Science.gov

Sample records for anaerobic energy metabolism

  1. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  2. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry.

    PubMed

    Mentel, Marek; Martin, William

    2008-08-27

    Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages. PMID:18468979

  3. Anaerobic Metabolism of Indoleacetate

    PubMed Central

    Ebenau-Jehle, Christa; Thomas, Markus; Scharf, Gernot; Kockelkorn, Daniel; Knapp, Bettina; Schühle, Karola; Heider, Johann

    2012-01-01

    The anaerobic metabolism of indoleacetate (indole-3-acetic acid [IAA]) in the denitrifying betaproteobacterium Azoarcus evansii was studied. The strain oxidized IAA completely and grew with a generation time of 10 h. Enzyme activities that transformed IAA were present in the soluble cell fraction of IAA-grown cells but were 10-fold downregulated in cells grown on 2-aminobenzoate or benzoate. The transformation of IAA did not require molecular oxygen but required electron acceptors like NAD+ or artificial dyes. The first products identified were the enol and keto forms of 2-oxo-IAA. Later, polar products were observed, which could not yet be identified. The first steps likely consist of the anaerobic hydroxylation of the N-heterocyclic pyrrole ring to the enol form of 2-oxo-IAA, which is catalyzed by a molybdenum cofactor-containing dehydrogenase. This step is probably followed by the hydrolytic ring opening of the keto form, which is catalyzed by a hydantoinase-like enzyme. A comparison of the proteome of IAA- and benzoate-grown cells identified IAA-induced proteins. Owing to the high similarity of A. evansii with strain EbN1, whose genome is known, we identified a cluster of 14 genes that code for IAA-induced proteins involved in the early steps of IAA metabolism. These genes include a molybdenum cofactor-dependent dehydrogenase of the xanthine oxidase/aldehyde dehydrogenase family, a hydantoinase, a coenzyme A (CoA) ligase, a CoA transferase, a coenzyme B12-dependent mutase, an acyl-CoA dehydrogenase, a fusion protein of an enoyl-CoA hydratase and a 3-hydroxyacyl-CoA dehydrogenase, a beta-ketothiolase, and a periplasmic substrate binding protein for ABC transport as well as a transcriptional regulator of the GntR family. Five predicted enzymes form or act on CoA thioesters, indicating that soon after the initial oxidation of IAA and possibly ring opening, CoA thioesters are formed, and the carbon skeleton is rearranged, followed by a CoA-dependent thiolytic

  4. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen comsumption (EPOC) as independent sources of energy expenditure.

    PubMed

    Scott, C B

    1998-02-01

    Due to current technical difficulties and changing cellular conditions, the measurement of anaerobic and recovery energy expenditure remains elusive. During rest and low-intensity steady-state exercise, indirect calorimetric measurements successfully represent energy expenditure. The same steady-state O2 uptake methods are often used to describe the O2 deficit and excess post-oxygen consumption (EPOC): 1 l O2 = 5 kcal = 20.9 kJ. However, an O2 deficit plus exercise O2 uptake measurement ignores energy expenditure during recovery, and an exercise O2 uptake plus EPOC measurement misrepresents anaerobic energy expenditure. An alternative solution has not yet been proposed. Anaerobic glycolysis and mitochondrial respiration are construed here as a symbiotic union of metabolic pathways, each contributing independently to energy expenditure and heat production. Care must be taken when using O2 uptake alone to quantify energy expenditure because various high-intensity exercise models reveal that O2 uptake can lag behind estimated energy demands or exceed them. The independent bioenergetics behind anaerobic glycolysis and mitochondrial respiration can acknowledge these discrepancies. Anaerobic glycolysis is an additive component to an exercise O2 uptake measurement. Moreover, it is the assumptions behind steady-state O2 uptake that do not permit proper interpretation of energy expenditure during EPOC; 1 l O2 not = 20.9 kJ. Using both the O2 deficit and a modified EPOC for interpretation, rather than one or the other, leads to a better method of quantifying energy expenditure for higher intensity exercise and recovery. PMID:9535579

  5. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  6. Metabolic Energy-Based Modelling Explains Product Yielding in Anaerobic Mixed Culture Fermentations

    PubMed Central

    González-Cabaleiro, Rebeca; Lema, Juan M.; Rodríguez, Jorge

    2015-01-01

    The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors. PMID:25992959

  7. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  8. Anaerobic metabolism in Brassica seedlings

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  9. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  10. Integrated Analysis of Protein Complexes and Regulatory Networks Involved in Anaerobic Energy Metabolism of Shewanella Oneidensis MR-1

    SciTech Connect

    Tiedje, James M.

    2005-06-01

    Anaerobic Nitrate Reduction. Nitrate is an extensive co-contaminant at some DOE sites making metal and radionuclide reduction problematic. Hence, we sought to better understand the nitrate reduction pathway and its control in S. oneidensis MR-1. It is not known whether the nitrate reduction is by denitrification or dissimilatory nitrate reduction into ammonium (DNRA). By both physiological and genetic evidence, we proved that DNRA is the nitrate reduction pathway in this organism. Using the complete genome sequence of S. oneidensis MR-1, we identified a gene encoding a periplasmic nitrate reductase based on its 72% sequence identity with the napA gene in E. coli. Anaerobic growth of MR-1 on nitrate was abolished in a site directed napA mutant, indicating that NapA is the only nitrate reductase present. The anaerobic expression of napA and nrfA, a homolog of the cytochrome b552 nitrite reductase in E. coli, increased with increasing nitrate concentration until a plateau was reached at 3 mM KNO3. This indicates that these genes are not repressed by increasing concentrations of nitrate. The reduction of nitrate can generate intermediates that can be toxic to the microorganism. To determine the genetic response of MR-1 to high concentrations of nitrate, DNA microarrays were used to obtain a complete gene expression profile of MR-1 at low (1 mM) versus high (40 mM) nitrate concentrations. Genes encoding transporters and efflux pumps were up-regulated, perhaps as a mechanism to export toxic compounds. In addition, the gene expression profile of MR-1, grown anaerobically with nitrate as the only electron acceptor, suggested that this dissimilatory pathway contributes to N assimilation. Hence the nitrate reduction pathway could serve a dual purpose. The role of EtrA, a homolog of Fnr (global anaerobic regulator in E. coli) was examined using an etrA deletion mutant we constructed, S. oneidensis EtrA7-1.

  11. A novel mode of lactate metabolism in strictly anaerobic bacteria.

    PubMed

    Weghoff, Marie Charlotte; Bertsch, Johannes; Müller, Volker

    2015-03-01

    Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-)  + 2 NAD(+)  → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ μ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes. PMID:24762045

  12. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    To improve the biohydrogen yield in bacterial dark fermentation, a new approach of global anaerobic regulation was introduced. Two cellular global regulators FNR and NarP were overexpressed in two model organisms: facultatively anaerobic Enterobacter aerogenes (Ea) and strictly anaerobic Clostridium paraputrificum (Cp). The overexpression of FNR and NarP greatly altered anaerobic metabolism and increased the hydrogen yield by 40%. Metabolic analysis showed that the global regulation caused more reducing environment inside the cell. To get a thorough understanding of the global metabolic regulation, more genes (fdhF, fhlA, ppk, Cb-fdh1, and Sc-fdh1) were overexpressed in different Ea and Cp mutants. For the first time, it demonstrated that there were approximately linear relationships between the relative change of hydrogen yield and the relative change of NADH yield or ATP yield. It implied that cellular reducing power and energy level played vital roles in the biohydrogen production. PMID:26476162

  13. Energy metabolism in nuclear reprogramming.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Terzic, Andre

    2011-12-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  14. Energy metabolism in nuclear reprogramming

    PubMed Central

    Folmes, Clifford DL; Nelson, Timothy J; Terzic, Andre

    2012-01-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  15. Acetate Metabolism in Anaerobes from the Domain Archaea.

    PubMed

    Ferry, James G

    2015-01-01

    Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth's biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery. PMID:26068860

  16. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter. PMID:27134021

  17. Acetate Metabolism in Anaerobes from the Domain Archaea

    PubMed Central

    Ferry, James G.

    2015-01-01

    Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth’s biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery. PMID:26068860

  18. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance. PMID:26995607

  19. Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes

    PubMed Central

    Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

    2011-01-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

  20. Slow swimming, fast strikes: effects of feeding behavior on scaling of anaerobic metabolism in epipelagic squid.

    PubMed

    Trueblood, Lloyd A; Seibel, Brad A

    2014-08-01

    Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals. PMID:25079893

  1. Environmental factors affecting indole metabolism under anaerobic conditions

    SciTech Connect

    Madsen, E.L.; Francis, A.J.; Bollag, J.M.

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35/sup 0/C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15/sup 0/C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction.

  2. Schistosoma mansoni: effects of in vitro serotonin (5-HT) on aerobic and anaerobic carbohydrate metabolism.

    PubMed

    Rahman, M S; Mettrick, D F; Podesta, R B

    1985-08-01

    The effect of Serotonin on carbohydrate metabolism, excreted end products, and adenine nucleotide pools in Schistosoma mansoni was determined following 60 min in vitro incubations under air (= 21% O2) and anaerobic (95% N2:5% CO2) conditions. In the presence of 0.25 mM Serotonin, glucose uptake increased by 82-84% and lactate excretion increased by 77-78%; levels of excreted lactate were significantly higher under aerobic than under anaerobic conditions. The tissue pools of glucose, hexosephosphates, fructose 1,6-bisphosphate, pyruvate, and lactate were significantly increased under anaerobic conditions compared to air incubation; the presence of Serotonin decreased tissue glucose pools and increased the size of the pyruvate and lactate tissue pools. The glycolytic carbon pool was significantly greater under anaerobic than under aerobic conditions, irrespective of Serotonin. Serotonin increased adenosine 5'-diphosphate and adenosine 5'-monophosphate levels under aerobic conditions; neither Serotonin nor gas phase significantly affected total adenine nucleotide levels or the adenylate energy charge. Serotonin increased energy requirements by S. mansoni due to increased muscle contractions; demand was met by enhanced rates of carbohydrate metabolism. Irrespective of gas phase, 74-78% of available carbohydrate was converted to lactate. In the presence of Serotonin, conversion of glucose to lactate was reduced to 63-67%. In view of the requirements by S. mansoni for an abundant supply of glycoprotein and glycolipid precursors for surface membrane renewal, it is suggested that carbohydrate (glucose and glycogen) that was not converted to lactate may have been incorporated into biosynthetic processes leading to membrane synthesis. PMID:4018216

  3. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.

    PubMed

    Seedorf, Henning; Fricke, W Florian; Veith, Birgit; Brüggemann, Holger; Liesegang, Heiko; Strittmatter, Axel; Miethke, Marcus; Buckel, Wolfgang; Hinderberger, Julia; Li, Fuli; Hagemeier, Christoph; Thauer, Rudolf K; Gottschalk, Gerhard

    2008-02-12

    Clostridium kluyveri is unique among the clostridia; it grows anaerobically on ethanol and acetate as sole energy sources. Fermentation products are butyrate, caproate, and H2. We report here the genome sequence of C. kluyveri, which revealed new insights into the metabolic capabilities of this well studied organism. A membrane-bound energy-converting NADH:ferredoxin oxidoreductase (RnfCDGEAB) and a cytoplasmic butyryl-CoA dehydrogenase complex (Bcd/EtfAB) coupling the reduction of crotonyl-CoA to butyryl-CoA with the reduction of ferredoxin represent a new energy-conserving module in anaerobes. The genes for NAD-dependent ethanol dehydrogenase and NAD(P)-dependent acetaldehyde dehydrogenase are located next to genes for microcompartment proteins, suggesting that the two enzymes, which are isolated together in a macromolecular complex, form a carboxysome-like structure. Unique for a strict anaerobe, C. kluyveri harbors three sets of genes predicted to encode for polyketide/nonribosomal peptide synthetase hybrides and one set for a nonribosomal peptide synthetase. The latter is predicted to catalyze the synthesis of a new siderophore, which is formed under iron-deficient growth conditions. PMID:18218779

  4. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism.

    PubMed

    Coates, J D; Councell, T; Ellis, D J; Lovley, D R

    1998-12-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO3(-), Mn(IV), U(VI), fumarate, malate, S2O3(2-), and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process. PMID:16887653

  5. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  6. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum

    PubMed Central

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; Ecker, Christopher D.; Sharma, Ritin; Wildenthal, John A.; Hettich, Robert L.

    2016-01-01

    ABSTRACT Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. PMID:27406564

  7. Juvenile roach (Rutilus rutilus) increase their anaerobic metabolism in response to copper exposure in laboratory conditions.

    PubMed

    Maes, Virginie; Betoulle, Stéphane; Jaffal, Ali; Dedourge-Geffard, Odile; Delahaut, Laurence; Geffard, Alain; Palluel, Olivier; Sanchez, Wilfried; Paris-Palacios, Séverine; Vettier, Aurélie; David, Elise

    2016-07-01

    This study aims to determine the potential impairment of cell energy synthesis processes (glycolysis and respiratory chain pathways) by copper in juvenile roach at different regulation levels by using a multi-marker approach. Juvenile roach were exposed to 0, 10, 50, and 100 µg/L of copper for 7 days in laboratory conditions. The glycolysis pathway was assessed by measuring the relative expression levels of 4 genes encoding glycolysis enzymes. The respiratory chain was studied by assessing the electron transport system and cytochrome c oxidase gene expression. Muscle mitochondria ultrastructure was studied, and antioxidant responses were measured. Furthermore, the main energy reserves-carbohydrates, lipids, and proteins-were measured, and cellular energy was evaluated by measuring ATP, ADP, AMP and IMP concentrations. This study revealed a disturbance of the cell energy metabolism due to copper exposure, with a significant decrease in adenylate energy charge in roach exposed to 10 μg/L of copper after 1 day. Moreover, ATP concentrations significantly decreased in roach exposed to 10 μg/L of copper after 1 day. This significant decrease persisted in roach exposed to 50 µg/L of copper after 7 days. AMP concentrations increased in all contaminated fish after 1 day of exposure. In parallel, the relative expression of 3 genes encoding for glycolysis enzymes increased in all contaminated fish after 1 day of copper exposure. Focusing on the respiratory chain, cytochrome c oxidase gene expression also increased in all contaminated fish at the two time-points. The activity of the electron transport system was not disturbed by copper, except in roach exposed to 100 µg/L of copper after 1 day. Copper induced a metabolic stress. Juvenile roach seemed to respond to the ensuing high energy demand by increasing their anaerobic metabolism, but the energy produced by the anaerobic metabolism is unable to compensate for the stress induced by copper after 7

  8. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions. PMID:24962116

  9. Energy and metabolism.

    PubMed

    Suarez, Raul K

    2012-10-01

    Although firmly grounded in metabolic biochemistry, the study of energy metabolism has gone well beyond this discipline and become integrative and comparative as well as ecological and evolutionary in scope. At the cellular level, ATP is hydrolyzed by energy-expending processes and resynthesized by pathways in bioenergetics. A significant development in the study of bioenergetics is the realization that fluxes through pathways as well as metabolic rates in cells, tissues, organs, and whole organisms are "system properties." Therefore, studies of energy metabolism have become, increasingly, experiments in systems biology. A significant challenge continues to be the integration of phenomena over multiple levels of organization. Body mass and temperature are said to account for most of the variation in metabolic rates found in nature. A mechanistic foundation for the understanding of these patterns is outlined. It is emphasized that evolution, leading to adaptation to diverse lifestyles and environments, has resulted in a tremendous amount of deviation from popularly accepted scaling "rules." This is especially so in the deep sea which constitutes most of the biosphere. PMID:23720257

  10. Anaerobic Metabolism at Thermal Extremes: A Metabolomic Test of the Oxygen Limitation Hypothesis in an Aquatic Insect

    PubMed Central

    Verberk, W. C. E. P.; Sommer, U.; Davidson, R. L.; Viant, M. R.

    2013-01-01

    Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress. PMID:23604617

  11. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  12. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence.

    PubMed

    Smolders, G J; van der Meij, J; van Loosdrecht, M C; Heijnen, J J

    1994-03-15

    In the anaerobic phase of a biological phosphorus removal process, acetate is taken up and converted to PHB utilizing both energy generated in the degradation of polyphosphate to phosphate, which is released, and energy generated in the conversion of glycogen to poly-beta-hydroxy butyrate (PHB). The phosphate/acetate ratio cannot be considered a metabolic constant, because the energy requirement for the uptake of acetate is strongly influenced by the pH value. The observed phosphate/acetate ratio shows a variation of 0.25 to 0.75 P-mol/C-mol in a pH range of 5.5 to 8.5. It is shown that stored glycogen takes part in the metabolism to provide reduction equivalents and energy for the conversion of acetate to PHB. A structured metabolic model, based on glycogen as the source of the reduction equivalents in the anaerobic phase and the effect of the pH on the energy requirement of the uptake of acetate, is developed. The model explains the experimental results satisfactorily. (c) 1994 John Wiley & Sons, Inc. PMID:18615742

  13. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  14. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage ...

  15. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism.

    PubMed

    Boardman, Leigh; Sørensen, Jesper G; Koštál, Vladimír; Šimek, Petr; Terblanche, John S

    2016-01-01

    Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit. PMID:27619175

  16. Exercise- and Hypoxia-Induced Anaerobic Metabolism and Recovery: A Student Laboratory Exercise Using Teleost Fish

    ERIC Educational Resources Information Center

    Rees, B. B.; Boily, P.; Williamson, L. A. C.

    2009-01-01

    Anaerobic metabolism is recruited in vertebrates under conditions of intense exercise or lowered environmental oxygen availability (hypoxia), typically resulting in the accumulation of lactate in blood and tissues. Lactate will be cleared over time after the reoxygenation of tissues, eventually returning to control levels. Here, we present a…

  17. Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants.

    PubMed

    Gupta, Ashutosh; Murarka, Abhishek; Campbell, Paul; Gonzalez, Ramon

    2009-09-01

    Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paenibacillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic fermentation of glycerol. One of these strains, P. macerans N234A, grew fermentatively on glycerol at a maximum specific growth rate of 0.40 h(-1) and was chosen for further characterization. The use of [U-13C]glycerol and further analysis of extracellular metabolites and proteinogenic amino acids via nuclear magnetic resonance (NMR) spectroscopy allowed identification of ethanol, formate, acetate, succinate, and 1,2-propanediol (1,2-PDO) as fermentation products and demonstrated that glycerol is incorporated into cellular components. A medium formulation with low concentrations of potassium and phosphate, cultivation at acidic pH, and the use of a CO2-enriched atmosphere stimulated glycerol fermentation and are proposed to be environmental determinants of this process. The pathways involved in glycerol utilization and synthesis of fermentation products were identified using NMR spectroscopy in combination with enzyme assays. Based on these studies, the synthesis of ethanol and 1,2-PDO is proposed to be a metabolic determinant of glycerol fermentation in P. macerans N234A. Conversion of glycerol to ethanol fulfills energy requirements by generating one molecule of ATP per molecule of ethanol synthesized. Conversion of glycerol to 1,2-PDO results in the consumption of reducing equivalents, thus facilitating redox balance. Given the availability, low price, and high degree of reduction of glycerol, the high metabolic rates exhibited by P. macerans N234A are of paramount importance for the production of fuels and chemicals. PMID:19617389

  18. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis.

    PubMed

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y; Tirsgaard, Bjørn; Wilson, Jonathan M; Jensen, Lasse F; Steffensen, John F; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  19. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis

    PubMed Central

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y.; Tirsgaard, Bjørn; Wilson, Jonathan M.; Jensen, Lasse F.; Steffensen, John F.; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C.

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  20. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  1. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Woodard, T L; Nevin, K P; Lovley, D R

    2015-09-01

    Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness. PMID:25989089

  2. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus

    PubMed Central

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  3. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges.

    PubMed

    Wang, Yayi; Zhou, Shuai; Wang, Hong; Ye, Liu; Qin, Jian; Lin, Ximao

    2015-01-01

    Denitrifying phosphorus removal (DPR) by denitrifying phosphorus-accumulating organisms (DPAOs) is a promising approach for reducing energy and carbon usage. However, influent fluctuations or interruptions frequently expose the DPAOs biomass to starvation conditions, reducing biomass activity and amount, and ultimately degrading the performance of DPR. Therefore, a better understanding of the endogenous metabolism and recovery ability of DPAOs is urgently required. In the present study, anaerobic starvation (12 days) and recovery were investigated in nitrite- and nitrate-cultivated DPAOs at 20 ± 1 °C. The cell decay rates in nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were 0.008 day⁻¹ and 0.007 day⁻¹, respectively, being 64% and 68% lower than those of nitrate-DPAOs sludges. Nitrite-DPAOs sludges also recovered more rapidly than nitrate-DPAOs sludge after 12 days of starvation. The maintenance energy of nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were approximately 31% and 34% lower, respectively, than those of nitrate-DPAOs sludges. Glycogen and polyphosphate (poly-P) sequentially served as the main maintenance energy sources in both nitrite-and nitrate-DPAOs sludges. However, the transformation pathway of the intracellular polymers during starvation differed between them. Nitrate-DPAOs sludge used extracellular polymeric substances (EPS) (mainly polysaccharides) as an additional maintenance energy source during the first 3 days of starvation. During this phase, EPS appeared to contribute to 19-27% of the ATP production in nitrate-DPAOs, but considerably less to the cell maintenance of nitrite-DPAOs. The high resistance of nitrite-DPAOs to starvation might be attributable to frequent short-term starvation and exposure to toxic substances such as nitrite/free nitrous acids in the parent nitrite-fed reactor. The strong resistance of nitrite-DPAOs sludge to anaerobic starvation may be exploited in P removal

  4. The role of anaerobic digestion in the emerging energy economy.

    PubMed

    Batstone, Damien John; Virdis, Bernardino

    2014-06-01

    Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas. PMID:24534620

  5. Redesigning Escherichia coli Metabolism for Anaerobic Production of Isobutanol▿†

    PubMed Central

    Trinh, Cong T.; Li, Johnny; Blanch, Harvey W.; Clark, Douglas S.

    2011-01-01

    Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production. PMID:21642415

  6. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  7. Anaerobic digestion for energy production and environmental protection

    SciTech Connect

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  8. Reprogramming of energy metabolism as a driver of aging

    PubMed Central

    Feng, Zhaoyang; Berger, Nathan A.; Trubitsyn, Alexander

    2016-01-01

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis PMID:26919253

  9. Reprogramming of energy metabolism as a driver of aging.

    PubMed

    Feng, Zhaoyang; Hanson, Richard W; Berger, Nathan A; Trubitsyn, Alexander

    2016-03-29

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis. PMID:26919253

  10. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.

    PubMed

    Mus, Florence; Dubini, Alexandra; Seibert, Michael; Posewitz, Matthew C; Grossman, Arthur R

    2007-08-31

    Both prokaryotic and eukaryotic photosynthetic microbes experience conditions of anoxia, especially during the night when photosynthetic activity ceases. In Chlamydomonas reinhardtii, dark anoxia is characterized by the activation of an extensive set of fermentation pathways that act in concert to provide cellular energy, while limiting the accumulation of potentially toxic fermentative products. Metabolite analyses, quantitative PCR, and high density Chlamydomonas DNA microarrays were used to monitor changes in metabolite accumulation and gene expression during acclimation of the cells to anoxia. Elevated levels of transcripts encoding proteins associated with the production of H2, organic acids, and ethanol were observed in congruence with the accumulation of fermentation products. The levels of over 500 transcripts increased significantly during acclimation of the cells to anoxic conditions. Among these were transcripts encoding transcription/translation regulators, prolyl hydroxylases, hybrid cluster proteins, proteases, transhydrogenase, catalase, and several putative proteins of unknown function. Overall, this study uses metabolite, genomic, and transcriptome data to provide genome-wide insights into the regulation of the complex metabolic networks utilized by Chlamydomonas under the anaerobic conditions associated with H2 production. PMID:17565990

  11. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  12. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers.

    PubMed

    Johanningsmeier, Suzanne D; McFeeters, Roger F

    2015-12-23

    Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage and the unique metabolic capabilities of L. buchneri. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry metabolite profiling methods were applied for nontargeted detection of volatile and nonvolatile compounds to determine changes that occurred during anaerobic fermented cucumber spoilage by L. buchneri LA1147 and during reproduction of spoilage with natural microbiota. Univariate analysis of variance combined with hierarchial clustering analysis revealed 92 metabolites that changed during spoilage (P<0.01). Decreases were observed in mono and disaccharides, amino acids, nucleosides, long chain fatty acids, aldehydes, and ketones, and increases were observed in several alcohols and butanoic and pentanoic acids. Most of the metabolite changes preceded lactic acid utilization, indicating that lactic acid is not a preferred substrate for anaerobic spoilage organisms in fermented cucumbers. The ability to detect biochemical changes that preceded lactate utilization revealed citrulline, trehalose, and cellobiose as compounds that may signify metabolic activity of L. buchneri spoilage strains prior to any significant product degradation. PMID:26325599

  13. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  14. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  15. Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma.

    PubMed

    Elshahed, Mostafa S; Youssef, Noha H; Luo, Qingwei; Najar, Fares Z; Roe, Bruce A; Sisk, Tracy M; Bühring, Solveig I; Hinrichs, Kai-Uwe; Krumholz, Lee R

    2007-08-01

    We investigated the phylogenetic diversity and metabolic capabilities of members of the phylum Planctomycetes in the anaerobic, sulfide-saturated sediments of a mesophilic spring (Zodletone Spring) in southwestern Oklahoma. Culture-independent analyses of 16S rRNA gene sequences generated using Planctomycetes-biased primer pairs suggested that an extremely diverse community of Planctomycetes is present at the spring. Although sequences that are phylogenetically affiliated with cultured heterotrophic Planctomycetes were identified, the majority of the sequences belonged to several globally distributed, as-yet-uncultured Planctomycetes lineages. Using complex organic media (aqueous extracts of the spring sediments and rumen fluid), we isolated two novel strains that belonged to the Pirellula-Rhodopirellula-Blastopirellula clade within the Planctomycetes. The two strains had identical 16S rRNA gene sequences, and their closest relatives were isolates from Kiel Fjord (Germany), Keauhou Beach (HI), a marine aquarium, and tissues of marine organisms (Aplysina sp. sponges and postlarvae of the giant tiger prawn Penaeus monodon). The closest recognized cultured relative of strain Zi62 was Blastopirellula marina (93.9% sequence similarity). Detailed characterization of strain Zi62 revealed its ability to reduce elemental sulfur to sulfide under anaerobic conditions, as well as its ability to produce acids from sugars; both characteristics may potentially allow strain Zi62 to survive and grow in the anaerobic, sulfide- and sulfur-rich environment at the spring source. Overall, this work indicates that anaerobic metabolic abilities are widely distributed among all major Planctomycetes lineages and suggests carbohydrate fermentation and sulfur reduction as possible mechanisms employed by heterotrophic Planctomycetes for growth and survival under anaerobic conditions. PMID:17545322

  16. Vulnerability of individual fish to capture by trawling is influenced by capacity for anaerobic metabolism

    PubMed Central

    Killen, Shaun S.; Nati, Julie J. H.; Suski, Cory D.

    2015-01-01

    The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus, we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations. PMID:26246542

  17. Vulnerability of individual fish to capture by trawling is influenced by capacity for anaerobic metabolism.

    PubMed

    Killen, Shaun S; Nati, Julie J H; Suski, Cory D

    2015-08-22

    The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus, we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations. PMID:26246542

  18. Metabolic energy required for flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.

    1994-01-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

  19. Regulation of the anaerobic metabolism in Bacillus subtilis.

    PubMed

    Härtig, Elisabeth; Jahn, Dieter

    2012-01-01

    The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology. PMID:23046954

  20. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  1. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora.

    PubMed Central

    Mathan, V I; Wiederman, J; Dobkin, J F; Lindenbaum, J

    1989-01-01

    The inactivation of digoxin by conversion to reduced metabolites (digoxin reduction products, or DRP), a function of the anaerobic gut flora, was studied in normal volunteers from southern India and the United States. Digoxin was metabolised to DRP by 28 (13.7%) of 204 healthy south Indians in contrast to 67 (36.0%) of 186 New Yorkers (p less than 1 X 10(-6)). Only 1.0% of Indians compared with 14.0% of Americans excreted large amounts of metabolites (greater than 40% DRP) in the urine (p less than 1 X 10(-5)). Of 104 urban Indians, 23 (22.1%) were metabolisers, in contrast with five of 100 rural villagers (p less than 0.001). Within the urban group, digoxin metabolism correlated with education, frequency of animal protein intake, and most significantly, personal income. Organisms capable of reducing digoxin in vitro were found with similar frequencies in stool cultures from Indians and Americans. In the cultures of some subjects, DRP production was inhibited at lower dilutions but expressed at higher dilutions. We conclude that variations in drug metabolism between population groups may result from differences in the metabolic activity of the anaerobic gut flora probably mediated by environmentally determined factors. PMID:2759492

  2. [Consequences of intravesical obstruction on detrusor muscle energy metabolism].

    PubMed

    Dahmani, Laurent; Bruyère, Franck; Ouaki, Frédéric; Pires, Christophe; Irani, Jacques; Doré, Bertrand

    2002-09-01

    Alteration of the emptying function of the bladder observed during the natural history of benign prostatic hyperplasia may be related to a biochemical disorder, more specifically a disorder of energy metabolism. Under conditions of obstruction, the bladder is no longer able to contract effectively as it is unable to produce a sufficient quantity of energy. This energy dysfunction is induced by anaerobic diversion of glucose metabolism. The key element of this disturbance is the mitochondrion. Morphological studies have demonstrated degeneration of this organelle controlling energy metabolism. This intracellular alteration is also reflected by functional changes. Disturbances of the various mitochondrial energy producing cycles appear to be responsible for detrusor dysfunction. Further investigations are necessary, especially clinical studies to corroborate these experimental findings. A better knowledge of the pathophysiology of vesical functional consequences of BPH would allow the use of new therapeutic categories of drugs. PMID:12463112

  3. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  4. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion

    PubMed Central

    2013-01-01

    Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

  5. Cellulose Digestion and Metabolism Induced Biocatalytic Transitions in Anaerobic Microbial Ecosystems

    PubMed Central

    Yamazawa, Akira; Iikura, Tomohiro; Morioka, Yusuke; Shino, Amiu; Ogata, Yoshiyuki; Date, Yasuhiro; Kikuchi, Jun

    2013-01-01

    Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems. PMID:24958386

  6. In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions: comparison with rebaudioside A.

    PubMed

    Purkayastha, Sidd; Pugh, George; Lynch, Barry; Roberts, Ashley; Kwok, David; Tarka, Stanley M

    2014-03-01

    The hydrolysis of the steviol glycosides rebaudioside A, B, D, and M, as well as of steviolbioside (a metabolic intermediate) to steviol was evaluated in vitro using human fecal homogenates from healthy donors under anaerobic conditions. Incubation of each of the rebaudiosides resulted in rapid hydrolysis to steviol. Metabolism was complete within 24h, with the majority occurring within the first 8h. There were no clear differences in the rate or extent of metabolism of rebaudioside B, D, or M, relative to the comparative control rebaudioside A. The hydrolysis of samples containing 2.0mg/mL of each rebaudioside tended to take slightly longer than solutions containing 0.2mg/mL. There was no apparent gender differences in the amount of metabolism of any of the rebaudiosides, regardless of the concentrations tested. An intermediate in the hydrolysis of rebaudioside M to steviol, steviolbioside, was also found to be rapidly degraded to steviol. The results demonstrate that rebaudiosides B, D, and M are metabolized to steviol in the same manner as rebaudioside A. These data support the use of toxicology data available on steviol, and on steviol glycosides metabolized to steviol (i.e., rebaudioside A) to substantiate the safety of rebaudiosides B, D, and M. PMID:24361573

  7. Phenotypic Diversity of Hydrogen Production in Chlorophycean Algae Reflects Distinct Anaerobic Metabolisms

    SciTech Connect

    Meuser, J. E.; Ananyev, G.; Wittig, L. E.; Kosourov, S.; Ghirardi, M. L.; Seibert, M.; Dismukes, G. C.; Posewitz, M. C.

