.0 and in the presence of weak acids. Using sequential batch selection and IBB10A02 as basis, IBB10B05 was evolved (56 generations). IBB10B05 was capable of fast (??=?0.056?±?0.003 h-1; qethanol?=?0.28?±?0.04 g/gBM/h), efficient (Yethanol?=?0.35?±?0.02 g/g), robust and balanced fermentation of xylose. Importantly, IBB10A02 and IBB10B05 displayed a stable phenotype. Unlike BP10001 both strains displayed an unprecedented biphasic formation of glycerol and xylitol along the fermentation time. Transition from a glycerol- to a xylitol-dominated growth phase, probably controlled by CO2/HCO3-, was accompanied by a 2.3-fold increase of mATP while YATP (= 87?±?7 mmolATP/gBM) remained unaffected. As long as glycerol constituted the main by-product energetics of anaerobic growth on xylose and glucose were almost identical. Conclusions In just 61 generation IBB10B05, displaying ~530% improved strain fitness, was evolved from BP10001. Its excellent xylose fermentation properties under industrial relevant conditions were proven and rendered it competitive. Based on detailed analysis of growth energetics we showed that mATP was predominantly determined by the type of polyol formed rather than, as previously assumed, substrate-specific.

2014-01-01

40

Self-heating of anaerobic digesters using energy crops  

Microsoft Academic Search

With the increasing application of energy crops in agricultural biogas plants and increasing digester volumes, the phenomenon of self-heating in anaerobic digesters appeared in some cases. Until now this development was just known from aerobic systems. To get an idea of the thermodynamics inside an anaerobic digester, a detailed analysis of all heat fluxes in a full scale agricultural biogas

H. Lindorfer; R. Braun; R. Kirchmayr

2006-01-01

41

Energy Transduction by Anaerobic Ferric Iron Respiration in Thiobacillus ferrooxidans  

PubMed Central

Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerobic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

Pronk, J. T.; Liem, K.; Bos, P.; Kuenen, J. G.

1991-01-01

42

Anaerobic Metabolism of 3-Hydroxybenzoate by the Denitrifying Bacterium Thauera aromatica  

Microsoft Academic Search

The anaerobic metabolism of 3-hydroxybenzoate was studied in the denitrifying bacterium Thauera aro- matica. Cells grown with this substrate were adapted to grow with benzoate but not with 4-hydroxybenzoate. Vice versa, 4-hydroxybenzoate-grown cells did not utilize 3-hydroxybenzoate. The first step in 3-hydroxyben- zoate metabolism is a coenzyme A (CoA) thioester formation, which is catalyzed by an inducible 3-hydroxy- benzoate-CoA ligase.

DIANA LAEMPE; MARTINA JAHN; KLAUS BREESE; HERMANN SCHAGGER; G. Fuchs

2001-01-01

43

Anaerobic Fermentation of Glycerol in Paenibacillus macerans: Metabolic Pathways and Environmental Determinants?  

PubMed Central

Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paenibacillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic fermentation of glycerol. One of these strains, P. macerans N234A, grew fermentatively on glycerol at a maximum specific growth rate of 0.40 h?1 and was chosen for further characterization. The use of [U-13C]glycerol and further analysis of extracellular metabolites and proteinogenic amino acids via nuclear magnetic resonance (NMR) spectroscopy allowed identification of ethanol, formate, acetate, succinate, and 1,2-propanediol (1,2-PDO) as fermentation products and demonstrated that glycerol is incorporated into cellular components. A medium formulation with low concentrations of potassium and phosphate, cultivation at acidic pH, and the use of a CO2-enriched atmosphere stimulated glycerol fermentation and are proposed to be environmental determinants of this process. The pathways involved in glycerol utilization and synthesis of fermentation products were identified using NMR spectroscopy in combination with enzyme assays. Based on these studies, the synthesis of ethanol and 1,2-PDO is proposed to be a metabolic determinant of glycerol fermentation in P. macerans N234A. Conversion of glycerol to ethanol fulfills energy requirements by generating one molecule of ATP per molecule of ethanol synthesized. Conversion of glycerol to 1,2-PDO results in the consumption of reducing equivalents, thus facilitating redox balance. Given the availability, low price, and high degree of reduction of glycerol, the high metabolic rates exhibited by P. macerans N234A are of paramount importance for the production of fuels and chemicals.

Gupta, Ashutosh; Murarka, Abhishek; Campbell, Paul; Gonzalez, Ramon

2009-01-01

44

Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants.  

PubMed

Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paenibacillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic fermentation of glycerol. One of these strains, P. macerans N234A, grew fermentatively on glycerol at a maximum specific growth rate of 0.40 h(-1) and was chosen for further characterization. The use of [U-13C]glycerol and further analysis of extracellular metabolites and proteinogenic amino acids via nuclear magnetic resonance (NMR) spectroscopy allowed identification of ethanol, formate, acetate, succinate, and 1,2-propanediol (1,2-PDO) as fermentation products and demonstrated that glycerol is incorporated into cellular components. A medium formulation with low concentrations of potassium and phosphate, cultivation at acidic pH, and the use of a CO2-enriched atmosphere stimulated glycerol fermentation and are proposed to be environmental determinants of this process. The pathways involved in glycerol utilization and synthesis of fermentation products were identified using NMR spectroscopy in combination with enzyme assays. Based on these studies, the synthesis of ethanol and 1,2-PDO is proposed to be a metabolic determinant of glycerol fermentation in P. macerans N234A. Conversion of glycerol to ethanol fulfills energy requirements by generating one molecule of ATP per molecule of ethanol synthesized. Conversion of glycerol to 1,2-PDO results in the consumption of reducing equivalents, thus facilitating redox balance. Given the availability, low price, and high degree of reduction of glycerol, the high metabolic rates exhibited by P. macerans N234A are of paramount importance for the production of fuels and chemicals. PMID:19617389

Gupta, Ashutosh; Murarka, Abhishek; Campbell, Paul; Gonzalez, Ramon

2009-09-01

45

Metabolic interactions between anaerobic bacteria in methanogenic environments  

Microsoft Academic Search

In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and

Alfons J. M. Stams

1994-01-01

46

Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa  

PubMed Central

Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article.

Arai, Hiroyuki

2011-01-01

47

Energy Supply for Active Transport in Anaerobically Grown Escherichia coli  

PubMed Central

Escherichia coli K-12, grown under anaerobic conditions with glucose as the sole source of carbon and energy without any terminal electron acceptor added, contains a fumarate reductase system in which electrons are transferred from formate or reduced nicotinamide adenine dinucleotide via menaquinone and cytochromes to fumarate reductase. This fumarate reductase system plays an important role in the metabolic energy supply of E. coli, grown under so-called “glycolytic conditions,” as is indicated by the growth yields and maximal growth rates of mutants impaired in electron transfer or adenosine triphosphatase (uncB). In mutants deficient in menaquinone, cytochromes, or fumarate reductase, these values are considerably lower than in mutants deficient in ubiquinone or a functional adenosine triphosphatase. Electron transfer in this fumarate reductase system leads to the generation of a membrane potential, as is indicated by the uptake of the lipophilic cation triphenylmethylphosphonium by membrane vesicles prepared from cytochrome-sufficient and uncB cells. The generation of a proton-motive force by the fumarate reductase system was also demonstrated by the uptake of amino acids under anaerobic conditions in membrane vesicles of cytochrome containing and uncB cells grown under glycolytic conditions. Membrane vesicles of cytochrome-deficient cells failed to accumulate triphenyl-methylphosphonium and amino acids under these conditions, indicating that cytochromes are essential for the generation of a proton-motive force. Using glutamine uptake as an indication of the generation of ATP and proline uptake as an indication of the generation of a proton-motive force, it was demonstrated in whole cells that the proton-motive force is formed by ATP hydrolysis in cytochrome-deficient cells and by electron transfer in the uncB cells. In cytochrome-containing cells it was not possible to distinguish between these two possibilities, but the growth parameters suggest that, under glycolytic conditions, the proton-motive force is generated via electron transfer in the fumarate reductase system rather than via ATP hydrolysis.

Boonstra, Johannes; Downie, J. Allan; Konings, Wil N.

1978-01-01

48

Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans  

SciTech Connect

Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. (Delft Univ. of Technology (Netherlands))

1991-07-01

49

Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production  

PubMed Central

Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

Mao, Longfei; Verwoerd, Wynand S

2013-01-01

50

Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.  

PubMed

Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

Mao, Longfei; Verwoerd, Wynand S

2013-01-01

51

Exercise- and hypoxia-induced anaerobic metabolism and recovery: a student laboratory exercise using teleost fish  

NSDL National Science Digital Library

Anaerobic metabolism is recruited in vertebrates under conditions of intense exercise or lowered environmental oxygen availability (hypoxia), typically resulting in the accumulation of lactate in blood and tissues. Lactate will be cleared over time after the reoxygenation of tissues, eventually returning to control levels. Here, we present a laboratory exercise developed as part of an upper-level vertebrate physiology class that demonstrates the effects of exercise and hypoxia exposure on blood lactate in fish and the subsequent decrease in lactate during recovery. Typically, the results obtained by students demonstrate that both treatments cause significant increases in blood lactate concentrations (two to three times higher than control values) that decrease back to normal values within 3 h of recovery under normoxia. The procedures described are generally applicable to other fish species and provide an alternative to using humans or other mammalian species to investigate anaerobic metabolism.

B B Rees (University of New Orleans Biological Sciences); P Boily (Western Connecticut State University/University of New Orleans Biology and Environmental Sciences); L A.C. Williamson (University of New Orleans Biological Sciences)

2009-03-01

52

Resistance to freshwater exposure in White Sea Littorina spp. I: Anaerobic metabolism and energetics  

Microsoft Academic Search

Anaerobic metabolism and changes in the osmotic concentration of extravisceral fluid were studied in the White Sea periwinkles\\u000a (Littorina littorea, Littorina saxatilis and Littorina obtusata) during freshwater exposure. Resistance to hypoosmotic stress increased in the order: L. obtusata? Our data suggest that osmotic shock is not a primary reason for mortality of the periwinkles under these conditions. During\\u000a environmental anaerobiosis,

I. M. Sokolova; C. Bock; H.-O. Pörtner

2000-01-01

53

The role of anaerobic digestion in the emerging energy economy.  

PubMed

Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas. PMID:24534620

Batstone, Damien John; Virdis, Bernardino

2014-06-01

54

Metagenomic Insights into Anaerobic Metabolism along an Arctic Peat Soil Profile  

PubMed Central

A metagenomic analysis was performed on a soil profile from a wet tundra site in northern Alaska. The goal was to link existing biogeochemical knowledge of the system with the organisms and genes responsible for the relevant metabolic pathways. We specifically investigated how the importance of iron (Fe) oxides and humic substances (HS) as terminal electron acceptors in this ecosystem is expressed genetically, and how respiratory and fermentative processes varied with soil depth into the active layer and into the upper permafrost. Overall, the metagenomes reflected a microbial community enriched in a diverse range of anaerobic pathways, with a preponderance of known Fe reducing species at all depths in the profile. The abundance of sequences associated with anaerobic metabolic processes generally increased with depth, while aerobic cytochrome c oxidases decreased. Methanogenesis genes and methanogen genomes followed the pattern of CH4 fluxes : they increased steeply with depth into the active layer, but declined somewhat over the transition zone between the lower active layer and the upper permafrost. The latter was relatively enriched in fermentative and anaerobic respiratory pathways. A survey of decaheme cytochromes (MtrA, MtrC and their homologs) revealed that this is a promising approach to identifying potential reducers of Fe(III) or HS, and indicated a possible role for Acidobacteria as Fe reducers in these soils. Methanogens appear to coexist in the same layers, though in lower abundance, with Fe reducing bacteria and other potential competitors, including acetogens. These observations provide a rich set of hypotheses for further targeted study.

Lipson, David A.; Haggerty, John Matthew; Srinivas, Archana; Raab, Theodore K.; Sathe, Shashank; Dinsdale, Elizabeth A.

2013-01-01

55

SIRT1 and energy metabolism  

PubMed Central

Sirtuin 1 (SIRT1) is the most conserved mammalian NAD+-dependent protein deacetylase that has emerged as a key metabolic sensor in various metabolic tissues. In response to different environmental stimuli, SIRT1 directly links the cellular metabolic status to the chromatin structure and the regulation of gene expression, thereby modulating a variety of cellular processes such as energy metabolism and stress response. Recent studies have shown that SIRT1 controls both glucose and lipid metabolism in the liver, promotes fat mobilization and stimulates brown remodeling of the white fat in white adipose tissue, controls insulin secretion in the pancreas, senses nutrient availability in the hypothalamus, influences obesity-induced inflammation in macrophages, and modulates the activity of circadian clock in metabolic tissues. This review focuses on the role of SIRT1 in regulating energy metabolism at different metabolic tissues.

Li, Xiaoling

2013-01-01

56

Metabolic sequences of anaerobic fermentation on glucose-based feeding substrates based on correlation analyses of microbial and metabolite profiling.  

PubMed

Degradation processes in various biomasses are managed by complex metabolic dynamics created by diverse and extensive interactions and competition in microbial communities and their environments. It is important to develop visualization methods to provide a bird's-eye view when characterizing the entire sequential metabolic process in an environmental ecosystem. Here, we describe an approach for the visualization of the metabolic sequences in anaerobic fermentation ecosystems, characterizing the entire metabolic dynamics using a combination of microbial community profiles and metabolic profiles. By evaluating their time-dependent variation, we found that microbial community profiles and metabolite production processes were characteristically affected by the feeding of different glucose-based substrates (glucose, starch, cellulose), although the compositions of the major microbial community and the metabolites detected were likely to be similar in all experiments. This combinatorial approach to variation in microbial communities and metabolic profiles was used successfully to visualize metabolic sequences in anaerobic fermentation ecosystems, in addition to mining candidate microbiota for cellulose degradation. Thus, this approach provides a powerful tool for visualizing and evaluating metabolic sequences within the biomass degradation process in an environmental ecosystem. This is the first report to visualize the entire metabolic dynamic in an anaerobic fermentation ecosystem as metabolic sequences. PMID:23110341

Date, Yasuhiro; Iikura, Tomohiro; Yamazawa, Akira; Moriya, Shigeharu; Kikuchi, Jun

2012-12-01

57

Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems  

PubMed Central

Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems.

Yamazawa, Akira; Iikura, Tomohiro; Morioka, Yusuke; Shino, Amiu; Ogata, Yoshiyuki; Date, Yasuhiro; Kikuchi, Jun

2013-01-01

58

Spore Germination and Carbon Metabolism in Fusarium solani V. Changes in Anaerobic Metabolism and Related Enzyme Activities during Development 1  

PubMed Central

Macroconidia of Fusarium solani f. phascoli have no detectable capacity to respire glucose anaerobically; germinated spores and mycelium, on the other hand, ferment glucose, although slowly. Extracts of ungerminated spores contain hexokinase, phosphohexoisomerase, phosphofructokinase, aldolase, triose phosphate dehydrogenase, triose phosphate isomerase, phosphoglyceric kinase, enolase, phosphoglyceric mutase, pyruvate kinase, and pyruvate decarboxylase. It follows, therefore, that the appearance of fermentative capacity during spore germination cannot be ascribed to the de novo synthesis of any of these enzymes. During germination and mycelial development the specific activity of all of the enzymes named except phosphohexoisomerase and aldolase increases 2- to 8-fold. Specific activity of all of the enzymes is substantially higher than the fermentative capacity of intact cells, i.e., none is limiting to anaerobic respiration. The enzymatic assay data are consistent with a conclusion reached earlier on the basis of studies of aerobic glucose metabolism, that the process of germination involves an acceleration of pre-existing metabolic systems rather than an appearance of new pathways.

Cochrane, Vincent W.; Cochrane, Jean C.

1966-01-01

59

ANAEROBIC METABOLISM AND CHANGES IN ACIDBASE STATUS: QUANTITATIVE INTERRELATIONSHIPS AND PH REGULATION IN THE MARINE WORM SIPUNCULUS NUDUS  

Microsoft Academic Search

SUMMARY The quantitative influence of anaerobic metabolism on acid-base status and on acid—base regulation is investigated in Sipunculus nudus L. Proton generation by metabolism is calculated from theoretical predictions. The quantitative comparison of metabolic protons with non-respiratory protons found in the acid-base status is performed assuming a simplified model of the total animal. Taking the proton- equivalent ion exchange between

HANS-OTTO PORTNER

60

Phenotypic Diversity of Hydrogen Production in Chlorophycean Algae Reflects Distinct Anaerobic Metabolisms  

SciTech Connect

Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H{sub 2} during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H{sub 2} under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H2 photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

Meuser, J. E.; Ananyev, G.; Wittig, L. E.; Kosourov, S.; Ghirardi, M. L.; Seibert, M.; Dismukes, G. C.; Posewitz, M. C.

2009-01-01

61

Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia.  

PubMed Central

The anaerobic biodegradation of naphthalene (NAP) and phenanthrene (PHE) was investigated by using sediment collected from the Arthur Kill in New York/New Jersey harbor. The initial cultures were composed of 10% sediment and 90% mineral medium containing 20 mM sulfate. Complete loss of NAP and PHE (150 to 200 muM) was observed after 150 days of incubation. Upon refeeding, NAP and PHE were utilized within 14 days. The utilization of both compounds was inhibited in the presence of 20 mM molybdate. [14C]NAP and [14C]PHE were mineralized to 14CO2. The activities could be maintained and propagated by subculturing in mineral medium. In the presence of halogenated analogs, 2-naphthoate was detected in NAP-utilizing enrichments. The mass spectrum of the derivatized 2-napththoate from the enrichment supplemented with both [13C]bicarbonate and NAP indicates the incorporation of 13CO2 into NAP. In the PHE-utilizing enrichment, a metabolite was detected by both high-pressure liquid chromatography and gas chromatography-mass spectrometry analyses. The molecular ion and fragmentation pattern of its mass spectrum indicate that it was phenanthrenecarboxylic acid. The results obtained with [13C] bicarbonate indicate that 13CO2 was incorporated into PHE. It appears, therefore, that carboxylation is an initial key reaction for the anaerobic metabolism and NAP and PHE. To our knowledge, this is the first report providing evidence for intermediates of PAH degradation under anaerobic conditions.

Zhang, X; Young, L Y

1997-01-01

62

Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic-anoxic system.  

PubMed

The metabolic aspects of enhanced biological phosphorus removal (EBPR) were investigated for the first time in a continuous-flow anaerobic-anoxic plant fed with acetate, propionate, or substrates which are involved in the tricarboxylic acid and/or glyoxylate cycle, i.e., fumarate, malate, or oxaloacetate, as the sole carbon source. Although the polyphosphate-accumulating organisms (PAOs) population remained stable with any carbon source examined, no typical EBPR metabolism was observed during fumarate, malate, or oxaloacetate utilization. Specific enzymatic activities related to EBPR were determined in activated sludge homogenates and directly correlated with the nutrient metabolic rates. The experimental results indicated the direct involvement of alkaline phosphatase, pyrophosphatase, and exopolyphosphatase in the denitrifying EBPR process. Metabolic aspects of glyoxylate cycle enzymes are discussed with regard to the biomass anaerobic and anoxic activity. Process performance was highly influenced by the kind of substrate utilized, indicating that specific metabolic pathways should be followed to favor efficient EBPR. PMID:23912208

Zafiriadis, Ilias; Ntougias, Spyridon; Kapagiannidis, Anastasios G; Aivasidis, Alexander

2013-10-01

63

Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation.  

PubMed

Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry worldwide. Oxygen deprivation is a stress that A. pleuropneumoniae will encounter during both early infection and the later, persistent stage. To understand modulation of A. pleuropneumoniae gene expression in response to the stress caused by anaerobic conditions, gene expression profiles under anaerobic and aerobic conditions were compared in this study. The microarray results showed that 631 genes (27.7% of the total ORFs) were differentially expressed in anaerobic conditions. Many genes encoding proteins involved in glycolysis, carbon source uptake systems, pyruvate metabolism, fermentation and the electron respiration transport chain were up-regulated. These changes led to an increased amount of pyruvate, lactate, ethanol and acetate in the bacterial cells as confirmed by metabolite detection. Genes encoding proteins involved in cell surface structures, especially biofilm formation, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis were up-regulated as well. Biofilm formation was significantly enhanced under anaerobic conditions. These results indicate that induction of central metabolism is important for basic survival of A. pleuropneumoniae after a shift to an anaerobic environment. Enhanced biofilm formation may contribute to the persistence of this pathogen in the damaged anaerobic host tissue and also in the early colonization stage. These discoveries give new insights into adaptation mechanisms of A. pleuropneumoniae in response to environmental stress. PMID:24723105

Li, Lu; Zhu, Jiawen; Yang, Kui; Xu, Zhuofei; Liu, Ziduo; Zhou, Rui

2014-06-01

64

PPARs: Diverse Regulators in Energy Metabolism and Metabolic Diseases  

PubMed Central

The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the there PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.

Wang, Yong-Xu

2014-01-01

65

Metabolic energy required for flight  

NASA Technical Reports Server (NTRS)

This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

Lane, H. W.; Gretebeck, R. J.

1994-01-01

66

Metabolic energy required for flight  

NASA Astrophysics Data System (ADS)

This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.

Lane, H. W.; Gretebeck, R. J.

1994-11-01

67

One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production. Progress report, June 1990--May 1992  

SciTech Connect

This reporting period, progress is reported on the following: metabolic pathway of solvent production in B. methylotrophicum; the biochemical mechanism for metabolic regulation of the succinate fermentation; models to understand the physiobiochemical function of formate metabolism in anaerobes and; models for understanding the influence of low pH on one carbon metabolism. (CBS)

Zeikus, J.G.; Jain, M.K.

1992-04-01

68

Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions.  

PubMed Central

Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions.

Kaiser, J P; Feng, Y; Bollag, J M

1996-01-01

69

Molecular Basis for Anaerobic Growth of Saccharomyces cerevisiae on Xylose, Investigated by Global Gene Expression and Metabolic Flux Analysis  

PubMed Central

Yeast xylose metabolism is generally considered to be restricted to respirative conditions because the two-step oxidoreductase reactions from xylose to xylulose impose an anaerobic redox imbalance. We have recently developed, however, a Saccharomyces cerevisiae strain that is at present the only known yeast capable of anaerobic growth on xylose alone. Using transcriptome analysis of aerobic chemostat cultures grown on xylose-glucose mixtures and xylose alone, as well as a combination of global gene expression and metabolic flux analysis of anaerobic chemostat cultures grown on xylose-glucose mixtures, we identified the distinguishing characteristics of this unique phenotype. First, the transcript levels and metabolic fluxes throughout central carbon metabolism were significantly higher than those in the parent strain, and they were most pronounced in the xylose-specific, pentose phosphate, and glycerol pathways. Second, differential expression of many genes involved in redox metabolism indicates that increased cytosolic NADPH formation and NADH consumption enable a higher flux through the two-step oxidoreductase reaction of xylose to xylulose in the mutant. Redox balancing is apparently still a problem in this strain, since anaerobic growth on xylose could be improved further by providing acetoin as an external NADH sink. This improved growth was accompanied by an increased ATP production rate and was not accompanied by higher rates of xylose uptake or cytosolic NADPH production. We concluded that anaerobic growth of the yeast on xylose is ultimately limited by the rate of ATP production and not by the redox balance per se, although the redox imbalance, in turn, limits ATP production.

Sonderegger, Marco; Jeppsson, Marie; Hahn-Hagerdal, Barbel; Sauer, Uwe

2004-01-01

70

Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.  

PubMed

The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater. PMID:24742289

Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

2014-05-20

71

Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis.  

PubMed

Staphylococcus aureus is a major pathogen in the medical area and food-producing sector. Detailed analyses of its basic cell physiology will help comprehensively understand this pathogen, which will be useful for developing novel diagnostic and treatment tools. Oxygen is one of the most crucial growth-limiting factors for S. aureus. In this study, to characterize and distinguish metabolic profiles of S. aureus cultivated under aerobic and anaerobic conditions, nontargeted analyses of both types of cultures were carried out using (1)H nuclear magnetic resonance spectroscopy. Fifty compounds were identified by Chenomx software. Characteristics of metabolic profiles were achieved by using principal components analysis. During aerobic growth, S. aureus mainly consumed glucose, alanine, arginine, glycine, isoleucine, leucine, phenylalanine, and acetate. Meanwhile, it accumulated 17 metabolites, mainly 2-oxoglutarate, isobutyrate, isovalerate, succinate, and ethanol. Under anaerobic condition, S. aureus mainly consumed glucose, arginine, and threonine. Meanwhile, it accumulated 13 metabolites, mainly ethanol, lactate, and ornithine. The representative metabolites that could most significantly differentiate metabolic profiles of S. aureus were isobutyrate, isovalerate, and succinate in aerobic cultivation; and lactate, ethanol, and ornithine in anaerobic cultivation. Among these metabolites, isobutyrate and ornithine were present only in aerobic and anaerobic culture, respectively. PMID:22571732

Sun, Ji-Lu; Zhang, Shao-Kang; Chen, Jing-Yu; Han, Bei-Zhong

2012-06-01

72

An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose  

NASA Astrophysics Data System (ADS)

A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

1999-11-01

73

Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals.  

PubMed

The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA(V)), arsenate was transformed into six unique metabolites: mono-, di-, and trithio-arsenic acid, monomethyldithio- and monomethyltrithio-arsonic acid, and dimethyldithioarsonic acid. Thioarsenicals were found in soluble and particulate fractions of reaction mixtures, suggesting interactions with anaerobic microbiota. Metabolism of ingested arsenate to oxy- and thio-arsenicals before absorption across the gastrointestinal barrier could affect bioavailability, systemic distribution, and resulting toxicity. PMID:21388151

Pinyayev, Tatyana S; Kohan, Michael J; Herbin-Davis, Karen; Creed, John T; Thomas, David J

2011-04-18

74

Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.  

PubMed

The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13?000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic bioprocesses in energy positive wastewater management is discussed. PMID:24671159

Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

2014-05-28

75

Adaptations of anaerobic archaea to life under extreme energy limitation.  

PubMed

Some anaerobic archaea live on substrates that do not allow the synthesis of 1 mol of ATP per mol of substrate. Energy conservation in these cases is only possible by a chemiosmotic mechanism that involves the generation of an electrochemical ion gradient across the cytoplasmatic membrane that then drives ATP synthesis via an A1 AO ATP synthase. The minimal amount of energy required is thus depending on the magnitude of the electrochemical ion gradient, the phosphorylation potential, and the ion/ATP ratio of the ATP synthase. Methanogens, Thermococcus, Pyrococcus, and Ignicoccus have evolved different ways to energize their membranes, such as methyltransferases, H(+) , or NAD(+) reducing electron transport systems fueled by reduced ferredoxin or H2 -dependent sulfur reduction that all operate at the thermodynamic limit of life. The structure and function of the enzymes involved are discussed. Despite the differences in membrane energization, they have in common an A1 AO ATP synthase that shows an extraordinary divergence in rotor composition and structural adaptations to life under these conditions. In sum, adaptation of anaerobic archaea to energy-limited substrates involves chemiosmotic energy coupling, often with Na(+) as coupling ion and a structurally and functionally highly adapted ATP synthase. PMID:24118021

Mayer, Florian; Müller, Volker

2014-05-01

76

Energy Metabolism in the Liver  

PubMed Central

The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial ? oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1?, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD).

Rui, Liangyou

2014-01-01

77

Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary  

Microsoft Academic Search

Current knowledge of the pathways for the degradation of n-alkanes and n-alkenes by anaerobic bacteria is summarized and new results questioning the existence of an alternative pathway for anaerobic alkane degradation are introduced. Remaining gaps in our knowledge are also mentioned, together with the possible use of some specific metabolites as biomarkers of anaerobic hydrocarbon degradation.

Vincent Grossi; Cristiana Cravo-Laureau; Rémy Guyoneaud; Anthony Ranchou-Peyruse; Agnès Hirschler-Réa

2008-01-01

78

Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.  

PubMed

Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with the Arabian Sea, with O(2) concentrations reaching zero at 200 m and remaining very low (<0.1 ml O(2)l(-1)) for hundreds of meters below this depth, and in the California borderland, where oxygen levels reach 0.2 ml O(2)l(-1) at 700 m with severely hypoxic (<1.0 ml O(2)l(-1)) waters at depths 300 m above and below that. Despite the very low oxygen, mesopelagic fishes (primarily lanternfishes: Mytophidae) inhabiting the Arabian Sea and California borderland perform a daily vertical migration into the low-oxygen layer, spending daylight hours in the oxygen minimum zone and migrating upward into normoxic waters at night. To find out how fishes were able to survive their daily sojourns into the minimum zone, we tested the activity of four enzymes, one (lactate dehydrogenase, LDH) that served as a proxy for anaerobic glycolysis with a conventional lactate endpoint, a second (citrate synthase, CS) that is indicative of aerobic metabolism, a third (malate dehydrogenase) that functions in the Krebs' cycle and as a bridge linking mitochondrion and cytosol, and a fourth (alcohol dehydrogenase, ADH) that catalyzes the final reaction in a pathway where pyruvate is reduced to ethanol. Ethanol is a metabolic product easily excreted by fish, preventing lactate accumulation. The ADH pathway is rarely very active in vertebrate muscle; activity has previously been seen only in goldfish and other cyprinids capable of prolonged anaerobiosis. Activity of the enzyme suite in Arabian Sea and California fishes was compared with that of ecological analogs in the same family and with the same lifestyle but living in systems with much higher oxygen concentrations: the Gulf of Mexico and the Southern Ocean. ADH activities in the Arabian Sea fishes were similar to those of goldfish, far higher than those of confamilials from the less severe minimum in the Gulf of Mexico, suggesting that the Arabian Sea fishes are capable of exploiting the novel ethanol endpoint to become competent anaerobes. In turn, the fishes of California exhibited a higher ADH activity than their Antarctic relatives. It was concluded that ADH activity is more widespread in fishes than previously believed and that it may play a role in allowing vertically migrating fishes to exploit the safe haven afforded by severe oxygen minima. PMID:22573769

Torres, Joseph J; Grigsby, Michelle D; Clarke, M Elizabeth

2012-06-01

79

Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.  

PubMed Central

Suspensions of isolated epithelial cells (colonocytes) from the human colon were used to assess utilisation of respiratory fuels which are normally available to the colonic mucosa in vivo. Cells were prepared from operative specimens of the ascending colon (seven) and descending colon (seven). The fuels that were used were the short chain fatty acid n-butyrate, produced only by anaerobic bacteria in the colonic lumen, together with glucose and glutamine, normally present in the circulation. The percentage oxygen consumption attributable to n-butyrate, when this was the only substrate, was 73% in the ascending colon and 75% in the descending colon. In the presence of 10 mM glucose these proportions changed to 59% and 72%. Aerobic glycolysis was observed in both the ascending and descending colon. Glucose oxidation accounted for 85% of the oxygen consumption in the ascending colon and 30% in the descending colon. In the presence of 10 mM n-butyrate these proportions decreased to 41% in the ascending colon and 16% in the descending colon. Based on the assumption that events in the isolated colonocytes reflect utilization of fuels in vivo, the hypothesis is put forward that fatty acids of anaerobic bacteria are a major source of energy for the colonic mucosa, particularly of the distal colon.

Roediger, W E

1980-01-01

80

Anaerobic 1-Alkene Metabolism by the Alkane- and Alkene-Degrading Sulfate Reducer Desulfatibacillum aliphaticivorans Strain CV2803T?  

PubMed Central

The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [13C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(?-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium.

Grossi, Vincent; Cravo-Laureau, Cristiana; Meou, Alain; Raphel, Danielle; Garzino, Frederic; Hirschler-Rea, Agnes

2007-01-01

81

Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus  

Microsoft Academic Search

We investigated the effect of copper on liver key enzymes of the anaerobic glucose metabolism (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK; lactate dehydrogenase, LDH) as well as of the pentose pathway (glycose-6-phosphate dehydrogenase, G6PDH) from the fish Prochilodus lineatus. The fish were acclimated at either 20 °C or 30 °C at pH 7.0, transferred to water at pH 4.5 or 8.0,

Cleoni dos Santos Carvalho; Marisa Narciso Fernandes

2008-01-01

82

Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (Sudan dyes) by human intestinal microflora.  

