Science.gov

Sample records for anaerobic thermophiles annual

  1. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  2. Anaerobic thermophiles.

    PubMed

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  3. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  4. The hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and similar anaerobic thermophiles. Annual technical progress report

    SciTech Connect

    Wiegel, J.

    1995-07-01

    A Xylanase was fractionated from Thermoanaerobacter ethanolicus, an ethanologenic thermophile, and the preparation so obtained was used to determined enzymatic parameters such as pH profile of enzyme activity. The ability of various mono- and di-saccharides as well as temperature variations to induce this enzyme activity were studied.

  5. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  6. Hemicellulases from anaerobic thermophiles. Progress report

    SciTech Connect

    Wiegel, J.

    1994-05-01

    The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

  7. THERMOPHILIC ANAEROBIC BIODEGRADATION OF PHENOLICS

    EPA Science Inventory

    The report gives results of a series of anaerobic microbial acclimation and treatment performance tests with synthetic phenolic substrates. The research is a feasibility level assessment of substituting anaerobic biodegradation of phenolics for solvent extraction. The tests showe...

  8. Thermophilic anaerobic digestion of high strength wastewaters

    SciTech Connect

    Wiegant, W.M.; Claassen, J.A.; Lettinga, G.

    1985-09-01

    Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/mT) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55C is comparable with that at 30C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors.

  9. Thermophilic anaerobic digestion of industrial orange waste.

    PubMed

    Kaparaju, P L N; Rintala, J A

    2006-06-01

    Thermophilic anaerobic digestion of industrial orange waste (pulp and peel) with subsequent aerobic post-treatment of the digestate was evaluated. Methane production potential was first determined in batch assays and the effects of operational parameters such as hydraulic retention times (HRT) and organic loading rates (OLR) on process performance were studied through semi-continuous digestion. In batch assays, methane production potential of about 0.49 m(3) kg(-1) volatile solids (VS)(added waste) was achieved. In semi-continuous digestion, loading at 2.8 kgVS m(-3) d(-1) (2.9 kg total solids (TS) m(-3) d(-1)) and HRT of 26 d produced specific methane yields of 0.6 m(3) kg(-1) VS (added waste) (0.63 m(3) kg(-1) VS(added waste)). Operating at a higher OLR of 4.2 kgVS m(-3) d(-1) (4.4 kg TS m(-3) d(-1)) and 40 d HRT produced 0.5 m(3) of methane kg(-1) VS (added waste) (0.63-0.52 m(3) kg(-1) TS (added waste). Up to 70% of TS of industrial orange waste (11.6% TS) was methanised. Further increase in OLR to 5.6 kg VS m(-3) d(-1) (5.9 kg TS m(-3) d(-1); HRT of 20 d) resulted in an unstable and non-functional digester process shown directly through complete cessation of methanogenesis, drop in methane content, reduced pH and increase in volatile fatty acid (VFA) concentrations, especially acetate and soluble chemical oxygen demand. A pH adjustment (from an initial 3.2 to ca. 8) for the low pH orange waste was necessary and was found to be a crucial factor for stable digester operation as the process showed a tendency to be inhibited due to accumulation of VFAs and decrease in digester pH. Aerobic post-treatment of digestate resulted in removal of ammonia and VFAs. PMID:16865918

  10. Removal of fecal coliforms by thermophilic anaerobic digestion processes.

    PubMed

    De León, C; Jenkins, D

    2002-01-01

    Recent U.S. EPA regulations (40 CFR Section 503) specify maximum concentrations of pathogens and metals for Class A wastewater treatment plant sludges. The most common sludge process is mesophilic (35 degrees C) digestion which stabilizes the solids, produces a combustible gas but does not create an effluent that meets the 503 Class A pathogen requirements. This investigation was conducted to determine whether anaerobic digestion processes incorporating a thermophilic stage could achieve 503 Class A pathogen levels. The research reported here was a bench-scale screening study meant to identify the most promising process alternatives for further investigation. Fecal Coliform (FC) concentrations were used to assess disinfection efficiency. Digesters were 30 L capacity fed semi-continuously in draw-fill mode. Digester startup was rapid to produce true thermophiles. Temperature staging and pH were assessed in 3 sets of experiments: Set 1 were one stage ("acid phase"), Set 2 were one stage ("acid + methane phases") and Set 3 were two stage ("acid phase" then "methanogenic phase"). Feed was a 1:1 mixture of Thickened Waste Activated Sludge and Primary Sludge. The following anaerobic digestion configurations and operating parameters allowed the production of digested sludge with a mean FC concentration statistically less than 10(3) (the regulatory value for Class A sludge): thermophilic single stage acid phase at 52 and 62 degrees C; thermophilic single stage acid + methane phase at 48 degrees C, 52 degrees C and 62 degrees C; two-stage mesophilic acid phase followed by mesophilic methane phase; two stage mesophilic acid phase followed by thermophilic methane phase at 48 degrees C, 52 degrees C and 62 degrees C. If the maximum digested FC concentration must be below 10(3) MPN/g TS then the following digester configurations and operating conditions will be compliant: two stage mesophilic acid phase followed by thermophilic methane phase at 52 degrees C and 62 degrees C

  11. Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification.

    PubMed Central

    Rainey, F A; Ward, N L; Morgan, H W; Toalster, R; Stackebrandt, E

    1993-01-01

    Small subunit rDNA sequences were determined for 20 species of the genera Acetogenium, Clostridium, Thermoanaerobacter, Thermoanaerobacterium, Thermoanaerobium, and Thermobacteroides, 3 non-validly described species, and 5 isolates of anaerobic thermophilic bacteria, providing a basis for a phylogenetic analysis of these organisms. Several species contain a version of the molecule significantly longer than that of Escherichia coli because of the presence of inserts. On the basis of normal evolutionary distances, the phylogenetic tree indicates that all bacteria investigated in this study with a maximum growth temperature above 65 degrees C form a supercluster within the subphylum of gram-positive bacteria that also contains Clostridium thermosaccharolyticum and Clostridium thermoaceticum, which have been previously sequenced. This supercluster appears to be equivalent in its phylogenetic depth to the supercluster of mesophilic clostridia and their nonspore-forming relatives. Several phylogenetically and phenotypically coherent clusters that are defined by sets of signature nucleotides emerge within the supercluster of thermophiles. Clostridium thermobutyricum and Clostridium thermopalmarium are members of Clostridium group I. A phylogenetic tree derived from transversion distances demonstrated the artificial clustering of some organisms with high rDNA G+C moles percent, i.e., Clostridium fervidus and the thermophilic, cellulolytic members of the genus Clostridium. The results of this study can be used as an aid for future taxonomic restructuring of anaerobic sporogenous and asporogenous thermophillic, gram-positive bacteria. PMID:7687600

  12. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    PubMed

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  13. Rapid start-up of thermophilic anaerobic digestion with the turf fraction of MSW as inoculum.

    PubMed

    Suwannoppadol, Suwat; Ho, Goen; Cord-Ruwisch, Ralf

    2011-09-01

    This study aims to determine suitable start-up conditions and inoculum sources for thermophilic anaerobic digestion. Within days of incubation MSW at 55°C, methane was produced at a high rate. In an attempt to narrow down which components of typical MSW contained the thermophilic methanogens, vacuum cleaner dust, banana peel, kitchen waste, and garden waste were tested as inoculum for thermophilic methanogenesis with acetate as the substrate. Results singled out grass turf as the key source of thermophilic acetate degrading methanogenic consortia. Within 4 days of anaerobic incubation (55°C), anaerobically incubated grass turf samples produced methane accompanied by acetate degradation enabling successful start-up of thermophilic anaerobic digestion. Other essential start-up conditions are specified. Stirring of the culture was not conducive for successful start-up as it resulted specifically in propionate accumulation. PMID:21723117

  14. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    PubMed

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

  15. Kinetics of thermophilic anaerobes in fixed-bed reactors.

    PubMed

    Perez, M; Romero, L I; Sales, D

    2001-08-01

    The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor. PMID:11513409

  16. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion.

    PubMed

    Popat, Sudeep C; Yates, Marylynn V; Deshusses, Marc A

    2010-12-01

    Thermophilic anaerobic sludge digestion is a promising process to divert waste to beneficial use, but an important question is the required temperature and holding time to achieve a given degree of pathogen inactivation. In this study, the kinetics of inactivation of Ascaris suum and vaccine strain poliovirus type 1 (PVS-1), selected as indicators for helminth ova and enteric viruses respectively, were determined during anaerobic digestion at temperatures ranging from 51 to 56 °C. Inactivation of both indicator organisms was fast with greater than two log reductions achieved within 2 h for A. suum and three log reductions for PVS-1, suggesting that the current U.S. regulations are largely conservative. The first-order inactivation rate constants k followed Arrhenius relationship with activation energies of 105 and 39 KJ mol(-1) for A. suum and PVS-1, respectively indicating that A. suum was more sensitive to temperature. Although inactivation was fast, the presence of compounds in the sludge that are known to be protective of pathogen inactivation was observed, suggesting that composition-dependent time-temperature relationships are necessary. PMID:20692678

  17. Diversity of Cultured Thermophilic Anaerobes in Hot Springs of Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Lin, L.; Lu, Y.; Dong, X.; Liu, X.; Wei, Y.; Ji, X.; Zhang, C.

    2010-12-01

    Thermophilic anaerobes including Archaea and Bacteria refer to those growing optimally at temperatures above 50°C and do not use oxygen as the terminal electron acceptor for growth. Study on thermophilic anaerobes will help to understand how life thrives under extreme conditions. Meanwhile thermophilic anaerobes are of importance in potential application and development of thermophilic biotechnology. We have surveyed culturable thermophilic anaerobes in hot springs (pH6.5-7.5; 70 - 94°C) in Rehai of Tengchong, Bangnazhang of Longlin, Eryuan of Dali,Yunnan, China. 50 strains in total were cultured from the hot springs water using Hungate anaerobic technique, and 30 strains were selected based on phenotypic diversity for analysis of 16S rDNA sequences. Phylogenetic analysis showed that 28 strains belonged to the members of five genera: Caldanaerobacter, Calaramator, Thermoanaerobacter, Dictyoglomus and Fervidobacterium, which formed five branches on the phylogenetic tree. Besides, 2 strains of methanogenic archaea were obtained. The majority of the isolates were the known species, however, seven strains were identified as novel species affiliated to the five genera based on the lower 16S rDNA sequence similarities (less than 93 - 97%) with the described species. This work would provide the future study on their diversity, distribution among different regions and the potential application of thermophilic enzyme. Supported by State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences(SKLMR-080605)and the Foundation of State Natural Science (30660009, 30960022, 31081220175).

  18. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae

    PubMed Central

    Pace, Laura A.; Ward, Lewis M.; Fischer, Woodward W.

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  19. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Pace, Laura A; Hemp, James; Ward, Lewis M; Fischer, Woodward W

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  20. Carbohydrate Transport by the Anaerobic Thermophile Clostridium thermocellum LQRI

    PubMed Central

    Strobel, H. J.; Caldwell, F. C.; Dawson, K. A.

    1995-01-01

    Clostridium thermocellum is an anaerobic thermophilic bacterium which degrades cellulose and ferments the resulting glucose, cellobiose, and cellodextrins predominantly to ethanol. However, relatively little information was available on carbohydrate uptake by this bacterium. Washed cells internalized intact oligomers as large as cellopentaose. Since cellobiose and cellodextrin phosphorylase activities were detected in the cytosol and were not associated with cell membranes, phosphorylation of carbohydrates occurred intracellularly. Kinetic studies indicated that cellobiose and larger cellodextrins were taken up by a common uptake system while glucose entered via a separate mechanism. When cells were treated with metabolic inhibitors including iodoacetate and arsenate, the uptake of radiolabeled glucose or cellobiose was reduced by as much as 90%, and this reduction was associated with a 95% decline in intracellular ATP content. A combination of the ionophores nigericin and valinomycin abolished the proton-motive force but only slightly decreased transport and ATP. These results suggested that the two modes of carbohydrate transport in C. thermocellum were ATP dependent. This work is the first demonstration of cellodextrin transport by a cellulolytic bacterium. PMID:16535164

  1. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  2. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    SciTech Connect

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  3. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems.

    PubMed

    Marneri, Matina; Mamais, Daniel; Koutsiouki, Efi

    2009-04-14

    The scope of the study presented in this paper is to determine the fate of the filamentous bacteria Gordona amarae and Microthrix parvicella in anaerobic digestion operating under mesophilic and thermophilic conditions. In order to detect and quantify foaming bacteria in the anaerobic digesters, a fluorescent in situ hybridization (FISH) method was developed and applied. This paper presents the results of a laboratory-scale study that involved the operation of four lab-scale anaerobic digestion systems operating in the mesophilic (35 degrees C) and thermophilic (55 degrees C) temperature ranges at 20 days' detention time. According to the FISH counts of G. amarae and M. parvicella, it appears that thermophilic conditions resulted in a higher destruction of both filamentous bacteria, averaging approximately 97% and 94% for the single thermophilic digester and the dual thermophilic/mesophilic system, respectively. Within the context of this study, the overall performance of the four different anaerobic digestion systems was evaluated in terms of biogas production per mass of volatile solids destroyed, COD destruction, sludge dewaterability and foaming characteristics. The dual stage systems used in this study outperformed the single stage digesters. PMID:19507434

  4. Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp.

    PubMed

    Tukacs-Hájos, Annamária; Pap, Bernadett; Maróti, Gergely; Szendefy, Judit; Szabó, Piroska; Rétfalvi, Tamás

    2014-08-01

    Anaerobe fermentation of sugar beet pressed pulp was investigated in pilot-scale digesters. Thermophilic adaptation of mesophilic culture was monitored using chemical analysis and metagenomic characterization of the sludge. Temperature adaptation was achieved by increasing the temperature gradually (2 °C day(-1)) and by greatly decreasing the OLR. During stable run, the OLR was increased gradually to 11.29 kg VS m(-3)d(-1) and biogas yield was 5% higher in the thermophilic reactor. VFA levels increased in the thermophilic reactor with increased OLR (acetic acid 646 mg L(-1), propionic acid 596 mg L(-1)), then VFA decreased and the operation was manageable beside the relative high tVFA (1300-2000 mg L(-1)). The effect of thermophilic adaptation on the microbial communities was studied using a sequencing-based metagenomic approach. Connections between physico-chemical parameters and populations of bacteria and methanogen archaea were revealed. PMID:24926601

  5. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION. PHASE 2. STEADY STATE STUDIES

    EPA Science Inventory

    A study was conducted of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

  6. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    PubMed

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  7. [Effect of substrate concentration on pathogen indicators inactivation during thermophilic anaerobic digestion].

    PubMed

    Cao, Hong-Qing; Zhang, Fei-Fei; Li, Jian; Tong, Zi-Lin; Hu, Zhen-Hu

    2014-03-01

    Because excess sludge contains high density of pathogens, it has to be treated to reduce pathogens before being disposed for land application. In this study, the effect of substrate concentration on pathogen inactivation during thermophilic anaerobic digestion was investigated. The results show that, with the increase of substrate concentration, VFAs and cumulative methane production increased. The density of total coliforms in the suspension liquid has a 2.0-3.0 orders of magnitude decline and fecal coliforms has 1.8-3.3 orders of magnitude decline after 28 days thermophilic anaerobic digestion at substrate concentration of 28-84 g x L(-1) and temperature of 55 degrees C. More than 99% of total coliforms and fecal coliforms have been killed after 28 days digestion. Salmonella spp. was not detected in the suspension and solid after anaerobic digestion. When substrate concentration was higher than 45 g x L(-1), the inactivation of total coliforms and fecal coliforms declined. PMID:24881391

  8. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge.

    PubMed

    Li, Qian; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki; Shofie, Mohammad; Li, Yu-You

    2015-02-01

    This study was conducted to characterize the kinetics of an anaerobic process (hydrolysis, acetogenesis, acidogenesis and methanogenesis) under thermophilic (55 °C) and mesophilic (35 °C) conditions with coffee grounds and waste activated sludge (WAS) as the substrates. Special focus was given to the kinetics of propionic acid degradation to elucidate the accumulation of VFAs. Under the thermophilic condition, the methane production rate of all substrates (WAS, ground coffee and raw coffee) was about 1.5 times higher than that under the mesophilic condition. However, the effects on methane production of each substrate under the thermophilic condition differed: WAS increased by 35.8-48.2%, raw coffee decreased by 76.3-64.5% and ground coffee decreased by 74.0-57.9%. Based on the maximum reaction rate (Rmax) of each anaerobic stage obtained from the modified Gompertz model, acetogenesis was found to be the rate-limiting step for coffee grounds and WAS. This can be explained by the kinetics of propionate degradation under thermophilic condition in which a long lag-phase (more than 18 days) was observed, although the propionate concentration was only 500 mg/L. Under the mesophilic condition, acidogenesis and hydrolysis were found to be the rate-limiting step for coffee grounds and WAS, respectively. Even though reducing the particle size accelerated the methane production rate of coffee grounds, but did not change the rate-limiting step: acetogenesis in thermophilic and acidogenesis in mesophilic. PMID:25534040

  9. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    SciTech Connect

    Hamilton-Brehm, Scott; Vishnivetskaya, Tatiana A; Allman, Steve L; Mielenz, Jonathan R; Elkins, James G

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  10. Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions.

    PubMed

    Cea-Barcia, Glenda; Moreno, Gloria; Buitrón, Germán

    2015-01-01

    The anaerobic digestion of mixed indigenous microalgae, grown in a secondary effluent, was evaluated in batch tests at mesophilic (35°C) and thermophilic (50°C) conditions. Under mesophilic conditions, specific methane production varied from 178 to 207 mL CH4/g volatile solids (VS) and the maximum production rate varied from 8.8 to 26.1 mL CH4/(gVS day), depending on the type of microalgae culture. Lower methane parameters were observed in those cultures where Scenedesmus represents more than 95% of the microalge. The culture with the lowest digestion performances under mesophilic conditions was studied under thermophilic conditions. The increase in the incubation temperature significantly increased the specific methane production (390 mL CH4/g VS) and rate (26.0 mL CH4/(gVS day)). However, under thermophilic conditions a lag period of 30 days was observed. PMID:26465311

  11. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge.

    PubMed

    Gagliano, M C; Braguglia, C M; Gallipoli, A; Gianico, A; Rossetti, S

    2015-05-01

    Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon-Weaver diversity (H') and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations. PMID:24875310

  12. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  13. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge.

    PubMed

    Coelho, Nuno Miguel Gabriel; Droste, Ronald L; Kennedy, Kevin J

    2011-04-01

    The effects of microwave (MW) pretreatment, staging and digestion temperature on anaerobic digestion were investigated in a setup of ten reactors. A mesophilic reactor was used as a control. Its performance was compared to single-stage mesophilic and thermophilic reactors treating pretreated and non-pretreated sludge, temperature-phased (TPAD) thermophilic-mesophilic reactors treating pretreated and non-pretreated sludge and thermophilic-thermophilic reactors also treating pretreated and non-pretreated sludge. Four different sludge retention times (SRTs) (20, 15, 10 and 5 d) were tested for all reactors. Two-stage thermo-thermo reactors treating pretreated sludge produced more biogas than all other reactors and removed more volatile solids. Maximum volatile solids (VS) removal was 53.1% at an SRT of 15 d and maximum biogas increase relative to control was 106% at the shortest SRT tested. Both the maximum VS removal and biogas relative increase were measured for a system with thermophilic acidogenic reactor and thermophilic methanogenic reactor. All the two-stage systems treating microwaved sludge produced sludge free of pathogen indicator bacteria, at all tested conditions even at a total system SRT of only 5 d. MW pretreatment and staging reactors allowed the application of very short SRT (5 d) with no significant decrease in performance in terms of VS removal in comparison with the control reactor. MW pretreatment caused the solubilization of organic material in sludge but also allowed more extensive hydrolysis of organic material in downstream reactors. The association of MW pretreatment and thermophilic operation improves dewaterability of digested sludge. PMID:21470653

  14. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes. PMID:16180412

  15. Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion.

    PubMed

    Rivera-Salvador, Víctor; López-Cruz, Irineo L; Espinosa-Solares, Teodoro; Aranda-Barradas, Juan S; Huber, David H; Sharma, Deepak; Toledo, J Ulises

    2014-09-01

    A molecular analysis found that poultry litter anaerobic digestion was dominated by hydrogenotrophic methanogens which suggests that bacterial acetate oxidation is the primary pathway in the thermophilic digestion of poultry litter. IWA Anaerobic Digestion Model No. 1 (ADM1) was modified to include the bacterial acetate oxidation process in the thermophilic anaerobic digestion (TAD). Two methods for ADM1 parameter estimation were applied: manual calibration with non-linear least squares (MC-NLLS) and an automatic calibration using differential evolution algorithms (DEA). In terms of kinetic parameters for acetate oxidizing bacteria, estimation by MC-NLLS and DEA were, respectively, km 1.12 and 3.25 ± 0.56 kg COD kg COD(-1)d(-1), KS 0.20 and 0.29 ± 0.018 kg COD m(-3) and Yac-st 0.14 and 0.10 ± 0.016 kg COD kg COD(-1). Experimental and predicted volatile fatty acids and biogas composition were in good agreement. Values of BIAS, MSE or INDEX demonstrate that both methods (MC-NLLS and DEA) increased ADM1 accuracy. PMID:25011081

  16. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    PubMed

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

  17. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen. PMID:26564276

  18. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste.

    PubMed

    Sasaki, Daisuke; Hori, Tomoyuki; Haruta, Shin; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2011-01-01

    The methanogenic pathway and microbial community in a thermophilic anaerobic digestion process of organic solid waste were investigated in a continuous-flow stirred-tank reactor using artificial garbage slurry as a feedstock. The decomposition pathway of acetate, a significant precursor of CH(4) and a key intermediate metabolite in the anaerobic digestion process, was analyzed by using stable isotopes. A tracer experiment using (13)C-labeled acetate revealed that approximately 80% of the acetate was decomposed via a non-aceticlastic oxidative pathway, whereas the remainder was converted to methane via an aceticlastic pathway. Archaeal 16S rRNA analyses demonstrated that the hydrogenotrophic methanogens Methanoculleus spp. accounted for >90% of detected methanogens, and the aceticlastic methanogens Methanosarcina spp. were the minor constituents. The clone library targeting bacterial 16S rRNA indicated the predominance of the novel Thermotogales bacterium (relative abundance: ~53%), which is related to anaerobic acetate oxidizer Thermotoga lettingae TMO, although the sequence similarity was low. Uncultured bacteria that phylogenetically belong to municipal solid waste cluster I were also predominant in the microflora (~30%). These results imply that the microbial community in the thermophilic degrading process of organic solid waste consists exclusively of unidentified bacteria, which efficiently remove acetate through a non-aceticlastic oxidative pathway. PMID:20851673

  19. Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability?

    PubMed

    Labatut, Rodrigo A; Angenent, Largus T; Scott, Norman R

    2014-04-15

    A long-term comparative study using continuously-stirred anaerobic digesters (CSADs) operated at mesophilic and thermophilic temperatures was conducted to evaluate the influence of the organic loading rate (OLR) and chemical composition on process performance and stability. Cow manure was co-digested with dog food, a model substrate to simulate a generic, multi-component food-like waste and to produce non-substrate specific, composition-based results. Cow manure and dog food were mixed at a lower - and an upper co-digestion ratio to produce a low-fiber, high-strength substrate, and a more recalcitrant, lower-strength substrate, respectively. Three increasing OLRs were evaluated by decreasing the CSADs hydraulic retention time (HRT) from 20 to 10 days. At longer HRTs and lower manure-to-dog food ratio, the thermophilic CSAD was not stable and eventually failed as a result of long-chain fatty acid (LCFA) accumulation/degradation, which was triggered by the compounded effects of temperature on reaction rates, mixing intensity, and physical state of LCFAs. At shorter HRTs and upper manure-to-dog food ratio, the thermophilic CSAD marginally outperformed the biomethane production rates and substrate stabilization of the mesophilic CSAD. The increased fiber content relative to lipids at upper manure-to-dog food ratios improved the stability and performance of the thermophilic process by decreasing the concentration of LCFAs in solution, likely adsorbed onto the manure fibers. Overall, results of this study show that stability of the thermophilic co-digestion process is highly dependent on the influent substrate composition, and particularly for this study, on the proportion of manure to lipids in the influent stream. In contrast, mesophilic co-digestion provided a more robust and stable process regardless of the influent composition, only with marginally lower biomethane production rates (i.e., 7%) for HRTs as short as 10 days (OLR = 3 g VS/L-d). PMID:24530545

  20. Performance optimization and validation of ADM1 simulations under anaerobic thermophilic conditions.

    PubMed

    Atallah, Nabil M; El-Fadel, Mutasem; Ghanimeh, Sophia; Saikaly, Pascal; Abou-Najm, Majdi

    2014-12-01

    In this study, two experimental sets of data each involving two thermophilic anaerobic digesters treating food waste, were simulated using the Anaerobic Digestion Model No. 1 (ADM1). A sensitivity analysis was conducted, using both data sets of one digester, for parameter optimization based on five measured performance indicators: methane generation, pH, acetate, total COD, ammonia, and an equally weighted combination of the five indicators. The simulation results revealed that while optimization with respect to methane alone, a commonly adopted approach, succeeded in simulating methane experimental results, it predicted other intermediary outputs less accurately. On the other hand, the multi-objective optimization has the advantage of providing better results than methane optimization despite not capturing the intermediary output. The results from the parameter optimization were validated upon their independent application on the data sets of the second digester. PMID:25463805

  1. Effect of oxygen on the microbial activities of thermophilic anaerobic biomass.

    PubMed

    Pedizzi, C; Regueiro, L; Rodriguez-Verde, I; Lema, J M; Carballa, M

    2016-07-01

    Low oxygen levels (μgO2L(-1)) in anaerobic reactors are quite common and no relevant consequences are expected. On the contrary, higher concentrations could affect the process. This work aimed to study the influence of oxygen (4.3 and 8.8mgO2L(-1), respectively) on the different microbial activities (hydrolytic, acidogenic and methanogenic) of thermophilic anaerobic biomass and on the methanogenic community structure. Batch tests in presence of oxygen were conducted using specific substrates for each biological activity and a blank (with minimum oxygen) was included. No effect of oxygen was observed on the hydrolytic and acidogenic activities. In contrast, the methane production rate decreased by 40% in all oxygenated batches and the development of active archaeal community was slower in presence of 8.8mgO2L(-1). However, despite this sensitivity of methanogens to oxygen at saturation levels, the inhibition was reversible. PMID:27020398

  2. Keratin Degradation by Fervidobacterium pennavorans, a Novel Thermophilic Anaerobic Species of the Order Thermotogales

    PubMed Central

    Friedrich, A. B.; Antranikian, G.