    2009-01-01

    Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H{sub 2} during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H{sub 2} under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H2 photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

  8. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.

    PubMed Central

    Thompson, C H; Kemp, G J; Sanderson, A L; Dixon, R M; Styles, P; Taylor, D J; Radda, G K

    1996-01-01

    OBJECTIVE: To examine the effect of a relatively low dose of creatine on skeletal muscle metabolism and oxygen supply in a group of training athletes. METHODS: 31P magnetic resonance and near-infrared spectroscopy were used to study calf muscle metabolism in a group of 10 female members of a university swimming team. Studies were performed before and after a six week period of training during which they took either 2 g creatine daily or placebo. Calf muscle metabolism and creatine/choline ratios were studied in resting muscle, during plantar flexion exercise (10-15 min), and during recovery from exercise. RESULTS: There was no effect of creatine on metabolite ratios at rest or on metabolism during exercise and recovery from exercise. Muscle oxygen supply and exercise performance were not improved by creatine if compared to placebo treated subjects. CONCLUSIONS: Oral creatine supplementation at 2 g daily has no effect on muscle creatine concentration, muscle oxygen supply or muscle aerobic or anaerobic metabolism during endurance exercise. PMID:8889115

  9. Metagenomic Insights into Anaerobic Metabolism along an Arctic Peat Soil Profile

    PubMed Central

    Lipson, David A.; Haggerty, John Matthew; Srinivas, Archana; Raab, Theodore K.; Sathe, Shashank; Dinsdale, Elizabeth A.

    2013-01-01

    A metagenomic analysis was performed on a soil profile from a wet tundra site in northern Alaska. The goal was to link existing biogeochemical knowledge of the system with the organisms and genes responsible for the relevant metabolic pathways. We specifically investigated how the importance of iron (Fe) oxides and humic substances (HS) as terminal electron acceptors in this ecosystem is expressed genetically, and how respiratory and fermentative processes varied with soil depth into the active layer and into the upper permafrost. Overall, the metagenomes reflected a microbial community enriched in a diverse range of anaerobic pathways, with a preponderance of known Fe reducing species at all depths in the profile. The abundance of sequences associated with anaerobic metabolic processes generally increased with depth, while aerobic cytochrome c oxidases decreased. Methanogenesis genes and methanogen genomes followed the pattern of CH4 fluxes : they increased steeply with depth into the active layer, but declined somewhat over the transition zone between the lower active layer and the upper permafrost. The latter was relatively enriched in fermentative and anaerobic respiratory pathways. A survey of decaheme cytochromes (MtrA, MtrC and their homologs) revealed that this is a promising approach to identifying potential reducers of Fe(III) or HS, and indicated a possible role for Acidobacteria as Fe reducers in these soils. Methanogens appear to coexist in the same layers, though in lower abundance, with Fe reducing bacteria and other potential competitors, including acetogens. These observations provide a rich set of hypotheses for further targeted study. PMID:23741360

  10. Metabolism of Glycogen and Neutral Lipids by Aphelenchus avenae and Caenorhabditis sp. in Aerobic, Microaerobic and Anaerobic Environments.

    PubMed

    Cooper, A F; Van Gundy, S D

    1970-10-01

    Starving Aphelenchus avenae survived 3-4 weeks in microaerobic and anaerobic environments, but Caenorhabditis sp. survived less than 80 hr. Aerobically, both nematodes metabolize neutral lipid reserves: there was no microaerobic ( <5% O) or anaerobic neutral lipid catabolism. Early in anaerobiosis both nematodes utilized endogenous glycogen. Caenorhabditis sp. depleted the glycogen and died. A. avenae under oxygen stress longer than 120 hr entered cryptobiosis, during which there was neither measurable O uptake nor glycogen or neutral lipid utilization, Only when re-aerated, did A. avenae recover and resume "'normal" metabolism. PMID:19322317

  11. Energy Metabolism in the Liver

    PubMed Central

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  12. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater. PMID:24742289

  13. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism--case study of Faecalibacterium prausnitzii.

    PubMed

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B A; Lannebère, Sylvain; Van de Wiele, Tom; Rabaey, Korneel

    2015-01-01

    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 10(4) to 5 × 10(7) cells.mL(-1)). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM; kcat = 5.3 × 10(5) s(-1), at 37 °C) and glucose (KM = 6 μM; kcat = 2.4 × 10(5) s(-1)). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution. PMID:26127013

  14. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea.

    PubMed

    Arshad, Arslan; Speth, Daan R; de Graaf, Rob M; Op den Camp, Huub J M; Jetten, Mike S M; Welte, Cornelia U

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  15. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    PubMed Central

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  16. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    PubMed

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  17. Metabolomics reveals stage-specific metabolic pathways of microbial communities in two-stage anaerobic fermentation of corn-stalk.

    PubMed

    Yang, Dawei; Fan, Xiaolei; Shi, Xiaoshuang; Lian, Shujuan; Qiao, Jiangtao; Guo, Rongbo

    2014-07-01

    Analysis of intracellular metabolites is essential to delineate metabolic pathways of microbial communities for evaluation and optimization of anaerobic fermentation processes. The metabolomics are reported for a microbial community during two stages of anaerobic fermentation of corn stalk in a biogas digester using GC–MS. Acetonitrile/methanol/water (2:2:1, by vol) was the best extraction solvent for microbial community analysis because it yielded the largest number of peaks (>200), the highest mean summed value of identified metabolites (23) and the best reproducibility with a coefficient of variation of 30 % among four different extraction methods. Inter-stage comparison of metabolite profiles showed increased levels of sugars and sugar alcohols during methanogenesis and fatty acids during acidogenesis. Identification of stage-specific metabolic pathways using metabolomics can therefore assist in monitoring and optimization of the microbial community for increased biogas production during anaerobic fermentation. PMID:24658741

  18. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    PubMed

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L. PMID:25416476

  19. Anaerobic metabolism of the agro-pesticide nitroxinil by bovine ruminal fluid.

    PubMed

    Irazoqui, Ignacio; Rodriguez, Alfonso; Birriel, Estefanía; Gabay, Martin; Lavaggi, Maria Laura; Repetto, Jose Luis; Cajarville, Cecilia; Gonzalez, Mercedes; Cerecetto, Hugo

    2014-01-01

    Metabolism of three different agro-pesticides widely used in Uruguay, the insecticides imidacloprid and thiamethoxam and the antiparasite nitroxinil, by bovine ruminal fluid, as supply of anaerobic microorganims, was studied. Complete ruminal fluid was incubated with each of the agrochemicals in different conditions, varying time, nutrients, and nitroethane supplementation as methanogenesis modificator. Only biotransformation was detected for nitroxinil in some of the studied variables. In the optimized condition only one product was generated and the chemical structure of this main metabolite was elucidated using combined spectroscopies evidencing a structural motive unrelated with the products of the corresponding mammal biotransformation results of reduction, and substitution processes. The ruminal generation of the metabolite was confirmed. In order to employ this anaerobic microbial system as potential bioremediator of agrochemical-contaminated soils, the toxicity, against mammal cells, and the mutagenicity, using Ames test, of the product of biotransformation were studied. The lack of toxic effects encouraged us to propose the ruminal system as a plausible system for agrochemicals bioremediation. PMID:25496284

  20. Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-07-01

    The "reverse methanogenesis" hypothesis as the metabolic pathway of AOM has recently been supported in the novel ANME lineage ANME-2d in denitrifying anaerobic methane oxidation (DAMO). However, no previous studies have experimentally evaluated the reversal of methane oxidation and methane production in this archaea. In the present study, the metabolic reversibility of ANME-2d from AOM to methanogenesis was evaluated using H2/CO2 and acetate as substrates. The results showed that the system produced methane from H2/CO2 but not from acetate. However, the clone library and real-time PCR analysis of the culture showed that both the percentage and quantity of ANME-2d decreased significantly under this condition, while methanogen abundance increased. Further high-throughput sequencing results showed that the archaea community did not change at the fourth day after H2/CO2 was supplied, but changed profoundly after methanogenesis took place for 3 days. The percentage of DAMO archaea in the total archaea decreased obviously, while more methanogens grew up during this period. Comparatively, the bacteria community changed profoundly at the fourth day. These results indicated that ANME-2d might not reverse its metabolism to produce methane from H2/CO2 or acetate. After archaea were returned to DAMO conditions, DAMO activity decreased and the amount of ANME-2d continued to fall, implying that the lineage had suffered from severe injury and required a long recovery time. PMID:27026178

  1. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound. PMID:26676010

  2. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes.

    PubMed

    Roussel, Erwan G; Cragg, Barry A; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S; Gorra, Roberta; Weightman, Andrew J; Parkes, R John

    2015-08-01

    The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  3. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes

    PubMed Central

    Roussel, Erwan G.; Cragg, Barry A.; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S.; Gorra, Roberta; Weightman, Andrew J.; Parkes, R. John

    2015-01-01

    The impact of temperature (0–80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple ‘windows’ within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, ‘Bathyarchaeota’) changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  4. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism - case study of Faecalibacterium prausnitzii

    NASA Astrophysics Data System (ADS)

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B. A.; Lannebère, Sylvain; van de Wiele, Tom; Rabaey, Korneel

    2015-07-01

    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 104 to 5 × 107 cells.mL-1). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM kcat = 5.3×105 s-1, at 37 °C) and glucose (KM = 6 μM kcat = 2.4 × 105 s-1). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.

  5. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism – case study of Faecalibacterium prausnitzii

    PubMed Central

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B.A.; Lannebère, Sylvain; Van de Wiele, Tom; Rabaey, Korneel

    2015-01-01

    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 104 to 5 × 107 cells.mL−1). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM; kcat = 5.3×105 s−1, at 37 °C) and glucose (KM = 6 μM; kcat = 2.4 × 105 s−1). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution. PMID:26127013

  6. Anaerobic central metabolic pathways active during polyhydroxyalkanoate production in uncultured cluster 1 Defluviicoccus enriched in activated sludge communities.

    PubMed

    Burow, Luke C; Mabbett, Amanda N; Borrás, Luis; Blackall, Linda L

    2009-09-01

    A glycogen nonpolyphosphate-accumulating organism (GAO) enrichment culture dominated by the Alphaproteobacteria cluster 1 Defluviicoccus was investigated to determine the metabolic pathways involved in the anaerobic formation of polyhydroxyalkanoates, carbon storage polymers important for the proliferation of microorganisms in enhanced biological phosphorus removal processes. FISH-microautoradiography and post-FISH fluorescent chemical staining confirmed acetate assimilation as polyhydroxyalkanoates in cluster 1 Defluviicoccus under anaerobic conditions. Chemical inhibition of glycolysis using iodoacetate, and of isocitrate lyase by 3-nitropropionate and itaconate, indicated that carbon is likely to be channelled through both glycolysis and the glyoxylate cycle in cluster 1 Defluviicoccus. The effect of metabolic inhibitors of aconitase (monofluoroacetate) and succinate dehydrogenase (malonate) suggested that aconitase, but not succinate dehydrogenase, was active, providing further support for the role of the glyoxylate cycle in these GAOs. Metabolic inhibition of fumarate reductase using oxantel decreased polyhydroxyalkanoate production. This indicated reduction of fumarate to succinate and the operation of the reductive branch of the tricarboxylic acid cycle, which is possibly important in the production of the polyhydroxyvalerate component of polyhydroxyalkanoates observed in cluster 1 Defluviicoccus enrichment cultures. These findings were integrated with previous metabolic models for GAOs and enabled an anaerobic central metabolic pathway model for polyhydroxyalkanoate formation in cluster 1 Defluviicoccus to be proposed. PMID:19622073

  7. Subsurface Cycling of Nitrogen and Anaerobic Aromatic Hydrocarbon Biodegradation Revealed by Nucleic Acid and Metabolic Biomarkers▿ †

    PubMed Central

    Yagi, Jane M.; Suflita, Joseph M.; Gieg, Lisa M.; DeRito, Christopher M.; Jeon, Che-Ok; Madsen, Eugene L.

    2010-01-01

    Microbial processes are crucial for ecosystem maintenance, yet documentation of these processes in complex open field sites is challenging. Here we used a multidisciplinary strategy (site geochemistry, laboratory biodegradation assays, and field extraction of molecular biomarkers) to deduce an ongoing linkage between aromatic hydrocarbon biodegradation and nitrogen cycling in a contaminated subsurface site. Three site wells were monitored over a 10-month period, which revealed fluctuating concentrations of nitrate, ammonia, sulfate, sulfide, methane, and other constituents. Biodegradation assays performed under multiple redox conditions indicated that naphthalene metabolism was favored under aerobic conditions. To explore in situ field processes, we measured metabolites of anaerobic naphthalene metabolism and expressed mRNA transcripts selected to document aerobic and anaerobic microbial transformations of ammonia, nitrate, and methylated aromatic contaminants. Gas chromatography-mass spectrometry detection of two carboxylated naphthalene metabolites and transcribed benzylsuccinate synthase, cytochrome c nitrite reductase, and ammonia monooxygenase genes indicated that anaerobic metabolism of aromatic compounds and both dissimilatory nitrate reduction to ammonia (DNRA) and nitrification occurred in situ. These data link formation (via DNRA) and destruction (via nitrification) of ammonia to in situ cycling of nitrogen in this subsurface habitat, where metabolism of aromatic pollutants has led to accumulation of reduced metabolic end products (e.g., ammonia and methane). PMID:20348302

  8. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake.

    PubMed

    Welles, L; Tian, W D; Saad, S; Abbas, B; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-10-15

    The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades ('Candidatus Accumulibacter phosphatis' Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. PMID:26189167

  9. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria.

    PubMed

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E; Reading, Nicola C; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H; Kasper, Dennis L

    2015-09-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but understanding of host-commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis after acute peritonitis and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. We were able to assess the distribution and colonization of labeled B. fragilis along the intestine, as well as niche competition after coadministration of multiple species of the microbiota. We also fluorescently labeled nine additional commensals (eight anaerobic and one microaerophilic) from three phyla common in the gut--Bacteroidetes, Firmicutes and Proteobacteria--as well as one aerobic pathogen (Staphylococcus aureus). This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and can be used to study microbial colonization and host-microbe interactions in real time. PMID:26280120

  10. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria

    PubMed Central

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E.; Reading, Nicola C.; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H.; Kasper, Dennis L.

    2015-01-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but our understanding of host–commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click-chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis following acute peritonitis, and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. The distribution and colonization of labeled B. fragilis along the intestine can be assessed, as well as niche competition following coadministration of multiple species of the microbiota. Nine additional anaerobic commensals (both gram-negative and gram-positive) from three phyla common in the gut—Bacteroidetes, Firmicutes, and Proteobacteria—and five families and one aerobic pathogen (Staphylococcus aureus) were also fluorescently labeled. This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and an approach to study microbial colonization and host–microbe interactions in real-time. PMID:26280120

  11. Anaerobic 1-Alkene Metabolism by the Alkane- and Alkene-Degrading Sulfate Reducer Desulfatibacillum aliphaticivorans Strain CV2803T▿

    PubMed Central

    Grossi, Vincent; Cravo-Laureau, Cristiana; Méou, Alain; Raphel, Danielle; Garzino, Frédéric; Hirschler-Réa, Agnès

    2007-01-01

    The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [13C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(ω-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium. PMID:17965214

  12. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.

    PubMed

    Grossi, Vincent; Cravo-Laureau, Cristiana; Méou, Alain; Raphel, Danielle; Garzino, Frédéric; Hirschler-Réa, Agnès

    2007-12-01

    The alkane- and alkene-degrading, marine sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803(T), known to oxidize n-alkanes anaerobically by fumarate addition at C-2, was investigated for its 1-alkene metabolism. The total cellular fatty acids of this strain were predominantly C-(even number) (C-even) when it was grown on C-even 1-alkenes and predominantly C-(odd number) (C-odd) when it was grown on C-odd 1-alkenes. Detailed analyses of those fatty acids by gas chromatography-mass spectrometry after 6- to 10-week incubations allowed the identification of saturated 2- and 4-ethyl-, 2- and 4-methyl-, and monounsaturated 4-methyl-branched fatty acids with chain lengths that correlated with those of the 1-alkene. The growth of D. aliphaticivorans on (per)deuterated 1-alkenes provided direct evidence of the anaerobic transformation of these alkenes into the corresponding 1-alcohols and into linear as well as 10- and 4-methyl-branched fatty acids. Experiments performed with [(13)C]bicarbonate indicated that the initial activation of 1-alkene by the addition of inorganic carbon does not occur. These results demonstrate that D. aliphaticivorans metabolizes 1-alkene by the oxidation of the double bond at C-1 and by the subterminal addition of organic carbon at both ends of the molecule [C-2 and C-(omega-1)]. The detection of ethyl-branched fatty acids from unlabeled 1-alkenes further suggests that carbon addition also occurs at C-3. Alkylsuccinates were not observed as potential initial intermediates in alkene metabolism. Based on our observations, the first pathways for anaerobic 1-alkene metabolism in an anaerobic bacterium are proposed. Those pathways indicate that diverse initial reactions of 1-alkene activation can occur simultaneously in the same strain of sulfate-reducing bacterium. PMID:17965214

  13. Metabolism of toxic pyrrolizidine alkaloids from tansy ragwort (Senecio jacobaea) in ovine ruminal fluid under anaerobic conditions.

    PubMed Central

    Craig, A M; Latham, C J; Blythe, L L; Schmotzer, W B; O'Connor, O A

    1992-01-01

    The ability of ovine ruminal fluid to metabolize pyrrolizidine alkaloid (PA) from Senecio jacobaea under anaerobic conditions was evaluated. Four fistulated sheep fed PA served as individual sources of ruminal fluid, which was incubated in a defined minimal salts medium under two different anaerobic conditions, denitrifying and methanogenic. Anaerobic cultures amended with ovine ruminal fluids (20%), PA (100 micrograms/ml), and a defined minimal salts medium were monitored for a period of several days. These cultures revealed that while PA was not depleted in sterile, autoclaved controls or under denitrifying conditions, it was metabolized during periods of active methanogenesis under methanogenic conditions. In addition, samples of ruminal fluid were separated by differential centrifugation under anaerobic conditions, and the resultant supernatants were tested for their ability to metabolize PA as compared with those of the respective uncentrifuged control fluids. Uncentrifuged controls exhibited a PA depletion rate of -4.04 +/- 0.17 micrograms of PA per ml per h. Supernatants 1 (centrifuged at 41 x g for 2 min), 2 (centrifuged at 166 x g for 5 min), and 3 (centrifuged at 1,500 x g for 10 min) exhibited significantly slower depletion rates, with slopes of data representing -1.64 +/- 0.16, -1.44 +/- 0.16, and -1.48 +/- 0.16 micrograms of PA metabolized per ml per h, respectively, demonstrating no statistically significant difference among the supernatant cultures. Microscopic evaluations revealed that protozoa were present in the control whole ruminal fluid and to a lesser extent in supernatant 1, while supernatants 2 and 3 contained only bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1444382

  14. Computational Approaches for Understanding Energy Metabolism

    PubMed Central

    Shestov, Alexander A; Barker, Brandon; Gu, Zhenglong; Locasale, Jason W

    2013-01-01

    There has been a surge of interest in understanding the regulation of metabolic networks involved in disease in recent years. Quantitative models are increasingly being used to i nterrogate the metabolic pathways that are contained within this complex disease biology. At the core of this effort is the mathematical modeling of central carbon metabolism involving glycolysis and the citric acid cycle (referred to as energy metabolism). Here we discuss several approaches used to quantitatively model metabolic pathways relating to energy metabolism and discuss their formalisms, successes, and limitations. PMID:23897661

  15. Time to exhaustion at anaerobic threshold in swimming rats: metabolic investigation.

    PubMed

    Beck, W F; De Araujo, G G; Menezes Scariot, P P; Masselli dos Reis, I G; Gobatto, C A

    2014-01-01

    The purpose of this study was to determine the time to exhaustion (tlim) for swimming exercise at anaerobic threshold (AT) intensity in rats and to analyze metabolic consequences on serum and tissues levels. Eighteen rats were divided in control (CG) and exercised (EG) groups, being the former submitted to tlim. We analyzed the glycogen content of liver and ten skeletal muscles, as well as serum parameters. Parametric statistic was used with significance level at p < 0.05. The tlim, which was correspondent to 114.37 ± 36.23 min, promoted significant decrease in blood glucose (42.99 %; p < 0.01) and an increase in free fatty acids (167.12 %; p < 0.01) when EG was compared to CG. We did not find differences in albumin, total protein uric acid and creatinine between groups. The proposed exercise at individualized AT intensity promoted severe glycogen depletion for all tissues (mean of 78.05 % for all muscles and 89 % for liver). With substantial control of exercise intensity, our study establishes a useful rodent model that can be further explored, contributing to the advancement on knowledge and better understanding of exhaustion mechanisms. PMID:25573727

  16. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1

    SciTech Connect

    Cruz-Garza, Claribel; Murray, Alison E.; Rodrigues, Jorge L.M.; Gralnick, Jeffrey A.; McCue, Lee Ann; Romine, Margaret F.; Loffler, F. E.; Tiedje, James M.

    2011-03-30

    EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is not well understood. The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down regulated at least 2-fold and the EtrA7-1 mutant grew poorly with fumarate and dimethyl sulfoxide (DMSO), suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down regulation of genes implicated in aerobic metabolism. In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and confers physiological advantages to strain MR-1 under certain growth conditions. In conjunction with other regulators, EtrA fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1.

  17. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    PubMed

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa. PMID:26038930

  18. Hepatic and systemic metabolic responses to aerobic and anaerobic intra-abdominal abscesses in a highly reproducible chronic rat model.

    PubMed

    Nakatani, T; Sato, T; Marzella, L; Hirai, F; Trump, B F; Siegel, J H

    1984-01-01

    A single, uniform abscess was formed in 100% of the animals inoculated with a fecal pellet made of sterile rat feces, agar, and a known number and strain of bacteria. The effects of monoclonal Escherichia coli abscess (83 rats) were compared to those of sterile abscess (34 rats) and sham operation (35 rats without abscess). Bacteroides fragilis was added to the sterile pellet to study the effect of an anaerobic monoclonal abscess (16 rats) or of a biclonal abscess containing both aerobes and anaerobes (32 rats). After inoculation, a peritonitis stage with leucopenia, hypoglycemia, body weight loss, and slight fever was followed by the abscess stage with leucocytosis and a slight hyperglycemia. Mild hepatic energy charge deficiency and hepatic lactic acidosis were observed in sterile abscess rats, and slightly enhanced energy charge was seen in monoclonal E. coli abscess rats. The addition of B. fragilis to the sterile pellet, alone or together with E. coli, produced hepatic energy charge deficiency and hepatic lactic acidosis, which were significantly enhanced compared with the monoclonal E. coli abscess rats. The greatest effect was seen in the biclonal E. coli plus B. fragilis abscess, suggesting that anaerobic or combined aerobe and anaerobe abscesses may produce a greater hepatic injury than an aerobic organism abscess alone. This may account for the apparent synergic interaction between aerobic and anaerobic organisms. PMID:6380793

  19. Marrow fat metabolism is linked to the systemic energy metabolism

    PubMed Central

    Lecka-Czernik, Beata

    2011-01-01

    Recent advances in understanding the role of bone in the systemic regulation of energy metabolism indicate that bone marrow cells, adipocytes and osteoblasts, are involved in this process. Marrow adipocytes store significant quantities of fat and produce adipokines, leptin and adiponectin, which are known for their role in the regulation of energy metabolism, whereas osteoblasts produce osteocalcin, a bone-specific hormone that has a potential to regulate insulin production in the pancreas and adiponectin production in fat tissue. Both osteoblasts and marrow adipocytes express insulin receptor and respond to insulin-sensitizing anti-diabetic TZDs in a manner, which tightly links bone with the energy metabolism system. Metabolic profile of marrow fat resembles that of both, white and brown fat, which is reflected by its plasticity in acquiring different functions including maintenance of bone micro-environment. Marrow fat responds to physiologic and pathologic changes in energy metabolism status by changing volume and metabolic activity. This review summarizes available information on the metabolic function of marrow fat and provides hypothesis that this fat depot may acquire multiple roles depending on the local and perhaps systemic demands. These functions may include a role in bone energy maintenance and endocrine activities to serve osteogenesis during bone remodeling and bone healing. PMID:21757043

  20. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-05-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  1. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  2. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  3. Energy flows, metabolism and translation

    PubMed Central

    Pascal, Robert; Boiteau, Laurent

    2011-01-01

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the abovementioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation. PMID:21930587

  4. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.

    PubMed

    Medbø, J I; Tabata, I

    1993-10-01

    To examine the anaerobic energy release during intense exercise, 16 healthy young men cycled as long as possible at constant powers chosen to exhaust the subjects in approximately 30 s, 1 min, or 2-3 min. Muscle biopsies were taken before and approximately 10 s after exercise and analyzed for lactate, phosphocreatine (PCr), and other metabolites. O2 uptake was measured for determination of the accumulated O2 deficit (a whole body measure of the anaerobic energy release), and this indirect measure of the anaerobic energy release was compared with a direct value obtained from measured muscle metabolites. Muscle lactate concentration rose by 30.0 +/- 1.2 mmol/kg and muscle PCr concentration fell by 12.4 +/- 0.9 mmol/kg during the 2-3 min of exhausting exercise. The anaerobic ATP production was consequently 58 +/- 2 mmol/kg wet muscle mass, which may be the maximum anaerobic energy release for human muscle during bicycling. Because the anaerobic ATP production was 6 and 32% less for 1 min and 30 s of exercise, respectively, than for 2 min of exercise (P < 0.03), 2 min of exhausting exercise may be required for maximal use of anaerobic sources. Lactate production provided three times more ATP than PCr breakdown for all three exercise durations. There was a close linear relationship between the rates of anaerobic ATP production in muscle and the value estimated for the whole body by the O2 deficit (r = 0.94). This suggests that the accumulated O2 deficit is a valid measure of the anaerobic energy release during bicycling. PMID:8282617

  5. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis.

    PubMed

    Zeisel, Steven H

    2013-03-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a > three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  6. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    PubMed Central

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  7. Glucagon regulation of energy metabolism.

    PubMed

    Heppner, Kristy M; Habegger, Kirk M; Day, Jonathan; Pfluger, Paul T; Perez-Tilve, Diego; Ward, Brian; Gelfanov, Vasily; Woods, Steve C; DiMarchi, Richard; Tschöp, Matthias

    2010-07-14

    Glucagon has long been known as a counter-regulatory hormone to insulin of fundamental importance to glucose homeostasis. Its prominent ability to stimulate glycogenolysis and gluconeogenesis, has historically cast this peptide as one hormone where the metabolic consequences of increasing blood glucose levels, especially in obesity, are viewed largely as being deleterious. This perspective may be changing in light of emerging data and reconsideration of historic studies, which suggest that glucagon has beneficial effects on body fat mass, food intake, and energy expenditure. In this review, we discuss the mechanisms of glucagon-mediated body weight regulation as well as possible novel therapeutic approaches in the treatment of obesity and glucose intolerance that may arise from these findings. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. PMID:20381509

  8. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    PubMed Central

    Lyles, Christopher N.; Le, Huynh M.; Beasley, William Howard; McInerney, Michael J.; Suflita, Joseph M.

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

  9. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    PubMed

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

  10. Interplay between oxidant species and energy metabolism.

    PubMed

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2016-08-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  11. Interplay between oxidant species and energy metabolism

    PubMed Central

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2015-01-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  12. Metabolism of aniline under different anaerobic electron-accepting and nutritional conditions

    SciTech Connect

    De, M.A.; O'Connor, O.A.; Kosson, D.S. . Dept. of Chemical and Biochemical Engineering)

    1994-02-01

    The biodegradability of aniline was evaluated under two different anaerobic conditions, denitrifying and methanogenic. In addition, under denitrifying conditions, the influence of bicarbonate was studied. Anaerobic sewage digester sludge and estuarine sediment were used as heterogeneous sources of bacteria. Under anaerobic denitrifying conditions amended with bicarbonate, aniline was completely mineralized to CO[sub 2] and N[sub 2]. After an initial lag period, N[sub 2] recoveries of 74 and 100% were obtained for sludge and sediment cultures, respectively. Under anaerobic denitrifying conditions with no bicarbonate, aniline depletion was observed; however, stoichiometric quantities of N[sub 2] were not produced from mineralization and were in fact inhibited below background controls. Under methanogenic conditions, aniline concentration remained unchanged for > 31 weeks. A metabolite of aniline, 4-hydroxybenzoate, was detected in bicarbonate-amended denitrifying cultures.

  13. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile.

    PubMed

    Falagán, Carmen; Johnson, D Barrie

    2016-01-01

    The genus Acidithiobacillus includes three species that conserve energy from the oxidation of ferrous iron, as well as reduced sulfur, to support their growth. Previous work, based on multi-locus sequence analysis, identified a fourth group of iron- and sulfur-oxidizing acidithiobacilli as a potential distinct species. Eleven strains of 'Group IV' acidithiobacilli, isolated from different global locations, have been studied. These were all shown to be obligate chemolithotrophs, growing aerobically by coupling the oxidation of ferrous iron or reduced sulfur (but not hydrogen) to molecular oxygen, or anaerobically by the oxidation of reduced sulfur coupled to ferric iron reduction. All strains were mesophilic, although some were also psychrotolerant. Strain variation was also noted in terms of tolerance to extremely low pH and to elevated concentrations of transition metals. One strain was noted to display far greater tolerance to chloride than reported for other iron-oxidizing acidithiobacilli. All of the strains were able to catalyse the oxidative dissolution of pyrite and, on the basis of some of the combined traits of some of the strains examined, it is proposed that these may have niche roles in commercial mineral bioprocessing operations, such as for low temperature bioleaching of polysulfide ores in brackish waters. The name Acidithiobacillus ferriphilus sp. nov. is proposed to accommodate the strains described, with the type strain being M20T ( = DSM 100412T = JCM 30830T). PMID:26498321

  14. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  15. Energy expenditure during tennis play: a preliminary video analysis and metabolic model approach.

    PubMed

    Botton, Florent; Hautier, Christophe; Eclache, Jean-Paul

    2011-11-01

    The aim of this study was to estimate, using video analysis, what proportion of the total energy expenditure during a tennis match is accounted for by aerobic and anaerobic metabolism, respectively. The method proposed involved estimating the metabolic power (MP) of 5 activities, which are inherent to tennis: walking, running, hitting the ball, serving, and sitting down to rest. The energy expenditure concerned was calculated by sequencing the activity by video analysis. A bioenergetic model calculated the aerobic energy expenditure (EEO2mod) in terms of MP, and the anaerobic energy expenditure was calculated by subtracting this (MP - EEO2mod). Eight tennis players took part in the experiment as subjects (mean ± SD: age 25.2 ± 1.9 years, weight 79.3 ± 10.8 kg, VO2max 54.4 ± 5.1 ml·kg(-1)·min(-1)). The players started off by participating in 2 games while wearing the K4b2, with their activity profile measured by the video analysis system, and then by playing a set without equipment but with video analysis. There was no significant difference between calculated and measured oxygen consumptions over the 16 games (p = 0.763), and these data were strongly related (r = 0.93, p < 0.0001). The EEO2mod was quite weak over all the games (49.4 ± 4.8% VO2max), whereas the MP during points was up to 2 or 3 times the VO2max. Anaerobic metabolism reached 32% of the total energy expenditure across all the games 67% for points and 95% for hitting the ball. This method provided a good estimation of aerobic energy expenditure and made it possible to calculate the anaerobic energy expenditure. This could make it possible to estimate the metabolic intensity of training sessions and matches using video analysis. PMID:21904239

  16. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    DOE PAGESBeta

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less

  17. Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans

    PubMed Central

    Osorio, Héctor; Mangold, Stefanie; Denis, Yann; Ñancucheo, Ivan; Esparza, Mario; Johnson, D. Barrie; Bonnefoy, Violaine; Dopson, Mark

    2013-01-01

    Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu2+ included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H2S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S0 to Fe3+ via a respiratory chain that includes a bc1 complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations. PMID:23354702

  18. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity. PMID:24831025

  19. Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli

    PubMed Central

    Kelly, Ciarán L.; Pinske, Constanze; Murphy, Bonnie J.; Parkin, Alison; Armstrong, Fraser; Palmer, Tracy; Sargent, Frank

    2015-01-01

    Biohydrogen is a potentially useful product of microbial energy metabolism. One approach to engineering biohydrogen production in bacteria is the production of non-native hydrogenase activity in a host cell, for example Escherichia coli. In some microbes, hydrogenase enzymes are linked directly to central metabolism via diaphorase enzymes that utilise NAD+/NADH cofactors. In this work, it was hypothesised that heterologous production of an NAD+/NADH-linked hydrogenase could connect hydrogen production in an E. coli host directly to its central metabolism. To test this, a synthetic operon was designed and characterised encoding an apparently NADH-dependent, hydrogen-evolving [FeFe]-hydrogenase from Caldanaerobacter subterranus. The synthetic operon was stably integrated into the E. coli chromosome and shown to produce an active hydrogenase, however no H2 production was observed. Subsequently, it was found that heterologous co-production of a pyruvate::ferredoxin oxidoreductase and ferredoxin from Thermotoga maritima was found to be essential to drive H2 production by this system. This work provides genetic evidence that the Ca.subterranus [FeFe]-hydrogenase could be operating in vivo as an electron-confurcating enzyme. PMID:26839796

  20. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  1. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.