PubMed

The rates of metabolism of Sudan I and II and Para Red by human intestinal microflora were high compared to those of Sudan III and IV under anaerobic conditions. Metabolites of the dyes were identified as aniline, 2,4-dimethylaniline, o-toluidine, and 4-nitroaniline through high-performance liquid chromatography and liquid chromatography electrospray ionization tandem mass spectrometry analyses. These data indicate that human intestinal bacteria are able to reduce Sudan dyes to form potentially carcinogenic aromatic amines. PMID:17933925

Xu, Haiyan; Heinze, Thomas M; Chen, Siwei; Cerniglia, Carl E; Chen, Huizhong

2007-12-01

83

A low dose of doxorubicin improves antioxidant defence system and modulates anaerobic metabolism during the development of lymphoma  

PubMed Central

Objective: The objective of the present study is to find low dose of doxorubicin (DOX) with cancer preventive activity and to check the implication of this low dose of DOX on antioxidant defence system during lymphoma growth in mice, as the clinical utility of anthracycline anticancer drugs, especially DOX is limited by a progressive cardiotoxicity linked to mitochondrial damage. Materials and Methods: We selected a dose of DOX (0.90 mg/kg body weight of mouse), which is about 20 folds lower than clinically used dose for cancer treatment. The cancer preventive action is monitored by modulation of anaerobic metabolism. The effect of this dose on antioxidant defence system is analyzed by testing the activities of antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST). The activities of these enzymes were monitored at different intervals during the growth of lymphoma in mice. Results: The activities of antioxidant enzymes, such as CAT, SOD, and GST, were found to decrease gradually during the growth of lymphoma in mice. The anaerobic metabolism was increasing with lymphoma growth. We report that about 20 folds lower dose of DOX enhances the activities of antioxidant enzymes and decreases anaerobic metabolism during the development of lymphoma. These enzymes of antioxidant defence system suppress oxidative stress and mitochondrial damage, whereas a decrease in anaerobic metabolism checks cancer growth. Conclusions: The result suggests that dose cumulative cellular toxicity of DOX may be avoided by treating cancer in animals with lower doses of DOX in combination with other drugs.

Verma, Nibha; Vinayak, Manjula

2012-01-01

84

In situ detection of anaerobic alkane metabolites in subsurface environments  

PubMed Central

Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

Agrawal, Akhil; Gieg, Lisa M.

2013-01-01

85

Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.  

PubMed

Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. PMID:24667312

Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

2014-05-16

86

Complete Genome of Ignavibacterium album, a Metabolically Versatile, Flagellated, Facultative Anaerobe from the Phylum Chlorobi  

PubMed Central

Prior to the recent discovery of Ignavibacterium album (I. album), anaerobic photoautotrophic green sulfur bacteria (GSB) were the only members of the bacterial phylum Chlorobi that had been grown axenically. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB.

Liu, Zhenfeng; Frigaard, Niels-Ulrik; Vogl, Kajetan; Iino, Takao; Ohkuma, Moriya; Overmann, Jorg; Bryant, Donald A.

2012-01-01

87

Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus.  

PubMed

We investigated the effect of copper on liver key enzymes of the anaerobic glucose metabolism (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK; lactate dehydrogenase, LDH) as well as of the pentose pathway (glycose-6-phosphate dehydrogenase, G6PDH) from the fish Prochilodus lineatus. The fish were acclimated at either 20 degrees C or 30 degrees C at pH 7.0, transferred to water at pH 4.5 or 8.0, and exposed to 96 h-CL(50) copper concentrations. Copper accumulation in liver was higher in fish acclimated at 20 degrees C and maintained in water pH 8.0. Three-way analysis of variance revealed a significant effect of temperature on all enzymes, a significant effect of pH on all enzymes except for PK, and a significant effect of copper on only PFK, and LDH in pH 4.5 at 20 degrees C and, at 30 degrees C, on PFK and PK at pH 4.5 and 8.0, HK at pH 4.5 and G6PDH at pH 8.0. There were significant interactions between treatments for many enzymes. These changes suggest that the activity of enzymes in question is modified by a change in ambient water. At least at 30 degrees C, the overall reduction in the glycolytic enzyme activities of copper-exposed fish seems to reduce energy availability via glucose metabolism, thereby contributing to enhance copper toxic effects. PMID:17537655

Carvalho, Cleoni dos Santos; Fernandes, Marisa Narciso

2008-11-01

88

Energy recovery from municipal solid waste in an anaerobic reactor.  

PubMed

Anaerobic digestion of municipal solid waste was carried out in the laboratory at room temperature to assess the bio-energy production from municipal solid waste (MSW) with high total solids content. The total biogas production from the municipal garbage was found to be 3.2 L in 120 days. The results from the biomethanation process showed that an increase in gas production was observed with increase in digestion period when the bioconversion parameters were found to be favorable for the production of gas. Changes in the parameters, such as pH, affected the production of gas significantly. Samples taken from the reactor at definite interval of time during the degradation process showed considerable reduction in total volatile solids, total carbon, total nitrogen and COD, etc. indicating the waste stabilization. PMID:19552079

Jeyapriya, S P; Saseetharan, M K

2008-07-01

89

Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.  

PubMed

Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD(+)) that are required to sustain an O(2)-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses. PMID:23149123

Nikel, Pablo I; de Lorenzo, Víctor

2013-01-01

90

Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.  

PubMed

The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

2014-01-01

91

Phenylphosphate Carboxylase: a New C-C Lyase Involved in Anaerobic Phenol Metabolism in Thauera aromatica  

PubMed Central

The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via carboxylation to 4-hydroxybenzoate and is initiated by the ATP-dependent conversion of phenol to phenylphosphate. The subsequent para carboxylation of phenylphosphate to 4-hydroxybenzoate is catalyzed by phenylphosphate carboxylase, which was purified and studied. This enzyme consists of four proteins with molecular masses of 54, 53, 18, and 10 kDa, whose genes are located adjacent to each other in the phenol gene cluster which codes for phenol-induced proteins. Three of the subunits (54, 53, and 10 kDa) were sufficient to catalyze the exchange of 14CO2 and the carboxyl group of 4-hydroxybenzoate but not phenylphosphate carboxylation. Phenylphosphate carboxylation was restored when the 18-kDa subunit was added. The following reaction model is proposed. The 14CO2 exchange reaction catalyzed by the three subunits of the core enzyme requires the fully reversible release of CO2 from 4-hydroxybenzoate with formation of a tightly enzyme-bound phenolate intermediate. Carboxylation of phenylphosphate requires in addition the 18-kDa subunit, which is thought to form the same enzyme-bound energized phenolate intermediate from phenylphosphate with virtually irreversible release of phosphate. The 54- and 53-kDa subunits show similarity to UbiD of Escherichia coli, which catalyzes the decarboxylation of a 4-hydroxybenzoate derivative in ubiquinone (ubi) biosynthesis. They also show similarity to components of various decarboxylases acting on aromatic carboxylic acids, such as 4-hydroxybenzoate or vanillate, whereas the 10-kDa subunit is unique. The 18-kDa subunit belongs to a hydratase/phosphatase protein family. Phenylphosphate carboxylase is a member of a new family of carboxylases/decarboxylases that act on phenolic compounds, use CO2 as a substrate, do not contain biotin or thiamine diphosphate, require K+ and a divalent metal cation (Mg2+or Mn2+) for activity, and are strongly inhibited by oxygen.

Schuhle, Karola; Fuchs, Georg

2004-01-01

92

Carbon dioxide fixation and mixotrophic metabolism by strain DCB-1, a dehalogenating anaerobic bacterium.  

PubMed Central

Fixation by strain DCB-1 of CO2 carbon into cell material and organic acids occurred during growth on pyruvate both with and without thiosulfate. By using sodium [14C]bicarbonate and sodium [2-14C]pyruvate, the isotopic composition of products and cells was investigated. Up to 70% of cell carbon was derived from CO2. CO2 carbon was also incorporated into succinate, formate, and acetate. Both carbons of acetate underwent exchange reactions with CO2, although the carboxyl-group exchange was twice as fast. Because strain DCB-1 uses CO2 as its major but not sole carbon source while deriving energy from pyruvate metabolism, we describe its metabolism as mixotrophic. Other mixotrophic conditions also supported growth. Lactate or butyrate, which could not support growth in mineral medium, could replace pyruvate as the oxidizable substrate only when acetate was added to the medium.

Stevens, T O; Tiedje, J M

1988-01-01

93

Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.  

PubMed

Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model. PMID:17631938

Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

2007-10-01

94

ADAPTATIONS OF ENERGY METABOLISM IN THE CULTIVATED MACROPHAGE  

PubMed Central

Adaptive changes in energy metabolism, as reflected by pyruvate kinase and cytochrome oxidase activities, were examined during in vitro differentiation of the cultivated macrophage. Serum concentrations of tissue culture media, which directly influence endocytic activity, and ambient oxygen tension were both shown to influence pyruvate kinase and cytochrome oxidase activities. Cells maintained in high serum concentrations (30% newborn calf serum [NBCS]) exhibited a 300–400% increase in pyruvate kinase activity and a 40% increase in cytochrome oxidase activity, whereas cells maintained in low serum concentrations (2% NBCS) exhibited a lesser increase (65%) in pyruvate kinase activity and no change in cytochrome oxidase activity. Anaerobiosis resulted in additional alterations in pyruvate kinase and cytochrome oxidase activities. Cells maintained for 48–72 h under anaerobic conditions exhibited a 500–600% increase in pyruvate kinase activity and a 40% decrease in cytochrome oxidase activity. Increased pyruvate kinase activity was dependent on continued protein synthesis. Enzyme increases occurred in anaerobically cultured cells despite an overall reduction in cell protein synthesis. It is suggested that adaptive changes in pyruvate kinase and cytochrome oxidase activity resulting from alterations in either serum concentration or ambient oxygen tension are regulated by two independent mechanisms. One mechanism is aimed at providing energy for endocytic activity and the other in compensating for impaired oxidative metabolism during anaerobiosis.

Simon, Lawrence M.; Axline, Stanton G.; Horn, Barry R.; Robin, Eugene D.

1973-01-01

95

Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans  

PubMed Central

Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu2+ included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H2S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S0 to Fe3+ via a respiratory chain that includes a bc1 complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations.

Osorio, Hector; Mangold, Stefanie; Denis, Yann; Nancucheo, Ivan; Esparza, Mario; Johnson, D. Barrie; Bonnefoy, Violaine; Dopson, Mark

2013-01-01

96

Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans.  

PubMed

Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu(2+) included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H(2)S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S(0) to Fe(3+) via a respiratory chain that includes a bc(1) complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations. PMID:23354702

Osorio, Héctor; Mangold, Stefanie; Denis, Yann; Ñancucheo, Ivan; Esparza, Mario; Johnson, D Barrie; Bonnefoy, Violaine; Dopson, Mark; Holmes, David S

2013-04-01

97

Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR1  

Microsoft Academic Search

Background  EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity\\u000a with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood.\\u000a \\u000a \\u000a \\u000a \\u000a Results  The expression of the nap genes,

Claribel Cruz-García; Alison E. Murray; Jorge L. M. Rodrigues; Jeffrey A. Gralnick; Lee Ann McCue; Margaret F. Romine; Frank E Löffler; James M. Tiedje

2011-01-01

98

Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors  

Microsoft Academic Search

Anaerobic reactors have acquired a new relevance in recent years due to their ability to generate methane from biodegradable wastewaters—thereby producing clean energy. Methane capture in this manner also prevents the escape of the greenhouse gas to the atmosphere which otherwise occurs when anaerobic conditions develop in drains and outfalls carrying wastewater. Of all the different types of anaerobic reactors

Tasneem Abbasi; S. A. Abbasi

2012-01-01

99

Production of clean energy by anaerobic digestion of phytomass—New prospects for a global warming amelioration technology  

Microsoft Academic Search

Anaerobic digestion of animal dung generated combustible gas – this fact has been known since over 130 years and has been gainfully utilized in generating clean energy in the form of methane-rich ‘biogas’. During 1970s it was found that aquatic weeds and other phytomass, if anaerobically digested, also produced similarly combustible ‘bio’ gas. It raised great hopes that anaerobic digestion

Tasneem Abbasi; S. A. Abbasi

2010-01-01

100

Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1.  

PubMed

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5 µmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage. To identify genes involved in the anaerobic metabolism of RDX, a library of ~2500 mutants of MR-1 was constructed by random transposon mutagenesis and screened for mutants with a reduced ability to degrade RDX compared with the wild type. An RDX-defective mutant (C9) was isolated that had the transposon inserted in the c-type cytochrome gene cymA. C9 transformed RDX at ~10% of the wild-type rate, with degradation occurring mostly via early ring cleavage caused by initial denitration leading to the formation of methylenedinitramine, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, and ammonia. Genetic complementation of mutant C9 restored the wild-type phenotype, providing evidence that electron transport components have a role in the anaerobic reduction of RDX by MR-1. PMID:22260206

Perreault, Nancy N; Crocker, Fiona H; Indest, Karl J; Hawari, Jalal

2012-02-01

101

Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis.  

PubMed

There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a > three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

Zeisel, Steven H

2013-03-01

102

Carbon Monoxide Based Metabolism and CO Cycling in Anaerobic Microbial Ecosystems  

NASA Astrophysics Data System (ADS)

Carbon monoxide binds tightly to many hemes and other porphyrins, proving toxic to humans and microbes. Nevertheless, CO is an attractive fuel for anaerobic chemolithotrophy for those microbes not impaired by CO's toxicity. CO can be oxidized to CO2 anaerobically through the water-gas-shift reaction by hydrogenogenic carboxydotrophs. CO can also be used by certain homoacetogens in the production of acetate and by certain methanogens in the production of methane, acetate, and formate. CO is not only consumed by microbes, but a diverse range of evidence points towards biogenic production of CO. We present measurements of CO concentrations in dissolved and free phase gases in hot springs in Kamchatka, Russia, and Lassen Volcanic National Park, CA. These measurements implicate microbial CO production as a dominant source of CO in these anaerobic ecosystems. There are few in situ measurements of dissolved CO in microbial mats and sediment pore waters. However, the concentration dependent biochemical and transcriptional responses of carboxydotrophs to CO offer strong evidence for the growth conditions to which these microbes have adapted. CooA is a CO-sensing transcriptional activator found in most anaerobic carboxydotrophs. We interpret the CO-binding properties of CooA in Carboxydothermus hydrogenoformans and Rhodospirillum rubrum as evidence for the ranges of environmental CO concentrations that are frequently encountered in anaerobic ecosystems.

Colman, A. S.; Techtmann, S. M.; He, B.; Anderson, M. R.; Robb, F. T.

2011-12-01

103

Toward Homosuccinate Fermentation: Metabolic Engineering of Corynebacterium glutamicum for Anaerobic Production of Succinate from Glucose and Formate  

PubMed Central

Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (?cat ?pqo ?pta-ackA ?ldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pycP458S into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD+-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).

Litsanov, Boris; Brocker, Melanie

2012-01-01

104

Energy flows, metabolism and translation  

PubMed Central

Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the abovementioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation.

Pascal, Robert; Boiteau, Laurent

2011-01-01

105

Energy flows, metabolism and translation.  

PubMed

Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the above mentioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation. PMID:21930587

Pascal, Robert; Boiteau, Laurent

2011-10-27

106

Reevaluation of Anaerobic Nitrite Production as an Index for the Measurement of Metabolic Pool of Nitrate 1  

PubMed Central

The use of anaerobic nitrite production as an index for the measurement of metabolic pool of nitrate was reevaluated using primary leaves of 7-day-old barley and 10-day-old soybean seedlings. The seedlings were grown in nutrient solutions containing 5 to 15 millimolar nitrate. The nitrate-free in vivo assay system of nitrate reductase was used for measuring the production of nitrite. Both the duration and extent of nitrite production were dependent on the level of endogenous nitrate in the tissue. At cessation of nitrite production, 30 to 50% of the endogenous nitrate was reduced to nitrite. Nitrate from the tissue leaked continuously into the surrounding medium so that, at cessation of nitrite production, nitrate supply from the tissue was exhausted. The cessation of nitrite production, therefore, may have been caused by the depletion of endogenous nitrate from the tissue. It is concluded that anaerobic nitrite production is not a valid index for the measurement of the size of the metabolic pool of nitrate.

Aslam, Muhammad

1981-01-01

107

Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe  

Microsoft Academic Search

There is increasing international interest in developing low carbon renewable energy technologies. Biomass is increasingly being utilized as an energy source throughout the world. Several modern technologies have been developed that convert biomass to bioenergy. Anaerobic digestion is a mature energy technology for converting biomass to biogas, which is a renewable primary energy source. Biogas is a robust fuel that

Raphael M. Jingura; Rutendo Matengaifa

2009-01-01

108

Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment  

Microsoft Academic Search

Energy recovery from sewage sludge offers an opportunity for sustainable management of sewage sludge and energy. Anaerobic digestion and pyrolysis are among the most promising processes applicable for sewage sludge-to-energy conversion. Anaerobic digestion of sewage sludge forms methane-rich biogas, which can be utilized as fuel to offset heat and electricity consumption of the wastewater treatment sector. However, the digestion process

Yucheng Cao

2012-01-01

109

Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation  

Microsoft Academic Search

After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a ?max of 0.03 h?1. In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose

Marko Kuyper; Miranda M. P. Hartog; Maurice J. Toirkens; Marinka J. H. Almering; Aaron A. Winkler; Johannes P. van Dijken; Jack T. Pronk

2005-01-01

110

Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli  

Microsoft Academic Search

The ntrA gene product, required for expression of genes involved in nitrogen fixation (nif) and regulation (ntr), was shown to be necessary for the expression of the two enzymes of the anaerobically inducible formate hydrogenlyase (FHL) pathway, formate dehydrogenase (FDHH) and hydrogenase isoenzyme 3. Consistent with this finding, the gene encoding the selenopolypeptide (fdhF) of FDHH was shown to have

A. Birkmann; R. G. Sawers; A. Böck

1987-01-01

111

Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea  

PubMed Central

Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.

Rother, Michael; Krzycki, Joseph A.

2010-01-01

112

The association of halothane-induced lipid peroxidation with the anaerobic metabolism of halothane: an in vitro study in guinea pig liver microsomes.  

PubMed

The formation of pentane and anaerobic metabolites of halothane (2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene) in a mixture of guinea pig liver microsomes and halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in the presence of NADPH was studied by gas chromatography. Under anaerobic conditions, pentane was formed without halothane and was inhibited by oxygen tension. This anaerobic pentane formation was potentiated 2.5 times by addition of halothane. Halothane-induced pentane formation increased dose-dependently with a halothane concentration of up to 2.1 mmol/liter and then decreased in the presence of increasing concentrations of halothane. Inhibition by a higher substrate was also observed in the formation of anaerobic metabolites of halothane. Antioxidant agents, vitamin E and glutathione, reduced the pentane formation, but did not reduce the anaerobic metabolites of halothane. Metyrapone, an inhibitor of cytochrome P-450, reduced both the pentane and anaerobic metabolites of halothane. These results show halothane-induced lipid peroxidation in association with the anaerobic metabolism of halothane in guinea pig liver microsomes. PMID:2373636

Sato, N; Fujii, K; Yuge, O; Morio, M

1990-03-01

113

Simultaneous Involvement of a Tungsten-Containing Aldehyde:Ferredoxin Oxidoreductase and a Phenylacetaldehyde Dehydrogenase in Anaerobic Phenylalanine Metabolism  

PubMed Central

Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg

2014-01-01

114

Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.  

PubMed

Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH. PMID:24214948

Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

2014-01-01

115

Pharmacological preconditioning with diazoxide slows energy metabolism during sustained ischemia.  

PubMed

Ischemic preconditioning (PC) is associated with slower destruction of the adenine nucleotide pool ( summation operatorAd) and slower rate of anaerobic glycolysis during ischemic stress. These changes are concordant with the preconditioned state, supporting an essential role of lowered energy demand in the cardioprotective mechanism of PC. Although pharmacological PC induced by the activation of mitochondrial K(ATP) channels also limits infarct size, its effect on energy metabolism during sustained ischemia is unknown. Using metabolite levels found at baseline and after a 15 min test episode of regional ischemia, the effect of a cardioprotective dose of diazoxide on metabolic features associated with PC was tested in barbital-anesthetized, open-chest dogs. Diazoxide (3.5 mg/kg at an intravenous rate of 1 mL/min) infused before a test episode of ischemia had no effect on baseline metabolic indices. However, during ischemic stress, treated hearts exhibited less destruction of ATP, less degradation of the summation operatorAd into nucleosides and bases, as well as less lactate production than control hearts subjected only to ischemic stress. Thus, diazoxide mimics the metabolic alterations observed in PC tissue. This supports the hypothesis that a reduction in energy demand, which is now equated with an increased ATP to ADP ratio in the sarcoplasm, is a critical component of the mechanism of cardioprotection in preconditioned myocardium. It is hypothesized that during PC or diazoxide treatment, the passage of the summation operatorAd into and out of the mitochondria is slowed, limiting the level of ATP available to the mitochondrial ATPase and preserving ATP and the total summation operatorAd. Altered ischemic mitochondrial metabolism plays an important role in establishing and maintaining the preconditioned state. PMID:18650995

Schwartz, Lisa M; Reimer, Keith A; Crago, Mark S; Jennings, Robert B

2007-01-01

116

Hypoxic Regulation of Glucose Transport, Anaerobic Metabolism and Angiogenesis in Cancer: Novel Pathways and Targets for Anticancer Therapeutics  

Microsoft Academic Search

Cancer cells require a steady source of metabolic energy in order to continue their uncontrolled growth and proliferation. Accelerated glycolysis is one of the biochemical characteristics of cancer cells. Recent work indicates that glucose transport and metabolism are essential for the posttreatment survival of tumor cells, leading to poor prognosis. Glycolytic breakdown of glucose is preceded by the transport of

Rachel E. Airley; Ali Mobasheri

2007-01-01

117

Metabolic pathway to propionate of Pectinatus frisingensis , a strictly anaerobic beer-spoilage bacterium  

Microsoft Academic Search

Pectinatus frisingensis, a recently described species of anaerobic mesophilic beer-spoilage bacteria, grows by fermenting various organic compounds,\\u000a and produces mainly propionate, acetate, and succinate. Although acrylate and succinate were both dismutated by dense resting-cell\\u000a suspensions, propionate production proceeded through the succinate pathway: [3-13C]pyruvate consumption led to equal 13C-labeling of propionate on methyl and methylene groups. Growth on glucose or glycerol

Jean-Luc Tholozan; Jean-Philippe Grivet; Christelle Vallet

1994-01-01

118

Practical markers of the transition from aerobic to anaerobic metabolism during exercise: rationale and a case for affect-based exercise prescription  

Microsoft Academic Search

Background. The high rates of dropout from exercise programs may be attributed in part to the poor ability of most individuals to accurately self-monitor and self-regulate their exercise intensity. The point of transition from aerobic to anaerobic metabolism may be an appropriate level of exercise training intensity as it appears to be effective and safe for a variety of populations.

Panteleimon Ekkekakis; Eric E. Hall; Steven J. Petruzzello

2004-01-01

119

Soil metabolism of [14C]methiozolin under aerobic and anaerobic flooded conditions.  

PubMed

Methiozolin is a new turf herbicide controlling annual bluegrass in various cool- and warm-season turfgrasses. This study was conducted to investigate the fate of methiozolin in soil under aerobic and anaerobic flooded conditions using two radiolabeled tracers, [benzyl-(14)C]- and [isoxazole-(14)C]methiozolin. The mass balance of applied radioactivity ranged from 91.7 to 104.5% in both soil conditions. In the soil under the aerobic condition, [(14)C]methiozolin degraded with time to remain by 17.9 and 15.9% of the applied in soil at 120 days after treatment (DAT). [(14)C]Carbon dioxide and the nonextractable radioactivity increased as the soil aged to reach up to 41.5 and 35.7% for [benzyl-(14)C]methiozolin at 120 DAT, respectively, but 36.1 and 39.8% for [isoxazole-(14)C]methiozolin, respectively, during the same period. The nonextractable residue was associated more with humin and fulvic acid fractions under the aerobic condition. No significant volatile products or metabolites were detected during this study. The half-life of [(14)C]methiozolin was approximately 49 days in the soil under the aerobic condition; however, it could not be estimated in the soil under the anaerobic flooded condition because [(14)C]methiozolin degradation was limited. On the basis of these results, methiozolin is considered to undergo fast degradation by aerobic microbes, but not by anaerobic microbes in soil. PMID:23772889

Hwang, Ki-Hwan; Lim, Jong-Soo; Kim, Sung-Hun; Chang, Hee-Ra; Kim, Kyun; Koo, Suk-Jin; Kim, Jeong-Han

2013-07-17

120

(Summer investigations into the isolation, cultivation and metabolism of anaerobes involved in biodegradation): Progress report, year 4, summer 1988  

SciTech Connect

In the laboratory our students were trained in modern techniques for the isolation and study of a wide variety of microbes from marine and brackish environments. Special emphasis was placed on anaerobes and archaebacteria. Microbial groups that were studied included the propionic bacteria, clostridia, methanogens, acetogens, hydrogen oxidizing anaerobes and aerobes, sulfate-reducing bacteria and sulfur-reducing bacteria, anoxic photosynthetic bacteria, cyanobacteria, spirochetes, symbiotic and non-symbiotic nitrogen fixing bacteria, luminescent bacteria, iron bacteria, magnetic bacteria, and sulfur oxidizing bacteria. The permanent staff led discussions and presented lectures on the metabolism, physiology and biochemistry of the groups listed above. Material was also presented on motility and chemotaxis of bacteria, and particular emphasis was given to molecular approaches to studying evolution of bacteria. We also had five successful Microbiology Mini-symposia (see attached schedule). These one-day symposia involved lecture/seminar presentations by investigators involved in state-of-the-art working particularly exciting areas within the scope of our course.

Not Available

1988-01-01

121

Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1.  

PubMed Central

T1 is a denitrifying bacterium isolated for its ability to grow with toluene serving as the sole carbon source. Mutants of this strain that have defects in the toluene utilization pathway have been isolated and have been separated into classes based on growth phenotypes. A cosmid clone has been isolated by complementing the tutB16 (for toluene utilization) mutation. The complementing gene has been localized to a 3.3-kb DNA fragment. An additional open reading frame upstream of the tutB gene has also been identified and is designated tutC. The nucleotide sequence and the predicted amino acid translation of the 6.4-kb DNA fragment that contains these genes are presented. The tutB and tutC gene products of strain T1 have homology to members of the two-component sensor-regulator family and are proposed to play a role in the regulation of toluene metabolic genes of strain T1. To our knowledge, this is the first published report of the isolation of mutants defective in anaerobic aromatic hydrocarbon degradation. Additionally, we report for the first time the cloning of genes involved in an anaerobic aromatic hydrocarbon degradation pathway.

Coschigano, P W; Young, L Y

1997-01-01

122

Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry.  

PubMed

Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellular electron flow were observed when cells were supplied with different carbon sources. A higher electrochemical response was detected when cells were supplied with xylose than with sucrose or glucose. Moreover, using the mediated electrochemical method, it was possible to detect differences in the electron flow between cells harvested in the exponential and stationary growth phases. The electron flow of C. saccharolyticus was dependent on the NADH- and reduced ferredoxin generation flux and the competitive behavior of cytosolic and membrane-associated oxidoreductases. Sodium oxamate was used to inhibit the NADH-dependent lactate dehydrogenase, upon which more NADH was directed to membrane-associated enzymes for ferricyanide reduction, leading to a higher electrochemical signal. The method is noninvasive and the results presented here demonstrate that this method can be used to accurately detect changes in the intracellular electron flow and to probe redox enzyme properties of a strictly anaerobic thermophile in vivo. PMID:21132340

Kostesha, Natalie; Willquist, Karin; Emneus, Jenny; van Niel, Ed W J

2011-01-01

123

Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.  

PubMed

Energy crops can be used to feed anaerobic digesters and produce renewable energy. However, sustainability of this option requires that it contributes to a net production of renewable energy and a net reduction of fossil CO2 emission. In this paper, the net balance of CO2 emission and renewable energy production is assessed for maize and grass energy crops produced in several agricultural systems relevant for Southern Belgium and surrounding areas. The calculated net energy yields are 8-25 (maize) and 7.4-15.5 (grass) MWh of renewable CH4 per MWh of fossil energy invested, depending on the agricultural option considered. After conversion to electricity, the specific CO2 emissions range from 31 to 104 kg(CO2)MWhelectricity(-1), depending on the case considered. This corresponds to a significant reduction in CO2 emissions compared to the current reference gas-steam turbine technology which produces 456 kg(CO2)MWhelectricity(-1). PMID:17574409

Gerin, Patrick A; Vliegen, François; Jossart, Jean-Marc

2008-05-01

124

Metabolic biomarkers related to energy metabolism in Saudi autistic children  

Microsoft Academic Search

ObjectivesEnergy metabolism is usually manipulated in many neurodegenerative diseases. Autism is considered a definable systemic disorder resulting in a number of diverse factors that may affect the brain development and functions both pre and post natal. The increased prevalence of autism will have enormous future public implications and has stimulated intense research into potential etiologic factors. This study aims to

O. A. Al-Mosalem; A. El-Ansary; O. Attas; L. Al-Ayadhi

2009-01-01

125

Anaerobic microbial transformations in subsurface environments  

SciTech Connect

The first draft of a literature review article entitled, ''Metabolism of Homocyclic (Benzenoid) and Heterocyclic Aromatic Compounds by Microorganisms Under Anaerobic Conditions'' is completed. The article covers biodegradation of both heterocyclic and homocyclic aromatic compounds under a variety of conditions including nitrate reducing, fermentation, sulfate reducing, and methanogensis. Laboratory experiments have been designed to study the anaerobic biotransformation processes involving organic substance derived from energy residual wastes. The test compounds selected for the initial anaerobic biodegradation experiments include aniline, indole, and pyridine. A Hungate apparatus is presently in operation.

Bollag, J.M.; Berry, D.F.; Chanmugathas, P.

1985-04-01

126

Anaerobic digestion of industrial hemp–Effect of harvest time on methane energy yield per hectare  

Microsoft Academic Search

There is a worldwide emphasis to increase the share of renewable transportation fuels. When using agricultural land for production of renewable transportation fuels, the energy output per hectare for different crops and transportation fuels is a crucial factor. In this study, the gross methane energy yield per hectare from anaerobic digestion of industrial hemp (Cannabis sativa L.), was determined at

E. Kreuger; T. Prade; F. Escobar; S.-E. Svensson; J.-E. Englund; L. Björnsson

2011-01-01

127

Metal centers in the anaerobic microbial metabolism of CO and CO2  

PubMed Central

Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO2, for harnessing ‘green’ energy and producing biofuels. One strategy is to convert CO2 into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO2 and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO2, we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO2 and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe4S4 clusters, catalyzes the addition and elimination of CO2 during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron–sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B12 and a Fe4S4 cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co3+ intermediate. Studies of CO and CO2 enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C–C and C–S bond formations.

Bender, Gunes; Pierce, Elizabeth; Hill, Jeffrey A.; Darty, Joseph E.

2014-01-01

128

Formate Dehydrogenase, an Enzyme of Anaerobic Metabolism, Is Induced by Iron Deficiency in Barley Roots1  

PubMed Central

To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants.

Suzuki, Kazuya; Itai, Reiko; Suzuki, Koichiro; Nakanishi, Hiromi; Nishizawa, Naoko-Kishi; Yoshimura, Etsuro; Mori, Satoshi

1998-01-01

129

Hypothalamic control of energy and glucose metabolism.  

PubMed

The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM. PMID:21695389

Sisley, Stephanie; Sandoval, Darleen

2011-09-01

130

ENERGY METABOLISM IN LIGHT HORSES  

Microsoft Academic Search

Q UALITATIVE information regarding en- ergy metabolism of the equine is lacking. Feeding standards have been recommended for light horses; however, these were derived pri- marily from extrapolation of data collected from other classes of livestock, mainly sheep and cattle. Although the horse is classified as a herbivore, certain anatomic characteristics of this species suggest that the nutritional requirements must

G. R. WOODEN; K. L. KNOX; C. L. WILD

2010-01-01

131

Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment  

PubMed Central

Background Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. Methods and Findings Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. Conclusion Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions.

Trotter, Eleanor W.; Rolfe, Matthew D.; Hounslow, Andrea M.; Craven, C. Jeremy; Williamson, Michael P.; Sanguinetti, Guido; Poole, Robert K.; Green, Jeffrey

2011-01-01

132

Anaerobic central metabolic pathways in Shewanella oneidensis MR-1interpreted in the light of isotopic metabolite labeling, enzymeactivities and genome annotation  

SciTech Connect

It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

Tang, Yinjie J.; Meadows, Adam L.; Kirby, James; Keasling, Jay D.

2006-06-27

133

Metabolism  

MedlinePLUS

Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Elsas LJ II. Approach to inborn errors of metabolism. In: Goldman L, Schafer AI, eds. Cecil Medicine . ...

134

Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle.  

PubMed

The glyoxylate cycle is a modified form of the tricarboxylic acid cycle that converts C2 compounds into C4 dicarboxylic acids at plant developmental stages. By studying submerged rice seedlings, we revealed the activation of the glyoxylate cycle by identifying the increased transcripts of mRNAs of the genes of isocitrate lyase (ICL) and malate synthase (MS), two characteristic enzymes of the glyoxylate cycle. Northern blot analysis showed that ICL and MS were activated in the prolonged anaerobic environment. The activity assay of pyruvate decarboxylase and ICL in the submerged seedlings indicated an 8.8-fold and 3.5-fold increase over that in the unsubmerged seedlings, respectively. The activity assay of acetyl-coenzyme A synthetase in the submerged seedlings indicated a 3-fold increase over that in the unsubmerged seedlings, which is important for initiating acetate metabolism. Consequently, we concluded that the glyoxylate cycle was involved in acetate metabolism under anaerobic conditions. PMID:15944756

Lu, Ying; Wu, Yong-Rui; Han, Bin

2005-06-01

135

Anaerobic Energy Expenditure and Mechanical Efficiency during Exhaustive Leg Press Exercise  

PubMed Central

Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r?=??0.76; P<0.01) and lactate (r?=??0.91; P<0.01), respectively, and were accompanied by parallel decreases (P<0.01-0.05) in muscle energy charge (0.6%), muscle ATP/ADP (8%) and ATP/AMP (19%) ratios, as well as by increases in ADP content (7%). The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4±4.0 vs 14.2±2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.