    1996-01-01

    From a hot spring of the Azores islands a novel thermophilic bacterium belonging to the Thermotogales order was isolated. This strain, which grows optimally at 70(deg)C and pH 6.5, is the first known extreme thermophile that is able to degrade native feathers at high temperatures. The enzyme system converts feather meal to amino acids and peptides. On the basis of physiological, morphological, and 16S rDNA studies the new isolate was found to be a member of the Thermotogales order and was identified as Fervidobacterium pennavorans. The strain was highly related to Fervidobacterium islandicum and Fervidobacterium pullulanolyticum. The cell-bound keratinolytic enzyme system was purified 32-fold by detergent treatment with CHAPS (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was characterized as a serine protease with a molecular mass of 130 kDa and an isoelectric point of 3.8. Optimal activity was measured at 80(deg)C and pH 10.0. Furthermore, 19 anaerobic thermophilic archaea and bacteria belonging to the orders Thermococcales, Thermoproteales, Thermotogales, and Clostridiales (growth temperatures between 60 and 105(deg)C) were tested for their abilities to grow on feathers and produce heat-stable keratinolytic enzymes. None of the tested extremophilic microorganisms was able to attack the substrate in a native form. PMID:16535379

  3. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    PubMed

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2015-01-01

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures. PMID:25459798

  4. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    PubMed

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes. PMID:24906832

  5. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures.

    PubMed

    Pandey, Pramod K; Soupir, Michelle L

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  6. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology.

    PubMed

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-09-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH₄) yield, as well as better percentage of ultimate CH₄ yield retrieved and lower residual CH₄ emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  7. Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge.

    PubMed

    Hidaka, Taira; Wang, Feng; Togari, Taketo; Uchida, Tsutomu; Suzuki, Yutaka

    2013-12-01

    In local cities, many small sewage and waste treatment facilities are operated independently. To encourage processing by anaerobic digestion at a centralized sewage treatment plant (STP), high-solid sewage sludge is helpful because it reduces the energy and cost required for transporting the sludge from other STPs. Mesophilic and thermophilic anaerobic digestion of sewage sludge at total solids concentrations (TS) of 7.5% and 10% were evaluated using laboratory-scale continuous reactors. Under the mesophilic condition, sewage sludge of 10% TS was successfully treated. Under the thermophilic condition, sewage sludge of 7.5% TS was not successfully treated when the total ammonia concentration was over 2000 mg N/L. Batch experiments showed that it takes a few weeks for the methane fermentation activity to recover after being inhibited. The effectiveness of adding easily biodegradable organic matter was confirmed. These results show that high-solid sewage sludge is suitable for small facilities by controlling the operating conditions. PMID:24096284

  8. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite.

    PubMed

    Angelidaki, I; Petersen, S P; Ahring, B K

    1990-07-01

    The effect of bentonite-bound oil on thermophilic anaerobic digestion of cattle manure was investigated. In digestor experiments, addition of oil was found to be inhibitory during start-up and the inhibitory effect was less pronounced when the oil was added in the form of bentonite-bound oil compared to when the oil was added alone. After adaptation of the digestors, very rapid degradation of oil was observed and more than 80% of the oil was degraded within a few hours after daily feeding. In batch experiments, glyceride trioleate was found to be inhibitory to thermophilic anaerobic digestion when the concentrations were higher than 2.0 g/l. However, addition of bentonite (a clay mineral) at concentrations of 0.15% and 0.45% was found to partly overcome this inhibition. Addition of calcium chloride in concentration of 3 mM (0.033% w/v) showed a similar positive effect on the utilization of oil, but the effect was lower than with bentonite. PMID:1366749

  9. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology

    PubMed Central

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-01-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m3 and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  10. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge.

    PubMed

    Ziemba, Christopher; Peccia, Jordan

    2011-10-15

    The potential for anaerobic digester energy production must be balanced with the sustainability of reusing the resultant biosolids for land application. Mesophilic, thermophilic, temperature-phased, and high temperature (60 or 70 °C) batch pre-treatment digester configurations have been systematically evaluated for net energy production and pathogen inactivation potential. Energy input requirements and net energy production were modeled for each digester scheme. First-order inactivation rate coefficients for Escherichia coli, Enterococcus faecalis and bacteriophage MS-2 were measured at each digester temperature and full-scale pathogen inactivation performance was estimated for each indicator organism and each digester configuration. Inactivation rates were found to increase dramatically at temperatures above 55 °C. Modeling full-scale performance using retention times based on U.S. EPA time and temperature constraints predicts a 1-2 log inactivation in mesophilic treatment, and a 2-5 log inactivation in 50-55 °C thermophilic and temperature-phased treatments. Incorporating a 60 or 70 °C batch pre-treatment phase resulted in dramatically higher potency, achieving MS-2 inactivation of 14 and 16 logs respectively, and complete inactivation (over 100 log reduction) of E. coli and E. faecalis. For temperatures less than 70 °C, viability staining of thermally-treated E. coli showed significantly reduced inactivation relative to standard culture enumeration. Due to shorter residence times in thermophilic reactors, the net energy production for all digesters was similar (less than 20% difference) with the 60 or 70 °C batch treatment configurations producing the most net energy and the mesophilic treatment producing the least. Incorporating a 60 or 70 °C pre-treatment phase can dramatically increase pathogen inactivation performance without decreasing net energy capture from anaerobic digestion. Energy consumption is not a significant barrier against

  11. [Pilot study of thermal treatment/thermophilic anaerobic digestion process treating waste activated sludge of high solid content].

    PubMed

    Wu, Jing; Wang, Guang-qi; Cao, Zhi-ping; Li, Zhong-hua; Hu, Yu-ying; Wang, Kai-jun; Zu, Jian-e

    2014-09-01

    A pilot-scale experiment about the process of "thermal pretreatment at 70°C/thermophilic anaerobic digestion" of waste activated sludge of high solid content (8% -9% ) was conducted. The process employed thermal treatment of 3 days to accelerate the hydrolysis and thermophilic digestion to enhance anaerobic reaction. Thus it was good at organic removal and stabilization. When the solid retention time (SRT) was longer than 20 days, the VSS removal rate was greater than 42. 22% and it was linearly correlated to the SRT of the aerobic digestion with the R2 of 0. 915 3. It was suggested that SRT of anaerobic digestion was 25 days in practice. VSS removal rate and biogas production rate of the pilot experiment were similar to those of the run-well traditional full-scale sludge anaerobic digestion plants (solid content 3% -5% ) and the plant of high solid content using German technique. PMID:25518666

  12. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping.

    PubMed

    Yabu, Hironori; Sakai, Chikako; Fujiwara, Tomoko; Nishio, Naomichi; Nakashimada, Yutaka

    2011-03-01

    To avoid the inhibition of methane production by ammonia that occurs during the degradation of garbage, anaerobic digestion with prior ammonia production and subsequent stripping was investigated. In the ammonia production phase, the maximum ammonia concentration was approximately 2800 mg N/kg of total wet sludge in the range of 4 days of sludge retention time, indicating that only 43% of total nitrogen in the model garbage was converted to ammonia. The model garbage from which ammonia was produced and stripped was subjected to semi-continuous thermophilic dry anaerobic digestion over 180 days. The gas yield was in the range of 0.68 to 0.75 Nm(3)/kg volatile solid, and it decreased with the decrease of the sludge retention time. The ammonia-nitrogen concentration in the sludge was kept below 3000 mg N/kg total wet sludge. Microbial community structure analysis revealed that the phylum Firmicutes dominated in the ammonia production, but the community structure changed at different sludge retention times. In dry anaerobic digestion, the dominant bacteria shifted from the phylum Thermotogae to Firmicutes. The dominant archaeon was the genus Methanothermobacter, but the ratio of Methanosarcina increased during the process of dry anaerobic digestion. PMID:21094085

  13. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  14. Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    PubMed Central

    Ji, Yuetong; He, Zhili; Pu, Yunting; Zhou, Jizhong; Xu, Jian

    2010-01-01

    Background Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. Methodology/Principal Findings Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6×102 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. Conclusions/Significance In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically. PMID:20838444

  15. Effect of fillers on key characteristics of sludge thermophilic anaerobic digestion.

    PubMed

    Shao, Liming; Xu, Yuanshun; Wang, Tianfeng; Lü, Fan; He, Pinjing

    2015-10-01

    In anaerobic digestion (AD) of sludge, AD efficiency and digested sludge (DS) dewaterability are critical factors. In this study, polyester non-woven fabric fillers were integrated into a sludge digester. The effect of such fillers on digestion was investigated in thermophilic temperature range in semi-continuous mode. Methane production of filler system and control reactor were significantly different (P < 0.05, paired t-test). At hydraulic retention times of 18 days and 12 days, the corresponding methane yields from filler system were 140% and 161%, respectively, of the yields from control digester without filler. Improvement of DS dewaterability was uncertain during 110 days of operation. While after a longer period of digestion, filler system resulted in a lower normalized capillary suction time of DS (76.5 ± 21.6 s L/g total suspended solids) than control reactor (118.7 ± 32.9 s L/g total suspended solids). The results showed that the filler could improve thermophilic AD performance, except at too short hydraulic retention times. PMID:26151853

  16. Comparison of non-agitated and agitated batch, thermophilic anaerobic digestion of sugarbeet tailings.

    PubMed

    Tian, Zhuoli; Chauliac, Diane; Pullammanappallil, Pratap

    2013-02-01

    Sugar beet tailings were anaerobically digested at non-agitated and agitated conditions in identical thermophilic batch reactors. The average methane yield in the agitated digester was only 74% of that in the non-agitated digester. Ninety percent of the ultimate methane yield was produced in approximately 5 days in the non-agitated digester whereas it took 12 days in agitated digester. Even upon using an active inoculum from non-agitated digester the methane rate and yield was low in the agitated digester. On the other hand when the poorly performing inoculum from the agitated digester was transferred to the non-agitated digester, its activity was immediately enhanced. The non-agitated digester harbored a diverse microbial community with phylotypes Methanoculleus and Methanosarcina being dominant methanogens. Methanosaeta was the only methanogen detected in the agitated digester. It also contained a hydrogen-producing bacterial phylotype Petrotoga in high proportion which was not detected in the other digester. PMID:23262019

  17. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.

    PubMed

    Kimura, Zen-ichiro; Kita, Akihisa; Iwasaki, Yuki; Nakashimada, Yutaka; Hoshino, Tamotsu; Murakami, Katsuji

    2016-03-01

    Moorella thermoacetica is an anaerobic thermophilic acetogen that is capable of fermenting sugars, H(2)/CO(2) and syngas (H(2)/CO). For this reason, this bacterium is potentially useful for biotechnology applications, particularly the production of biofuel from CO(2). A soil isolate of M. thermoacetica, strain Y72, produces both ethanol and acetate from H(2)/CO(2); however, the maximum concentrations of these two products are too low to enable commercialization of the syngas fermentation process. In the present study, glycerol was identified as a novel electron sink among the fermentation products of strain Y72. Notably, a 1.5-fold increase in the production of ethanol (1.4 mM) was observed in cultures supplemented with glycerol during syngas fermentation. This discovery is expected to aid in the development of novel methods that allow for the regulation of metabolic pathways to direct and increase the production of desirable fermentative compounds. PMID:26452417

  18. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions.

    PubMed

    Shi, Jian; Wang, Zhongjiang; Stiverson, Jill A; Yu, Zhongtang; Li, Yebo

    2013-05-01

    Reactor performance and microbial community dynamics were investigated during solid state anaerobic digestion (SS-AD) of corn stover at mesophilic and thermophilic conditions. Thermophilic SS-AD led to faster and greater reductions of cellulose and hemicelluloses during the first 12 days compared to mesophilic SS-AD. However, accumulation of volatile fatty acids (VFAs) was 5-fold higher at thermophilic than mesophilic temperatures, resulting in a large pH drop during days 6-12 in the thermophilic reactors. Culture-based enumeration revealed 10-50 times greater populations of cellulolytic and xylanolytic microbes during thermophilic SS-AD than mesophilic SS-AD. DGGE analysis of PCR amplified 16S rRNA genes showed dynamic shifts, especially during the thermophilic SS-AD, of bacterial and archaeal communities over the 38 days of SS-AD as a result of acclimation of the initial seed microbial consortia to the lignocellulosic feedstock. The findings of this study can guide future studies to improve efficiency and stability of SS-AD. PMID:23567733

  19. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    PubMed

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus. PMID:25921720

  20. Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste.

    PubMed

    Kim, Hyun-Woo; Shin, Hang-Sik; Han, Sun-Kee; Oh, Sae-Eun

    2007-03-01

    This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste. PMID:17385597

  1. Detection of Putatively Thermophilic Anaerobic Methanotrophs in Diffuse Hydrothermal Vent Fluids

    PubMed Central

    Huber, Julie A.; Chernyh, Nikolay A.; Bonch-Osmolovskaya, Elizaveta A.; Lebedinsky, Alexander V.

    2013-01-01

    The anaerobic oxidation of methane (AOM) is carried out by a globally distributed group of uncultivated Euryarchaeota, the anaerobic methanotrophic arachaea (ANME). In this work, we used G+C analysis of 16S rRNA genes to identify a putatively thermophilic ANME group and applied newly designed primers to study its distribution in low-temperature diffuse vent fluids from deep-sea hydrothermal vents. We found that the G+C content of the 16S rRNA genes (PGC) is significantly higher in the ANME-1GBa group than in other ANME groups. Based on the positive correlation between the PGC and optimal growth temperatures (Topt) of archaea, we hypothesize that the ANME-1GBa group is adapted to thrive at high temperatures. We designed specific 16S rRNA gene-targeted primers for the ANME-1 cluster to detect all phylogenetic groups within this cluster, including the deeply branching ANME-1GBa group. The primers were successfully tested both in silico and in experiments with sediment samples where ANME-1 phylotypes had previously been detected. The primers were further used to screen for the ANME-1 microorganisms in diffuse vent fluid samples from deep-sea hydrothermal vents in the Pacific Ocean, and sequences belonging to the ANME-1 cluster were detected in four individual vents. Phylotypes belonging to the ANME-1GBa group dominated in clone libraries from three of these vents. Our findings provide evidence of existence of a putatively extremely thermophilic group of methanotrophic archaea that occur in geographically and geologically distinct marine hydrothermal habitats. PMID:23183981

  2. Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass.

    PubMed

    Sheets, Johnathon P; Ge, Xumeng; Li, Yebo

    2015-03-01

    Switchgrass is an attractive feedstock for biogas production via anaerobic digestion (AD). Many studies have used switchgrass for liquid anaerobic digestion (L-AD), but few have used switchgrass for solid-state anaerobic digestion (SS-AD). Limited air exposure to the reactor headspace has been adopted in commercial scale anaerobic digesters for different applications. However, little research has examined the effect of limited air exposure on biogas production during SS-AD. In this study, the effects of air exposure and total solids (TS) content on SS-AD performance were evaluated under mesophilic (36±1°C) and thermophilic (55±0.3°C) conditions. Limited air exposure did not significantly influence the methane yield during SS-AD. Thermophilic SS-AD had greater methane yields (102-145LCH4kg(-1)VSadded) than mesophilic SS-AD (88-113LCH4kg(-1)VSadded). Both mesophilic SS-AD (73-136GJ) and thermophilic SS-AD (2-95GJ) produced positive net energy based on a theoretical 'garage-type' SS-AD digester operating in a temperate climate. PMID:25618499

  3. Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes.

    PubMed

    Walker, Lee; Charles, Wipa; Cord-Ruwisch, Ralf

    2009-08-01

    The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation. PMID:19345576

  4. Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics.

    PubMed

    Krakat, Niclas; Westphal, A; Schmidt, S; Scherer, P

    2010-03-01

    Beet silage and beet juice were digested continuously as representative energy crops in a thermophilic biogas fermentor for more than 7 years. Fluorescence microscopy of 15 samples covering a period of 650 days revealed that a decrease in temperature from 60 degrees C to 55 degrees C converted a morphologically uniform archaeal population (rods) into a population of methanogens exhibiting different cellular morphologies (rods and coccoid cells). A subsequent temperature increase back to 60 degrees C reestablished the uniform morphology of methanogens observed in the previous 60 degrees C period. In order to verify these observations, representative samples were investigated by amplified rRNA gene restriction analysis (ARDRA) and fluorescence in situ hybridization (FISH). Both methods confirmed the temperature-dependent population shift observed by fluorescence microscopy. Moreover, all samples investigated demonstrated that hydrogenotrophic Methanobacteriales dominated in the fermentor, as 29 of 34 identified operational taxonomic units (OTUs) were assigned to this order. This apparent discrimination of acetoclastic methanogens contradicts common models for anaerobic digestion processes, such as anaerobic digestion model 1 (ADM1), which describes the acetotrophic Euryarchaeota as predominant organisms. PMID:20097828

  5. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 {sup o}C

    SciTech Connect

    Ferrer, Ivet; Campos, Elena; Flotats, Xavier

    2010-10-15

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 {sup o}C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 {sup o}C and 55 {sup o}C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH{sub 4}/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH{sub 4}/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  6. The effect of shock loading on the performance of a thermophilic anaerobic contact reactor at constant organic loading rate

    PubMed Central

    2014-01-01

    The influences of organic loading disturbances on the process performance of a thermophilic anaerobic contact reactor treating potato-processing wastewater were investigated. For this purpose, while the reactor was operated at steady state conditions with organic loading rate of 5.5 kg COD/m3 · day, an instant acetate concentration increase (1 g/L) was introduced to the reactor. During the shock loading test of acetate, it was observed that the overall process performance was adversely affected by all the shock loading, however, the system reached steady state conditions less than 24 hours of operation indicating that thermophilic anaerobic contact reactor is resistant to shock loading and be capable of returning its normal conditions within a short time period. PMID:24872886

  7. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant.

    PubMed

    Watts, S; Hamilton, G; Keller, J

    2006-01-01

    A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream. PMID:16784199

  8. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Thomaidis, Nikolaos S; Mamais, Daniel; Lekkas, Themistokles D

    2014-06-01

    The removal of endocrine disrupting compounds (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) was studied in three lab-scale anaerobic digestion (AD) systems; a single-stage mesophilic, a single-stage thermophilic and a two-stage thermophilic/mesophilic. All micropollutants underwent microbial degradation. High removal efficiency (>80%) was calculated for diclofenac, ibuprofen, naproxen and ketoprofen; whereas triclosan, bisphenol A and the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate were moderately removed (40-80%). NSAIDs removal was not affected by the type of AD system used; whereas slightly higher EDCs removal was observed in two-stage system. In this system, most microcontaminants were removed in thermophilic digester. Biotransformation of NP1EO and NP was affected by the temperature applied to bioreactors. Under mesophilic conditions, higher removal of NP1EO and accumulation of NP was noticed; whereas the opposite was observed under thermophilic conditions. For most analytes, higher specific removal rates were calculated under thermophilic conditions and 20 days SRT. PMID:24768891

  9. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

  10. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.

    PubMed

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2014-09-01

    Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. PMID:24656488

  11. Reducing waste contamination from animal-processing plants by anaerobic thermophilic fermentation and by flesh fly digestion.

    PubMed

    Marchaim, U; Gelman, A; Braverman, Y

    2003-01-01

    There is currently no market in Israel for the large amounts of waste from fish- and poultry-processing plants. Therefore, this waste is incinerated, as part of the measures to prevent the spread of pathogens. Anaerobic methanogenic thermophilic fermentation (AMTF) of wastes from the cattle-slaughtering industry was examined previously, as an effective system to treat pathogenic bacteria, and in this article, we discuss a combined method of digestion by thermophilic anaerobic bacteria and by flesh flies, as a means of waste treatment. The AMTF process was applied to the wastes on a laboratory scale, and digestion by rearing of flesh fly (Phaenicia sericata) and housefly (Musca domestica) larvae on the untreated raw material was done on a small scale and showed remarkable weight conversion to larvae. The yield from degradation of poultry waste by flesh fly was 22.47% (SD = 3.89) and that from fish waste degradation was 35.34% (SD = 12.42), which is significantly higher than that from rearing houseflies on a regular rearing medium. Bacterial contents before and after thermophilic anaerobic digestion, as well as the changes in the chemical composition of the components during the rearing of larvae, were also examined. PMID:12794287

  12. From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples.

    PubMed

    Sun, Weimin; Yu, Guangwei; Louie, Tiffany; Liu, Tong; Zhu, Chengsheng; Xue, Gang; Gao, Pin

    2015-12-01

    The shift of microbial communities during a transition from mesophilic anaerobic digestion (MAD) to thermophilic anaerobic digestion (TAD) was characterized in two treatments. One treatment was inoculated with sludge and the other was inoculated with manure. In this study, methane was produced both in MAD and TAD, but TAD has slightly more methane produced than MAD. A broad phylogenetic spectrum of bacterial, archaeal, and fungal taxa at thermophilic conditions was detected. Coprothermobacter, Bacillus, Haloplasma, Clostridiisalibacter, Methanobacterium, Methanothermobacter, Saccharomycetales, Candida, Alternaria, Cladosporium, and Penicillium were found almost exclusively in TAD, suggesting their adaptation to thermophilic conditions and ecological roles in digesting the organic compounds. The characterization of the lesser-known fungal community revealed that fungi probably constituted an important portion of the overall community within TAD and contributed to this process by degrading complex organic compounds. The shift of the microbial communities between MAD and TAD implied that temperature drastically affected the microbial diversity in anaerobic digestion. In addition, the difference in microbial communities between sludge and manure indicated that different source of inoculum also affected the microbial diversity and community. PMID:26245681

  13. Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium.

    PubMed

    Slobodkin, A I; Tourova, T P; Kuznetsov, B B; Kostrikina, N A; Chernyh, N A; Bonch-Osmolovskaya, E A

    1999-10-01

    A thermophilic, anaerobic, spore-forming, dissimilatory Fe(III)-reducing bacterium, designated strain SR4T, was isolated from sediment of newly formed hydrothermal vents in the area of the eruption of Karymsky volcano on the Kamchatka peninsula. Cells of strain SR4T were straight-to-curved, peritrichous rods, 0.4-0.6 micron in diameter and 3.5-9.0 microns in length, and exhibited a slight tumbling motility. Strain SR4T formed round, refractile, heat-resistant endospores in terminally swollen sporangia. The temperature range for growth was 39-78 degrees C, with an optimum at 69-71 degrees C. The pH range for growth was 4.8-8.2, with an optimum at 6.3-6.5. Strain SR4T grew anaerobically with peptone as carbon source. Amorphous iron(III) oxide present in the medium stimulated the growth of strain SR4T; cell numbers increased with the concomitant accumulation of Fe(II). In the presence of Fe(III), strain SR4T grew on H2/CO2 and utilized molecular hydrogen. Strain SR4T reduced 9,10-anthraquinone-2,6-disulfonic acid, sulfite, thiosulfate, elemental sulfur and MnO2. Strain SR4T did not reduce nitrate or sulfate and was not capable of growth with O2. The fermentation products from glucose were ethanol, lactate, H2 and CO2. The G + C content of DNA was 32 mol%. 16S rDNA sequence analysis placed the organism in the genus Thermoanaerobacter. On the basis of physiological properties and phylogenetic analysis, it is proposed that strain SR4T (= DSM 12299T) should be assigned to a new species, Thermoanaerobacter siderophilus sp. nov. PMID:10555328

  14. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  15. Effects of transient temperature increases on odor production from thermophilic anaerobic digestion.