    PubMed

    Gerin, Patrick A; Vliegen, François; Jossart, Jean-Marc

    2008-05-01

    Energy crops can be used to feed anaerobic digesters and produce renewable energy. However, sustainability of this option requires that it contributes to a net production of renewable energy and a net reduction of fossil CO2 emission. In this paper, the net balance of CO2 emission and renewable energy production is assessed for maize and grass energy crops produced in several agricultural systems relevant for Southern Belgium and surrounding areas. The calculated net energy yields are 8-25 (maize) and 7.4-15.5 (grass) MWh of renewable CH4 per MWh of fossil energy invested, depending on the agricultural option considered. After conversion to electricity, the specific CO2 emissions range from 31 to 104 kg(CO2)MWhelectricity(-1), depending on the case considered. This corresponds to a significant reduction in CO2 emissions compared to the current reference gas-steam turbine technology which produces 456 kg(CO2)MWhelectricity(-1). PMID:17574409

  2. Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1.

    PubMed

    Perreault, Nancy N; Crocker, Fiona H; Indest, Karl J; Hawari, Jalal

    2012-02-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5 µmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage. To identify genes involved in the anaerobic metabolism of RDX, a library of ~2500 mutants of MR-1 was constructed by random transposon mutagenesis and screened for mutants with a reduced ability to degrade RDX compared with the wild type. An RDX-defective mutant (C9) was isolated that had the transposon inserted in the c-type cytochrome gene cymA. C9 transformed RDX at ~10% of the wild-type rate, with degradation occurring mostly via early ring cleavage caused by initial denitration leading to the formation of methylenedinitramine, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, and ammonia. Genetic complementation of mutant C9 restored the wild-type phenotype, providing evidence that electron transport components have a role in the anaerobic reduction of RDX by MR-1. PMID:22260206

  3. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets.

    PubMed

    Hassett, Daniel J; Cuppoletti, John; Trapnell, Bruce; Lymar, Sergei V; Rowe, John J; Yoon, Sang Sun; Hilliard, George M; Parvatiyar, Kislay; Kamani, Moneesha C; Wozniak, Daniel J; Hwang, Sung Hei; McDermott, Timothy R; Ochsner, Urs A

    2002-12-01

    Recent evidence indicates that Pseudomonas aeruginosa residing as biofilms in airway mucus of cystic fibrosis (CF) patients is undergoing anaerobic metabolism, a form of growth requiring gene products that are not utilized during aerobic growth. The outer membrane protein, OprF, and the rhl quorum sensing circuit are two previously unrecognized cellular factors that are required for optimal anaerobic biofilm viability. Without OprF, bacteria grow extremely poorly because they lack nitrite reductase activity while lacking rhlR or rhlI forces bacteria to undergo metabolic suicide by overproduction of nitric oxide. Furthermore, anaerobic growth favors maintenance of the mucoid, alginate-overproducing phenotype. Thus, with increasing age of CF patients, mucoid populations predominate, indicating that anaerobic bacteria reside in the inspissated airway mucus. Because many frontline antibiotics used in the treatment of CF airway disease are either ineffective or show reduced efficacy during anaerobic conditions, we propose development of new drugs to combat anaerobic metabolism by P. aeruginosa for more effective treatment of chronic CF lung infections. PMID:12458153

  4. Energy and nutrient recovery from anaerobic treatment of organic wastes

    NASA Astrophysics Data System (ADS)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  5. Carbon Monoxide Based Metabolism and CO Cycling in Anaerobic Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Colman, A. S.; Techtmann, S. M.; He, B.; Anderson, M. R.; Robb, F. T.

    2011-12-01

    Carbon monoxide binds tightly to many hemes and other porphyrins, proving toxic to humans and microbes. Nevertheless, CO is an attractive fuel for anaerobic chemolithotrophy for those microbes not impaired by CO's toxicity. CO can be oxidized to CO2 anaerobically through the water-gas-shift reaction by hydrogenogenic carboxydotrophs. CO can also be used by certain homoacetogens in the production of acetate and by certain methanogens in the production of methane, acetate, and formate. CO is not only consumed by microbes, but a diverse range of evidence points towards biogenic production of CO. We present measurements of CO concentrations in dissolved and free phase gases in hot springs in Kamchatka, Russia, and Lassen Volcanic National Park, CA. These measurements implicate microbial CO production as a dominant source of CO in these anaerobic ecosystems. There are few in situ measurements of dissolved CO in microbial mats and sediment pore waters. However, the concentration dependent biochemical and transcriptional responses of carboxydotrophs to CO offer strong evidence for the growth conditions to which these microbes have adapted. CooA is a CO-sensing transcriptional activator found in most anaerobic carboxydotrophs. We interpret the CO-binding properties of CooA in Carboxydothermus hydrogenoformans and Rhodospirillum rubrum as evidence for the ranges of environmental CO concentrations that are frequently encountered in anaerobic ecosystems.

  6. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion.

    PubMed

    Zhu, Pei; Chen, Daijie; Liu, Wenbin; Zhang, Jianbin; Shao, Lei; Li, Ji-an; Chu, Ju

    2014-02-01

    The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion. PMID:24345568

  7. Pollution and energy management through the anaerobic approach

    SciTech Connect

    Szendrey, L.M.; Dorion, G.H.; Schafer, P.E.

    1982-09-01

    Describes how a rum producer on Puerto Rico is using an anaerobic reactor to convert distillery wastes to methane gas. Reports that the reactor generates enough methane to replace 75 barrels of fuel oil per day while reducing the biochemical oxygen demand (BOD) load. Explains that the reactor is loaded with microbial seed, water and mosto at a rate of 50,000 gpd. Plant operations, requiring minimal personnel, involve maintenance of correct environment for anaerobic microorganisms through periodic adjustment of pH and temperature. Points out that many modifications are possible, and thus the Bacardi process is applicable to still-bottom wastes, spent grain liquors, centrates, pulp and paper wastes, sweet or acid cheese whey, food packing and meat packing wastes, liquid extraction raffinates, sludge heat treatment sidestreams, corn products wastes, protein extraction wastes, and winery wastes.

  8. Spermatozoa: models for studying regulatory aspects of energy metabolism.

    PubMed

    Kamp, G; Büsselmann, G; Lauterwein, J

    1996-05-15

    Spermatozoa are highly specialized cells, and they offer advantages for studying several basic aspects of metabolic control such as the role of adenosine triphosphate-(ATP)-homeostasis for cell function, the mechanisms of fatigue and metabolic depression, the metabolic channelling through the cytoplasm and the organization and regulation of glycolytic enzymes. Spermatozoa of four species with different reproductive modes are introduced and the first results are presented: Spermatozoa of the marine worm Arenicola marina are well adapted to external fertilization in sea water with fluctuating oxygen tension: they are motile for several hours in oxygen-free sea water, even when the ATP level is dramatically reduced. Anaerobic ATP production occurs by alanine, acetate and propionate fermentation probably by the same pathways known from somatic cells of this species. Under aerobic conditions the phosphagen system might function like a shuttle for energy-rich phosphate from mitochondria to the dynein-ATPases. Storage of turkey and carp spermatozoa for several hours without exogenous substrates and oxygen results in the degradation of phosphocreatine and ATP to inorganic phosphate and adenosine monophosphate (AMP), respectively. Despite low energy charges, stored spermatozoa of both species are capable of progressive movements. In carp spermatozoa fatigue of motility is not accompanied by the dramatic acidosis one discusses as an important effect in muscle fatigue. Energy metabolism of boar spermatozoa is typically based on glycolysis consuming extracellular carbohydrates and producing lactate and protons. The sperm seem to tolerate low intracellular pH (< 6.5). The lack of a phosphagen system (no energy shuttle from mitochondria to the distal dynein-ATPases) is probably compensated by a high glycolytic ATP-production in the mitochondria-free piece of the flagellum. PMID:8641386

  9. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations. PMID:23639409

  10. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  11. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands. PMID:26000553

  12. Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T

    PubMed Central

    Cravo-Laureau, Cristiana; Grossi, Vincent; Raphel, Danielle; Matheron, Robert; Hirschler-Réa, Agnès

    2005-01-01

    The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/mass spectrometry allowed us to identify saturated 2-, 4-, 6-, and 8-methyl- and monounsaturated 6-methyl-branched fatty acids, with chain lengths that specifically correlated with those of the alkane. Growth of D. aliphaticivorans on perdeuterated hexadecane demonstrated that those methyl-branched fatty acids were directly derived from the substrate. In addition, cultures on pentadecane and hexadecane produced (1-methyltetradecyl)succinate and (1-methylpentadecyl)succinate, respectively. These results indicate that D. aliphaticivorans strain CV2803T oxidizes n-alkanes into fatty acids anaerobically, via the addition of fumarate at C-2. Based on our observations and on literature data, a pathway for anaerobic n-alkane metabolism by D. aliphaticivorans is proposed. This involves the transformation of the initial alkylsuccinate into a 4-methyl-branched fatty acid which, in addition to catabolic reactions, can alternatively undergo chain elongation and desaturation to form storage fatty acids. PMID:16000749

  13. Vampires, Pasteur and reactive oxygen species. Is the switch from aerobic to anaerobic metabolism a preventive antioxidant defence in blood-feeding parasites?

    PubMed

    Oliveira, Pedro L; Oliveira, Marcus F

    2002-08-14

    Several species of parasites show a reduction of their respiratory activity along their developmental cycles after they start to feed on vertebrate blood, relying on anaerobic degradation of carbohydrates to achieve their energy requirements. Usually, these parasites choose not to breathe despite of living in an environment of high oxygen availability such as vertebrate blood. Absence of the 'Pasteur effect' in most of these parasites has been well documented. Interestingly, together with the switch from aerobic to anaerobic metabolism in these parasites, there is clear evidence pointing to an increase in their antioxidant defences. As the respiratory chain in mitochondria is a major site of production of reactive oxygen species (ROS), we propose here that the arrest of respiration constitutes an adaptation to avoid the toxic effects of ROS. This situation would be especially critical for blood-feeding parasites because ROS produced in mitochondria would interact with pro-oxidant products of blood digestion, such as haem and/or iron, and increase the oxidative damage to the parasite's cells. PMID:12163151

  14. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  15. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country. PMID:23381970

  16. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    NASA Astrophysics Data System (ADS)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  17. Simultaneous Involvement of a Tungsten-Containing Aldehyde:Ferredoxin Oxidoreductase and a Phenylacetaldehyde Dehydrogenase in Anaerobic Phenylalanine Metabolism

    PubMed Central

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH. PMID:24214948

  18. Targeting mitochondrial energy metabolism with TSPO ligands.

    PubMed

    Gut, Philipp

    2015-08-01

    The translocator protein (18 kDa) (TSPO) resides on the outer mitochondrial membrane where it is believed to participate in cholesterol transport and steroid hormone synthesis. Although it is almost ubiquitously expressed, what TSPO does in non-steroidogenic tissues is largely unexplored. Recent studies report changes in glucose homoeostasis and cellular energy production when TSPO function is modulated by selective ligands or by genetic loss-of-function. This review summarizes findings that connect TSPO function with the regulation of mitochondrial energy metabolism. The juxtaposition of TSPO at the cytosolic/mitochondrial interface and the existence of endogenous ligands that are regulated by metabolism suggest that TSPO functions to adapt mitochondrial to cellular metabolism. From a pharmacological perspective the specific up-regulation of TSPO in neuro-inflammatory and injury-induced conditions make TSPO an interesting, druggable target of mitochondrial metabolism. PMID:26551690

  19. Energy Balance and Metabolism after Cancer Treatment

    PubMed Central

    Tonorezos, Emily S.; Jones, Lee W.

    2013-01-01

    Unfavorable physiological, biological, and behavioral alterations during and following treatment for cancer may lead to chronic energy imbalance predisposing to a myriad of deleterious health conditions including obesity, dyslipidemia, and the metabolic syndrome. In addition to the cardiovascular and musculoskeletal effects of these conditions, energy imbalance and metabolic changes after cancer treatment can also affect cancer-related morbidity and mortality. To this end, lifestyle interventions such as diet and physical activity are especially relevant to mitigate the deleterious impact of chronic energy imbalance in cancer survivors. PMID:24331194

  20. (Summer investigations into the isolation, cultivation and metabolism of anaerobes involved in biodegradation): Progress report, year 4, summer 1988

    SciTech Connect

    Not Available

    1988-01-01

    In the laboratory our students were trained in modern techniques for the isolation and study of a wide variety of microbes from marine and brackish environments. Special emphasis was placed on anaerobes and archaebacteria. Microbial groups that were studied included the propionic bacteria, clostridia, methanogens, acetogens, hydrogen oxidizing anaerobes and aerobes, sulfate-reducing bacteria and sulfur-reducing bacteria, anoxic photosynthetic bacteria, cyanobacteria, spirochetes, symbiotic and non-symbiotic nitrogen fixing bacteria, luminescent bacteria, iron bacteria, magnetic bacteria, and sulfur oxidizing bacteria. The permanent staff led discussions and presented lectures on the metabolism, physiology and biochemistry of the groups listed above. Material was also presented on motility and chemotaxis of bacteria, and particular emphasis was given to molecular approaches to studying evolution of bacteria. We also had five successful Microbiology Mini-symposia (see attached schedule). These one-day symposia involved lecture/seminar presentations by investigators involved in state-of-the-art working particularly exciting areas within the scope of our course.

  1. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process.

    PubMed

    Sträuber, Heike; Lucas, Rico; Kleinsteuber, Sabine

    2016-01-01

    Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L(-1) lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L(-1) for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy. PMID:26411455

  2. Energy metabolism of the visual system

    PubMed Central

    Wong-Riley, Margaret T.T.

    2012-01-01

    The visual system is one of the most energetically demanding systems in the brain. The currency of energy is ATP, which is generated most efficiently from oxidative metabolism in the mitochondria. ATP supports multiple neuronal functions. Foremost is repolarization of the membrane potential after depolarization. Neuronal activity, ATP generation, blood flow, oxygen consumption, glucose utilization, and mitochondrial oxidative metabolism are all interrelated. In the retina, phototransduction, neurotransmitter utilization, and protein/organelle transport are energy-dependent, yet repolarization-after-depolarization consumes the bulk of the energy. Repolarization in photoreceptor inner segments maintains the dark current. Repolarization by all neurons along the visual pathway following depolarizing excitatory glutamatergic neurotransmission preserves cellular integrity and permits reactivation. The higher metabolic activity in the magno- versus the parvo-cellular pathway, the ON- versus the OFF-pathway in some (and the reverse in other) species, and in specialized functional representations in the visual cortex all reflect a greater emphasis on the processing of specific visual attributes. Neuronal activity and energy metabolism are tightly coupled processes at the cellular and even at the molecular levels. Deficiencies in energy metabolism, such as in diabetes, mitochondrial DNA mutation, mitochondrial protein malfunction, and oxidative stress can lead to retinopathy, visual deficits, neuronal degeneration, and eventual blindness. PMID:23226947

  3. Intermediate Energy Metabolism of Leptospira

    PubMed Central

    Baseman, J. B.; Cox, C. D.

    1969-01-01

    Metabolic studies were performed on three representative serotypes of Leptospira: a water isolate designated B16 and two pathogenic serotypes, pomona and schueffneri. Examination of whole cells of B16 for their ability to oxidize various substrates revealed that oleate significantly stimulated oxygen uptake. The respiratory quotient of 0.7 implied that oleate was degraded to carbon dioxide and water. Other substrates, such as carbohydrates, alcohols, intermediates of the citric acid cycle, and short-chain acids, including selected amino acids, did not stimulate endogenous respiration of whole cells. No oxygen uptake could be measured when cell-free extracts were tested with the substrates used with whole cells. Enzymatic analyses of cell-free extracts of the three strains demonstrated enzymes of the citric acid cycle, enzymes of the glycolytic and pentose pathways, and the general acyl coenzyme A dehydrogenase required for β-oxidation of fatty acids. Strain B16 and the two pathogenic serotypes appeared to possess similar metabolic capabilities. Enzymatic data might also explain the apparent inability of B16 to oxidize other substrates; kinases necessary for activation of common nonphosphorylated compounds were not detected in leptospiral extracts. These findings emphasized the dependence of leptospiral growth upon long-chain fatty acids. PMID:5776541

  4. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress.

    PubMed

    Boes, Nelli; Schreiber, Kerstin; Härtig, Elisabeth; Jaensch, Lothar; Schobert, Max

    2006-09-01

    During infection of the cystic fibrosis (CF) lung, Pseudomonas aeruginosa microcolonies are embedded in the anaerobic CF mucus. This anaerobic environment seems to contribute to the formation of more robust P. aeruginosa biofilms and to an increased antibiotic tolerance and therefore promotes persistent infection. This study characterizes the P. aeruginosa protein PA4352, which is important for survival under anaerobic energy stress conditions. PA4352 belongs to the universal stress protein (Usp) superfamily and harbors two Usp domains in tandem. In Escherichia coli, Usp-type stress proteins are involved in survival during aerobic growth arrest and under various other stresses. A P. aeruginosa PA4352 knockout mutant was tested for survival under several stress conditions. We found a decrease in viability of this mutant compared to the P. aeruginosa wild type during anaerobic energy starvation caused by the missing electron acceptors oxygen and nitrate. Consistent with this phenotype under anaerobic conditions, the PA4352 knockout mutant was also highly sensitive to carbonyl cyanide m-chlorophenylhydrazone, the chemical uncoupler of the electron transport chain. Primer extension experiments identified two promoters upstream of the PA4352 gene. One promoter is activated in response to oxygen limitation by the oxygen-sensing regulatory protein Anr. The center of a putative Anr binding site was identified 41.5 bp upstream of the transcriptional start site. The second promoter is active only in the stationary phase, however, independently of RpoS, RelA, or quorum sensing. This is the second P. aeruginosa Usp-type stress protein that we have identified as important for survival under anaerobic conditions, which resembles the environment during persistent infection. PMID:16952944

  5. Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1

    PubMed Central

    Alves, Mónica N.; Neto, Sónia E.; Alves, Alexandra S.; Fonseca, Bruno M.; Carrêlo, Afonso; Pacheco, Isabel; Paquete, Catarina M.; Soares, Cláudio M.; Louro, Ricardo O.

    2015-01-01

    The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials. From these data the small tetraheme cytochrome (STC) emerges as the main periplasmic redox shuttle in SOMR-1. It accepts electrons from CymA and distributes them to a number of terminal oxidoreductases involved in the respiration of various compounds. STC is also involved in the electron transfer pathway to reduce nitrite by interaction with the octaheme tetrathionate reductase (OTR), but not with cytochrome c nitrite reductase (ccNiR). In the main pathway leading the metal respiration STC pairs with flavocytochrome c (FccA), the other major periplasmic cytochrome, which provides redundancy in this important pathway. The data reveals that the two proteins compete for the binding site at the surface of MtrA, the decaheme cytochrome inserted on the periplasmic side of the MtrCAB–OmcA outer-membrane complex. However, this is not observed for the MtrA homologues. Indeed, neither STC nor FccA interact with MtrD, the best replacement for MtrA, and only STC is able to interact with the decaheme cytochrome DmsE of the outer-membrane complex DmsEFABGH. Overall, these results shown that STC plays a central role in the anaerobic respiratory metabolism of SOMR-1. Nonetheless, the trans-periplasmic electron transfer chain is functionally resilient as a consequence of redundancies that arise from the presence of alternative pathways that bypass/compete with STC. PMID:26175726

  6. Effects of Dietary Acid Load on Exercise Metabolism and Anaerobic Exercise Performance

    PubMed Central

    Caciano, Susan L.; Inman, Cynthia L.; Gockel-Blessing, Elizabeth E.; Weiss, Edward P.

    2015-01-01

    Dietary acid load, quantified as the potential renal acid load (PRAL) of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet) is associated with higher respiratory exchange ratio (RER) values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization) and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT) to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037). The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044) and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060). Contrary to our expectations, a short-term low-PRAL (alkaline promoting) diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance. Key points Short-term (4-9 days) changes in

  7. Mitochondrial Energy Metabolism and Thyroid Cancers.

    PubMed

    Lee, Junguee; Chang, Joon Young; Kang, Yea Eun; Yi, Shinae; Lee, Min Hee; Joung, Kyong Hye; Kim, Kun Soon; Shong, Minho

    2015-06-01

    Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers. PMID:26194071

  8. Anaerobic microbial transformations in subsurface environments

    SciTech Connect

    Bollag, J.M.; Berry, D.F.; Chanmugathas, P.

    1985-04-01

    The first draft of a literature review article entitled, ''Metabolism of Homocyclic (Benzenoid) and Heterocyclic Aromatic Compounds by Microorganisms Under Anaerobic Conditions'' is completed. The article covers biodegradation of both heterocyclic and homocyclic aromatic compounds under a variety of conditions including nitrate reducing, fermentation, sulfate reducing, and methanogensis. Laboratory experiments have been designed to study the anaerobic biotransformation processes involving organic substance derived from energy residual wastes. The test compounds selected for the initial anaerobic biodegradation experiments include aniline, indole, and pyridine. A Hungate apparatus is presently in operation.

  9. Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals.

    PubMed

    Burns, J M; Skomp, N; Bishop, N; Lestyk, K; Hammill, M

    2010-03-01

    In diving animals, skeletal muscle adaptations to extend underwater time despite selective vasoconstriction include elevated myoglobin (Mb) concentrations, high acid buffering ability (beta) and high aerobic and anaerobic enzyme activities. However, because cardiac muscle is perfused during dives, it may rely less heavily on Mb, beta and anaerobic pathways to support contractile activity. In addition, because cardiac tissue must sustain contractile activity even before birth, it may be more physiologically mature at birth and/or develop faster than skeletal muscles. To test these hypotheses, we measured Mb levels, beta and the activities of citrate synthase (CS), beta-hydroxyacyl-CoA dehydrogenase (HOAD) and lactate dehydrogenase (LDH) in cardiac and skeletal muscle samples from 72 harp and hooded seals, ranging in age from fetuses to adults. Results indicate that in adults cardiac muscle had lower Mb levels (14.7%), beta (55.5%) and LDH activity (36.2%) but higher CS (459.6%) and HOAD (371.3%) activities (all P<0.05) than skeletal muscle. In addition, while the cardiac muscle of young seals had significantly lower [Mb] (44.7%) beta (80.7%) and LDH activity (89.5%) than adults (all P<0.05), it was relatively more mature at birth and weaning than skeletal muscle. These patterns are similar to those in terrestrial species, suggesting that seal hearts do not exhibit unique adaptations to the challenges of an aquatic existence. PMID:20154189

  10. Anaerobic Metabolism in Germinating Seeds of Echinochloa crus-galli (Barnyard Grass) 1

    PubMed Central

    Rumpho, Mary E.; Kennedy, Robert A.

    1981-01-01

    Echinochloa crus-galli, a problem weed in rice fields, has the rare ability to germinate and to grow in a totally oxygen-free environment. After 7 days growth in the light or dark under N2, E. crus-galli var. oryzicola produces a 2- to 3-centimeter nonpigmented shoot. Ethanol, malate, and lactate were measured in seeds germinated under N2 and air, and compared with changes in the activities of alcohol dehydrogenase, malate dehydrogenase, NADP-malic enzyme, and phosphoenolpyruvate carboxylase. During a 7-day time course, ethanol levels increased 661 micromoles per gram dry weight under N2, with no increase under air. Alcohol dehydrogenase activity increased 5.5 micromoles per gram dry weight per minute in N2 compared to 1.0 in air. Corresponding increases for lactate were 7.9 micromoles per gram dry weight under N2 and 2.7 under air, and for malate, 5.3 micromoles per gram dry weight under N2 and 0.4 under air. Although 85% of the ethanol produced by the seedlings was found in the external solution under N2, the seeds still contained 90 times more ethanol under anaerobic conditions than under air. No phosphoenolpyruvate carboxykinase activity was detected and phosphoenolpyruvate carboxylase activity was 10 times less under N2 than air. Malic enzyme activity increased 5-fold under anaerobic conditions, comparable to the change under aerobic conditions. Proposed adaptive mechanisms of flood-tolerant species to anaerobiosis are discussed. PMID:16661863

  11. Sublethal Concentrations of Antibiotics Cause Shift to Anaerobic Metabolism in Listeria monocytogenes and Induce Phenotypes Linked to Antibiotic Tolerance.

    PubMed

    Knudsen, Gitte M; Fromberg, Arvid; Ng, Yin; Gram, Lone

    2016-01-01

    The human pathogenic bacterium Listeria monocytogenes is exposed to antibiotics both during clinical treatment and in its saprophytic lifestyle. As one of the keys to successful treatment is continued antibiotic sensitivity, the purpose of this study was to determine if exposure to sublethal antibiotic concentrations would affect the bacterial physiology and induce antibiotic tolerance. Transcriptomic analyses demonstrated that each of the four antibiotics tested caused an antibiotic-specific gene expression pattern related to mode-of-action of the particular antibiotic. All four antibiotics caused the same changes in expression of several metabolic genes indicating a shift from aerobic to anaerobic metabolism and higher ethanol production. A mutant in the bifunctional acetaldehyde-CoA/alcohol dehydrogenase encoded by lmo1634 did not have altered antibiotic tolerance. However, a mutant in lmo1179 (eutE) encoding an aldehyde oxidoreductase where rerouting caused increased ethanol production was tolerant to three of four antibiotics tested. This shift in metabolism could be a survival strategy in response to antibiotics to avoid generation of ROS production from respiration by oxidation of NADH through ethanol production. The monocin locus encoding a cryptic prophage was induced by co-trimoxazole and repressed by ampicillin and gentamicin, and this correlated with an observed antibiotic-dependent biofilm formation. A monocin mutant (ΔlmaDCBA) had increased biofilm formation when exposed to increasing concentration of co-trimoxazole similar to the wild type, but was more tolerant to killing by co-trimoxazole and ampicillin. Thus, sublethal concentrations of antibiotics caused metabolic and physiological changes indicating that the organism is preparing to withstand lethal antibiotic concentrations. PMID:27462313

  12. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.

    PubMed

    Alff-Tuomala, Susanne; Salusjärvi, Laura; Barth, Dorothee; Oja, Merja; Penttilä, Merja; Pitkänen, Juha-Pekka; Ruohonen, Laura; Jouhten, Paula

    2016-01-01

    Xylose is present with glucose in lignocellulosic streams available for valorisation to biochemicals. Saccharomyces cerevisiae has excellent characteristics as a host for the bioconversion, except that it strongly prefers glucose to xylose, and the co-consumption remains a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered strain cannot be expected to have evolved for its utilisation. Xylose-induced effects on metabolism and gene expression during anaerobic growth of an engineered strain of S. cerevisiae on medium containing both glucose and xylose medium were quantified. The gene expression of S. cerevisiae with an XR-XDH pathway for xylose utilisation was analysed throughout the cultivation: at early cultivation times when mainly glucose was metabolised, at times when xylose was co-consumed in the presence of low glucose concentrations, and when glucose had been depleted and only xylose was being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were simulated to analyse the metabolic dynamics of S. cerevisiae. The simulations quantitatively estimated xylose-dependent flux dynamics and challenged the utilisation of the metabolic network. A relative increase in xylose utilisation was predicted to induce the bi-directionality of glycolytic flux and a redox challenge even at low glucose concentrations. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred at a cultivation time when the metabolic flux activities were similar in the both cultures. PMID:26454869

  13. Sublethal Concentrations of Antibiotics Cause Shift to Anaerobic Metabolism in Listeria monocytogenes and Induce Phenotypes Linked to Antibiotic Tolerance

    PubMed Central

    Knudsen, Gitte M.; Fromberg, Arvid; Ng, Yin; Gram, Lone

    2016-01-01

    The human pathogenic bacterium Listeria monocytogenes is exposed to antibiotics both during clinical treatment and in its saprophytic lifestyle. As one of the keys to successful treatment is continued antibiotic sensitivity, the purpose of this study was to determine if exposure to sublethal antibiotic concentrations would affect the bacterial physiology and induce antibiotic tolerance. Transcriptomic analyses demonstrated that each of the four antibiotics tested caused an antibiotic-specific gene expression pattern related to mode-of-action of the particular antibiotic. All four antibiotics caused the same changes in expression of several metabolic genes indicating a shift from aerobic to anaerobic metabolism and higher ethanol production. A mutant in the bifunctional acetaldehyde-CoA/alcohol dehydrogenase encoded by lmo1634 did not have altered antibiotic tolerance. However, a mutant in lmo1179 (eutE) encoding an aldehyde oxidoreductase where rerouting caused increased ethanol production was tolerant to three of four antibiotics tested. This shift in metabolism could be a survival strategy in response to antibiotics to avoid generation of ROS production from respiration by oxidation of NADH through ethanol production. The monocin locus encoding a cryptic prophage was induced by co-trimoxazole and repressed by ampicillin and gentamicin, and this correlated with an observed antibiotic-dependent biofilm formation. A monocin mutant (ΔlmaDCBA) had increased biofilm formation when exposed to increasing concentration of co-trimoxazole similar to the wild type, but was more tolerant to killing by co-trimoxazole and ampicillin. Thus, sublethal concentrations of antibiotics caused metabolic and physiological changes indicating that the organism is preparing to withstand lethal antibiotic concentrations. PMID:27462313

  14. Metal centers in the anaerobic microbial metabolism of CO and CO2.

    PubMed

    Bender, Güneş; Pierce, Elizabeth; Hill, Jeffrey A; Darty, Joseph E; Ragsdale, Stephen W

    2011-08-01

    Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations. PMID:21647480

  15. Metal centers in the anaerobic microbial metabolism of CO and CO2

    PubMed Central

    Bender, Güneş; Pierce, Elizabeth; Hill, Jeffrey A.; Darty, Joseph E.

    2014-01-01

    Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO2, for harnessing ‘green’ energy and producing biofuels. One strategy is to convert CO2 into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO2 and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO2, we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO2 and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe4S4 clusters, catalyzes the addition and elimination of CO2 during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron–sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B12 and a Fe4S4 cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co3+ intermediate. Studies of CO and CO2 enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C–C and C–S bond formations. PMID:21647480

  16. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  17. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  18. Sodium signaling and astrocyte energy metabolism.