Gorostiaga, Esteban M.; Navarro-Amezqueta, Ion; Cusso, Roser; Hellsten, Ylva; Calbet, Jose A. L.; Guerrero, Mario; Granados, Cristina; Gonzalez-Izal, Miriam; Ibanez, Javier; Izquierdo, Mikel

2010-01-01

136

Anaerobic metabolism in roots of Kentucky bluegrass in response to short-term waterlogging alone and in combination with high temperatures  

Microsoft Academic Search

Waterlogging often occurs simultaneously with high temperatures during summer. The objective of this study was to characterize\\u000a anaerobic metabolism and transcript abundance of fermentative enzymes in roots of Kentucky bluegrass (Poa pratensis L.) in response to short-term waterlogging and high temperature stresses. Grasses were subjected to four treatments: (1)\\u000a well-drained under normal temperature (20\\/15°C, day\\/night; control); (2) waterlogging under normal

Kehua Wang; Shaomin Bian; Yiwei Jiang

2009-01-01

137

One carbon metabolism in anaerobic bacteria: organic acid and methane production. Final technical report  

SciTech Connect

Organic acids (i.e acetate and butyrate) and methane are respectively important as a chemical commodity and a fuel source for industry. Both of these products can be generated via bacterial fermentation of single carbon compounds (i.e, H/sub 2//CO/sub 2/, HCOOH, CO CH/sub 3/OH) derived from syngas or the pyrolysis of either coals-peats or renewable biomass. This research aims to understand the pathways and regulation of one carbon metabolism in acidogenic and methanogenic bacteria by detailed physiological and biochemical studies. These investigations will characterize and compare formate, methanol, H/sub 2//CO/sub 2/, CO, and acetate metabolism of Methanosarcina barkeri with that of Butyribacterium methylotrophicum. The research will focus on: elucidation of the function of formate dehydrogenase and carbon monoxide dehydrogenase; the catabolic routes and biochemical mechanisms for transformation of single carbon compounds and acetate; and, the regulation of single carbon metabolism during growth on multiple C/sub 1/ substrates or on multicarbon substrates. 8 refs.

Zeikus, J.G.

1985-01-01

138

Recent development of anaerobic digestion processes for energy recovery from wastes.  

PubMed

Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters. PMID:17368391

Nishio, Naomichi; Nakashimada, Yutaka

2007-02-01

139

Anaerobic biotechnological approaches for production of liquid energy carriers from biomass  

Microsoft Academic Search

In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological\\u000a approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can\\u000a be employed to decrease environmental pollution and reduce dependency on fossil fuels. There are two major biological processes\\u000a that can convert biomass

Dimitar Karakashev; Anne Belinda Thomsen; Irini Angelidaki

2007-01-01

140

Semecarpus anacardium nut extract promotes the antioxidant defence system and inhibits anaerobic metabolism during development of lymphoma.  

PubMed

Antioxidants are substances that fight against ROS (reactive oxygen species) and protect the cells from their damaging effects. Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which promotes a large number of human diseases, including cancer. Therefore antioxidants may be regarded as potential anticarcinogens, as they may slow down or prevent development of cancer by reducing oxidative stress. Fruits and vegetables are rich source of antioxidants. Moreover, a number of phytochemicals present in medicinal plants are known to possess antioxidant activity. Therefore the aim of the present study was to investigate antioxidant activity of the aqueous extract of nuts of the medicinal plant Semecarpus anacardium in AKR mouse liver during the development of lymphoma. Antioxidant action was monitored by the activities of antioxidant enzymes catalase, superoxide dismutase and glutathione transferase. The effect of S. anacardium was also studied by observing the activity of LDH (lactate dehydrogenase), an enzyme of anaerobic metabolism. LDH activity serves as a tumour marker. The activities of antioxidant enzymes decreased gradually as lymphoma developed in mouse. However, LDH activity increased progressively. Administration of the aqueous extract of S. anacardium to lymphoma-transplanted mouse led to an increase in the activities of antioxidant enzymes, whereas LDH activity decreased significantly, indicating a decrease in carcinogenesis. The aqueous extract was found to be more effective than doxorubicin, a classical anticarcinogenic drug, with respect to its action on antioxidant enzymes and LDH in the liver of mice with developing lymphomas. PMID:18764779

Verma, Nibha; Vinayak, Manjula

2009-06-01

141

Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions.  

PubMed Central

Tuberculosis is characterized by periods in which the disease may be quiescent or even clinically inapparent, but in which tubercle bacilli persist and retain the potential to reactivate the disease. The present study was carried out in pursuit of an in vitro model which might contribute to the understanding of the physiology of nonreplicating persisters, with oxygen limitation used as the means of inducing this state. When actively growing aerated cultures of Mycobacterium tuberculosis were suddenly placed under anaerobic conditions the bacilli died rapidly, with a half-life of 10 h. When the bacilli were grown in liquid medium without agitation, they adapted to the microaerophilic conditions encountered in the sediment; the adapted bacilli in the sediment did not replicate there but were tolerant of anaerobiosis, exhibiting a half-life of 116 h. Among the early events associated with the adaptation were the synthesis of an antigen designated URB, the function of which is not known, and a fourfold increase in isocitrate lyase activity. The bacilli later exhibited a 10-fold increase in synthesis of a glycine dehydrogenase that catalyzes the reductive amination of glyoxylate, concomitantly oxidizing NADH to NAD. Specific activities of other enzymes studied were either not affected or moderately diminished in the sedimented bacilli. It is proposed that the glyoxylate synthesis in this model serves mainly to provide a substrate for the regeneration of NAD that may be required for the orderly completion of the final cycle of bacillary replication before oxygen limitation stops growth completely. This orderly shutdown is essential to continued survival of M. tuberculosis in a quiescent form.

Wayne, L G; Lin, K Y

1982-01-01

142

Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect  

PubMed Central

Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similarity of this condition to the environment of tumor cells and ulcer made us to investigate anaerobic glycolysis in these cells. To this end, we cultured fibroblasts isolated from fresh human newborn foreskin in serum free medium for 16, 24, 48 and 72 hrs and measured glucose consumption, lactate secretion and intracellular LDH in these cells. The results showed despite the lack of insulin, the 16hr serum starved fibroblasts consumed glucose similar to non-starved fibroblasts control. Moreover, in this condition these cells secreted higher levels of lactate and exhibited higher levels of intracellular LDH in comparison to non-starved fibroblasts control. Thus it could be concluded that in serum starvation condition, the newborn human dermal fibroblasts may change the metabolic strategy to Warburg effect. This finding opens a new perspective to further understanding the basic mechanisms involved in communication between tumor cells and fibroblasts.

Golpour, Monireh; Akhavan Niaki, Haleh; Khorasani, Hamid Reza; Hajian, Arian; Mehrasa, Roya; Mostafazadeh, Amrollah

2014-01-01

143

Uncoupled metabolism stimulated by chemical uncoupler and oxic-settling-anaerobic combined process to reduce excess sludge production.  

PubMed

The effects of three uncoupled metabolic systems (conventional activated sludge process with the addition of 3,3', 4',5-tetrachlorosalicylanilide [TCS], oxic-settling-anaerobic [OSA] process modified by insertion of a sludge-holding tank in the sludge return line, and TCS and OSA combined process) on reducing excess sludge production were studied. Compared with the control conventional activated sludge process, the most effective system was the combined process, which could reduce excess sludge production by 46.90%. The 180-d operation results confirmed that TCS is an effective chemical uncoupler in reducing the sludge yield but that it had an adverse effect on substrate removal capability, effluent nitrogen concentration, and sludge settleability. The OSA process decreased excess sludge production by only 26% but had less adverse effect on effluent quality and could improve sludge settleability. The effluent total phosphorous concentration of the three systems was slightly lower than of the control unit. Microbial populations were monitored by both microscopic and molecular biologic analysis method (polymerase chain reaction [PCR]-denaturing gradient gel electrophoresis [DGGE]). The presence of TCS caused metazoans to disappear and decreased the number and activity of protozoa. PCR amplification of 16S rRNA and sequent DGGE analysis found a shift in the diversity of the predominant species. The results imply that OSA combined with the chemical uncoupler process may effectively reduce excess sludge yield and not affect process performance significantly. PMID:16377849

Ye, Fen Xia; Li, Ying

2005-12-01

144

Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.  

PubMed

This review discusses anaerobic production of methane, hydrogen, ethanol, butanol and electricity from microalgal biomass. The amenability of microalgal biomass to these bioenergy conversion processes is compared with other aquatic and terrestrial biomass sources. The highest energy yields (kJ g(-1) dry wt. microalgal biomass) reported in the literature have been 14.8 as ethanol, 14.4 as methane, 6.6 as butanol and 1.2 as hydrogen. The highest power density reported from microalgal biomass in microbial fuel cells has been 980 mW m(-2). Sequential production of different energy carriers increases attainable energy yields, but also increases investment and maintenance costs. Microalgal biomass is a promising feedstock for anaerobic energy conversion processes, especially for methanogenic digestion and ethanol fermentation. The reviewed studies have mainly been based on laboratory scale experiments and thus scale-up of anaerobic utilization of microalgal biomass for production of energy carriers is now timely and required for cost-effectiveness comparisons. PMID:23021960

Lakaniemi, Aino-Maija; Tuovinen, Olli H; Puhakka, Jaakko A

2013-05-01

145

Follistatin promotes adipocyte differentiation, browning, and energy metabolism[S  

PubMed Central

Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-? superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1? was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism.

Braga, Melissa; Reddy, Srinivasa T.; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B.; Norris, Keith C.; Devaskar, Sherin U.; Reue, Karen; Singh, Rajan

2014-01-01

146

Energy metabolism of Bdellovibrio bacteriovorus  

Microsoft Academic Search

Bdellovibrio bacteriovorus, strain Bd. 109 Sa, generates ATP mainly by oxidative phosphorylation during electron transport. During exponential growth the ATP pool is constant (9 nmoles\\/100 µg N) indicating that energy-producing and energy-consuming reactions are well balanced. The ratio of substrate respiration\\/endogenous respiration is approx. 2.5\\/1. Energy charge is constant both in endogenous and substrate respiration at values of 0.62 to

D. Gadkari; H. Stolp

1975-01-01

147

POST-EXERCISE LACTATE PRODUCTION AND METABOLISM IN THREE SPECIES OF AQUATIC AND TERRESTRIAL DECAPOD CRUSTACEANS  

Microsoft Academic Search

Summary Aquatic and terrestrial crustaceans are dependent on both aerobic and anaerobic metabolism for energy production during exercise. Anaerobic energy production is marked by an accumulation of lactate in both muscle tissue and haemolymph, but the metabolic fate of lactate is not clear. Lactate recycling via gluconeogenesis and the potential role of carbonic anhydrase (CA) in supplying bicarbonate for the

RAYMOND P. HENRY; CHARLES E. BOOTH; FRANCOIS H. LALLIER; PATRICK J. WALSH

148

Energy Metabolism of Monocytic Ehrlichia.  

National Technical Information Service (NTIS)

We investigated if the monocytic Ehrlichia are totally dependent on their host cells for energy, or, as Rickettsia, are capable of some ATP synthesis in vitro. The Miyayama strain Ehrlichia sennetsu and the Maryland and Illinois strains of Enrlichia risti...

E. Weiss G. A. Dasch J. C. Williams Y. H. Kang

1989-01-01

149

High Ethanol Titers from Cellulose by Using Metabolically Engineered Thermophilic, Anaerobic Microbes ? † ‡  

PubMed Central

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The ?ldh ?pta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of both C. thermocellum and T. saccharolyticum. Fermentation of 92 g/liter Avicel by this coculture resulted in 38 g/liter ethanol, with acetic and lactic acids below detection limits, in 146 h. These results demonstrate that ethanol production by thermophilic, cellulolytic microbes is amenable to substantial improvement by metabolic engineering.

Argyros, D. Aaron; Tripathi, Shital A.; Barrett, Trisha F.; Rogers, Stephen R.; Feinberg, Lawrence F.; Olson, Daniel G.; Foden, Justine M.; Miller, Bethany B.; Lynd, Lee R.; Hogsett, David A.; Caiazza, Nicky C.

2011-01-01

150

High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes.  

PubMed

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The ?ldh ?pta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of both C. thermocellum and T. saccharolyticum. Fermentation of 92 g/liter Avicel by this coculture resulted in 38 g/liter ethanol, with acetic and lactic acids below detection limits, in 146 h. These results demonstrate that ethanol production by thermophilic, cellulolytic microbes is amenable to substantial improvement by metabolic engineering. PMID:21965408

Argyros, D Aaron; Tripathi, Shital A; Barrett, Trisha F; Rogers, Stephen R; Feinberg, Lawrence F; Olson, Daniel G; Foden, Justine M; Miller, Bethany B; Lynd, Lee R; Hogsett, David A; Caiazza, Nicky C

2011-12-01

151

Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments  

PubMed Central

Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

2010-01-01

152

Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy  

PubMed Central

With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

2013-01-01

153

Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.  

PubMed

With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

2013-09-01

154

Preabsorptive Metabolism of Sodium Arsenate by Anaerobic Microbiota of Mouse Cecum Forms a Variety of Methylated and Thiolated Arsenicals  

EPA Science Inventory

The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA...

155

Energy Metabolism in Capnocytophaga ochracea  

PubMed Central

Among the microflora of the gingival sulcus are members of the genus Capnocytophaga which have been implicated as possible etiological agents of juvenile periodontitis and systemic infectious diseases. In this study, the pathway used by C. ochracea strain 25 for generating energy from glucose was investigated. When grown in a complex medium supplemented with glucose and NaHCO3, the major end products formed were acetate (4.6 mmol), succinate (11.0 mmol), pyruvate (4.3 mmol), and oxalacetate (3.6 mmol), and the molar growth yield was 58. Addition of yeast extract to the growth medium caused (i) an increase in acetate (9.2 mmol) and succinate (14.3 mmol), (ii) a decrease in pyruvate (0 mmol) and oxalacetate (1.1 mmol), and (iii) the molar growth yield increased to 75. Glucose was transported by a phosphoenolpyruvate:phosphotransferase system and then catabolized to phosphoenolpyruvate by enzymes of the Embden-Meyerhof-Parnas pathway. No activities were detected for the key enzymes of the Warburg-Dickens, Entner-Douderoff, or hexose phosphoketolase pathways. During growth in the yeast extract-supplemented medium, approximately 37% of the phosphoenolpyruvate carbon was converted to acetate by pyruvate kinase, a pyruvate-decarboxylating enzyme activity, and acetate kinase; the remaining 63% was converted to succinate via phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate hydratase, and fumarate reductase.

Calmes, Robert; Rambicure, G. W.; Gorman, W.; Lillich, Thomas T.

1980-01-01

156

Energy metabolism in selected physical exercises  

Microsoft Academic Search

Summary  15 various physical activities was examined in 275 subjects under training conditions of the particular activity. The sample contains usually 15 medium athletically developed persons at minimum.The energy metabolism was followed by indirect calorimetrical method, the heart rate was registered throughout the experiment telemetrically. The activities were divided into three groups, according to the time of duration.The results showed, that

V. Seliger

1968-01-01

157

Energy Balance and Metabolic rate in Active Midlife Women  

Microsoft Academic Search

LEARNING OUTCOME: To understand the relationship between energy balance and metabolic rate during rest, sitting, and standing in active midlife women.The metabolic consequences of abnormal eating habits in young women are well documented; however, there is a paucity of data examining this issue in active midlife women. This study examined the relationship between energy balance (EB) and metabolic rate at

B. A. Smith; M. M. Manore; S. S. Carroll; J. S. Skinner

1996-01-01

158

Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.  

PubMed

Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance. PMID:16915704

Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

2006-01-01

159

Caffeine improves supramaximal cycling but not the rate of anaerobic energy release  

Microsoft Academic Search

The purpose of this study was to determine if improved supramaximal exercise performance in trained cyclists following caffeine\\u000a ingestion was associated with enhanced O2 uptake ($$ \\\\dot{V}{\\\\text{O}}_{2} $$ kinetics), increased anaerobic energy provision (accumulated O2—AO2—deficit), or a reduction in the accumulation of metabolites (for example, K+) associated with muscular fatigue. Six highly trained male cyclists ($$ \\\\dot{V}{\\\\text{O}}_{2} $$peak 68 ± 8 mL kg?1 min?1) performed

Michael J. Simmonds; Clare L. Minahan; Surendran Sabapathy

2010-01-01

160

Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody.  

PubMed

Cetuximab is a chimeric antibody approved for the treatment of metastatic colorectal cancer that selectively targets epidermal growth factor receptor (EGFR) signaling. Treatment efficacy with this drug is often impaired by acquired resistance and poor information has been accumulated on the mechanisms underlying such a phenomenon. By taking advantage of a syngenic cellular system of sensitivity and acquired resistance to anti-EGFR therapy in the colorectal carcinoma GEO cell line, we profiled protein expression differences between Cetuximab-sensitive and -resistant cells. Combined 2D DIGE and MS analyses revealed a main proteomic signature resulting from selective deregulation of various metabolic enzymes, including glucose-6-phosphate dehydrogenase, transketolase, lactate dehydrogenase B, and pyruvate dehydrogenase E1, which was also confirmed by Western blotting experiments. Lactate dehydrogenase B downregulation has been already related to an increased anaerobic utilization of glucose by tumor cells; accordingly, we verified that Cetuximab-resistant cells have a significantly higher production of lactate. Resistant cells also showed decreased nicotinamide adenine dinucleotide phosphate (NADPH) levels. Observed protein deregulations were not related to functional alterations of the hypoxia-inducible factor 1-associated pathways. Our data demonstrate that increased anaerobic metabolism is a prominent feature observed in the GEO syngenic model of acquired resistance to anti-EGFR therapy in colorectal cancer. PMID:23281225

Monteleone, Francesca; Rosa, Roberta; Vitale, Monica; D'Ambrosio, Chiara; Succoio, Mariangela; Formisano, Luigi; Nappi, Lucia; Romano, Maria Fiammetta; Scaloni, Andrea; Tortora, Giampaolo; Bianco, Roberto; Zambrano, Nicola

2013-03-01

161

Moderate Intra-Abdominal Hypertension Leads to Anaerobic Metabolism in the Rectus Abdominis Muscle Tissue of Critically Ill Patients: A Prospective Observational Study  

PubMed Central

Purpose. We hypothesize that intra-abdominal hypertension (IAH) is associated with the presence of anaerobic metabolism in the abdominal rectus muscle (RAM) tissue of critically ill patients. Methods. We included 10 adult, critically ill patients with intra-abdominal pressure (IAP) above 12?mmHg. Microdialysis catheters (CMA 60) were inserted into the RAM tissue. The samples were collected up to 72 hours after enrollment. Results. The patients' median (IQR) APACHE II at inclusion was 29 (21–37); 7 patients were in shock. IAP was 14.5 (12.5–17.8)?mmHg at baseline and decreased significantly over time, concomitantly with arterial lactate and vasopressors requirements. The tissue lactate-to-pyruvate (L/P) ratio was 49 (36–54) at the beginning of the study and decreased significantly throughout the study. Additionally, the tissue lactate, lactate-to-glucose (L/G) ratio, and glutamate concentrations changed significantly during the study. The correlation analysis showed that lower levels of pyruvate and glycerol were associated with higher MAP and abdominal perfusion pressures (APP) and that higher levels of glutamate were correlated to elevated IAP. Conclusions. Moderate IAH leads to RAM tissue anaerobic metabolism suggestive for hypoperfusion in critically ill patients. Correlation analysis supports the concept of using APP as the primary endpoint of resuscitation in addition to MAP and IAP.

Maddison, Liivi; Karjagin, Juri; Tenhunen, Jyrki; Kirsimagi, Ulle; Starkopf, Joel

2014-01-01

162

Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered Saccharomyces cerevisiae: Possible Consequence of Energy-Dependent Lactate Export  

PubMed Central

Due to a growing market for the biodegradable and renewable polymer polylactic acid, the world demand for lactic acid is rapidly increasing. The tolerance of yeasts to low pH can benefit the process economy of lactic acid production by minimizing the need for neutralizing agents. Saccharomyces cerevisiae (CEN.PK background) was engineered to a homofermentative lactate-producing yeast via deletion of the three genes encoding pyruvate decarboxylase and the introduction of a heterologous lactate dehydrogenase (EC 1.1.1.27). Like all pyruvate decarboxylase-negative S. cerevisiae strains, the engineered strain required small amounts of acetate for the synthesis of cytosolic acetyl-coenzyme A. Exposure of aerobic glucose-limited chemostat cultures to excess glucose resulted in the immediate appearance of lactate as the major fermentation product. Ethanol formation was absent. However, the engineered strain could not grow anaerobically, and lactate production was strongly stimulated by oxygen. In addition, under all conditions examined, lactate production by the engineered strain was slower than alcoholic fermentation by the wild type. Despite the equivalence of alcoholic fermentation and lactate fermentation with respect to redox balance and ATP generation, studies on oxygen-limited chemostat cultures showed that lactate production does not contribute to the ATP economy of the engineered yeast. This absence of net ATP production is probably due to a metabolic energy requirement (directly or indirectly in the form of ATP) for lactate export.

van Maris, Antonius J. A.; Winkler, Aaron A.; Porro, Danilo; van Dijken, Johannes P.; Pronk, Jack T.

2004-01-01

163

Melatonin, energy metabolism, and obesity: a review.  

PubMed

Melatonin is an old and ubiquitous molecule in nature showing multiple mechanisms of action and functions in practically every living organism. In mammals, pineal melatonin functions as a hormone and a chronobiotic, playing a major role in the regulation of the circadian temporal internal order. The anti-obesogen and the weight-reducing effects of melatonin depend on several mechanisms and actions. Experimental evidence demonstrates that melatonin is necessary for the proper synthesis, secretion, and action of insulin. Melatonin acts by regulating GLUT4 expression and/or triggering, via its G-protein-coupled membrane receptors, the phosphorylation of the insulin receptor and its intracellular substrates mobilizing the insulin-signaling pathway. Melatonin is a powerful chronobiotic being responsible, in part, by the daily distribution of metabolic processes so that the activity/feeding phase of the day is associated with high insulin sensitivity, and the rest/fasting is synchronized to the insulin-resistant metabolic phase of the day. Furthermore, melatonin is responsible for the establishment of an adequate energy balance mainly by regulating energy flow to and from the stores and directly regulating the energy expenditure through the activation of brown adipose tissue and participating in the browning process of white adipose tissue. The reduction in melatonin production, as during aging, shift-work or illuminated environments during the night, induces insulin resistance, glucose intolerance, sleep disturbance, and metabolic circadian disorganization characterizing a state of chronodisruption leading to obesity. The available evidence supports the suggestion that melatonin replacement therapy might contribute to restore a more healthy state of the organism. PMID:24654916

Cipolla-Neto, J; Amaral, F G; Afeche, S C; Tan, D X; Reiter, R J

2014-05-01

164

Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilisation.  

PubMed

Energy crops (willow, sugar beet and grass silage) were digested in pilot scale two-stage anaerobic digesters. The specific methane yields obtained were 0.16, 0.38 and 0.39 m3 kg(-1) added volatile solids (VSadded) for willow, sugar beet and grass, respectively, corresponding to yearly gross energy yields of 15, 53 and 26 megawatt-hours (MWh) per hectare. With grass and sugar beets as substrate, 84-85% of the harvestable methane was obtained within 30 days. In pilot scale two-stage digestion of willow and sugar beet, 56 and 85% of the laboratory scale methane yields were obtained, but digestion of grass in two-stage reactors yielded 5% more methane than digestion in laboratory scale completely mixed low solids systems, possibly due to the pH conditions favourable to hydrolysis in the two-stage system. In digestion of grass and sugar beet the liquid at the end of digestion was rich in ammonium nitrogen, and the nitrogen in the substrate was efficiently mineralised. The results show that heavy metal concentrations are not likely to limit the utilisation of residues from digestion of nonmetal accumulating crops. Efficient mobilisation of heavy metals during the acidic phase of digestion revealed the possibility of removing metals from leachate generated in two-stage anaerobic digestion of phytoextracting crops. PMID:16506517

Lehtomäki, A; Björnsson, L

2006-02-01

165

Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run.  

PubMed

This study examined the hypothesis that running speed over 800- and 1,500-m races is regulated by the prevailing anaerobic (oxygen independent) store (ANS) at each instant of the race up until the all-out phase of the race over the last several meters. Therefore, we hypothesized that the anaerobic power that allows running above the speed at maximal oxygen uptake (VO2max) is regulated by ANS, and as a consequence the time limit at the anaerobic power (tlim PAN=ANS/PAN) is constant until the final sprint. Eight 800-m and seven 1,500-m male runners performed an incremental test to measure VO2max and the minimal velocity associated with the attainment of VO2max (vVO2max), referred to as maximal aerobic power, and ran the 800-m or 1,500-m race with the intent of achieving the lowest time possible. Anaerobic power (PAN) was measured as the difference between total power and aerobic power, and instantaneous ANS as the difference between end-race and instantaneous accumulated oxygen deficits. In 800 m and 1,500 m, tlim PAN was constant during the first 70% of race time in both races. Furthermore, the 1,500-m performance was significantly correlated with tlim PAN during this period (r=-0.92, P<0.01), but the 800-m performance was not (r=-0.05, P=0.89), although it was correlated with the end-race oxygen deficit (r=-0.70, P=0.05). In conclusion, this study shows that in middle-distance races over both 800 m and 1,500 m, the speed variations during the first 70% of the race time serve to maintain constant the time to exhaustion at the instantaneous anaerobic power. This observation is consistent with the hypothesis that at any instant running speed is controlled by the ANS remaining. PMID:19478190

Billat, Véronique; Hamard, Laurence; Koralsztein, Jean Pierre; Morton, R Hugh

2009-08-01

166

Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells.  

PubMed

Due to its significant antimicrobial properties, nanosilver (nAg) has been substantially used in a wide spectrum of areas. This has raised the concerns on the detrimental effects on environment and human health. Although numerous studies have documented nAg-mediated toxicity to cells or organisms, little attempt has been made to study the biological impacts of nAg on cells at nontoxic concentrations, namely, the distinct biological effects that can be separated from direct cytotoxicity. Here, we studied nAg-mediated effects on energy metabolism in cells under sublethal exposure. Treatment of nAg at nontoxic concentrations resulted in a decline of ATP synthesis and attenuation of respiratory chain function in nontumor HEK293T cells and tumor cells with differential respiration rate, including HepG2, HeLa, A498, and PC3 cells. Cellular energy homeostasis was switched from oxidative phosphorylation-based aerobic metabolism to anaerobic glycolysis, which is an adaption process to satisfy the energy demand for cell survival. Nanospheres with smaller size showed greater capability to alter cellular energy metabolism than those with larger size or nanoplates. Mechanistic investigation manifested that inhibition of PGC-1? by nAg was, at least partially, accountable for the transition from oxidative phosphorylation to glycolysis. Additionally, altered expression of a few energy metabolism-related genes (such as PFKFB3 and PDHA1) was also involved in the transition process. We further showed nAg-induced depolarization of mitochondrial membrane potential and reduction of respiratory chain complex activity. Together, our combined results uncovered the mechanisms by which nAg induced energy metabolism reprogramming in both tumor and nontumor cells under sublethal dosage. PMID:24810997

Chen, Yue; Wang, Zhe; Xu, Ming; Wang, Xiang; Liu, Rui; Liu, Qian; Zhang, Zhihong; Xia, Tian; Zhao, Jincai; Jiang, Guibin; Xu, Yong; Liu, Sijin

2014-06-24

167

Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance.  

PubMed

An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. PMID:20797849

Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca

2011-01-01

168

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.  

PubMed

Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. PMID:21975301

Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

2012-01-01

169

Haematological and iron-related parameters in male and female athletes according to different metabolic energy demands  

Microsoft Academic Search

We investigated the iron-related haematological parameters in both male and female athletes participating in different sporting\\u000a disciplines necessitating different metabolic energy demands. A total of 873 athletes (514 males, mean age: 22.08 ± 4.95 years\\u000a and 359 females, mean age: 21.38 ± 3.88 years) were divided according to gender and to the predominant energy system required\\u000a for participation in sport (aerobic, anaerobic or mixed) and haematological

Radoje Milic; Jelena Martinovic; Milivoj Dopsaj; Violeta Dopsaj

2011-01-01

170

Nitric oxide and energy metabolism in mammals.  

PubMed

Nitric oxide (NO) is a signaling molecule synthesized from L-arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP-activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin-sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO-mediated pathways through dietary supplementation with L-arginine or its precursor L-citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans. PMID:23553707

Dai, Zhaolai; Wu, Zhenlong; Yang, Ying; Wang, Junjun; Satterfield, M Carey; Meininger, Cynthia J; Bazer, Fuller W; Wu, Guoyao

2013-01-01

171

Cerebral Energy Metabolism after Subarachnoid Hemorrhage.  

National Technical Information Service (NTIS)

The purpose of this study was to determine the effects of subarachnoid hemorrhage (SAH) on cerebral blood flow and cerebral oxidative metabolism. Average total hemispheric flow was measured utilizing a polarographic technique and the metabolic consumption...

J. M. Fein

1975-01-01

172

Respiration, respiratory metabolism and energy consumption under weightless conditions  

NASA Technical Reports Server (NTRS)

Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

Kasyan, I. I.; Makarov, G. F.

1975-01-01

173

Role of the microbiome in energy regulation and metabolism.  

PubMed

Intestinal microbes regulate metabolic function and energy balance; an altered microbial ecology is believed to contribute to the development of several metabolic diseases. Relative species abundance and metabolic characteristics of the intestinal microbiota change substantially in those who are obese or have other metabolic disorders and in response to ingested nutrients or therapeutic agents. The mechanisms through which the intestinal microbiota and its metabolites affect host homeostasis are just beginning to be understood. We review the relationships between the intestinal microbiota and host metabolism, including energy intake, use, and expenditure, in relation to glucose and lipid metabolism. These associations, along with interactions among the intestinal microbiota, mucus layer, bile acids, and mucosal immune responses, reveal potential mechanisms by which the microbiota affect metabolism. We discuss how controlled studies involving direct perturbations of microbial communities in human and animal models are required to identify effective therapeutic targets in the microbiota. PMID:24560870

Nieuwdorp, Max; Gilijamse, Pim W; Pai, Nikhil; Kaplan, Lee M

2014-05-01

174

Changes in protein expression in the salt marsh mussel Geukensia demissa: evidence for a shift from anaerobic to aerobic metabolism during prolonged aerial exposure.  

PubMed

During aerial exposure (emersion), most sessile intertidal invertebrates experience cellular stress caused by hypoxia, and the amount and types of hypoxia-induced stress will differ as exposure time increases, likely leading to altered metabolic responses. We examined proteomic responses to increasing emersion times and decreasing recovery (immersion) times in the mussel Geukensia demissa, which occurs in salt marshes along the east coast of North America. Individuals are found above mean tide level, and can be emersed for over 18 h during spring tides. We acclimated mussels to full immersion at 15°C for 4 weeks, and compared changes in gill protein expression between groups of mussels that were continually immersed (control), were emersed for 6 h and immersed during recovery for 18 h (6E/18R), were emersed for 12 h and recovered for 12 h (12E/12R), or were emersed for 18 h with a 6 h recovery (18E/6R). We found clear differences in protein expression patterns among the treatments. Proteins associated with anaerobic fermentation increased in abundance in 6E/18R but not in 12E/12R or 18E/6R. Increases in oxidative stress proteins were most apparent in 12E/12R, and in 18E/6R changes in cytoskeletal protein expression predominated. We conclude that G. demissa alters its strategy for coping with emersion stress over time, relying on anaerobic metabolism for short- to medium-duration exposure, but switching to an air-gaping strategy for long-term exposure, which reduces hypoxia stress but may cause structural damage to gill tissue. PMID:24501137

Fields, Peter A; Eurich, Chris; Gao, William L; Cela, Bekim

2014-05-01

175

Systemic Oxidative Stress Is Associated With Lower Aerobic Capacity and Impaired Skeletal Muscle Energy Metabolism in Patients With Metabolic Syndrome  

PubMed Central

OBJECTIVE Systemic oxidative stress is associated with insulin resistance and obesity. We tested the hypothesis that systemic oxidative stress is linked to lower aerobic capacity and skeletal muscle dysfunction in metabolic syndrome (MetS). RESEARCH DESIGN AND METHODS The incremental exercise testing with cycle ergometer was performed in 14 male patients with MetS and 13 age-, sex-, and activity-matched healthy subjects. Systemic lipid peroxidation was assessed by serum thiobarbituric acid reactive substances (TBARS), and systemic antioxidant defense capacity was assessed by serum total thiols and enzymatic activity of superoxide dismutase (SOD). To assess skeletal muscle energy metabolism, we measured high-energy phosphates in the calf muscle during plantar flexion exercise and intramyocellular lipid (IMCL) in the resting leg muscle, using 31P- and 1proton-magnetic resonance spectroscopy, respectively. RESULTS Serum TBARS were elevated (12.4 ± 7.1 vs. 3.7 ± 1.1 ?mol/L; P < 0.01), and serum total thiols and SOD activity were decreased (290.8 ± 51.2 vs. 398.7 ± 105.2 ?mol/L, P < 0.01; and 22.2 ± 8.4 vs. 31.5 ± 8.5 units/L, P < 0.05, respectively) in patients with MetS compared with healthy subjects. Peak VO2 and anaerobic threshold normalized to body weight were significantly lower in MetS patients by 25 and 31%, respectively, and inversely correlated with serum TBARS (r = ?0.49 and r = ?0.50, respectively). Moreover, muscle phosphocreatine loss during exercise was 1.4-fold greater in patients with MetS (P < 0.05), and IMCL content was 2.9-fold higher in patients with MetS (P < 0.01), indicating impaired skeletal muscle energy metabolism, and these indices positively correlated with serum TBARS (r = 0.45 and r = 0.63, respectively). CONCLUSIONS Systemic oxidative stress was associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in patients with MetS.