    PubMed

    Iranpour, R; Alatriste-Mondragon, F; Cox, H H J; Haug, R T

    2005-01-01

    The City of Los Angeles, Bureau of Sanitation, has implemented thermophilic anaerobic sludge digestion at the Hyperion and Terminal Island Treatment Plants (HTP and TITP). A two-stage continuous-batch process was established at HTP, while a single-stage sequencing batch process was established at TITP. This was to evaluate compliance with the Class A pathogen reduction requirements of U.S. EPA 40 CFR Part 503. A rapid increase of the digester temperature at TITP from 57.5 to 65.5 degrees C caused an increase of the volatile fatty acid to alkalinity ratio, a decline in digester performance, and an elevated production of methyl mercaptan and hydrogen sulfide. A rapid increase of the digester temperature at HTP from 54 to 58 degrees C caused an elevated production of methyl mercaptan, but the effect on the volatile fatty acid to alkalinity ratio and digester performance was insignificant. It is likely that these effects observed at TITP and HTP were transient responses to rapid changes in temperature. PMID:16180433

  16. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  17. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    PubMed

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities. PMID:27562592

  18. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    PubMed

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  19. Survival of bacterial pathogens during the thermophilic anaerobic digestion of biowaste: laboratory experiments and in situ validation.

    PubMed

    Wagner, Andreas Otto; Gstraunthaler, Gudrun; Illmer, Paul

    2008-06-01

    Anaerobic digestion is continually gaining importance for the processing of the organic fraction of municipal solid wastes. Although methods for studying the survival of pathogen exist, these methods often need adaptations, are expensive, time consuming or generally not well suited for the harsh conditions within an anaerobic digestion system. In the present study we investigated the applicability of commercially available, mechanically stable and inexpensive pathogen carriers to validate in situ pathogen inhibition within a 750,000l thermophilic, bio-waste treating anaerobic digester. None of the pathogens investigated (Listeria monocytogenes, Salmonella enterica, Escherichia coli, and Campylobacter jejuni) was capable of survival under the conditions of the biogas reactor for more than 24 h indicating that the temperature and physico-chemical properties of the sludge of the fermenter were effective in inhibiting the survival of these microorganisms. PMID:18460419

  20. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: a pilot scale study.

    PubMed

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-01

    The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35°C), thermophilic (55°C) and temperature phased (65+55°C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m(3)d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m(3)d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m(3)/kgVS(fed) at 35, 55, and 65+55°C, respectively. The extreme thermophilic reactor working at 65°C showed a high hydrolytic capability and a specific yield of 0.33 g COD (soluble) per gVS(fed). The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor. PMID:22305642

  1. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile

  2. Thermosipho activus sp. nov., a thermophilic, anaerobic, hydrolytic bacterium isolated from a deep-sea sample.

    PubMed

    Podosokorskaya, Olga A; Bonch-Osmolovskaya, Elizaveta A; Godfroy, Anne; Gavrilov, Sergey N; Beskorovaynaya, Daria A; Sokolova, Tatyana G; Kolganova, Tatyana V; Toshchakov, Stepan V; Kublanov, Ilya V

    2014-09-01

    A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 µm in width and 1.5-10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including β-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain. PMID:24994778

  3. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings.

    PubMed

    Guo, Xiaohui; Wang, Cheng; Sun, Faqian; Zhu, Weijing; Wu, Weixiang

    2014-01-01

    Thermophilic and mesophilic anaerobic digestion reactors (TR and MR) using food waste as substrate were compared with emphasis on microbial responses to increasing organic loading rate (OLR). At OLR ranging from 1.0 to 2.5 g VS L(-1) d(-1), MR exhibited more stable performance compared to TR in terms of methane yield. Amplicons pyrosequencing results revealed the distinct microbial dynamics in the two reactors. Primarily, MR had greater richness and evenness of bacteria species. With OLR elevated, larger shifts of bacterial phylogeny were observed in MR; Methanosaeta dominated in archaeal community in MR while Methanothermobacter and Methanoculleus were favored in TR. The high functional redundancy in bacterial community integrated with acetoclastic methanogenesis in MR resulted in its better performance; whereas delicate interactions between hydrogen-producer and hydrogenotrophic methanogens in TR were much more prone to disruption. These results are conductive to understanding the microbial mechanisms of low methane yield during food waste anaerobic digestion. PMID:24316484

  4. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. PMID:24926605

  5. Optimization of the thermophilic anaerobic co-digestion of pig manure, agriculture waste and inorganic additive through specific methanogenic activity.

    PubMed

    Jiménez, J; Cisneros-Ortiz, M E; Guardia-Puebla, Y; Morgan-Sagastume, J M; Noyola, A

    2014-01-01

    The anaerobic co-digestion of three wastes (manure, rice straw and clay residue, an inorganic additive) at different concentration levels and their interactive effects on methanogenic activity were investigated in this work at thermophilic conditions in order to enhance hydrolytic activity and methane production. A central composite design and the response surface methodology were applied for the optimization of specific methanogenic activity (SMA) by assessing their interaction effects with a reduced number of experiments. The results showed a significant interaction among the wastes on the SMA and confirmed that co-digestion enhances methane production. Rice straw apparently did not supply a significant amount of substrate to make a difference in SMA or methane yield. On the other hand, clay residue had a positive effect as an inorganic additive for stimulating the anaerobic process, based on its mineral content and its adsorbent properties for ammonia. Finally, the optimal conditions for achieving a thermophilic SMA value close to 1.4 g CH4-COD/g VSS · d(-1) were 20.3 gVSS/L of manure, 9.8 gVSS/L of rice straw and 3.3 gTSS/L of clay. PMID:24959998

  6. Evaluation of thermophilic anaerobic digestion processes for full-scale Class A biosolids disinfection at Hyperion Treatment Plant.

    PubMed

    Iranpour, R; Cox, H H J

    2007-05-01

    This paper describes 5 phases of full-scale testing at the City of Los Angeles Hyperion Treatment Plant (HTP) for producing Class A biosolids (U.S. EPA Part 503 Biosolids Rule) by thermophilic anaerobic digestion. Phases I and II were tests with a two-stage continuous-batch process in a thermophilic battery of six digesters and a designated post-digestion train that was isolated from mesophilic operations. These tests demonstrated that digester outflow biosolids met the Class A limits for fecal coliforms and Salmonella sp. However, fecal coliform densities sharply increased during post-digestion. The recurrence was possibly related to a combination of a large drop of the biosolids temperature after the dewatering centrifuges and contamination of thermophilically digested biosolids from mesophilic operations. Phase III was conducted after insulation and electrical heat-tracing of the post-digestion train to maintain a biosolids temperature throughout post-digestion at about the same level as in the digester outflow. Biosolids monitoring at the last points of plant control (silos at Truck Loading Facility and farm for land application) indicated that fecal coliform recurrence was prevented. After completing the conversion of HTP to thermophilic operation, certification tests of Phases IV and V demonstrated Class A compliance of a two-stage continuous-batch process under Alternatives 1 and 3 of the Part 503 Biosolids Rule, respectively. HTP received the permit for Class A (indeed exceptional quality) biosolids land application in Kern County, California, in December 2002 under Alternative 3. Since 2003, HTP has consistently complied with the federal and local standards for Class A biosolids, indicating that Class A limits can be met under conditions less stringent than defined by the Alternative 1 time-temperature requirement for batch treatment. PMID:17054113

  7. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions.

    PubMed

    Johansen, Anders; Nielsen, Henrik B; Hansen, Christian M; Andreasen, Christian; Carlsgart, Josefine; Hauggard-Nielsen, Henrik; Roepstorff, Allan

    2013-04-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (~1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11 d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48 h and it took up to 10 days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests. PMID:23266071

  8. Thermanaeromonas burensis sp. nov., a thermophilic anaerobe isolated from a subterranean clay environment.

    PubMed

    Gam, Zouhaier Ben Ali; Daumas, Sylvie; Casalot, Laurence; Bartoli-Joseph, Manon; Necib, Sophia; Linard, Yannick; Labat, Marc

    2016-01-01

    A strictly anaerobic, thermophilic and halotolerant strain, designated IA106T, was isolated from the seepage water collected in a metal biocorrosion test at a depth of 490 m, in a 130-160 m thick, subterranean Callovo-Oxfordian clay formation (158-152 million years old) in northern France. This geological formation has been selected as the potential host rock for the French high-level nuclear waste repository. Cells of strain IA106T stained Gram-positive and were non-motile, spore-forming, straight rods (0.5 × 2-6 μm). The five major fatty acids were C16 : 0 (15.9 %), C18 : 0 (15.4 %), iso-C17 : 1 I and/or anteiso-C17 : 1 B(14.8 %), iso-C17 : 0 (14.7 %) and iso-C15 : 0 (13.0 %). Growth was observed at temperatures ranging from 55 to 70 °C and at pH 5.5-9. The salinity range for growth was 0-20 g NaCl 1- 1. Yeast extract was required for growth. Strain IA106T was able to grow on lactate and various sugars in the presence of thiosulfate as electron acceptor. Sulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 60.2 mol%. 16S rRNA gene sequence analysis indicated that strain IA106T belonged to the family Thermoanaerobacteraceae, class Clostridia, phylum Firmicutes, and was most closely related to Thermanaeromonas toyohensis DSM 14490T (95.16 % 16S rRNA gene sequence similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain IA106T represents a novel species of the genus Thermanaeromonas, for which the name Thermanaeromonas burensis sp. nov. is proposed. The type strain is IA106T ( = DSM 26576T = JCM 18718T). PMID:26541283

  9. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  10. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  11. Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters.

    PubMed

    Ogg, Christopher D; Patel, Bharat K C

    2010-06-01

    A strictly anaerobic, thermophilic bacterium, designated strain AeB(T), was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB(T) were slightly curved rods (2.5-6.0x1.0 mum) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone-yeast extract-Casamino acids medium at 50 degrees C (range 37-55 degrees C) and pH 7 (range pH 5-9). Strain AeB(T) grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB(T) increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4+/-1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB(T) is a member of the family Clostridiaceae, class Clostridia, phylum 'Firmicutes', and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8-90.9 %). On the basis of 16S rRNA gene

  12. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic.

    PubMed

    Tian, Zhe; Zhang, Yu; Yu, Bo; Yang, Min

    2016-07-01

    This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs. PMID:27108212

  13. Draft Genome Sequence of Paenibacillus Strain P1XP2, a Polysaccharide-Degrading, Thermophilic, Facultative Anaerobic Bacterium Isolated from a Commercial Bioreactor Degrading Food Waste

    PubMed Central

    Adelskov, Joseph

    2015-01-01

    The analysis of the ~5.8-Mb draft genome sequence of a moderately thermophilic, heterotrophic, facultative anaerobic bacterium, Paenibacillus strain P1XP2, identified genes for enzymes with the potential for degrading complex food wastes, a property consistent with the ecological habitat of the isolate. PMID:25635015

  14. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.

    PubMed

    Suhartini, Sri; Heaven, Sonia; Banks, Charles J

    2014-01-01

    Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential. PMID:24291796

  15. Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances.

    PubMed

    Gagliano, M C; Braguglia, C M; Gianico, A; Mininni, G; Nakamura, K; Rossetti, S

    2015-01-01

    Thermal hydrolysis pretreatment coupled with Thermophilic Anaerobic Digestion (TAD) for Waste Activated Sludge (WAS) treatment is a promising combination to improve biodegradation kinetics during stabilization. However, to date there is a limited knowledge of the anaerobic biomass composition and its impact on TAD process performances. In this study, the structure and dynamics of the microbial communities selected in two semi-continuous anaerobic digesters, fed with untreated and thermal pretreated sludge, were investigated. The systems were operated for 250 days at different organic loading rate. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses allowed us to identify the majority of bacterial and archaeal populations. Proteolytic Coprothermobacter spp. and hydrogenotrophic Methanothermobacter spp. living in strict syntrophic association were found to dominate in TAD process. The establishment of a syntrophic proteolytic pathway was favoured by the high temperature of the process and enhanced by the thermal pretreatment of the feeding sludge. Proteolytic activity, alone or with thermal pretreatment, occurred during TAD as proven by increasing concentration of soluble ammonia and soluble COD (sCOD) during the process. However, the availability of a readily biodegradable substrate due to pretreatment allowed to significant sCOD removals (more than 55%) corresponding to higher biogas production in the reactor fed with thermal pretreated sludge. Microbial population dynamics analysed by FISH showed that Coprothermobacter and Methanothermobacter immediately established a stable syntrophic association in the reactor fed with pretreated sludge in line with the overall improved TAD performances observed under these conditions. PMID:25462756

  16. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste.

    PubMed

    Sajeena Beevi, B; Madhu, G; Sahoo, Deepak Kumar

    2015-02-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9L/kg VS (volatile solid) for the total solid (TS) concentration of 100g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day(-1). PMID:25449607

  17. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    SciTech Connect

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  18. Anaerobic Biodegradation Tests of Poly(lactic acid) under Mesophilic and Thermophilic Conditions Using a New Evaluation System for Methane Fermentation in Anaerobic Sludge

    PubMed Central

    Yagi, Hisaaki; Ninomiya, Fumi; Funabashi, Masahiro; Kunioka, Masao

    2009-01-01

    Anaerobic biodegradation tests of poly(lactic acid) (PLA) powder were done at the thermophilic (55 °C) and mesophilic temperature (35 °C) under aquatic conditions [total solid concentrations of the used sludge were 2.07% (at 55 °C) and 2.24% (at 35 °C)] using a newly developed evaluation system. With this system, the evolved biogas is collected in a gas sampling bag at atmospheric pressure. This method is more convenient than using a pressure transducer or inverted graduated cylinder submerged in water. PLA was degraded about 60% in 30 days, about 80% in 40 days and about 90% in 60 days at 55 °C. On the other hand, the PLA degradation started in 55 days at 35 °C and degradation rate was much slower than at 55 °C. PMID:19865521

  19. Anaerobic biodegradation tests of poly(lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge.

    PubMed

    Yagi, Hisaaki; Ninomiya, Fumi; Funabashi, Masahiro; Kunioka, Masao

    2009-09-01

    Anaerobic biodegradation tests of poly(lactic acid) (PLA) powder were done at the thermophilic (55 degrees C) and mesophilic temperature (35 degrees C) under aquatic conditions [total solid concentrations of the used sludge were 2.07% (at 55 degrees C) and 2.24% (at 35 degrees C)] using a newly developed evaluation system. With this system, the evolved biogas is collected in a gas sampling bag at atmospheric pressure. This method is more convenient than using a pressure transducer or inverted graduated cylinder submerged in water. PLA was degraded about 60% in 30 days, about 80% in 40 days and about 90% in 60 days at 55 degrees C. On the other hand, the PLA degradation started in 55 days at 35 degrees C and degradation rate was much slower than at 55 degrees C. PMID:19865521

  20. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    PubMed

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems. PMID:25194839

  1. A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.

    PubMed

    Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin

    2014-06-01

    An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. PMID:25079836

  2. Conventional heating vs. microwave sludge pretreatment comparison under identical heating/cooling profiles for thermophilic advanced anaerobic digestion.

    PubMed

    Hosseini Koupaie, E; Eskicioglu, C

    2016-07-01

    This research evaluates whether there is any advantage of selecting one of the thermal methods of sludge pretreatment, conventional heating (CH) and microwave hydrolysis (MW), over another to enhance municipal sludge disintegration and performance of thermophilic anaerobic digestion (AD). For this purpose, a custom-built CH system simulating MW hydrolysis under identical heating and cooling profiles was used. The effects of three main pretreatment parameters including pretreatment method (CH and MW), heating ramp rate (3, 6 and 11°C/min) and final temperature (80, 120 and 160°C) on sludge solubilization and performance of thermophilic batch AD were evaluated. The effects of CH and MW hydrolysis were observed to be similar for sludge disintegration and digester performance (p-value>0.05), while the effects of final temperature and heating ramp rate were proven to be different (p-value<0.05). According to the results, it is essential to apply MW and CH pretreatments under identical experimental condition for an unbiased comparison which supports the findings of the author's earlier study under mesophilic condition. Failing to address this issue explains the significant inconsistency observed among the findings of the previous CH vs. MW comparison studies that were unable to implement identical thermal profiles (between CH and MW) during sludge pretreatment. In comparison with mesophilic AD, thermophilic AD revealed lower biodegradation rate constant at the highest pretreatment temperature tested (160°C), suggesting its higher sensitivity to the inhibitory effects of thermal pretreatment at the elevated temperatures. PMID:27160636

  3. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge.

    PubMed

    Ge, Huoqing; Jensen, Paul D; Batstone, Damien J

    2011-03-15

    Two-stage temperature phased anaerobic digestion (TPAD) is an increasingly popular method to improve stabilisation of sewage waste activated sludge, which normally has inherently poor and slow degradation. However, there has been limited systematic analysis of the impact of the initial thermophilic stage (temperature, pH and retention time) on performance in the main mesophilic stage. In this study, we demonstrate a novel two-stage batch test method for TPAD processes, and use it to optimize operating conditions of the thermophilic stage in terms of degradation extent and methane production. The method determines overall degradability and apparent hydrolysis coefficient in both stages. The overall process was more effective with short pre-treatment retention times (1-2 days) and neutral pH compared to longer retention time (4 days) and low pH (4-5). Degradabilities and apparent hydrolysis coefficients were 0.3-0.5 (fraction degradable) and 0.1-0.4d(-1), respectively, with a margin of error in each measurement of approximately 20% relative (95% confidence). Pre-treatment temperature had a strong impact on the whole process, increasing overall degradability from 0.3 to 0.5 as temperature increased from 50 to 65 °C, with apparent hydrolysis coefficient increasing from 0.1 to 0.4d(-1). PMID:21277081

  4. Partial characterization of xylanase produced by Caldicoprobacter algeriensis, a new thermophilic anaerobic bacterium isolated from an Algerian hot spring.

    PubMed

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Boucherba, Nawel; Joseph, Manon; Gagaoua, Mohammed; Ben Hania, Wajdi; Kecha, Mouloud; Benallaoua, Said; Hacène, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure

    2014-11-01

    To date, xylanases have expanded their use in many processing industries, such as pulp, paper, food, and textile. This study aimed the production and partial characterization of a thermostable xylanase from a novel thermophilic anaerobic bacterium Caldicoprobacter algeriensis strain TH7C1(T) isolated from a northeast hot spring in Algeria. The obtained results showed that C. algeriensis xylanase seems not to be correlated with the biomass growth profile whereas the maximum enzyme production (140.0 U/ml) was recorded in stationary phase (18 h). The temperature and pH for optimal activities were 70 °C and 11.0, respectively. The enzyme was found to be stable at 50, 60, 70, and 80 °C, with a half-life of 10, 9, 8, and 4 h, respectively. Influence of metal ions on enzyme activity revealed that Ca(+2) enhances greatly the relative activity to 151.3 %; whereas Hg(2+) inhibited significantly the enzyme. At the best of our knowledge, this is the first report on the production of xylanase by the thermophilic bacterium C. algeriensis. This thermo- and alkaline-tolerant xylanase could be used in pulp bleaching process. PMID:25161038

  5. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process.

    PubMed

    Algapani, Dalal E; Qiao, Wei; Su, Min; di Pumpo, Francesca; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2016-09-01

    High-temperature pretreatment plays a key role in the anaerobic digestion of food waste (FW). However, the suitable temperature is not yet determined. In this work, a long-term experiment was conducted to compare hydrolysis, acidogenesis, acetogenesis, and hydrogen production at 55°C and 70°C, using real FW in CSTR reactors. The results obtained indicated that acidification was the rate-limiting step at both temperatures with similar process kinetics characterizations. However, the thermophilic pretreatment was more advantageous than the hyperthermophilic with suspended solids solubilization of 47.7% and 29.5% and total VFA vs. soluble COD ratio of 15.2% and 4.9%, for thermophilic and hyperthermophilic treatment, respectively, with a hydrolytic reaction time (HRT) of 10days and an OLR of 14kgCOD/m(3)d. Moreover, stable hydrogen yield (70.7ml-H2/gVSin) and content in off gas (58.6%) was achieved at HRT 5days, pH 5.5, and temperature of 55°C, as opposed to 70°C. PMID:27295255

  6. Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent.

    PubMed

    Slobodkina, Galina B; Panteleeva, Angela N; Beskorovaynaya, Darya A; Bonch-Osmolovskaya, Elizaveta A; Slobodkin, Alexander I

    2016-02-01

    A novel thermophilic planctomycete (strain SVX8T) was isolated from a shallow submarine hydrothermal vent, Vulcano Island, Italy. The temperature range for growth was 30-68 °C, with an optimum at 55 °C. The pH range for growth was 5.0-9.0, with an optimum at pH 7.0-8.0. Growth was observed at NaCl concentrations ranging from 0.8 to 4.5 % (w/v) with an optimum at 2.5-3.5 % (w/v). The isolate grew anaerobically using a number of mono-, di- and polysaccharides as electron donors and nitrate or elemental sulfur as electron acceptors or by fermentation. Nitrate was reduced to nitrite; sulfur was reduced to sulfide. Strain SVX8T did not grow at atmospheric concentration of oxygen but grew microaerobically (up to 2 % oxygen in the gas phase). The G+C content of the DNA of strain SVX8T was 58.5 mol%. Based on phylogenetic position and phenotypic features, the new isolate is considered to represent a novel species belonging to a new genus in the order Planctomycetales, for which the name Thermostilla marina gen. nov., sp. nov. is proposed. The type strain of Thermostilla marina is SVX8T ( = JCM 19992T = VKM B-2881T). Strain SVX8T is the first thermophilic planctomycete isolated from a marine environment. PMID:26559645

  7. Use of respirometer in evaluation of process and toxicity of thermophilic anaerobic digestion for treating kitchen waste.

    PubMed

    Kuo, Wen-Chien; Cheng, Kae-Yiin

    2007-07-01

    A thermophilic anaerobic digestion (TAnD, 55 degrees C) system was adopted to hydrolyze the kitchen waste for 3 days, which was then fermented for a hydraulic retention time (HRT) of 10 days. The TAnD system performed much better than a similar system without thermal pre-treatment. A bubble respirometer was employed to study the effects of thermal pre-treatment, which showed that pre-treatment at 60 degrees C yielded the highest Total COD (TCOD) removal efficiency (79.2%) after 300h reaction. Respirometer results also indicated that oil and grease (O and G) began to inhibit the TAnD system at a concentration of approximately 1000mg/L and the gas production was inhibited by 50% at a concentration of approximately 7500mg/L of sodium. PMID:16930997

  8. Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste.

    PubMed

    Wu, Bo; Wang, Xing; Deng, Ya-Yue; He, Xiao-Lan; Li, Zheng-Wei; Li, Qiang; Qin, Han; Chen, Jing-Tao; He, Ming-Xiong; Zhang, Min; Hu, Guo-Quan; Yin, Xiao-Bo

    2016-10-01

    A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD. PMID:27251412

  9. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    PubMed

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. PMID:24216229

  10. Thermophilic anaerobic co-digestion of poultry litter and thin stillage.

    PubMed

    Sharma, Deepak; Espinosa-Solares, Teodoro; Huber, David H

    2013-05-01

    The purpose of this study was to test whether the performance of a thermophilic CSTR digester that has been stabilized on poultry litter will be enhanced or diminished by the addition of thin stillage as co-substrate. Replicate laboratory digesters, derived from a stable pilot-scale digester, were operated with increasing ratios (w/w) of thin stillage/poultry litter feedstock. After a period of adaptation to 20% and 40% thin stillage, digester performance showed increases in biogas, percent methane and COD removal, as well as a decrease in volatile acids. Peak performance occurred with 60% thin stillage. However, 80% thin stillage caused significant reduction of performance, including declines of methanogenic activity and COD removal. In conclusion, supplementing the thermophilic digestion of poultry litter with thin stillage improved the bioenergy (methane) output, but thin stillage became inhibitory at high concentrations. PMID:23567688

  11. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  12. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

    PubMed

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-01

    While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages. PMID:26054964

  13. Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry.