    PubMed

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  19. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters. PMID:17368391

  20. In vitro metabolism of rebaudioside E under anaerobic conditions: Comparison with rebaudioside A.

    PubMed

    Purkayastha, Sidd; Bhusari, Sachin; Pugh, George; Teng, Xiaowei; Kwok, David; Tarka, Stanley M

    2015-08-01

    The hydrolysis of the steviol glycosides rebaudioside (Reb) A and E, as well as steviolbioside (a metabolic intermediate) to steviol was evaluated in vitro using human fecal homogenates from healthy Caucasian and Asian donors. Incubation of each of the Rebs in both groups resulted in a rapid hydrolysis to steviol. Metabolism of 0.2mg/mL sample was complete within 24h, with the majority occurring within the first 16 h. There were no clear differences in the rate or extent of metabolism of Reb E relative to the comparative control Reb A. The hydrolysis of samples containing 2.0mg/mL of steviol glycosides Reb A and Reb E tended to take slightly longer than 0.2mg/mL samples. Herein, we report for the first time that there were no apparent gender or ethnicity differences in the rate of metabolism of any of the Rebs, regardless of the concentrations tested. Steviolbioside, an intermediate in the hydrolysis of Reb E to steviol was also found to be rapidly degraded to steviol. These results demonstrate Reb E is metabolized to steviol in the same manner as Reb A. These data support the use of toxicology data available on steviol, and on steviol glycosides metabolized to steviol (i.e., Reb A) to underpin the safety of Reb E. PMID:26003514

  1. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    SciTech Connect

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  2. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. PMID:24112851

  3. Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.

    PubMed

    Lakaniemi, Aino-Maija; Tuovinen, Olli H; Puhakka, Jaakko A

    2013-05-01

    This review discusses anaerobic production of methane, hydrogen, ethanol, butanol and electricity from microalgal biomass. The amenability of microalgal biomass to these bioenergy conversion processes is compared with other aquatic and terrestrial biomass sources. The highest energy yields (kJ g(-1) dry wt. microalgal biomass) reported in the literature have been 14.8 as ethanol, 14.4 as methane, 6.6 as butanol and 1.2 as hydrogen. The highest power density reported from microalgal biomass in microbial fuel cells has been 980 mW m(-2). Sequential production of different energy carriers increases attainable energy yields, but also increases investment and maintenance costs. Microalgal biomass is a promising feedstock for anaerobic energy conversion processes, especially for methanogenic digestion and ethanol fermentation. The reviewed studies have mainly been based on laboratory scale experiments and thus scale-up of anaerobic utilization of microalgal biomass for production of energy carriers is now timely and required for cost-effectiveness comparisons. PMID:23021960

  4. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.

    PubMed

    Alkan-Ozkaynak, A; Karthikeyan, K G

    2011-11-01

    Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants. PMID:21890343

  5. Impact of sludge thickening on energy recovery from anaerobic digestion.

    PubMed

    Puchajda, B; Oleszkiewicz, J

    2008-01-01

    This paper presents energy balances for various digestion systems, which include single mesophilic digestion, single thermophilic digestion, two-stage thermophilic-mesophilic digestion system and systems at elevated solids content in sludge. On the basis of a sludge flow containing 30 tons TS/day (equivalent to a 100 ML/d WWTP plant) it was shown that a two-stage thermophilic-mesophilic digestion system generated more available energy than single mesophilic digestion and single thermophilic digestion systems. Sludge thickening offered the greatest amount of available energy; however that energy surplus was offset by the cost of thickening. After the cost of thickening was converted into equivalent energy units it was shown that the price of energy is important in calculation of equivalent energy units related to operation of the thickening plant. Sludge thickening may be beneficial from energy view point compared to conventional mesophilic digestion when price of energy exceeds dollars 0.08 CAN kW-hr. PMID:18309218

  6. The Metabolic Reprogramming Evoked by Nitrosative Stress Triggers the Anaerobic Utilization of Citrate in Pseudomonas fluorescens

    PubMed Central

    Auger, Christopher; Lemire, Joseph; Cecchini, Dominic; Bignucolo, Adam; Appanna, Vasu D.

    2011-01-01

    Nitrosative stress is an ongoing challenge that most organisms have to contend with. When nitric oxide (NO) that may be generated either exogenously or endogenously encounters reactive oxygen species (ROS), it produces a set of toxic moieties referred to as reactive nitrogen species (RNS). As these RNS can severely damage essential biomolecules, numerous organisms have evolved elaborate detoxification strategies to nullify RNS. However, the contribution of cellular metabolism in fending off nitrosative stress is poorly understood. Using a variety of functional proteomic and metabolomic analyses, we have identified how the soil microbe Pseudomonas fluorescens reprogrammed its metabolic networks to survive in an environment enriched by sodium nitroprusside (SNP), a generator of nitrosative stress. To combat the RNS-induced ineffective aconitase (ACN) and tricarboxylic acid (TCA) cycle, the microbe invoked the participation of citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK) to convert citrate, the sole source of carbon into pyruvate and ATP. These enzymes were not evident in the control conditions. This metabolic shift was coupled to the concomitant increase in the activities of such classical RNS detoxifiers as nitrate reductase (NR), nitrite reductase (NIR) and S-nitrosoglutathione reductase (GSNOR). Hence, metabolism may hold the clues to the survival of organisms subjected to nitrosative stress and may provide therapeutic cues against RNS-resistant microbes. PMID:22145048

  7. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.

    PubMed

    Wegener, Gunter; Krukenberg, Viola; Ruff, S Emil; Kellermann, Matthias Y; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1-7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1-9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as

  8. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    PubMed Central

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1–7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1–9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM

  9. Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica.

    PubMed

    Das, Amaresh; Fu, Zheng-Qing; Tempel, Wolfram; Liu, Zhi-Jie; Chang, Jessie; Chen, Lirong; Lee, Doowon; Zhou, Weihong; Xu, Hao; Shaw, Neil; Rose, John P; Ljungdahl, Lars G; Wang, Bi-Cheng

    2007-04-01

    The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M

  10. Energy metabolism in neuroblastoma and Wilms tumor

    PubMed Central

    Aminzadeh, Sepideh; Vidali, Silvia; Sperl, Wolfgang; Feichtinger, René G.

    2015-01-01

    To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies. PMID:26835356

  11. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E; Dang, Yan; Woodard, Trevor L; Nevin, Kelly P; Lovley, Derek R

    2016-06-01

    Promoting direct interspecies electron transfer (DIET) to enhance syntrophic metabolism may be a strategy for accelerating the conversion of organic wastes to methane, but microorganisms capable of metabolizing propionate and butyrate via DIET under methanogenic conditions have yet to be identified. In an attempt to establish methanogenic communities metabolizing propionate or butyrate with DIET, enrichments were initiated with up-flow anaerobic sludge blanket (UASB), similar to those that were previously reported to support communities that metabolized ethanol with DIET that relied on direct biological electrical connections. In the absence of any amendments, microbial communities enriched were dominated by microorganisms closely related to pure cultures that are known to metabolize propionate or butyrate to acetate with production of H2. When biochar was added to the reactors there was a substantial enrichment on the biochar surface of 16S rRNA gene sequences closely related to Geobacter and Methanosaeta species known to participate in DIET. PMID:26967338

  12. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent.

    PubMed

    McCloskey, Douglas; Gangoiti, Jon A; King, Zachary A; Naviaux, Robert K; Barshop, Bruce A; Palsson, Bernhard O; Feist, Adam M

    2014-04-01

    The advent of model-enabled workflows in systems biology allows for the integration of experimental data types with genome-scale models to discover new features of biology. This work demonstrates such a workflow, aimed at establishing a metabolomics platform applied to study the differences in metabolomes between anaerobic and aerobic growth of Escherichia coli. Constraint-based modeling was utilized to deduce a target list of compounds for downstream method development. An analytical and experimental methodology was developed and tailored to the compound chemistry and growth conditions of interest. This included the construction of a rapid sampling apparatus for use with anaerobic cultures. The resulting genome-scale data sets for anaerobic and aerobic growth were validated by comparison to previous small-scale studies comparing growth of E. coli under the same conditions. The metabolomics data were then integrated with the E. coli genome-scale metabolic model (GEM) via a sensitivity analysis that utilized reaction thermodynamics to reconcile simulated growth rates and reaction directionalities. This analysis highlighted several optimal network usage inconsistencies, including the incorrect use of the beta-oxidation pathway for synthesis of fatty acids. This analysis also identified enzyme promiscuity for the pykA gene, that is critical for anaerobic growth, and which has not been previously incorporated into metabolic models of E coli. PMID:24249002

  13. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  14. Energy Metabolism and Human Dosimetry of Tritium

    SciTech Connect

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A

    2005-07-15

    In the frame of current revision of human dosimetry of {sup 14}C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic {sup 14}C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings.

  15. The Effects of Cholera Toxin on Cellular Energy Metabolism

    PubMed Central

    Snider, Rachel M.; McKenzie, Jennifer R.; Kraft, Lewis; Kozlov, Eugene; Wikswo, John P.; Cliffel, David E.

    2010-01-01

    Multianalyte microphysiometry, a real-time instrument for simultaneous measurement of metabolic analytes in a microfluidic environment, was used to explore the effects of cholera toxin (CTx). Upon exposure of CTx to PC-12 cells, anaerobic respiration was triggered, measured as increases in acid and lactate production and a decrease in the oxygen uptake. We believe the responses observed are due to a CTx-induced activation of adenylate cyclase, increasing cAMP production and resulting in a switch to anaerobic respiration. Inhibitors (H-89, brefeldin A) and stimulators (forskolin) of cAMP were employed to modulate the CTx-induced cAMP responses. The results of this study show the utility of multianalyte microphysiometry to quantitatively determine the dynamic metabolic effects of toxins and affected pathways. PMID:22069603

  16. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis.

    PubMed

    Mustroph, Angelika; Boamfa, Elena I; Laarhoven, Lucas J J; Harren, Frans J M; Pörs, Yvonne; Grimm, Bernhard

    2006-12-01

    Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO(2) deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport. PMID:16802177

  17. Energy metabolic dysfunction as a carcinogenic factor in cancer cells.

    PubMed

    Sun, Yongyan; Shi, Zhenhua; Lian, Huiyong; Cai, Peng

    2016-12-01

    Cancer, as a leading cause of death, has attracted enormous public attention. Reprogramming of cellular energy metabolism is deemed to be one of the principal hallmarks of cancer. In this article, we reviewed the mutual relationships among environmental pollution factors, energy metabolic dysfunction, and various cancers. We found that most environmental pollution factors could induce cancers mainly by disturbing the energy metabolism. By triggering microenvironment alteration, energy metabolic dysfunction can be treated as a factor in carcinogenesis. Thus, we put forward that energy metabolism might be as a key point for studying carcinogenesis and tumor development to propose new methods for cancer prevention and therapy. PMID:27053249

  18. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  19. Circulating follistatin in relation to energy metabolism.

    PubMed

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-09-15

    Recently, substantial evidence has emerged that the liver contributes significantly to the circulating levels of follistatin and that circulating follistatin is tightly regulated by the glucagon-to-insulin ratio. Both observations are based on investigations of healthy subjects. These novel findings challenge the present view of circulating follistatin in human physiology, being that circulating follistatin is a result of spill-over from para/autocrine actions in various tissues and cells. Follistatin as a liver-derived protein under the regulation of glucagon-to-insulin ratio suggests a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated with elevated levels of circulating follistatin have a metabolic denominator with decreased insulin sensitivity and/or hyperglucagoneimia. PMID:27264073

  20. Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops.

    PubMed

    Schwede, Sebastian; Kowalczyk, Alexandra; Gerber, Mandy; Span, Roland

    2013-11-01

    Anaerobic co-digestion of corn silage with the marine microalga Nannochloropsis salina was investigated under batch and semi-continuous conditions. Under batch conditions process stability and biogas yields significantly increased by microalgae addition. During semi-continuous long-term experiments anaerobic digestion was stable in corn silage mono- and co-digestion with the algal biomass for more than 200 days. At higher organic loading rates (4.7 kg volatile solids m(-3)d(-1)) inhibition and finally process failure occurred in corn silage mono-digestion, whereas acid and methane formation remained balanced in co-digestion. The positive influences in co-digestion can be attributed to an adjusted carbon to nitrogen ratio, enhanced alkalinity, essential trace elements and a balanced nutrient composition. The results suggest that N. salina biomass is a suitable feedstock for anaerobic co-digestion of energy crops, especially for regions with manure scarcity. Enhanced process stability may result in higher organic loading rates or lower digester volumes. PMID:24071442

  1. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  2. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  3. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  4. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring. PMID:27290724

  5. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    SciTech Connect

    Miller, Lance D; Mosher, Jennifer J; Venkateswaran, Amudhan; Yang, Zamin Koo; Palumbo, Anthony Vito; Phelps, Tommy Joe; Podar, Mircea; Schadt, Christopher Warren; Keller, Martin

    2010-01-01

    Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.

  6. Anaerobic digestion of spring and winter wheat: Comparison of net energy yields.

    PubMed

    Rincón, Bárbara; Heaven, Sonia; Salter, Andrew M; Banks, Charles J

    2016-10-14

    Anaerobic digestion of wheat was investigated under batch conditions. The article compares the potential net energy yield between a winter wheat (sown in the autumn) and a spring wheat (sown in the spring) grown in the same year and harvested at the same growth stage in the same farm. The spring wheat had a slightly higher biochemical methane potential and required lower energy inputs in cultivation, but produced a lower dry biomass yield per hectare, which resulted in winter wheat providing the best overall net energy yield. The difference was small; both varieties gave a good net energy yield. Spring sowing may also offer the opportunity for growing an additional over-winter catch crop for spring harvest, thus increasing the overall biomass yield per hectare, with both crops being potential digester feedstocks. PMID:27409161

  7. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.

    PubMed

    Ziemba, Christopher; Peccia, Jordan

    2011-10-15

    The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70 °C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55 °C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55 °C thermophilic and temperature-phased treatments. Incorporating a 60 or 70 °C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70 °C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70 °C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70 °C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against

  8. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    PubMed Central

    2010-01-01

    Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network. PMID:20497531

  9. Preabsorptive Metabolism of Sodium Arsenate by Anaerobic Microbiota of Mouse Cecum Forms a Variety of Methylated and Thiolated Arsenicals

    EPA Science Inventory

    The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA...

  10. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment.

    PubMed

    Peng, Shanshan; Colosi, Lisa M

    2016-01-01

    Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality. PMID:26803024

  11. Limits to anaerobic energy and cytosolic concentration in the living cell

    NASA Astrophysics Data System (ADS)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  12. Energy conservation and production in a packed-bed anaerobic bioreactor

    SciTech Connect

    Pit, W.W. Jr.; Genung, R.K.

    1980-01-01

    Oak Ridge National Laboratory (ORNL) is developing an energy-conserving/ producing wastewater treatment system based on a fixed-film anaerobic bioreactor. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration and biological decomposition. A two-year pilot-plant project using a bioreactor designed to treat 5000 gpd has been conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. Data obtained for the performance of the bioreactor during this project have been analyzed by ORNL and Associated Water and Air Resources Engineers (AWARE), Inc. of Nashville, Tennessee. From these analyses it was estimated that hydraulic loading rates of 0.25 gpm/ft/sup 2/ and hydraulic residence times of 10 hours could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to one million gallons of wastewater per day were developed based on the performance of the pilot plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. Economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated sludge treatment systems.Furthermore, methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production. For dilute municipal wastewaters this would completely offset the remaining energy required for treatment, while for concentrated industrial wastewater would result in a net production of energy.

  13. Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered Saccharomyces cerevisiae: Possible Consequence of Energy-Dependent Lactate Export

    PubMed Central

    van Maris, Antonius J. A.; Winkler, Aaron A.; Porro, Danilo; van Dijken, Johannes P.; Pronk, Jack T.

    2004-01-01

    Due to a growing market for the biodegradable and renewable polymer polylactic acid, the world demand for lactic acid is rapidly increasing. The tolerance of yeasts to low pH can benefit the process economy of lactic acid production by minimizing the need for neutralizing agents. Saccharomyces cerevisiae (CEN.PK background) was engineered to a homofermentative lactate-producing yeast via deletion of the three genes encoding pyruvate decarboxylase and the introduction of a heterologous lactate dehydrogenase (EC 1.1.1.27). Like all pyruvate decarboxylase-negative S. cerevisiae strains, the engineered strain required small amounts of acetate for the synthesis of cytosolic acetyl-coenzyme A. Exposure of aerobic glucose-limited chemostat cultures to excess glucose resulted in the immediate appearance of lactate as the major fermentation product. Ethanol formation was absent. However, the engineered strain could not grow anaerobically, and lactate production was strongly stimulated by oxygen. In addition, under all conditions examined, lactate production by the engineered strain was slower than alcoholic fermentation by the wild type. Despite the equivalence of alcoholic fermentation and lactate fermentation with respect to redox balance and ATP generation, studies on oxygen-limited chemostat cultures showed that lactate production does not contribute to the ATP economy of the engineered yeast. This absence of net ATP production is probably due to a metabolic energy requirement (directly or indirectly in the form of ATP) for lactate export. PMID:15128549

  14. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications.

    PubMed

    Buchheit, Martin; Laursen, Paul B

    2013-10-01

    High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2-4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used 'classical' HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2-4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p(·)VO(2max)] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can

  15. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    SciTech Connect

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-12-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions.

  16. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect?

    PubMed

    Goel, Anisha; Eckhardt, Thomas H; Puri, Pranav; de Jong, Anne; Branco Dos Santos, Filipe; Giera, Martin; Fusetti, Fabrizia; de Vos, Willem M; Kok, Jan; Poolman, Bert; Molenaar, Douwe; Kuipers, Oscar P; Teusink, Bas

    2015-07-01

    Protein investment costs are considered a major driver for the choice of alternative metabolic strategies. We tested this premise in Lactococcus lactis, a bacterium that exhibits a distinct, anaerobic version of the bacterial Crabtree/Warburg effect; with increasing growth rates it shifts from a high yield metabolic mode [mixed-acid fermentation; 3 adenosine triphosphate (ATP) per glucose] to a low yield metabolic mode (homolactic fermentation; 2 ATP per glucose). We studied growth rate-dependent relative transcription and protein ratios, enzyme activities, and fluxes of L. lactis in glucose-limited chemostats, providing a high-quality and comprehensive data set. A three- to fourfold higher growth rate rerouted metabolism from acetate to lactate as the main fermentation product. However, we observed hardly any changes in transcription, protein levels and enzyme activities. Even levels of ribosomal proteins, constituting a major investment in cellular machinery, changed only slightly. Thus, contrary to the original hypothesis, central metabolism in this organism appears to be hardly regulated at the level of gene expression, but rather at the metabolic level. We conclude that L. lactis is either poorly adapted to growth at low and constant glucose concentrations, or that protein costs play a less important role in fitness than hitherto assumed. PMID:25828364

  17. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    SciTech Connect

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying

    2015-09-15

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{sup −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  18. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  19. Energy metabolism in the acquisition and maintenance of stemness.

    PubMed

    Folmes, Clifford D L; Terzic, Andre

    2016-04-01

    Energy metabolism is traditionally considered a reactive homeostatic system addressing stage-specific cellular energy needs. There is however growing appreciation of metabolic pathways in the active control of vital cell functions. Case in point, the stem cell lifecycle--from maintenance and acquisition of stemness to lineage commitment and specification--is increasingly recognized as a metabolism-dependent process. Indeed, metabolic reprogramming is an early contributor to the orchestrated departure from or reacquisition of stemness. Recent advances in metabolomics have helped decipher the identity and dynamics of metabolic fluxes implicated in fueling cell fate choices by regulating the epigenetic and transcriptional identity of a cell. Metabolic cues, internal and/or external to the stem cell niche, facilitate progenitor pool restitution, long-term tissue renewal or ensure adoption of cytoprotective behavior. Convergence of energy metabolism with stem cell fate regulation opens a new avenue in understanding primordial developmental biology principles with future applications in regenerative medicine practice. PMID:26868758

  20. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    PubMed

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy. PMID:18469393

  1. Calcineurin Links Mitochondrial Elongation with Energy Metabolism.

    PubMed

    Pfluger, Paul T; Kabra, Dhiraj G; Aichler, Michaela; Schriever, Sonja C; Pfuhlmann, Katrin; García, Verónica Casquero; Lehti, Maarit; Weber, Jon; Kutschke, Maria; Rozman, Jan; Elrod, John W; Hevener, Andrea L; Feuchtinger, Annette; Hrabě de Angelis, Martin; Walch, Axel; Rollmann, Stephanie M; Aronow, Bruce J; Müller, Timo D; Perez-Tilve, Diego; Jastroch, Martin; De Luca, Maria; Molkentin, Jeffery D; Tschöp, Matthias H

    2015-11-01

    Canonical protein phosphatase 3/calcineurin signaling is central to numerous physiological processes. Here we provide evidence that calcineurin plays a pivotal role in controlling systemic energy and body weight homeostasis. Knockdown of calcineurin in Drosophila melanogaster led to a decrease in body weight and energy stores, and increased energy expenditure. In mice, global deficiency of catalytic subunit Ppp3cb, and tissue-specific ablation of regulatory subunit Ppp3r1 from skeletal muscle, but not adipose tissue or liver, led to protection from high-fat-diet-induced obesity and comorbid sequelæ. Ser637 hyperphosphorylation of dynamin-related protein 1 (Drp1) in skeletal muscle of calcineurin-deficient mice was associated with mitochondrial elongation into power-cable-shaped filaments and increased mitochondrial respiration, but also with attenuated exercise performance. Our data suggest that calcineurin acts as highly conserved pivot for the adaptive metabolic responses to environmental changes such as high-fat, high-sugar diets or exercise. PMID:26411342

  2. Muscle Energy Stores and Stroke Rates of Emperor Penguins: Implications for Muscle Metabolism and Dive Performance

    PubMed Central

    Williams, Cassondra L.; Sato, Katsufumi; Shiomi, Kozue; Ponganis, Paul J.

    2016-01-01

    In diving birds and mammals, bradycardia and peripheral vasoconstriction potentially isolate muscle from the circulation. During complete ischemia, ATP production is dependent on the size of the myoglobin oxygen (O2) store and the concentrations of phosphocreatine (PCr) and glycogen (Gly). Therefore, we measured PCr and Gly concentrations in the primary underwater locomotory muscle of emperor penguin and modeled the depletion of muscle O2 and those energy stores under conditions of complete ischemia and a previously determined muscle metabolic rate. We also analyzed stroke rate to assess muscle workload variation during dives and evaluate potential limitations on the model. Measured PCr and Gly concentrations, 20.8 and 54.6 mmol kg−1, respectively, were similar to published values for non-diving animals. The model demonstrated that PCr and Gly provide a large anaerobic energy store, even for dives longer than 20 min. Stroke rate varied throughout the dive profile indicating muscle workload was not constant during dives as was assumed in the model. The stroke rate during the first 30 seconds of dives increased with increased dive depth. In extremely long dives, lower overall stroke rates were observed. Although O2 consumption and energy store depletion may vary during dives, the model demonstrated that PCr and Gly, even at concentrations typical of terrestrial birds and mammals, are a significant anaerobic energy store and can play an important role in the emperor penguin’s ability to perform long dives. PMID:22418705

  3. Metabolic Restructuring during Energy-Limited States: Insights from Artemia franciscana Embryos and Other Animals

    PubMed Central

    Hand, Steven C.; Menze, Michael A.; Borcar, Apu; Patil, Yuvraj; Covi, Joseph A.; Reynolds, Julie A.; Toner, Mehmet

    2011-01-01

    Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ion gradients from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically-depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to precondition mammalian cells prior to cell biostabilization and storage. PMID:21335009

  4. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.

    PubMed

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H; Hao, Xiying

    2015-09-01

    A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8gVSL(-1)day(-1) with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213Lg(-1)VS and CH4 production rate of 0.600LL(-1)day(-1) were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30days at 40°C recovered 0.067Lg(-1)VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K(+), Ca(2+) and Mg(2+) were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system. PMID:26037058

  5. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. PMID:24946772

  6. Anaerobic codigestion of dairy manure and food manufacturing waste for renewable energy generation in New York State

    NASA Astrophysics Data System (ADS)

    Rankin, Matthew J.

    Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make

  7. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  8. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  9. A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea

    PubMed Central

    Pereira, Inês A. Cardoso; Ramos, Ana Raquel; Grein, Fabian; Marques, Marta Coimbra; da Silva, Sofia Marques; Venceslau, Sofia Santos

    2011-01-01

    The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(P)H, β-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation. PMID:21747791

  10. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities

    PubMed Central

    FitzGerald, Jamie A.; Allen, Eoin; Wall, David M.; Jackson, Stephen A.; Murphy, Jerry D.; Dobson, Alan D. W.

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  11. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities.

    PubMed

    FitzGerald, Jamie A; Allen, Eoin; Wall, David M; Jackson, Stephen A; Murphy, Jerry D; Dobson, Alan D W

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  12. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  13. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

    PubMed Central

    den Besten, Gijs; van Eunen, Karen; Groen, Albert K.; Venema, Koen; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2013-01-01

    Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism. PMID:23821742

  14. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    PubMed

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential. PMID:27479798

  15. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  16. The intracellular to extracellular proton gradient following maximal whole body exercise and its implication for anaerobic energy production.

    PubMed

    Volianitis, Stefanos; Secher, N H; Quistorff, B

    2010-08-01

    Maximal exercise elicits systemic acidosis where venous pH can drop to 6.74 and here we assessed how much lower the intracellular value (pH(i)) might be. The wrist flexor muscles are intensively involved in rowing and (31)P-magnetic resonance spectroscopy allows for calculation of forearm pH(i) and energy metabolites at high time resolution. Arm venous blood was collected in seven competitive rowers (4 males; 72 +/- 5 kg; mean +/- SD) at rest and immediately after a "2,000 m" maximal rowing ergometer effort when hemoglobin O(2) saturation decreased from 51 +/- 4 to 29 +/- 9% and lactate rose from 1.0 +/- 0.1 to 16.8 +/- 3.6 mM. Venous pH and pH(i) decreased from 7.43 +/- 0.01 to 6.90 +/- 0.01 and from 7.05 +/- 0.02 to 6.32 +/- 0.19 (P < 0.05), respectively, while the ratio of inorganic phosphate to phosphocreatine increased from 0.12 +/- 0.03 to 1.50 +/- 0.49 (P < 0.05). The implication of the recorded intravascular and intracellular acidosis and the decrease in PCr is that the anaerobic contribution to energy metabolism during maximal rowing corresponds to 4.47 +/- 1.8 L O(2), a value similar to that defined as the "accumulated oxygen deficit". In conclusion, during maximal rowing the intracellular acidosis, expressed as proton concentration, surpasses approximately 4-fold the intravascular acidosis, while the resting gradient is approximately 2. PMID:20379830

  17. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  18. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    PubMed

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes. PMID:26676001

  19. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  20. Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run.

    PubMed

    Billat, Véronique; Hamard, Laurence; Koralsztein, Jean Pierre; Morton, R Hugh

    2009-08-01

    This study examined the hypothesis that running speed over 800- and 1,500-m races is regulated by the prevailing anaerobic (oxygen independent) store (ANS) at each instant of the race up until the all-out phase of the race over the last several meters. Therefore, we hypothesized that the anaerobic power that allows running above the speed at maximal oxygen uptake (VO2max) is regulated by ANS, and as a consequence the time limit at the anaerobic power (tlim PAN=ANS/PAN) is constant until the final sprint. Eight 800-m and seven 1,500-m male runners performed an incremental test to measure VO2max and the minimal velocity associated with the attainment of VO2max (vVO2max), referred to as maximal aerobic power, and ran the 800-m or 1,500-m race with the intent of achieving the lowest time possible. Anaerobic power (PAN) was measured as the difference between total power and aerobic power, and instantaneous ANS as the difference between end-race and instantaneous accumulated oxygen deficits. In 800 m and 1,500 m, tlim PAN was constant during the first 70% of race time in both races. Furthermore, the 1,500-m performance was significantly correlated with tlim PAN during this period (r=-0.92, P<0.01), but the 800-m performance was not (r=-0.05, P=0.89), although it was correlated with the end-race oxygen deficit (r=-0.70, P=0.05). In conclusion, this study shows that in middle-distance races over both 800 m and 1,500 m, the speed variations during the first 70% of the race time serve to maintain constant the time to exhaustion at the instantaneous anaerobic power. This observation is consistent with the hypothesis that at any instant running speed is controlled by the ANS remaining. PMID:19478190

  1. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    PubMed

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-06-24

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1). The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. PMID:24963093

  2. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    PubMed

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. PMID:24880609

  3. STUDIES ON THE CARBOHYDRATE METABOLISM OF A GRAM-NEGATIVE ANAEROBE (BACTEROIDES SYMBIOSUS) USED IN THE CULTURE OF ENTAMOEBA HISTOLYTICA1

    PubMed Central

    Bragg, P. D.; Reeves, Richard E.

    1962-01-01

    Bragg, P. D. (Louisiana State University, New Orleans) and R. E. Reeves. Studies on the carbohydrate metabolism of a gram-negative anaerobe (Bacteroides symbiosus) used in the culture of Entamoeba histolytica. J. Bacteriol. 83:76–84. 1962—Resting cells of Bacteroides symbiosus have been shown to utilize glucose and several other monosaccharides. The fermentation of the sugars is mediated by demonstrable kinases except in the case of mannitol. The main end products of metabolism of glucose are CO2, H2, ethanol, and acetic, butyric, succinic, and lactic acids. Changes in the thiol used in the growth media produce different enzyme complements in the cells. Thus, cells grown with cysteine as the thiol are unable to metabolize glucosamine, whereas those grown with thiomalate rapidly degrade the amino sugar. The results of the enzyme assay and the results from experiments with C14-labelled glucose suggest that glucose is metabolized by resting cells mainly by the Embden-Myerhof pathway. PMID:13872395

  4. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings. PMID:26829316

  5. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    PubMed

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented. PMID:23202552

  6. Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia.

    PubMed

    Speers-Roesch, Ben; Sandblom, Erik; Lau, Gigi Y; Farrell, Anthony P; Richards, Jeffrey G

    2010-01-01

    The ability of an animal to depress ATP turnover while maintaining metabolic energy balance is important for survival during hypoxia. In the present study, we investigated the responses of cardiac energy metabolism and performance in the hypoxia-tolerant tilapia (Oreochromis hybrid sp.) during exposure to environmental hypoxia. Exposure to graded hypoxia (> or =92% to 2.5% air saturation over 3.6 +/- 0.2 h) followed by exposure to 5% air saturation for 8 h caused a depression of whole animal oxygen consumption rate that was accompanied by parallel decreases in heart rate, cardiac output, and cardiac power output (CPO, analogous to ATP demand of the heart). These cardiac parameters remained depressed by 50-60% compared with normoxic values throughout the 8-h exposure. During a 24-h exposure to 5% air saturation, cardiac ATP concentration was unchanged compared with normoxia and anaerobic glycolysis contributed to ATP supply as evidenced by considerable accumulation of lactate in the heart and plasma. Reductions in the provision of aerobic substrates were apparent from a large and rapid (in <1 h) decrease in plasma nonesterified fatty acids concentration and a modest decrease in activity of pyruvate dehydrogenase. Depression of cardiac ATP demand via bradycardia and an associated decrease in CPO appears to be an integral component of hypoxia-induced metabolic rate depression in tilapia and likely contributes to hypoxic survival. PMID:19864337

  7. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR).

    PubMed

    Galib, Mohamed; Elbeshbishy, Elsayed; Reid, Robertson; Hussain, Abid; Lee, Hyung-Sool

    2016-11-01

    An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs. PMID:27526085

  8. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  9. Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate.