Yokota, Takashi; Kinugawa, Shintaro; Yamato, Mayumi; Hirabayashi, Kagami; Suga, Tadashi; Takada, Shingo; Harada, Kuniaki; Morita, Noriteru; Oyama-Manabe, Noriko; Kikuchi, Yasuka; Okita, Koichi; Tsutsui, Hiroyuki

2013-01-01

176

Anaerobic bacteria  

MedlinePLUS

Anaerobic bacteria are bacteria that do not live or grow in the presence of oxygen. In humans, ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

177

Anaerobic Digestion in Suspended Growth Bioreactors  

Microsoft Academic Search

\\u000a This chapter concerns the principles of suspended growth anaerobic digestion. The fundamentals of anaerobic metabolism of\\u000a organic matter are first presented. This is followed by presentation of anaerobic process stoichiometry and energetics as\\u000a well as kinetics as these are prerequisites for the design of anaerobic processes. The importance of the feed characteristics\\u000a that make a particular substrate medium or feedstock

Gerasimos Lyberatos; Pratap C. Pullammanappallil

178

Energy metabolism and the skeleton: Reciprocal interplay  

PubMed Central

The relation between bone remodelling and energy expenditure is an intriguing, and yet unexplained, challenge of the past ten years. In fact, it was only in the last few years that the skeleton was found to function, not only in its obvious roles of body support and protection, but also as an important part of the endocrine system. In particular, bone produces different hormones, like osteocalcin (OC), which influences energy expenditure in humans. The undercarboxylated form of OC has a reduced affinity for hydroxyapatite; hence it enters the systemic circulation more easily and exerts its metabolic functions for the proliferation of pancreatic ?-cells, insulin secretion, sensitivity, and glucose tolerance. Leptin, a hormone synthesized by adipocytes, also has an effect on both bone remodelling and energy expenditure; in fact it inhibits appetite through hypothalamic influence and, in bone, stimulates osteoblastic differentiation and inhibits apoptosis. Leptin and serotonin exert opposite influences on bone mass accrual, but several features suggest that they might operate in the same pathway through a sympathetic tone. Serotonin, in fact, acts via two opposite pathways in controlling bone remodelling: central and peripheral. Serotonin product by the gastrointestinal tract (95%) augments bone formation by osteoblast, whereas brain-derived serotonin influences low bone mineral density and its decrease leads to an increase in bone resorption parameters. Finally, amylin (AMY) acts as a hormone that alters physiological responses related to feeding, and plays a role as a growth factor in bone. In vitro AMY stimulates the proliferation of osteoblasts, and osteoclast differentiation. Here we summarize the evidence that links energy expenditure and bone remodelling, with particular regard to humans.

D'Amelio, Patrizia; Panico, Anna; Spertino, Elena; Isaia, Giovanni Carlo

2012-01-01

179

Metabolic energy requirements for space flight  

NASA Technical Reports Server (NTRS)

The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

Lane, Helen W.

1992-01-01

180

Cultivated anaerobic acidophilic\\/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats  

Microsoft Academic Search

Metabolic and phylogenetic diversity of cultivated anaerobic microorganisms from acidic continental hot springs and deep-sea hydrothermal vents was studied by molecular and microbiological methods. Anaerobic organotrophic enrichment cultures growing at pH 3.5–4.0 and 60 or 85°C with organic energy sources were obtained from samples of acidic hot springs of Kamchatka Peninsula (Pauzhetka, Moutnovski Volcano, Uzon Caldera) and Kunashir Island (South Kurils)

Maria I. Prokofeva; Ilya V. Kublanov; Olivier Nercessian; Tatjana P. Tourova; Tatjana V. Kolganova; Alexander V. Lebedinsky; Elizaveta A. Bonch-Osmolovskaya; Stefan Spring; Christian Jeanthon

2005-01-01

181

StudentsÃÂ Misconception About Energy-Yielding Metabolism: Glucose as the Sole Metabolic Fuel  

NSDL National Science Digital Library

Energy-yielding metabolism is a subject that is particularly important, because energy production is a fundamental requirement for cells even though they execute many other processes simultaneously. An integrated view of metabolism is essential for understanding how the whole organism functions, including activities of studentsÃÂ daily life, such as eating, dieting, and physical exercise. In fact, the media constantly exert pressure on young people, stimulating students to undergo countless diet and exercise programs. Additionally, diabetes mellitus and obesity, which are diseases with close ties to metabolism, have been increasing among adolescents.

Dr. Gabriel A. Oliveira (Universidade Federal do Rio de Janeiro Departamento de Bioquímica Médica); Dr. Cristiane R. Sousa (Fundação Oswaldo Cruz Departamento de Ultra-estrutura e Biologia Celular); Dr. Andrea T. Da Poian (Universidade Federal do Rio de Janeiro Departamento de Bioquímica Médica,); Dr. Maurício R. M. P. Luz (Universidade Federal do Rio de Janeiro Setor Curricular de Biologia)

2003-09-01

182

Milestones in the history of research on cardiac energy metabolism.  

PubMed

The present study summarizes the history of research on cardiac metabolism from antiquity till the 21st century. It describes important landmarks regarding the discovery of oxygen and of the 3 steps of cellular respiration, as well as major research on cardiac energy metabolism. For this purpose, we conducted a thorough search of original manuscripts, books, and contemporary reviews published in PubMed. The first views and concepts about the heart's function appear in Greek philosophic manuscripts of 2500 years ago. According to Aristotle, the heart is responsible for heat production, which is essential for life. The understanding of cardiac metabolism awaited new discoveries. The discovery of oxygen during the 18th century, along with the idea of energy conservation, or what is now known as one of the first versions of the first law of thermodynamics, played an important role in initiating the study of energy metabolism in general and heart metabolism later. The discovery of glycolysis, of the Krebs cycle, and of adenosine triphosphate offered a better understanding of cellular respiration, necessary for later research. Indeed, many researchers dedicated their studies to energy metabolism, but Richard John Bing, the renowned German research cardiologist, is the one who guided the exploration of cardiac metabolism, and he is therefore considered to be the father of cardiac energy metabolism. Since then, encouraging new research has been taking place, offering important clinical applications for heart patients. PMID:23351886

Beloukas, Apostolos I; Magiorkinis, Emmanouil; Tsoumakas, Theofanis L; Kosma, Alexandra G; Diamantis, Aristidis

2013-11-01

183

The role of PAS kinase in regulating energy metabolism.  

PubMed

Metabolic disorders, such as diabetes and obesity, are fundamentally caused by cellular energy imbalance and dysregulation. Therefore, understanding the regulation of cellular fuel and energy metabolism is of great importance to develop effective therapies for metabolic disease. The cellular nutrient and energy sensors, AMPK and TOR, play a key role in maintaining cellular energy homeostasis. Like AMPK and TOR, PAS kinase (PASK) is also a nutrient responsive protein kinase. In yeast, PAS kinase phosphorylates the enzyme Ugp1 and thereby shifts glucose partitioning toward cell wall glucan synthesis at the expense of glycogen synthesis. Consistent with this function, yeast PAS kinase is activated by both cell integrity stress and growth in non-fermentative carbon sources. PASK is also important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular level. In cultured pancreatic beta-cells, PASK is activated by elevated glucose concentrations and is required for glucose-stimulated transcription of the insulin gene. PASK knockdown in cultured myoblasts causes increased glucose oxidation and elevated cellular ATP levels. Mice lacking PASK exhibit increased metabolic rate and resistance to diet-induced obesity. Interestingly, PGC-1 expression and AMPK and TOR activity were not affected in PASK deficient mice, suggesting PASK may exert its metabolic effects through a new mechanism. We propose that PASK plays a significant role in nutrient sensing, metabolic regulation, and energy homeostasis, and is a potential therapeutic target for metabolic disease. PMID:18344204

Hao, Huai-Xiang; Rutter, Jared

2008-04-01

184

Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion  

SciTech Connect

Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with (/sup 3/H)thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.

Sanders, R.W.; Porter, K.G.

1986-07-01

185

Use of Metabolic Inhibitors to Estimate Protozooplankton Grazing and Bacterial Production in a Monomictic Eutrophic Lake with an Anaerobic Hypolimnion †  

PubMed Central

Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenicol) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with [3H]thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. We recommend that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.

Sanders, Robert W.; Porter, Karen G.

1986-01-01

186

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15

187

Energy metabolism and rheumatic diseases: from cell to organism  

PubMed Central

In rheumatic and other chronic inflammatory diseases, high amounts of energy for the activated immune system have to be provided and allocated by energy metabolism. In recent time many new insights have been gained into the control of the immune response through metabolic signals. Activation of immune cells as well as reduced nutrient supply and hypoxia in inflamed tissues cause stimulation of glycolysis and other cellular metabolic pathways. However, persistent cellular metabolic signals can promote ongoing chronic inflammation and loss of immune tolerance. On the organism level, the neuroendocrine immune response of the hypothalamic-pituitary adrenal axis and sympathetic nervous system, which is meant to overcome a transient inflammatory episode, can lead to metabolic disease sequelae if chronically activated. We conclude that, on cellular and organism levels, a prolonged energy appeal reaction is an important factor of chronic inflammatory disease etiology.

2012-01-01

188

Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1).  

PubMed

Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. (13)C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget. PMID:18253497

Lemire, Joseph; Mailloux, Ryan J; Appanna, Vasu D

2008-01-01

189

Analysis of metabolic energy utilization in the Skylab astronauts  

NASA Technical Reports Server (NTRS)

Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

Leonard, J. I.

1977-01-01

190

Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion.  

PubMed

Rheological properties of corn stover substrate were investigated to explore agitation energy reduction potential for different total solid (TS) in anaerobic digestion. The effects of particle size and temperature on rheological properties and corresponding energy reduction were studied. The results indicated that corn stover slurry exhibited pseudo-plastic flow behavior at TS of 4.23-7.32%, and was well described by Power-law model. At TS of 4.23%, rheological properties were not obviously affected by particle size and temperature. However, when TS was increased to 7.32%, there was 10.37% shear stress reduction by size-reduction from 20 to 80-mesh, and 11.73% shear stress reduction by temperature-increase from 25 to 55°C. PTS was advanced as variations of power consumption by TS-increase from 4.23% to 7.32%. There was 9.2% PTS-reduction by size-reduction from 20 to 80-mesh at 35°C. Moreover, PTS-reduction of 10.3%/10°C was achieved at 20-mesh compared with 9.0%/10°C at 80-mesh. PMID:24690465

Tian, Libin; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

2014-09-01

191

Performance and energy economics of mesophilic and thermophilic digestion in anaerobic hybrid reactor treating coal wastewater.  

PubMed

Two anaerobic hybrid AHRs (AHR), mesophilic (35 °C) and thermophilic (55 °C) were operated with coal wastewater at different hydraulic retention times (HRT) ranging from 3-0.5 to 3.12-0.6d with organic loading rates (OLR) of 1.12-6.72 g L(-1) d(-1). Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg L(-1) and phenolics concentration of 752 mg L(-1) was used as substrate. At each HRT, the thermophilic AHR gave a better performance, measured in terms of phenolics/COD removal and gas production. The specific methane yield was also higher for thermophilic AHR at each HRT compared to mesophilic one. The volatile fatty acid concentration in the effluent increased with the lowering of HRT. The Stover-Kincannon model was applicable at both temperatures and showed higher substrate utilization in thermophilic AHR. Energy economic study of the AHRs revealed that 11,938 MJ d(-1) more energy can be generated using thermophilic AHR than mesophilic. PMID:23138053

Ramakrishnan, Anushuya; Surampalli, Rao Y

2013-01-01

192

The techno-economic potential of renewable energy through the anaerobic digestion of microalgae.  

PubMed

The potential of microalgae as feedstock for methane production is evaluated from a process technical and economic point of view. Production of mixed culture algae in raceway ponds on non-agricultural sites, such as landfills, was identified as a preferred approach. The potential of straightforward bio-methanation, which includes pre-concentration of microalgae and utilization of a high rate anaerobic reactor was examined based on the premises of achievable up-concentration from 0.2-0.6 kg m(-3) to 20-60 kg dry matter (DM) m(-3) and an effective bio-methanation of the concentrate at a loading rate of 20 kg DM m(-3) d(-1). The costs of biomass available for bio-methanation under such conditions were calculated to be in the range of €86-€124 ton(-1) DM. The levelized cost of energy by means of the process line "algae biomass--biogas--total energy module" would be in the order of €0.170-0.087 kWh(-1), taking into account a carbon credit of about €30 ton(-1) CO2(eq). PMID:20933389

Zamalloa, Carlos; Vulsteke, Elien; Albrecht, Johan; Verstraete, Willy

2011-01-01

193

Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens  

Microsoft Academic Search

BACKGROUND: Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our

Carla Risso; Jun Sun; Kai Zhuang; Radhakrishnan Mahadevan; Robert DeBoy; Wael Ismail; Susmita Shrivastava; Heather Huot; Sagar Kothari; Sean Daugherty; Olivia Bui; Christophe H Schilling; Derek R Lovley; Barbara A Methé

2009-01-01

194

Metabolic profiles and aprE expression in anaerobic cultures of Bacillus subtilis using nitrate as terminal electron acceptor  

Microsoft Academic Search

Cultures using nitrate as the terminal electron acceptor were conducted in Schaeffer's medium to evaluate the growth performance and metabolic profiles of Bacillus subtilis, and its potential to express the aprE (subtilisin) gene under anoxic conditions. Nitrate was converted to ammonia through nitrite reduction; and different product profiles were observed during the growth phase when nitrate was added at various

J. Espinosa-de-los-Monteros; A. Martinez; F. Valle

2001-01-01

195

SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva  

Microsoft Academic Search

The dauer larva, a non-feeding and developmentally arrested stage of the free-living nematode Caenorhabditis elegans, is morphologically and physiologically specialized for survival and dispersal during adverse growth conditions. The ability of dauer larvae to live several times longer than the continuous developmental life span has been attributed in part to a repressed metabolism. We used serial analysis of gene expression

Suzan J Holt; Donald L Riddle

2003-01-01

196

Metabolism of Reduced Methylated Sulfur Compounds in Anaerobic Sediments and by a Pure Culture of an Estuarine Methanogen †  

PubMed Central

Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at ?2-?M levels as [14C]DMS, metabolism by sediments resulted in a 14CH4/14CO2 ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14CO2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a “noncompetitive” substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [14C]-DMS to yield a 14CH4/14CO2 ratio of ?2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.

Kiene, Ronald P.; Oremland, Ronald S.; Catena, Anthony; Miller, Laurence G.; Capone, Douglas G.

1986-01-01

197

Energy metabolism of the developing brain  

SciTech Connect

Cerebral metabolism in utero and in the neonatal period remains incompletely understood. A major investigative technique uses /sup 14/C deoxyglucose. Species differences, behavioral states and gestational age all have an impact. Hormonal and sensory stimuli have potential influences. The use of this new investigative technique in the human will allow detailed study of the effects of a variety of pathophysiologic events and possibly of drug therapy on cerebral glucose metabolism.

Abrams, R.M.; Hutchison, A.A.

1985-04-01

198

Effects of low and high levels of moderate hypoxia on anaerobic energy release during supramaximal cycle exercise  

Microsoft Academic Search

The purpose of this study was to investigate whether hypoxia can alter anaerobic energy release during supramaximal exercise. Seven male subjects performed 12 submaximal cycling tests to establish the relationship between workload and O2 demand. The subjects also performed 40 s Wingate tests (WT) under normoxia (room air), two levels of moderate hypoxia of 16.4% O2 and 12.7% O2. We measured

Yuji Ogura; Shizuo Katamoto; Jin Uchimaru; Kohei Takahashi; Hisashi Naito

2006-01-01

199

Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS 2 as an energy source  

Microsoft Academic Search

The effect of using FeS2 as an energy source, on the bioleaching of heavy metals (Zn, Cr, Cu, Pb and Ni) and nutrients (nitrogen and phosphorus) from anaerobically digested sludge using isolated indigenous iron-oxidizing bacteria was investigated in this paper. Addition of FeS2 in the range of 0.5–4.0 gl?1 accelerated the acidification of sludge and raised the oxidation–reduction potential of

J. W. C. Wong; L. Xiang; X. Y. Gu; L. X. Zhou

2004-01-01

200

Metabolism and energy requirements in pantothenate kinase-associated neurodegeneration.  

PubMed

Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive disorder of coenzyme A homeostasis caused by defects in the mitochondrial pantothenate kinase 2. Patients with PKAN present with a progressive neurological decline and brain iron accumulation, but general energy balance and nutrition status among these patients has not been reported. To determine if defects in PANK2 change basic energy metabolism in humans, we measured body composition, resting energy expenditure, dietary intake, and blood metabolites among 16 subjects with PKAN. Subjects had a broad range of disease severity but, despite the essential role of coenzyme A in energy metabolism, the subjects had remarkably normal body composition, dietary intake and energy metabolism compared to population normal values. We did observe increased resting energy expenditure associated with disease severity, suggesting increased energy needs later in the disease process, and elevated urinary mevalonate levels. PMID:23891537

Williams, Sarah; Gregory, Allison; Hogarth, Penelope; Hayflick, Susan J; Gillingham, Melanie B

2013-11-01

201

Regulation of protein and energy metabolism by the somatotropic axis  

Microsoft Academic Search

The somatotropic axis plays a key role in the co-ordination of protein and energy metabolism during postnatal growth. This review discusses the complexity of the regulation of protein and energy metabolism by the somatotropic axis using three main examples: reduced nutrition, growth hormone (GH) treatment and insulin-like growth factor-1 (IGF-1) treatment. Decreased nutrition leads to elevated GH secretion, but it

B. H Breier

1999-01-01

202

ANAEROBIC COMPOSTING FOR RECOVERY OF NUTRIENTS, COMPOST, AND ENERGY FROM SOLID WASTES DURING SPACE  

Microsoft Academic Search

1. ABSTRACT The technical feasibility of applying,leachbed,high-solids anaerobic,digestion for reduction and stabilization of the organic fraction of solid ,wastes generated ,during space missions ,was ,investigated. This process has the advantages of not requiring oxygen or high temperature and pressure while producing methane, carbon dioxide, nutrients, and compost as valuable products. Anaerobic biochemical methane potential assays run on several waste feedstocks

David Chynoweth; Patrick Haley; John Owens; Art Teixeira; Tim Townsend; Qiyong Xu; Hong-Lim Choi

203

Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T  

Microsoft Academic Search

The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even

Cristiana Cravo-Laureau; Vincent Grossi; Danielle Raphel; Robert Matheron; Agnes Hirschler-Rea

2005-01-01

204

Energy model and metabolic flux analysis for autotrophic nitrifiers.  

PubMed

The behavior of pure cultures of nitrifying microorganisms under autotrophic growth operating conditions was investigated and the relations between their energy metabolism and their anabolism analyzed by means of metabolic network computation. The description of the metabolism of the nitrifiers is extended to their energy metabolism by introducing compartmentalization (cytoplasmic and periplasmic sides) and studying coupling between the electron transport chain and the proton gradient generation. The energy model of Nitrosomonas and Nitrobacter was developed based on the oxidoreduction reactions known to be involved. The electron transport chains and the associated proton translocation for these models are described. Several possible hypotheses are analyzed and discussed concerning the thermodynamic consistency of all the oxidoreduction reactions. For Nitrosomonas, the most delicate point is the second step of hydroxylamine oxidation. For Nitrobacter a new energy model is proposed in which NO plays an important role as node in the distribution of electrons from NO(2)(-) oxidation to the membrane electron transport chain. The compartmentalization enables us to consider a proton gradient dissipation flux as the expression of the overall energy loss in metabolic analysis (the so-called maintenance phenomena). The energy model (electron transport chain, proton gradient) is associated with an overall description of the metabolism of Nitrosomonas and Nitrobacter in terms of metabolic flux calculation. This representation demonstrates that a maintenance in nitrifiers expressed as a proton leak is no higher than for other aerobes. The yields calculated from the energy models integrated with the metabolic models of nitrifiers are consistent with the experimental yields in the literature. PMID:11180062

Poughon, L; Dussap, C G; Gros, J B

2001-02-20

205

Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability  

Microsoft Academic Search

Skeletal muscles cope with a large range of activities, from being able to support the body weight during long periods of upright standing to perform explosive movements in response to an unexpected threat. This requires systems for energy metabolism that can provide energy during long periods of moderately increased energy consumption as well as being able to rapidly increasing the

Håkan Westerblad; Joseph D. Bruton; Abram Katz

2010-01-01

206

[Adaptive changes of Zebrafish (Danio rerio) to anaerobic exercise training].  

PubMed

To explore adaptive changes of the Zebrafish (Danio rerio) to anaerobic exercise training as well as to collect basic data of molecular mechanisms of adaption to anaerobic exercise training among this fish, we investigated the influences of 4 weeks of anaerobic exercise training on the behavior, morphology, growth, muscle biochemical components and metabolic enzyme activities of the Zebrafish. Our results indicated that individual's daily activity level declined after 4 weeks training and they preferred to swim together more frequently. Both body length and weight gain decreased, allowing the fish to adapt to the increased locomotion. Similarly, glycogen in muscles increased and exercise endurance also strengthened due to the enhancement of energy storage. Moreover, although the activity of lactate dehydrogenase (LDH) in muscle has increased, the activity of citrate synthase (CS) decreased. Taken together, these results suggest that both the ability of anaerobic exercise and anaerobic metabolism of Zebrafish can in fact be enhanced by training, and the tangible changes that we could measure were retained, but only for a limited time. PMID:23775994

Liu, Ming-jing; Wang, Zhi-jian

2013-06-01

207

Inborn Errors of Energy Metabolism Associated with Myopathies  

PubMed Central

Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed.

Das, Anibh M.; Steuerwald, Ulrike; Illsinger, Sabine

2010-01-01

208

Anaerobic co-metabolic oxidation of 4-alkylphenols with medium-length or long alkyl chains by Thauera sp., strain R5.  

PubMed

A 4-alkylphenol-degrading facultative anaerobic bacterium, strain R5, was isolated from paddy soil after enrichment with 4-n-propylphenol, 4-n-butylphenol and 4-hydroxybenzoate (4-HBA) under nitrate-reducing conditions. Strain R5 is a Gram-negative rod bacillus grown on phenolic compounds with short alkyl chains (metabolically transforms alkylphenols to the corresponding metabolites with oxidised alpha carbon in the alkyl chain during coupling with nitrate reduction. PMID:17387471

Shibata, Atsushi; Katayama, Arata

2007-07-01

209

[Effect of thyroxine on the activity of some enzymes of energy metabolism in bone marrow myeloid cells and blood neutrophils from piglets].  

PubMed

The influence of thyroxine on the activities of enzymes of energy metabolism (hexokinase, 6-phosphofructokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase, cytochrome c oxidase) was investigated in bone marrow myeloid cells and blood neutrophils of 3-10-day old neonatal piglets. Data obtained suggest different responsiveness of energy metabolism enzymes to thyroxine action. Repeated hormone injections resulted in the preferential stimulation of enzymes involved in oxidative stages of carbohydrate catabolism in animal myelocaryocytes, while the activities of anaerobic enzymes in these cells were less affected. At the same time glycolytic enzymes in neutrophil granulocytes showed higher sensitivity to thyroxine action than enzymes catalyzing oxidative stages of energy metabolism. PMID:10885037

Babich, N O; Antoniak, G L; Tymochko, M F

2000-01-01

210

Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments.  

PubMed Central

This report describes the metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium (Marinobacter sp. strain CAB) isolated from marine sediments. Under aerobic and denitrifying conditions, this strain efficiently degraded this ubiquitous isoprenoid ketone. Several bacterial metabolites, 4,8,12-trimethyl-tridecan-1-ol, 4,8,12-trimethyltridecanal, 4,8,12-trimethyltridecanoic acid, Z-3,7-dimethylocten-2-oic acid, Z-3,7,11-trimethyldodecen-2-oic acid, and 6,10,14-trimethylpentadecan-2-ol, were formally identified, and different pathways were proposed to explain the formation of such isoprenoid compounds.

Rontani, J F; Gilewicz, M J; Michotey, V D; Zheng, T L; Bonin, P C; Bertrand, J C

1997-01-01

211

Diversity of anaerobic halophilic microorganisms  

NASA Astrophysics Data System (ADS)

Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect to the variety of substrates used, the types of dissimilatory metabolism, and the diversity of potential electron acceptors has important implications for the potential for life in hostile environments lacking oxygen and high in salt, implications that may also be relevant to astrobiology.

Oren, Aharon; Oremland, Roland S.

2000-12-01

212

Abnormalities of energy metabolism in Alzheimer's disease studied with PET.  

PubMed

Positron emission tomography (PET) is currently the only technology affording three-dimensional measurement of the brain's energy metabolism which is closely coupled to brain function. Studies of glucose metabolism by PET of (18F)-2-fluoro-2-deoxy-D-glucose are therefore widely applied to show the contribution of various brain structures in the performance of a variety of tasks or their participation in functional deficits associated with various diseases. Although glucose metabolism decreases slightly with age to a regionally different degree, most types of dementia show severe changes in glucose metabolism. Alzheimer's disease (AD) is characterized by metabolic disturbances most prominent in the parietotemporal association cortex and later in the frontal lobe, whereas primary cortical areas, basal ganglia, thalamus, brainstem, and cerebellum are not affected. It is this typical pattern that distinguishes AD from other dementia syndromes. A ratio calculated from the metabolic rates of glucose of "affected" and "nonaffected" brain regions was able to separate patients with AD from age-matched controls and permitted the discrimination of patients with cognitive impairment of other origin in 85%. The discriminative power can be further improved by activation studies. A continuous visual recognition task increased the metabolic rate in normal subjects by 21% and in patients with AD by 6% on average, with significant regional differences. During activation the significant relation between severity of disease and temporoparietal metabolic rate became even stronger. In the assessment of effects of treatment on disturbed metabolism, PET studies demonstrated an equalization of metabolic heterogeneities in patients responding to a muscarinergic cholinagonist, whereas general increases in glucose utilization were observed with piracetam, pyritinol, and phosphatidyl-serine. The therapeutic relevance of such metabolic effects, however, must be proved in controlled clinical trials. PMID:1776760

Heiss, W D; Szelies, B; Kessler, J; Herholz, K

1991-01-01

213

Temperature and pH dependence of energy balance by 31P- and 1H-MRS in anaerobic frog muscle  

Microsoft Academic Search

The temperature (T)-dependence of energy consumption of resting anaerobic frog gastrocnemii exposed to different, changing electrochemical gradients was assessed. To this aim, the rate of ATP resynthesis (??P\\/?t) was determined by 31P- and 1H-MRS as the sum of the rates of PCr hydrolysis (?[PCr]\\/?t) and of anaerobic glycolysis (?[La]\\/ ?t, based on a ?P\\/La ratio of 1.5). The investigated T levels

Alessandra Vezzoli; Maristella Gussoni; Fulvia Greco; Lucia Zetta; Paolo Cerretelli

2004-01-01

214

Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.  

PubMed

Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant. PMID:22546800

Pérez-Elvira, S I; Fdz-Polanco, F

2012-01-01

215

Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage.  

PubMed

Biochemical methane potential (BMP) tests were run on ensiled sorghum forage using four inocula (urban, agricultural, mixture of agricultural and urban, granular) and differences on their metabolic and enzymatic activities were also discussed. Results indicate that no significant differences were observed in terms of BMP values (258±14NmLCH4g(-1)VS) with a slightly higher value when agricultural sludge was used as inoculum. Significant differences can be observed among different inocula, in terms of methane production rate. In particular the fastest biomethanization occurred when using the urban sludge (hydrolytic kinetic constant kh=0.146d(-1)) while the slowest one was obtained from the agricultural sludge (kh=0.049d(-1)). Interestingly, positive correlations between the overall enzymatic activities and methane production rates were observed for all sludges, showing that a high enzymatic activity may favour the hydrolysis of complex substrate and accelerate the methanization process of sorghum. PMID:24440490

Sambusiti, C; Rollini, M; Ficara, E; Musatti, A; Manzoni, M; Malpei, F

2014-03-01

216

Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut.  

PubMed

Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [(13)C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates. PMID:16672507

Belenguer, Alvaro; Duncan, Sylvia H; Calder, A Graham; Holtrop, Grietje; Louis, Petra; Lobley, Gerald E; Flint, Harry J

2006-05-01

217

Two Routes of Metabolic Cross-Feeding between Bifidobacterium adolescentis and Butyrate-Producing Anaerobes from the Human Gut  

PubMed Central

Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [13C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.

Belenguer, Alvaro; Duncan, Sylvia H.; Calder, A. Graham; Holtrop, Grietje; Louis, Petra; Lobley, Gerald E.; Flint, Harry J.

2006-01-01

218

Food Texture Differences affect Energy Metabolism in Rats  

Microsoft Academic Search

Dietary factors such as taste and nutrients are known to affect satiety and energy balance. We hypothesized that food texture might contribute to the regulation of energy metabolism through the process of mastication in the oral cavity as well. The effects of long-term feeding of different-textured pellets on body weight gain, adiposity, and thermogenesis were assessed. From weaning at 4

K. Oka; A. Sakuarae; T. Fujise; H. Yoshimatsu; T. Sakata; M. Nakata

2003-01-01

219

ENERGY AND ECONOMIC ASSESSMENT OF ANAEROBIC DIGESTERS AND BIOFUELS FOR RURAL WASTE MANAGEMENT  

EPA Science Inventory

A technological and socioeconomic assessment of anaerobic digester feasibility for small to mid-size livestock operations was undertaken. Three full scale digesters and one pilot scale facility were under various degrees of monitoring and evaluation to assess design and operation...

220

Test/QA Plan For Verification Of Anaerobic Digester For Energy Production And Pollution Prevention  

EPA Science Inventory

The ETV-ESTE Program conducts third-party verification testing of commercially available technologies that improve the environmental conditions in the U.S. A stakeholder committee of buyers and users of such technologies guided the development of this test on anaerobic digesters...

221

Purification and Characterization of ?-l-Arabinopyranosidase and ?-l-Arabinofuranosidase from Bifidobacterium breve K-110, a Human Intestinal Anaerobic Bacterium Metabolizing Ginsenoside Rb2 and Rc  

PubMed Central

Two arabinosidases, ?-l-arabinopyranosidase (no EC number) and ?-l-arabinofuranosidase (EC 3.2.1.55), were purified from ginsenoside-metabolizing Bifidobacterium breve K-110, which was isolated from human intestinal microflora. ?-l-Arabinopyranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, QAE-cellulose, and Sephacryl S-300 HR column chromatography, with a final specific activity of 8.81 ?mol/min/mg. ?-l-Arabinofuranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, Q-Sepharose, and Sephacryl S-300 column chromatography, with a final specific activity of 6.46 ?mol/min/mg. The molecular mass of ?-l-arabinopyranosidase was found to be 310 kDa by gel filtration, consisting of four identical subunits (77 kDa each, measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]), and that of ?-l-arabinofuranosidase was found to be 60 kDa by gel filtration and SDS-PAGE. ?-l-Arabinopyranosidase and ?-l-arabinofuranosidase showed optimal activity at pH 5.5 to 6.0 and 40°C and pH 4.5 and 45°C, respectively. Both purified enzymes were potently inhibited by Cu2+ and p-chlormercuryphenylsulfonic acid. ?-l-Arabinopyranosidase acted to the greatest extent on p-nitrophenyl-?-l-arabinopyranoside, followed by ginsenoside Rb2. ?-l-Arabinofuranosidase acted to the greatest extent on p-nitrophenyl-?-l-arabinofuranoside, followed by ginsenoside Rc. Neither enzyme acted on p-nitrophenyl-?-galactopyranoside or p-nitrophenyl-?-d-fucopyranoside. These findings suggest that the biochemical properties and substrate specificities of these purified enzymes are different from those of previously purified ?-l-arabinosidases. This is the first reported purification of ?-l-arabinopyranosidase from an anaerobic Bifidobacterium sp.

Shin, Ho-Young; Park, Sun-Young; Hwan Sung, Jong; Kim, Dong-Hyun

2003-01-01

222

An evolving integrative physiology: skeleton and energy metabolism.  