    PubMed

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S; Voigt, Niels Vinther; Nielsen, Jeppe Lund; Feilberg, Anders

    2014-02-18

    A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize silage, and deep litter was incubated with 100 mM of [2-(13)C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days of incubation, the proportion of methane derived from reduction of CO2 had increased significantly and reached up to 87% of total methane, suggesting that synthrophic acetate oxidation coupled to hydrogenotrophic methanogenesis (SAO-HM) played an important role in the degradation of acetate. This study provided a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic digestion model (ADM1), which strongly emphasizes the importance of the acetoclastic methanogenesis. PMID:24437339

  14. Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion.

    PubMed

    Jariyaboon, Rattana; O-Thong, Sompong; Kongjan, Prawit

    2015-12-01

    Anaerobic digestion by two-stage process, containing hydrogen-producing (acidogenic) first stage and methanogenic second stage, has been proposed to degrade substrates which are difficult to be treated by single stage anaerobic digestion process. This research was aimed to evaluate the bio-hydrogen and the bio-methane potentials (BHP and BMP) of skim latex serum (SLS) by using sequential batch hydrogen and methane cultivations at thermophilic conditions (55°C) and with initial SLS concentrations of 37.5-75.0% (v/v). The maximal 1.57 L H2/L SLS for BHP and 12.2L CH4/L SLS for BMP were both achieved with 60% (v/v) SLS. The dominant hydrogen-producing bacteria in the H2 batch reactor were Thermoanaerobacterium sp. and Clostrdium sp. Meanwhile, the CH4 batch reactor was dominated by the methanogens Methanosarcina mazei and Methanothermobacter defluvii. The results demonstrate that SLS can be degraded by conversion to form hydrogen and methane, waste treatment and bioenergy production are thus combined. PMID:26386423

  15. Variation of the microbial community in thermophilic anaerobic digestion of pig manure mixed with different ratios of rice straw.

    PubMed

    Zhou, Sheng; Nikolausz, Marcell; Zhang, Jining; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2016-09-01

    The effect of pig manure mixed with rice straw on methane yield and the microbial community involved in a thermophilic (55°C) anaerobic digestion process was investigated. Three substrates composed of mixed pig manure and rice straw at different ratios (95:5; 78:22 and 65:35 w/w, which resulted in C/N ratios of 10:1, 20:1 and 30:1) were used for the experiment. The substrate type had a major influence on the total bacterial community, while the methanogens were less affected. The members of the class Clostridia (phylum Firmicutes) were predominant regardless of mixture ratio (C/N ratio), but at species level there was a major difference between the low and high C/N ratio samples. The hydrogenotrophic methanogenic genus of Methanothermobacter was predominant in all samples but higher C/N ratio sequences affiliated to the genus Methanosarcina were also detected. The appearance of Methanosarcina sp. is most likely due to the less inhibition of ammonia during the anaerobic digestion. PMID:27072299

  16. Volume ratios between the thermophilic and the mesophilic digesters of a temperature-phased anaerobic digestion system affect their performance and microbial communities.

    PubMed

    Lv, Wen; Zhang, Wenfei; Yu, Zhongtang

    2016-01-25

    An experimental temperature-phased anaerobic digestion (TPAD) system, with the thermophilic digester operated at neutral pH and with a balanced acidogenesis and methanogenesis (referred to as NT-TPAD), was evaluated with respect to the microbial communities and population dynamics of methanogens when digesting dairy cattle manure at 15-day overall system hydraulic retention time (HRT). When fed a manure slurry of 10% total solid (TS), similar system performance, 36-38% volatile solid (VS) removal and 0.21-0.22 L methane g(-1) VS fed, was achieved between a 5-day and 7.5-day HRT for the thermophilic digester. However, the thermophilic digester achieved a greater volumetric biogas yield when operated at a 5-day RT than at a 7.5-day HRT (6.3 vs. 4.7 L/L/d), while the mesophilic digester had a stable volumetric biogas yield (about 1.0 L/L/d). Each of the digesters harbored distinct yet dynamic microbial populations, and some of the methanogens were significantly correlated with methane productions. Methanosarcina and Methanosaeta were the most important methanogenic genera in the thermophilic and the mesophilic digesters, respectively. The microbiological findings may help understand the metabolism that underpins the anaerobic processes within each of the two digesters of TPAD systems when fed dairy manure. PMID:26232524

  17. Addition of crude glycerine as strategy to balance the C/N ratio on sewage sludge thermophilic and mesophilic anaerobic co-digestion.

    PubMed

    Silvestre, G; Fernández, B; Bonmatí, A

    2015-10-01

    The effect of adding crude glycerine during continuous sewage sludge anaerobic digestion was investigated under thermophilic and mesophilic temperatures. Addition of CGY at thermophilic temperature range showed a negative impact on stability and performance of the process, even at low doses. The extreme pH values of CGY, together with the rapid release of VFA, causes SS alkalinity fail to control pH drop. On the contrary, at mesophilic temperature range the process performs steadily, with 148% increase in methane production when CGY represented 1% v/v of the influent (27% of influent COD). Further CGY percentages did not show any added improvement; the biomass shift, due to a high C/N ratio, could explain this behaviour. Results suggested that CGY can be used as co-substrate of SS anaerobic digestion though, depending on the characteristics of CGY, and on operational conditions, different parameters should be taken into account to achieve a steady and consistent operation. PMID:26143573

  18. Draft Genome Sequence of Thermodesulfovibrio aggregans TGE-P1T, an Obligately Anaerobic, Thermophilic, Sulfate-Reducing Bacterium in the Phylum Nitrospirae

    PubMed Central

    Matsuura, Norihisa; Ohashi, Akiko; Tourlousse, Dieter M.

    2016-01-01

    We report a high-quality draft genome sequence of the type strain (TGE-P1T) of Thermodesulfovibrio aggregans, an obligately anaerobic, thermophilic, sulfate-reducing bacterium in the phylum Nitrospirae. The genome comprises 2.00 Mb in 16 contigs (3 scaffolds), has a G+C content of 34.5%, and contains 1,998 predicted protein-encoding genes. PMID:26966200

  19. Evaluation of the inactivation of human Coxsackievirus by thermophilic and mesophilic anaerobic digestion using integrated cell culture and reverse transcription real-time quantitative PCR.

    PubMed

    Gao, Tiejun; Tong, Yupin; Cao, Ming; Li, Xiaomei; Pang, Xiaoli

    2013-09-01

    The virucidal effects of anaerobic digestion were evaluated using human Coxsackievirus as a model for the Enterovirus family. Coxsackievirus was inactivated completely by thermophilic anaerobic digestion (TAD). By 4 h no living and infectious virus remained and no detectable viral RNA was present after 2 days in TAD (7.0 log reduction). Compared to TAD, 2.6 log reduction of viral RNA was achieved by 14 days in mesophilic anaerobic digestion (MAD) (p < 0.0001). Although cytopathogenic effect was not observed in the cultured cells, low levels of intracellular viral RNA were detected after one day of MAD treatment indicating that Coxsackievirus had infected the cells but could not replicate. The combination of thermal and biochemical effects in TAD plays a critical role for viral disinfection. The results of this study indicate that selection of the right configuration of anaerobic digestion for treatment of biowaste may reduce the risk of viral contamination to the environment and water source. PMID:23764576

  20. Population dynamics during startup of thermophilic anaerobic digesters: the mixing factor.

    PubMed

    Ghanimeh, Sophia A; Saikaly, Pascal E; Li, Dong; El-Fadel, Mutasem

    2013-11-01

    Two thermophilic digesters were inoculated with manure and started-up under mixed and stagnant conditions. The Archaea in the mixed digester (A) were dominated by hydrogenotrophic Methanobateriaceae (61%) with most of the methane being produced via syntrophic pathways. Methanosarcinales (35%) were the only acetoclastic methanogens present. Acetate dissipation seems to depend on balanced hydrogenotrophic-to-acetotrophic abundance, which in turn was statistically correlated to free ammonia levels. Relative abundance of bacterial community was associated with the loading rate. However, in the absence of mixing (digester B), the relationship between microbial composition and operating parameters was not discernible. This was attributed to the development of microenvironments where environmental conditions are significantly different from average measured parameters. The impact of microenvironments was accentuated by the use of a non-acclimated seed that lacks adequate propionate degraders. Failure to disperse the accumulated propionate, and other organics, created high concentration niches where competitive and inhibiting conditions developed and favored undesired genera, such as Halobacteria (65% in B). As a result, digester B experienced higher acid levels and lower allowable loading rate. Mixing was found necessary to dissipate potential inhibitors, and improve stability and loading capacity, particularly when a non-acclimated seed, often lacking balanced thermophilic microflora, is used. PMID:23830181

  1. Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues.

    PubMed

    Kinnunen, H V; Koskinen, P E P; Rintala, J

    2014-03-01

    This paper studies methane production using a marine microalga, Nannochloropsis sp. residue from biodiesel production. Residue cake from Nannochloropsis, oils wet-extracted, had a methane potential of 482LCH4kg(-1) volatile solids (VS) in batch assays. However, when dry-extracted, the methane potential of residue cake was only 194LCH4kg(-1) VS. In semi-continuous reactor trials with dry-extracted residue cake, a thermophilic reactor produced 48% higher methane yield (220LCH4kg(-1)VS) than a mesophilic reactor (149LCH4kg(-1)VS). The thermophilic reactor was apparently inhibited due to ammonia with organic loading rate (OLR) of 2kgVSm(-3)d(-1) (hydraulic retention time (HRT) 46d), whereas the mesophilic reactor performed with OLR of 3kgVSm(-3)d(-1) (HRT 30d). Algal salt content did not inhibit digestion. Additional methane (18-33% of primary digester yield) was produced during 100d post-digestion. PMID:24462882

  2. Reorganization of the bacterial and archaeal populations associated with organic loading conditions in a thermophilic anaerobic digester.

    PubMed

    Hori, Tomoyuki; Haruta, Shin; Sasaki, Daisuke; Hanajima, Dai; Ueno, Yoshiyuki; Ogata, Atsushi; Ishii, Masaharu; Igarashi, Yasuo

    2015-03-01

    Organic loading conditions are an important factor influencing reactor performances in methanogenic bioreactors. Yet the underlying microbiological basis of the process stability, deterioration, and recovery remains to be understood. Here, structural responses of the bacterial and archaeal populations to the change of organic loading conditions in a thermophilic anaerobic digester were investigated by process analyses and 16S rRNA gene-based molecular approaches. The biogas was produced stably without the accumulation of volatile fatty acids (VFAs) at low organic loading rates (OLRs) in the beginning of reactor operation. Increasing OLR in stages disrupted the stable reactor performance, and high OLR conditions continued the deteriorated performance with slight biogas production and high accumulation of VFAs. Thereafter, the gradual decrease of OLR resulted in the recovery from the deterioration, giving rise to the stable performance again. The stable performances before and after the high OLR conditions conducted were associated with compositionally similar but not identical methanogenic consortia. The bacterial and archaeal populations were synchronously changed at both the transient phases toward the deteriorated performance and in recovery process, during which the dynamic shift of aceticlastic and hydrogenotrophic methanogens including the recently identified Methanomassiliicoccus might contribute to the maintenance of the methanogenic activity. The distinctive bacterial population with a high predominance of Methanobacterium formicicum as archaeal member was found for the deteriorated performance. The results in this study indicate the coordinated reorganization of the bacterial and archaeal populations in response to functional states induced by the change of organic loading conditions in the anaerobic digester. PMID:25293692

  3. Purification and Properties of a Thermostable Pullulanase from a Newly Isolated Thermophilic Anaerobic Bacterium, Fervidobacterium pennavorans Ven5

    PubMed Central

    Koch, R.; Canganella, F.; Hippe, H.; Jahnke, K. D.; Antranikian, G.

    1997-01-01

    Extremely thermophilic anaerobic fermentative bacteria growing at temperatures between 50 and 80(deg)C (optimum, 65 to 70(deg)C) were isolated from mud samples collected at Abano Terme spa (Italy). The cells were gram-negative motile rods, about 1.8 (mu)m in length and 0.6 (mu)m in width, occurring singly and in pairs. Cells commonly formed spheroids at one end similar to Fervidobacterium islandicum and Fervidobacterium nodosum. The new isolate differs from F. nodosum by the 7% higher G+C content of its DNA (40.6 mol%) but is similar to Fervidobacterium pennavorans and F. islandicum in its G+C content and phenotypic properties. The phylogenetic dendrogram indicates that strain Ven5 belongs to the order Thermotogales and shows the highest 16S ribosomal DNA sequence similarity to F. pennavorans, F. islandicum, and F. nodosum, with similarities of 99.0, 98.6, and 96.0%, respectively. During growth on starch the strain produced a thermostable pullulanase of type I which preferentially hydrolyzed (alpha)-1,6 glucosidic linkages. The enzyme was purified 65-fold by anion-exchange, gel permeation, and hydrophobic chromatography. The native pullulanase has a molecular mass of 240,000 Da and is composed of three subunits, each with a molecular mass of 77,600 Da as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Optimal conditions for the activity and stability of the purified pullulanase were pH 6.0 and 85(deg)C. At pH 6.0, the half-life of the enzyme was over 2 h at 80(deg)C and 5 min at 90(deg)C. This is the first report on the presence of pullulanase type I in an anaerobic bacterium. PMID:16535541

  4. Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study.

    PubMed

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-15

    The objective of this study was to investigate the effect of the feed-to-microbe (F/M) ratios on anaerobic digestion of Chinese cabbage waste (CCW) generated from a kimchi factory. The batch test was conducted for 96 days under mesophilic (36.5 °C) (Experiment I) and thermophilic (55 °C) conditions (Experiment II) at F/M ratios of 0.5, 1.0 and 2.0. The first-order kinetic model was evaluated for methane yield. The biogas yield in terms of volatile solids (VS) added increased from 591 to 677 mL/g VS under mesophilic conditions and 434 to 639 mL/g VS under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. Similarly, the volumetric biogas production increased from 1.479 to 6.771 L/L under mesophilic conditions and from 1.086 to 6.384 L/L under thermophilic conditions when F/M ratio increased from 0.5 to 2.0. The VS removal increased from 59.4 to 75.6% under mesophilic conditions and from 63.5 to 78.3% under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The first-order kinetic constant (k, 1/day) decreased under the mesophilic temperature conditions and increased under thermophilic conditions when the F/M ratio increased from 0.5 to 2.0. The difference between the experimental and predicted methane yield was in the range of 3.4-14.5% under mesophilic conditions and in the range of 1.1-3.0% under thermophilic conditions. The predicted methane yield derived from the first-order kinetic model was in good agreement with the experimental results. PMID:24412592

  5. Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux.

    PubMed

    Jeison, D; van Lier, J B

    2007-09-01

    The long-term operation of two thermophilic anaerobic submerged membrane bioreactors (AnSMBRs) was studied using acidified and partially acidified synthetic wastewaters. In both reactors, cake formation was identified as the key factor governing critical flux. Even though cake formation was observed to be mostly reversible, particle deposition proceeds fast once the critical flux is exceeded. Very little irreversible fouling was observed during long-term operation, irrespective of the substrate. Critical flux values at the end of the reactors operation were 7 and 3L/m(2)h for the AnSMBRs fed with acidified and partially acidified wastewaters, respectively, at a gas superficial velocity of 70m/h. Small particle size was identified as the responsible parameter for the low observed critical flux values. The degree of wastewater acidification significantly affected the physical properties of the sludge, determining the attainable flux. Based on the fluxes observed in this research, the membrane costs would be in the range of 0.5euro/m(3) of treated wastewater. Gas sparging was ineffective in increasing the critical flux values. However, preliminary tests showed that cross-flow operation may be a feasible alternative to reduce particle deposition. PMID:17644148

  6. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    SciTech Connect

    Hamilton-Brehm, Scott; Elkins, James G; Phelps, Tommy Joe; Keller, Martin; Carroll, Sue L; Allman, Steve L; Podar, Mircea; Mosher, Jennifer J; Vishnivetskaya, Tatiana A

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  7. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2010-02-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). PMID:20023107

  8. Isolation and characterization of Keratinibaculum paraultunense gen. nov., sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

    PubMed

    Huang, Yan; Sun, Yingjie; Ma, Shichun; Chen, Lu; Zhang, Hui; Deng, Yu

    2013-08-01

    A novel thermophilic, anaerobic, keratinolytic bacterium designated KD-1 was isolated from grassy marshland. Strain KD-1 was a spore-forming rod with a Gram-positive type cell wall, but stained Gram-negative. The temperature, pH, and NaCl concentration range necessary for growth was 30-65 °C (optimum 55 °C), 6.0-10.5 (optimum 8.0-8.5), and 0-6% (optimum 0.2%) (w/v), respectively. Strain KD-1 possessed extracellular keratinase, and the optimum activity of the crude enzyme was pH 8.5 and 70 °C. The enzyme was identified as a thermostable serine-type protease. The strain was sensitive to rifampin, chloramphenicol, kanamycin, and tetracycline and was resistant to erythromycin, neomycin, penicillin, and streptomycin. The main cellular fatty acid was predominantly C15:0 iso (64%), and the G+C content was 28 mol%. Morphological and physiological characterization, together with phylogenetic analysis based on 16S rRNA gene sequencing identified KD-1 as a new species of a novel genus of Clostridiaceae with 95.3%, 93.8% 16S rRNA gene sequence similarity to Clostridium ultunense BS(T) (DSM 10521(T)) and Tepidimicrobium xylanilyticum PML14(T) (= JCM 15035(T)), respectively. We propose the name Keratinibaculum paraultunense gen. nov., sp. nov., with KD-1 (=JCM 18769(T) =DSM 26752(T)) as the type strain. PMID:23710623

  9. Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park▿

    PubMed Central

    Hamilton-Brehm, Scott D.; Mosher, Jennifer J.; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). PMID:20023107

  10. Performance and microbial community variations in thermophilic anaerobic digesters treating OTC medicated cow manure under different operational conditions.

    PubMed

    Akyol, Çağrı; Turker, Gokhan; Ince, Orhan; Ertekin, Emine; Üstüner, Oya; Ince, Bahar

    2016-04-01

    This study aimed to determine the fate and effect of oxytetracycline (OTC) and its metabolites during thermophilic anaerobic digestion of cow manure. OTC-medicated and non-medicated digesters were operated at 55°C with different volatile solids (VS) concentrations (4% and 6%) and mixing rates (90 and 120rpm). OTC and its metabolites were measured by HPLC and LC/MS/MS, respectively. Microbial community dynamics were monitored by denaturing gradient gel electrophoresis (DGGE) and real-time PCR (qPCR). Approximately 2mg/L initial OTC concentration caused 10-30% inhibition on biogas production and higher inhibition was observed as mixing rate increased. DGGE results indicated that OTC caused a shift in bacterial community structure and several species became dominant with time. Archaeal community decreased throughout the digestion period. RNA based qPCR analyses showed that gene copy numbers of bacteria and Methanomicrobiales declined in all digesters whereas gene copy numbers of Methanobacteriales and Methanosarcinales increased in high mixing rate digesters. PMID:26826959

  11. Stable thermophilic anaerobic digestion of dissolved air flotation (DAF) sludge by co-digestion with swine manure.

    PubMed

    Creamer, K S; Chen, Y; Williams, C M; Cheng, J J

    2010-05-01

    Environmentally sound treatment of by-products in a value-adding process is an ongoing challenge in animal agriculture. The sludge produced as a result of the dissolved air flotation (DAF) wastewater treatment process in swine processing facilities is one such low-value residue. The objective of this study was to determine the fundamental performance parameters for thermophilic anaerobic digestion of DAF sludge. Testing in a semi-continuous stirred tank reactor and in batch reactors was conducted to determine the kinetics of degradation and biogas yield. Stable operation could not be achieved using pure DAF sludge as a substrate, possibly due to inhibition by long-chain fatty acids or to nutrient deficiencies. However, in a 1:1 ratio (w/w, dry basis) with swine manure, operation was both stable and productive. In the semi-continuous stirred reactor at 54.5 degrees Celsius, a hydraulic residence time of 10 days, and an organic loading rate of 4.68 gVS/day/L, the methane production rate was 2.19 L/L/day and the specific methane production rate was 0.47 L/gVS (fed). Maximum specific methanogenic activity (SMA) in batch testing was 0.15 mmoles CH(4) h(-1) gVS(-1) at a substrate concentration of 6.9 gVS L(-1). Higher substrate concentrations cause an initial lag in methane production, possibly due to long-chain fatty acid or nitrogen inhibition. PMID:20060713

  12. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences.

    PubMed

    Cavinato, C; Fatone, F; Bolzonella, D; Pavan, P

    2010-01-01

    The paper deals with the benefits coming from the application of a proper process temperature (55 degrees C) instead of a 'reduced' thermophilic range (47 degrees C), that is often applied in European anaerobic co-digestion plants. The experimental work has pointed out that biogas production improve from 0.45 to 0.62 m(3)/kg VS operating at proper thermophilic conditions. Moreover, also methane content was higher: from 52% to 61%. A general improvement in digester behaviour was clear also considering the stability parameters comparison (pH, ammonia, VFA content). The second part of the study takes into account the economic aspects related to the capital cost of anaerobic digestion treatment with a 1 MW co-generation unit fro heat and power production (CHP). Moreover, the economic balance was also carried out considering the anaerobic supernatants treatment for nitrogen removal. The simulation showed how a pay-back-time of 2.5 yr and between 3 and 5 yr respectively could be determined when the two options of anaerobic digestion only and together with the application of a nitrogen removal process were considered. PMID:19747821

  13. Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor

    NASA Astrophysics Data System (ADS)

    Georgieva, Tania I.; Mikkelsen, Marie J.; Ahring, Birgitte K.

    Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/1. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/1) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

  14. Thermophilic-anaerobic digestion to produce class A biosolids: initial full-scale studies at Hyperion Treatment Plant.

    PubMed

    Iranpour, R; Cox, H H J; Oh, S; Fan, S; Kearney, R J; Abkian, V; Haug, R T

    2006-02-01

    biosolids are land-applied, require compliance with both bacterial limits. Additional work identified dewatering, cooling of biosolids after the dewatering centrifuges, and contamination as possible factors in the rise in density of fecal coliforms. These results provided the basis for the full conversion of HTP to the Los Angeles continuous-batch, thermophilic-anaerobic-digestion process. During later phases of testing, this process was demonstrated to produce fully disinfected biosolids at the farm for land application. PMID:16566524

  15. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  16. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    PubMed

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways. PMID:25617867

  17. Caldicoprobacter guelmensis sp. nov., a thermophilic, anaerobic, xylanolytic bacterium isolated from a hot spring.

    PubMed

    Bouanane-Darenfed, Amel; Ben Hania, Wajdi; Hacene, Hocine; Cayol, Jean-Luc; Ollivier, Bernard; Fardeau, Marie-Laure

    2013-06-01

    A hyperthermophilic anaerobic bacterium, designated D2C22(T), was isolated from the hydrothermal hot spring of Guelma in north-east Algeria. The isolate was a Gram-stain-positive, non-sporulating, non-motile rod, appearing singly or in pairs (0.3-0.4 × 8.0-9.0 µm). Strain D2C22(T) grew anaerobically at 45-85 °C (optimum 65 °C), at pH 5-9 (optimum pH 6.8) and with 0-20 g NaCl l(-1). Strain D2C22(T) used glucose, galactose, lactose, fructose, ribose, xylose, arabinose, maltose, cellobiose, mannose, melibiose, sucrose, xylan and pyruvate (only in the presence of yeast extract or biotrypticase) as electron donors. The end products from glucose fermentation were acetate, lactate, CO2 and H2. Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate and sulfite were not used as electron acceptors. The predominant cellular fatty acids were iso-C15:0 and iso-C17:0. The DNA G+C content was 41.6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain D2C22(T) was most closely related to Caldicoprobacter oshimai JW/HY-331(T), Caldicoprobacter algeriensis TH7C1(T) and Acetomicrobium faecale DSM 20678(T) (95.5, 95.5 and 95.3% 16S rRNA gene sequence similarity, respectively). Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain D2C22(T) is proposed to be a representative of a novel species of the genus Caldicoprobacter within the order Clostridiales, for which the name Caldicoprobacter guelmensis sp. nov. is proposed. The type strain is D2C22(T) (=DSM 24605(T)=JCM 17646(T)). PMID:23041645

  18. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extremely thermophilic, high ethanol-yielding bacterium isolated from household waste.

    PubMed

    Tomás, Ana Faria; Karakashev, Dimitar; Angelidaki, Irini

    2013-07-01

    An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01(T), was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH 7, with a maximum growth rate of 0.1 h(-1). DNA G+C content was 34.2 mol%. Strain DTU01(T) could ferment arabinose, cellobiose, fructose, galactose, glucose, lactose, mannitol, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract and xylose, but not cellulose, Avicel, inositol, inulin, glycerol, rhamnose, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol ethanol per mol xylose was achieved when sulfite was added to the cultivation medium. Thiosulfate, but not sulfate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01(T) was shown to be closely related to Thermoanaerobacter mathranii A3(T), Thermoanaerobacter italicus Ab9(T) and Thermoanaerobacter thermocopriae JT3-3(T), with 98-99 % similarity. Despite this, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance and isolation site) allow for the proposal of strain DTU01(T) as a representative of a novel species within the genus Thermoanaerobacter, for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed, with the type strain DTU01(T) ( = DSM 25963(T) = KCTC 4529(T) = VKM B-2752(T) = CECT 8142(T)). PMID:23178727

  19. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring.