    PubMed

    Vuoristo, Kiira S; Mars, Astrid E; Sangra, Jose Vidal; Springer, Jan; Eggink, Gerrit; Sanders, Johan P M; Weusthuis, Ruud A

    2015-12-01

    Itaconic acid, an unsaturated C5-dicarboxylic acid, is a biobased building block for the polymer industry. The purpose of this study was to establish proof of principle for an anaerobic fermentation process for the production of itaconic acid by modification of the mixed acid fermentation pathway of E. coli. E. coli BW25113 (DE3) and the phosphate acetyltransferase (pta) and lactate dehydrogenase (ldhA) deficient strain E. coli BW25113 (DE3) Δpta-ΔldhA were used to study anaerobic itaconate production in E. coli. Heterologous expression of the gene encoding cis-aconitate decarboxylase (cadA) from A. terreus in E. coli BW25113 (DE3) did not result in itaconate production under anaerobic conditions, but 0.08 mM of itaconate was formed when the genes encoding citrate synthase (gltA) and aconitase (acnA) from Corynebacterium glutamicum were also expressed. The same amount was produced when cadA was expressed in E. coli BW25113 (DE3) Δpta-ΔldhA. The titre increased 8 times to 0.66 mM (1.2 % Cmol) when E. coli BW25113 (DE3) Δpta-ΔldhA also expressed gltA and acnA. In addition, this strain produced 8.5 mM (13 % Cmol) of glutamate. The use of a nitrogen-limited growth medium reduced the accumulation of glutamate by nearly 50 % compared to the normal medium, and also resulted in a more than 3-fold increase of the itaconate titre to 2.9 mM. These results demonstrated that E. coli has potential to produce itaconate and glutamate under anaerobic conditions, closing the redox balance by co-production of succinate or ethanol with H2 and CO2. PMID:26384341

  10. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    PubMed Central

    2009-01-01

    Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC) genes (responsible for fumarate addition to toluene) and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH) are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Conclusion Analysis of the D. aromatica genome indicates there is much to be learned regarding the

  11. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    SciTech Connect

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species

  12. Analysis of metabolic energy utilization in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

  13. Energy metabolism of the developing brain

    SciTech Connect

    Abrams, R.M.; Hutchison, A.A.

    1985-04-01

    Cerebral metabolism in utero and in the neonatal period remains incompletely understood. A major investigative technique uses /sup 14/C deoxyglucose. Species differences, behavioral states and gestational age all have an impact. Hormonal and sensory stimuli have potential influences. The use of this new investigative technique in the human will allow detailed study of the effects of a variety of pathophysiologic events and possibly of drug therapy on cerebral glucose metabolism.

  14. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  15. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    PubMed

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes. PMID:24906832

  16. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    PubMed Central

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  17. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states.

    PubMed

    Lancaster, Gemma; Suprunenko, Yevhen F; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  18. CKM Gene G (Ncoi-) Allele Has a Positive Effect on Maximal Oxygen Uptake in Caucasian Women Practicing Sports Requiring Aerobic and Anaerobic Exercise Metabolism

    PubMed Central

    Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max – a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI−) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI−/− (GG) and NcoI−/+ (GA) genotypes to reach higher VO2max levels. PMID:24511349

  19. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  20. Changes in protein expression in the salt marsh mussel Geukensia demissa: evidence for a shift from anaerobic to aerobic metabolism during prolonged aerial exposure

    PubMed Central

    Fields, Peter A.; Eurich, Chris; Gao, William L.; Cela, Bekim

    2014-01-01

    During aerial exposure (emersion), most sessile intertidal invertebrates experience cellular stress caused by hypoxia, and the amount and types of hypoxia-induced stress will differ as exposure time increases, likely leading to altered metabolic responses. We examined proteomic responses to increasing emersion times and decreasing recovery (immersion) times in the mussel Geukensia demissa, which occurs in salt marshes along the east coast of North America. Individuals are found above mean tide level, and can be emersed for over 18 h during spring tides. We acclimated mussels to full immersion at 15°C for 4 weeks, and compared changes in gill protein expression between groups of mussels that were continually immersed (control), were emersed for 6 h and immersed during recovery for 18 h (6E/18R), were emersed for 12 h and recovered for 12 h (12E/12R), or were emersed for 18 h with a 6 h recovery (18E/6R). We found clear differences in protein expression patterns among the treatments. Proteins associated with anaerobic fermentation increased in abundance in 6E/18R but not in 12E/12R or 18E/6R. Increases in oxidative stress proteins were most apparent in 12E/12R, and in 18E/6R changes in cytoskeletal protein expression predominated. We conclude that G. demissa alters its strategy for coping with emersion stress over time, relying on anaerobic metabolism for short- to medium-duration exposure, but switching to an air-gaping strategy for long-term exposure, which reduces hypoxia stress but may cause structural damage to gill tissue. PMID:24501137

  1. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    PubMed Central

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  2. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism.

    PubMed

    Mennigen, Jan A

    2016-09-01

    MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions. PMID:26384523

  3. Sex differences in substrate metabolism and energy homeostasis.

    PubMed

    Cortright, R N; Koves, T R

    2000-08-01

    Females differ remarkably from males in the mechanisms that regulate substrate utilization and energy homeostasis. Females appear to be less affected in terms of growth and loss of body tissues when subjected to chronic periods of negative energy balance. The physiological trade-off appears to be a stronger propensity toward retention of fat mass during times of energy surfeit. The mechanism(s) that account for sex differences in energy metabolism are not known but most likely involve the sex steroids. Recent discoveries in the areas of endocrinology and metabolism may provide new insights into differences in the control of food intake and energy conservation between the sexes. Finally, the study of the mechanism(s) involved in the regulation of skeletal muscle lipid metabolism represents a new frontier in skeletal muscle bioenergetics, and new discoveries may provide further explanations for the observed sex differences in substrate utilization and response(s) to alterations in energy homeostasis. PMID:10953067

  4. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  5. Metabolic Strategies in Energy-Limited Microbial Communities in the Anoxic Subsurface (Frasassi Cave System, Italy)

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Jones, D. S.; Schaperdoth, I.; Steinberg, L.; Macalady, J. L.

    2010-12-01

    Two major sources of energy, light and chemical potential, are available to microorganisms. However, energy is not always abundant and is often a limiting factor in microbial survival and replication. The anoxic, terrestrial subsurface offers a unique opportunity to study microorganisms and their potentially novel metabolic strategies that are relevant for understanding biogeochemistry and biosignatures as related to the non-photosynthetic, energy-limited environments on the modern and ancient Earth and elsewhere in the solar system. Geochemical data collected in a remote stratified lake 600 m below ground surface in the sulfidic Frasassi cave system (Italy) suggest that little redox energy is available for life, consistent with low signal from domain-specific FISH probes. The carbon isotope signatures of biofilms (-33‰) and DIC (-9‰) in the anoxic water suggest in situ production by lithoautotrophs using RuBisCO. 16S rDNA libraries constructed from the biofilm are dominated by diverse sulfate reducing bacteria. The remaining bacterial and archaeal clones affiliate with more than 11 major uncultivated or novel prokaryotic lineages. Diverse dsrAB gene sequences are consistent with high sulfate concentrations and undetectable or extremely low oxygen, nitrate, and iron concentrations. However, the electron donor for sulfate reduction is unclear. Methane is detectable in the anoxic water although no 16S rDNA sequences associated with known methanogens or anaerobic methane oxidizers were retrieved. mcrA gene sequences retrieved from the biofilm by cloning are not related to cultivated methanogens or to known anaerobic methane oxidizers. Non-purgable organic carbon (NPOC) is below detection limits (i.e. <42 μM acetate) suggesting that alternative electron donors or novel metabolisms may be important. A sample collected by cave divers in October 2009 was pyrosequenced at the Pennsylvania State University Genomics Core Facility using Titanium chemistry (454 Life

  6. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate

    PubMed Central

    Rafalski, Victoria A.; Mancini, Elena; Brunet, Anne

    2012-01-01

    Summary Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases. PMID:23420198

  7. Inborn Errors of Energy Metabolism Associated with Myopathies

    PubMed Central

    Das, Anibh M.; Steuerwald, Ulrike; Illsinger, Sabine

    2010-01-01

    Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed. PMID:20589068

  8. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. PMID:26965211

  9. Automatic purification of animal wastewater by dual means of energy-retaining anaerobic fermentation and ultrafiltration

    SciTech Connect

    Kobayashi, Shigeki; Masuda, Yoshiko ); Etou, Yasushi )

    1993-11-01

    For the purpose of purifying animal wastewater and recovering energy during the operation, an automatic bench-scale unit was manufactured and operated. It consisted of three pieces of an anaerobic fermentation digester, a sedimentation tank and an ultrafiltration module. The digester was equipped with fixed bacteria beds(bioreactor) and tape heaters. The sedimentation tank was equipped with a heat exchanger, through which fresh slurry passed. During automatic operations the slurry samples were taken out before, during and after the operation, and turbidity and organic matter contents were analyzed. Comparing nylon mesh, chips of vinyl chloride pipe and crushed cement blocks, the crushed blocks were recognized best as a fixed bacteria bed. In the operating process, the supernatant fluid in the sedimentation tank was sent to the ultrafiltration module. After filtration a daily reverse cleansing was performed. All the operations worked according to the command programmed in the Controller PL40M III. The average removal rates of organic matters in the compound slurry by the dual operations were as follows: 76.6% T-S, 100.0% T-SS, 92.6% COD, 96.5% BOD, 86.8% NH[sub 4]-N, 69.0% T-N, and 98.8% T-P. The result of pre-heating fresh slurry by effluent from the digester was also evaluated. 14 refs., 4 figs., 6 tabs.

  10. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.

    PubMed

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-07-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([(13)C(6)]arginine/[(12)C(6)]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  11. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    PubMed

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  12. Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production.

    PubMed

    Ruggeri, Bernardo; Luongo Malave, Andrea C; Bernardi, Milena; Fino, Debora

    2013-11-01

    The production of hydrogen through Anaerobic Digestion (AD) has been investigated to verify the efficacy of several pretreatment processes. Three types of waste with different carbon structures have been tested to obtain an extensive representation of the behavior of the materials present in Organic Waste (OW). The following types of waste were selected: Sweet Product Residue (SPR), i.e., confectionary residue removed from the market after the expiration date, Organic Waste Market (OWM) refuse from a local fruit and vegetable market, and Coffee Seed Skin (CSS) waste from a coffee production plant. Several pretreatment processes have been applied, including physical, chemical, thermal, and ultrasonic processes and a combination of these processes. Two methods have been used for the SPR to remove the packaging, manual (SPR) and mechanical (SPRex). A pilot plant that is able to extrude the refuse to 200atm was utilized. Two parameters have been used to score the different pretreatment processes: efficiency (ξ), which takes into account the amount of energy produced in the form of hydrogen compared with the available energy embedded in the refuse, and efficacy (η), which compares the efficiency obtained using the pretreated refuse with that obtained using the untreated refuse. The best result obtained for the SPR was the basic pretreatment, with η=6.4, whereas the thermal basic pretreatment gave the highest value, η=17.0 for SPRex. The best result for the OWM was obtained through a combination of basic/thermal pretreatments with η=9.9; lastly, the CSS residue with ultrasonic pretreatment produced the highest quantity of hydrogen, η=5.2. PMID:23891078

  13. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  14. Assessment of Anaerobic Metabolic Activity and Microbial Diversity in a Petroleum-Contaminated Aquifer Using Push-Pull Tests in Combination With Molecular Tools and Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Kleikemper, J.; Pombo, S. A.; Zeyer, J.

    2002-12-01

    In the past, studies on microbial communities in natural environments have typically focused on either their structure or on their metabolic function. However, linking structure and function is important for understanding microbial community dynamics, in particular in contaminated environments. We will present results of a novel combination of a hydrogeological field method (push-pull tests) with molecular tools and stable isotope analysis, which was employed to quantify anaerobic activities and associated microbial diversity in a petroleum-contaminated aquifer in Studen, Switzerland. Push-pull tests consisted of the injection of test solution containing a conservative tracer and reactants (electron acceptors, 13C-labeled carbon sources) into the aquifer anoxic zone. Following an incubation period, the test solution/groundwater mixture was extracted from the same location. Metabolic activities were computed from solute concentrations measured during extraction. Simultaneously, microbial diversity in sediment and groundwater was characterized by using fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), as well as phospholipids fatty acid (PLFA) analysis in combination with 13C isotopic measurements. Results from DGGE analyses provided information on the general community structure before, during and after the tests, while FISH yielded information on active populations. Moreover, using 13C-labeling of microbial PLFA we were able to directly link carbon source assimilation in an aquifer to indigenous microorganisms while providing quantitative information on respective carbon source consumption.

  15. Metabolic compensation during high energy output in fasting, lactating grey seals (Halichoerus grypus): metabolic ceilings revisited.

    PubMed Central

    Mellish, J A; Iverson, S J; Bowen, W D

    2000-01-01

    Lactation is the most energetically expensive period for female mammals and is associated with some of the highest sustained metabolic rates (SusMR) in vertebrates (reported as total energy throughput). Females typically deal with this energy demand by increasing food intake and the structure of the alimentary tract may act as the central constraint to ceilings on SusMR at about seven times resting or standard metabolic rate (SMR). However, demands of lactation may also be met by using a form of metabolic compensation such as reducing locomotor activities or entering torpor. In some phocid seals, cetaceans and bears, females fast throughout lactation and thus cannot offset the high energetic costs of lactation through increased food intake. We demonstrate that fasting grey seal females sustain, for several weeks, one of the highest total daily energy expenditures (DEE; 7.4 x SMR) reported in mammals, while progressively reducing maintenance metabolic expenditures during lactation through means not explained by reduction in lean body mass or behavioural changes. Simultaneously, the energy-exported in milk is progressively increased, associated with increased lipoprotein lipase activity in the mammary gland, resulting in greater offspring growth. Our results suggest that females use compensatory mechanisms to help meet the extraordinary energetic costs of lactation. Additionally, although the concepts of SusMR and ceilings on total DEE may be somewhat different in fasting lactating species, our data on phocid seals demonstrate that metabolic ceilings on milk energy output, in general, are not constrained by the same kind of peripheral limitations as are other energy-consuming tissues. In phocid seals, the high ceilings on DEE during lactation, coupled with metabolic compensation, are undoubtedly important factors enabling shortened lactation. PMID:10902691

  16. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    SciTech Connect

    Sanders, R.W.; Porter, K.G.

    1986-07-01

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with (/sup 3/H)thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.

  17. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective

    PubMed Central

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  18. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective.

    PubMed

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  19. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  20. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    PubMed

    Pérez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant. PMID:22546800

  1. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study

    PubMed Central

    Zheng, Guifeng; Zou, Hai; Wang, Jian Min; Lin, Yao Yao; Chuka, Chifundo Martha; Ge, Ren Shan; Zhai, Weitao; Wang, Jian Guang

    2015-01-01

    Objectives To explore the pathogenesis of rheumatoid arthritis (RA), the different metabolites were screened in synovial fluid by metabolomics. Methods Synovial fluid from 25 RA patients and 10 normal subjects were analyzed by GC/TOF MS analysis so as to give a broad overview of synovial fluid metabolites. The metabolic profiles of RA patients and normal subjects were compared using multivariate statistical analysis. Different proteins were verified by qPCR and western blot. Different metabolites were verified by colorimetric assay kit in 25 inactive RA patients, 25 active RA patients and 20 normal subjects. The influence of hypoxia-inducible factor (HIF)-1α pathway on catabolism was detected by HIF-1α knockdown. Results A subset of 58 metabolites was identified, in which the concentrations of 7 metabolites related to energy metabolism were significantly different as shown by importance in the projection (VIP) (VIP≥1) and Student’s t-test (p<0.05). In the 7 metabolites, the concentration of glucose was decreased, and the concentration of lactic acid was increased in the synovial fluid of RA patients than normal subjects verified by colorimetric assay Kit. Receiver operator characteristic (ROC) analysis shows that the concentration of glucose and lactic acid in synovial fluid could be used as dependable biomarkers for the diagnosis of active RA, provided an AUC of 0.906 and 0.922. Sensitivity and specificity, which were determined by cut-off points, reached 84% and 96% in sensitivity and 95% and 85% in specificity, respectively. The verification of different proteins identified in our previous proteomic study shows that the enzymes of anaerobic catabolism were up-regulated (PFKP and LDHA), and the enzymes of aerobic oxidation and fatty acid oxidation were down-regulated (CS, DLST, PGD, ACSL4, ACADVL and HADHA) in RA patients. The expression of HIF-1α and the enzymes of aerobic oxidation and fatty acid oxidation were decreased and the enzymes of anaerobic

  2. Evolution of energy metabolism and its compartmentation in Kinetoplastida

    PubMed Central

    Hannaert, Véronique; Bringaud, Frédéric; Opperdoes, Fred R; Michels, Paul AM

    2003-01-01

    Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes of several catabolic and anabolic routes, including major parts of the glycolytic and pentosephosphate pathways. The kinetoplastid mitochondrion is also unusual with regard to both its structural and functional properties. In this review, we describe the unique compartmentation of metabolism in Kinetoplastida and the metabolic properties resulting from this compartmentation. We discuss the evidence for our recently proposed hypothesis that a common ancestor of Kinetoplastida and Euglenida acquired a photosynthetic alga as an endosymbiont, contrary to the earlier notion that this event occurred at a later stage of evolution, in the Euglenida lineage alone. The endosymbiont was subsequently lost from the kinetoplastid lineage but, during that process, some of its pathways of energy and carbohydrate metabolism were sequestered in the kinetoplastid peroxisomes, which consequently became glycosomes. The evolution of the kinetoplastid glycosomes and the possible selective advantages of these organelles for Kinetoplastida are discussed. We propose that the possession of glycosomes provided metabolic flexibility that has been important for the organisms to adapt easily to changing environmental conditions. It is likely that metabolic flexibility has been an important selective advantage for many kinetoplastid species during their evolution into the highly successful parasites today found in many divergent taxonomic groups. Also addressed is the evolution of the kinetoplastid mitochondrion, from a supposedly pluripotent organelle, attributed to a single endosymbiotic event that resulted in all mitochondria and

  3. Metabolism of Reduced Methylated Sulfur Compounds in Anaerobic Sediments and by a Pure Culture of an Estuarine Methanogen †

    PubMed Central

    Kiene, Ronald P.; Oremland, Ronald S.; Catena, Anthony; Miller, Laurence G.; Capone, Douglas G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at ∼2-μM levels as [14C]DMS, metabolism by sediments resulted in a 14CH4/14CO2 ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14CO2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a “noncompetitive” substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [14C]-DMS to yield a 14CH4/14CO2 ratio of ∼2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats. PMID:16347202

  4. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    USGS Publications Warehouse

    Kiene, R.P.; Oremland, Ronald S.; Catena, Anthony; Miller, Laurence G.; Capone, D.G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at ∼2-μM levels as [14C]DMS, metabolism by sediments resulted in a 14CH4/14CO2 ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14CO2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a “noncompetitive” substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [14C]-DMS to yield a 14CH4/14CO2 ratio of ∼2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.

  5. [Energy metabolism and myocardial function in myocardiodystrophy].

    PubMed

    Temirova, K V; Kurlygina, L A; Zavodskaia, I S; Novikova, N A

    1976-09-01

    A total of 92 patients with chronic tonsilitis and cardiovascular changes were subjected to clinical observations, ECG analysis, potassium and nitroglycerine tests, and studies of the lactic acid level and creatinekinase activity as indces of myocardial metabolism. The examinations were conducted prior to and following tonsillectomy. In a majority of patients a correlation was revealed between the degree of ECG changes and the serum lactic acid level, as well as between the ECG improvement and a reduction of the lactic acid level following tonsillectomy. Three stages of tonsillogenic myocardiodystrophy were distinguished. The obtained data indicate the rationale of the used tests for the evaluation of the myocardial meabolism alterations and of the efficacy of treatment of chronic tonsillitis patients. PMID:1011536

  6. Effects of monocrotaline on energy metabolism in the rat liver.

    PubMed

    Mingatto, Fábio Erminio; Maioli, Marcos Antonio; Bracht, Adelar; Ishii-Iwamoto, Emy Luiza

    2008-11-10

    Monocrotaline (MCT) is a pyrrolizidine alkaloid present in the plants of the Crotalaria species that causes cytotoxicity and genotoxicity in animals and humans, and it is hepatically metabolized to the alkylating agent dehydromonocrotaline by cytochrome P-450. The exact cellular and molecular mechanisms of MCT-induced tissue injury remain unclear. We previously demonstrated that dehydromonocrotaline, but not monocrotaline, inhibits the activity of NADH-dehydrogenase at micromolar concentrations in isolated liver mitochondria, an effect associated with significantly reduced ATP synthesis. Impairment of energy metabolism is expected to lead to several alterations in cell metabolism. In this work, the action of different concentrations of monocrotaline (250, 500, and 750microM) on energy metabolism-linked parameters was investigated in isolated perfused rat livers. In the fed state, monocrotaline increased glycogenolysis and glycolysis, whereas in the livers of fasted rats, it decreased gluconeogenesis and urea synthesis from l-alanine. These metabolic alterations were only found in livers of phenobarbital-treated rats, indicating that active metabolites including dehydromonocrotaline were responsible for the observed activity. Our findings indicate that hepatic metabolic changes may be implicated, partly at least, in the hepatotoxicity of monocrotaline in animals and humans. PMID:18835426

  7. Metabolism of the /sup 18/O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. [Eubacterium limosum; Acetobacterium woodil; Syntrophococcus; Clostridium; Desulfotomaculum; Enterobacter

    SciTech Connect

    DeWeerd, J.A.; Saxena, A.; Nagle, D.P. Jr.; Sulflita, J.M.

    1988-05-01

    The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. We found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium, limosum, and a strain of Acetobacterium woodii metabolized 3-(methoxy-/sup 18/O)methoxybenzoic acid (3-anisic acid) to 3-(hydroxy-/sup 18/O)hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments.

  8. Anaerobic digestion of ultrasonicated sludge at different solids concentrations - Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; Yan, S; Tyagi, R D; Surampalli, R Y

    2016-01-15

    Two cases of anaerobic digestion (AD) of sludge, namely (i) with pre-treatment and (ii) without pre-treatment, were assessed using mass-energy balance and the corresponding greenhouse gas (GHG) emissions. For a digestion period of 30 days, volatile solids degradation of the control sludge and the ultrasonicated secondary sludge was 51.4% and 60.1%, respectively. Mass balance revealed that the quantity of digestate required for dewatering, transport and land application was the lowest (20.2 × 10(6) g dry sludge/day) for ultrasonicated secondary sludge at 31.4 g TS/L. Furthermore, for ultrasonicated secondary sludge at 31.4 g TS/L, the maximum net energy (energy output - energy input) of total dry solids (TDS) was 7.89 × 10(-6) kWh/g and the energy ratio (output/input) was 1.0. GHG emissions were also reduced with an increase in the sludge solids concentration (i.e., 40.0 g TS/L < 30.0 g TS/L < 20.0 g TS/L). Ultrasonication pre-treatment proved to be efficient and beneficial for enhancing anaerobic digestion efficiency of the secondary sludge when compared to the primary and mixed sludge. PMID:26546884

  9. Energy metabolism of Macaca mulatta during spaceflight

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Stein, T. P.; Dotsenko, M. A.; Korolkov, V. I.; Fuller, C. A.

    2000-01-01

    The mean daily energy expenditure rates of two rhesus monkeys (Macaca mulatta) were determined during spaceflight on the joint U.S./Russian Bion 11 mission by the doubly labeled water (DLW, 2H218O) method. Control values were obtained from two studies performed under flight-like conditions (n = 4). The mean inflight energy expenditure for the two Bion 11 monkeys was 81.3 kcal/kg/day, which was higher than that seen previously. The average energy expenditure (77.6 +/- 4.4 kcal/kg/day) for the four ground control monkeys was slightly lower than had been measured previously.

  10. ECO-ENERGY DEMONSTRATION MODEL: ANAEROBIC DIGESTION, ALGAE AND ENERGY PROSPERITY

    EPA Science Inventory

    For the project, we:

    1. Designed and constructed an ecological energy model system.
    2. Investigated and characterized locally abundant agricultural and domestic waste resources that can have significant environmental impacts (dairy manure, poultry m...

    3. Test/QA Plan For Verification Of Anaerobic Digester For Energy Production And Pollution Prevention

      EPA Science Inventory

      The ETV-ESTE Program conducts third-party verification testing of commercially available technologies that improve the environmental conditions in the U.S. A stakeholder committee of buyers and users of such technologies guided the development of this test on anaerobic digesters...

    4. ENERGY AND ECONOMIC ASSESSMENT OF ANAEROBIC DIGESTERS AND BIOFUELS FOR RURAL WASTE MANAGEMENT

      EPA Science Inventory

      A technological and socioeconomic assessment of anaerobic digester feasibility for small to mid-size livestock operations was undertaken. Three full scale digesters and one pilot scale facility were under various degrees of monitoring and evaluation to assess design and operation...

    5. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

      PubMed Central

      Sakharkar, Meena K.; Shashni, Babita; Sharma, Karun; Dhillon, Sarinder K.; Ranjekar, Prabhakar R.; Sakharkar, Kishore R.

      2013-01-01

      PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer. PMID:23431283

    6. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis.

      PubMed

      Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A J; Verhulst, Simon; Dittami, John

      2015-01-01

      Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well. PMID:26376193

    7. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis

      PubMed Central

      Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A. J.; Verhulst, Simon

      2015-01-01

      Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well. PMID:26376193

    8. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens

      PubMed Central

      Risso, Carla; Sun, Jun; Zhuang, Kai; Mahadevan, Radhakrishnan; DeBoy, Robert; Ismail, Wael; Shrivastava, Susmita; Huot, Heather; Kothari, Sagar; Daugherty, Sean; Bui, Olivia; Schilling, Christophe H; Lovley, Derek R; Methé, Barbara A

      2009-01-01

      Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms. PMID:19772637

    9. Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments.

      PubMed Central

      Rontani, J F; Gilewicz, M J; Michotey, V D; Zheng, T L; Bonin, P C; Bertrand, J C

      1997-01-01

      This report describes the metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium (Marinobacter sp. strain CAB) isolated from marine sediments. Under aerobic and denitrifying conditions, this strain efficiently degraded this ubiquitous isoprenoid ketone. Several bacterial metabolites, 4,8,12-trimethyl-tridecan-1-ol, 4,8,12-trimethyltridecanal, 4,8,12-trimethyltridecanoic acid, Z-3,7-dimethylocten-2-oic acid, Z-3,7,11-trimethyldodecen-2-oic acid, and 6,10,14-trimethylpentadecan-2-ol, were formally identified, and different pathways were proposed to explain the formation of such isoprenoid compounds. PMID:9023941

    10. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

      PubMed

      Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

      2008-01-01

      Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. PMID:18469391

    11. Fatty Acids in Energy Metabolism of the Central Nervous System

      PubMed Central

      Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

      2014-01-01

      In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups. PMID:24883315

    12. Membrane controlled anaerobic digestion

      NASA Astrophysics Data System (ADS)

      Omstead, D. R.

      In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  1. Inorganic Polyphosphate and Energy Metabolism in Mammalian Cells*

    PubMed Central

    Pavlov, Evgeny; Aschar-Sobbi, Roozbeh; Campanella, Michelangelo; Turner, Raymond J.; Gómez-García, María R.; Abramov, Andrey Y.

    2010-01-01

    Inorganic polyphosphate (poly P) is a polymer made from as few as 10 to several hundred phosphate molecules linked by phosphoanhydride bonds similar to ATP. Poly P is ubiquitous in all mammalian organisms, where it plays multiple physiological roles. The metabolism of poly P in mammalian organisms is not well understood. We have examined the mechanism of poly P production and the role of this polymer in cell energy metabolism. Poly P levels in mitochondria and intact cells were estimated using a fluorescent molecular probe, 4′,6-diamidino-2-phenylindole. Poly P levels were dependent on the metabolic state of the mitochondria. Poly P levels were increased by substrates of respiration and in turn reduced by mitochondrial inhibitor (rotenone) or an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Oligomycin, an inhibitor of mitochondrial ATP-synthase, blocked the production of poly P. Enzymatic depletion of poly P from cells significantly altered the rate of ATP metabolism. We propose the existence of a feedback mechanism where poly P production and cell energy metabolism regulate each other. PMID:20124409

  2. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    PubMed

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  3. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  4. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis.

    PubMed

    Takasaki, Kazuto; Shoun, Hirofumi; Yamaguchi, Masashi; Takeo, Kanji; Nakamura, Akira; Hoshino, Takayuki; Takaya, Naoki

    2004-03-26

    Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms. PMID:14722082

  5. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  6. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  7. Nitric oxide and platelet energy metabolism.

    PubMed

    Tomasiak, Marian; Stelmach, Halina; Rusak, Tomasz; Wysocka, Jolanta

    2004-01-01

    This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production. PMID:15448739

  8. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  9. Diversity of anaerobic halophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Oremland, Roland S.

    2000-12-01

    Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect

  10. Targeting energy metabolism in brain cancer: review and hypothesis

    PubMed Central

    Seyfried, Thomas N; Mukherjee, Purna

    2005-01-01

    Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet. PMID:16242042

  11. Glycolysis-associated enzymes existing in the follicular lumen of the thyroid may interfere with energy metabolism

    PubMed Central

    Huang, Huibin; Shi, Yaxiong; Cai, Huiyao; Liang, Bo; Duan, Honghong; Cai, Qingyan

    2016-01-01

    Synthesis and storage of the thyroid hormone precursor, thyroglobulin (TG), occurs within the follicular lumen of the thyroid and the TG is then absorbed into cells for further processing before release into the blood. However, the mechanism of energy metabolism in the follicular lumen of the thyroid remains unknown. In the present study, the three dimensional structure of thyroid follicles was constructed using a primary culture of swine cells and the follicular protein was identified via matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Three glycolysis-associated enzymes, enolase, pyruvate kinase and phosphoglyceraldehyde dehydrogenase were identified in addition to TG. These results support the hypothesis that anaerobic glycolysis of glucose exists in the follicle and supports energy consumption for hormone synthesis. PMID:27602210

  12. Anaerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Roopathy, R.

    1995-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used aerobic tempts to degrade nitroaromatics under aerobic microorganisms. In many cases attempts to degrade nitroaromatics under aerobic conditions results in no mineralization and only superficial modifications of the structure. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. Trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitrate from trinitrotoluene is achieved by a series of reductive reactions with the production of ammonia and toluene by Desulfovibrio sp. (B strain). Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. This presentation will review the data supporting the anaerobic transformation of TNT and other nitroaromatics.

  13. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass.

    PubMed

    Massanet-Nicolau, Jaime; Dinsdale, Richard; Guwy, Alan; Shipley, Gary

    2015-01-01

    Real time measurement of gas production and composition were used to examine the benefits of two stage anaerobic digestion (AD) over a single stage AD, using pelletized grass as a feedstock. Controlled, parallel digestion experiments were performed in order to directly compare a two stage digestion system producing hydrogen and methane, with a single stage system producing just methane. The results indicated that as well as producing additional energy in the form of hydrogen, two stage digestion also resulted in significant increases to methane production, overall energy yields, and digester stability (as indicated by bicarbonate alkalinity and volatile fatty acid removal). Two stage AD resulted in an increase in energy yields from 10.36 MJ kg(-1) VS to 11.74 MJ kg(-1) VS, an increase of 13.4%. Using a two stage system also permitted a much shorter hydraulic retention time of 12 days whilst maintaining process stability. PMID:25913885

  14. PPARs Integrate the Mammalian Clock and Energy Metabolism

    PubMed Central

    Chen, Lihong; Yang, Guangrui

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPARα and PPARγ are direct regulators of core clock components, Bmal1 and Rev-erbα, and, conversely, PPARα is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation. PMID:24693278

  15. USE OF SOLAR ENERGY TO HEAT ANAEROBIC DIGESTERS. PART I. TECHNICAL AND ECONOMIC FEASIBILITY STUDY. PART II. ECONOMIC FEASIBILITY THROUGHOUT THE UNITED STATES

    EPA Science Inventory

    Two distinct, yet related studies were conducted to determine the technical and economic feasibility of using solar energy as the source of heat for the anaerobic digestion process. Retrofitting a solar energy collection and heat transfer system to a digester at Annapolis, Maryla...

  16. Anaerobic reduction of elemental sulfur by Chromatium vinosum and Beggiatoa alba

    NASA Technical Reports Server (NTRS)

    Schmidt, T. M.