PubMed

The adipocyte-derived hormone leptin regulates appetite and bone mass. Recent research demonstrates that reciprocally, osteoblasts have a role in controlling energy metabolism. Several genes expressed in osteoblasts are involved in this process, and one of them is the Esp gene. The remaining genes regulate Esp gene expression. OST-PTP, the protein name of Esp, regulates the carboxylation of osteocalcin secreted from osteoblasts, thus affecting insulin sensitivity and insulin secretion. This review provides evidence for a novel interpretation of the connection between bone and energy metabolism and expands our understanding of the novel physiology of bone beyond its classical functions. PMID:20846488

Lee, Na Kyung

2010-09-01

223

Mitochondrial DNA variation in human metabolic rate and energy expenditure  

PubMed Central

The role of climate in driving selection of mtDNA as Homo sapiens migrated out of Africa into Eurasia remains controversial. We evaluated the role of mtDNA variation in resting metabolic rate (RMR) and total energy expenditure (TEE) among 294 older, community-dwelling African and European American adults from the Health, Aging and Body Composition Study. Common African haplogroups L0, L2 and L3 had significantly lower RMRs than European haplogroups H, JT and UK with haplogroup L1 RMR being intermediate to these groups. This study links mitochondrial haplogroups with ancestry-associated differences in metabolic rate and energy expenditure.

Tranah, Gregory J.; Manini, Todd M.; Lohman, Kurt K.; Nalls, Michael A.; Kritchevsky, Stephen; Newman, Anne B.; Harris, Tamara B.; Miljkovic, Iva; Biffi, Alessandro; Cummings, Steven R.; Liu, Yongmei

2014-01-01

224

ECO-ENERGY DEMONSTRATION MODEL: ANAEROBIC DIGESTION, ALGAE AND ENERGY PROSPERITY  

EPA Science Inventory

For the project, we: Designed and constructed an ecological energy model system. Investigated and characterized locally abundant agricultural and domestic waste resources that can have significant environmental impacts (dairy manure, poultry m...

225

Microbial activity measurements for anaerobic sludge digestion  

SciTech Connect

The use of particulate substrate in the anaerobic sludge digestion process makes it difficult to measure the biomass in these reactors. Adenosine triphosphate (ATP) and dehydrogenase activity (DHA) were investigated as indicators of the sludge activity for the anaerobic sludge digestion process. ATP measures the energy pools in the biomass and is therefore a measure of the total sludge activity. DHA measurement relies on the addition of specific substrates to stimulate the metabolic activity of the bacteria. Glucose, starch, propionic acid, butyric acid, acetic acid, and digester feed as added substrates were used to stimulate the metabolic activity for DHA measurements. Laboratory experiments were performed to monitor the microbial activity of anaerobic sludge digesters operated both under steady state and in batch mode. The ATP content responded rapidly to changes in the digester operation, which may be the result of increased non-growth associated biochemical activity, not that of increased numbers of the bacteria. DHA was more sensitive than ATP at both low and high sludge ages and seemed to be correlated with the cell's growth phase. At low sludge ages (less than 10 days) glucose as added substrate showed the highest DHA responses, while the digester food and no added substrated showed the highest response when the sludge age exceeded 20 days. A kinetic model based on the solids balances was developed to determine the microbial mass and activity. Both ATP and DHA on a VSS basis (viability) appeared nearly constant over a wide range of sludge ages for the kinetic model data, indicating that ATP and DHA may be used as a rapid and convenient indicator of microbial mass and activity for anaerobic sludge digestion.

Chung, Y.C.

1988-01-01

226

Arsenic, Anaerobes, and Astrobiology  

NASA Astrophysics Data System (ADS)

Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa, Ganymede, Titan or Enceladus (formed by cryo-concentration), arsenotrophy could serve as a credible means of microbial energy conservation. Regrettably, the direct search for arsenic biomarkers is restricted because only one stable isotope exists (75As), which rules out the use of stable isotopic ratios in this regard. However, antimony oxyanions often co-occur with arsenic in the environment. Its two stable isotopes (123Sb and 121Sb) hold the potential to be exploited as a proxy isotopic biomarker for the fingerprint of microbial arsenotrophy. Whether such an approach is feasible needs to be investigated.

Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

2013-12-01

227

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15

228

Cardiac energy metabolism is positively associated with skeletal muscle energy metabolism in physically active adolescents and young adults.  

PubMed

(31)Phosphorus Magnetic Resonance Spectroscopy ((31)P?MRS) is a well-validated, noninvasive magnetic resonance imaging technique that has been used to determine cardiac and skeletal muscle energy metabolism in vivo. Few studies have documented cardiac energy metabolism in adolescents and young adult cohorts. This cross-sectional study sought to explore the association among cardiac energy metabolism, skeletal muscle energy metabolism, moderate-to-vigorous physical activity (MVPA), and age in adolescents and young adults. Ten healthy, active participants (40% male) with a mean ± SD age of 18.6 ± 4.9 years, body mass index of 21.1 ± 2.4 kg·m(-2), and median MVPA level of 83 min per weekday (lower quartile: 45 min per weekday; upper quartile: 114 min per weekday) completed the following study assessments: a (31)P?MRS scan to determine cardiac and skeletal muscle energy metabolism, cardiopulmonary exercise testing to determine aerobic power, and accelerometry to determine MVPA over 7 days. Resting cardiac energy metabolism, as measured by the ratio of phosphocreatine to adenosine triphosphate (PCr/ATP?, mean ± SD: 2.76 ± 0.65), was positively associated with skeletal muscle aerobic oxidative function (Estimate (SE): -0.1(0.01), p < 0.001), as measured by PCr recovery half-time following 60 s of exercise (34 ± 9 s). This association, which was adjusted for peak aerobic power, MVPA, age, and sex, suggests the development of an association between cardiac and skeletal muscle health at any early age. Larger studies are needed to establish normative data for both physically active and sedentary males and females that may be used for comparison in future studies involving clinical cohorts. PMID:24552379

Banks, Laura; Wells, Greg D; McCrindle, Brian W

2014-03-01

229

Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer  

PubMed Central

PPARs are ligand activated transcription factors. PPAR? agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPAR?. The use of synthetic PPAR? ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPAR? in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

Sakharkar, Meena K.; Shashni, Babita; Sharma, Karun; Dhillon, Sarinder K.; Ranjekar, Prabhakar R.; Sakharkar, Kishore R.

2013-01-01

230

Energy metabolism of Macaca mulatta during spaceflight  

NASA Technical Reports Server (NTRS)

The mean daily energy expenditure rates of two rhesus monkeys (Macaca mulatta) were determined during spaceflight on the joint U.S./Russian Bion 11 mission by the doubly labeled water (DLW, 2H218O) method. Control values were obtained from two studies performed under flight-like conditions (n = 4). The mean inflight energy expenditure for the two Bion 11 monkeys was 81.3 kcal/kg/day, which was higher than that seen previously. The average energy expenditure (77.6 +/- 4.4 kcal/kg/day) for the four ground control monkeys was slightly lower than had been measured previously.

Hoban-Higgins, T. M.; Stein, T. P.; Dotsenko, M. A.; Korolkov, V. I.; Fuller, C. A.

2000-01-01

231

USE OF SOLAR ENERGY TO HEAT ANAEROBIC DIGESTERS. PART I. TECHNICAL AND ECONOMIC FEASIBILITY STUDY. PART II. ECONOMIC FEASIBILITY THROUGHOUT THE UNITED STATES  

EPA Science Inventory

Two distinct, yet related studies were conducted to determine the technical and economic feasibility of using solar energy as the source of heat for the anaerobic digestion process. Retrofitting a solar energy collection and heat transfer system to a digester at Annapolis, Maryla...

232

Fatty Acids in Energy Metabolism of the Central Nervous System  

PubMed Central

In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile ?-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

2014-01-01

233

Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer.  

National Technical Information Service (NTIS)

During this grant period, we obtained evidence that eukaryotic elongation factor-2 kinase (eEF-2K) plays a key role in the regulation of cellular energy metabolism in breast cancer cells. We demonstrated that silencing of eEF-2K led to a greater reduction...

Y. Cheng

2012-01-01

234

PGC-1{alpha}: a key regulator of energy metabolism  

NSDL National Science Digital Library

Peroxisome proliferator-activated receptor-{gamma} coactivator (PGC)-1{alpha} is a member of a family of transcription coactivators that plays a central role in the regulation of cellular energy metabolism. This makes it an inviting target for pharmacological intervention in the treatment of obesity and Type 2 diabetes.

Huiyun Liang (University of Texas Health Science Center Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies); Walter F. Ward (University of Texas Health Science Center Barshop Institute for Longevity and Aging Studies)

2006-12-01

235

Ets1 Regulates Energy Metabolism in Cancer Cells  

Microsoft Academic Search

Cancer cells predominantly utilize glycolysis for ATP production even in the presence of abundant oxygen, an environment that would normally result in energy production through oxidative phosphorylation. Although the molecular mechanism for this metabolic switch to aerobic glycolysis has not been fully elucidated, it is likely that mitochondrial damage to the electron transport chain and the resulting increased production of

Meghan L. Verschoor; Leigh A. Wilson; Chris P. Verschoor; Gurmit Singh; Jen-Tsan Ashley Chi

2010-01-01

236

Mechanistic modeling of aberrant energy metabolism in human disease  

PubMed Central

Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

2012-01-01

237

III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.  

PubMed

Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of cell cycle through mitosis, indicated that Warburg effect had a fundamental biological significance extending to non-malignant tissues. The approach used here could facilitate integration of accumulated cyber knowledge on cancer metabolism into predictive science. PMID:24358890

Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

2013-01-01

238

III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect  

PubMed Central

Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of cell cycle through mitosis, indicated that Warburg effect had a fundamental biological significance extending to non-malignant tissues. The approach used here could facilitate integration of accumulated cyber knowledge on cancer metabolism into predictive science.

Witkiewicz, Halina

2013-01-01

239

A Single Eubacterial Origin of Eukaryotic Pyruvate:Ferredoxin Oxidoreductase Genes: Implications for the Evolution of Anaerobic Eukaryotes  

Microsoft Academic Search

The iron sulfur protein pyruvate:ferredoxin oxidoreductase (PFO) is central to energy metabolism in amitochondriate eukaryotes, including those with hydrogenosomes. Thus, revealing the evolutionary history of PFO is critical to understanding the origin(s) of eukaryote anaerobic energy metabolism. We determined a complete PFO sequence for Spironucleus barkhanus, a large fragment of a PFO sequence from Clostridium pasteurianum,and a fragment of a

David S. Horner; Robert P. Hirt; T. Martin Embley

240

Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review  

NASA Astrophysics Data System (ADS)

Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

Hassan, Siti Roshayu; Dahlan, Irvan

2013-09-01

241

Chronic Sympathetic Attenuation and Energy Metabolism in Autonomic Failure  

PubMed Central

The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of ?-blockers as a model to eliminate sympathetic stimulation and examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however, it is also important to assess the effect of chronic sympathetic attenuation on energy metabolism. In this context, we hypothesized that resting energy expenditure is decreased in patients with autonomic failure who by definition have low sympathetic tone. We measured 24-hour energy expenditure using whole-room indirect calorimeter in 10 adults with chronic autonomic failure, (6 females; age 64.9±9.1 years; body mass index 25.2±4.4 kg/m2) and 15 sedentary healthy controls of similar age and body composition (8 females age 63.1±4.0 years; body mass index 24.4±3.9 kg/m2). In 4 patients, we eliminated residual sympathetic activity with the ganglionic blocker trimethaphan. We found that after adjusting for body composition, resting energy expenditure did not differ between patients with autonomic failure and healthy controls. However, resting energy expenditure significantly decreased when residual sympathetic activity was eliminated. Our findings suggest that sympathetic tonic support of resting energy expenditure is preserved, at least in part, in pathophysiological models of chronic sympathetic attenuation.

Shibao, Cyndya; Buchowski, Maciej S; Chen, Kong Y; Yu, Chang; Biaggioni, Italo

2012-01-01

242

Chronic sympathetic attenuation and energy metabolism in autonomic failure.  

PubMed

The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of ?-blockers as a model to eliminate sympathetic stimulation and to examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however, it is also important to assess the effect of chronic sympathetic attenuation on energy metabolism. In this context, we hypothesized that resting energy expenditure is decreased in patients with autonomic failure who, by definition, have low sympathetic tone. We measured 24-hour energy expenditure using whole-room indirect calorimeter in 10 adults with chronic autonomic failure (6 women; age, 64.9±9.1 years; body mass index, 25.2±4.4 kg/m(2)) and 15 sedentary healthy controls of similar age and body composition (8 women; age, 63.1±4.0 years; body mass index, 24.4±3.9 kg/m(2)). In 4 patients, we eliminated residual sympathetic activity with the ganglionic blocker trimethaphan. We found that, after adjusting for body composition, resting energy expenditure did not differ between patients with autonomic failure and healthy controls. However, resting energy expenditure significantly decreased when residual sympathetic activity was eliminated. Our findings suggest that sympathetic tonic support of resting energy expenditure is preserved, at least in part, in pathophysiological models of chronic sympathetic attenuation. PMID:22469621

Shibao, Cyndya; Buchowski, Maciej S; Chen, Kong Y; Yu, Chang; Biaggioni, Italo

2012-05-01

243

PPARs Integrate the Mammalian Clock and Energy Metabolism  

PubMed Central

Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPAR? and PPAR? are direct regulators of core clock components, Bmal1 and Rev-erb?, and, conversely, PPAR? is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation.

Chen, Lihong; Yang, Guangrui

2014-01-01

244

MicroRNAs and metabolism crosstalk in energy homeostasis.  

PubMed

In record time, microRNAs (miRNAs) have acquired the respected stature of important natural regulators of global gene expression. Multiple studies have demonstrated that a large number of miRNAs are under the control of various metabolic stimuli, including nutrients, hormones, and cytokines. Conversely, it is now well recognized that miRNAs control metabolism, thereby generating a bidirectional functional link, which perturbs energy homeostasis in case of disconnection in the miRNA-metabolism interplay. A challenging road lies ahead for defining the role of miRNAs in the pathogenesis of diseases such as diabetes and for establishing their usefulness as new medications and clinically reliable biomarkers. PMID:23850315

Dumortier, Olivier; Hinault, Charlotte; Van Obberghen, Emmanuel

2013-09-01

245

Energy metabolism in BPH/2J genetically hypertensive mice.  

PubMed

Recent evidence indicates that genetic hypertension in BPH/2J mice is sympathetically mediated, but these mice also have lower body weight (BW) and elevated locomotor activity compared with BPN/3J normotensive mice, suggestive of metabolic abnormalities. The aim of the present study was to determine whether hypertension in BPH/2J mice is associated with metabolic differences. Whole-body metabolic and cardiovascular parameters were measured over 24?h by indirect calorimetry and radiotelemetry respectively, in conscious young (10-13 weeks) and older (22-23 weeks) BPH/2J, normotensive BPN/3J and C57Bl6 mice. Blood pressure (BP) was greater in BPH/2J compared with both normotensive strains at both ages (P<0.01). Metabolic rate was greater in young BPH/2J compared with BPN/3J mice (P<0.01) but similar to C57Bl6 mice indicating that high metabolic rate is not necessarily related to the hypertension per say. The slope of the BP-metabolic rate relationship was comparable between BPH/2J and normotensive mice when adjusted for activity (P>0.1) suggesting differences in this relationship are not responsible for hypertension. EchoMRI revealed that percentage body composition was comparable in BPN/3J and BPH/2J mice (P>0.1) and both strains gained weight similarly with age (P=0.3). Taken together, the present findings indicate that hypertension in BPH/2J mice does not appear to be related to altered energy metabolism. PMID:24305519

Jackson, Kristy L; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

2014-05-01

246

Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications  

Microsoft Academic Search

Fatty acids undergo different metabolic fates depending on their chain length and degree of saturation. The purpose of this review is to examine the metabolic handling of medium chain fatty acids (MCFA) with specific reference to intermediary metabolism and postprandial and total energy expenditure. The metabolic discrimination between varying fatty acids begins in the GI tract, with MCFA being absorbed

Andrea A. Papamandjaris; Diane E. Macdougall; Peter J. H. Jones

1998-01-01

247

Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review)  

PubMed Central

Metabolic activities in normal cells rely primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP for energy. Unlike in normal cells, glycolysis is enhanced and OXPHOS capacity is reduced in various cancer cells. It has long been believed that the glycolytic phenotype in cancer is due to a permanent impairment of mitochondrial OXPHOS, as proposed by Otto Warburg. This view is challenged by recent investigations which find that the function of mitochondrial OXPHOS in most cancers is intact. Aerobic glycolysis in many cancers is the combined result of various factors such as oncogenes, tumor suppressors, a hypoxic microenvironment, mtDNA mutations, genetic background and others. Understanding the features and complexity of the cancer energy metabolism will help to develop new approaches in early diagnosis and effectively target therapy of cancer.

ZHENG, JIE

2012-01-01

248

Potential Application of Anaerobic Extremophiles for Hydrogen Production  

NASA Technical Reports Server (NTRS)

During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and discuss the potential implications for alternative energy sources.

Pikuta, Elena V.; Hoover, Richard B.

2004-01-01

249

Demonstration of Fuel Cells to Recover Energy from Anaerobic Digester Gas. Phase 1. A Conceptual Design, Preliminary Cost, and Evaluation Study.  

National Technical Information Service (NTIS)

The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used f...

J. C. Trocciola H. C. Healy

1995-01-01

250

[Dynamics of parameters of energy metabolism at adaptation to diving in human].  

PubMed

Studies of the diving reaction in the comparative-evolutionary aspect have shown that a complex of reactions providing the oxygen-saving effect during diving is inherent in human like in the secondary-aquatic mammals. This is confirmed by results of study of peculiarities of energy metabolism during imitation of diving (hold-up of respiration with immersion of face into the cold water--the cold-hypoxic-hypercapnic action) (CHHA). Data of gas analysis have shown that during the diving imitation the oxygen consumption rate is statistically significantly lower than during the usual hold-up of respiration (Genche's test). As shown by the study, this is due to the greater degree to vasoconstriction of peripheral vessels and selective redistribution of blood flow than to slowing down of the blood flow caused by reflex bradycardia during diving. It has been revealed that under effect of adaptation to CHHA, on the background of a decrease of the total energy consumption by the organism there occurs some increase of contribution of aerobic processes to its energy provision. Adaptation to CHHA has been shown to be accompanied by a decrease of reactivity of the parasympathetic chain of regulation of the heart chronotropic function and by an increase of duration of apnea. The duration of apnea is directly correlated with level of insulin--the hormone stimulating the anaerobic pathway of energy provision. Under effect of adaptation to CHHA there has been established an increase of the organism resistance to stress actions, which is confirmed by the lower levels of cortisol and thyroid hormones in representatives of the experimental group as compared with the control one. PMID:21061652

Baranova, T I; Kovalenko, R I; Mitrofanova, A V; Ianvareva, I N

2010-01-01

251

[Topics on anaerobic bacteria and anaerobic infection].  

PubMed

Considerable information has been accumulated in the field of anaerobic bacteria and anaerobic infections in the last ten years. Here we tried to briefly introduce several selected topics of clinical importance in this field: Proposal of the term "Nanaerobe", Changes of classification and nomenclature of anaerobes, Anaerobic bacteremia, Lemierre's syndrome as a revival anaerobic infection, Atopobium vaginae as Bacterial Vaginosis-associated bacteria, and new actions of the Clostridium perfringens toxins. PMID:16629490

Watanabe, Kunitomo

2006-03-01

252

Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage.  

PubMed

A variety of evidence suggests that the failure of cellular metabolism is one of the underlying causes of neurodegenerative diseases. For example, the inhibition of mitochondrial function produces a pattern of cellular pathology in the striatum that resembles that seen in Huntington's disease. However, neurons can also generate ATP through the glycolytic pathway. Recent work has suggested a direct interaction between mutated huntingtin and a key enzyme in the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Yet little work has been gone into examination of the cellular pathology that results from the inhibition of this alternative energy source. Therefore, the aim of the present study is to characterize the cellular pathology that results in the striatum of mice after treatment with a toxin (iodoacete, IOA) that compromises anaerobic metabolism. This striatal pathology is compared to that produced by a widely studied blocker of mitochondrial function (3-nitropropionic acid, 3-NP). We found that low doses of either toxin resulted in significant pathology in the mouse striatum. Signs of apoptosis were observed in both experimental groups, although apoptosis triggered by IOA treatment was independent from caspase-3 activation. Importantly, each toxin appears to produce cellular damage through distinct mechanisms; only 3-NP generated clear evidence of oxidative stress as well as inhibition of endogenous antioxidants. Understanding the distinct pathological fingerprints of cell loss produced by blockade of oxidative and anaerobic metabolisms may give us insights into neurodegenerative diseases. PMID:20440403

Rodríguez, E; Rivera, I; Astorga, S; Mendoza, E; García, F; Hernández-Echeagaray, E

2010-01-01

253

Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage  

PubMed Central

A variety of evidence suggests that the failure of cellular metabolism is one of the underlying causes of neurodegenerative diseases. For example, the inhibition of mitochondrial function produces a pattern of cellular pathology in the striatum that resembles that seen in Huntington's disease. However, neurons can also generate ATP through the glycolytic pathway. Recent work has suggested a direct interaction between mutated huntingtin and a key enzyme in the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Yet little work has been gone into examination of the cellular pathology that results from the inhibition of this alternative energy source. Therefore, the aim of the present study is to characterize the cellular pathology that results in the striatum of mice after treatment with a toxin (iodoacete, IOA) that compromises anaerobic metabolism. This striatal pathology is compared to that produced by a widely studied blocker of mitochondrial function (3-nitropropionic acid, 3-NP). We found that low doses of either toxin resulted in significant pathology in the mouse striatum. Signs of apoptosis were observed in both experimental groups, although apoptosis triggered by IOA treatment was independent from caspase-3 activation. Importantly, each toxin appears to produce cellular damage through distinct mechanisms; only 3-NP generated clear evidence of oxidative stress as well as inhibition of endogenous antioxidants. Understanding the distinct pathological fingerprints of cell loss produced by blockade of oxidative and anaerobic metabolisms may give us insights into neurodegenerative diseases.

Rodriguez, E; Rivera, I; Astorga, S; Mendoza, E; Garcia, F; Hernandez-Echeagaray, E

2010-01-01

254

Ets-1 Regulates Energy Metabolism in Cancer Cells  

PubMed Central

Cancer cells predominantly utilize glycolysis for ATP production even in the presence of abundant oxygen, an environment that would normally result in energy production through oxidative phosphorylation. Although the molecular mechanism for this metabolic switch to aerobic glycolysis has not been fully elucidated, it is likely that mitochondrial damage to the electron transport chain and the resulting increased production of reactive oxygen species are significant driving forces. In this study, we have investigated the role of the transcription factor Ets-1 in the regulation of mitochondrial function and metabolism. Ets-1 was over-expressed using a stably-incorporated tetracycline-inducible expression vector in the ovarian cancer cell line 2008, which does not express detectable basal levels of Ets-1 protein. Microarray analysis of the effects of Ets-1 over-expression in these ovarian cancer cells shows that Ets-1 up-regulates key enzymes involved in glycolysis and associated feeder pathways, fatty acid metabolism, and antioxidant defense. In contrast, Ets-1 down-regulates genes involved in the citric acid cycle, electron transport chain, and mitochondrial proteins. At the functional level, we have found that Ets-1 expression is directly correlated with cellular oxygen consumption whereby increased expression causes decreased oxygen consumption. Ets-1 over-expression also caused increased sensitivity to glycolytic inhibitors, as well as growth inhibition in a glucose-depleted culture environment. Collectively our findings demonstrate that Ets-1 is involved in the regulation of cellular metabolism and response to oxidative stress in ovarian cancer cells.

Verschoor, Meghan L.; Wilson, Leigh A.; Verschoor, Chris P.; Singh, Gurmit

2010-01-01

255

Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775  

Microsoft Academic Search

Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are

Jacky L. Snoep; M. Joost Teixeira de Mattos; Pieter W. Postma; Oense M. Neijssel

1990-01-01

256

Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise  

PubMed Central

High-intensity exercise can result in up to a 1,000-fold increase in the rate of ATP demand compared to that at rest (Newsholme et al., 1983). To sustain muscle contraction, ATP needs to be regenerated at a rate complementary to ATP demand. Three energy systems function to replenish ATP in muscle: (1) Phosphagen, (2) Glycolytic, and (3) Mitochondrial Respiration. The three systems differ in the substrates used, products, maximal rate of ATP regeneration, capacity of ATP regeneration, and their associated contributions to fatigue. In this exercise context, fatigue is best defined as a decreasing force production during muscle contraction despite constant or increasing effort. The replenishment of ATP during intense exercise is the result of a coordinated metabolic response in which all energy systems contribute to different degrees based on an interaction between the intensity and duration of the exercise, and consequently the proportional contribution of the different skeletal muscle motor units. Such relative contributions also determine to a large extent the involvement of specific metabolic and central nervous system events that contribute to fatigue. The purpose of this paper is to provide a contemporary explanation of the muscle metabolic response to different exercise intensities and durations, with emphasis given to recent improvements in understanding and research methodology.

Baker, Julien S.; McCormick, Marie Clare; Robergs, Robert A.

2010-01-01

257

[Modifications in myocardial energy metabolism in diabetic patients  

NASA Technical Reports Server (NTRS)

The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by a different metabolic "status" with similarities to that of myocardium in coronary disease. Diabetes and other chronic cardiac diseases share common FA metabolism disorders leading to an altered energy balance, a decrease in long chain polyunsaturated Fas, and altered FA profiles in cardiac membranes. These disturbances, however, do not represent independent therapeutic targets, and should be considered as a whole.

Grynberg, A.

2001-01-01

258

Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: Energy and economic feasibility study.  

PubMed

An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5€/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000t/year), thermal hydrolysis would provide almost 0.5M€/year net benefits. PMID:24582388

Cano, R; Nielfa, A; Fdz-Polanco, M

2014-09-01

259

Investigation of Intermediary Metabolism and Energy Exchange Following Human Trauma.  

National Technical Information Service (NTIS)

Contents: Muscle Composition in Injury, Sepsis and Depletion; Glucose Metabolism in Human Injury, Sepsis and Depletion; Regional Metabolism in Injury, Sepsis and Depletion Nutritional Characterization of Patients for Study; and Studies of Lipid Metabolism...

J. M. Kinney

1979-01-01

260

Energy metabolism in orchid bee flight muscles: carbohydrate fuels all.  

PubMed

The widely accepted idea that bees fuel flight through the oxidation of carbohydrate is based on studies of only a few species. We tested this hypothesis as part of our research program to investigate the size-dependence of flight energetics in Panamanian orchid bees. We succeeded in measuring rates of O(2) consumption and CO(2) production in vivo during hovering flight, as well as maximal activities (V(max) values) in vitro of key enzymes in flight muscle energy metabolism in nine species belonging to four genera. Respiratory quotients (ratios of rates of CO(2) production to O(2) consumption) in all nine species are close to 1.0. This indicates that carbohydrate is the main fuel used for flight. Trehalase, glycogen phosphorylase and hexokinase activities are sufficient to account for the glycolytic flux rates estimated from rates of CO(2) production. High activities of other glycolytic enzymes, as well as high activities of mitochondrial oxidative enzymes, are consistent with the estimated rates of carbohydrate-fueled oxidative metabolism. In contrast, hydroxyacylCoA dehydrogenase, an enzyme involved in fatty acid oxidation, was not detectable in any species. Thoracic homogenates displayed ADP-stimulated oxidition of pyruvate + proline, but did not oxidize palmitoyl l-carnitine + proline as substrates. A metabolic map, based on data reported herein and information from the literature, is presented. The evidence available supports the hypothesis that carbohydrate serves as the main fuel for flight in bees. PMID:16155228

Suarez, Raul K; Darveau, Charles-A; Welch, Kenneth C; O'Brien, Diane M; Roubik, David W; Hochachka, Peter W

2005-09-01

261

Human energy metabolism below, near and above energy equilibrium.  

PubMed

Complete 24 h energy and nitrogen balances were measured for fifteen subjects at three levels of energy intake and for two other subjects at two levels of intake. At each level, the fifteen subjects ate diets consisting of fifteen to twenty separate foods for 7 or 8 d. Faeces and urine were collected for the final 4 d. Respiratory gas exchange was measured during the final 72 h while the subjects stayed in an 11 m3 open-circuit respiration chamber, and simulated office or light household work. The energy balance of the other two subjects was determined initially in a similar way when they consumed a diet which was sufficient for energy equilibrium. Subsequently, the measurements were repeated twice at the same high level of metabolizable energy (ME) intake after 4 and 18 d on that diet. Neither energy nor N digestibilities were significantly affected by intake level or subject. Due to relatively small urinary energy losses the ME content of the gross energy increased slightly at the higher intake. Respiratory quotient increased with intake level from 0.78 to 0.87. The efficiencies of utilization of ME were approximately 1.0 for maintenance (from the low to the intermediate intake level) and decreased to about 0.9 for maintenance and energy deposition (from the intermediate to the high intake level). Estimates of daily ME requirements at energy equilibrium were 149 (SD 13) kJ ME/kg body-weight, 432 (SD 33) kJ ME/kg body-weight 0.75 and 204 (SD 22) kJ/kg lean body mass. The former two values were negatively correlated with percentage body fat although not significantly so. ME utilization and heat production of the other two subjects were nearly equal after 6 and 20 d on a diet supplying 1.5-1.7 times the ME needed for energy equilibrium. PMID:6498141

Van Es, A J; Vogt, J E; Niessen, C; Veth, J; Rodenburg, L; Teeuwse, V; Dhuyvetter, J; Deurenberg, P; Hautvast, J G; Van der Beek, E

1984-11-01

262

[Lipids composition and speed of energy metabolism in gastropods].  

PubMed

Lipid composition of digestive gland and pedal muscle of two northern freshwater pulmonate snails Lymnaea stagnalis and Lymnaea ovata and three marine prosobranch gastropods Littorina obtusata, Littorina littorea, Buccinum undatum from the White Sea was studied. The species differ in ecology, particularly in trophic nabits and motor activity. The content of triacilglycerides both in digestive gland and pedal was higher in littoral dwellers Littorina the activity of which depends on the tide level. The phospholipids content in digestive gland does not differ in quantity in all cases and does not relate to type of feeding or resource quality. In a pedal muscle of marine species the quantity of common phospholipids is higher in comparison with the freshwater ones. The amount of total phospholipids in pedal muscle correlates with mass of metabolic inert formation which constitutes a part of whole mass of snails. The presence of massive shell enhances demands in energy needed for supporting movement and activity. Because the intensity of energy metabolism is related to quantity of total phospholipids, mitochondria and activity of their oxidizing ferments, the presence of thick shell in marine snails together with motor activity costs more in terms of energy than in freshwater snails with thin shell. This hypothesis is supported by the higher specific rate of oxygen consumption in marine snails than in freshwaters. PMID:19140337

Arakelova, E S

2008-01-01

263

Co-dependence of bone and energy metabolisms  

PubMed Central

The growing number of genetically modified mouse models available but also of the possibility to delete one or several genes at will in a defined time frame or in a specific cell type or tissue(s) has open new possibilities for the study of whole animal physiology. This in vivo approach has been especially successful in uncovering a regulatory loop linking the control of energy metabolism and the regulation of bone remodeling. This review is intended to summarize the key events that led to the identification and the characterization of the different steps and molecules constituting this regulatory network.

Wei, Jianwen; Ducy, Patricia

2010-01-01

264

Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy.  

PubMed

The peripheral nerve of experimental diabetic neuropathy (EDN) is reported to be ischemic and hypoxic, with an increased dependence on anaerobic metabolism, requiring increased energy substrate stores. When glucose stores become reduced, fiber degeneration has been reported. We evaluated glucose uptake, nerve energy metabolism, the polyol pathway, and protein kinase C (PKC) activity in EDN induced by streptozotocin. Control and diabetic rats received lipoic acid (0, 10, 25, 50, 100 mg/kg). Duration of diabetes was 1 month, and alpha-lipoic acid was administered intraperitoneally 5 times per week for the final week of the experiment. Nerve glucose uptake was reduced to 60, s 37, and 30% of control values in the sciatic nerve, L5 dorsal root ganglion, and superior cervical ganglion (SCG), respectively, in rats with EDN. Alpha-lipoic acid supplementation had no effect on glucose uptake in normal nerves at any dose, but reversed the deficit in EDN, with a threshold between 10 and 25 mg/kg. Endoneurial glucose, fructose, sorbitol, and myo-inositol were measured in sciatic nerve. Alpha-lipoic acid had no significant effect on either energy metabolism or polyol pathway of normal nerves. In EDN, endoneurial glucose, fructose, and sorbitol were significantly increased, while myo-inositol was significantly reduced. Alpha-lipoic acid had a biphasic effect: it dose-dependently increased fructose, glucose, and sorbitol, peaking at 25 mg/kg, and then fell beyond that dose, and it dose-dependently increased myo-inositol. Sciatic nerve cytosolic PKC was increased in EDN. ATP, creatine phosphate, and lactate were measured in sciatic nerve and SCG. Alpha-lipoic acid prevented the reduction in SCG creatine phosphate. We conclude that glucose uptake is reduced in EDN and that this deficit is dose-dependently reversed by alpha-lipoic acid, a change associated with an improvement in peripheral nerve function. PMID:10512372

Kishi, Y; Schmelzer, J D; Yao, J K; Zollman, P J; Nickander, K K; Tritschler, H J; Low, P A

1999-10-01

265

Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen ? †  

PubMed Central

A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H2. This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments.