    PubMed

    Slobodkin, A; Reysenbach, A L; Strutz, N; Dreier, M; Wiegel, J

    1997-04-01

    A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7T; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 microns, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74 degrees C with an optimum at 65 degrees C. The pH range for growth at 65 degrees C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO2, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H2 was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO2, nitrate, sulfate, sulfite, or elemental sulfur. The G + C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type-positive Bacillus-Clostridium subphylum. PMID:9103646

  20. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring

    SciTech Connect

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-04-01

    A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7{sup T}; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 {mu}m, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74{degrees}C with an optimum at 65{degrees}C. The pH range for growth at 65{degrees}C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO{sub 2}, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H{sub 2} was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO{sub 2}, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type positive Bacillus-Clostridium subphylum.

  1. Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge

    PubMed Central

    Ho, Dang P.; Jensen, Paul D.

    2013-01-01

    This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time. PMID:23956388

  2. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    PubMed

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating. PMID:15246444

  3. Methanogenesis in a thermophilic (58 degrees C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen

    SciTech Connect

    Zinder, S.H.; Cardwell, S.C.; Anguish, T.; Lee, M.; Koch, M.

    1984-04-01

    Aceticlastic methanogens and other microbial groups were enumerated in a 58 degrees C laboratory-scale (3 liter) anaerobic digestor which was fed air-classified municipal refuse, a lignocellulosic waste (loading rate = 1.8 to 2.7 g of volatile solids per liter per day: retention time = 10 days). Two weeks after start-up, Methanosarcina sp. was present in high numbers (10/sup 5/ to 10/sup 6/ CFU/ml) and autofluorescent Methanosarcina clumps were abundant in sludge. After 4 months of operation, numbers of Methanosarcina sp. dropped 2 to 3 orders of magnitude and large numbers (most probable number = 10/sup 6/ to 10/sup 7/ /ml) Methanothrix sp. were found. Methanothrix sp. had apparently displaced Methanosarcina sp. as the dominant aceticlastic methanogen. During the period when Methanothrix sp. was dominant, acetate concentrations varied between 0.3 and 1.5 mumol/ml during the daily feeding cycle, and acetate was the precursor of 63 to 66% of the methane produced during peak digestor methanogenesis. The apparent Km value obtained for methanogenesis from acetate, 0.3 mumol/ml, indicated that the aceticlastic methanogens were saturated for substrate during most of the digestor cycle. CO2 reducing methanogens were capable of methanogenesis at rates more than 12 times greater than those usually found in the digestor. Added propionate (4.5 mumol/ml) was metabolized slowly and slightly inhibited methanogenesis. Added n-butyrate, isobutyrate, or n-valerate (4.5 mumol/ml each) were broken down within 24 h. Isobutyrate was oxidized to acetate, a novel reaction possibly involving isomerization to n-butyrate. The rapid growth rate and versatile metabolism of Methanosarcina sp. make it a likely organism to be involved in start-up whereas the low Km value of Methanothrix sp. for acetate may cause it to be favored in stable digestors operated with long retention times.

  4. Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Zeng, Xiang; Zhang, Zhao; Li, Xi; Zhang, Xiaobo; Cao, Junwei; Jebbar, Mohamed; Alain, Karine; Shao, Zongze

    2015-02-01

    A novel piezophilic, thermophilic, anaerobic, fermentative bacterial strain, designated strain DY22613(T), was isolated from a deep-sea hydrothermal sulfide deposit at the East Pacific Rise (GPS position: 102.6° W 3.1° S). Cells of strain DY22613(T) were long, motile rods (10 to 20 µm in length and 0.5 µm in width) with peritrichous flagella and were Gram-stain-negative. Growth was recorded at 44-72 °C (optimum 60-62 °C) and at hydrostatic pressures of 0.1-55 MPa (optimum 20 MPa). The pH range for growth was from pH 5.0 to 9.0 with an optimum at pH 7.0. Growth was observed in the presence of 1 to 8 % (w/v) sea salts and 0.65 to 5.2 % (w/v) NaCl, with optimum salt concentrations at 3.5 % for sea salts and at 2.3 % for NaCl. Under optimal growth conditions, the shortest generation time observed was 27 min (60 °C, 20 MPa). Strain DY22613(T) was heterotrophic, able to utilize complex organic compounds, amino acids, sugars and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamine, methionine, phenylalanine, serine, threonine, fructose, fucose, galactose, gentiobiose, glucose, mannose, melibiose, palatinose, rhamnose, turanose, pyruvate, lactic acid, methyl ester, erythritol, galacturonic acid and glucosaminic acid. Strain DY22613(T) was able to reduce Fe(III) compounds, including Fe(III) oxyhydroxide (pH 7.0), amorphous iron(III) oxide (pH 9.0), goethite (α-FeOOH, pH 12.0), Fe(III) citrate and elementary sulfur. Products of fermentation were butyrate, acetate and hydrogen. Main cellular fatty acids were iso-C15 : 0, iso-C14 : 0 3-OH and C14 : 0. The genomic DNA G+C content of strain DY22613(T) was 36.7 mol%. Based on 16S rRNA gene sequence analysis, the strain forms a novel lineage within the class Clostridia and clusters with the order Haloanaerobiales (86.92 % 16S rRNA gene sequence similarity). The phylogenetic data suggest that the lineage represents at least a novel genus and species, for which the name Anoxybacter

  5. Methanogenesis in a Thermophilic (58°C) Anaerobic Digestor: Methanothrix sp. as an Important Aceticlastic Methanogen

    PubMed Central

    Zinder, S. H.; Cardwell, S.C.; Anguish, T.; Lee, M.; Koch, M.

    1984-01-01

    Aceticlastic methanogens and other microbial groups were enumerated in a 58°C laboratory-scale (3 liter) anaerobic digestor which was fed air-classified municipal refuse, a lignocellulosic waste (loading rate = 1.8 to 2.7 g of volatile solids per liter per day; retention time = 10 days). Two weeks after start-up, Methanosarcina sp. was present in high numbers (105 to 106 CFU/ml) and autofluorescent Methanosarcina-like clumps were abundant in sludge examined by using epifluorescence microscopy. After about 4 months of digestor operation, numbers of Methanosarcina sp. dropped 2 to 3 orders of magnitude and large numbers (most probable number = 106 to 107/ml) of a thermophilic aceticlastic methanogen morphologically resembing Methanothrix sp. were found. Methanothrix sp. had apparently displaced Methanosarcina sp. as the dominant aceticlastic methanogen in the digestor. During the period when Methanothrix sp. was apparently dominant, acetate concentrations varied between 0.3 and 1.5 μmol/ml during the daily feeding cycle, and acetate was the precursor of 63 to 66% of the methane produced during peak digestor methanogenesis. The apparent Km value obtained for methanogenesis from acetate, 0.3 μmol/ml, indicated that the aceticlastic methanogens were nearly saturated for substrate during most of the digestor cycle. CO2-reducing methanogens were capable of methanogenesis at rates more than 12 times greater than those usually found in the digestor. Added propionate (4.5 μmol/ml) was metabolized slowly by the digestor populations and slightly inhibited methanogenesis. Added n-butyrate, isobutyrate, or n-valerate (4.5 μmol/ml each) were broken down within 24 h. Isobutyrate was oxidized to acetate, a novel reaction possibly involving isomerization to n-butyrate. The rapid growth rate and versatile metabolism of Methanosarcina sp. make it a likely organism to be involved in start-up, whereas the low Km value of Methanothrix sp. for acetate may cause it to be favored in

  6. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae.

    PubMed

    Podosokorskaya, Olga A; Kadnikov, Vitaly V; Gavrilov, Sergey N; Mardanov, Andrey V; Merkel, Alexander Y; Karnachuk, Olga V; Ravin, Nikolay V; Bonch-Osmolovskaya, Elizaveta A; Kublanov, Ilya V

    2013-06-01

    A novel moderately thermophilic, facultatively anaerobic chemoorganotrophic bacterium strain P3M-2(T) was isolated from a microbial mat developing on the wooden surface of a chute under the flow of hot water (46°C) coming out of a 2775-m-deep oil exploration well (Tomsk region, Russia). Strain P3M-2(T) is a moderate thermophile and facultative anaerobe growing on mono-, di- or polysaccharides by aerobic respiration, fermentation or by reducing diverse electron acceptors [nitrite, Fe(III), As(V)]. Its closest cultivated relative (90.8% rRNA gene sequence identity) is Ignavibacterium album, the only chemoorganotrophic member of the phylum Chlorobi. New genus and species Melioribacter roseus are proposed for isolate P3M-2(T) . Together with I. album, the new organism represents the class Ignavibacteria assigned to the phylum Chlorobi. The revealed group includes a variety of uncultured environmental clones, the 16S rRNA gene sequences of some of which have been previously attributed to the candidate division ZB1. Phylogenetic analysis of M. roseus and I. album based on their 23S rRNA and RecA sequences confirmed that these two organisms could represent an even deeper, phylum-level lineage. Hence, we propose a new phylum Ignavibacteriae within the Bacteroidetes-Chlorobi group with a sole class Ignavibacteria, two families Ignavibacteriaceae and Melioribacteraceae and two species I. album and M. roseus. This proposal correlates with chemotaxonomic data and phenotypic differences of both organisms from other cultured representatives of Chlorobi. The most essential differences, supported by the analyses of complete genomes of both organisms, are motility, facultatively anaerobic and obligately organotrophic mode of life, the absence of chlorosomes and the apparent inability to grow phototrophically. PMID:23297868

  7. Removal of organics and nutrients from food wastewater using combined thermophilic two-phase anaerobic digestion and shortcut biological nitrogen removal.

    PubMed

    Cui, Fenghao; Lee, Seungho; Kim, Moonil

    2011-10-15

    A process combining pilot-scale two-phase anaerobic digestion and shortcut biological nitrogen removal (SBNR) was developed to treat organics and nutrients (nitrogen and phosphorus) from food wastewater. The thermophilic two-phase anaerobic digestion process was investigated without adjusting the pH of the wastewater for the pre-acidification process. The digested food wastewater was treated using the SBNR process without supplemental carbon sources or alkalinity. Under these circumstances, the combined system was able to remove about 99% of COD, 88% of TN, and 97% of TP. However, considerable amounts of nutrients were removed due to chemical precipitation processes between the anaerobic digestion and SBNR. The average TN removal efficiency of the SBNR process was about 74% at very low C/N (TCOD/TN) ratio of 2. The SBNR process removed about 39% of TP from the digested food wastewater. Conclusively, application of the combined system improved organic removal efficiency while producing valuable energy (biogas), removed nitrogen at a low C/N ratio, and conserved additional resources (carbon and alkalinity). PMID:21849203

  8. Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts.

    PubMed

    Yu, Bao; Lou, Ziyang; Zhang, Dongling; Shan, Aidang; Yuan, Haiping; Zhu, Nanwen; Zhang, Kanghan

    2015-03-01

    Ferric salts will influence the thermophilic anaerobic digestion of waste activated sludge (WAS). FeCl3 was found to contribute to the anaerobic digestion process with a cumulative biogas production of 357 mL/gVS, 79.6% higher than that in the control group, and Fe2(SO4)3 had no distinct impact, while Fe(NO3)3 inhibited the methanogenesis process. A favorable balance between the release of organic matters from WAS and consumption rate was established after dosing FeCl3 from the perspective of variations of soluble COD, volatile fatty acids (VFAs) and the dissolved organic matters (DOM) assessed by EEM fluorescence spectroscopy and fluorescence regional integration (FRI) technique. Conversely, the system with Fe(NO3)3 achieved an unsuitable substrates environment. Pyrosequencing revealed that the anaerobic digestion system with FeCl3 enriched Coprothermobacter for proteins fermentation and Methanosarcina for methanogenesis with the values of 18.7% and 63.2%, respectively, while that with the supplementation of Fe(NO3)3 obtained the lowest relative abundance. PMID:25545098

  9. Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia.

    PubMed

    Ogg, Christopher D; Patel, Bharat K C

    2009-05-01

    A strictly anaerobic, thermophilic bacterium, designated strain Y170(T), was isolated from a microbial mat colonizing thermal waters of a run-off channel created by the free-flowing waters of a Great Artesian Basin (GAB) bore well (New Lorne bore; registered number 17263). Cells of strain Y170(T) were slightly curved rods (1.2-12x0.8-1.1 mum) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 70 degrees C (temperature range for growth was 55-80 degrees C) and pH 7 (pH range for growth was 5-9). Strain Y170(T) grew poorly on yeast extract as a sole carbon source, but not on tryptone (0.2 %). Yeast extract could not be replaced by tryptone and was obligately required for growth on tryptone, peptone, glucose, fructose, galactose, cellobiose, mannose, sucrose, xylose, mannitol, formate, pyruvate, Casamino acids and threonine. No growth was observed on arabinose, lactose, maltose, raffinose, chitin, xylan, pectin, starch, acetate, benzoate, lactate, propionate, succinate, myo-inositol, ethanol, glycerol, amyl media, aspartate, leucine, glutamate, alanine, arginine, serine and glycine. End products detected from glucose fermentation were acetate, ethanol and presumably CO(2) and H(2). Iron(III), manganese(IV), thiosulfate and elemental sulfur, but not sulfate, sulfite, nitrate or nitrite, were used as electron acceptors in the presence of 0.2 % yeast extract. Iron(III) in the form of amorphous Fe(III) oxhydroxide and Fe(III) citrate was also reduced in the presence of tryptone, peptone and Casamino acids, but not with chitin, xylan, pectin, formate, starch, pyruvate, acetate, benzoate, threonine, lactate, propionate, succinate, inositol, ethanol, glycerol, mannitol, aspartate, leucine, glutamate, alanine, arginine, serine or glycine. Strain Y170(T) was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and

  10. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    PubMed Central

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  11. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    PubMed

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  12. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea. PMID:24803272

  13. Thermophilic co-digestion feasibility of distillers grains and swine manure: effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD).

    PubMed

    Sensai, P; Thangamani, A; Visvanathan, C

    2014-01-01

    Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate. PMID:25145212

  14. In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Mosier, Annika [Stanford University

    2013-01-22

    Annika Mosier, graduate student from Stanford University presents a talk titled "In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  15. In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Mosier, Annika

    2012-03-22

    Annika Mosier, graduate student from Stanford University presents a talk titled "In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  16. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. PMID:23792658

  17. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery.

    PubMed

    Ferraz Júnior, Antônio Djalma Nunes; Etchebehere, Claudia; Zaiat, Marcelo

    2015-06-01

    This study evaluated the influence of a high organic loading rate (OLR) on thermophilic hydrogen production at an up-flow anaerobic packed-bed reactor (APBR) treating a residual liquid stream of a Brazilian biorefinery. The APBR, filled with low-density polyethylene, was operated at an OLR of 84.2 kg-COD m(-3) d(-1). This value was determined in a previous study. The maximum values of hydrogen production and yield were 5,252.6 mL-H2 d(-1) and 3.7 mol-H2 mol(-1)(total carbohydrates), respectively. However, whereas the OLR remained constant, the specific organic load rate (sOLR) decreased throughout operation from 1.38 to 0.72 g-Total carbohydratesg-VS(-1) h(-1), this decrease negatively affected hydrogen production. A sOLR of 0.98 g-Total carbohydratesg-VS(-1) h(-1) was optimal for hydrogen production. The microbial community was studied using 454-pyrosequencing analysis. Organisms belonging to the genera Caloramator, Clostridium, Megasphaera, Oxobacter, Thermoanaerobacterium, and Thermohydrogenium were detected in samples taken from the reactor at operation days 30 and 60, suggesting that these organisms contribute to hydrogen production. PMID:25812810

  18. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas.

    PubMed

    Qiao, Wei; Takayanagi, Kazuyuki; Niu, Qigui; Shofie, Mohammad; Li, Yu You

    2013-12-01

    The performance of thermophilic anaerobic co-digestion of coffee grounds and sludge using membrane reactor was investigated for 148 days, out of a total research duration of 263 days. The OLR was increased from 2.2 to 33.7 kg-COD/m(3)d and HRT was shortened from 70 to 7 days. A significant irreversible drop in pH confirmed the overload of reactor. Under a moderately high OLR of 23.6 kg-COD/m(3)d, and with HRT and influent total solids of 10 days and 150 g/L, respectively, the COD removal efficiency was 44.5%. Hydrogen in biogas was around 100-200 ppm, which resulted in the persistent propionate of 1.0-3.2g/L. The VFA consumed approximately 60% of the total alkalinity. NH4HCO3 was supplemented to maintain alkalinity. The stability of system relied on pH management under steady state. The 16SrDNA results showed that hydrogen-utilizing methanogens dominates the archaeal community. The propionate-oxidizing bacteria in bacterial community was insufficient. PMID:24090872

  19. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    PubMed

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). PMID:26210142

  20. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste.

    PubMed

    Merlino, Giuseppe; Rizzi, Aurora; Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Oberti, Roberto; Adani, Fabrizio; Daffonchio, Daniele

    2013-04-15

    The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes. PMID:23399080

  1. Performance of up-flow anaerobic fixed bed reactor of the treatment of sugar beet pulp lixiviation in a thermophilic range.

    PubMed

    Montañés Alonso, Rocío; Pérez García, Montserrat; Solera del Río, Rosario

    2014-02-01

    The acclimatization and performance study of lixiviation of sugar beet pulp are carried out in upflow anaerobic fixed bed reactor in thermophilic range of temperature (55°C). Several hydraulic retention time is conducted (11, 8, 6, 4, 2, and 1.5 days). The performance study showed that Chemical Oxygen Demand removal efficiency is 90% for 6 days-HRT. While COD removal efficiency was reduced within the range of 74.3% and 59.4% in others HRT. Organic loading rates greater than 10 kg COD/m(3)d in influent, (2 days-HRT), produces a destabilization of the process due to total acidity accumulation in reactors although is the HRT with highest methane production. The results showed that an increase in OLR was directly correlated with active biomass inside reactor but not with the amount in microbial community. The bacterial concentration inside the reactor is strongly influenced by the content of microorganisms in the lixiviation of sugar beet pulp. PMID:24412482

  2. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    PubMed

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. PMID:25306229

  3. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    PubMed

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required. PMID:26810032

  4. Full-scale class A biosolids production by two-stage continuous-batch thermophilic anaerobic digestion at the hyperion treatment plant, Los Angeles, California.

    PubMed

    Iranpour, Reza; Cox, Huub H J; Fan, Steve; Abkian, Varouj; Minamide, Traci; Kearney, Ray J; Haug, Roger T

    2006-10-01

    The City of Los Angeles Hyperion Treatment Plant (HTP) (California) converted its anaerobic digesters to thermophilic operation to produce Class A biosolids. Phase IV tests demonstrated compliance of a two-stage, continuous-batch process with Alternative 1 of U.S. Environmental Protection Agency 40 CFR Part 503 (U.S. EPA, 1993), which defines the time-temperature requirement for batch treatment (T > or = 56.3 degrees C at 16-h holding). Fecal coliforms, Salmonella sp., viable helminth ova, and enteric viruses were not detected in biosolids in the postdigestion train, including the truck-loading facility and the farm for land application as the last points of plant control where compliance is to be demonstrated. The same results were achieved during Phase V tests, after lowering the second-stage holding temperature to 52.6 degrees C to reduce the elevated methyl mercaptan production that was observed during Phase IV. Hence, the Phase V process complied with Alternative 3 of 40 CFR Part 503. Currently, HTP operates its digesters under the same conditions as tested in Phase V. In 2003, monthly monitoring of the biosolids at the truck-loading facility and the farm for land application demonstrated consistent compliance with Alternative 3. PMID:17120443

  5. Evaluation of the matrix effect of thermophilic anaerobic digestion on inactivation of infectious laryngotracheitis virus using real-time PCR and viral cell culture.

    PubMed

    Gao, Tiejun; Bowlby, Evelyn; Tong, Yupin; Wu, John T Y; Wong, Lester; Tower, Robert J; Pang, Xiaoli; Li, Xiaomei

    2012-04-01

    The matrix effect of the thermophilic anaerobic digestion (TAD) process on inactivation of infectious laryngotracheitis virus (ILTV) was evaluated. Viral cell culture and real-time PCR were used for assessing removal of the viral infectivity and degradation of viral DNA, respectively. Results showed that the TAD-derived matrix alone can inactivate the virus and destroy the nucleic acid helix core of ILTV in a time-and- dose-dependent manner. No cytopathogenic effect (CPE) was observed in the cells exposed to ILTV pre-treated with TAD matrix for 1.5h in experiment 1 and for 16h in experiment 2. There was a significant statistical difference between TAD matrix treated and non-treated cultures (p<0.001, Chi-test). Amplifiable ILT viral DNA was reduced 2.27 log by 1.5h-treatment and was not present by 16h-treatment with TAD matrix, indicating complete viral DNA fragmentation. The TAD process is an environmentally friendly way for disposing of poultry biowaste and carcasses. PMID:22349192

  6. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    PubMed

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  7. Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: system amendments and membrane performance.

    PubMed

    Qiao, Wei; Takayanagi, Kazuyuki; Shofie, Mohammad; Niu, Qigui; Yu, Han Qing; Li, Yu-You

    2013-12-01

    Coffee grounds are deemed to be difficult for degradation by thermophilic anaerobic process. In this research, a 7 L AnMBR accepting coffee grounds was operated for 82 days and failed with pH dropping to 6.6. The deficiency of micronutrients in the reactor was identified. The system was recovered by supplying micronutrient, pH adjustment and influent ceasing for 22 days. In the subsequent 160 days of co-digestion experiment, waste activated sludge (15% in the mixture) was mixed into coffee grounds. The COD conversion efficiency of 67.4% was achieved under OLR of 11.1 kg-COD/m(3) d and HRT of 20 days. Tannins was identified affecting protein degradation by a batch experiment. Quantitative supplements of NH4HCO3 (0.12 g-N/g-TSin) were effective to maintain alkalinity and pH. The solid concentration in the AnMBR reached 75 g/L, but it did not significantly affect membrane filtration under a flux of 5.1 L/m(2) h. Soluble carbohydrate, lipid and protein were partially retained by the membrane. PMID:24177158

  8. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411

    PubMed Central

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  9. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Li, Kun

    2015-09-01

    A laboratory-scale external circulation anaerobic reactor (ECAR) was developed to treat actual coal gasification wastewater. The external circulation ratio (R) was selected as the main operating variable for analysis. From the results, with the hydraulic retention time of 50h, pH > 8.0 and R of 3, the COD, total phenols, volatile phenol and NH4(+)-N removal efficiencies were remarkably increased to 10 ± 2%, 22 ± 5%, 18 ± 1%, and -1 ± 2%, respectively. Besides, increasing R resulted in more transformation from bound extracellular polymeric substances (EPS) to free EPS in the liquid and the particle size distribution of anaerobic granular sludge accumulated in the middle size range of 1.0-2.5mm. Results showed the genus Saccharofermentans dominanted in the ECAR and the bacterial community shift was observed at different external circulation ratio, influencing the pollutants removal profoundly. PMID:26081627

  10. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Kim, Mi-Sun; Kim, Jong-Oh; Kim, Young Mo; Park, Jong Moon

    2016-08-01

    In recent years, anaerobic co-digestion (AcoD) has been widely used to improve reactor performance, especially methane production. In this study, we applied two different operating temperatures (thermophilic and mesophilic) and gradually increased the load of food wastewater (FWW) to investigate the bacterial communities during the AcoD of waste activated sludge (WAS) and FWW. As the load of FWW was increased, methane production rate (MPR; L CH4/L d) and methane content (%) in both Thermophilic AcoD (TAcoD) and Mesophilic AcoD (MAcoD) increased significantly; the highest MPR and methane content in TAcoD (1.423 L CH4/L d and 68.24%) and MAcoD (1.233 L CH4/L d and 65.21%) were observed when the FWW mixing ratio was 75%. However, MPR and methane yield in both reactors decreased markedly and methane production in TAcoD ceased completely when only FWW was fed into the reactor, resulting from acidification of the reactor caused by accumulation of organic acids. Pyrosequencing analysis revealed a decrease in bacterial diversity in TAcoD and a markedly different composition of bacterial communities between TAcoD and MAcoD with an increase in FWW load. For example, Bacterial members belonging to two genera Petrotoga (assigned to phylum Thermotogae) and Petrimonas (assigned to phylum Bacteroidetes) became dominant in TAcoD and MAcoD with an increase in FWW load, respectively. In addition, quantitative real-time PCR (qPCR) results showed higher bacterial and archaeal populations (expressed as 16S rRNA gene concentration) in TAcoD than MAcoD with an increase in FWW load and showed maximum population when the FWW mixing ratio was 75% in both reactors. Collectively, this study demonstrated the dynamics of key bacterial communities in TAcoD and MAcoD, which were highly affected by the load of FWW. PMID:27155112

  11. Thermophilic degradation of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  12. Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: effects of temperature, hydraulic retention time, and organic loading rate.