    1985-01-01

    The effect of sulfur globules on the buoyant density of Chromatium vinosum and Beggiatoa alba was examined. The potential use of sulfur as a terminal electron acceptor in the anaerobic metabolism of Beggiatoa alba is also examined. The effect of the reduction of intracellular sulfur was investigated during dark metabolism on the buoyant density of C. vinosum. It is hypothesized from the results that the sulfur reduction to sulfide is part of an anaerobic energy operating system. Carbon stored as PHB can be oxidized with the concomitant reduction of sulfur to sulfide.

  17. 13C NMR spectroscopy applications to brain energy metabolism

    PubMed Central

    Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

    2013-01-01

    13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

  18. Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees.

    PubMed Central

    Suarez, R K; Lighton, J R; Joos, B; Roberts, S P; Harrison, J F

    1996-01-01

    Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed. PMID:8901631

  19. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    PubMed

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer. PMID:26772821

  20. Energy metabolism of hyperthyroid gilthead sea bream Sparus aurata L.

    PubMed

    Vargas-Chacoff, Luis; Ruiz-Jarabo, Ignacio; Arjona, Francisco J; Laiz-Carrión, Raúl; Flik, Gert; Klaren, Peter H M; Mancera, Juan M

    2016-01-01

    Thyroid hormones, in particular 3,5,3'-triiodothyronine or T3, are involved in multiple physiological processes in mammals such as protein, fat and carbohydrate metabolism. However, the metabolic actions of T3 in fish are still not fully elucidated. We therefore tested the effects of T3 on Sparus aurata energy metabolism and osmoregulatory system, a hyperthyroid-induced model that was chosen. Fish were implanted with coconut oil depots (containing 0, 2.5, 5.0 and 10.0μg T3/g body weight) and sampled at day 3 and 6 post-implantation. Plasma levels of free T3 as well as glucose, lactate and triglyceride values increased with increasing doses of T3 at days 3 and 6 post-implantation. Changes in plasma and organ metabolite levels (glucose, glycogen, triglycerides, lactate and total α amino acid) and enzyme activities related to carbohydrate, lactate, amino acid and lipid pathways were detected in organs involved in metabolism (liver) and osmoregulation (gills and kidney). Our data implicate that the liver uses amino acids as an energy source in response to the T3 treatment, increasing protein catabolism and gluconeogenic pathways. The gills, the most important extruder of ammonia, are fuelled not only by amino acids, but also by lactate. The kidney differs significantly in its substrate preference from the gills, as it obtained metabolic energy from lactate but also from lipid oxidation processes. We conclude that in S. aurata lipid catabolism and protein turnover are increased as a consequence of experimentally induced hyperthyroidism, with secondary osmoregulatory effects. PMID:26419695

  1. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  2. Mechanistic modeling of aberrant energy metabolism in human disease

    PubMed Central

    Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

    2012-01-01

    Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell. PMID:23112774

  3. Anaerobic bacteria

    MedlinePlus

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  4. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  5. Reconstruction of a charge balanced genome-scale metabolic model to study the energy-uncoupled growth of Zymomonas mobilis ZM1.

    PubMed

    Motamedian, E; Saeidi, M; Shojaosadati, S A

    2016-04-01

    Zymomonas mobilis is an ethanologenic bacterium and is known to be an example microorganism with energy-uncoupled growth. A genome-scale metabolic model could be applicable for understanding the characteristics of Z. mobilis with rapid catabolism and inefficient energy conversion. In this study, a charge balanced genome-scale metabolic model (iEM439) of Z. mobilis ATCC 10988 (ZM1) including 439 genes, 692 metabolic reactions and 658 metabolites was reconstructed based on genome annotation and previously published information. The model presents a much better prediction for biomass and ethanol concentrations in a batch culture by using dynamic flux balance analysis compared with the two previous genome-scale metabolic models. Furthermore, intracellular flux distribution obtained from the model was consistent with the fluxes for glucose fermentation determined by (13)C NMR. The model predicts that there is no difference in growth rates of Z. mobilis under aerobic and anaerobic conditions whereas ethanol production is decreased and production of other metabolites including acetate and acetoin is increased under aerobic conditions. Experimental data confirm the predicted differences between the aerobic and anaerobic growth of Z. mobilis. Finally, the model was used to study the energy-uncoupled growth of Z. mobilis and to predict its effect on flux distribution in the central metabolism. Flux distribution obtained from the model indicates that coupling growth and energy reduces ethanol secretion and changes the flux distribution to produce more biomass. This coupling is also associated with a significant increase in the proton uptake rate based on the prediction of the charge balanced model. Hence, resistance to intracellular pH reduction could be the main reason for uncoupled growth and Z. mobilis uses ATPase to pump out the proton. Experimental observations are in accordance with the predicted relationship between growth, ATP dissipation and proton exchange. PMID

  6. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    SciTech Connect

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  7. Endocrine regulation of energy metabolism by the skeleton

    PubMed Central

    Lee, Na Kyung; Sowa, Hideaki; Hinoi, Eiichi; Ferron, Mathieu; Ahn, Jong Deok; Confavreux, Cyrille; Dacquin, Romain; Mee, Patrick J.; McKee, Marc D.; Jung, Dae Young; Zhang, Zhiyou; Kim, Jason K.; Mauvais-Jarvis, Franck; Ducy, Patricia; Karsenty, Gerard

    2007-01-01

    SUMMARY The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and protected from obesity and glucose intolerance because of an increase in β-cell proliferation, insulin secretion and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased β-cell proliferation, glucose intolerance and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in β-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism. PMID:17693256

  8. Energy recovery from the effluent of plants anaerobically digesting urban solid waste

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The parameters of concentration, time, temperature, and pH to find optimum conditions for enzymatically converting unreacted cellulose in the effluent of an anaerobic digester to glucose for ultimate conversion to methane, and then to project the economics to a 100 tons per day plant was studied. The amount of cellulose hydrolysis for enzyme concentrations from 5 to 1000 CIU/gram of substrate using either filter paper or anaerobically digested municipal solid waste (MSW) reacted over periods of time of from 0 to 72 hours is illustrated. The feasibility of recycling enzymes by ultrafilter capture was studied and it is shown that the recovered enzyme is not denatured by any of several possible enzyme loss mechanisms chemical, physical, or biological. Although rather stable enzyme substrate complexes seem to be formed, various techniques permit a 55% enzyme recovery. Posttreatment of digested MSW by cellulase enzymes produces nearly a threefold increase in biomethanation. The value of the additional methane produced in the process is not sufficient to support the cost of enzymes.

  9. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  10. Metabolic regulation and energy homeostasis through the primary cilium

    PubMed Central

    Oh, Edwin C.; Vasanth, Shivakumar; Katsanis, Nicholas

    2015-01-01

    Obesity and diabetes represent a significant healthcare concern. In contrast to genome-wide association studies that, some exceptions notwithstanding, have offered modest clues about pathomechanism, the dissection of rare disorders in which obesity represents a core feature have highlighted key molecules and structures critical to energy regulation. Here we focus on the primary cilium, an organelle whose roles in energy homeostasis have been underscored by the high incidence of obesity and type II diabetes in patients and mouse mutants with compromised ciliary function. We discuss recent evidence linking ciliary dysfunction to metabolic defects and we explore the contribution of neuronal and non-neuronal cilia to these phenotypes. PMID:25543293

  11. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  12. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  13. Energy intake and basal metabolic rate during maintenance chemotherapy.

    PubMed

    Bond, S A; Han, A M; Wootton, S A; Kohler, J A

    1992-02-01

    Energy intakes and basal metabolic rates were determined in 26 children receiving chemotherapy in remission from acute lymphoblastic leukaemia or solid tumours and 26 healthy controls matched for age and sex. Body weight and height on the two groups were comparable, although one patient was stunted (height for age) and three others wasted (weight for height). Energy intake in the patients at 7705 kJ/day (1842 kcal) and controls at 7773 kJ/day (1866 kcal)) and basal metabolic rate (BMR) in the patients at 4873 kJ/day (1172 kcal) and controls 4987 kJ/day (1196 kcal) for the two groups were not significantly different. Although the energy intake:BMR ratio for both groups was 1.59, the range of values for the patient group was large (0.96-2.73) and appeared to be greater than that observed in the control group (1.23-2.46). These results demonstrated that during this period of chemotherapy there was no evidence of raised energy expenditure at rest or reduced energy intake in the patient group. No indication of undernutrition in the patients as a group was evident, although some individuals might require further clinical nutritional assessment. PMID:1543386

  14. Energy intake and basal metabolic rate during maintenance chemotherapy.

    PubMed Central

    Bond, S A; Han, A M; Wootton, S A; Kohler, J A

    1992-01-01

    Energy intakes and basal metabolic rates were determined in 26 children receiving chemotherapy in remission from acute lymphoblastic leukaemia or solid tumours and 26 healthy controls matched for age and sex. Body weight and height on the two groups were comparable, although one patient was stunted (height for age) and three others wasted (weight for height). Energy intake in the patients at 7705 kJ/day (1842 kcal) and controls at 7773 kJ/day (1866 kcal)) and basal metabolic rate (BMR) in the patients at 4873 kJ/day (1172 kcal) and controls 4987 kJ/day (1196 kcal) for the two groups were not significantly different. Although the energy intake:BMR ratio for both groups was 1.59, the range of values for the patient group was large (0.96-2.73) and appeared to be greater than that observed in the control group (1.23-2.46). These results demonstrated that during this period of chemotherapy there was no evidence of raised energy expenditure at rest or reduced energy intake in the patient group. No indication of undernutrition in the patients as a group was evident, although some individuals might require further clinical nutritional assessment. PMID:1543386

  15. [Dynamics of parameters of energy metabolism at adaptation to diving in human].

    PubMed

    Baranova, T I; Kovalenko, R I; Mitrofanova, A V; Ianvareva, I N

    2010-01-01

    Studies of the diving reaction in the comparative-evolutionary aspect have shown that a complex of reactions providing the oxygen-saving effect during diving is inherent in human like in the secondary-aquatic mammals. This is confirmed by results of study of peculiarities of energy metabolism during imitation of diving (hold-up of respiration with immersion of face into the cold water--the cold-hypoxic-hypercapnic action) (CHHA). Data of gas analysis have shown that during the diving imitation the oxygen consumption rate is statistically significantly lower than during the usual hold-up of respiration (Genche's test). As shown by the study, this is due to the greater degree to vasoconstriction of peripheral vessels and selective redistribution of blood flow than to slowing down of the blood flow caused by reflex bradycardia during diving. It has been revealed that under effect of adaptation to CHHA, on the background of a decrease of the total energy consumption by the organism there occurs some increase of contribution of aerobic processes to its energy provision. Adaptation to CHHA has been shown to be accompanied by a decrease of reactivity of the parasympathetic chain of regulation of the heart chronotropic function and by an increase of duration of apnea. The duration of apnea is directly correlated with level of insulin--the hormone stimulating the anaerobic pathway of energy provision. Under effect of adaptation to CHHA there has been established an increase of the organism resistance to stress actions, which is confirmed by the lower levels of cortisol and thyroid hormones in representatives of the experimental group as compared with the control one. PMID:21061652

  16. Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions.

    PubMed

    Bizukojc, Marcin; Dietz, David; Sun, Jibin; Zeng, An-Ping

    2010-05-01

    Clostridium butyricum can convert glycerol into 1,3-propanediol, thereby generating unfortunately a high amount of acetate, formate and butyrate as inhibiting by-products. We have proposed a novel mixed culture comprising C. butyricum and a methane bacterium, Methanosarcina mazei, to relieve the inhibition and to utilise the by-products for energy production. In order to examine the efficiency of such a mixed culture, metabolic modelling of the culture system was performed in this work. The metabolic networks for the organisms were reconstructed from genomic and physiological data. Several scenarios were analysed to examine the preference of M. mazei in scavenging acetate and formate under conditions of different substrate availability, including methanol as a co-substrate, since it may exist in glycerol solution from biodiesel production. The calculations revealed that if methanol is present, the methane production can increase by 130%. M. mazei can scavenge over 70% of the acetate secreted by C. butyricum. PMID:19680695

  17. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise

    PubMed Central

    Baker, Julien S.; McCormick, Marie Clare; Robergs, Robert A.

    2010-01-01

    High-intensity exercise can result in up to a 1,000-fold increase in the rate of ATP demand compared to that at rest (Newsholme et al., 1983). To sustain muscle contraction, ATP needs to be regenerated at a rate complementary to ATP demand. Three energy systems function to replenish ATP in muscle: (1) Phosphagen, (2) Glycolytic, and (3) Mitochondrial Respiration. The three systems differ in the substrates used, products, maximal rate of ATP regeneration, capacity of ATP regeneration, and their associated contributions to fatigue. In this exercise context, fatigue is best defined as a decreasing force production during muscle contraction despite constant or increasing effort. The replenishment of ATP during intense exercise is the result of a coordinated metabolic response in which all energy systems contribute to different degrees based on an interaction between the intensity and duration of the exercise, and consequently the proportional contribution of the different skeletal muscle motor units. Such relative contributions also determine to a large extent the involvement of specific metabolic and central nervous system events that contribute to fatigue. The purpose of this paper is to provide a contemporary explanation of the muscle metabolic response to different exercise intensities and durations, with emphasis given to recent improvements in understanding and research methodology. PMID:21188163

  18. Molecular links between early energy metabolism alterations and Alzheimer's disease.

    PubMed

    Pedros, Ignacio; Patraca, Ivan; Martinez, Nohora; Petrov, Dmitry; Sureda, Francesc X; Auladell, Carme; Beas-Zarate, Carlos; Folch, Jaume

    2016-01-01

    Recent studies suggest that the neurobiology of Alzheimer's disease (AD) pathology could not be explained solely by an increase in beta-amyloid levels. In fact, success with potential therapeutic drugs that inhibit the generation of beta amyloid has been low. Therefore, due to therapeutic failure in recent years, the scientists are looking for alternative hypotheses to explain the causes of the disease and the cognitive loss. Accordingly, alternative hypothesis propose a link between AD and peripheral metabolic alteration. Then, we review in depth changes related to insulin signalling and energy metabolism in the context of the APPSwe/PS1dE9 (APP/PS1) mice model of AD. We show an integrated view of the changes that occur in the early stages of the amyloidogenic process in the APP/PS1 double transgenic mice model. These early changes affect several key metabolic processes related to glucose uptake and insulin signalling, cellular energy homeostasis, mitochondrial biogenesis and increased Tau phosphorylation by kinase molecules like mTOR and Cdk5. PMID:26709757

  19. [Ischemic myocardial metabolism and antianginal drugs].

    PubMed

    Ichihara, K

    1986-12-01

    The effect of several kinds of antianginal drugs: nitrates, coronary vasodilators, beta-adrenergic blocking agents and calcium entry blocking agents on the myocardial metabolism and myocardial acidosis during ischemia was studied in the dog heart in vivo. Ischemia was induced by ligating the left anterior descending coronary artery. Ischemia accelerated anaerobic metabolism in the myocardium, in which glycogen breakdown, accumulation of glycolytic intermediates, loss of high energy phosphate and tissue acidosis occurred. Nitroglycerin, beta-adrenergic blocking agents such as propranolol, and some calcium entry blocking agents such as diltiazem and flunarizine prevented the myocardial metabolism from shifting to an anaerobic metabolism in spite of ischemia. However, coronary vasodilators and the dihydropyridine type of calcium entry blocking agents were not capable of reducing changes in the myocardial metabolism and myocardial acidosis during ischemia. The author makes a point in the present review that all the drugs which dilate coronary artery are not always effective on the ischemic myocardium. PMID:3549484

  20. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  1. Polyphosphate - an ancient energy source and active metabolic regulator

    PubMed Central

    2011-01-01

    There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate. PMID:21816086

  2. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude. PMID:26315373

  3. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  4. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Roshayu; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  5. Combined anaerobic digestion and photocatalytic treatment of distillery effluent in fluidized bed reactors focusing on energy conservation.

    PubMed

    Apollo, Seth; Aoyi, Ochieng

    2016-09-01

    Anaerobic digestion (AD) can remove substantial amount of organic load when applied in treating distillery effluent but it is ineffective in colour reduction. Conversely, photodegradation is effective in colour reduction but has high energy requirement. A study on the synergy of a combined AD and ultra violet (UV) photodegradation treatment of distillery effluent was carried out in fluidized bed reactors to evaluate pollution reduction and energy utilization efficiencies. The combined process improved colour removal from 41% to 85% compared to that of AD employed as a stand-alone process. An overall corresponding total organic carbon (TOC) reduction of 83% was achieved. The bioenergy production by the AD step was 14.2 kJ/g total organic carbon (TOC) biodegraded while UV lamp energy consumption was 0.9 kJ/mg TOC, corresponding to up to 100% colour removal. Electrical energy per order analysis for the photodegradation process showed that the bioenergy produced was 20% of that required by the UV lamp to photodegrade 1 m(3) of undiluted pre-AD treated effluent up to 75% colour reduction. It was concluded that a combined AD-UV system for treatment of distillery effluent is effective in organic load removal and can be operated at a reduced cost. PMID:26824301

  6. Basic Laboratory Culture Methods for Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Strobel, Herbert J.

    Oxygen is either limiting or absent in many ecosystems. Anaerobic bacteria are often key players in such environments and these organisms have important roles in geo-elemental cycling, agriculture, and medicine. The metabolic versatility of anaerobes is exploited in a variety of industrial processes including fermented food production, biochemical synthesis, and bioremediation. There has been recent considerable interest in developing and enhancing technologies that employ anaerobes as biocatalysts. The study of anaerobic bacteria requires specialized techniques, and specific methods are described for the culture and manipulation of these microbes.

  7. Experimental ocean acidification alters the allocation of metabolic energy.

    PubMed

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763

  8. Experimental ocean acidification alters the allocation of metabolic energy

    PubMed Central

    Pan, T.-C. Francis; Applebaum, Scott L.; Manahan, Donal T.

    2015-01-01

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763

  9. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  10. [Lipids composition and speed of energy metabolism in gastropods].

    PubMed

    Arakelova, E S

    2008-01-01

    Lipid composition of digestive gland and pedal muscle of two northern freshwater pulmonate snails Lymnaea stagnalis and Lymnaea ovata and three marine prosobranch gastropods Littorina obtusata, Littorina littorea, Buccinum undatum from the White Sea was studied. The species differ in ecology, particularly in trophic nabits and motor activity. The content of triacilglycerides both in digestive gland and pedal was higher in littoral dwellers Littorina the activity of which depends on the tide level. The phospholipids content in digestive gland does not differ in quantity in all cases and does not relate to type of feeding or resource quality. In a pedal muscle of marine species the quantity of common phospholipids is higher in comparison with the freshwater ones. The amount of total phospholipids in pedal muscle correlates with mass of metabolic inert formation which constitutes a part of whole mass of snails. The presence of massive shell enhances demands in energy needed for supporting movement and activity. Because the intensity of energy metabolism is related to quantity of total phospholipids, mitochondria and activity of their oxidizing ferments, the presence of thick shell in marine snails together with motor activity costs more in terms of energy than in freshwater snails with thin shell. This hypothesis is supported by the higher specific rate of oxygen consumption in marine snails than in freshwaters. PMID:19140337

  11. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  12. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism

    PubMed Central

    Yen, Chi-Liang Eric; Nelson, David W.; Yen, Mei-I

    2015-01-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  13. Metabolic Constraints on the Eukaryotic Transition

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2009-04-01

    Mutualism, obligate mutualism, symbiosis, and the eukaryotic ‘fusion’ of Serial Endosymbiosis Theory represent progressively more rapid and less distorted real-time communication between biological structures instantiating information sources. Such progression in accurate information transmission requires, in turn, progressively greater channel capacity that, through the homology between information source uncertainty and free energy density, requires ever more energetic metabolism. The eukaryotic transition, according to this model, may have been entrained by an ecosystem resilience shift from anaerobic to aerobic metabolism.

  14. Anaerobic Process.

    PubMed

    Li, Wei-Zun; Qian, Yang; Chang, Chein-Chi; Ju, Meiting

    2015-10-01

    A review of the literature published in 2014 on the focus of Anaerobic Process. It is divided into the following sections. •Pretreatment •Organic waste •multiple-stage co-digestion •Process Methodology and Technology. PMID:26420080

  15. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation

    PubMed Central

    Guzun, R.; Kaambre, T.; Bagur, R.; Grichine, A.; Usson, Y.; Varikmaa, M.; Anmann, T.; Tepp, K.; Timohhina, N.; Shevchuk, I.; Chekulayev, V.; Boucher, F.; Santos, P. Dos; Schlattner, U.; Wallimann, T.; Kuznetsov, A. V.; Dzeja, P.; Aliev, M.; Saks, V.

    2014-01-01

    To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure–function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis. PMID:24666671

  16. Water-energy nexus: Anaerobic co-digestion with elephant grass hydrolyzate.

    PubMed

    Carvalho, A R; Fragoso, R; Gominho, J; Saraiva, A; Costa, R; Duarte, E

    2016-10-01

    The anaerobic co-digestion process in a continuous stirred-tank reactor (CSTR) was carried out under mesophilic conditions (37 ± 0.2 °C). All the trials were performed at a hydraulic retention time (HRT) of 15 days and the AD reactor was daily fed with a mixture of sewage sludge (SS) and elephant grass hydrolyzate (EGH). In this study, three different trials were assessed, with different mixture proportions of SSSS and EGH: F0 (100:0,v/v), F1 (75:25, v/v) and F2 (50:50, v/v), during 90 days each trial, keeping the organic loading rate (OLR) in a range of 0.94-1.16 g VS L(-1) day(-1). The experimental results obtained showed that the soluble chemical oxygen demand (SCOD) removal efficiency was around 77% and 86% for trials F1 and F2, respectively. SS co-digestion with EGH enhanced methane yield, leading to an increment between 23% and 38%, in comparison with the reference scenario (F0). PMID:27315600

  17. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    PubMed

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. PMID:24582388

  18. Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers.

    PubMed

    Roberts, Michael D; Taylor, Lemuel W; Wismann, Jennifer A; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2007-01-01

    The purpose of this study was to examine the effects of ingesting JavaFittrade mark Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 +/- 4.2 yrs, 93.2 +/- 11.7 kg, 181.6 +/- 6.9 cm) and five female (29 +/- 4.6 yrs, 61.5 +/- 9.2 kg, 167.6 +/- 6.9 cm) regular coffee drinkers (i.e., 223.9 +/- 62.7 mg.d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3-4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism. PMID:18067677

  19. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    PubMed

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism. PMID:19810704

  20. Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2016-10-01

    Anaerobic digestion (AD) is efficient in organic load removal and bioenergy recovery when applied in treating distillery effluent; however, it is ineffective in colour reduction. In contrast, ultraviolet (UV) photodegradation post-treatment for the AD-treated distillery effluent is effective in colour reduction but has high energy requirement. The effects of operating parameters on bioenergy production and energy demand of photodegradation were modelled using response surface methodology (RSM) with a view of developing a sustainable process in which the biological step could supply energy to the energy-intensive photodegradation step. The organic loading rate (OLRAD) and hydraulic retention time (HRTAD) of the initial biological step were the variables investigated. It was found that the initial biological step removed about 90% of COD and only about 50% colour while photodegradation post-treatment removed 98% of the remaining colour. Maximum bioenergy production of 180.5 kWh/m(3) was achieved. Energy demand of the UV lamp was lowest at low OLRAD irrespective of HRTAD, with values ranging between 87 and 496 kWh/m(3). The bioenergy produced formed 93% of the UV lamp energy demand when the system was operated at OLRAD of 3 kg COD/m(3) d and HRT of 20 days. The presumed carbon dioxide emission reduction when electricity from bioenergy was used to power the UV lamp was 28.8 kg CO2 e/m(3), which could reduce carbon emission by 31% compared to when electricity from the grid was used, leading to environmental conservation. PMID:26864148

  1. Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

    PubMed Central

    Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.

    2014-01-01

    Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365

  2. Metabolic energy requirements during manned orbital Skylab missions.

    PubMed

    Rambaut, P C; Leach, C S; Whedon, G D

    1977-01-01

    An investigation was undertaken to determine the metabolic cost of life in space. Energy intake was determined throughout the 28-, 59- and 84-day flights for each of the nine Skylab astronauts. Metabolic excretions were quantitatively collected and analyzed for a variety of biochemical constituents. Body mass was determined each day and body volume was ascertained by stereophotogrammetric means immediately pre- and post-flight. A ground-based control period of at least 3 weeks preceded each flight, and one of at least 18 days followed each flight. Examination of the data reveals that all crew members lost mass in flight, and that this loss did not result in a net increase in density. Elevated urinary and blood nitrogen, a net negative calcium and nitrogen balance and a decrease in the radiographic density of certain bones support the conclusion that lean body mass decreased. That the loss was primarily proteinaceous in nature is evidenced by the comparatively small net change in total body water and by a decrease in total body potassium each measured by isotopic dilution techniques. These changes in body composition, despite a constant caloric intake in flight and on the ground, suggest that the body's demand for exogenous nutrient energy is not measurably changed by exposure to null gravity flight up to 84 days in duration. PMID:11958214

  3. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    PubMed

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence. PMID:25372736

  4. Ethyl pyruvate protects against sepsis by regulating energy metabolism

    PubMed Central

    Kang, Hongjun; Mao, Zhi; Zhao, Yan; Yin, Ting; Song, Qing; Pan, Liang; Hu, Xin; Hu, Jie; Zhou, Feihu

    2016-01-01

    Background Ethyl pyruvate (EP) is a derivative of pyruvic acid that has been demonstrated to be a potential scavenger of reactive oxygen species as well as an anti-inflammatory agent. In this study, we investigated the protective effects of EP and its role in regulating the energy metabolism in the livers of cecal-ligation-and-puncture-induced septic mice. Methods The animals were treated intraperitoneally with 0.2 mL of Ringer’s lactate solution or an equivalent volume of Ringer’s lactate solution containing EP immediately after cecal ligation and puncture. Each mouse in the Sham group was only subjected to a laparotomy. At 30-, 60-, 180-, and 360-minute time points, we measured the histopathological alterations of the intestines, and the plasma levels of interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-α, and the total antioxidative capacity, malondialdehyde content, and lactate and lactate/pyruvate levels in livers. Furthermore, we detected the levels of adenosine triphosphate, total adenylate, and energy charge in the livers. Results Our results demonstrated that the administration of EP significantly improved the survival rate and reduced intestinal histological alterations. EP inhibited the plasma levels of IL-1β, IL-6, and tumor necrosis factor-α and increased the IL-10 level. EP significantly inhibited the elevation of the malondialdehyde, lactate, and lactate/pyruvate levels and enhanced the total antioxidative capacity levels in the liver tissues. The downregulation of the adenosine triphosphate, total adenylate, and energy charge levels in the liver tissues was reversed in the septic mice treated with EP. Conclusion The results suggest that EP administration effectively modulates the energy metabolism, which may be an important component in treatment of sepsis. PMID:26966369

  5. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  6. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  7. Anaerobic sealing

    SciTech Connect

    Hayre, J.

    1986-05-01

    Anaerobic sealants offer an alternative to conventional methods of joint repair on mains operating at low and medium pressures. The method does not require highly skilled personnel who are diligent in ensuring that the necessary standards of preparation and seal application are achieved. British Gas' experience has shown that lead joints that do not contain yarn or where the yarn has deteriorated are difficult to seal. The evidence so far indicates that yarn is important in ensuring that the low viscosity sealant rapidly wicks around the joint during the injection operation. It is obvious that more research and development is needed in this field, but anaerobic sealing of leaking joints in an effective, innovative method of joint repair.

  8. Sleep Apnea and Fatty Liver Are Coupled Via Energy Metabolism.

    PubMed

    Arısoy, Ahmet; Sertoğullarından, Bunyamin; Ekin, Selami; Özgökçe, Mesut; Bulut, Mehmet Deniz; Huyut, Mehmet Tahir; Ölmez, Şehmus; Turan, Mahfuz

    2016-01-01

    BACKGROUND Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by intermittent hypoxia. Non-alcoholic fatty liver disease is the most common cause of chronic liver disease worldwide. We aimed to evaluate the relationship between OSA and fatty liver. MATERIAL AND METHODS We enrolled 176 subjects to this study who underwent polysomnography (PSG) for suspected OSA. The control group included 42 simple snoring subjects. PSG, biochemical tests, and ultrasonographic examination were performed all subjects. RESULTS The simple snoring and mild, moderate, and severe OSA groups included 18/42 (42.86%), 33/52 (63.5%), 27/34 (79.4%), and 28/48 (79.2%) subjects with hepatosteatosis, respectively. There were significant differences in hepatosteatosis and hepatosteatosis grade between the simple snoring and the moderate and severe OSA groups. Logistic regression analysis showed that BMI and average desaturation were independently and significantly related to hepatic steatosis. CONCLUSIONS Our study shows that BMI and the average desaturation contribute to non-alcoholic fatty liver in subjects with OSA. In this regard, sleep apnea may trigger metabolic mitochondrial energy associated processes thereby altering lipid metabolism and obesity as well. PMID:26993969

  9. Sleep Apnea and Fatty Liver Are Coupled Via Energy Metabolism

    PubMed Central

    Arısoy, Ahmet; Sertoğullarından, Bunyamin; Ekin, Selami; Özgökçe, Mesut; Bulut, Mehmet Deniz; Huyut, Mehmet Tahir; Ölmez, Şehmus; Turan, Mahfuz

    2016-01-01

    Background Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by intermittent hypoxia. Non-alcoholic fatty liver disease is the most common cause of chronic liver disease worldwide. We aimed to evaluate the relationship between OSA and fatty liver. Material/Methods We enrolled 176 subjects to this study who underwent polysomnography (PSG) for suspected OSA. The control group included 42 simple snoring subjects. PSG, biochemical tests, and ultrasonographic examination were performed all subjects. Results The simple snoring and mild, moderate, and severe OSA groups included 18/42 (42.86%), 33/52 (63.5%), 27/34 (79.4%), and 28/48 (79.2%) subjects with hepatosteatosis, respectively. There were significant differences in hepatosteatosis and hepatosteatosis grade between the simple snoring and the moderate and severe OSA groups. Logistic regression analysis showed that BMI and average desaturation were independently and significantly related to hepatic steatosis. Conclusions Our study shows that BMI and the average desaturation contribute to non-alcoholic fatty liver in subjects with OSA. In this regard, sleep apnea may trigger metabolic mitochondrial energy associated processes thereby altering lipid metabolism and obesity as well. PMID:26993969

  10. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production. PMID:25864735

  11. Actions of juglone on energy metabolism in the rat liver

    SciTech Connect

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar

    2011-12-15

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and

  12. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

    PubMed Central

    Akhenblit, Paul J; Pagel, Mark D

    2016-01-01

    Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well. PMID:26962408

  13. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus▿†

    PubMed Central

    Holmes, Dawn E.; Risso, Carla; Smith, Jessica A.; Lovley, Derek R.

    2011-01-01

    Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms. PMID:21742914

  14. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. PMID:24045213

  15. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

  16. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion.