Roden, Eric E.; Jin, Qusheng

2011-01-01

266

Metabolic adaptation for low energy throughput in orangutans  

PubMed Central

Energy is the fundamental currency of life—needed for growth, repair, and reproduction—but little is known about the metabolic physiology and evolved energy use strategies of the great apes, our closest evolutionary relatives. Here we report daily energy use in free-living orangutans (Pongo spp.) and test whether observed differences in energy expenditure among orangutans, humans, and other mammals reflect known differences in life history. Using the doubly labeled water method, we measured daily energy expenditure (kCal/d) in orangutans living in a large indoor/outdoor habitat at the Great Ape Trust. Despite activity levels similar to orangutans in the wild, Great Ape Trust orangutans used less energy, relative to body mass, than nearly any eutherian mammal ever measured, including sedentary humans. Such an extremely low rate of energy use has not been observed previously in primates, but is consistent with the slow growth and low rate of reproduction in orangutans, and may be an evolutionary response to severe food shortages in their native Southeast Asian rainforests. These results hold important implications for the management of orangutan populations in captivity and in the wild, and underscore the flexibility and interdependence of physiological, behavioral, and life history strategies in the evolution of apes and humans.

Pontzer, Herman; Raichlen, David A.; Shumaker, Robert W.; Ocobock, Cara; Wich, Serge A.

2010-01-01

267

The Pseudomonas aeruginosa Proteome during Anaerobic Growth‡  

PubMed Central

Isotope-coded affinity tag analysis and two-dimensional gel electrophoresis followed by tandem mass spectrometry were used to identify Pseudomonas aeruginosa proteins expressed during anaerobic growth. Out of the 617 proteins identified, 158 were changed in abundance during anaerobic growth compared to during aerobic growth, including proteins whose increased expression was expected based on their role in anaerobic metabolism. These results form the basis for future analyses of alterations in bacterial protein content during growth in various environments, including the cystic fibrosis airway.

Wu, Manhong; Guina, Tina; Brittnacher, Mitchell; Nguyen, Hai; Eng, Jimmy; Miller, Samuel I.

2005-01-01

268

Adaptive Evolution of Mitochondrial Energy Metabolism Genes Associated with Increased Energy Demand in Flying Insects  

PubMed Central

Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

2014-01-01

269

Determinants in Microbial Colonization of the Murine Gastrointestinal Tract: pH, Temperature, and Energy-Yielding Metabolism of Torulopsis pintolopesii  

PubMed Central

Torulopsis pintolopesii is an indigenous yeast that colonizes the secreting epithelia in the stomachs of mice and rats. A wild-type strain of this microbe was isolated and identified. To attempt to learn characteristics of the yeast that are advantageous to it in colonizing its natural habitat in vivo, we examined some aspects of its nutrition and energy-yielding metabolism and some environmental conditions that influence its growth in vitro. The yeast appeared to be limited in the compounds it can utilize as carbon and nitrogen sources. It grew best at 37°C and did not grow at 23 or 43°C. It grew optimally at neutral pH but could grow aerobically at pH values as low as 2.0 and anaerobically at pH values as low as 3.4. As assessed by measurements of growth rates and yield coefficients, it grew better aerobically than anaerobically. When grown aerobically, it had a cyanide-sensitive system for taking up O2 and tested positively for cytochrome c oxidase activity. A petite mutant strain isolated from the wild-type strain had a growth rate and yield coefficient when incubated aerobically that were essentially the same as those of the wild-type parent grown anaerobically. Likewise similar to the wild-type parent grown anaerobically, the petite strain, though incubated aerobically, did not take up O2. Yeast-free mice associated with either the wild-type or the petite mutant strain were colonized at essentially the same rates and to similar final population levels by both strains. The yeast's capacity to respire may be of little advantage to it in its natural environment. By contrast, its abilities to grow best at 37°C and to grow at low pH values are undoubtedly advantageous characteristics in this respect. The limitations in its carbon and nitrogen nutrition are difficult to evaluate as ecological factors in its colonization of the natural habitat.

Artwohl, James E.; Savage, Dwayne C.

1979-01-01

270

Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.  

PubMed Central

Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images

Lowe, S E; Jain, M K; Zeikus, J G

1993-01-01

271

Energetics of end product excretion in anaerobic bacteria and the metabolism of fatty acids by Syntrophomonas wolfei: Progress report, November 16, 1986-November 15, 1987  

SciTech Connect

We have studied the growth and metabolism of Syntrophomonas wolfei in pure culture with crotonate as the energy source. S. wolfei grows in crotonate mineral salts medium without rumen fluid with cobalamin, thymine, lipoic acid and biotin added. However, after four to six transfers in this medium, growth ceases, indicating that another vitamin is required. The chemically defined medium allows large batches of S. wolfei to be grown for enzyme purification. All the enzymes involved in the oxidation of crotonyl-CoA to acetate have been detected. The pure culture of S. wolfei or coculture of S. wolfei grown with crotonate contain high activities of a crotonate: acetyl-CoA CoA-transferase activity. This activity is not detected in cocultures grown with butyrate. Thus, we believe that the reason why S. wolfei can now grow with crotonate is that an alteration or mutation occurred which allows the organism to activate this crotonate. S. wolfei also makes small amounts of H/sub 2/ when grown in pure culture with crotonate. A methyl viologen-dependent hydrogenase activity was found. We have also demonstrated the production of H/sub 2/ from 3-hydroxybutyryl-CoA in cell-free extracts of S. wolfei by coupling H/sub 2/ production to CH/sub 4/ production with the addition of Methanobacterium bryantii and directly using a hydrogen electrode. These results clearly show that S. wolfei makes H/sub 2/. S. wolfei does not contain formate dehydrogenase or CO dehydrogenase activities.

McInerney, M.J.

1987-01-01

272

The SCFA Receptor GPR43 and Energy Metabolism  

PubMed Central

Free fatty acids (FFAs) are essential nutrients and act as signaling molecules in various cellular processes via binding with FFA receptors. Of these receptors, GPR43 is activated by short-chain fatty acids (SCFAs; e.g., acetate, propionate, and butyrate). During feeding, SCFAs are produced by microbial fermentation of dietary fiber in the gut, and these SCFAs become important energy sources for the host. The gut microbiota affects nutrient acquisition and energy regulation of the host and can influence the development of obesity, insulin resistance, and diabetes. Recently, GPR43 has been reported to regulate host energy homeostasis in the gastrointestinal tract and adipose tissues. Hence, GPR43 is also thought to be a potential drug target for metabolic disorders, such as obesity and diabetes. In this review, we summarize the identification, structure, and activities of GPR43, with a focus on host energy regulation, and present an essential overview of our current understanding of its physiological roles in host energy regulation that is mediated by gut microbiota. We also discuss the potential for GPR43 as a therapeutic target.

Kimura, Ikuo; Inoue, Daisuke; Hirano, Kanako; Tsujimoto, Gozoh

2014-01-01

273

Energy Metabolism and Thermoregulation in the Golden Lion Tamarin (Leontopithecus rosalia)  

Microsoft Academic Search

Energy metabolism and body temperature were examined in Leontopithecus ros?li?, the golden lion tamarin. Total standard metabolic rate (SMR), defined as the metabolic rate of resting, fasted animals within thermoneutrality and during the inactive (nighttime) phase, averaged 381.5 ± 65.2 ml O2·h–1 (mass-specific metabolic rate 0.520 ± 0.089 ml O2·g–1 h–1). This value ranges from 73 to 89% of the

S. D. Thompson; M. L. Power; C. E. Rutledge; D. G. Kleiman

1994-01-01

274

Hemicellulose conversion by anaerobic digestion  

SciTech Connect

The digestibility of an aquatic biomass (water hyacinth), a land-based biomass (Coastal Bermuda grass), and a biomass-waste blend (a mixture of hyacinth, grass, MSW, and sludge) under various digestion conditions was studied. Anaerobic digestion of hemicellulose consists of the steps of enzymatic hydrolysis of hemicellulose to glucans, mannans, galactans, xylans, and arabans, and then to simple hexose and pentose sugars; production of C/sub 2/ and higher fatty acids from the simple sugars; conversion of higher fatty acids to acetate; and finally, production of methane and CO/sub 2/ from acetate, and CO/sub 2/ and hydrogen. The conversion of hemicellulose was higher under mesophilic conditions than those of cellulose or protein for all biomass test feeds, probably because the hemicellulose structure was more vulnerable to enzymatic attack than that of the lignocellulosic component. Cellulose conversion efficiencies at the mesophilic and thermophilic temperatures were about the same. However, hemicellulose was converted at a much lower efficiency than cellulose during thermophilic digestion - a situation that was the reverse of that observed at the mesophilic temperature. Cellulose was utilized in preference to hemicellulose during mesophilic digestion of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the presence of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy.

Ghosh, S.; Henry, M.P.; Christopher, R.W.

1982-01-01

275

Treatment of Biogas Produced in Anaerobic Reactors for Domestic Wastewater: Odor Control and Energy\\/Resource Recovery  

Microsoft Academic Search

Anaerobic municipal wastewater treatment in developing countries has important potential applications considering their huge\\u000a lack of sanitation infrastructure and their advantageous climatic conditions. At present, among the obstacles that this technology\\u000a encounters, odor control and biogas utilization or disposal should be properly addressed. In fact, in most of small and medium\\u000a size anaerobic municipal treatment plants, biogas is just vented,

Adalberto Noyola; Juan Manuel Morgan-Sagastume; Jorge E. López-Hernández

2006-01-01

276

Novel metabolic roles of L-arginine in body energy metabolism and possible clinical applications.  

PubMed

Although the body can synthesize L-arginine, exogenous supplementation may be sometimes necessary, especially in particular conditions which results in depleted endogenous source. Among diseases and states when exogenous supplementation may be necessary are: burns, severe wounds, infections, insufficient circulation, intensive physical activity or sterility. In recent time, the attention was paid to the use of L-arginine supplementation by athletes during intensive sport activity, to enhance tissue growth and general performance, to potentiate the ergogenic potential and muscle tolerance to high intensive work and gas exchange threshold, to decrease ammonia liberation and recovery performance period and to improve wound healing. High-intensity exercise produces transient hyperammoniemia, presumably due to AMP catabolism. Catabolic pathways of AMP may involve its deamination or dephosphorylation, mainly in order to compensate fall in adenylate enrgy charge (AEC), due to AMP rise. The enzymes of purine metabolism have been documented to be particularly sensitive to the effect of dietary L-arginine supplementation. L-arginine supplementation leads to redirection of AMP deamination on account of increased AMP dephosphorylation and subsequent adenosine production and may increase ATP regeneration via activation of AMP kinase (AMPK) pathway. The central role of AMPK in regulating cellular ATP regeneration, makes this enzyme as a central control point in energy homeostasis. The effects of L-arginine supplementation on energy expenditure were successful independently of age or previous disease, in young sport active, elderly, older population and patients with angina pectoris. PMID:24522477

Hristina, K; Langerholc, T; Trapecar, M

2014-01-01

277

Lactate dehydrogenase C and energy metabolism in mouse sperm.  

PubMed

We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC. PMID:21565994

Odet, Fanny; Gabel, Scott A; Williams, Jason; London, Robert E; Goldberg, Erwin; Eddy, Edward M

2011-09-01

278

Lactate Dehydrogenase C and Energy Metabolism in Mouse Sperm1  

PubMed Central

We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD+ cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC.

Odet, Fanny; Gabel, Scott A.; Williams, Jason; London, Robert E.; Goldberg, Erwin; Eddy, Edward M.

2011-01-01

279

Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.  

PubMed

The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50mg/L for general reuse was 6gCOD/L/d and 0.63gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300ml/gCOD (even approaching the theoretical value of 382ml/gCOD). A low biomass production of 0.015-0.026gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

2014-08-01

280

Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.  

PubMed

Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. PMID:24045213

Ge, Huoqing; Batstone, Damien J; Keller, Jurg

2013-11-01

281

Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens  

PubMed Central

Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 ?M) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

2013-01-01

282

Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression.  

PubMed

In the present study, a food-borne pathogen strain of Bacillus cereus (F4430/73) was anaerobically grown in controlled-batch conditions under low initial oxidoreduction potential (ORP=-148 mV) using hydrogen gas as reducing agent. Its physiological characteristics, including growth, glucose fermentation capacity and enterotoxin production, were compared with anaerobic conditions generated by nitrogen gas (ORP=+ 45 mV). The results showed that low ORP affected growth mainly during the early stages. Maximal specific rates of growth and glucose consumption were reduced, and drastic changes in time profiles of fermentation product concentration were observed. Production of lactate was promoted at the expense of acetate. Nevertheless, low ORP did not affect final biomass yield. Under both ORP conditions, Non-haemolytic enterotoxin (Nhe) was produced early during the exponential growth phase as a first enterotoxin and Haemolysin BL (Hbl) later during the early stationary growth phase as a second enterotoxin. The major effect of low ORP was the strong stimulation of Hbl production and, to a lesser extent, Nhe production. This control was complex, involving different levels of regulation. We discussed the regulation of enterotoxin expression and the involvement of the pleiotropic regulator PlcR. PMID:16470372

Zigha, A; Rosenfeld, E; Schmitt, P; Duport, C

2006-04-01

283

Actions of juglone on energy metabolism in the rat liver  

SciTech Connect

Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and inhibits gluconeogenesis. Black-Right-Pointing-Pointer The cellular ATP content is diminished. Black-Right-Pointing-Pointer Juglone can be consired a toxic compound for the cell economy.

Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar, E-mail: adebracht@uol.com.br

2011-12-15

284

Microbial metabolism of tholin  

NASA Astrophysics Data System (ADS)

In this paper, we show that a wide variety of common soil bacteria are able to obtain their carbon and energy needs from tholin (a class of complex organic heteropolymers thought to be widely distributed through the solar system; in this case tholin was produced by passage of electrical discharge through a mixture of methane, ammonia, and water vapor). We have isolated aerobic, anaerobic, and facultatively anaerobic bacteria which are able to use tholin as a sole carbon source. Organisms which metabolize tholin represent a variety of bacterial genera including Clostridium, Pseudomonas, Bacillus, Acinetobacter, Paracoccus, Alcaligenes, Micrococcus, Cornebacterium, Aerobacter, Arthrobacter, Flavobacterium,and Actinomyces. Aerobic tholin-using bacteria were firrst isolated from soils containing unusual or sparse carbon sources. Some of these organisms were found to be facultatively anaerobic. Strictly anaerobic tholin-using bacteria were isolated from both carbon-rich and carbon-poor anaerobic lake muds. In addition, both aerobic and anaerobic tholin-using bacteria were isolated from common soil collected outside the laboratory building. Some, but not all, of the strains that were able to obtain carbon from tholin were also able to obtain their nitrogen requirements from tholin. Bacteria isolated from common soils were tested for their ability to obtain carbon from the water-soluble fraction, the ethanol-soluble fraction, and the water/ethanol-insoluble fraction of the tholin. Of the 3.5 × 10 7 bacteria isolated per gram of common soils, 1.7 0.5, and 0.2%, respectively, were able to obtaib their carbon requirements from the water-soluble fraction, the ethanol-soluble fraction and the water/ethanol-insoluble fraction of the tholin. The palatability of tholins to modern microbes may have implications for the early evolution of microbial life on Earth. Tholins may have formed the base of the food chain for an early heterotrophic biosphere before the evolution of autotrophy on the early Earth. Where tholins are present on other planets, they could possibly be metabolized by contaminant microorganisms transported to these bodies via spacecraft. Thus, the presence of tholins should be taken into account when evaluating the planetary quarantine requirements for probes to other planets.

Stoker, C. R.; Boston, P. J.; Mancinelli, R. L.; Segal, W.; Khare, B. N.; Sagan, C.

1990-05-01

285

Anaerobic Digestion of Agricultural Solid Residues  

Microsoft Academic Search

Agricultural residues can be converted to methane-rich gas mixture. Anaerobic biomethane production is an effective process for conversion of a broad variety of agricultural residues to methane to substitute natural gas and medium calorific value gases. Methane generating bacteria (methanogens) and other microbes that help digest dying plants in anaerobic conditions. Agricultural solid residues (ASR) represent a potential energy resource

Ayhan Demirbas; Temel Ozturk

2005-01-01

286

Brain energy metabolism parameters in an animal model of diabetes.  

PubMed

A growing body of evidence has indicated that altered mitochondrial function may be involved in mechanism for the development of diabetic complications. Thus, we investigated whether animal model of diabetes induced by alloxan alters energy metabolism parameters. Wistar rats received one single injection of alloxan (250 mg/kg) and after 15 days we evaluated mitochondrial respiratory chain complexes I, II, II-III and IV, creatine kinase and citrate synthase activities in prefrontal cortex, hippocampus and striatum. We observed that animal model of diabetes induced by alloxan increased complexes I and IV activities in hippocampus, complexes II and II-III activities in prefrontal cortex and striatum and complex IV in prefrontal cortex; however decreased complex IV activity in striatum. Moreover, diabetes rats decreased creatine kinase activity in striatum and increased citrate synthase activity in hippocampus. In conclusion, this study indicates that the alteration in mitochondrial function is probably involved in the pathophysiology of diabetes. PMID:21088877

Ceretta, Luciane B; Réus, Gislaine Z; Rezin, Gislaine T; Scaini, Giselli; Streck, Emílio L; Quevedo, João

2010-12-01

287

Potential application of anaerobic extremophiles for hydrogen production  

NASA Astrophysics Data System (ADS)

In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data with the rates of hydrogen productivity for S. americana ASpG1 isolated from soda Mono Lake in California.

Pikuta, Elena V.; Hoover, Richard B.

2004-11-01

288

Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.  

PubMed

Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis. PMID:24350458

Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

2013-01-01

289

Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15.  

PubMed

Under anaerobic conditions, resting cell suspensions of Coprococcus sp. Pe15 degraded 1 molecule of phloroglucinol to 2 molecules of acetic acid and 2 molecules of carbon dioxide. The organism metabolized the flavonoids rhamnetin and quercetin anaerobically in 20% rumen fluid medium but failed to grow under similar conditions at the expense of any of 39 other aromatic or flavonoid compounds tested. PMID:944077

Tsai, C G; Gates, D M; Ingledew, W M; Jones, G A

1976-02-01

290

Genomic view of energy metabolism in Ralstonia eutropha H16.  

PubMed

Ralstonia eutropha is a strictly respiratory facultative lithoautotrophic beta-proteobacterium. In the absence of organic substrates, H2 and CO2 are used as sole sources of energy and carbon. In the absence of oxygen, the organism can respire by denitrification. The recent determination of the complete genome sequence of strain H16 provides the opportunity to reconcile the results of previous physiological and biochemical studies in light of the coding capacity. These analyses revealed genes for several isoenzymes, permit assignment of well-known physiological functions to previously unidentified genes, and suggest the presence of unknown components of energy metabolism. The respiratory chain is fueled by two NADH dehydrogenases, two uptake hydrogenases and at least three formate dehydrogenases. The presence of genes for five quinol oxidases and three cytochrome oxidases indicates that the aerobic respiration chain adapts to varying concentrations of dioxygen. Several additional components may act in balancing or dissipation of redox energy. Paralogous sets of nitrate reductase and nitric oxide reductase genes result in enzymatic redundancy for denitrification. PMID:18957861

Cramm, Rainer

2009-01-01

291

Mechanical Loading Affects the Energy Metabolism of Intervertebral Disc Cells  

PubMed Central

Research has shown that mechanical loading affects matrix biosynthesis of intervertebral disc (IVD) cells; however the pathway(s) to this effect is currently unknown. Cellular matrix biosynthesis is an energy demanding process. The objective of this study was to investigate the effects of static and dynamic compressive loading on energy metabolism of IVD cells. Porcine annulus fibrosus (AF) and nucleus pulposus (NP) cells seeded in 2% agarose were used in this experiment. Experimental groups included 15% static compression and 0.1 and 1 Hz dynamic compression at 15% strain magnitude for 4 hours. ATP, lactate, glucose and nitric oxide (NO) contents in culture media, and ATP content in cell-agarose construct were measured using biochemical assays. While the total ATP content of AF cells was promoted by static and dynamic loading, only 1 Hz dynamic loading increased total ATP content of NP cells. Increases in lactate production and glucose consumption of AF cells suggest that ATP production via glycolysis is promoted by dynamic compression. ATP release and NO production of AF and NP cells were significantly increased by dynamic loading. Thus, this study clearly illustrates that static and dynamic compressive loading affect IVD cell energy production while cellular responses to mechanical loading were both cell type and compression type dependent.

Fernando, H.N.; Czamanski, J.; Yuan, T.-Y.; Gu, W.Y.; Abdi, S.; Huang, C.-Y.C.

2011-01-01

292

Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage.  

PubMed

Microorganisms can strongly influence the chemical and physical properties of the subsurface. Changes in microbial activity caused by geological CO(2) storage, therefore, have the potential to influence the capacity, injectivity, and integrity of CO(2) storage reservoirs and ultimately the environmental impact of CO(2) injection. This analysis uses free energy calculations to examine variation in energy available to Fe(III) and SO(4)(2-) reducers and methanogens because of changes in the bulk composition of brine and shallow groundwater following subsurface CO(2) injection. Calculations were performed using data from two field experiments, the Frio Formation experiment and an experiment at the Zero Emission Research and Technology test site. Energy available for Fe(III) reduction increased significantly during CO(2) injection in both experiments, largely because of a decrease in pH from near-neutral levels to just below 6. Energy available to SO(4)(2-) reducers and methanogens varied little. These changes can lead to a greater rate of microbial Fe(III) reduction following subsurface CO(2) injection in reservoirs where Fe(III) oxides or oxyhydroxides are available and the rate of Fe(III) reduction is limited by energy available prior to injection. PMID:21740040

Kirk, Matthew F

2011-08-01

293

Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ?glpK?dhaT.  

PubMed

3-Hydroxypropionic acid (3-HP), an industrially important platform chemical, is used as a precursor during the production of many commercially important chemicals. Recently, recombinant strains of K. pneumoniae overexpressing an NAD(+)-dependent ?-glutamyl-?-aminobutyraldehyde dehydrogenase (PuuC) enzyme of K. pneumoniae DSM 2026 were shown to produce 3-HP from glycerol without the addition coenzyme B(12), which is expensive. However, 3-HP production in K. pneumoniae is accompanied with NADH generation, and this always results in large accumulation of 1,3-propanediol (1,3-PDO) and lactic acid. In this study, we investigated the potential use of nitrate as an electron acceptor both to regenerate NAD(+) and to prevent the formation of byproducts during anaerobic production of 3-HP from glycerol. Nitrate addition could improve NAD(+) regeneration, but decreased glycerol flux towards 3-HP production. To divert more glycerol towards 3-HP, a novel recombinant strain K. pneumoniae ?glpK?dhaT (puuC) was developed by disrupting the glpK gene, which encodes glycerol kinase, and the dhaT gene, which encodes 1,3-propanediol oxidoreductase. This strain showed improved cellular NAD(+) concentrations and a high carbon flux towards 3-HP production. Through anaerobic cultivation in the presence of nitrate, this recombinant strain produced more than 40±3mM 3-HP with more than 50% yield on glycerol in shake flasks and 250±10mM 3-HP with approximately 30% yield on glycerol in a fed-batch bioreactor. PMID:23022570

Ashok, Somasundar; Mohan Raj, Subramanian; Ko, Yeounjoo; Sankaranarayanan, Mugesh; Zhou, Shengfang; Kumar, Vinod; Park, Sunghoon

2013-01-01

294

Remodeling of Oxidative Energy Metabolism by Galactose Improves Glucose Handling and Metabolic Switching in Human Skeletal Muscle Cells  

PubMed Central

Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments.

Kase, Eili Tranheim; Nikolic, Natasa; Bakke, Siril Skaret; Bogen, Kaja Kamilla; Aas, Vigdis; Thoresen, G. Hege; Rustan, Arild Christian

2013-01-01

295

Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells  

PubMed Central

Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

2012-01-01

296

Energy Metabolism in Mycobacterium gilvum PYR-GCK: Insights from Transcript Expression Analyses Following Two States of Induction.  

PubMed

Mycobacterium gilvum PYR-GCK, a pyrene degrading bacterium, has been the subject of functional studies aimed at elucidating mechanisms related to its outstanding pollutant bioremediation/biodegradation activities. Several studies have investigated energy production and conservation in Mycobacterium, however, they all focused on the pathogenic strains using their various hosts as induction sources. To gain greater insight into Mycobacterium energy metabolism, mRNA expression studies focused on respiratory functions were performed under two different conditions using the toxic pollutant pyrene as a test substrate and glucose as a control substrate. This was done using two transcriptomic techniques: global transcriptomic RNA-sequencing and quantitative Real-Time PCR. Growth in the presence of pyrene resulted in upregulated expression of genes associated with limited oxygen or anaerobiosis in M.gilvum PYR-GCK. Upregulated genes included succinate dehydrogenases, nitrite reductase and various electron donors including formate dehydrogenases, fumarate reductases and NADH dehydrogenases. Oxidative phosphorylation genes (with respiratory chain complexes I, III -V) were expressed at low levels compared to the genes coding for the second molecular complex in the bacterial respiratory chain (fumarate reductase); which is highly functional during microaerophilic or anaerobic bacterial growth. This study reveals a molecular adaptation to a hypoxic mode of respiration during aerobic pyrene degradation. This is likely the result of a cellular oxygen shortage resulting from exhaustion of the oxygenase enzymes required for these degradation activities in M.gilvum PYR-GCK. PMID:24927157

Badejo, Abimbola Comfort; Chung, Won Hyong; Kim, Nam Shin; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Kim, Hyo Joon; Chai, Young Gyu

2014-01-01

297

Energy Metabolism in Mycobacterium gilvum PYR-GCK: Insights from Transcript Expression Analyses Following Two States of Induction  

PubMed Central

Mycobacterium gilvum PYR-GCK, a pyrene degrading bacterium, has been the subject of functional studies aimed at elucidating mechanisms related to its outstanding pollutant bioremediation/biodegradation activities. Several studies have investigated energy production and conservation in Mycobacterium, however, they all focused on the pathogenic strains using their various hosts as induction sources. To gain greater insight into Mycobacterium energy metabolism, mRNA expression studies focused on respiratory functions were performed under two different conditions using the toxic pollutant pyrene as a test substrate and glucose as a control substrate. This was done using two transcriptomic techniques: global transcriptomic RNA-sequencing and quantitative Real-Time PCR. Growth in the presence of pyrene resulted in upregulated expression of genes associated with limited oxygen or anaerobiosis in M.gilvum PYR-GCK. Upregulated genes included succinate dehydrogenases, nitrite reductase and various electron donors including formate dehydrogenases, fumarate reductases and NADH dehydrogenases. Oxidative phosphorylation genes (with respiratory chain complexes I, III –V) were expressed at low levels compared to the genes coding for the second molecular complex in the bacterial respiratory chain (fumarate reductase); which is highly functional during microaerophilic or anaerobic bacterial growth. This study reveals a molecular adaptation to a hypoxic mode of respiration during aerobic pyrene degradation. This is likely the result of a cellular oxygen shortage resulting from exhaustion of the oxygenase enzymes required for these degradation activities in M.gilvum PYR-GCK.

Badejo, Abimbola Comfort; Chung, Won Hyong; Kim, Nam Shin; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Kim, Hyo Joon; Chai, Young Gyu

2014-01-01

298

Anaerobic pretreatment of pharmaceutical wastewaters  

SciTech Connect

The US Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. The pharmaceutical industry generates considerable amounts of wastewater that require extensive treatment before they are released. A common method of disposal is aerobic biological treatment, but this method is energy intensive and expensive. An alternative process--anaerobic digestion--costs less, saves energy, generates less sludge requiring disposal, and produces a usable fuel--methane. OIT and HydroQual, Inc., with Merck Co. recently completed a joint project that demonstrated the anaerobic biological treatment of wastewaters generated by the pharmaceutical industry. The objectives of the project were to demonstrate how the anaerobic biological process and the resulting energy savings can apply to the pharmaceutical industry and how effective and beneficial the process is to sludge management operations at pharmaceutical plants. This technical case study provides an overview of the DOE-HydroQual-Merck R D project and highlights the field tests done on pilot-scale anaerobic wastewater treatment units at a pharmaceutical plant. This document makes field test and data analysis results available to other researchers and private industry. It discusses project status; summarizes field-test efforts; and reviews potential technology impacts in terms of commercial applications, benefits, and full-scale system economics. 5 figs., 1 tab.

Not Available

1990-10-01

299

Fermentation metabolism and its evolution in algae  

PubMed Central

Fermentation or anoxic metabolism allows unicellular organisms to colonize environments that become anoxic. Free-living unicellular algae capable of a photoautotrophic lifestyle can also use a range of metabolic circuitry associated with different branches of fermentation metabolism. While algae that perform mixed-acid fermentation are widespread, the use of anaerobic respiration is more typical of eukaryotic heterotrophs. The occurrence of a core set of fermentation pathways among the algae provides insights into the evolutionary origins of these pathways, which were likely derived from a common ancestral eukaryote. Based on genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism has been examined in more detail in Chlamydomonas reinhardtii (Chlamydomonas) than in any other photosynthetic protist. This green alga is metabolically flexible and can sustain energy generation and maintain cellular redox balance under a variety of different environmental conditions. Fermentation metabolism in Chlamydomonas appears to be highly controlled, and the flexible use of the different branches of fermentation metabolism has been demonstrated in studies of various metabolic mutants. Additionally, when Chlamydomonas ferments polysaccharides, it has the ability to eliminate part of the reductant (to sustain glycolysis) through the production of H2, a molecule that can be developed as a source of renewable energy. To date, little is known about the specific role(s) of the different branches of fermentation metabolism, how photosynthetic eukaryotes sense changes in environmental O2 levels, and the mechanisms involved in controlling these responses, at both the transcriptional and post-transcriptional levels. In this review, we focus on fermentation metabolism in Chlamydomonas and other protists, with only a brief discussion of plant fermentation when relevant, since it is thoroughly discussed in other articles in this volume.

Catalanotti, Claudia; Yang, Wenqiang; Posewitz, Matthew C.; Grossman, Arthur R.

2013-01-01

300

Impact of exercise on energy metabolism in anorexia nervosa  

PubMed Central

Background Excessive physical activity is one of the most paradoxical features of anorexia nervosa (AN). However, there is individual variation in the degree of physical activity found in AN-patients. As a result, marked differences in energy expenditure may be expected. Furthermore, exercise has a positive impact on a variety of psychological disorders and the psychopathology may be different in AN displaying high exercise levels versus AN displaying low exercise levels. We analyzed the energy metabolism and psychological data in low-level exercise and high-level exercise AN-patients compared with healthy, age matched controls. Physical activity, energy expenditure (EE) by the doubly labelled water technique and indirect calorimetry, hormone status as well as psychopathology by questionnaires for eating disorders (EDI-SC, EDI-2), eating attitude (EAT) and depression (BDI) were assessed in twelve AN patients and twelve controls. Results REE was decreased in AN-patients compared with controls but not when adjusted for body surface area or lean body mass. No differences in TDEE between AN- patients and controls were observed. Subgroup analyses showed that the percentage of high-level AN- exercisers was higher compared with controls. This subgroup had increased resting EE, total daily EE and scored higher on depression and the EDI-item “Drive for thinness” compared with low-level AN-exercisers. Conclusions We identified a significant subgroup of high-level AN-exercisers (66%) with consecutive increased energy requirements. An easy way for clinicians to assess the amount of exercise before and in the course of treatment is a single question in the established Eating Disorder Inventory-SC (EDI-SC).

2013-01-01

301

Effect of sulfonamides as carbonic anhydrase VA and VB inhibitors on mitochondrial metabolic energy conversion.  