    PubMed

    Li, C; Champagne, P; Anderson, B C

    2013-01-01

    Anaerobic co-digestions with fat, oil, and grease (FOG) were investigated in semi-continuous flow digesters under various operating conditions. The effects of hydraulic retention times (HRTs) of 12 and 24 days, organic loading rates (OLRs) between 1.19 and 8.97 gTVS/Ld, and digestion temperatures of 37 degrees C and 55 degrees C on biogas production were evaluated. It was proposed that, compared to anaerobic digestion with wastewater treatment plant sludge (primary raw sludge), semi-continuous flow anaerobic co-digestion with FOG could effectively enhance biogas and methane production. Thermophilic (55 degrees C) co-digestions exhibited higher biogas production and degradation of organics than mesophilic co-digestions. The best biogas production rate of 17.4 +/- 0.86 L/d and methane content 67.9 +/- 1.46% was obtained with a thermophilic co-digestion at HRT = 24 days and OLR = 2.43 +/- 0.15 g TVS/Ld. These were 32.8% and 7.10% higher than the respective values from the mesophilic co-digestion under similar operating conditions. PMID:24350466

  13. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell.

    PubMed

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-09-01

    The combination of the anaerobic digestion (AD) process with a microbial electrolysis cell (MEC) coupled to an ammonia stripping unit as a post-treatment was assessed both in series operation, to improve the quality of the effluent, and in loop configuration recirculating the effluent, to increase the AD robustness. The MEC allowed maintaining the chemical oxygen demand removal of the whole system of 46±5% despite the AD destabilization after doubling the organic and nitrogen loads, while recovering 40±3% of ammonia. The AD-MEC system, in loop configuration, helped to recover the AD (55% increase in methane productivity) and attained a more stable and robust operation. The microbial population assessment revealed an enhancement of AD methanogenic archaea numbers and a shift in eubacterial population. The AD-MEC combined system is a promising strategy for stabilizing AD against organic and nitrogen overloads, while improving the quality of the effluent and recovering nutrients for their reutilization. PMID:27259192

  14. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus--a new method for rubber recycling.

    PubMed

    Bredberg, K; Persson, J; Christiansson, M; Stenberg, B; Holst, O

    2001-01-01

    The anaerobic sulfur-reducing archaeon Pyrococcus furiosus was investigated regarding its capacity to desulfurize rubber material. The microorganism's sensitivity towards common rubber elastomers and additives was tested and several were shown to be toxic to P. furiosus. The microorganism was shown to utilize sulfur in vulcanized natural rubber and an increase in cell density was obtained when cultivated in the presence of spent tire rubber. Ethanol-leached cryo-ground tire rubber treated with P. furiosus for 10 days was vulcanized together with virgin rubber material (15% w/w) and the mechanical properties of the resulting material were determined. The increase in the stress at break value and the decrease in swell ratio and stress relaxation rate obtained for material containing microbially treated rubber (compared to untreated material) show the positive effects of microbial desulfurization on rubber. PMID:11234957

  15. Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. 1991 annual report

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.

    1993-10-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. In this laboratory systematic studies are being conducted which deal with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention is being paid to heavy crude oils such as Boscan and Cerro Negro (Venezuela), Monterey (California) and those from Alabama and Arkansas. Current studies indicate that during the biotreatment several properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent solubilization of trace metals; and (6) the qualitative and quantitative chemical and physical changes appear to be microbial species dependent. Effects on heavy crude oils are also compared to those on lighter oils such as oils from the Wyoming petroleum reserve. Microbial oil interactions are monitored routinely by a consortium of analytical techniques which are continuously upgraded and are capable of multiparameter analysis. The results generated in fiscal year 1991, describing (1) through (6), are presented and discussed in this report.

  16. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum

    SciTech Connect

    Svetlitshnyi, V.; Wiegel, J.; Rainey, F.

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-264{sup T}; DSM 11003) were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60{degrees}C, the pH range for growth determined at 25{degrees}C [pH{sup 25{degrees}C}] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH{sup 60{degrees}C} of 7.6 and 8.1). At a pH{sup 25{degrees}C} of 8.5 temperature range for growth was from 52 to 70{degrees}C, with an optimum between 60 and 66{degrees}C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  17. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    PubMed

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.). PMID:24632626

  18. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    SciTech Connect

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  19. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725

    PubMed Central

    Dam, Phuongan; Kataeva, Irina; Yang, Sung-Jae; Zhou, Fengfeng; Yin, Yanbin; Chou, Wenchi; Poole, Farris L.; Westpheling, Janet; Hettich, Robert; Giannone, Richard; Lewis, Derrick L.; Kelly, Robert; Gilbert, Harry J.; Henrissat, Bernard; Xu, Ying; Adams, Michael W. W.

    2011-01-01

    Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments. PMID:21227922

  20. Draft Genome Sequence of Tepidibacillus decaturensis Strain Z9, an Anaerobic, Moderately Thermophilic, and Heterotrophic Bacterium from the Deep Subsurface of the Illinois Basin, USA.

    PubMed

    Dong, Yiran; Chang, Yun-Juan; Sanford, Robert A; Fouke, Bruce W

    2016-01-01

    The genome of the moderately thermophilic and halotolerant bacteriumTepidibacillus decaturensisstrain Z9 was sequenced. The draft genome comprises three scaffolds, for a total of 2.95 Mb. As the first sequenced genome within the genusTepidibacillus, 2,895 protein-coding genes, 52 tRNA genes, and 3 rRNA operons were predicted. PMID:27056217

  1. Draft Genome Sequence of Tepidibacillus decaturensis Strain Z9, an Anaerobic, Moderately Thermophilic, and Heterotrophic Bacterium from the Deep Subsurface of the Illinois Basin, USA

    PubMed Central

    Chang, Yun-Juan; Sanford, Robert A.; Fouke, Bruce W.

    2016-01-01

    The genome of the moderately thermophilic and halotolerant bacterium Tepidibacillus decaturensis strain Z9 was sequenced. The draft genome comprises three scaffolds, for a total of 2.95 Mb. As the first sequenced genome within the genus Tepidibacillus, 2,895 protein-coding genes, 52 tRNA genes, and 3 rRNA operons were predicted. PMID:27056217

  2. Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR.

    PubMed

    Li, Qian; Li, Yu-You; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki

    2015-06-01

    This study was conducted to investigate the effects of sulfate on propionate degradation and higher organic loading rate (OLR) achievement in a thermophilic AnMBR for 373days using coffee grounds, milk and waste activated sludge (WAS) as the co-substrate. Without the addition of sulfate, the anaerobic system failed at an OLR of 14.6g-COD/L/d, with propionate accumulating to above 2.23g-COD/L, and recovery by an alkalinity supplement was not successful. After sulfate was added into substrates at a COD/SO4(2-) ratio of 200:1 to 350:1, biogas production increased proportionally with OLR increasing from 4.06 to 15.2g-COD/L/d. Propionic acid was maintained at less than 100mg-COD/L due to the effective conversion of propionic acid to methane after the sulfate supplement was added. The long-term stable performance of the AnMBR indicated that adding sulfate was beneficial for the degradation of propionate and achieving a higher OLR under the thermophilic condition. PMID:25791749

  3. Changes in the anaerobic threshold in an annual cycle of sport training of young soccer players.

    PubMed

    Sliwowski, R; Andrzejewski, M; Wieczorek, A; Barinow-Wojewódzki, A; Jadczak, L; Adrian, S; Pietrzak, M; Wieczorek, S

    2013-06-01

    The aim of the study was to assess changes in the anaerobic threshold of young soccer players in an annual training cycle. A group of highly trained 15-18 year old players of KKS Lech Poznań were tested. The tests included an annual training macrocycle, and its individual stages resulted from the time structure of the sports training. In order to assess the level of exercise capacities of the players, a field exercise test of increasing intensity was carried out on a soccer pitch. The test made it possible to determine the 4 millimolar lactate threshold (T LA 4 mmol · l(-1)) on the basis of the lactate concentration in blood [LA], to establish the threshold running speed and the threshold heart rate [HR]. The threshold running speed at the level of the 4 millimolar lactate threshold was established using the two-point form of the equation of a straight line. The obtained indicators of the threshold running speed allowed for precise establishment of effort intensity used in individual training in developing aerobic endurance. In order to test the significance of differences in mean values between four dates of tests, a non-parametric Friedman ANOVA test was used. The significance of differences between consecutive dates of tests was determined using a post-hoc Friedman ANOVA test. The tests showed significant differences in values of selected indicators determined at the anaerobic threshold in various stages of an annual training cycle of young soccer players. The most beneficial changes in terms of the threshold running speed were noted on the fourth date of tests, when the participants had the highest values of 4.01 m · s(-1) for older juniors, and 3.80 m · s(-1) for younger juniors. This may be indicative of effective application of an individualized programme of training loads and of good preparation of teams for competition in terms of players' aerobic endurance. PMID:24744480

  4. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    SciTech Connect

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-12-31

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period.

  5. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus

    SciTech Connect

    Blumer-Schuette, Sara E.; Ozdemir, Inci; Mistry, Dhaval; Lucas, Susan; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C; Ivanova, N; Detter, J. Chris; Walston Davenport, Karen; Han, Cliff; Adams, Michael W. W.; Kelly, Robert M

    2011-01-01

    The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.

  6. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  7. The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester.

    PubMed

    Tang, Yueqin; Shigematsu, Toru; Ikbal; Morimura, Shigeru; Kida, Kenji

    2004-05-01

    We demonstrated previously that micro-aeration allows construction of an effective thermophilic methane-fermentation system for treatment of municipal solid waste (MSW) without production of H(2)S. In the present study, we compared the microbial communities in a thermophilic MSW digester without aeration and with micro-aeration by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), phylogenetic analysis of libraries of 16S rRNA gene clones and quantitative real-time PCR. Moreover, we studied the activity of sulfate-reducing bacteria (SRB) by analysis of the transcription of the gene for dissimilatory sulfite reductase (dsr). Experiments using FISH revealed that microorganisms belonging to the domain Bacteria dominated in the digester both without aeration and with micro-aeration. Phylogenetic analysis based on 16S rRNA gene and analysis of bacteria by DGGE did not reveal any obvious difference within the microbial communities under the two aeration conditions, and bacteria affiliated with the phylum Firmicutes were dominant. In Archaea, the population of Methanosarcina decreased while the population of Methanoculleus increased as a result of micro-aerations as revealed by the analysis of 16S rRNA gene clones and quantitative real-time PCR. Reverse transcription and PCR (RT-PCR) demonstrated the transcription of dsrA not only in the absence of aeration but also in the presence of micro-aeration, even under conditions where no H(2)S was detected in the biogas. In conclusion, micro-aeration has no obvious effects on the phylogenetic diversity of microorganisms. Furthermore, the activity of SRBs in the digester was not repressed even though the concentration of H(2)S in the biogas was very low under the micro-aeration conditions. PMID:15159157

  8. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience.

    PubMed

    Giuliano, A; Zanetti, L; Micolucci, F; Cavinato, C

    2014-01-01

    A two-stage thermophilic anaerobic digestion process for the concurrent production of hydrogen and methane through the treatment of the source-sorted organic fraction of municipal solid waste was carried out over a long-term pilot scale experience. Two continuously stirred tank reactors were operated for about 1 year. The results showed that stable production of bio-hythane without inoculum treatment could be obtained. The pH of the dark fermentation reactor was maintained in the optimal range for hydrogen-producing bacteria activity through sludge recirculation from a methanogenic reactor. An average specific bio-hythane production of 0.65 m(3) per kg of volatile solids fed was achieved when the recirculation flow was controlled through an evaporation unit in order to avoid inhibition problems for both microbial communities. Microbial analysis indicated that dominant bacterial species in the dark fermentation reactor are related to the Lactobacillus family, while the population of the methanogenic reactor was mainly composed of Defluviitoga tunisiensis. The archaeal community of the methanogenic reactor shifted, moving from Methanothermobacter-like to Methanobacteriales and Methanosarcinales, the latter found also in the dark fermentation reactor when a considerable methane production was detected. PMID:24901613

  9. Degradation of Glyoxylate and Glycolate with ATP Synthesis by a Thermophilic Anaerobic Bacterium, Moorella sp. Strain HUC22-1▿

    PubMed Central

    Sakai, Shinsuke; Inokuma, Kentaro; Nakashimada, Yutaka; Nishio, Naomichi

    2008-01-01

    The thermophilic homoacetogenic bacterium Moorella sp. strain HUC22-1 ferments glyoxylate to acetate roughly according to the reaction 2 glyoxylate → acetate + 2 CO2. A batch culture with glyoxylate and yeast extract yielded 11.7 g per mol of cells per substrate, which was much higher than that obtained with H2 plus CO2. Crude extracts of glyoxylate-grown cells catalyzed the ADP- and NADP-dependent condensation of glyoxylate and acetyl coenzyme A (acetyl-CoA) to pyruvate and CO2 and converted pyruvate to acetyl-CoA and CO2, which are the key reactions of the malyl-CoA pathway. ATP generation was also detected during the key enzyme reactions of this pathway. Furthermore, this bacterium consumed l-malate, an intermediate in the malyl-CoA pathway, and produced acetate. These findings suggest that Moorella sp. strain HUC22-1 can generate ATP by substrate-level phosphorylation during glyoxylate catabolism through the malyl-CoA pathway. PMID:18083850

  10. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion.

    PubMed

    Arslan, Chaudhry; Sattar, Asma; Changying, Ji; Nasir, Abdul; Mari, Irshad Ali; Bakht, Muhammad Zia

    2015-01-01

    The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of 37 ± 0.1°C and 55 ± 0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g COD removed to 89.67 mL/g COD removed, 91.77 mL/g COD removed to 145.93 mL/g COD removed, and 15.36 mL/g COD removed to 117.62 mL/g COD removed for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste. PMID:26819952

  11. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion

    PubMed Central

    Arslan, Chaudhry; Sattar, Asma; Changying, Ji; Nasir, Abdul; Ali Mari, Irshad; Zia Bakht, Muhammad

    2015-01-01

    The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of 37 ± 0.1°C and 55 ± 0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g CODremoved to 89.67 mL/g CODremoved, 91.77 mL/g CODremoved to 145.93 mL/g CODremoved, and 15.36 mL/g CODremoved to 117.62 mL/g CODremoved for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste. PMID:26819952

  12. A thermophilic microbial fuel cell design

    NASA Astrophysics Data System (ADS)

    Carver, Sarah M.; Vuoriranta, Pertti; Tuovinen, Olli H.

    Microbial fuel cells (MFCs) are reactors able to generate electricity by capturing electrons from the anaerobic respiratory processes of microorganisms. While the majority of MFCs have been tested at ambient or mesophilic temperatures, thermophilic systems warrant evaluation because of the potential for increased microbial activity rates on the anode. MFC studies at elevated temperatures have been scattered, using designs that are already established, specifically air-cathode single chambers and two-chamber designs. This study was prompted by our previous attempts that showed an increased amount of evaporation in thermophilic MFCs, adding unnecessary technical difficulties and causing excessive maintenance. In this paper, we describe a thermophilic MFC design that prevents evaporation. The design was tested at 57 °C with an anaerobic, thermophilic consortium that respired with glucose to generate a power density of 375 mW m -2 after 590 h. Polarization and voltage data showed that the design works in the batch mode but the design allows for adoption to continuous operation.

  13. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    PubMed

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. PMID:25488041

  14. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a.

    PubMed

    Rooney, Elise A; Rowe, Kenneth T; Guseva, Anna; Huntemann, Marcel; Han, James K; Chen, Amy; Kyrpides, Nikos C; Mavromatis, Konstantinos; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R; Izquierdo, Javier A

    2015-01-01

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain. PMID:26205857

  15. Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Annual report

    SciTech Connect

    Sengupta, S; Gerrish, H P; Wong, K F; Nemerow, N; Daly, Jr, E L; Farooq, S; Chriswell, C

    1980-08-01

    Municipal solid wastes contain numerous substances of potential environmental concern. While some understanding of the composition of raw municipal waste and its leachate products is available, no information regarding characteristics of solid, liquid and gaseous outputs from anaerobic digestion exists. If centralized anaerobic digestion plants are to be environmentally viable, the characteristics and environmental effects of effluents from these plants must be acceptable. The environmental concerns are particularly acute where ground water supplies are precariously low and the water table is high, South Florida is such a location. A characterization and environmental study was initiated by the Resource Recovery Group on August 1978. The specific objectives are: (1) systematic characterization of solid, liquid and gaseous inputs and outputs; (2) investigations of leaching characteristic of output solid and liquid effluents, and the transport of pollutants to and through ground water systems; and (3) analysis of environmental and process parameters to obtain causal relationships.

  16. Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Semi-annual report

    SciTech Connect

    Sengupta, S; Farooq, S; Gerrish, H P; Wong, K F; Daly, Jr, E L; Chriswell, C

    1980-02-01

    Anaerobic digestion of municipal waste has been demonstrated to be feasible in bench scale experiments by Pfeffer (1974). Approximately, 50% reduction in mass and production of 6000 ft/sup 3/ of gas/ton have been estimated. The gas composition is estimated to be 50% methane and 50% carbon monoxide. The technical and economic feasibility of anaerobic digestion with an ultimate objective of commercialization are discussed. A plant has been built at Pompano Beach, Florida on an existing shredding and landfill operation site. The plant design capacity is 100 tons/day. Two digesters have been constructed to be used in parallel. The process consists of primary shredding, metal separation, secondary shredding, air classification and digestion of light fraction. Sewage sludge was used to seed the initial mixture in the digester. The output slurry is vacuum filtered and the filter cake disposed on an existing landfill. The filtrate is recycled. Excess filtrate is sprayed on the landfill. At present the output gas is being flared. A flow chart for the plant is presented. It is imperative that environmental investigations be conducted on new energy technology prior to commercialization. A project was initiated to characterize all input and output streams and to assess the potential for ground water contamination by landfill disposal of effluents. Detailed chemical, biological and physical characterization efforts supported by leaching and modelling studies are being conducted to achieve the stated objectives. Some mutagenic studies were also conducted. The environmental investigations were started in August 1978. Sengupta et al (1979a) reported the first year's efforts.

  17. Anaerobic Life at Extremely High Temperatures

    NASA Astrophysics Data System (ADS)

    Stetter, Karl O.

    1984-12-01

    Continental and submarine solfataric fields turned out to contain various extremely thermophilic anaerobic organisms which all belong to the archaebacteria. They are living autotrophically on sulphur, hydrogen and CO2 or by methanogenesis or heterotrophically on different organic substrates by sulphur respiration or, less frequently, by fermentation. The most extremely thermophilic isolates are growing between 80 and 110°C with an optimum around 105°C.

  18. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    PubMed

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. PMID:26101964

  19. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  20. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  1. A Year in the Life: Annual Patterns of CO2 and CH4 from a Northern Finland Peatland, Including Anaerobic Methane Oxidation and Summer Ebullition Rates

    NASA Astrophysics Data System (ADS)

    Miller, K.; Lipson, D.; Biasi, C.; Dorodnikov, M.; Männistö, M.; Lai, C. T.

    2014-12-01

    The major ecological controls on methane (CH4) and carbon dioxide (CO2) fluxes in northern wetland systems are well known, yet estimates of source/sink magnitudes are often incongruous with measured rates. This mismatch persists because holistic flux datasets are rare, preventing 'whole picture' determinations of flux controls. To combat this, we measured net CO2 and CH4 fluxes from September 2012-2013 within a peatland in northern Lapland, Finland. In addition, we performed in situ manipulations and in vitro soil incubations to quantify anaerobic methane oxidation and methanogenic rates as they related to alternative electron acceptor availability. Average annual fluxes varied substantially between different depressions within the wetland, a pattern that persisted through all seasons. Season was a strong predictor of both CO2 and CH4 flux rates, yet CH4 rates were not related to melt-season 10cm or 30cm soil temperatures, and only poorly predicted with air temperatures. We found evidence for both autumnal and spring thaw CH4 bursts, collectively accounting for 26% of annual CH4 flux, although the autumnal burst was more than 5 fold larger than the spring burst. CH4 ebullition measured throughout the growing season augmented the CH4 source load by a factor of 1.5, and was linked with fine-scale spatial heterogeneity within the wetland. Surprisingly, CH4 flux rates were insensitive to Fe(III) and humic acid soil amendments, both of which amplified CO2 fluxes. Using in vitro incubations, we determined anaerobic methane oxidation and methanogenesis rates. Measured anaerobic oxidation rates showed potential consumption of between 6-39% of the methane produced, contributing approximately 1% of total carbon dioxide flux. Treatments of nitrate, sulfate and ferric iron showed that nitrate suppressed methanogenesis, but were not associated with anaerobic oxidation rates.

  2. Complete Genome Sequence of the Anaerobic Halophilic Alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT

    SciTech Connect

    Mesbah, Noha; Dalin, Eileen; Goodwin, Lynne A.; Nolan, Matt; Pitluck, Sam; Chertkov, Olga; Han, James; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Wiegel, Juergen

    2011-01-01

    The genome of the anaerobic halophilic alkalithermophile Natranaerobius thermophiles consists of one chromosome and two plasmids.The present study is the first to report the completely sequenced genome of polyextremophile and the harboring genes harboring genes associated with roles in regulation of intracellular osmotic pressure, pH homeostasis, and thermophilic stability.

  3. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues. PMID:23697241

  4. Microbiology and physiology of anaerobic fermentation of cellulose. Annual report for 1990, 1992, 1993 and final report

    SciTech Connect

    Ljungdahl, L.G.; Wiegel, J.; Peck, H.D. Jr.; Mortenson, L.E.

    1993-08-31

    This report focuses on the bioconversion of cellulose to methane by various anaerobes. The structure and enzymatic activity of cellulosome and polycellulosome was studied in Clostridium thermocellum. The extracellular enzymes involved in the degradation of plant material and the physiology of fermentation was investigated in anaerobic fungi. Enzymes dealing with CO, CO{sub 2}, H{sub 2}, CH{sub 3}OH, as well as electron transport and energy generation coupled to the acetyl-CoA autotrophic pathway was studied in acetogenic clostridia.

  5. Thermophilic Beta-Glycosidase

    NASA Technical Reports Server (NTRS)

    Grogan, Dennis W.

    1992-01-01

    Report describes identification of thermophilic Beta-glycosidase enzyme from isolate of Sulfolobus solfataricus, sulfur-metabolizing archaebacteria growing aerobically and heterotrophically to relatively high cell yields. Enzyme useful in enzymatic conversion of cellulose to D-glucose and important in recycling of biomass. Used for removal of lactose from milk products. Offers promise as model substance for elucidation of basic principles of structural stabilization of proteins.

  6. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  7. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  8. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments. PMID:27120653

  9. Cellulosomics of the cellulolytic thermophile Clostridium clariflavum

    PubMed Central

    2014-01-01

    Background Clostridium clariflavum is an anaerobic, thermophilic, Gram-positive bacterium, capable of growth on crystalline cellulose as a single carbon source. The genome of C. clariflavum has been sequenced to completion, and numerous cellulosomal genes were identified, including putative scaffoldin and enzyme subunits. Results Bioinformatic analysis of the C. clariflavum genome revealed 49 cohesin modules distributed on 13 different scaffoldins and 79 dockerin-containing proteins, suggesting an abundance of putative cellulosome assemblies. The 13-scaffoldin system of C. clariflavum is highly reminiscent of the proposed cellulosome system of Acetivibrio cellulolyticus. Analysis of the C. clariflavum type I dockerin sequences indicated a very high level of conservation, wherein the putative recognition residues are remarkably similar to those of A. cellulolyticus. The numerous interactions among the cellulosomal components were elucidated using a standardized affinity ELISA-based fusion-protein system. The results revealed a rather simplistic recognition pattern of cohesin-dockerin interaction, whereby the type I and type II cohesins generally recognized the dockerins of the same type. The anticipated exception to this rule was the type I dockerin of the ScaB adaptor scaffoldin which bound selectively to the type I cohesins of ScaC and ScaJ. Conclusions The findings reveal an intricate picture of predicted cellulosome assemblies in C. clariflavum. The network of cohesin-dockerin pairs provides a thermophilic alternative to those of C. thermocellum and a basis for subsequent utilization of the C. clariflavum cellulosomal system for biotechnological application. PMID:26413154

  10. COMPARATIVE EVALUATION OF MESOPHILIC AND THERMOPHILIC DIGESTION - PHASE II. STEADY STATE STUDIES

    EPA Science Inventory

    A study of the relative performance of anaerobic digestion systems under mesophilic and thermophilic conditions was conducted. Fifty liter laboratory scale digesters were fed primary sludge from the Allentown, PA Waste Water Treatment Plant. Long-term, steady-state performance da...