    PubMed

    Corneli, Elisa; Dragoni, Federico; Adessi, Alessandra; De Philippis, Roberto; Bonari, Enrico; Ragaglini, Giorgio

    2016-07-01

    Aim of this study was to evaluate the suitability of ensiled giant reed, ensiled maize, ensiled olive pomace, wheat bran for combined systems (CS: dark fermentation+anaerobic digestion (AD)) producing hydrogen-rich biogas (biohythane), tested in batch under basic operational conditions (mesophilic temperatures, no pH control). Substrates were also analyzed under a single stage AD batch test, in order to investigate the effects of DF on estimated energy recovery (ER) in combined systems. In CS, maize and wheat bran exhibited the highest hydrogen potential (13.8 and 18.9NLkgVS(-1)) and wheat bran the highest methane potential (243.5NLkgVS(-1)). In one-stage AD, giant reed, maize and wheat bran showed the highest methane production (239.5, 267.3 and 260.0NLkgVS(-1)). Butyrate/acetate ratio properly described the dark fermentation, correlating with hydrogen production (r=0.92). Wheat bran proved to be a promising residue for CS in terms of hydrogen/methane potential and ER. PMID:27038259

  17. One step beyond a ribosome: The ancient anaerobic core.

    PubMed

    Sousa, Filipa L; Nelson-Sathi, Shijulal; Martin, William F

    2016-08-01

    Life arose in a world without oxygen and the first organisms were anaerobes. Here we investigate the gene repertoire of the prokaryote common ancestor, estimating which genes it contained and to which lineages of modern prokaryotes it was most similar in terms of gene content. Using a phylogenetic approach we found that among trees for all 8779 protein families shared between 134 archaea and 1847 bacterial genomes, only 1045 have sequences from at least two bacterial and two archaeal groups and retain the ancestral archaeal-bacterial split. Among those, the genes shared by anaerobes were identified as candidate genes for the prokaryote common ancestor, which lived in anaerobic environments. We find that these anaerobic prokaryote common ancestor genes are today most frequently distributed among methanogens and clostridia, strict anaerobes that live from low free energy changes near the thermodynamic limit of life. The anaerobic families encompass genes for bifunctional acetyl-CoA-synthase/CO-dehydrogenase, heterodisulfide reductase subunits C and A, ferredoxins, and several subunits of the Mrp-antiporter/hydrogenase family, in addition to numerous S-adenosyl methionine (SAM) dependent methyltransferases. The data indicate a major role for methyl groups in the metabolism of the prokaryote common ancestor. The data furthermore indicate that the prokaryote ancestor possessed a rotor stator ATP synthase, but lacked cytochromes and quinones as well as identifiable redox-dependent ion pumping complexes. The prokaryote ancestor did possess, however, an Mrp-type H(+)/Na(+) antiporter complex, capable of transducing geochemical pH gradients into biologically more stable Na(+)-gradients. The findings implicate a hydrothermal, autotrophic, and methyl-dependent origin of life. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27150504

  18. Metabolic response to exercise.

    PubMed

    De Feo, P; Di Loreto, C; Lucidi, P; Murdolo, G; Parlanti, N; De Cicco, A; Piccioni, F; Santeusanio, F

    2003-09-01

    At the beginning, the survival of humans was strictly related to their physical capacity. There was the need to resist predators and to provide food and water for life. Achieving these goals required a prompt and efficient energy system capable of sustaining either high intensity or maintaining prolonged physical activity. Energy for skeletal muscle contraction is supplied by anaerobic and aerobic metabolic pathways. The former can allow short bursts of intense physical activity (60-90 sec) and utilizes as energetic source the phosphocreatine shuttle and anaerobic glycolysis. The aerobic system is the most efficient ATP source for skeletal muscle. The oxidative phosporylation of carbohydrates, fats and, to a minor extent, proteins, can sustain physical activity for many hours. Carbohydrates are the most efficient fuel for working muscle and their contribution to total fuel oxidation is positively related to the intensity of exercise. The first metabolic pathways of carbohydrate metabolism to be involved are skeletal muscle glycogenolysis and glycolysis. Later circulating glucose, formed through activated gluconeogenesis, becomes an important energetic source. Among glucose metabolites, lactate plays a primary role as either direct or indirect (gluconeogenesis) energy source for contracting skeletal muscle. Fat oxidation plays a primary role during either low-moderate intensity exercise or protracted physical activity (over 90-120 min). Severe muscle glycogen depletion results in increased rates of muscle proteolysis and branched chain amino acid oxidation. Endurance training ameliorates physical performance by improving cardiopulmonary efficiency and optimizing skeletal muscle supply and oxidation of substrates. PMID:14964437

  19. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  20. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  1. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: Dark ethanol production is dominated by the shoots.

    PubMed

    Mustroph, Angelika; Boamfa, Elena I; Laarhoven, Lucas J J; Harren, Frans J M; Albrecht, Gerd; Grimm, Bernhard

    2006-12-01

    During anaerobiosis in darkness the main route for ATP production in plants is through glycolysis in combination with fermentation. We compared the organ-specific anaerobic fermentation of flooding-tolerant rice (Oryza sativa) and sensitive wheat (Triticum aestivum) seedlings. A sensitive laser-based photoacoustic trace gas detection system was used to monitor emission of ethanol and acetaldehyde by roots and shoots of intact seedlings. Dark-incubated rice seedlings released 3 times more acetaldehyde and 14 times more ethanol than wheat seedlings during anaerobiosis. Ninety percent of acetaldehyde originated from shoots of both species. In comparison to wheat shoots, the high ethanol production of rice shoots correlated with larger amounts of soluble carbohydrates, and higher activities of fermentative enzymes. After 24 h of anaerobiosis in darkness rice shoots still contained 30% of aerated ATP level, which enabled seedlings to survive this period. In contrast, ATP content declined almost to zero in wheat shoots and roots, which were irreversibly damaged after a 24-h anaerobic period. When plants were anaerobically and dark incubated for 4 h and subsequently transferred back to aeration, shoots showed a transient peak of acetaldehyde release indicating prompt re-oxidation of ethanol. Post-anoxic acetaldehyde production was lower in rice seedlings than in wheat. This observation accounts for a more effective acetaldehyde detoxification system in rice. Compared to wheat the greater tolerance of rice seedlings to transient anaerobic periods is explained by a faster fermentation rate of their shoots allowing a sufficient ATP production and an efficient suppression of toxic acetaldehyde formation in the early re-aeration period. PMID:16845530

  2. Modeling Glucose Metabolism in the Kidney.

    PubMed

    Chen, Ying; Fry, Brendan C; Layton, Anita T

    2016-06-01

    The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates. PMID:27371260

  3. Equine lamellar energy metabolism studied using tissue microdialysis.

    PubMed

    Medina-Torres, C E; Pollitt, C C; Underwood, C; Castro-Olivera, E M; Collins, S N; Allavena, R E; Richardson, D W; van Eps, A W

    2014-09-01

    Failure of lamellar energy metabolism may contribute to the pathophysiology of equine laminitis. Tissue microdialysis has the potential to dynamically monitor lamellar energy balance over time. The objectives of this study were to develop a minimally invasive lamellar microdialysis technique and use it to measure normal lamellar energy metabolite concentrations over 24 h. Microdialysis probes were placed (through the white line) into either the lamellar dermis (LAM) (n = 6) or the sublamellar dermis (SUBLAM) (n = 6) and perfused continuously over a 24 h study period. Probes were placed in the skin dermis (SKIN) for simultaneous comparison to LAM (n = 6). Samples were collected every 2 h and analysed for glucose, lactate, pyruvate, urea and glycerol concentrations. LAM was further compared with SUBLAM by simultaneous placement and sampling in four feet from two horses over 4 h. Horses were monitored for lameness, and either clinically evaluated for 1 month after probe removal (n = 4) or subjected to histological evaluation of the probe site (n = 10). There were no deleterious clinical effects of probe placement and the histological response was mild. Sample fluid recovery and metabolite concentrations were stable for 24 h. Glucose was lower (and lactate:glucose ratio higher) in LAM compared with SUBLAM and SKIN (P < 0.05). Pyruvate was lower in SUBLAM than SKIN and urea was lower in LAM than SKIN (P < 0.05). These differences suggest lower perfusion and increased glucose consumption in LAM compared with SUBLAM and SKIN. In conclusion, lamellar tissue microdialysis was well tolerated and may be useful for determining the contribution of energy failure in laminitis pathogenesis. PMID:24947715

  4. DEHALOGENATION: A NOVEL PATHWAY FOR THE ANAEROBIC BIODEGRADATION OF HALOAROMATIC COMPOUNDS

    EPA Science Inventory

    Microorganisms of lake sediment and sewage sludge anaerobically metabolize halobenzoates by a novel pathway. The primary degradative event was loss of the aryl halide without the alteration of the aromatic ring. Dehalogenation required strict anaerobic conditions and depended on ...

  5. DESIGN OF AN ANAEROBIC DIGESTER AND FUEL CELL SYSTEM FOR ENERGY GENERATION FROM DAIRY WASTE

    EPA Science Inventory

    Dairy waste was found to have a natural population of microorganisms capable of seeding an MFC. Dairy wastewater also proved to be a very effective substrate. Different graphite electrode materials provided varying levels of electrical energy generation, demonstrating with gr...

  6. Metabolic energy from arsenite oxidation in Alcaligenes faecalis

    NASA Astrophysics Data System (ADS)

    Anderson, G. L.; Love, M.; Zeider, B. K.

    2003-05-01

    The aerobic soil bacterium, Alcaligenes faecalis, survives in cultures containing greater than 10 g/L of aqueous arsenic. Toleration of arsenite occurs by the enzymatic oxidation of arsenite (As^III), to the less toxic arsenate (As^V). In defined media, the bacterium grows faster in the presence of arsenite than in its absence. This suggests that the bacterium uses the redox potential of arsenite oxidation as metabolic energy. The oxidation occurs via periplasmic arsenite oxidase, azurin, and cytochrome c [11] which presumably pass electron equivalents through an electron transport chain involving cytochrome c oxidase aud oxygen as the terminal electron acceptor. The associated proton translocation would allow synthesis of ATP and provide a useful means of harnessing the redox potential of arsenite oxidation. Arsenite and arsenate assays of the media during bacterial growth indicate that arsenite is depleted during the exponential growth phase and occurs concomitantly with the expression of arsenite oxidase. These results suggest that arsenite is detoxified to arsenate during bacterial growth and are inconsistent with previous reported interpretations of growth data. Alcaligenes faecalis is dependent on organic carbon sources and is therefore not chemolithoautotrophic. The relationship between succinate and arsenite utilisation provides evidence for the use of arsenite as a supplemental energy source. Because Alcaligenes faecalis not only tolerates, but thrives, in very high concentrations of arsenic has important implications in bioremediation of environments contaminated by aqueous arsenic.

  7. Growth states of catalytic reaction networks exhibiting energy metabolism

    NASA Astrophysics Data System (ADS)

    Kondo, Yohei; Kaneko, Kunihiko

    2011-07-01

    All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasistatic phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law, and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells.

  8. Growth states of catalytic reaction networks exhibiting energy metabolism.

    PubMed

    Kondo, Yohei; Kaneko, Kunihiko

    2011-07-01

    All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasistatic phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law, and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells. PMID:21867233

  9. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  10. Energy Metabolism and Leptin: Effects on Neuroendocrine Regulation of Reproduction in the Gilt and Sow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that reproductive function is metabolically gated. However, the mechanisms whereby energy stores and metabolic cues influence appetite, energy homeostasis and fertility are yet to be completely understood. Adipose tissue is no longer considered as only a depot to store exces...

  11. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.

    PubMed

    Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie; Bott, Michael

    2015-11-01

    Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. PMID:26276118

  12. Anaerobic Growth of Corynebacterium glutamicum via Mixed-Acid Fermentation

    PubMed Central

    Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie

    2015-01-01

    Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. PMID:26276118

  13. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  14. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    PubMed

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  15. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  16. Erythropoietin, a Novel Versatile Player Regulating Energy Metabolism beyond the Erythroid System

    PubMed Central

    Wang, Li; Di, Lijun; Noguchi, Constance Tom

    2014-01-01

    Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myoblasts, adipocytes and other cell types. EPO activity has been linked to angiogenesis, neuroprotection, cardioprotection, stress protection, anti-inflammation and especially the energy metabolism regulation that is recently revealed. The investigations of EPO activity in animals and the expression analysis of EpoR provide more insights on the potential of EPO in regulating energy metabolism and homeostasis. The findings of crosstalk between EPO and some important energy sensors and the regulation of EPO in the cellular respiration and mitochondrial function further provide molecular mechanisms for EPO activity in metabolic activity regulation. In this review, we will summarize the roles of EPO in energy metabolism regulation and the activity of EPO in tissues that are tightly associated with energy metabolism. We will also discuss the effects of EPO in regulating oxidative metabolism and mitochondrial function, the interactions between EPO and important energy regulation factors, and the protective role of EPO from stresses that are related to metabolism, providing a brief overview of previously less appreciated EPO biological function in energy metabolism and homeostasis. PMID:25170305

  17. Energetics of end product excretion in anaerobic bacteria and the metabolism of fatty acids by Syntrophomonas wolfei: Progress report, November 16, 1986-November 15, 1987

    SciTech Connect

    McInerney, M.J.

    1987-01-01

    We have studied the growth and metabolism of Syntrophomonas wolfei in pure culture with crotonate as the energy source. S. wolfei grows in crotonate mineral salts medium without rumen fluid with cobalamin, thymine, lipoic acid and biotin added. However, after four to six transfers in this medium, growth ceases, indicating that another vitamin is required. The chemically defined medium allows large batches of S. wolfei to be grown for enzyme purification. All the enzymes involved in the oxidation of crotonyl-CoA to acetate have been detected. The pure culture of S. wolfei or coculture of S. wolfei grown with crotonate contain high activities of a crotonate: acetyl-CoA CoA-transferase activity. This activity is not detected in cocultures grown with butyrate. Thus, we believe that the reason why S. wolfei can now grow with crotonate is that an alteration or mutation occurred which allows the organism to activate this crotonate. S. wolfei also makes small amounts of H/sub 2/ when grown in pure culture with crotonate. A methyl viologen-dependent hydrogenase activity was found. We have also demonstrated the production of H/sub 2/ from 3-hydroxybutyryl-CoA in cell-free extracts of S. wolfei by coupling H/sub 2/ production to CH/sub 4/ production with the addition of Methanobacterium bryantii and directly using a hydrogen electrode. These results clearly show that S. wolfei makes H/sub 2/. S. wolfei does not contain formate dehydrogenase or CO dehydrogenase activities.

  18. Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model.

    PubMed

    Islam, M Ahsanul; Zengler, Karsten; Edwards, Elizabeth A; Mahadevan, Radhakrishnan; Stephanopoulos, Gregory

    2015-08-01

    Moorella thermoacetica is a strictly anaerobic, endospore-forming, and metabolically versatile acetogenic bacterium capable of conserving energy by both autotrophic (acetogenesis) and heterotrophic (homoacetogenesis) modes of metabolism. Its metabolic diversity and the ability to efficiently convert a wide range of compounds, including syngas (CO + H2) into acetyl-CoA have made this thermophilic bacterium a promising host for industrial biotechnology applications. However, lack of detailed information on M. thermoacetica's metabolism is a major impediment to its use as a microbial cell factory. In order to overcome this issue, a genome-scale constraint-based metabolic model of Moorella thermoacetica, iAI558, has been developed using its genome sequence and physiological data from published literature. The reconstructed metabolic network of M. thermoacetica comprises 558 metabolic genes, 705 biochemical reactions, and 698 metabolites. Of the total 705 model reactions, 680 are gene-associated while the rest are non-gene associated reactions. The model, in addition to simulating both autotrophic and heterotrophic growth of M. thermoacetica, revealed degeneracy in its TCA-cycle, a common characteristic of anaerobic metabolism. Furthermore, the model helped elucidate the poorly understood energy conservation mechanism of M. thermoacetica during autotrophy. Thus, in addition to generating experimentally testable hypotheses regarding its physiology, such a detailed model will facilitate rapid strain designing and metabolic engineering of M. thermoacetica for industrial applications. PMID:25994252

  19. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis. PMID:26709050

  20. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells

    PubMed Central

    Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah-Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-01-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  1. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells.

    PubMed

    Wong, Vincent Kam Wai; Dong, Hang; Liang, Xu; Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-03-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  2. Demonstration of fuel cells to recover energy from anaerobic digester gas. Phase 1. A conceptual design, preliminary cost, and evaluation study. Final report, February-August 1994

    SciTech Connect

    Trocciola, J.C.; Healy, H.C.

    1995-03-01

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application because it is potentially one of the cleanest energy technologies available. The program is focused on utilizing a commercial Phosphoric Acid Fuel Cell (PAFC) power plant because of its inherently high fuel efficiency, low emissions characteristics, and high state of development. The environmental impact of widespread use of this concept would be a significant reduction in global warming and acid rain air emissions.

  3. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  4. Anaerobic thermophiles.

    PubMed

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  5. Energy metabolism in Mycobacterium gilvum PYR-GCK: insights from transcript expression analyses following two states of induction.

    PubMed

    Badejo, Abimbola Comfort; Chung, Won Hyong; Kim, Nam Shin; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Kim, Hyo Joon; Chai, Young Gyu

    2014-01-01

    Mycobacterium gilvum PYR-GCK, a pyrene degrading bacterium, has been the subject of functional studies aimed at elucidating mechanisms related to its outstanding pollutant bioremediation/biodegradation activities. Several studies have investigated energy production and conservation in Mycobacterium, however, they all focused on the pathogenic strains using their various hosts as induction sources. To gain greater insight into Mycobacterium energy metabolism, mRNA expression studies focused on respiratory functions were performed under two different conditions using the toxic pollutant pyrene as a test substrate and glucose as a control substrate. This was done using two transcriptomic techniques: global transcriptomic RNA-sequencing and quantitative Real-Time PCR. Growth in the presence of pyrene resulted in upregulated expression of genes associated with limited oxygen or anaerobiosis in M. gilvum PYR-GCK. Upregulated genes included succinate dehydrogenases, nitrite reductase and various electron donors including formate dehydrogenases, fumarate reductases and NADH dehydrogenases. Oxidative phosphorylation genes (with respiratory chain complexes I, III -V) were expressed at low levels compared to the genes coding for the second molecular complex in the bacterial respiratory chain (fumarate reductase); which is highly functional during microaerophilic or anaerobic bacterial growth. This study reveals a molecular adaptation to a hypoxic mode of respiration during aerobic pyrene degradation. This is likely the result of a cellular oxygen shortage resulting from exhaustion of the oxygenase enzymes required for these degradation activities in M. gilvum PYR-GCK. PMID:24927157

  6. Energy Metabolism in Mycobacterium gilvum PYR-GCK: Insights from Transcript Expression Analyses Following Two States of Induction

    PubMed Central

    Badejo, Abimbola Comfort; Chung, Won Hyong; Kim, Nam Shin; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Kim, Hyo Joon; Chai, Young Gyu

    2014-01-01

    Mycobacterium gilvum PYR-GCK, a pyrene degrading bacterium, has been the subject of functional studies aimed at elucidating mechanisms related to its outstanding pollutant bioremediation/biodegradation activities. Several studies have investigated energy production and conservation in Mycobacterium, however, they all focused on the pathogenic strains using their various hosts as induction sources. To gain greater insight into Mycobacterium energy metabolism, mRNA expression studies focused on respiratory functions were performed under two different conditions using the toxic pollutant pyrene as a test substrate and glucose as a control substrate. This was done using two transcriptomic techniques: global transcriptomic RNA-sequencing and quantitative Real-Time PCR. Growth in the presence of pyrene resulted in upregulated expression of genes associated with limited oxygen or anaerobiosis in M.gilvum PYR-GCK. Upregulated genes included succinate dehydrogenases, nitrite reductase and various electron donors including formate dehydrogenases, fumarate reductases and NADH dehydrogenases. Oxidative phosphorylation genes (with respiratory chain complexes I, III –V) were expressed at low levels compared to the genes coding for the second molecular complex in the bacterial respiratory chain (fumarate reductase); which is highly functional during microaerophilic or anaerobic bacterial growth. This study reveals a molecular adaptation to a hypoxic mode of respiration during aerobic pyrene degradation. This is likely the result of a cellular oxygen shortage resulting from exhaustion of the oxygenase enzymes required for these degradation activities in M.gilvum PYR-GCK. PMID:24927157

  7. The Pseudomonas aeruginosa Proteome during Anaerobic Growth‡

    PubMed Central

    Wu, Manhong; Guina, Tina; Brittnacher, Mitchell; Nguyen, Hai; Eng, Jimmy; Miller, Samuel I.

    2005-01-01

    Isotope-coded affinity tag analysis and two-dimensional gel electrophoresis followed by tandem mass spectrometry were used to identify Pseudomonas aeruginosa proteins expressed during anaerobic growth. Out of the 617 proteins identified, 158 were changed in abundance during anaerobic growth compared to during aerobic growth, including proteins whose increased expression was expected based on their role in anaerobic metabolism. These results form the basis for future analyses of alterations in bacterial protein content during growth in various environments, including the cystic fibrosis airway. PMID:16291692

  8. Municipal anaerobic digesters for codigestion, energy recovery, and greenhouse gas reductions.

    PubMed

    Zitomer, Daniel H; Adhikari, Prasoon; Heisel, Craig; Dineen, Dennis

    2008-03-01

    Codigestion of five wastes and municipal wastewater sludge was evaluated using full-scale testing. Synergistic, antagonistic, and neutral outcomes were observed depending on codigestate identity and concentration, highlighting the value of careful blending. Yeast waste resulted in notable synergism, increasing biogas production by over 50%, whereas aircraft deicing waste resulted in antagonism at high loadings and neutral outcomes at lower loadings. Restaurant waste codigestion resulted in neutral outcomes. The synergisim with yeast codigestates may have resulted from trace nutrients (i.e., iron, nickel, and cobalt) in the wastes that increased microbiological activity. Antagonist outcomes with deicing waste may have been the result of organic overload or inhibitory deicer constituents. Codigestion of wastes at the feed rates investigated was estimated to produce 0.50 ML/d of methane having an energy equivalent of 17 500 MJ/d. This was estimated to reduce net carbon dioxide emissions by 560 tonnes/y. PMID:18419011

  9. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    NASA Astrophysics Data System (ADS)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain

  10. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.

    PubMed Central

    Lowe, S E; Jain, M K; Zeikus, J G

    1993-01-01

    Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

  11. Carbon and energy metabolism of atp mutants of Escherichia coli.

    PubMed

    Jensen, P R; Michelsen, O

    1992-12-01

    The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis. PMID:1447134

  12. Carbon and energy metabolism of atp mutants of Escherichia coli.

    PubMed Central

    Jensen, P R; Michelsen, O

    1992-01-01

    The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis. PMID:1447134

  13. Effects of copper exposure on the energy metabolism in juveniles of the marine clam Mesodesma mactroides.

    PubMed

    Giacomin, Marina; Jorge, Marianna Basso; Bianchini, Adalto

    2014-07-01

    In freshwater osmoregulating mollusks, Cu can cause toxicity by inducing ionoregulatory disturbances. In mussels, it inhibits the activity of key enzymes involved in Na(+) uptake and consequently induces ionic and osmotic disturbances. In snails, Cu induces disruption of the Ca(2+) homeostasis leading to effects in shell deposition and snail growth. However, the mechanisms involved in Cu toxicity in osmoconforming sweater mollusks remain unclear. Recent findings from our laboratory have suggested that Cu toxicity in marine invertebrates can be associated with both ionic and respiratory disturbances. In the present study, metabolic changes induced by waterborne Cu exposure were evaluated in the osmoconforming clam Mesodesma mactroides, a bivalve species widely distributed along the South American sandy beaches. Juvenile clams were kept under control conditions (no Cu addition in the water) or acutely (96h) exposed to Cu (96-h LC10=150μgL(-1)) in artificial seawater (30ppt). ATP, protein, lipid, glycogen and glucose contents were analyzed in gills, digestive gland, pedal muscle and hemolymph. Dinucleotide (NAD(+) and NADH) content was also analyzed in gills, digestive gland and pedal muscle while pyruvate and lactate content was determined in pedal muscle and hemolymph. In all tissues analyzed, Cu exposure did not affect ATP content and NAD(+)/NADH ratio, except in the hemolymph, where a decrease in ATP content was observed. These findings indicate that clam cells, except those from hemolymph, were able to maintain a constant level of free energy. A significant increase in total protein content was observed in the digestive gland, which could be a compensatory mechanism to counteract the higher level of protein oxidation previously observed in M. mactroides exposed to Cu under the same experimental conditions. Finally, reduced glucose content in the pedal muscle paralleled by increased lactate content in the pedal muscle and hemolymph was observed in Cu

  14. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    PubMed

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future. PMID:26067504

  15. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    PubMed

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  16. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    PubMed Central

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  17. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    PubMed Central

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  18. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion.

    PubMed

    Zhao, Chen; Yan, Hu; Liu, Yan; Huang, Yan; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2016-06-01

    Huge amounts of fruit residues are produced and abandoned annually. The high moisture and organic contents of these residues makes them a big problem to the environment. Conversely, they are a potential resource to the world. Anaerobic digestion is a good way to utilize these organic wastes. In this study, the biomethane conversion performances of a large number of fruit residues were determined and compared using batch anaerobic digestion, a reliable and easily accessible method. The results showed that some fruit residues containing high contents of lipids and carbohydrates, such as loquat peels and rambutan seeds, were well fit for anaerobic digestion. Contrarily, residues with high lignin content were strongly recommended not to be used as a single substrate for methane production. Multiple linear regression model was adopted to simulate the correlation between the organic component of these fruit residues and their experimental methane yield, through which the experimental methane yield could probably be predicted for any other fruit residues. Four kinetic models were used to predict the batch anaerobic digestion process of different fruit residues. It was shown that the modified Gompertz and Cone models were better fit for the fruit residues compared to the first-order and Fitzhugh models. The first findings of this study could provide useful reference and guidance for future studies regarding the applications and potential utilization of fruit residues. PMID:27039123

  19. Can you boost your metabolism?

    MedlinePlus

    Resting metabolism rate (RMR); Total daily energy expenditure (TDEE); Non-exercise activity thermogenesis (NEAT); Weight loss - metabolism; Overweight - metabolism; Obesity - metabolism; Diet - metabolism

  20. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response.

    PubMed

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O; Sokolova, Inna M; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell, synergistic effects of elevated temperature and CO₂-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO₂ levels (partial pressure of CO₂ in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCo₂ and 15 °C hemolymph pH fell (pH(e) = 7.1 ± 0.2 (CO₂-group) vs. 7.6 ± 0.1 (control)) and P(e)CO₂ values in hemolymph increased (0.5 ± 0.2 kPa (CO₂-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO₂-incubated oysters ([HCO₃⁻](e) = 1.8 ± 0.3 mM (CO₂-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pH(e) did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO₂-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO₂-incubated group. Investigation in isolated gill cells revealed a similar temperature dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using ¹H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy

  1. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    PubMed Central

    Lannig, Gisela; Eilers, Silke; Pörtner, Hans O.; Sokolova, Inna M.; Bock, Christian

    2010-01-01

    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated Pco2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and Peco2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO− 3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperaturedependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and

  2. Anaerobic biodegradation of aromatic compounds.

    PubMed

    Jothimani, P; Kalaichelvan, G; Bhaskaran, A; Selvaseelan, D Augustine; Ramasamy, K

    2003-09-01

    Many aromatic compounds and their monomers are existing in nature. Besides they are introduced into the environment by human activity. The conversion of these aromatic compounds is mainly an aerobic process because of the involvement of molecular oxygen in ring fission and as an electron acceptor. Recent literatures indicated that ring fission of monomers and obligomers mainly occurs in anaerobic environments through anaerobic respiration with nitrate, sulphate, carbon dioxide or carbonate as electron acceptors. These anaerobic processes will help to work out the better situation for bioremediation of contaminated environments. While there are plenty of efforts to reduce the release of these chemicals to the environment, already contaminated sites need to be remediated not only to restore the sites but to prevent the leachates spreading to nearby environment. Basically microorganisms are better candidates for breakdown of these compounds because of their wider catalytic mechanisms and the ability to act even in the absence of oxygen. These microbes can be grouped based on their energy mechanisms. Normally, the aerobic counterparts employ the enzymes like mono-and-dioxygenases. The end product is basically catechol, which further may be metabolised to CO2 by means of quinones reductases cycles. In the absense of reductases compounds, the reduced catechols tend to become oxidised to form many quinone compounds. The quinone products are more recalcitrant and lead to other aesthetic problems like colour in water, unpleasant odour, etc. On the contrary, in the reducing environment this process is prevented and in a cascade of pathways, the cleaved products are converted to acetyl co-A to be integrated into other central metabolite paths. The central metabolite of anaerobic degradation is invariably co-A thio-esters of benzoic acid or hydroxy benzoic acid. The benzene ring undergoes various substitution and addition reactions to form chloro-, nitro-, methyl- compounds

  3. Estrogen-related receptor gamma modulates energy metabolism target genes in human trophoblast.

    PubMed

    Poidatz, D; Dos Santos, E; Brulé, A; De Mazancourt, P; Dieudonné, M N

    2012-09-01

    Placenta growth and functions depend on correct trophoblast migration, proliferation, and differentiation. The placenta has a critical role in gas and nutrient transport. To accomplish these numerous functions, the placenta depends on a highly efficient energy metabolism control. Recent studies showed that the orphan nuclear receptor Estrogen-Related Receptor gamma (ERRγ) is highly expressed in human placentas. As ERRγ has been described as a major energy metabolism regulator, we investigated ERRγ expression and putative roles on energy homeostasis in human trophoblast from first trimester placentas. First, we showed that ERRγ expression level increased during pregnancy and that ERRγ was more abundant in villous than in extravillous trophoblasts. We also observed that ERRγ expression increased during trophoblast differentiation. Second, we demonstrated that mitochondrial biogenesis and expression of some energy metabolism target genes decreased when ERRγ expression was impaired. Altogether, these results suggest that ERRγ could be implicated in the energy metabolism regulation of human trophoblasts. PMID:22763271

  4. Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis

    PubMed Central

    Black, Philippa A.; Warren, Robin M.; Louw, Gail E.; van Helden, Paul D.; Victor, Thomas C.

    2014-01-01

    The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed. PMID:24614376

  5. Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats.

    PubMed

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2016-08-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metabolism in different tissues, resulting in increased energy storage and decreased energy expenditure (EE). We first investigated the acute effects of an intracerebroventricular (ICV) infusion of NPY on gene expression in liver, brown adipose tissue, soleus muscle, and sc and epididymal white adipose tissue (WAT). We found increased expression of genes involved in gluconeogenesis and triglyceride secretion in the liver already 2-hour after the start of the NPY administration. In brown adipose tissue, the expression of thermogenic genes was decreased. In sc WAT, the expression of genes involved in lipogenesis was increased, whereas in soleus muscle, the expression of lipolytic genes was decreased after ICV NPY. These findings indicate that the ICV infusion of NPY acutely and simultaneously increases lipogenesis and decreases lipolysis in different tissues. Subsequently, we investigated the acute effects of ICV NPY on locomotor activity, respiratory exchange ratio, EE, and body temperature. The ICV infusion of NPY increased locomotor activity, body temperature, and EE as well as respiratory exchange ratio. Together, these results show that an acutely increased central availability of NPY results in a shift of metabolism towards lipid storage and an increased use of carbohydrates, while at the same time increasing activity, EE, and body temperature. PMID:27267712

  6. High incubation temperatures enhance mitochondrial energy metabolism in reptile embryos

    PubMed Central

    Sun, Bao-Jun; Li, Teng; Gao, Jing; Ma, Liang; Du, Wei-Guo

    2015-01-01

    Developmental rate increases exponentially with increasing temperature in ectothermic animals, but the biochemical basis underlying this thermal dependence is largely unexplored. We measured mitochondrial respiration and metabolic enzyme activities of turtle embryos (Pelodiscus sinensis) incubated at different temperatures to identify the metabolic basis of the rapid development occurring at high temperatures in reptile embryos. Developmental rate increased with increasing incubation temperatures in the embryos of P. sinensis. Correspondingly, in addition to the thermal dependence of mitochondrial respiration and metabolic enzyme activities, high-temperature incubation further enhanced mitochondrial respiration and COX activities in the embryos. This suggests that embryos may adjust mitochondrial respiration and metabolic enzyme activities in response to developmental temperature to achieve high developmental rates at high temperatures. Our study highlights the importance of biochemical investigations in understanding the proximate mechanisms by which temperature affects embryonic development. PMID:25749301

  7. Energy metabolism and hematology of white-tailed deer fawns

    USGS Publications Warehouse

    Rawson, R.E.; DelGiudice, G.D.; Dziuk, H.E.; Mech, L.D.