PubMed

Obesity is quickly becoming an increasing problem in the developed world. One of the major fundamental causes of obesity and diabetes is mitochondria dysfunction due to faulty metabolic pathways which alter the metabolic substrate flux resulting in the development of these diseases. This paper examines the role of mitochondrial carbonic anhydrase (CA) isozymes in the metabolism of pyruvate, acetate, and succinate when specific isozyme inhibitors are present. Using a sensitive electrochemical approach of wired mitochondria to analytically measure metabolic energy conversion, we determine the resulting metabolic difference after addition of an inhibitory compound. We found that certain sulfonamide analogues displayed broad spectrum inhibition of metabolism, where others only had significant effect on some metabolic pathways. Pyruvate metabolism always displayed the most dramatically affected metabolism by the sulfonamides followed by fatty acid metabolism, and then finally succinate metabolism. This allows for the possibility of using designed sulfonamide analogues to target specific mitochondrial CA isozymes in order to subtly shift metabolism and glucogenesis flux to treat obesity and diabetes. PMID:22854196

Arechederra, Robert L; Waheed, Abdul; Sly, William S; Supuran, Claudiu T; Minteer, Shelley D

2013-03-15

302

Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression  

Microsoft Academic Search

Rice (Oryza sativa L.) seeds can germinate under anoxia and can show cole- optile elongation. The anoxic coleoptile is usually longer than aerobic coleoptiles. Although several hypotheses have been proposed to explain the ability of rice to elongate coleoptiles under anoxia, conclusive experimental evidence explaining this physiological trait is lacking. In order to investigate whether metabolic and molecular markers correlate

L. Magneschi; R. L. Kudahettige; A. Alpi; P. Perata

2009-01-01

303

Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11  

SciTech Connect

Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

2007-09-15

304

Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA  

SciTech Connect

The complexation of radionuclides (e.g., plutonium (Pu) and {sup 60}Co) by co-disposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Pu(IV)-EDTA is not stable in the presence of relatively soluble Fe(III) compounds. Since most DOE sites have Fe(III) containing sediments, Pu(IV) is likely not the mobile form of Pu-EDTA. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions and the anaerobic biodegradation of Pu-EDTA. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV), the redox conditions required for this reduction, the strength of the Pu(III)-EDTA, how the Pu(III)-EDTA competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, soluble Pu(III)-EDTA under anaerobic conditions would require anaerobic degradation of the EDTA to limit Pu(III) transport. Anaerobic EDTA degrading microorganisms have never been isolated. Recent results have shown that Shewanella oneidensis MR-1, a dissimilatory metal reducing bacterium, can reduce Pu(IV) to Pu(III). The Pu(IV) was provided as insoluble PuO2. The highest rate of Pu(IV) reduction was with the addition of AQDS, an electron shuttle. Of the total amount of Pu solubilized (i.e., soluble through a 0.36 nm filter), approximately 70% was Pu(III). The amount of soluble Pu was between 4.8 and 3.2 micromolar at day 1 and 6, respectively, indicating rapid reduction. The micromolar Pu is significant since the drinking water limit for Pu is 10{sup -12} M. On-going experiments are investigating the influence of EDTA on the rate of Pu reduction and the stability of the formed Pu(III). We have also begun to enrich and isolate bacteria capable of aerobic and anaerobic degradation of EDTA. Environmental samples (e.g., sludges, river sediments) were incubated aerobically and anaerobically with EDTA or NTA as the sole carbon and energy source. Aerobic enrichment with EDTA has not resulted in any cultures, but NTA has provided several isolates. Partial 16S rRNA gene sequence and sequence comparison identified four separate strains closely related to Microbacterium oxydans, Aminobacter sp., Achromobacter sp., Aminobacter sp., respectively. Anaerobic enrichments with either EDTA or NTA are still in progress since metabolism and growth is relatively slow. In addition to the biotransformation experiments, studies are underway to determine/validate complexation constants of Pu(III) with EDTA and the influence of competing ions on Pu(III)-EDTA complexes. These data are being obtained through solubility studies of PuPO{sub 4}(s) and Pu(OH){sub 3}(s) as a function of time, pH, and EDTA and competing ion concentrations. These results have begun to fill-in knowledge gaps of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop Pu transport in groundwater at DOE sites.

Bolton, H., Jr.; Bailey, V.L.; Plymale, A.E.; Rai, D.; Xun, L.

2006-04-05

305

Metabolism  

MedlinePLUS

... down so that the energy released can be distributed to, and used as fuel by, the body's cells. Enzymes After food is eaten, molecules in the digestive system called enzymes break proteins down into amino acids, ...

306

Ecophysiological adaptations of anaerobic bacteria to low pH. [Sarcina ventriculi; Lactobacillus helveticus  

SciTech Connect

The ecological and physiological adaptations of anaerobic bacteria to low pH were investigated in field and laboratory studies. Determinations of hydrogen kinetic parameters demonstrated that overall hydrogen metabolism was inhibited in acid ecosystems. In particular, hydrogen metabolism became progressively uncoupled at low pH. This uncoupling resulted in a slowing of carbon flow during anaerobic digestion and the accumulation of intermediary metabolites. The addition of carbon electron donors to acid bog sediments resulted in the accumulation of hydrogen and a slowing of the overall rates of anaerobic digestion. As an adaptation to low pH, anaerobic bacterial populations shifted from production of acid intermediary metabolites (e.g. acetate and lactate) to the production of neutral intermediary metabolites (e.g. ethanol). This shift was observed both in situ and in pure cultures of hydrolytic strains isolated from bog sediments. Detailed physiological studies of Sarcina ventriculi showed an adaptation to growth at low pH by mechanisms which allowed the continued production of ethanol from glucose and the maintenance of a proton motive force at low cytoplasmic pH values. Further physiological studies Lactobacillus helveticus showed that the accumulation of acidic end-product (lactic acid) strongly influenced cellular electrochemical parameters. Based on the results of computer simulations and laboratory studies of the physiology of the organism in the presence of organic acids, a new model for the passive coupling of energy conservation to the efflux of lactic acid in an electroneutral process is proposed.

Goodwin, S.D.

1986-01-01

307

Effects of copper exposure on the energy metabolism in juveniles of the marine clam Mesodesma mactroides.  

PubMed

In freshwater osmoregulating mollusks, Cu can cause toxicity by inducing ionoregulatory disturbances. In mussels, it inhibits the activity of key enzymes involved in Na(+) uptake and consequently induces ionic and osmotic disturbances. In snails, Cu induces disruption of the Ca(2+) homeostasis leading to effects in shell deposition and snail growth. However, the mechanisms involved in Cu toxicity in osmoconforming sweater mollusks remain unclear. Recent findings from our laboratory have suggested that Cu toxicity in marine invertebrates can be associated with both ionic and respiratory disturbances. In the present study, metabolic changes induced by waterborne Cu exposure were evaluated in the osmoconforming clam Mesodesma mactroides, a bivalve species widely distributed along the South American sandy beaches. Juvenile clams were kept under control conditions (no Cu addition in the water) or acutely (96h) exposed to Cu (96-h LC10=150?gL(-1)) in artificial seawater (30ppt). ATP, protein, lipid, glycogen and glucose contents were analyzed in gills, digestive gland, pedal muscle and hemolymph. Dinucleotide (NAD(+) and NADH) content was also analyzed in gills, digestive gland and pedal muscle while pyruvate and lactate content was determined in pedal muscle and hemolymph. In all tissues analyzed, Cu exposure did not affect ATP content and NAD(+)/NADH ratio, except in the hemolymph, where a decrease in ATP content was observed. These findings indicate that clam cells, except those from hemolymph, were able to maintain a constant level of free energy. A significant increase in total protein content was observed in the digestive gland, which could be a compensatory mechanism to counteract the higher level of protein oxidation previously observed in M. mactroides exposed to Cu under the same experimental conditions. Finally, reduced glucose content in the pedal muscle paralleled by increased lactate content in the pedal muscle and hemolymph was observed in Cu-exposed clams. Overall, these findings indicate that Cu exposure is leading to an increased reliance upon the anaerobic energy production to maintain the overall cellular ATP production in the clam M. mactroides. PMID:24727213

Giacomin, Marina; Jorge, Marianna Basso; Bianchini, Adalto

2014-07-01

308

Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.  

PubMed Central

1. Eight subjects performed one-legged, dynamic, knee-extensor exercise, first at 10 W followed by 10 min rest, then at an intense, exhaustive exercise load (65 W) lasting 3.2 min. After 60 min recovery, exercise was performed for 8-10 min each at 20, 30, 40 and 50 W. Measurements of pulmonary oxygen uptake, heart rate, blood pressure, leg blood flow, and femoral arterial-venous differences of oxygen content and lactate were performed as well as determination of ATP, creatine phosphate (CP) inosine monophosphate (IMP) and lactate concentrations on biopsy material from the quadriceps muscle before and immediately after the intense exercise, and at 3, 10 and 60 min into recovery. 2. Individual linear relations (r = 0.95-1.00) between the power outputs for submaximal exercise and oxygen uptakes (leg and pulmonary) were used to estimate the energy demand during intense exercise. Pulmonary and leg oxygen deficits determined as the difference between energy demand and oxygen uptake were 0.46 and 0.48 l (kg active muscle)-1, respectively. Limb and pulmonary oxygen debts (oxygen uptake during 60 min of recovery - pre-exercise oxygen uptake) were 0.55 and 1.65 l (kg active muscle)-1, respectively. 3. During the intense exercise, muscle [ATP] decreased by 30% and [CP] by 60% from resting concentrations of 6.2 and 22.4 mmol (kg wet wt)-1, respectively, and [IMP] increased to 1.1 mmol (kg wet wt)-1. Muscle [lactate] increased from 2 to 28.1 mmol (kg wet wt)-1, and the concomitant net lactate release was 14.8 mmol (kg wet wt)-1 or about 1/3 of the total net lactate production. During recovery 70% of the accumulated lactate was released to the blood, and the nucleotides and CP returned to about 40 and 85% of pre-exercise values at 3 and 10 min of recovery, respectively. 4. Total reduction in ATP and CP (and elevation of IMP) during the intense exercise amounted to 16.4 mmol ATP (kg wet wt)-1, which together with the lactate production accounted for 83.1 mmol ATP (kg wet wt)-1. In addition 6-8 mmol ATP (kg wet wt)-1 are made available related to accumulation of glycolytic intermediates including pyruvate (and alanine). Estimated leg oxygen deficit corresponded to an ATP production of 94.7 mmol ATP kg-1; this value included 3.1 mmol kg-1 related to unloading of HbO2 and MbO2.(ABSTRACT TRUNCATED AT 400 WORDS)

Bangsbo, J; Gollnick, P D; Graham, T E; Juel, C; Kiens, B; Mizuno, M; Saltin, B

1990-01-01

309

Brain energy metabolism and blood flow differences in healthy aging  

PubMed Central

Cerebral metabolic rate of oxygen consumption (CMRO2), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO2 during normal aging are still controversial, as some authors find decreases of both CBF and CMRO2 but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO2 and CBF in 66 healthy volunteers aged 21 to 81 years. The magnitudes of CMRO2 and CBF declined in large parts of the cerebral cortex, including association areas, but the primary motor and sensory areas were relatively spared. We found significant increases of OEF in frontal and parietal cortices, excluding primary motor and somatosensory regions, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions most affected by age are the areas that are most vulnerable to neurodegeneration.

Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar; Vang, Kim; Rodell, Anders B; Jonsdottir, Kristjana Y; M?ller, Arne; Ashkanian, Mahmoud; Vafaee, Manouchehr S; Iversen, Peter; Johannsen, Peter; Gjedde, Albert

2012-01-01

310

Metabolic control of transcriptional-translational control loops (TTCL) by circadian oscillations in the redox- and phosphorylation state of cells  

Microsoft Academic Search

Evolution from prokaryotic to eukaryotic organisms was paralleled by a corresponding evolution in energy metabolism. From primeval fermentation, energy conservation progressed to anaerobic photosynthesis and then to carbon dioxide fixation with acceptance of electrons by water and the evolution of oxygen. In a progressively oxygenic biosphere, respiration developed with oxygen as a terminal electron acceptor. Evolving life was paralleled by

Jolana T. P. Albrechtová; Marco Vervliet-Scheebaum; Johannes Normann; Justyna Veit; Edgar Wagner

2006-01-01

311

Supply and demand in cerebral energy metabolism: the role of nutrient transporters  

Microsoft Academic Search

Glucose is the obligate energetic fuel for the mammalian brain, and most studies of cerebral energy metabolism assume that the majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter (GLUT) proteins deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood–brain barrier

Ian A. Simpson; Anthony Carruthers; Susan J. Vannucci

2007-01-01

312

Temperature effects on energy metabolism in banded and unbanded morphs of the snail Cepaea hortensis Müll  

Microsoft Academic Search

Energy metabolism (oxygen consumption) in acclimated juvenile yellow banded and unbanded Cepaea hortensis Müll. was measured at 5°, 10°, 15°, 20°, and 25°C with Englemann respirometers. Metabolic rates were also measured after abrupt temperature changes from 5° to 20° and from 25° to 10°C.

Andreas L. Steigen

1979-01-01

313

Teaching Energy Metabolism Using Scientific Articles: Implementation of a Virtual Learning Environment for Medical Students  

ERIC Educational Resources Information Center

This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…

de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.

2010-01-01

314

Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens  

NASA Technical Reports Server (NTRS)

Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

1995-01-01

315

CO2 Incorporation and 4-Hydroxy-2-Methylbenzoic Acid Formation during Anaerobic Metabolism of m-Cresol by a Methanogenic Consortium  

PubMed Central

The metabolism of m-cresol by methanogenic cultures enriched from domestic sewage sludge was investigated. In the initial studies, bromoethanesulfonic acid was used to inhibit methane production. This led to the accumulation of 4.0 ± 0.8 mol of acetate per mol of m-cresol metabolized. These results suggested that CO2 incorporation occurred because each molecule of m-cresol contained seven carbon atoms, whereas four molecules of acetate product contained a total of eight carbon atoms. To verify this, [14C]bicarbonate was added to bromoethanesulfonic acid-inhibited cultures, and those cultures yielded [14C]acetate. Of the label recovered as acetate, 89% was found in the carboxyl position. Similar cultures fed [methyl-14C]m-cresol yielded methyl-labeled acetate. A 14C-labeled transient intermediate was detected in cultures given either m-cresol and [14C]bicarbonate or bicarbonate and [methyl-14C]m-cresol. The intermediate was identified as 4-hydroxy-2-methylbenzoic acid. In addition, another metabolite was detected and identified as 2-methylbenzoic acid. This compound appeared to be produced only sporadically, and it accumulated in the medium, suggesting that the dehydroxylation of 4-hydroxy-2-methylbenzoic acid led to an apparent dead-end product.

Roberts, Deborah J.; Fedorak, Phillip M.; Hrudey, Steve E.

1990-01-01

316

Energy metabolism and hematology of white-tailed deer fawns.  

PubMed

Resting metabolic rates, weight gains and hematologic profiles of six newborn, captive white-tailed deer (Odocoileus virginianus) fawns (four females, two males) were determined during the first 3 mo of life. Estimated mean daily weight gain of fawns was 0.2 kg. The regression equation for metabolic rate was: Metabolic rate (kcal/kg0.75/day) = 56.1 +/- 1.3 (age in days), r = 0.65, P less than 0.001). Regression equations were also used to relate age to red blood cell count (RBC), hemoglobin concentration (Hb), packed cell volume, white blood cell count, mean corpuscular volume, mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin. The age relationships of Hb, MCHC, and smaller RBC's were indicative of an increasing and more efficient oxygen-carrying and exchange capacity to fulfill the increasing metabolic demands for oxygen associated with increasing body size. PMID:1548807

Rawson, R E; DelGiudice, G D; Dziuk, H E; Mech, L D

1992-01-01

317

Energy metabolism and hematology of white-tailed deer fawns  

USGS Publications Warehouse

Resting metabolic rates, weight gains and hematologic profiles of six newborn, captive white-tailed deer (Odocoileus virginianus) fawns (four females, two males) were determined during the first 3 mo of life. Estimated mean daily weight gain of fawns was 0.2 kg. The regression equation for metabolic rate was: Metabolic rate (kcal/kg0.75/day) = 56.1 +/- 1.3 (age in days), r = 0.65, P less than 0.001). Regression equations were also used to relate age to red blood cell count (RBC), hemoglobin concentration (Hb), packed cell volume, white blood cell count, mean corpuscular volume, mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin. The age relationships of Hb, MCHC, and smaller RBC's were indicative of an increasing and more efficient oxygen-carrying and exchange capacity to fulfill the increasing metabolic demands for oxygen associated with increasing body size.

Rawson, R.E.; DelGiudice, G.D.; Dziuk, H.E.; Mech, L.D.

1992-01-01

318

Effect of Ultraviolet Radiation on the Energy Metabolism of the Corneal Epithelium of the Rabbit.  

National Technical Information Service (NTIS)

The present research was directed at quantifying possible alterations in corneal epithelial metabolic activity secondary to in vivo exposure to ultraviolet radiation (UVR). Microfluorometric energy metabolite assays on microgram (ug) sized, freeze-dried t...

M. R. Lattimore

1989-01-01

319

The PPAR?-PGC-1? Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium  

PubMed Central

The mammalian myocardium is an omnivorous organ that relies on multiple substrates in order to fulfill its tremendous energy demands. Cardiac energy metabolism preference is regulated at several critical points, including at the level of gene transcription. Emerging evidence indicates that the nuclear receptor PPAR? and its cardiac-enriched coactivator protein, PGC-1?, play important roles in the transcriptional control of myocardial energy metabolism. The PPAR?-PGC-1? complex controls the expression of genes encoding enzymes involved in cardiac fatty acid and glucose metabolism as well as mitochondrial biogenesis. Also, evidence has emerged that the activity of the PPAR?-PGC-1? complex is perturbed in several pathophysiologic conditions and that altered activity of this pathway may play a role in cardiomyopathic remodeling. In this review, we detail the current understanding of the effects of the PPAR?-PGC-1? axis in regulating mitochondrial energy metabolism and cardiac function in response to physiologic and pathophysiologic stimuli.

Duncan, Jennifer G.; Finck, Brian N.

2008-01-01

320

In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH  

PubMed Central

Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

Yaseen, Mohammad A.; Sakadzic, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A.; Boas, David A.

2013-01-01

321

In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism  

PubMed Central

Background Shigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. Quantitative proteome profiling of Shigella dysenteriae serotype 1 (SD1) in vitro (derived from LB cell cultures) and in vivo (derived from gnotobiotic piglets) was performed by 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting methodology. Results Overall, 1761 proteins were quantitated at a 5% FDR (false discovery rate), including 1480 and 1505 from in vitro and in vivo samples, respectively. Identification of 350 cytoplasmic membrane and outer membrane (OM) proteins (38% of in silico predicted SD1 membrane proteome) contributed to the most extensive survey of the Shigella membrane proteome reported so far. Differential protein abundance analysis using statistical tests revealed that SD1 cells switched to an anaerobic energy metabolism under in vivo conditions, resulting in an increase in fermentative, propanoate, butanoate and nitrate metabolism. Abundance increases of transcription activators FNR and Nar supported the notion of a switch from aerobic to anaerobic respiration in the host gut environment. High in vivo abundances of proteins involved in acid resistance (GadB, AdiA) and mixed acid fermentation (PflA/PflB) indicated bacterial survival responses to acid stress, while increased abundance of oxidative stress proteins (YfiD/YfiF/SodB) implied that defense mechanisms against oxygen radicals were mobilized. Proteins involved in peptidoglycan turnover (MurB) were increased, while ?-barrel OM proteins (OmpA), OM lipoproteins (NlpD), chaperones involved in OM protein folding pathways (YraP, NlpB) and lipopolysaccharide biosynthesis (Imp) were decreased, suggesting unexpected modulations of the outer membrane/peptidoglycan layers in vivo. Several virulence proteins of the Mxi-Spa type III secretion system and invasion plasmid antigens (Ipa proteins) required for invasion of colonic epithelial cells, and release of bacteria into the host cell cytosol were increased in vivo. Conclusions Global proteomic profiling of SD1 comparing in vivo vs. in vitro proteomes revealed differential expression of proteins geared towards survival of the pathogen in the host gut environment, including increased abundance of proteins involved in anaerobic energy respiration, acid resistance and virulence. The immunogenic OspC2, OspC3 and IpgA virulence proteins were detected solely under in vivo conditions, lending credence to their candidacy as potential vaccine targets.

2011-01-01

322

The Central Carbon and Energy Metabolism of Marine Diatoms  

PubMed Central

Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved.

Obata, Toshihiro; Fernie, Alisdair R.; Nunes-Nesi, Adriano

2013-01-01

323

Assessing Risk Factors for Obesity Between Childhood and Adolescence: II. Energy Metabolism and Physical Activity  

Microsoft Academic Search

Objective. To assess the effect of energy expenditure, including resting metabolic rate (RMR), to- tal energy expenditure (TEE), and activity energy expen- diture (AEE), as well as substrate oxidation (respiratory quotient (RQ)), on the development of obesity in a large cohort of Native American children with a high propen- sity for obesity. Methods. During the summer months of 1992 to

Arline D. Salbe; Christian Weyer; Inge Harper; Robert S. Lindsay; Eric Ravussin; P. Antonio Tataranni

324

Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties.  

PubMed

Protists that live under low-oxygen conditions often lack conventional mitochondria and instead possess mitochondrion-related organelles (MROs) with distinct biochemical functions. Studies of mostly parasitic organisms have suggested that these organelles could be classified into two general types: hydrogenosomes and mitosomes. Hydrogenosomes, found in parabasalids, anaerobic chytrid fungi, and ciliates, metabolize pyruvate anaerobically to generate ATP, acetate, CO(2), and hydrogen gas, employing enzymes not typically associated with mitochondria. Mitosomes that have been studied have no apparent role in energy metabolism. Recent investigations of free-living anaerobic protists have revealed a diversity of MROs with a wider array of metabolic properties that defy a simple functional classification. Here we describe an expressed sequence tag (EST) survey and ultrastructural investigation of the anaerobic heteroloboseid amoeba Sawyeria marylandensis aimed at understanding the properties of its MROs. This organism expresses typical anaerobic energy metabolic enzymes, such as pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenase, and associated hydrogenase maturases with apparent organelle-targeting peptides, indicating that its MRO likely functions as a hydrogenosome. We also identified 38 genes encoding canonical mitochondrial proteins in S. marylandensis, many of which possess putative targeting peptides and are phylogenetically related to putative mitochondrial proteins of its heteroloboseid relative Naegleria gruberi. Several of these proteins, such as a branched-chain alpha keto acid dehydrogenase, likely function in pathways that have not been previously associated with the well-studied hydrogenosomes of parabasalids. Finally, morphological reconstructions based on transmission electron microscopy indicate that the S. marylandensis MROs form novel cup-like structures within the cells. Overall, these data suggest that Sawyeria marylandensis possesses a hydrogenosome of mitochondrial origin with a novel combination of biochemical and structural properties. PMID:21037180

Barberà, Maria José; Ruiz-Trillo, Iñaki; Tufts, Julia Y A; Bery, Amandine; Silberman, Jeffrey D; Roger, Andrew J

2010-12-01

325

Bacterial Metabolism of Polychlorinated Biphenyls  

Microsoft Academic Search

Microbial metabolism is responsible for the removal of persistent organic pollutants including PCBs from the environment. Anaerobic dehalogenation of highly chlorinated congeners in aquatic sediments is an important process, and recent evidence has indicated that Dehalococcoides and related organisms are predominantly responsible for this process. Such anaerobic dehalogenation generates lower chlorinated congeners which are easily degraded aerobically by enzymes of

Dietmar H. Pieper; Michael Seeger

2008-01-01

326

Identification and Analysis of Genes Involved in Anaerobic Toluene Metabolism by Strain T1: Putative Role of a Glycine Free Radical  

PubMed Central

The denitrifying strain T1 is able to grow with toluene serving as its sole carbon source. Two mutants which have defects in this toluene utilization pathway have been characterized. A clone has been isolated, and subclones which contain tutD and tutE, two genes in the T1 toluene metabolic pathway, have been generated. The tutD gene codes for an 864-amino-acid protein with a calculated molecular mass of 97,600 Da. The tutE gene codes for a 375-amino-acid protein with a calculated molecular mass of 41,300 Da. Two additional small open reading frames have been identified, but their role is not known. The TutE protein has homology to pyruvate formate-lyase activating enzymes. The TutD protein has homology to pyruvate formate-lyase enzymes, including a conserved cysteine residue at the active site and a conserved glycine residue that is activated to a free radical in this enzyme. Site-directed mutagenesis of these two conserved amino acids shows that they are also essential for the function of TutD.

Coschigano, Peter W.; Wehrman, Thomas S.; Young, L. Y.

1998-01-01

327

Linking energy metabolism to dysfunctions in mitochondrial respiration--a metabolomics in vitro approach.  

PubMed

The study presented here describes the application of metabolite profiling of highly polar, intracellular metabolites after incubation of a mammalian fibroblast cell line with inhibitors of mitochondrial function. A metabolomics approach was used to assess the complex response of the cellular energy metabolism. Metabolic profiles of phosphorylated and carboxylated intracellular metabolites were assessed by UPLC-MS/MS and used to predict the mode of mitochondrial toxicity. Based on distinct metabolic patterns, multivariate data analysis allowed for the discrimination of two groups of toxins: inhibitors of the electron transport in mitochondrial membranes (complex IV inhibitors) and uncouplers of oxidative phosphorylation. Beyond these known interferences, metabolic profiling was able to reveal additional inhibitory effects on the cellular energy metabolism. Most prominently, for three of the toxins, metabolic patterns also disclosed an enhanced activity of the glycerol phosphate shuttle inferring the inhibition of NADH dehydrogenase at complex I. Secondly, inhibition of the electron transport was accompanied by a limiting availability of citric acid cycle intermediates and aspartate. Concomitantly, specific perturbations of the purine nucleotide cycle were observed. We have shown here that metabolomic approaches may assist to predict complex modes of action of toxic compounds on cellular level as well as to unravel specific dysfunctions in the energy metabolism. PMID:21402135

Balcke, G U; Kolle, S N; Kamp, H; Bethan, B; Looser, R; Wagner, S; Landsiedel, Robert; van Ravenzwaay, B

2011-06-24

328

Anaerobic benzene degradation  

Microsoft Academic Search

Although many studies have indicated that benzene persists under anaerobic conditions in petroleum-contaminated environments, it has recently been documented that benzene can be anaerobically oxidized with most commonlyconsidered electron acceptors for anaerobic respiration. These include: Fe(III),sulfate, nitrate, and possibly humic substances. Benzene can also be convertedto methane and carbon dioxide under methanogenic conditions. There is evidencethat benzene can be degraded

Derek R. Lovley

2000-01-01

329

Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.  

PubMed

The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

2014-10-15

330

Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer.  

National Technical Information Service (NTIS)

During the past grant period, we obtained further evidence that eukaryotic elongation factor-2 kinase (eEF-2K) plays an important role in the development and progression of cancer by regulating cellular metabolism. In the study of the molecular mechanisms...

Y. Cheng

2013-01-01

331

Unique metabolic features of stem cells, cardiomyocytes, and their progenitors.  

PubMed

Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed. PMID:24723659

Gaspar, John Antonydas; Doss, Michael Xavier; Hengstler, Jan Georg; Cadenas, Cristina; Hescheler, Jürgen; Sachinidis, Agapios

2014-04-11

332

NF-?B controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration  

PubMed Central

Cell proliferation is a metabolically demanding process1,2. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth1,2. NF-?B/Rel transcription factors coordinate many of the signals that drive proliferation during Immunity, inflammation and oncogenesis3, but whether NF-?B regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-?B organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-?B inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-?B inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-?B-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. 4). Our findings identify NF-?B as a physiological regulator of mitochondrial respiration and establish a role for NF-?B in metabolic adaptation in normal cells and cancer.

Mauro, Claudio; Leow, Shi Chi; Anso, Elena; Rocha, Sonia; Thotakura, Anil K.; Tornatore, Laura; Moretti, Marta; De Smaele, Enrico; Beg, Amer A.; Tergaonkar, Vinay; Chandel, Navdeep S.; Franzoso, Guido

2012-01-01

333

Mechanisms of Impaired Mitochondrial Energy Metabolism in Acute and Chronic Neurodegenerative Disorders  

PubMed Central

Altered mitochondrial energy metabolism contributes to the pathophysiology of acute brain injury caused by ischemia, trauma, and neurotoxins and by chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Although much evidence supports that the electron transport chain dysfunction in these metabolic abnormalities has both genetic and intracellular environmental causes, alternative mechanisms are being explored. These include direct, reversible inhibition of cytochrome oxidase by nitric oxide, release of mitochondrial cytochrome c, oxidative inhibition of mitochondrial matrix dehydrogenases and adenine nucleotide transport, the availability of NAD for dehydrogenase reactions, respiratory uncoupling by activities such as that of the permeability transition pore, and altered mitochondrial structure and intracellular trafficking. This review focuses on the catabolism of neuronal NAD and the release of neuronal mitochondrial NAD as important contributors to metabolic dysfunction. In addition, the relationship between apoptotic signaling cascades and disruption of mitochondrial energy metabolism is considered in light of the fine balance between apoptotic and necrotic neural cell death.

Soane, Lucian; Kahraman, Sibel; Kristian, Tibor; Fiskum, Gary

2008-01-01

334

Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.  

PubMed

Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. PMID:24878366

Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

2014-08-01

335

Environmental endocrine disruption of energy metabolism and cardiovascular risk.  

PubMed

Rates of metabolic diseases have increased at an astounding rate in recent decades. Even though poor diet and physical inactivity are central drivers, these lifestyle changes alone fail to fully account for the magnitude and rapidity of the epidemic. Thus, attention has turned to identifying novel risk factors, including the contribution of environmental endocrine disrupting chemicals. Epidemiologic and preclinical data support a role for various contaminants in the pathogenesis of diabetes. In addition to the vascular risk associated with dysglycemia, emerging evidence implicates multiple pollutants in the pathogenesis of atherosclerosis and cardiovascular disease. Reviewed herein are studies linking endocrine disruptors to these key diseases that drive significant individual and societal morbidity and mortality. Identifying chemicals associated with metabolic and cardiovascular disease as well as their mechanisms of action is critical for developing novel treatment strategies and public policy to mitigate the impact of these diseases on human health. PMID:24756343

Kirkley, Andrew G; Sargis, Robert M

2014-06-01

336

Syntrophy in Anaerobic Global Carbon Cycles  

PubMed Central

Summary of recent advances Syntrophy is an essential intermediary step in the anaerobic conversion of organic matter to methane where metabolically distinct microorganisms are tightly linked by the need to maintain the exchanged metabolites at very low concentrations. The need for syntrophy is thermodynamically constrained, and is probably a prime reason why it is difficult to culture microbes as these approaches disrupt consortia. Reconstruction of artificial syntrophic consortia has allowed uncultured syntrophic metabolizers and methanogens to be optimally grown and studied biochemically. The pathways for syntrophic acetate, propionate and longer chain fatty acid metabolism are mostly understood, but key steps involved in benzoate breakdown and cyclohexane carboxylate formation are unclear. Syntrophic metabolism requires reverse electron transfer, close physical contact, and metabolic synchronization of the syntrophic partners. Genomic analyses reveal that multiple mechanisms exist for reverse electron transfer. Surprisingly, the flagellum functions were implicated in ensuring close physical proximity and synchronization of the syntrophic partners.

McInerney, Michael J.; Sieber, Jessica R.

2009-01-01

337

The Effects of Dairy Components on Energy Partitioning and Metabolic Risk in Mice: A Microarray Study  

Microsoft Academic Search

Background\\/Aim: High-calcium diets modulate energy metabolism and suppress inflammatory stress. These effects are primarily mediated by calcium suppression of calcitriol. We have now investigated the effect of additional components in dairy products [branched-chain amino acids (BCAA) and angiotensin-converting enzyme inhibitors (ACEi)] on adipocyte and muscle metabolism in an animal model of diet-induced obesity. Methods: aP2-agouti mice were fed four different

Antje Bruckbauer; Julia Gouffon; Bhanu Rekapalli; Michael B. Zemel

2009-01-01

338

Anaerobic digestibility of algal bioethanol residue.  

PubMed

The aim of this work was to investigate anaerobic digestibility of algal bioethanol residue from saccharification and fermentation processes. A series of batch anaerobic digestion tests using saccharification and fermentation residue showed that the maximum methane yields of saccharification residue and fermentation residue were 239 L/kg VS (Volatile Solids) and 283 L/kg VS (Volatile Solids), respectively. Energy recovered by anaerobic digestion of the residue was 2.24 times higher than that from the ethanol produced in the main process. 5-HMF (5-hydroxymethylfurfural), a saccharification byproduct, could retard methanogenesis at over 3g/L however, the inhibition was prevented by increasing cell biomass concentration. Anaerobic digestion of residue has the potential to enhance bioenergy recovery and environmental sustainability of algal bioethanol production. PMID:22364770

Park, Jeong-Hoon; Yoon, Jeong-Jun; Park, Hee-Deung; Lim, Dong Jung; Kim, Sang-Hyoun

2012-06-01

339

Metabolic Disorders  

MedlinePLUS

... energy in your body tissues, such as your liver, muscles, and body fat. A metabolic disorder occurs ... metabolic disorder when some organs, such as your liver or pancreas, become diseased or do not function ...

340

Metabolic Strategies in Energy-Limited Microbial Communities in the Anoxic Subsurface (Frasassi Cave System, Italy)  

Microsoft Academic Search

Two major sources of energy, light and chemical potential, are available to microorganisms. However, energy is not always abundant and is often a limiting factor in microbial survival and replication. The anoxic, terrestrial subsurface offers a unique opportunity to study microorganisms and their potentially novel metabolic strategies that are relevant for understanding biogeochemistry and biosignatures as related to the non-photosynthetic,

R. L. McCauley; D. S. Jones; I. Schaperdoth; L. Steinberg; J. L. Macalady

2010-01-01

341

Gender difference in the effect of body composition on energy metabolism  

Microsoft Academic Search

OBJECTIVE: The aim of this study was to investigate the relationship between energy expenditure (EE) and fat mass (FM) by using a cross-sectional approach to study the linear relationship between body composition variables and EE phenotypes as well as an intervention design to investigate the effect of body weight loss on energy metabolism in both genders.METHODS: The correlations and linear

I Dionne; JP Després; C Bouchard; A Tremblay

1999-01-01

342

Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism.  

PubMed

The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed. PMID:24732669

Koch, M; Horvath, T L

2014-07-01

343

Influence of postnatal age, energy intake, and weight gain on energy metabolism in the very low-birth-weight infant.  