  11. Complete Genome Sequence of the Cellulolytic Thermophile Clostridium thermocellum DSM1313

    SciTech Connect

    Feinberg, Lawrence F; Foden, Justine; Barrett, Trisha; Davenport, Karen W.; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Lapidus, Alla L.; Lucas, Susan; Cheng, Jan-Fang; Pitluck, Sam; Woyke, Tanja; Ivanova, N; Mikhailova, Natalia; Land, Miriam L; Hauser, Loren John; Argyros, Aaron; Goodwin, Lynne A.; Hogsett, David; Caiazza, Nicky

    2011-01-01

    Clostridium thermocellum DSM1313 is a thermophilic, anaerobic bacterium with some of the highest rates of cellulose hydrolysis reported. The complete genome sequence reveals a suite of carbohydrate-active enzymes and demonstrates a level of diversity at the species level distinguishing it from the type strain ATCC27405.

  12. Complete Genome Sequence of the Cellulolytic Thermophile Caldicellulosiruptor obsidiansis OB47T

    SciTech Connect

    Elkins, James G; Lochner, Adriane; Hamilton-Brehm, Scott; Walston Davenport, Karen; Podar, Mircea; Brown, Steven D; Land, Miriam L; Hauser, Loren John; Klingeman, Dawn Marie; Raman, Babu; Goodwin, Lynne A.; Tapia, Roxanne; Meincke, Linda; Detter, J C; Bruce, David; Han, Cliff; Palumbo, Anthony Vito; Cottingham, Robert W; Keller, Martin; Graham, David E

    2010-01-01

    Caldicellulosiruptor obsidiansis OB47T (ATCC BAA-2073; JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.

  13. Complete Genome Sequence of the Cellulolytic Thermophile Caldicellulosiruptor obsidiansis OB47T▿

    PubMed Central

    Elkins, James G.; Lochner, Adriane; Hamilton-Brehm, Scott D.; Davenport, Karen Walston; Podar, Mircea; Brown, Steven D.; Land, Miriam L.; Hauser, Loren J.; Klingeman, Dawn M.; Raman, Babu; Goodwin, Lynne A.; Tapia, Roxanne; Meincke, Linda J.; Detter, J. Chris; Bruce, David C.; Han, Cliff S.; Palumbo, Anthony V.; Cottingham, Robert W.; Keller, Martin; Graham, David E.

    2010-01-01

    Caldicellulosiruptor obsidiansis OB47T (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures. PMID:20851897

  14. MECHANISMS OF THERMOPHILIC SURVIVAL, DEGRADATION BY THERMOPHILICS AND OPTIMIZATION OF THERMOPHILIC BACTERIA FOR BIODEGRADATION

    EPA Science Inventory

    We have developed a consortium of thermophilic methanotrophic bacteria from Yellowstone National Park that degrades TCE by the use of methyl monooxygenase. We are going to isolate the thermophiles in patent 5,858,763,determine their mechanisms of surviving extreme temperatures, d...

  15. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  16. Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1.

    PubMed

    Lee, Yong-Jik; Jeong, Haeyoung; Park, Gun-Seok; Kwak, Yunyoung; Lee, Sang-Jae; Lee, Sang Jun; Park, Min-Kyu; Kim, Ji-Yeon; Kang, Hwan Ku; Shin, Jae-Ho; Lee, Dong-Woo

    2015-01-01

    Fervidobacterium islandicum AW-1 (KCTC 4680) is an extremely thermophilic anaerobe isolated from a hot spring in Indonesia. This bacterium could degrade native chicken feathers completely at 70 °C within 48 h, which is of potential importance on the basis of relevant environmental and agricultural issues in bioremediation and development of eco-friendly bioprocesses for the treatment of native feathers. However, its genomic and phylogenetic analysis remains unclear. Here, we report the high-quality draft genome sequence of an extremely thermophilic anaerobe, F. islandicum AW-1. The genome consists of 2,359,755 bp, which encodes 2,184 protein-coding genes and 64 RNA-encoding genes. This may reveal insights into anaerobic metabolism for keratin degradation and also provide a biological option for poultry waste treatments. PMID:26421103

  17. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications. PMID:26777293

  18. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  19. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples. PMID:24907580

  20. Diversity of Thermophilic Microorganisms within Hawaiian Fumaroles

    NASA Astrophysics Data System (ADS)

    Ackerman, C. A.; Anderson, S.; Anderson, C.

    2007-12-01

    Fumaroles provide heat and moisture characteristic of an environment suitable for thermophilic microorganisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent. We used metagenomics to detect 16S rDNA from archaeal and bacterial thermophilic microorganisms indicating their presence in Hawaiian fumaroles. The fumaroles sampled exist along elevation and precipitation gradients; varying from sea level to 4,012ft and annual rainfall from less than 20in to greater than 80in. To determine the effects of environmental gradients (including temperature, pH, elevation, and precipitation) on microbial diversity within and among fumaroles, we obtained 22 samples from 7 fumaroles over a three-day period in February of 2007. Temperature variations within individual fumaroles vary from 2.3oC to 35oC and the pH variances that range from 0.4 to 2.0. Temperatures of the different fumaroles range from 29.9oC to greater than 105oC, with pH values that vary from 2.55 to 6.93. Further data on the microbial diversity within fumaroles and among fumaroles will be determined once the sequencing of the microbial 16S rDNA regions is completed. We are currently assembling and sequencing clone libraries of bacterial and archaeal 16S rDNA fragments from fumaroles.

  1. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  2. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  3. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  4. Were the original eubacteria thermophiles?

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Stetter, K. O.; Woese, C. R.; Johnson, P. C. (Principal Investigator)

    1987-01-01

    Thermotoga maritima is one of the more unusual eubacteria: It is highly thermophilic, growing at temperatures higher than any other eubacterium; its cell wall appears to have a unique structure and its lipids a unique composition; and the organism is surrounded by a loose-fitting sheath of unknown function. Its phenotypic uniqueness is matched by its phylogenetic position; Thermotoga maritima represents the deepest known branching in the eubacterial line of descent, as measured by ribosomal RNA sequence comparisons. T. maritima also represents the most slowly evolving of eubacterial lineages. The fact that the two deepest branchings in the eubacterial line of descent (the other, the green non-sulfur bacteria and relatives, i.e. Chloroflexus, Thermomicrobium, etc.) are both basically thermophilic and slowly evolving, strongly suggests that all eubacteria have ultimately arisen from a thermophilic ancestor.

  5. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  6. Microbial influenced corrosion by thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay K.

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  7. The F- or V-type Na(+)-ATPase of the thermophilic bacterium Clostridium fervidus.

    PubMed Central

    Speelmans, G; Poolman, B; Abee, T; Konings, W N

    1994-01-01

    Clostridium fervidus is a thermophilic, anaerobic bacterium which uses solely Na+ as a coupling ion for energy transduction. Important features of the primary Na+ pump (ATPase) that generates the sodium motive force are presented. The advantage of using a sodium rather than a proton motive force at high temperatures becomes apparent from the effect of temperature on H+ and Na+ permeation in liposomes. PMID:8051034

  8. Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3

    SciTech Connect

    Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Vannier, Pauline; Oger, Phil; Bartlett, Douglas; Noll, Kenneth M; Woyke, Tanja; Jebbar, Mohamed

    2012-01-01

    Marinitoga piezophila KA3 is a thermophilic, anaerobic, chemoorganotrophic, sulfur-reducing bacterium isolated from the Grandbonum deep-sea hydrothermal vent site at the East Pacific Rise (13 degrees N, 2,630-m depth). The genome of M. piezophila KA3 comprises a 2,231,407-bp circular chromosome and a 13,386-bp circular plasmid. This genome was sequenced within Department of Energy Joint Genome Institute CSP 2010.

  9. Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report

    DOE R&D Accomplishments Database

    Zinder, Stephen H.

    2000-04-15

    This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

  10. Microbial ecology of thermophilic anaerobic digestion. Final report

    SciTech Connect

    Stephen H. Zinder

    2000-04-15

    This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

  11. Anaerobic bacteria

    MedlinePlus

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  12. Pyrite oxidation by thermophilic archaebacteria

    SciTech Connect

    Larsson, L.; Olsson, G.; Holst, O.; Karlsson, H.T. )

    1990-03-01

    Three species of thermophilic archaebacteria of the genera Sulfolobus (Sulfolobus acidocaldarius and S. solfataricus) and Acidianus (Acidianus brierleyi) were tested for their ability to oxidize pyrite and to grow autotropbically on pyrite, to explore their potential for use in coal desulfurization. Only A. brierleyi was able to oxidize and grow autotrophically on pyrite. Jarosite was formed during the pyrite oxidation, resulting in the precipitation of sulfate and iron. The medium composition affected the extent of jarosite formation.

  13. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  14. Anaerobic bioprocessing of organic wastes.

    PubMed

    Verstraete, W; de Beer, D; Pena, M; Lettinga, G; Lens, P

    1996-05-01

    continuously stirred tank system to the thermophilic configuration, as the latter permits higher conversion rates and easier sanitation. Integration of ultrafiltration in anaerobic slurry digestion facilitates operation at higher volumetric loading rates and at shorter residence times. With respect to organic solids, the recent trend in society towards source separated collection of biowaste has opened a broad range of new application areas for solid state anaerobic fermentation. PMID:24415229

  15. Cellulase production by a thermophilic clostridium species.

    PubMed

    Lee, B H; Blackburn, T H

    1975-09-01

    Strain M7, a thermophilic, anaerobic, terminally sporing bacterium (0.6 by 4.0 mum) was isolated from manure. It degraded filter paper in 1 to 2 days at 60 C in a minimal cellulose medium but was stimulated by yeast extract. It fermented a wide variety of sugars but produced cellulase only in cellulose or carboxymethyl-cellulose media. Cellulase synthesis not only was probably repressed by 0.4% glucose and 0.3% cellobiose, but also cellulase activity appeared to be inhibited by these sugars at these concentrations. Both C(1) cellulase (degrades native cellulose) and C(x) cellulase (beta-1,4-glucanase) activities in strain M7 cultures were assayed by measuring the liberation of reducing sugars with dinitrosalicylic acid. Both activities had optima at pH 6.5 and 67 C. One milliliter of a 48-h culture of strain M7 hydrolyzed 0.044-meq of glucose per min from cotton fibers. The cellulase(s) from strain M7 was extracellular, produced during exponential growth, but was not free in the growth medium until approximately 30% of the cellulose was hydrolyzed. Glucose and cellobiose were the major soluble products liberated from cellulose by the cellulase. ZnCl(2) precipitation appeared initially to be a good method for the concentration of cellulase activity, but subsequent purification was not successful. Isoelectric focusing indicated the presence of four C(x) cellulases (pI 4.5, 6.3, 6.8, and 8.7). The rapid production and high activity of cellulases from this organism strongly support the basic premise that increased hydrolysis of native cellulose is possible at elevated temperature. PMID:16350033

  16. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    SciTech Connect

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  17. Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production.

    PubMed

    Martínez, E J; Gil, M V; Fernandez, C; Rosas, J G; Gómez, X

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  18. Anaerobic Process.

    PubMed

    Li, Wei-Zun; Qian, Yang; Chang, Chein-Chi; Ju, Meiting

    2015-10-01

    A review of the literature published in 2014 on the focus of Anaerobic Process. It is divided into the following sections. •Pretreatment •Organic waste •multiple-stage co-digestion •Process Methodology and Technology. PMID:26420080

  19. Finding extraterrestrial sites for thermophiles.

    PubMed

    Naylor, T

    2004-04-01

    Virtually our entire knowledge of the universe comes from two sorts of measurement of the electromagnetic radiation from the stars and galaxies within it; either their flux through relatively wide bandpasses (photometry), or measurements of the shape and wavelength of relatively narrow lines via spectroscopy. These techniques are now being used to discover planets outside our solar system, and perhaps in the next 10 years will begin to characterize them. If a serious search is to be made for extraterrestrial thermophiles, we need predictions for the effects of thermophiles on their host planets that are observable with these techniques. In this paper I shall outline what sorts of observation are likely to be used in the next 15 years for extra-solar planet work. All of the journal articles quoted here can be found through http://adsabs.harvard.edu/abstract_service.html, and often also accessed as preprints at http://uk.arxiv.org/form/astro%20ph?MULTI=form%20+/-%20interface. PMID:15046563

  20. Recent developments in anaerobic membrane reactors.

    PubMed

    Stuckey, David C

    2012-10-01

    Anaerobic membrane reactors (AnMBRs) have recently evolved from aerobic MBRs, with the membrane either external or submerged within the reactor, and can achieve high COD removals (~98%) at hydraulic retention times (HRTs) as low as 3 h. Since membranes stop biomass being washed out, they can enhance performance with inhibitory substrates, at psychrophilic/thermophilic temperatures, and enable nitrogen removal via Anammox. Fouling is important, but addition of activated carbon or resins/precipitants can remove soluble microbial products (SMPs)/colloids and enhance flux. Due to their low energy use and solids production, and solids free effluent, they can enhance nutrient and water recycling. Nevertheless, more work is needed to: compare fouling between aerobic and anaerobic systems; determine how reactor operation influences fouling; evaluate the effect of different additives on membrane fouling; determine whether nitrogen removal can be incorporated into AnMBRs; recover methane solubility from low temperatures effluents; and, establish sound mass and energy balances. PMID:22749372

  1. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    PubMed

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell. PMID:23209374

  2. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae

    PubMed Central

    Ji, Shi-Qi; Wang, Bing; Lu, Ming

    2015-01-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2T. Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing d-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD+, and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. PMID:26590273

  3. Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae.

    PubMed

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-02-01

    Brown algae are one of the largest groups of oceanic primary producers for CO2 removal and carbon sinks for coastal regions. However, the mechanism for brown alga assimilation remains largely unknown in thermophilic microorganisms. In this work, a thermophilic alginolytic community was enriched from coastal sediment, from which an obligate anaerobic and thermophilic bacterial strain, designated Alg1, was isolated. Alg1 shared a 16S rRNA gene identity of 94.6% with Defluviitalea saccharophila LIND6LT2(T). Phenotypic, chemotaxonomic, and phylogenetic studies suggested strain Alg1 represented a novel species of the genus Defluviitalea, for which the name Defluviitalea phaphyphila sp. nov. is proposed. Alg1 exhibited an intriguing ability to convert carbohydrates of brown algae, including alginate, laminarin, and mannitol, to ethanol and acetic acid. Three gene clusters participating in this process were predicted to be in the genome, and candidate enzymes were successfully expressed, purified, and characterized. Six alginate lyases were demonstrated to synergistically deconstruct alginate into unsaturated monosaccharide, followed by one uronic acid reductase and two 2-keto-3-deoxy-d-gluconate (KDG) kinases to produce pyruvate. A nonclassical mannitol 1-phosphate dehydrogenase, catalyzing D-mannitol 1-phosphate to fructose 1-phosphate in the presence of NAD(+), and one laminarase also were disclosed. This work revealed that a thermophilic brown alga-decomposing system containing numerous novel thermophilic alginate lyases and a unique mannitol 1-phosphate dehydrogenase was adopted by the natural ethanologenic strain Alg1 during the process of evolution in hostile habitats. PMID:26590273

  4. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria

    PubMed Central

    2013-01-01

    Background Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. Results We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. Conclusions The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co

  5. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    PubMed

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs. PMID:25994259

  6. Anaerobic sealing

    SciTech Connect

    Hayre, J.

    1986-05-01

    Anaerobic sealants offer an alternative to conventional methods of joint repair on mains operating at low and medium pressures. The method does not require highly skilled personnel who are diligent in ensuring that the necessary standards of preparation and seal application are achieved. British Gas' experience has shown that lead joints that do not contain yarn or where the yarn has deteriorated are difficult to seal. The evidence so far indicates that yarn is important in ensuring that the low viscosity sealant rapidly wicks around the joint during the injection operation. It is obvious that more research and development is needed in this field, but anaerobic sealing of leaking joints in an effective, innovative method of joint repair.

  7. Consolidated bioprocessing method using thermophilic microorganisms

    DOEpatents

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  8. Anaerobic degradation of linear alkylbenzene sulfonate.

    PubMed

    Mogensen, Anders S; Haagensen, Frank; Ahring, Birgitte K

    2003-04-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C12 LAS), which show that C12 LAS was biodegradable under methanogenic conditions. Sorption of C12 LAS on sewage sludge was described with a Freundlich isotherm. The C12 LAS sorption was determined with different concentrations of total solids (TS). In the semi-continuously stirred tank reactor, 18% of the added C12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation under thermophilic conditions was 37% with LAS as sole carbon source. Benzaldehyde was produced in the UASB reactor during LAS transformation. PMID:12685701

  9. Early Microbial Evolution: The Age of Anaerobes.

    PubMed

    Martin, William F; Sousa, Filipa L

    2016-02-01

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. PMID:26684184

  10. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow

  11. Mechanisms, chemistry and kinetics of the anaerobic biodegradation of cis-dichloroethylene and vinyl chloride. First annual progress report, September 15, 1996--September 14, 1997

    SciTech Connect

    McCarty, P.L.; Spormann, A.

    1997-01-01

    'This three-year project is to study the anaerobic biological conversion of cis-1,2- dichloroethene (cDCE) and vinyl Chloride (VC) to ethene. The study is being conducted in three separate phases, the first to better understand the mechanisms involved in cDCE and VC biodegradation, the second to evaluate the chemistry of the processes involved, and the third, to study factors affecting reaction kinetics. Major funding is being provided by the US Department of Energy, but the DuPont Chemical Company has also agreed to directly cost-share on the project at a rate of $75,000 per year for the three year period. Tetrachloroethylene (PCE) and trichloroethylene (TCE) are solvents that are among the most widely occurring organic groundwater contaminants. The biological anaerobic reduction-of chlorinated aliphatic hydrocarbons (CAHs) such as PCE and TCE to cDCE and VC in groundwater was reported in the early 1980s. Further reduction of PCE and its intermediates to ethene was reported in 1989. Several pure cultures of anaerobic bacteria have been found to reductively dehalogenate PCE to cDCE Rates of reduction of PCE and TCE to cDCE are high and the need for electron donor addition for the reactions is small. However, the subsequent reduction of cDCE to VC, and then of VC to the harmless end product, ethene, is much slower and only recently has a pure culture been reported that is capable of reducing cDCE to VC or VC to ethene. There are numerous. reports of such conversions in mixed cultures. The reduction of cDCE and VC to ethene is where basic research is most needed and is the subject of this study.'

  12. Anaerobic fermentation of beef cattle manure. Final report

    SciTech Connect

    Hashimoto, A.G.; Chen, Y.R.; Varel, V.H.

    1981-01-01

    The research to convert livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation are summarized. The major biological and operational factors involved in methanogenesis were discussed, and a kinetic model that describes the fermentation process was presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration were shown to have significant effects on CH/sub 4/ production rate. The kinetic model predicted methane production rates of existing pilot and full-scale fermentation systems to within 15%. The highest methane production rate achieved by the fermenter was 4.7 L CH/sub 4//L fermenter day. This is the highest rate reported in the literature and about 4 times higher than other pilot or full-scale systems fermenting livestock manures. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter designs by selecting design criteria that maximize the net energy production per unit cost was presented. Based on the results, we believe that the economics of anaerobic fermentation is sufficiently favorable for farm-scale demonstration of this technology.

  13. Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting.

    PubMed

    Li, Rong; Li, Linzhi; Huang, Rong; Sun, Yifei; Mei, Xinlan; Shen, Biao; Shen, Qirong

    2014-06-01

    Composting is a process of stabilizing organic wastes through the degradation of biodegradable components by microbial communities under controlled conditions. In the present study, genera and species diversities, amylohydrolysis, protein and cellulose degradation abilities of culturable bacteria in the thermophilic phase of composting of cattle manure with plant ash and rice bran were investigated. The number of culturable thermophilic bacteria and actinomyces decreased with the increasing temperature. At the initiation and end of the thermophilic phase, genera and specie diversities and number of bacteria possessing degradation abilities were higher than during the middle phase. During the thermophilic composting phase, Bacillus, Geobacillus and Ureibacillus were the dominant genera, and Geobacillus thermodenitrificans was the dominant species. In later thermophilic phases, Geobacillus toebii and Ureibacillus terrenus were dominant. Bacillus, at the initiation, and Ureibacillus and Geobacillus, at the later phase, contributed the multiple degradation abilities. These data will facilitate the control of composting in the future. PMID:24415499

  14. Thermophilic Fungi: Their Physiology and Enzymes†

    PubMed Central

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  15. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    PubMed

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores. PMID:20397018

  16. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. PMID:26868156

  17. Temporal variation of microbial population in a thermophilic biofilter for SO₂ removal.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2016-01-01

    The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes (PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10months of operation time, with a maximum elimination capacity of 48.29 g/m(3)/hr. Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid (DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic-anoxic-aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4months of operation. PMID:26899638

  18. Anaerobic Codigestion of Sludge: Addition of Butcher’s Fat Waste as a Cosubstrate for Increasing Biogas Production

    PubMed Central

    Martínez, E. J.; Gil, M. V.; Fernandez, C.; Rosas, J. G.

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  19. Effect of seeding during thermophilic composting of sewage sludge

    SciTech Connect

    Nakasaki, K.; Sasaki, M.; Shoda, M.; Kubota, H.

    1985-03-01

    The effect of seeding on the thermophilic composting of sewage sludge was examined by measuring the changes in CO/sub 2/ evolution rates and microbial numbers. Although the succession of thermophilic bacteria and thermophilic actinomycetes clearly reflected the effect of seeding, no clear difference was observed in the overall rate of composting or quality of the composted product. 7 references.

  20. EVALUATION OF THE FULL-SCALE APPLICATION OF ANAEROBIC SLUDGE DIGESTION AT THE BLUE PLAINS WASTEWATER TREATMENT FACILITY, WASHINGTON, DC

    EPA Science Inventory

    The mesophilic-thermophilic digestion process is a new two-step concept for treating municipal wasterwater sludges. The first step operates under mesophilic process conditions (digestion with anaerobic microorganisms that thrive at 90 to 100F). The second step operates under ther...

  1. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  2. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. 1998 annual progress report

    SciTech Connect

    Weathers, L.

    1998-06-01

    'Previous research findings indicate that both zero valent iron and sulfate reducing bacteria (SRB) can yield significant decreases in Cr(VI) or U(VI) concentrations due to abiotic and microbial reduction, respectively. The major hypothesis associated with this research project is that a combined abiotic-biological system can synergistically combine both processes to maximize metal ion reduction in an engineered permeable reactive barrier. The overall goal of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. Successful completion of this goal requires testing of the two hypotheses listed above by evaluating: (1) the rates of abiotic metal ion reduction, and (2) the rates of microbial metal ion reduction in microbial and combined abiotic/microbial reduction systems under a range of environmental conditions. This report summarizes work after one and one-half years of a three year project. Abiotic studies: The thrust of the abiotic research conducted to date has been to determine the rates of Cr(VI) reduction in batch reactors and to evaluate the role of aquifer materials on those rates. Experiments have been conducted to determine the rates of reduction by Fe(II) and Fe(O). The parameters that have been evaluated are the effect of pH and the presence of sulfide and aquifer material.'

  3. Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria

    PubMed Central

    Bridge, Toni A. M.; Johnson, D. Barrie

    1998-01-01

    Five moderately thermophilic iron-oxidizing bacteria, including representative strains of the three classified species (Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidimicrobium ferrooxidans), were shown to be capable of reducing ferric iron to ferrous iron when they were grown under oxygen limitation conditions. Iron reduction was most readily observed when the isolates were grown as mixotrophs or heterotrophs with glycerol as an electron donor; in addition, some strains were able to couple the oxidation of tetrathionate to the reduction of ferric iron. Cycling of iron between the ferrous and ferric states was observed during batch culture growth in unshaken flasks incubated under aerobic conditions, although the patterns of oxidoreduction of iron varied in different species of iron-oxidizing moderate thermophiles and in strains of a single species (S. acidophilus). All three bacterial species were able to grow anaerobically with ferric iron as a sole electron acceptor; the growth yields correlated with the amount of ferric iron reduced when the isolates were grown in the absence of oxygen. One of the moderate thermophiles (identified as a strain of S. acidophilus) was able to bring about the reductive dissolution of three ferric iron-containing minerals (ferric hydroxide, jarosite, and goethite) when it was grown under restricted aeration conditions with glycerol as a carbon and energy source. The significance of iron reduction by moderately thermophilic iron oxidizers in both environmental and applied contexts is discussed. PMID:9603832

  4. Bioprospecting thermophiles for cellulase production: a review

    PubMed Central

    Acharya, Somen; Chaudhary, Anita

    2012-01-01

    Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production. PMID:24031898

  5. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

    PubMed

    Meng, Yao; Jost, Carsten; Mumme, Jan; Wang, Kaijun; Linke, Bernd

    2016-07-01

    In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. PMID:27372134

  6. Microbial examination of anaerobic sludge adaptation to animal slurry.

    PubMed

    Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M

    2014-01-01

    The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters. PMID:24645456

  7. Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus▿ †

    PubMed Central

    van de Werken, Harmen J. G.; Verhaart, Marcel R. A.; VanFossen, Amy L.; Willquist, Karin; Lewis, Derrick L.; Nichols, Jason D.; Goorissen, Heleen P.; Mongodin, Emmanuel F.; Nelson, Karen E.; van Niel, Ed W. J.; Stams, Alfons J. M.; Ward, Donald E.; de Vos, Willem M.; van der Oost, John; Kelly, Robert M.; Kengen, Servé W. M.