    1992-01-01

    Resting metabolic rates, weight gains and hematologic profiles of six newborn, captive white-tailed deer (Odocoileus virginianus) fawns (four females, two males) were determined during the first 3 mo of life. Estimated mean daily weight gain of fawns was 0.2 kg. The regression equation for metabolic rate was: Metabolic rate (kcal/kg0.75/day) = 56.1 +/- 1.3 (age in days), r = 0.65, P less than 0.001). Regression equations were also used to relate age to red blood cell count (RBC), hemoglobin concentration (Hb), packed cell volume, white blood cell count, mean corpuscular volume, mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin. The age relationships of Hb, MCHC, and smaller RBC's were indicative of an increasing and more efficient oxygen-carrying and exchange capacity to fulfill the increasing metabolic demands for oxygen associated with increasing body size.

  8. Teaching Energy Metabolism Using Scientific Articles: Implementation of a Virtual Learning Environment for Medical Students

    ERIC Educational Resources Information Center

    de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.

    2010-01-01

    This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…

  9. Microbial metabolism of tholin

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Boston, P. J.; Mancinelli, R. L.; Segal, W.; Khare, B. N.; Sagan, C.

    1990-05-01

    In this paper, we show that a wide variety of common soil bacteria are able to obtain their carbon and energy needs from tholin (a class of complex organic heteropolymers thought to be widely distributed through the solar system; in this case tholin was produced by passage of electrical discharge through a mixture of methane, ammonia, and water vapor). We have isolated aerobic, anaerobic, and facultatively anaerobic bacteria which are able to use tholin as a sole carbon source. Organisms which metabolize tholin represent a variety of bacterial genera including Clostridium, Pseudomonas, Bacillus, Acinetobacter, Paracoccus, Alcaligenes, Micrococcus, Cornebacterium, Aerobacter, Arthrobacter, Flavobacterium,and Actinomyces. Aerobic tholin-using bacteria were firrst isolated from soils containing unusual or sparse carbon sources. Some of these organisms were found to be facultatively anaerobic. Strictly anaerobic tholin-using bacteria were isolated from both carbon-rich and carbon-poor anaerobic lake muds. In addition, both aerobic and anaerobic tholin-using bacteria were isolated from common soil collected outside the laboratory building. Some, but not all, of the strains that were able to obtain carbon from tholin were also able to obtain their nitrogen requirements from tholin. Bacteria isolated from common soils were tested for their ability to obtain carbon from the water-soluble fraction, the ethanol-soluble fraction, and the water/ethanol-insoluble fraction of the tholin. Of the 3.5 × 10 7 bacteria isolated per gram of common soils, 1.7 0.5, and 0.2%, respectively, were able to obtaib their carbon requirements from the water-soluble fraction, the ethanol-soluble fraction and the water/ethanol-insoluble fraction of the tholin. The palatability of tholins to modern microbes may have implications for the early evolution of microbial life on Earth. Tholins may have formed the base of the food chain for an early heterotrophic biosphere before the evolution of

  10. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27041449

  11. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    PubMed Central

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  12. EBPR using crude glycerol: assessing process resiliency and exploring metabolic anomalies.

    PubMed

    Coats, Erik R; Dobroth, Zachary T; Brinkman, Cynthia K

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is predicated on exposing bacteria to cyclical anaerobic/aerobic environments while providing volatile fatty acids (VFAs). Combined, this environment enriches for phosphorus accumulating organisms (PAOs) and induces metabolisms to ensure excess phosphorus removal. Crude glycerol (CG), a byproduct of biodiesel manufacturing, is an alternate waste stream that could be substituted to achieve excess phosphorus removal; research into the use of CG yielded unexpected findings. While CG was an excellent substrate to accomplish and/or help achieve excess phosphorus removal, CG-fed bacteria did not consistently exhibit theoretical EBPR metabolisms. Specifically, anaerobic phosphorus release was not required for successful EBPR; however, carbon cycling patterns were consistent with theory. Analysis of results suggests that PAOs will first leverage carbon to generate energy anaerobically; only as needed will the bacteria utilize polyphosphate reserves anaerobically. Results also demonstrated that excess phosphorus removal can be achieved with a small fraction of PAOs. PMID:25630129

  13. The Influence of Hydration on Anaerobic Performance: A Review

    ERIC Educational Resources Information Center

    Kraft, Justin A.; Green, James M.; Bishop, Phillip A.; Richardson, Mark T.; Neggers, Yasmin H.; Leeper, James D.

    2012-01-01

    This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical…

  14. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.

    PubMed

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2016-08-25

    Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. PMID:27268280

  15. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance. PMID:23026340

  16. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    PubMed Central

    Elliott, Kyle H.; Welcker, Jorg; Gaston, Anthony J.; Hatch, Scott A.; Palace, Vince; Hare, James F.; Speakman, John R.; Anderson, W. Gary

    2013-01-01

    Summary Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species. PMID:23789108

  17. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism.

    PubMed

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  18. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    PubMed Central

    Zhang, Rui; Wang, Yueqiao; Li, Rui; Chen, Guoxun

    2015-01-01

    Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism. PMID:26110391

  19. Metaboloepigenetics: Interrelationships between energy metabolism and epigenetic control of gene expression

    PubMed Central

    Donohoe, Dallas R.; Bultman, Scott J.

    2012-01-01

    Diet and energy metabolism affect gene expression, which influences human health and disease. Here, we discuss the role of epigenetics as a mechanistic link between energy metabolism and control of gene expression. A number of key energy metabolites including SAM, acetyl-CoA, NAD+, and ATP serve as essential co-factors for many, perhaps most, epigenetic enzymes that regulate DNA methylation, posttranslational histone modifications, and nucleosome position. The relative abundance of these energy metabolites allows a cell to sense its energetic state. And as co-factors, energy metabolites act as rheostats to modulate the activity of epigenetic enzymes and upregulate/downregulate transcription as appropriate to maintain homeostasis. PMID:22261928

  20. Bone: from a reservoir of minerals to a regulator of energy metabolism.

    PubMed

    Confavreux, Cyrille B

    2011-04-01

    Besides locomotion, organ protection, and calcium-phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  1. Bone: from a reservoir of minerals to a regulator of energy metabolism.

    PubMed

    Confavreux, Cyrille B

    2011-04-01

    Besides locomotion, organ protection, and calcium-phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:26746856

  2. Giant cane (Arundo donax L.) can substitute traditional energy crops in producing energy by anaerobic digestion, reducing surface area and costs: A full-scale approach.

    PubMed

    Corno, Luca; Lonati, Samuele; Riva, Carlo; Pilu, Roberto; Adani, Fabrizio

    2016-10-01

    Arundo donax L. (Giant cane) was used in a full-scale anaerobic digester (AD) plant (power of 380kWhEE) in partial substitution for corn to produce biogas and electricity. Corn substitution was made on a biomethane potential (BMP) basis so that A. donax L. after substitution accounted for 15.6% of the total mix-BMP (BMPmix) and corn for 66.6% BMPmix. Results obtained indicated that Giant cane was able to substitute for corn, reducing both biomass and electricity production costs, because of both higher biomass productivity (Mg total solid Ha(-1)) and lower biomass cost (€Ha(-1)). Total electricity biogas costs were reduced by 5.5%. The total biomass cost, the total surface area needed to produce the energy crop and the total cost of producing electricity can be reduced by 75.5%, 36.6% and 22%, by substituting corn completely with Giant cane in the mix fed to the full-scale plant. PMID:27428299

  3. Metabolism

    MedlinePlus

    ... digestive system called enzymes break proteins down into amino acids, fats into fatty acids, and carbohydrates into simple ... for example, glucose). In addition to sugar, both amino acids and fatty acids can be used as energy ...

  4. Metabolism

    MedlinePlus

    ... digestive system called enzymes break proteins down into amino acids, fats into fatty acids, and carbohydrates into simple ... e.g., glucose). In addition to sugar, both amino acids and fatty acids can be used as energy ...

  5. Metabolism

    MedlinePlus

    ... convert or use energy, such as: Breathing Circulating blood Controlling body temperature Contracting muscles Digesting food and nutrients Eliminating waste through urine and feces Functioning of the brain and nerves

  6. The Central Carbon and Energy Metabolism of Marine Diatoms

    PubMed Central

    Obata, Toshihiro; Fernie, Alisdair R.; Nunes-Nesi, Adriano

    2013-01-01

    Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved. PMID:24957995

  7. Fatty acids from diet and microbiota regulate energy metabolism

    PubMed Central

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system. PMID:27006755

  8. Deciphering the roles of the constitutive androstane receptor in energy metabolism

    PubMed Central

    Yan, Jiong; Chen, Baian; Lu, Jing; Xie, Wen

    2015-01-01

    The constitutive androstane receptor (CAR) is initially defined as a xenobiotic nuclear receptor that protects the liver from injury. Detoxification of damaging chemicals is achieved by CAR-mediated induction of drug-metabolizing enzymes and transporters. More recent research has implicated CAR in energy metabolism, suggesting a therapeutic potential for CAR in metabolic diseases, such as type 2 diabetes and obesity. A better understanding of the mechanisms by which CAR regulates energy metabolism will allow us to take advantage of its effectiveness while avoiding its side effects. This review summarizes the current progress on the regulation of CAR nuclear translocation, upstream modulators of CAR activity, and the crosstalk between CAR and other transcriptional factors, with the aim of elucidating how CAR regulates glucose and lipid metabolism. PMID:25500869

  9. Deciphering the roles of the constitutive androstane receptor in energy metabolism.

    PubMed

    Yan, Jiong; Chen, Baian; Lu, Jing; Xie, Wen

    2015-01-01

    The constitutive androstane receptor (CAR) is initially defined as a xenobiotic nuclear receptor that protects the liver from injury. Detoxification of damaging chemicals is achieved by CAR-mediated induction of drug-metabolizing enzymes and transporters. More recent research has implicated CAR in energy metabolism, suggesting a therapeutic potential for CAR in metabolic diseases, such as type 2 diabetes and obesity. A better understanding of the mechanisms by which CAR regulates energy metabolism will allow us to take advantage of its effectiveness while avoiding its side effects. This review summarizes the current progress on the regulation of CAR nuclear translocation, upstream modulators of CAR activity, and the crosstalk between CAR and other transcriptional factors, with the aim of elucidating how CAR regulates glucose and lipid metabolism. PMID:25500869

  10. Understanding metabolic alterations in space flight using quantitative models: fluid and energy balance

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1986-01-01

    This report summarizes many of the results obtained during the Skylab program, on metabolic changes during weightlessness. The examination of the data was conducted following an integrated multi-disciplinary and multi-experimental approach. Emphasis is given on several major aspects of metabolic adaptation to space flight: fluid-electrolyte regulation, mechanisms of hormone disturbances, energy balance and etiology of weight loss. The aim is to obtain a composite picture of the fluid, electrolyte and energy response to weightlessness.

  11. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.

    PubMed

    Fukushima, Arata; Milner, Kenneth; Gupta, Abhishek; Lopaschuk, Gary D

    2015-01-01

    Despite recent advances in therapy, heart failure remains a major cause of mortality and morbidity and is a growing healthcare burden worldwide. Alterations in myocardial energy substrate metabolism are a hallmark of heart failure, and are associated with an energy deficit in the failing heart. Previous studies have shown that a metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency and functional impairment in heart failure. Therefore, optimizing energy substrate utilization, particularly by increasing mitochondrial glucose oxidation, can be a potentially promising approach to decrease the severity of heart failure by improving mechanical cardiac efficiency. One approach to stimulating myocardial glucose oxidation is to inhibit fatty acid oxidation. This review will overview the physiological regulation of both myocardial fatty acid and glucose oxidation in the heart, and will discuss what alterations in myocardial energy substrate metabolism occur in the failing heart. Furthermore, lysine acetylation has been recently identified as a novel post-translational pathway by which mitochondrial enzymes involved in all aspects of cardiac energy metabolism can be regulated. Thus, we will also discuss the effect of acetylation of metabolic enzymes on myocardial energy substrate preference in the settings of heart failure. Finally, we will focus on pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, transcriptional regulation of fatty acid oxidation, and glucose oxidation to treat heart failure. PMID:26166604

  12. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to

  13. Do altered energy metabolism or spontaneous locomotion 'mediate' decelerated senescence?

    PubMed

    Arum, Oge; Dawson, John Alexander; Smith, Daniel Larry; Kopchick, John J; Allison, David B; Bartke, Andrzej

    2015-06-01

    That one or multiple measures of metabolic rate may be robustly associated with, or possibly even causative of, the progression of aging-resultant phenotypes such as lifespan is a long-standing, well-known mechanistic hypothesis. To broach this hypothesis, we assessed metabolic function and spontaneous locomotion in two genetic and one dietary mouse models for retarded aging, and subjected the data to mediation analyses to determine whether any metabolic or locomotor trait could be identified as a mediator of the effect of any of the interventions on senescence. We do not test the hypothesis of causality (which would require some experiments), but instead test whether the correlation structure of certain variables is consistent with one possible pathway model in which a proposed mediating variable has a causal role. Results for metabolic measures, including oxygen consumption and respiratory quotient, failed to support this hypothesis; similar negative results were obtained for three behavioral motion metrics. Therefore, our mediation analyses did not find support that any of these correlates of decelerated senescence was a substantial mediator of the effect of either of these genetic alterations (with or without caloric restriction) on longevity. Further studies are needed to relate the examined phenotypic characteristics to mechanisms of aging and control of longevity. PMID:25720347

  14. Substrate availability regulates energy metabolism via transcriptional mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the mechanisms by which enhanced substrate availability regulates cardiac metabolism and function. Chronic elevation of intracellular glucose levels were achieved by overexpressing GLUT1 in mouse hearts (TG), while chronic elevation of fatty acids (FA) availability wer...

  15. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    SciTech Connect

    Bolton, H., Jr.; Bailey, V.L.; Plymale, A.E.; Rai, D.; Xun, L.

    2006-04-05

    begun to enrich and isolate bacteria capable of aerobic and anaerobic degradation of EDTA. Environmental samples (e.g., sludges, river sediments) were incubated aerobically and anaerobically with EDTA or NTA as the sole carbon and energy source. Aerobic enrichment with EDTA has not resulted in any cultures, but NTA has provided several isolates. Partial 16S rRNA gene sequence and sequence comparison identified four separate strains closely related to Microbacterium oxydans, Aminobacter sp., Achromobacter sp., Aminobacter sp., respectively. Anaerobic enrichments with either EDTA or NTA are still in progress since metabolism and growth is relatively slow. In addition to the biotransformation experiments, studies are underway to determine/validate complexation constants of Pu(III) with EDTA and the influence of competing ions on Pu(III)-EDTA complexes. These data are being obtained through solubility studies of PuPO{sub 4}(s) and Pu(OH){sub 3}(s) as a function of time, pH, and EDTA and competing ion concentrations. These results have begun to fill-in knowledge gaps of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop Pu transport in groundwater at DOE sites.

  16. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    SciTech Connect

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  17. Methodological and metabolic considerations in the study of caffeine-containing energy drinks.

    PubMed

    Shearer, Jane

    2014-10-01

    Caffeine-containing energy drinks are popular and widely available beverages. Despite large increases in consumption, studies documenting the nutritional, metabolic, and health implications of these beverages are limited. This review provides some important methodological considerations in the examination of these drinks and highlights their potential impact on the gastrointestinal system, liver, and metabolic health. The gastrointestinal system is important as it comes into contact with the highest concentration of energy drink ingredients and initiates a chain of events to communicate with peripheral tissues. Although energy drinks have diverse compositions, including taurine, ginseng, and carnitine, the most metabolically deleterious ingredients appear to be simple sugars (such as glucose and fructose) and caffeine. In combination, these last two ingredients have the greatest metabolic impact and potential influence on overall health. PMID:25293552

  18. Impaired cellular energy metabolism contributes to bluetongue-virus-induced autophagy.

    PubMed

    Lv, Shuang; Xu, Qingyuan; Sun, Encheng; Zhang, Jikai; Wu, Donglai

    2016-10-01

    Bluetongue virus (BTV) has been found to trigger autophagy to favor its replication, but the underlying mechanisms have not been clarified. Here, we show that cellular energy metabolism is involved in BTV-induced autophagy. Cellular ATP synthesis was impaired by BTV1 infection, causing metabolic stress, which was responsible for activation of autophagy, since the conversion of LC3 and aggregation of GFP-LC3 (autophagy markers) were suppressed when infection-caused energy depletion was reversed via MP (metabolic substrate) treatment. The reduced virus yields with MP further supported this view. Overall, our findings suggest that BTV1-induced disruption of cellular energy metabolism contributes to autophagy, and this provides new insights into BTV-host interactions. PMID:27379971

  19. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. PMID:23180608

  20. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus).

    PubMed

    Zhang, Jiliang; Sun, Ping; Yang, Fan; Kong, Tao; Zhang, Ruichen

    2016-06-01

    Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses. PMID:26971175

  1. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice

    PubMed Central

    Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice. PMID:26745179

  2. Mechanisms Linking Energy Substrate Metabolism to the Function of the Heart

    PubMed Central

    Carley, Andrew N.; Taegtmeyer, Heinrich; Lewandowski, E. Douglas

    2015-01-01

    Metabolic signaling mechanisms are increasingly recognized to mediate the cellular response to alterations in workload demand, as a consequence of physiological and pathophysiological challenges. Thus, an understanding of the metabolic mechanisms coordinating activity in the cytosol with the energy-providing pathways in the mitochondrial matrix becomes critical for deepening our insights into the pathogenic changes that occur in the stressed cardiomyocyte. Processes that exchange both metabolic intermediates and cations between the cytosol and mitochondria enable transduction of dynamic changes in contractile state to the mitochondrial compartment of the cell. Disruption of such metabolic transduction pathways has severe consequences for the energetic support of contractile function in the heart and is implicated in the pathogenesis of heart failure. Deficiencies in metabolic reserve and impaired metabolic transduction in the cardiomyocyte can result from inherent deficiencies in metabolic phenotype or maladaptive changes in metabolic enzyme expression and regulation in the response to pathogenic stress. This review examines both current and emerging concepts of the functional linkage between the cytosol and the mitochondrial matrix with a specific focus on metabolic reserve and energetic efficiency. These principles of exchange and transport mechanisms across the mitochondrial membrane are reviewed for the failing heart from the perspectives of chronic pressure overload and diabetes mellitus. PMID:24526677

  3. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

  4. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  5. Ontogeny of Hepatic Energy Metabolism Genes in Mice as Revealed by RNA-Sequencing

    PubMed Central

    Renaud, Helen J.; Cui, Yue Julia; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D.

    2014-01-01

    The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5–Day 5 (perinatal-enriched), Day 10–Day 20 (pre-weaning-enriched), and Day 25–Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3

  6. Toxicants inhibiting anaerobic digestion: a review.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion. PMID:25457225

  7. Anaerobic biorefinery: Current status, challenges, and opportunities.

    PubMed

    Sawatdeenarunat, Chayanon; Nguyen, Duc; Surendra, K C; Shrestha, Shilva; Rajendran, Karthik; Oechsner, Hans; Xie, Li; Khanal, Samir Kumar

    2016-09-01

    Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future. PMID:27005786

  8. [Optimization of energy metabolism in patients with chronic heart failure].

    PubMed

    Korzh, A N

    2010-01-01

    Nowadays particular interest of clinicians is attracted by metabolic therapy of patients with chronic heart failure (CHF). The objective of this study was to investigate the influence of complex therapy with addition of Vasonat on the dynamics of remodeling indexes of left ventricle and functional class of CHF on classification of NYHA. It has been shown that application of metabolic modulator Vasonat in addition to conventional therapy of CHF facilitated the clinical improvement and significant decline of functional class. Vasonat use resulted in the meaningful improvement of the contractive function of myocardium and increase of tolerance to the physical exercise. Moreover, high efficiency of Vasonat has been demonstrated in the control of the syndrome of oxidizing stress, by decrease in intensity of free-radical processes and activation of the antioxidant defense system. PMID:21265120

  9. Environmental Endocrine Disruption of Energy Metabolism and Cardiovascular Risk

    PubMed Central

    Kirkley, Andrew G.; Sargis, Robert M.

    2014-01-01

    Rates of metabolic and cardiovascular diseases have increased at an astounding rate in recent decades. While poor diet and physical inactivity are central drivers, these lifestyle changes alone fail to fully account for the magnitude and rapidity of the epidemic. Thus, attention has turned to identifying novel risk factors, including the contribution of environmental endocrine disrupting chemicals. Epidemiological and preclinical data support a role for various contaminants in the pathogenesis of diabetes. In addition to the vascular risk associated with dysglycemia, emerging evidence implicates multiple pollutants in the pathogenesis of atherosclerosis and cardiovascular disease. Reviewed herein are studies linking endocrine disruptors to these key diseases that drive significant individual and societal morbidity and mortality. Identifying chemicals associated with metabolic and cardiovascular disease as well as their mechanisms of action is critical for developing novel treatment strategies and public policy to mitigate the impact of these diseases on human health. PMID:24756343

  10. Process configuration role in anaerobic biotransformations

    SciTech Connect

    Speece, R.E.

    1998-07-01

    Defining the environmental conditions which would enable anaerobic processes to consistently produce effluents containing only non-detectable concentrations of degradable organics would remove one of the main drawbacks to wider application of this important treatment technology. Recently specific metabolic intermediates formed in the anaerobic biotransformation of complex organics have been found to enhance or curtail process performance. Using acrylate and acrolein as representative hazardous chemicals, modifications in staging and reactor operation procedures have been observed in the author's laboratory to profoundly impact the rate and completeness of the biotransformation process. Specific metabolic intermediates formed in the biotransformation of complex substrates to a large extent will control a given process performance and process configuration greatly impacts the metabolic pathway, thus impacting the intermediates formed as well. There is a growing body of literature to indicate that process performance in anaerobic biotransformation is greatly impacted by reactor configuration. There is also some evidence that metabolic precursors impact the subsequent efficiency of conversion of volatile fatty acids (VFA) ultimately to CH{sub 4}. But although profound differences in the performance of anaerobic biotransformation are reported for various process configurations, there are no published criteria to guide the rational design of stages/phased processes. Clarification of the relative merits of single stage, two stage, two phase, granules and biofilms as well as CSTR and plug flow modes in the biotransformation of hazardous pollutants would be foundational for future research and development.

  11. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders.

    PubMed

    Mlody, Barbara; Lorenz, Carmen; Inak, Gizem; Prigione, Alessandro

    2016-04-01

    The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy. PMID:26877213

  12. Effect of ultrasonication on anaerobic degradability of solid waste digestate.

    PubMed

    Boni, M R; D'Amato, E; Polettini, A; Pomi, R; Rossi, A

    2016-02-01

    This paper evaluates the effect of ultrasonication on anaerobic biodegradability of lignocellulosic residues. While ultrasonication has been commonly applied as a pre-treatment of the feed substrate, in the present study a non-conventional process configuration based on recirculation of sonicated digestate to the biological reactor was evaluated at the lab-scale. Sonication tests were carried out at different applied energies ranging between 500 and 50,000kJ/kg TS. Batch anaerobic digestion tests were performed on samples prepared by mixing sonicated and untreated substrate at two different ratios (25:75 and 75:25 w/w). The results showed that when applied as a post-treatment of digestate, ultrasonication can positively affect the yield of anaerobic digestion, mainly due to the dissolution effect of complex organic molecules that have not been hydrolyzed by biological degradation. A good correlation was found between the CH4 production yield and the amount of soluble organic matter at the start of digestion tests. The maximum gain in biogas production was 30% compared to that attained with the unsonicated substrate, which was tentatively related to the type and concentration of the metabolic products. PMID:26586420

  13. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    SciTech Connect

    Yasuda, Kayo; Hartman, Philip S.; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  14. Interleukin-6 and leptin as markers of energy metabolic changes in advanced ovarian cancer patients.

    PubMed

    Macciò, Antonio; Madeddu, Clelia; Massa, Daniela; Astara, Giorgio; Farci, Daniele; Melis, Gian Benedetto; Mantovani, Giovanni

    2009-09-01

    The progression of the neoplastic disease is characterized by specific alterations of energy metabolism and by symptoms like fatigue, anorexia, nausea, anaemia, immunodepression and poor performance status (PS). The main cause of these symptoms and metabolic abnormalities is the chronic action of proinflammatory cytokines released both by tumour and immune cells. The present study aimed to assess the relationship between markers of inflammation (C-Reactive Protein, Fibrinogen, proinflammatory cytokines) and energy metabolic status (BMI, leptin, oxidative stress) according to clinical parameters in 104 ovarian cancer patients at different stage and, moreover, to evaluate prospectively the changes of these parameters in accordance to tumour response in a subgroup of 70 advanced stage ovarian cancer patients. Advanced stage and poor PS were associated to high-grade inflammation and impaired energy metabolism. Among inflammatory mediators, interleukin (IL)-6 had a central role as predictive factor of leptin, reactive oxygen species and glutathione peroxidase. In turn, leptin considered the key marker of the nutritional status and energy metabolism, was independently determined from stage and IL-6, not only from BMI. Moreover, the evaluation of the changes of these parameters during the course of the neoplastic disease in the subgroup of advanced ovarian cancer patients clearly unveils the central role of IL-6 and leptin as early markers of the metabolic alterations and symptoms associated to disease progression in advanced stage ovarian cancer. Their assessment should be included in monitoring disease outcome, especially when cancer is no longer curable and quality of life becomes the primary endpoint. PMID:18624749

  15. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis

    PubMed Central

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  16. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis.

    PubMed

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  17. Anaerobic bioprocessing of organic wastes.

    PubMed

    Verstraete, W; de Beer, D; Pena, M; Lettinga, G; Lens, P

    1996-05-01

    Anaerobic digestion of dissolved, suspended and solid organics has rapidly evolved in the last decades but nevertheless still faces several scientific unknowns. In this review, some fundamentals of bacterial conversions and adhesion are addressed initially. It is argued in the light of ΔG-values of reactions, and in view of the minimum energy quantum per mol, that anaerobic syntrophs must have special survival strategies in order to support their existence: redistributing the available energy between the partners, reduced end-product fermentation reactions and special cell-to-cell physiological interactions. In terms of kinetics, it appears that both reaction rates and residual substrate thresholds are strongly related to minimum ΔG-values. These new fundamental insights open perspectives for efficient design and operation of anaerobic bioprocesses. Subsequently, an overview is given of the current anaerobic biotechnology. For treating wastewaters, a novel and high performance new system has been introduced during the last decade; the upflow anaerobic sludge blanket system (UASB). This reactor concept requires anaerobic consortia to grow in a dense and eco-physiologically well-organized way. The microbial principles of such granular sludge growth are presented. Using a thermodynamic approach, the formation of different types of aggregates is explained. The application of this bioprocess in worldwide wastewater treatment is indicated. Due to the long retention times of the active biomass, the UASB is also suitable for the development of bacterial consortia capable of degrading xenobiotics. Operating granular sludge reactors at high upflow velocities (5-6 m/h) in expanded granular sludge bed (EGSB) systems enlarges the application field to very low strength wastewaters (chemical oxygen demand < 1 g/l) and psychrophilic temperatures (10°C). For the treatment of organic suspensions, there is currently a tendency to evolve from the conventional mesophilic

  18. Inhibition of anaerobic digestion process: a review.

    PubMed

    Chen, Ye; Cheng, Jay J; Creamer, Kurt S

    2008-07-01

    Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency. PMID:17399981

  19. [Effects of dichloroacetate in the ischemic heart. Analysis of hemodynamics, myocardial energy metabolism and myocardial pH].

    PubMed

    Mizushima, M

    1990-05-01

    The effects of dichloroacetate (DCA), which is known to have a beneficial effect on lactic acidosis, were examined on myocardial acidosis during coronary occlusion in dogs. Ischemia was induced by complete ligation of the left anterior descending coronary artery (LAD) of the open-chest dog heart. DCA 100 mg/kg or 200 mg/kg was administered intravenously 10 or 60 min prior to the occlusion of LAD. DCA did not change the LAD flow, decreased heart rate, increased both systolic and diastolic blood pressures transiently. LAD occlusion significantly increased the ST segment of the epicardial ECG in the saline-treated group. DCA administered prior to the LAD occlusion caused 50% decrease of the elevation in ST segment during ischemia. Ischemia accelerated anaerobic metabolism in the myocardium; the levels of glycogen, adenosine triphosphate (ATP) and creatine phosphate (CP) decreased, and lactate increased during ischemia. Calculated energy charge potential was decreased, and [( G6P] + [F6P])/[FDP] ratio was increased by ischemia. The decreased levels of glycogen, ATP, CP in DCA-treated group were similar to those in saline-treated group during 3 min ischemia. Pretreatment of DCA reduced the accumulation of myocardial lactate by ischemia. There were no differences in variables except myocardial lactate levels between DCA 100 mg/kg and 200 mg/kg. The myocardial lactate levels were lower in both nonischemic and ischemic dogs by DCA 200 mg/kg than DCA 100 mg/kg. DCA did not change either the ATP levels or energy charge potential during both ischemia and reperfusion. LAD occlusion caused a significant decrease of myocardial pH from 7.51 to 6.83 in saline-treated group, while it produced only a small decrease in DCA-treated group from 7.56 to 7.35.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379912

  20. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos.

    PubMed

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga; Arnemo, Jon M; Kindberg, Jonas; Josefsson, Johan; Newgard, Christopher B; Fröbert, Ole; Bäckhed, Fredrik

    2016-02-23

    Hibernation is an adaptation that helps many animals to conserve energy during food shortage in winter. Brown bears double their fat depots during summer and use these stored lipids during hibernation. Although bears seasonally become obese, they remain metabolically healthy. We analyzed the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear. PMID:26854221

  1. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control. PMID:25913466

  2. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

    PubMed

    Mauro, Claudio; Leow, Shi Chi; Anso, Elena; Rocha, Sonia; Thotakura, Anil K; Tornatore, Laura; Moretti, Marta; De Smaele, Enrico; Beg, Amer A; Tergaonkar, Vinay; Chandel, Navdeep S; Franzoso, Guido

    2011-10-01

    Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer. PMID:21968997

  3. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure

  4. Metabolic adaptation to decreases in energy intake due to changes in the energy cost of low energy expenditure regimen.

    PubMed

    Garby, L

    1990-01-01

    (1) The energy content in food is used in the human body for three main purposes. The first is to maintain the dissipative structures. Most of the structures of the body are of this kind, i.e. they represent stationary non-equilibrium states, or (generalized) stationary potentials, and are inherently unstable. The second is to maintain a body temperature independent of and usually higher than that of the surroundings. The third is to provide energy for performance of external work. The functional structure of the system providing these results consists of a large number of coupled processes (chemical reactions and translocations), in series and in parallel, whose general nature is well understood but whose quantitative extents are mainly unknown. The coupled processes are driven by the spontaneous reaction of the main substrates with oxygen. Energy flows through the system and is converted to heat (and external work) with simultaneous creation of stationary generalized potentials. For each potential there is an associated flow of energy and the relation between the two is an expression of the efficiency with which the potential is maintained. The processes giving rise to the potentials are likely to be controlled with respect to the efficiency with which the potentials are maintained. The control is partly provided through feedback from the potentials themselves: the potentials are regulated. In this way, the system can respond in a non-linear fashion to perturbations in the energy intake (or energy expenditure): the potentials are maintained at constant, or nearly constant, values. The concept of metabolic adaptation implies that control of the efficiency by feedback from the potentials is an important element in the overall regulation of the potentials, including that of the body temperature. (2) The concept of metabolic adaptation can be framed in such a way that it becomes operational. Quantities such as maintained potentials and efficiency can be revealed in

  5. Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising obesity rates have been linked to the consumption of energy-dense diets. We examined whether dietary energy density was associated with obesity and related disorders, including insulin resistance and the metabolic syndrome. We conducted a cross-sectional study using nationally representative ...

  6. An Integrative Approach to Energy Carbon and Redox Metabolism In Cyanobacterium Synechocystis

    SciTech Connect

    Dr. Ross Overbeek

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp.pcc6803 especially in interrelated arrears of photosynthesis respiration and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, IG, Inc. provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways functional roles and individual genes to support wet lab experiments by collaborators.

  7. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hype