PubMed

The relative importance and interrelationship of postnatal age, energy intake, and weight gain on metabolic rate is evaluated in 28 studies in 13 formula-fed very low-birth-weight AGA infants. The relationships between metabolic rate, energy intake, weight gain, and age all follow a similar pattern, increasing in the first two weeks of life and subsequently stabilizing. Significant linear correlations are demonstrated between metabolic rate and both energy intake (r = 0.88, P less than 0.001) and weight gain (r = 0.86, P less than 0.001). For each gram of weight gain, 0.67 kcal (2.8 kj) are expended in addition to the maintenance energy requirement of 51 kcal/kg/day. The increase in metabolic rate in the early postnatal period appears to be a consequence of the energy cost of tissue synthesis. Changes in metabolic rate with postnatal age are modulated by increasing energy intake and weight gain. PMID:7197714

Chessex, P; Reichman, B L; Verellen, G J; Putet, G; Smith, J M; Heim, T; Swyer, P R

1981-11-01

344

Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc  

PubMed Central

Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells.

Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

2011-01-01

345

Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer.  

PubMed

We are as old as our adult stem cells are; therefore, stem cell exhaustion is considered a hallmark of aging. Our tumors are as aggressive as the number of cancer stem cells (CSCs) they bear because CSCs can survive treatments with hormones, radiation, chemotherapy, and molecularly targeted drugs, thus increasing the difficulty of curing cancer. Not surprisingly, interest in stem cell research has never been greater among members of the public, politicians, and scientists. But how can we slow the rate at which our adult stem cells decline over our lifetime, reducing the regenerative potential of tissues, while efficiently eliminating the aberrant, life-threatening activity of "selfish", immortal, and migrating CSCs? Frustrated by the gene-centric limitations of conventional approaches to aging diseases, our group and other groups have begun to appreciate that bioenergetic metabolism, i.e., the production of fuel & building blocks for growth and division, and autophagy/mitophagy, i.e., the quality-control, self-cannibalistic system responsible for "cleaning house" and "recycling the trash", can govern the genetic and epigenetic networks that facilitate stem cell behaviors. Indeed, it is reasonable to suggest the existence of a "metabostem" infrastructure that operates as a shared hallmark of aging and cancer, thus making it physiologically plausible to maintain or even increase the functionality of adult stem cells while reducing the incidence of cancer and extending the lifespan. This "metabostemness" property could lead to the discovery of new drugs that reprogram cell metabotypes to increase the structural and functional integrity of adult stem cells and positively influence their lineage determination, while preventing the development and aberrant function of stem cells in cancer tissues. While it is obvious that the antifungal antibiotic rapamycin, the polyphenol resveratrol, and the biguanide metformin already belong to this new family of metabostemness-targeting drugs, we can expect a rapid identification of new drug candidates (e.g., polyphenolic xenohormetins) that reverse or postpone "geroncogenesis", i.e., aging-induced metabolic decline as a driver of tumorigenesis, at the stem cell level. PMID:25038997

Menendez, Javier A; Joven, Jorge

2014-01-01

346

Lactate is the ultimate oxidative energy substrate in brain and elsewhere  

Microsoft Academic Search

Now-a-days, the focus on lactate is due to its be- ing an oxidative substrate for energy metabolism in brain (and other tissues), rather than a useless end prod- uct of anaerobic glycolysis. Mounting evidence indi- cates that lactate does play a major role in aerobic en- ergy metabolism in the brain, the heart, skeletal muscle and possibly in any other

Avital Schurr

2005-01-01

347

Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates.  

PubMed Central

The acclimation periods prior to detectable dehalogenation of halogenated benzoates in anaerobic lake sediments ranged from 3 weeks to 6 months. These acclimation periods were reproducible over time and among sampling sites and were characteristic of the chemical tested. The lengthy acclimation period appears to represent an induction phase in which little or no aryl dehalogenation is observed, followed by an exponential increase in activity typical of an enrichment response. Continuous growth from the time of the first exposure to the chemical is inconsistent with the extremely low per-cell activities estimated for the early days of the acclimation period and the fact that the dehalogenation yields no carbon to support microbial growth. The finding of a characteristic acclimation time for each chemical argues against nutritional deficiency, inhibition, or predation as an explanation for this phase of metabolism, while the reproducibility of the findings with time and space and among replicates argues against genetic changes as the explanation. The acclimation times did correlate with the eventual dehalogenation rates. This may reflect the general energy limitations in the anaerobic communities and suggests that those chemicals with faster dehalogenation rates provide more energy for the induction and growth phases of the active population.

Linkfield, T G; Suflita, J M; Tiedje, J M

1989-01-01

348

Low Anaerobic Threshold and Increased Skeletal Muscle Lactate Production in Subjects with Huntington's Disease  

PubMed Central

Mitochondrial defects that affect cellular energy metabolism have long been implicated in the etiology of Huntington's disease (HD). Indeed, several studies have found defects in the mitochondrial functions of the central nervous system and peripheral tissues of HD patients. In this study, we investigated the in vivo oxidative metabolism of exercising muscle in HD patients. Ventilatory and cardiometabolic parameters and plasma lactate concentrations were monitored during incremental cardiopulmonary exercise in twenty-five HD subjects and twenty-five healthy subjects. The total exercise capacity was normal in HD subjects but notably the HD patients and presymptomatic mutation carriers had a lower anaerobic threshold than the control subjects. The low anaerobic threshold of HD patients was associated with an increase in the concentration of plasma lactate. We also analyzed in vitro muscular cell cultures and found that HD cells produce more lactate than the cells of healthy subjects. Finally, we analyzed skeletal muscle samples by electron microscopy and we observed striking mitochondrial structural abnormalities in two out of seven HD subjects. Our findings confirm mitochondrial abnormalities in HD patients' skeletal muscle and suggest that the mitochondrial dysfunction is reflected functionally in a low anaerobic threshold and an increased lactate synthesis during intense physical exercise. © 2010 Movement Disorder Society

Ciammola, Andrea; Sassone, Jenny; Sciacco, Monica; Mencacci, Niccolo E; Ripolone, Michela; Bizzi, Caterina; Colciago, Clarissa; Moggio, Maurizio; Parati, Gianfranco; Silani, Vincenzo; Malfatto, Gabriella

2011-01-01

349

Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes.  

PubMed

Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens, hydrogenogens, sulfate reducers, and ferric iron reducers. Most thermophilic CO-oxidizing anaerobes have diverse metabolic capacities, but two hydrogenogenic species are obligate carboxydotrophs. Among known thermophilic carboxydotrophic anaerobes, hydrogenogens are most numerous, and based on available data they are most important in CO biotransformation in hot environments. PMID:19573196

Sokolova, Tatyana G; Henstra, Anne-Meint; Sipma, Jan; Parshina, Sofiya N; Stams, Alfons J M; Lebedinsky, Alexander V

2009-05-01

350

Anaerobic fermentation of beef cattle manure  

NASA Astrophysics Data System (ADS)

The conversion of livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation is summarized. The major biological and operational factors involved in methanogenesis are discussed, and a kinetic model that describes the fermentation process is presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration to have significant effects on CH4 production rate. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter s by selecting design criteria that maximize the net energy production per unit cost is presented.

Hashimoto, A. G.; Chen, Y. R.; Varel, V. H.

1981-01-01

351

Organic sulfur metabolisms in hydrothermal environments.  

PubMed

Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e?) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N? has the highest energy yields at higher temperatures (greater than ?40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e?). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H?. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. PMID:22469147

Rogers, Karyn L; Schulte, Mitchell D

2012-07-01

352

Anaerobic Respiration Using a Complete Oxidative TCA Cycle Drives Multicellular Swarming in Proteus mirabilis  

PubMed Central

ABSTRACT Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components.

Alteri, Christopher J.; Himpsl, Stephanie D.; Engstrom, Michael D.; Mobley, Harry L. T.

2012-01-01

353

Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe.  

PubMed

The paper considers the role of anaerobic digestion in promoting good agricultural practice on farms and the contribution this would make to reducing the environmental impacts associated with manure management. There are no regulatory drivers to promote the use of digestion in Europe, and the technology has only been widely adopted where economic drivers and coherent policies have been implemented at a national level. These measures have included direct subsidy on the energy price paid for "green electricity", and exemption of tax when biogas is used as a vehicle fuel. In those countries where financial incentives are not available or where a financial penalty is incurred through the regulatory regime, the uptake of digestion has been poor. Even with subsidies, digestion of animal manures as a single substrate is not common, and countries with successful schemes have achieved this either by permitting the import of wastes onto the farm or offering bonus subsidies for the use of energy crops. Both of these measures improve the energy efficiency of the process by increasing the volumetric methane production, although concerns are expressed that attention could concentrate on energy production at the expense of improving manure management. PMID:17564382

Banks, C J; Salter, A M; Chesshire, M

2007-01-01

354

Global Gene Expression Profiles of Bacillus subtilis Grown under Anaerobic Conditions  

PubMed Central

Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.

Ye, Rick W.; Tao, Wang; Bedzyk, Laura; Young, Thomas; Chen, Mario; Li, Liao

2000-01-01

355

Autosomal genomic scan for loci linked to obesity and energy metabolism in Pima Indians.  

PubMed Central

An autosomal genomic scan to search for linkage to obesity and energy metabolism was completed in Pima Indians, a population prone to obesity. Obesity was assessed by percent body fat (by hydrodensitometry) and fat distribution (the ratio of waist circumference to thigh circumference). Energy metabolism was measured in a respiratory chamber as 24-h metabolic rate, sleeping metabolic rate, and 24-h respiratory quotient (24RQ), an indicator of the ratio of carbohydrate oxidation to fat oxidation. Five hundred sixteen microsatellite markers with a median spacing of 6.4 cM were analyzed, in 362 siblings who had measurements of body composition and in 220 siblings who had measurements of energy metabolism. These comprised 451 sib pairs in 127 nuclear families, for linkage analysis to obesity, and 236 sib pairs in 82 nuclear families, for linkage analysis to energy metabolism. Pointwise and multipoint methods for regression of sib-pair differences in identity by descent, as well as a sibling-based variance-components method, were used to detect linkage. LOD scores >=2 were found at 11q21-q22, for percent body fat (LOD=2.1; P=.001), at 11q23-q24, for 24-h energy expenditure (LOD=2.0; P=.001), and at 1p31-p21 (LOD=2.0) and 20q11.2 (LOD=3.0; P=.0001), for 24RQ, by pointwise and multipoint analyses. With the variance-components method, the highest LOD score (LOD=2.3 P=.0006) was found at 18q21, for percent body fat, and at 1p31-p21 (LOD=2.8; P=.0003), for 24RQ. Possible candidate genes include LEPR (leptin receptor), at 1p31, and ASIP (agouti-signaling protein), at 20q11.2.

Norman, R A; Tataranni, P A; Pratley, R; Thompson, D B; Hanson, R L; Prochazka, M; Baier, L; Ehm, M G; Sakul, H; Foroud, T; Garvey, W T; Burns, D; Knowler, W C; Bennett, P H; Bogardus, C; Ravussin, E

1998-01-01

356

Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.  

PubMed

The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells. PMID:24350892

Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

2014-02-01

357

Metabolic consequences of resistive-type exercise  

NASA Technical Reports Server (NTRS)

This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

Dudley, G. A.

1988-01-01

358

Anaerobic Benzene Oxidation by Geobacter Species  

PubMed Central

The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.

Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

2012-01-01

359

A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes  

Microsoft Academic Search

This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to

A. Karagiannidis; G. Perkoulidis

2009-01-01

360

The anaerobic oxidation of ammonium.  

PubMed

From recent research it has become clear that at least two different possibilities for anaerobic ammonium oxidation exist in nature. 'Aerobic' ammonium oxidizers like Nitrosomonas eutropha were observed to reduce nitrite or nitrogen dioxide with hydroxylamine or ammonium as electron donor under anoxic conditions. The maximum rate for anaerobic ammonium oxidation was about 2 nmol NH4+ min-1 (mg protein)-1 using nitrogen dioxide as electron acceptor. This reaction, which may involve NO as an intermediate, is thought to generate energy sufficient for survival under anoxic conditions, but not for growth. A novel obligately anaerobic ammonium oxidation (Anammox) process was recently discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community with one dominating peculiar autotrophic organism was obtained. With nitrite as electron acceptor a maximum specific oxidation rate of 55 nmol NH4+ min-1 (mg protein)-1 was determined. Although this reaction is 25-fold faster than in Nitrosomonas, it allowed growth at a rate of only 0.003 h-1 (doubling time 11 days). 15N labeling studies showed that hydroxylamine and hydrazine were important intermediates in this new process. A novel type of hydroxylamine oxidoreductase containing an unusual P468 cytochrome has been purified from the Anammox culture. Microsensor studies have shown that at the oxic/anoxic interface of many ecosystems nitrite and ammonia occur in the absence of oxygen. In addition, the number of reports on unaccounted high nitrogen losses in wastewater treatment is gradually increasing, indicating that anaerobic ammonium oxidation may be more widespread than previously assumed. The recently developed nitrification systems in which oxidation of nitrite to nitrate is prevented form an ideal partner for the Anammox process. The combination of these partial nitrification and Anammox processes remains a challenge for future application in the removal of ammonium from wastewater with high ammonium concentrations. PMID:9990725

Jetten, M S; Strous, M; van de Pas-Schoonen, K T; Schalk, J; van Dongen, U G; van de Graaf, A A; Logemann, S; Muyzer, G; van Loosdrecht, M C; Kuenen, J G

1998-12-01

361

Nutrition and aging: changes in the regulation of energy metabolism with aging.  

PubMed

Changes in energy regulation occur during normal aging and contribute to the common phenomenon of weight and fat losses late in life. This review synthesizes data on aging-related changes in energy intake and energy expenditure and on the regulation of energy intake and expenditure. The ability of older adults to accurately regulate energy intake is impaired, with a number of possible explanations including delayed rate of absorption of macronutrients secondary to reductions in taste and smell acuity and numerous hormonal and metabolic mediators of energy regulation that change with aging. There are also changes in patterns of dietary intake and a reduction in the variety of foods consumed in old age that are thought to further reduce energy intake. Additionally, all components of energy expenditure decrease with aging, in particular energy expenditure for physical activity and basal metabolic rate, and the ability of energy expenditure to increase or decrease to attenuate energy imbalance during overeating or undereating also decreases. Combined, these changes result in an increased susceptibility to energy imbalance (both positive and negative) in old age that is associated with deteriorations in health. Practical interventions for prevention of weight and fat fluctuations in old age are anticipated here based on emerging knowledge of the role of such factors as dietary variety, taste, and palatability in late-life energy regulation. PMID:16601270

Roberts, Susan B; Rosenberg, Irwin

2006-04-01

362

A link between hepatic glucose production and peripheral energy metabolism via hepatokines  

PubMed Central

Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes.

Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Herve; Tourette, Jean-Andre; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles

2014-01-01

363

Balancing hygienization and anaerobic digestion of raw sewage sludge.  

PubMed

The anaerobic digestion of raw sewage sludge was evaluated in terms of process efficiency and sludge hygienization. Four different scenarios were analyzed, i.e. mesophilic anaerobic digestion, thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a 60 °C or by an 80 °C hygienization treatment. Digester performance (organic matter removal, process stability and biogas yield) and the hygienization efficiency (reduction of Escherichia coli, somatic coliphages and F-specific RNA phages) were the main examined factors. Moreover, a preliminary economical feasibility study of each option was carried out throughout an energy balance (heat and electricity). The obtained results showed that both thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a hygienization step were able to produce an effluent sludge that fulfills the American and the European legislation for land application. However, higher removal efficiencies of indicators were obtained when a hygienization post-treatment was present. Regarding the energy balance, it should be noted that all scenarios have a significant energy surplus. Particularly, positive heat balances will be obtained for the thermophilic anaerobic digestion and for the mesophilic anaerobic digestion followed by 60 °C hygienization post-treatment if an additional fresh-sludge/digested sludge heat exchanger is installed for energy recovery. PMID:23063441

Astals, S; Venegas, C; Peces, M; Jofre, J; Lucena, F; Mata-Alvarez, J

2012-12-01

364

Xylan degradation by the anaerobic bacterium Bacteroides xylanolyticus  

Microsoft Academic Search

Plant cell walls are the major reservoir of fixed carbon in nature. The mineralization of the fiber material, the so called lignocellulosic complex, proceeds almost exclusively by microbial processes in both aerobic and anaerobic environments. In anaerobic microbial processes the energy of the plant polymers can be conserved in fermentation products. The valorization of agricultural waste plant materials can consist

P. J. Y. M. J. Schyns

1997-01-01

365

TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS  

EPA Science Inventory

EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

366

Body composition, energy utilization, and nitrogen metabolism with a severely restricted diet supplemented with dihydroxyacetone and pyruvate13  

Microsoft Academic Search

ABSTRACF To determine the effect ofdietary modification on energy utilization during severely restrictive hypocaloric feeding, we measured body composition, energy deficit, and ni- trogen metabolism in 13 obese women housed in a metabolic ward consuming a 2. 1-MJ diet for 21 d with the three-carbon compounds dihydroxyacetone and pyruvate (DHAP), partially, isocalorically substituted for glucose. Body composition and amino acid

Ronald T Stanko; Denise L Tietze; Judith E Arch

367

Energy and Water Metabolism, Body Composition, and Hormonal Changes Induced by 42 Days of Enforced Inactivity and Simulated Weightlessness  

Microsoft Academic Search

Inactivity causes profound deleterious changes. We investigated in eight healthy men the impact of a 42-day head-down bed rest (HDBR) on energy and water metabolism and their interrelation- ships with body composition (BC) and catabolic and anabolic hor- mones. Total energy expenditure (TEE), total body water, water turnover, and metabolic water formation were assessed by the doubly labeled water method

STEPHANE BLANC; SYLVIE NORMAND; PATRICK RITZ; CHRISTIANE PACHIAUDI; LAURENCE VICO; CLAUDE GHARIB; GUILLEMETTE GAUQUELIN-KOCH

368

Effects of food intake regulation on the energy metabolism of hens and cockerels of a layer strain  

Microsoft Academic Search

1. Indirect calorimetry was used to study the effects on the energy metabolism of cockerels and hens after peak lay of a hybrid layer strain of regulating food or energy intake to 80% of ad libitum for an extended period of time.2. Regulation of food intake decreased fasting and fed heat productions per bird and per unit metabolic body weight

M. G. MacLeod; S. G. Tullett; T. R. Jewitt

1979-01-01

369

Energy metabolism, proteotoxic stress and age-related dysfunction – Protection by carnosine  

Microsoft Academic Search

This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested

Alan R. Hipkiss

370

Alteration of energy metabolism of calves fed below maintenance during 6 to 14 days of age  

Microsoft Academic Search

A study was conducted with seven groups of five to six Holstein-Friesian male calves to evaluate the effect of feeding level during 6 to 14 d of age on energy metabolism of unadapted young calves. Calves were transported at 2 to 3 d of age to their new environment. At 6 d of age measurements of heat production (HP) and

J. W. Schramal; W. van der Hel; A. Arieli; M. W. A. Verstegent

1992-01-01

371

Energy Balance, Metabolic Hormones, and Early Postpartum Follicular Development in Dairy Cows Fed Prilled Lipid  

Microsoft Academic Search

The objectives of this study were to relate energy balance and metabolic hormones during the early postpartum period in dairy cows with dominant folli- cle development before first ovulation and to evaluate the effects of prilled lipid on follicular development during the first follicular wave after parturition and the postpartum anovulatory interval. At parturition, 42 cows received a control diet

S. W. Beam; W. R. Butler

1998-01-01

372

A novel type of energy metabolism involving fermentation of inorganic sulphur compounds  

Microsoft Academic Search

Two processes are known whereby energy is conserved during substrate metabolism in heterotrophic organisms: respiration and fermentation. Both involve oxidation-reduction reactions; but whereas in respiration the electrons are transferred from substrate to an electron acceptor, in fermentation part of the substrate molecule itself accepts the electrons. Fermentation is therefore a type of disproportionation, and does not involve an overall change

Friedhelm Bak; Heribert Cypionka

1987-01-01

373

Cornuside Attenuates Apoptosis and Ameliorates Mitochondrial Energy Metabolism in Rat Cortical Neurons  

Microsoft Academic Search

Cornuside, a secoiridoid glucoside compound, was isolated from the fruit of Cornus officinalis Sieb. et Zucc. The present study elucidates the effects of cornuside on cultured rat cortical neuron damage induced by oxygen-glucose deprivation. The results show that cornuside treatment obviously attenuates apoptosis and ameliorates mitochondrial energy metabolism in rat cortical neurons by increasing the cell survival rate, mitochondrial antioxidant

Wang-Lin Jiang; Xi-Guang Chen; Hai-Bo Zhu; Jian Hou; Jing-Wei Tian

2009-01-01

374

Variation in energy intake and basal metabolic rate of a bird migrating in a wind tunnel  

Microsoft Academic Search

1. We studied the changes in body mass, metabolizable energy intake rate (ME) and basal metabolic rate (BMR) of a Thrush Nightingale, Luscinia luscinia, following repeated 12-h migratory flights in a wind tunnel. In total the bird flew for 176 h corresponding to 6300 km. This is the first study where the fuelling phase has been investigated in a bird

Å. Lindström; M. R. J. Klaassen; A. Kvist

1999-01-01

375

EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM  

EPA Science Inventory

A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

376

CHANGES IN THE PHYSIOLOGICAL PERFORMANCE AND ENERGY METABOLISM OF AN ESTUARINE MYSID  

EPA Science Inventory

Measures of physiological performance and energy metabolism were made on an estuarine mysid (Mysidopsis bahia) exposed throughout a life cycle to the defoliant DEF. EF concentrations > 0.246 ug/l reduced survival through release of the first brood. oung production was completely ...

377

How many sites of action for endocannabinoids to control energy metabolism?  

Microsoft Academic Search

The promising results obtained by clinical trials using Rimonabant to tackle visceral obesity and related disorders recently promoted a remarkable impulse to carry out detailed investigations into the mechanisms of action of endocannabinoids in regulating food intake and energy metabolism. The endocannabinoid system has been known for many years to play an important role in the modulation of the neuronal

U Pagotto; C Cervino; V Vicennati; G Marsicano; B Lutz; R Pasquali

2006-01-01

378

Hispidulin: antioxidant properties and effect on mitochondrial energy metabolism.  

PubMed

Hispidulin (6-methoxy-5,7,4'-trihydroxyflavone) and eupafolin (6-methoxy-5,7,3',4'-tetrahydroxyflavone), are flavonoids found in the leaves of Eupatorium litoralle. They have recognized antioxidant and antineoplastic properties, although their action mechanisms have not been previously described. We now report the effects of hispidulin on the oxidative metabolism of isolated rat liver mitochondria (Mit) and have also investigated the prooxidant and antioxidant capacity of both flavonoids. Hispidulin (0.05-0.2 mM) decreased the respiratory rate in state III and stimulated it in state IV, when glutamate or succinate was used as oxidizable substrate. Hispidulin inhibited enzymatic activities between complexes I and III of the respiratory chain. In broken Mit hispidulin (0.2 mM) slightly inhibited ATPase activity (25%). However, when intact Mit were used, the flavonoid stimulated this activity by 100%. Substrate energized mitochondrial swelling was markedly inhibited by hispidulin. Both hispidulin and eupafolin were able to promote iron release from ferritin, this effect being more accentuated with eupafolin with the suggestion of a possible involvement of H2O2 in the process. Hispidulin was incapable of donating electrons to the stable free radical DPPH, while eupafolin reacted with it in a similar way to ascorbic acid. The results indicate that hispidulin as an uncoupler of oxidative phosphorylation, is able to release iron from ferritin, but has distinct prooxidant and antioxidant properties when compared to eupafolin. PMID:16298860

Dabaghi-Barbosa, Priscila; Mariante Rocha, Andreia; Franco da Cruz Lima, Anderson; Heleno de Oliveira, Brás; Benigna Martinelli de Oliveira, Maria; Gunilla Skare Carnieri, Eva; Cadena, Sílvia M S C; Eliane Merlin Rocha, Maria

2005-12-01

379

Transcriptional Regulation of Central Carbon and Energy Metabolism in Bacteria by Redox-Responsive Repressor Rex  

PubMed Central

Redox-sensing repressor Rex was previously implicated in the control of anaerobic respiration in response to the cellular NADH/NAD+ levels in Gram-positive bacteria. We utilized the comparative genomics approach to infer candidate Rex-binding DNA motifs and assess the Rex regulon content in 119 genomes from 11 taxonomic groups. Both DNA-binding and NAD-sensing domains are broadly conserved in Rex orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chloroflexi, Deinococcus-Thermus, and Proteobacteria. The identified DNA-binding motifs showed significant conservation in these species, with the only exception detected in Clostridia, where the Rex motif deviates in two positions from the generalized consensus, TTGTGAANNNNTTCACAA. Comparative analysis of candidate Rex sites revealed remarkable variations in functional repertoires of candidate Rex-regulated genes in various microorganisms. Most of the reconstructed regulatory interactions are lineage specific, suggesting frequent events of gain and loss of regulator binding sites in the evolution of Rex regulons. We identified more than 50 novel Rex-regulated operons encoding functions that are essential for resumption of the NADH:NAD+ balance. The novel functional role of Rex in the control of the central carbon metabolism and hydrogen production genes was validated by in vitro DNA binding assays using the TM0169 protein in the hydrogen-producing bacterium Thermotoga maritima.

Ravcheev, Dmitry A.; Li, Xiaoqing; Latif, Haythem; Zengler, Karsten; Leyn, Semen A.; Korostelev, Yuri D.; Kazakov, Alexey E.; Novichkov, Pavel S.; Osterman, Andrei L.

2012-01-01

380

Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.  

PubMed

Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. PMID:24996362

Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan

2014-12-01

381

Brain and muscle energy metabolism studied in vivo by 31P-magnetic resonance spectroscopy in NARP syndrome.  

PubMed Central

Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to study in vivo the energy metabolism of brain and skeletal muscle in two members of an Italian pedigree with NARP syndrome due to a point mutation at bp 8993 of mtDNA. In the youngest patient, a 13 year old girl with retinitis pigmentosa, ataxia, and psychomotor retardation, there was an alteration of brain energy metabolism shown by a decreased phosphocreatine content, increased [ADP] and decreased phosphorylation potential. The energy metabolism of her skeletal muscle was also abnormal, as shown by resting higher inorganic phosphate and lower phosphocreatine concentrations than in normal subjects. Her mother, a 41 year old woman with minimal clinical involvement, showed a milder derangement of brain energy metabolism and normal skeletal muscle. Findings with MRS showed that this point mutation of mtDNA is responsible for a derangement of energy metabolism in skeletal muscle and even more so in the brain.

Lodi, R; Montagna, P; Iotti, S; Zaniol, P; Barboni, P; Puddu, P; Barbiroli, B

1994-01-01

382

EVALUATION OF THE PERFORMANCE OF DIFFERENT ANAEROBIC DIGESTION TECHNOLOGIES FOR SOLID WASTE TREATMENT  

Microsoft Academic Search

The anaerobic digestion of solid wastes is now a widely- used technology in Europe with more than 50 full- scale plants operating. However, anaerobic solid waste digestion is still used to only a limited extent in North America with only three facilities in Canada. Because of the expected importance of anaerobic digestion in the future for energy recovery, reliable tools

Mariana Chavez-Vazquez; David M. Bagley

383

The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans  

Microsoft Academic Search

OBJECTIVE: To investigate the effects of a near-physiological peripheral glucagon-like peptide-1 (GLP-1) infusion, during and after a breakfast of fixed energy content, on resting energy expenditure, substrate oxidation and metabolism and the desire to eat specific types of food in humans.DESIGN: A placebo-controlled, randomized, blinded, cross-over study. Infusion (GLP-1, 50 pmol\\/kg×h or saline) was started simultaneously with initiation of the

A Flint; A Raben; JF Rehfeld; JJ Holst; A Astrup

2000-01-01

384

Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms?  

PubMed Central

In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

2009-01-01

385

Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.  

PubMed

In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

2009-06-01

386

Interactive effect of galanin-like peptide (GALP) and spontaneous exercise on energy metabolism.  

PubMed

Galanin-like peptide (GALP) is a neuropeptide involved in energy metabolism. The interactive effect of GALP and exercise on energy metabolism has not been investigated. The aim of this study was to determine if energy metabolism in spontaneously exercising mice could be promoted by intracerebroventricular (ICV) GALP administration. Changes in respiratory exchange ratio in response to GALP ICV administration indicated that lipids were primarily consumed followed by a continuous consumption of glucose throughout the dark period in non-exercising mice. In mice permitted to spontaneously exercise on a running-wheel, GALP ICV administration increased the consumed oxygen volume and heat production level from 5 to 11h after administration. These effects occurred independently from the total running distance. The interaction between GALP ICV administration and spontaneous exercise decreased body weight within 24h (F(1,16)=5.772, p<0.05), with no significant interaction observed regarding food and water intake or total distance. Energy metabolism-related enzymes were assessed in liver and skeletal muscle samples, with a significant interaction on mRNA expression between GALP ICV administration and spontaneous exercise observed in phosphoenolpyruvate carboxykinase (F(1,16)=18.602, p<0.001) that regulates gluconeogenesis and glucose transporter-4 (F(1,16)=21.092, p<0.001). GALP significantly decreased the mRNA expression of sterol regulatory element-binding protein-1c (p<0.05) that regulates fatty acid synthesis regardless of spontaneous exercise with no changes to acetyl-CoA carboxylase a and fatty acid synthetase. These results indicate the GALP ICV administration can further promote energy metabolism when administered to spontaneously exercising mice. PMID:24055807

Ito, Kazuo; Kageyama, Haruaki; Hirako, Satoshi; Wang, Lihua; Takenoya, Fumiko; Ogawa, Tetsuro; Shioda, Seiji

2013-11-01

387

Production of nitrous oxide from Anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery.  

PubMed

Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing. PMID:24780056

Scherson, Yaniv D; Woo, Sung-Geun; Criddle, Craig S

2014-05-20

388

Targeting brain gliomas energy metabolism for classification purposes  

Microsoft Academic Search

The aim of this study is to reveal the discriminative potential of energy related metabolites in brain gliomas classification. The proposed analysis considers two aspects, the statistical and biological verification of metabolites' effects. In particular, Magnetic Resonance Spectroscopic Imaging (MRSI) is first employed for the statistical evaluation of metabolites. Five of the identified significant metabolites, namely glucose, pyruvate, lactate, alanine

M. G. Kounelakis; M. E. Zervakis; G. J. Postma; L. M. C. Buydens; G. C. Giakos; C. Narayan; S. Marotta; D. Natarajamani; X. Kotsiakis

2010-01-01

389

Inhibition of energy metabolism by benzoxazolin-2-one.  

PubMed

The effects of the title compound (BOA) on energy-linked reactions in mitochondria were studied. BOA inhibited electron transfer between the flavin and ubiquinone in Complex I, and ATP synthesis at the F1 moiety of the ATPase complex. These results are discussed in relation to the toxicity of BOA towards a wide range of aerobic organisms. PMID:2956049

Niemeyer, H M; Calcaterra, N B; Roveri, O A

1987-01-01

390

Teaching the Role of Mitochondrial Transport in Energy Metabolism  

ERIC Educational Resources Information Center

Studies from our laboratories over recent years have uncovered the existence, and established the properties of a variety of mitochondrial transporters. The properties of these transporters throw light on a variety of biochemical phenomena that were previously poorly understood. In particular the role of mitochondrial transport in energy

Passarella, Salvatore; Atlante, Anna

2007-01-01

391

?-Opioid receptors control the metabolic response to a high-energy diet in mice  

PubMed Central

General opioid receptor antagonists reduce food intake and body weight in rodents, but the contributions of specific receptor subtypes are unknown. We examined whether genetic deletion of the ?-opioid receptor (KOR) in mice alters metabolic physiology. KOR-knockout (KO) and wild-type (WT) mice were fed a high-energy diet (HED) for 16 wk. KO mice had 28% lower body weight and 45% lower fat mass when compared to WT mice fed an HED. No differences in caloric intake were found. An HED reduced energy expenditure in WT mice, but not in KO mice. KOR deficiency led to an attenuation of triglyceride synthesis in the liver. Malonyl CoA levels were also reduced in response to an HED, thereby promoting hepatic ?-oxidation. Glycemic control was also found to be improved in KO mice. These data suggest a key role for KORs in the central nervous system regulation of the metabolic adaptation to an HED, as we were unable to detect expression of KOR in liver, white adipose tissue, or skeletal muscle in WT mice. This study provides the first evidence that KORs play an essential physiological role in the control of hepatic lipid metabolism, and KOR activation is a permissive signal toward fat storage.—Czyzyk, T. A., Nogueiras, R., Lockwood, J. F., McKinzie, J. H., Coskun, T., Pintar, J. E., Hammond, C., Tschöp, M. H., Statnick, M. A. ?-Opioid receptors control the metabolic response to a high-energy diet in mice.

Czyzyk, Traci A.; Nogueiras, Ruben; Lockwood, John F.; McKinzie, Jamie H.; Coskun, Tamer; Pintar, John E.; Hammond, Craig; Tschop, Matthias H.; Statnick, Michael A.

2010-01-01