    2008-01-01

    Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium. PMID:18776029

  8. Are thermophilic microorganisms active in cold environments?

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Cousins, Claire; Wilkinson, Paul T.; Olsson-Francis, Karen; Rozitis, Ben

    2015-07-01

    The mean air temperature of the Icelandic interior is below 10 °C. However, we have previously observed 16S rDNA sequences associated with thermophilic lineages in Icelandic basalts. Measurements of the temperatures of igneous rocks in Iceland showed that solar insolation of these low albedo substrates achieved a peak surface temperature of 44.5 °C. We isolated seven thermophilic Geobacillus species from basalt with optimal growth temperatures of ~65 °C. The minimum growth temperature of these organisms was ~36 °C, suggesting that they could be active in the rock environment. Basalt dissolution rates at 40 °C were increased in the presence of one of the isolates compared to abiotic controls, showing its potential to be involved in active biogeochemistry at environmental temperatures. These data raise the possibility of transient active thermophilic growth in macroclimatically cold rocky environments, implying that the biogeographical distribution of active thermophiles might be greater than previously understood. These data show that temperatures measured or predicted over large scales on a planet are not in themselves adequate to assess niches available to extremophiles at micron scales.

  9. Systematic Underutilization of Glutamine In Thermophile Proteins

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Weber, Arthur; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Rapid racemization above 100 C of L-amino acids to Domino acids, as well as deamidation, is probably a hazard for high temperature life. For example, the half-life of some asparaginyl peptides can be as short as 10 minutes at 100 C. High temperature organisms could protect themselves by reducing usage of amino acids that are easily racemized/deamidazed, by having a rapid rate of protein turnover which requires energy, or by adapting special cis-peptide conformations. We have searched eight completely sequenced thermophile genomes, and compare them to mesophile genomes, in order to identify underutilized amino acids. To our surprise, asparagine, the most unstable amino acid to deamidation, is used at about the same level in thermophile proteins in comparison to mesophiles whereas it is the second most unstable amino acid, glutamine, that is underutilized in all of eight thermophile species. Glutamines are present at 2% level in a typical thermophile protein, instead of 4% in mesophile. We argue that it is easier to protect asparagines from deamidation by cis-peptide conformations. We discuss statistical as well as structural evidence in support of our conclusions.

  10. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor.

    PubMed

    Koeck, Daniela E; Ludwig, Wolfgang; Wanner, Gerhard; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2015-08-01

    Phenotypic and phylogenetic studies were performed on new isolates of a novel Gram-stain-positive, anaerobic, non-sporulating, rod-shaped bacterium isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene comparative sequence analysis demonstrated that the isolates formed a hitherto unknown subline within the family Lachnospiraceae. As a representative of the whole group of isolates, strain T3/55T was further characterized. The closest relative of T3/55T among the taxa with validly published names is Mobilitalea sibirica, sharing 93.9% 16S rRNA gene sequence similarity. Strain T3/55T was catalase-negative, indole-negative, and produced acetate, ethanol and propionic acid as major end products from cellulose metabolism. The major cellular fatty acids (>1%) were 16 : 0 dimethyl acetal, 16 : 0 fatty acid methyl ester and 16 : 0 aldehyde. The DNA G+C content was 36.6 mol%. A novel genus and species, Herbinix hemicellulosilytica gen. nov., sp. nov., is proposed based on phylogenetic analysis and physiological properties of the novel isolate. Strain T3/55T ( = DSM 29228T = CECT 8801T), represents the type strain of Herbinix hemicellulosilytica gen. nov., sp. nov. PMID:25872956

  11. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops.

    PubMed

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W; Oldenburg, Thomas B P; Larter, Steve R; Voordouw, Gerrit

    2015-10-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity. PMID:26209669

  12. Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops

    PubMed Central

    Wong, Man-Ling; An, Dongshan; Caffrey, Sean M.; Soh, Jung; Dong, Xiaoli; Sensen, Christoph W.; Oldenburg, Thomas B. P.; Larter, Steve R.

    2015-01-01

    Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity. PMID:26209669

  13. Pharmaceutical residues in sewage sludge: effect of sanitization and anaerobic digestion.

    PubMed

    Malmborg, Jonas; Magnér, Jörgen

    2015-04-15

    The fate of pharmaceutical residues in treatment of WWTP sludge was evaluated during mesophilic anaerobic digestion (AD) and six sanitization technologies (pasteurization, thermal hydrolysis, advanced oxidation processes using Fenton's reaction, ammonia treatment, thermophilic dry digestion, and thermophilic anaerobic digestion). Sludge spiked with a selection of 13 substances was used and in total 23 substances were detected. A correlation between substance lipophilicity and sludge partitioning was found after sample centrifugation, with e.g., SSRI drugs (90-99%) and estrogens (96-98%) mainly found in the solid phase. A correlation between lipophilicity and persistence of pharmaceutical residues during AD was also detected, indicating that hydrophobic substances are less available to degrading microorganisms. Overall, AD was found to be the most effective technology in reducing a wide spectrum of organic substances (in average ca 30% reduction). Similar effects were obtained for both AD treatments, suggesting that temperature (mesophilic or thermophilic) is less important for micropollutant reduction. Advanced oxidation processes using Fenton's reaction also affected several compounds, including substances showing general stability over the range of treatments such as carbamazepine, propranolol, and sertraline. Pasteurization, ammonia treatment, and thermophilic dry digestion exhibited relatively modest reductions. Interestingly, only thermal hydrolysis efficiently removed the ecotoxicologically potent estrogenic compounds from the sludge. PMID:25645950

  14. Performance of methanogenic reactors in temperature phased two-stage anaerobic digestion of swine wastewater.

    PubMed

    Kim, Woong; Shin, Seung Gu; Cho, Kyungjin; Lee, Changsoo; Hwang, Seokhwan

    2012-12-01

    The present study investigated the shifts in the chemical profiles of a two-phase anaerobic digestion system in methanogenic and acidogenic reactors for the treatment of swine wastewater. Acidogenic and methanogenic digesters were used with overall HRTs ranging from 27 to 6 d. In the optimized thermophilic/acidogenic phase throughout the entire experimental period, VS was reduced by 13.8% (1.6%); however, COD hardly decreased because of the thermophilic hydrolysis of organic materials, such as carbohydrates, proteins, and lipids, without any significant consumption of volatile fatty acids. In the methanogenic/mesophilic phase, COD was reduced by 65.8 (1.1)% compared to a 47.4 (2.9)% reduction in VS reduction efficiency with the gradual increase in methane production during a methanogenic HRT between 25 and 10 d. A high protein degradation rate was observed in the optimized acidogenic phase, which is assumed to be due to the low content of carbohydrates in raw swine wastewater as well as the readily thermophilic hydrolysis of proteins. Two-phase systems of anaerobic digestion consisting of optimized thermophilic and mesophilic methanogenic digesters showed a stable performance with respect to VS reduction efficiency with OLRs less than 3 g VS/L·d, in other words, more than 10 days of methanogenic HRT in this study. PMID:23041140

  15. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids

    SciTech Connect

    Griffin, M.E.; McMahon, K.D.; Mackie, R.I.; Raskin, L.

    1998-02-05

    An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 C) and thermophilic (55 C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect US production rates. The design organic loading rate was 3.1 kg volatile solids/m{sup 3}/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum.

  16. Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)

    SciTech Connect

    Anderson, Iain; Saunders, Elizabeth H; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Tice, Hope; Glavina Del Rio, Tijana; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, K; Pagani, Ioanna; Ivanova, N; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Jeffries, Cynthia; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Goker, Markus; Detter, J. Chris; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-01-01

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment.

    PubMed

    Poh, P E; Chong, M F

    2009-01-01

    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed. PMID:18657414

  18. Evaluation of integrated anaerobic digestion and hydrothermal carbonization for bioenergy production.

    PubMed

    Reza, M Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-01-01

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

  19. Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

    PubMed Central

    Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan

    2014-01-01

    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786

  20. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

    PubMed Central

    Li, Duo-Chuan; Li, An-Na; Papageorgiou, Anastassios C.

    2011-01-01

    Thermophilic fungal cellulases are promising enzymes in protein engineering efforts aimed at optimizing industrial processes, such as biomass degradation and biofuel production. The cloning and expression in recent years of new cellulase genes from thermophilic fungi have led to a better understanding of cellulose degradation in these species. Moreover, crystal structures of thermophilic fungal cellulases are now available, providing insights into their function and stability. The present paper is focused on recent progress in cloning, expression, regulation, and structure of thermophilic fungal cellulases and the current research efforts to improve their properties for better use in biotechnological applications. PMID:22145076

  1. [Progress in the thermophilic and alkalophilic xylanases].

    PubMed

    Bai, Wenqin; Wang, Qinhong; Ma, Yanhe

    2014-06-01

    Xylanase is the key enzyme to degrade xylan that is a major component of hemicellulose. The enzyme has potential industrial applications in the food, feed, paper and flax degumming industries. The use of xylanases becomes more and more important in the paper industry for bleaching purposes. Xylanases used in the pulp bleaching process should be stable and active at high temperature and alkaline pH. Thermophilic and alkalophilic xylanases could be obtained by screening the wild type xylanases or engineering the mesophilic and neutral enzymes. In this paper, we reviewed recent progress of screening of the thermophilic and alkalophilic xylanases, molecular mechanism of thermal and alkaline adaptation and molecular engineering. Future research prospective was also discussed. PMID:25212001

  2. Thermophilic biohydrogen production: how far are we?

    PubMed

    Pawar, Sudhanshu S; van Niel, Ed W J

    2013-09-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production. PMID:23948723

  3. Thermophilic fungi in an aridland ecosystem.

    PubMed

    Powell, Amy J; Parchert, Kylea J; Bustamante, Joslyn M; Ricken, J Bryce; Hutchinson, Miriam I; Natvig, Donald O

    2012-01-01

    We report a comprehensive multi-year study of thermophilic fungi at the Sevilleta National Wildlife Refuge in central New Mexico. Recovery of thermophilic fungi from soils showed seasonal fluctuations, with greater abundance correlating with spring and summer precipitation peaks. In addition to grassland soils, we obtained and characterized isolates from grassland and riparian litter, herbivore dung and biological soil crusts. All strains belonged to either the Eurotiales or Sordariales (Chaetomiaceae). No particular substrate or microhabitat associations were detected. Molecular typing of strains revealed substantial phylogenetic diversity, eight ad hoc phylogroups across the two orders were identified and genetic diversity was present within each phylogroup. Growth tests over a range of temperatures showed substantial variation in maximum growth rates among strains and across phylogroups but consistency within phylogroups. Results demonstrated that 45-50 C represents the optimal temperature for growth of most isolates, with a dramatic decline at 60 C. Most strains grew at 60 C, albeit slowly, whereas none grew at 65 C, providing empirical confirmation that 60 C presents an evolutionary threshold for fungal growth. Our results support the hypothesis that fungal thermophily is an adaptation to transient seasonal and diurnal high temperatures, rather than simply an adaptation to specialized high-temperature environments. We note that the diversity observed among strains and the frequently confused taxonomy within these groups highlight the need for comprehensive biosystematic revision of thermophilic taxa in both orders. PMID:22505432

  4. Microbial population dynamics in a thermophilic methane digester fed with garbage.

    PubMed

    Cheon, J; Hong, F; Hidaka, T; Koshikawa, H; Tsuno, H

    2007-01-01

    The diversity of microbial communities in three full-scale thermophilic anaerobic digesters which treated garbage, sewage sludge and livestock wastes (hereafter called TGD, TSD and TLD, respectively) was investigated using 16S rDNA clone libraries in triplicate. The population dynamics of TGD were also studied. The purposes were to show the microbial diversity in each reactor and to suggest which key microbes in a thermophilic methane digester fed with garbage, including a check of reproducibility and the suggestion of an error range in this molecular biology method. 736 clones were identified, and the maximum error was estimated to be around +/-10% for the same OTU (operational taxonomic unit) and for most detected OTUs. The most frequently detected OTU shows a close relationship to Uncultured bacterium clone MBA08, Unidentified bacterium clone TUG22 and Uncultured archaeal symbiont PA204 in TGD, TSD and TLD, respectively. The microbial population dynamics in TGD were studied over a period of 90 days, and the occupying ratios of Bacillus infernus and Methanothermobacter wolfeii were shown to change with the change in VFA concentration. From the dynamic change and characteristics of the microbes, it is concluded that Bacillus infernus and Methanothermobacter wolfeii played an important role and were recommended as key microbes in TGD. PMID:17564383

  5. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    PubMed

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). PMID:27484669

  6. Isolation and characterization of an H/sub 2/-oxidizing thermophilic methanogen

    SciTech Connect

    Ferguson, T.J.; Mah, R.A.

    1983-01-01

    A thermophilic methanogen was isolated from enrichment cultures originally inoculated with sludge from an anaerobic kelp digester (55 degrees C). This isolate exhibited a temperature optimum of 55 to 60 degrees C and a maximum near 70 degrees C. Growth occurred throughout the pH range of 5.5 to 9.0, with optimal growth near pH 7.2. Altough 4% salt was present in the isolation medium, salt was not required for optimal growth. The thermophile utilized formate or H/sub 2/CO/sub 2/ but not acetate, methanol, or methylamines for growth and methanogenesis. Growth in complex medium was very rapid, and a minimum doubling time of 1.8 hours was recorded in media supplemented with rumen fluid. Growth in defined media required the addition of acetate and an unknown factor(s) from digester supernatant, rumen fluid, or Trypticase. Cells in liquid culture were oval to coccoid, 0.7 to 1.8 ..mu.. meters in diameter, often occurring in pairs. The cells were easily lysed upon exposure to oxygen or 0.08 mg of sodium dodecyl sulfate per ml. The isolate was sensitive to tetracycline and chloramphenicol but not penicillin G or cycloserine. The DNA base composition was 59.69 mol% guanine plus cytosine. (Refs. 34).

  7. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T).

    PubMed

    Bosma, Elleke F; Koehorst, Jasper J; van Hijum, Sacha A F T; Renckens, Bernadet; Vriesendorp, Bastienne; van de Weijer, Antonius H P; Schaap, Peter J; de Vos, Willem M; van der Oost, John; van Kranenburg, Richard

    2016-01-01

    Bacillus smithii is a facultatively anaerobic, thermophilic bacterium able to use a variety of sugars that can be derived from lignocellulosic feedstocks. Being genetically accessible, it is a potential new host for biotechnological production of green chemicals from renewable resources. We determined the complete genomic sequence of the B. smithii type strain DSM 4216(T), which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented by a protein domain analysis. Some unique features of B. smithii central metabolism in comparison to related organisms included the lack of a standard acetate production pathway with no apparent pyruvate formate lyase, phosphotransacetylase, and acetate kinase genes, while acetate was the second fermentation product. PMID:27559429

  8. Thermophiles in the genomic era: Biodiversity, science, and applications.

    PubMed

    Urbieta, M Sofía; Donati, Edgardo R; Chan, Kok-Gan; Shahar, Saleha; Sin, Lee Li; Goh, Kian Mau

    2015-11-01

    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era. PMID:25911946

  9. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. PMID:27396682

  10. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2012-11-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO(2) , biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO(2) to CH(4) by addition of H(2) . Enrichment at thermophilic temperature (55°C) resulted in CO(2) and H(2) bioconversion rate of 320 mL CH(4) /(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed by PCR-DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH(4) content, around 95% at steady-state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH(4) content to around 90%. Further study showed that by decreasing the gas-liquid mass transfer by increasing the stirring speed of the mixture the CH(4) content was increased to around 95%. Finally, the CH(4) content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day). PMID:22615033

  11. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).

    PubMed

    Blumensaat, F; Keller, J

    2005-01-01

    The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB/Simulink is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. PMID:15607176

  12. Anaerobic bag culture method.

    PubMed

    Rosenblatt, J E; Stewart, P R

    1975-06-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. PMID:1100671

  13. Anaerobic bag culture method.

    PubMed Central

    Rosenblatt, J E; Stewart, P R

    1975-01-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. Images PMID:1100671

  14. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3

    SciTech Connect

    Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.

    1999-03-01

    Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.

  15. Anaerobic specimen transport device.

    PubMed Central

    Wilkins, T D; Jimenez-Ulate, F

    1975-01-01

    A device is described and evaluated for the anaerobic transport of clinical specimens. The device limits the amount of oxygen entering with the sample to a maximum of 2%, which is rapidly removed by reacting with hydrogen in the presence of a palladium catalyst. The viability on swabs of 12 species of anaerobes, four strains of facultative anaerobes and a strain of Pseudomonas aeruginosa, was maintained during the length of the tests (24 or 48 h). The results demonstrated that this device protected even the more oxygen-sensitive clinical anaerobes from death due to oxygen exposure. This device can be used for swabs as well as for anaerobic collection and liquid and solid specimens. Images PMID:1104656

  16. Thermophilic fungi in the new age of fungal taxonomy.

    PubMed

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences. PMID:25399310

  17. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  18. Microbial community structure associated with the high loading anaerobic codigestion of olive mill and abattoir wastewaters.

    PubMed

    Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib

    2016-02-01

    The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. PMID:26687494

  19. Isolation and Characterization of a Novel Facultative Anaerobic Filamentous Fungus from Japanese Rice Field Soil

    PubMed Central

    Tonouchi, Akio

    2009-01-01

    A novel filamentous fungus strain designated RB-1 was isolated into pure culture from Japanese rice field soil through an anaerobic role tube technique. The strain is a mitosporic fungus that grows in both aerobic and strict anaerobic conditions using various mono-, di-, tri-, and polysaccharides with acetate and ethanol productions. The amount of acetate produced was higher than that of ethanol in both aerobic and anaerobic cultures. The characteristic verrucose or punctuate conidia of RB-1 closely resembled those of some strains of the genus Thermomyces, a thermophilic or mesophilic anamorphic ascomycete. However, based on phylogenetic analysis with the small subunit (SSU) and large subunit (LSU) rDNA sequences, RB-1 was characterized as a member of the class Lecanoromycetes of the phylum Ascomycota. Currently, RB-1 is designated as an anamorphic ascomycete and is phylogenetically considered an incertae sedis within the class Lecanoromycetes. PMID:20148171

  20. Extreme Thermophiles: Moving beyond single-enzyme biocatalysis

    PubMed Central

    Frock, Andrew D.; Kelly, Robert M.

    2013-01-01

    Extremely thermophilic microorganisms have been sources of thermostable and thermoactive enzymes for over 30 years. However, information and insights gained from genome sequences, in conjunction with new tools for molecular genetics, have opened up exciting new possibilities for biotechnological opportunities based on extreme thermophiles that go beyond single-step biotransformations. Although the pace for discovering novel microorganisms has slowed over the past two decades, genome sequence data have provided clues to novel biomolecules and metabolic pathways, which can be mined for a range of new applications. Furthermore, recent advances in molecular genetics for extreme thermophiles have made metabolic engineering for high temperature applications a reality. PMID:23413412

  1. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    PubMed

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature. PMID:25976021

  2. Thermophilic fermentation of hydrolysates: the effect of inhibitors on growth of thermophilic bacteria.

    PubMed

    Thomasser, Christiane; Danner, Herbert; Neureiter, Markus; Saidi, Bamusi; Braun, Rudolf

    2002-01-01

    Lignocellulosic biomass has great potential as a cheap feedstock in biological processes to produce biofuels or chemicals; however, dilute acid pretreatment at high temperatures produces undesirable compounds. Toxicity tests were done with inhibitors in standard media, to predict the growth-limiting effects on thermophilic strains. The 22 inhibitors included furfural, levulinic acid, acetic acid, and cinnamaldehyde. Neutralizing reagents and additional treatment steps have been tested. PMID:12018300

  3. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  4. Uncultivated thermophiles: current status and spotlight on 'Aigarchaeota'.

    PubMed

    Hedlund, Brian P; Murugapiran, Senthil K; Alba, Timothy W; Levy, Asaf; Dodsworth, Jeremy A; Goertz, Gisele B; Ivanova, Natalia; Woyke, Tanja

    2015-06-01

    Meta-analysis of cultivation-independent sequence data shows that geothermal systems host an abundance of novel organisms, representing a vast unexplored phylogenetic and functional diversity among yet-uncultivated thermophiles. A number of thermophiles have recently been interrogated using metagenomic and/or single-cell genomic approaches, including members of taxonomic groups that inhabit both thermal and non-thermal environments, such as 'Acetothermia' (OP1) and 'Atribacteria' (OP9/JS1), as well as the exclusively thermophilic lineages 'Korarchaeota', 'Calescamantes' (EM19), 'Fervidibacteria' (OctSpA1-106), and 'Aigarchaeota' (HWCG-I). The 'Aigarchaeota', a sister lineage to the Thaumarchaeota, likely includes both hyperthermophiles and moderate thermophiles. They inhabit terrestrial, marine, and subsurface thermal environments and comprise at least nine genus-level lineages, several of which are globally distributed. PMID:26113243

  5. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  6. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria

    PubMed Central

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K.; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J.; Misra, Anup K.; Chakraborty, Ranadhir; Nanda, Ashish K.; Mukhopadhyay, Subhra K.; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0–8.5 pH) mid-temperature (55–85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml−1 vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D

  7. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria.

    PubMed

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J; Misra, Anup K; Chakraborty, Ranadhir; Nanda, Ashish K; Mukhopadhyay, Subhra K; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding

  8. Membrane controlled anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Omstead, D. R.

    In response to general shortages of energy, examination of the anaerboic digestion process as a potential source of a combustible, methane-rich fuel has intensified in recent years. It has been suggested that orgaic intermediates (such as fatty acids), produced during digestion, might also be recovered for use as chemical feedstocks. This investigation has been concerned with combining ultrafiltration separation techniques with anaerobic digestion for the development of a process in which the total production of acetic acid (the most valuable intermediate in anaerobic digestion) and methane are optimized. Enrichment cultures, able to utilize glucose as a sole carbon source, were adapted from sewage digesting cultures using conventional techniques. An ultrafiltration system was constructed and coupled to an anaerobic digester culture vessel which contained the glucose enrichment. The membrane controlled anaerobic digester appears to show promise as a means of producing high rates of both methane gas and acetic acid.

  9. Anaerobic brain abscess

    PubMed Central

    Sudhaharan, Sukanya; Chavali, Padmasri

    2016-01-01

    Background and Objectives: Brain abscess remains a potentially fatal central nervous system (CNS) disease, especially in developing countries. Anaerobic abscess is difficult to diagnose because of cumbersome procedures associated with the isolation of anaerobes. Materials and Methods: This is a hospital-based retrospective microbiological analysis of 430 brain abscess materials (purulent aspirates and/or tissue), for anaerobic organisms, that were received between 1987–2014, by the Microbiology Laboratory in our Institute. Results: Culture showed growth of bacteria 116/430 (27%) of the cases of which anaerobes were isolated in 48/116 (41.1%) of the cases. Peptostreptococcus (51.4 %), was the predominant organism isolated in four cases followed by Bacteroides and Peptococcus species. Conclusion: Early diagnosis and detection of these organisms would help in the appropriate management of these patients. PMID:27307977

  10. Factors controlling pathogen destruction during anaerobic digestion of biowastes

    SciTech Connect

    Smith, S.R. . E-mail: s.r.smith@imperial.ac.uk; Lang, N.L.; Cheung, K.H.M.; Spanoudaki, K.

    2005-07-01

    Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log{sub 10} reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.

  11. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.

    PubMed

    Kohrs, F; Heyer, R; Magnussen, A; Benndorf, D; Muth, T; Behne, A; Rapp, E; Kausmann, R; Heiermann, M; Klocke, M; Reichl, U

    2014-10-01

    Biogas production from energy crops and biodegradable waste is one of the major sources for renewable energies in Germany. Within a biogas plant (BGP) a complex microbial community converts biomass to biogas. Unfortunately, disturbances of the biogas process occur occasionally and cause economic losses of varying extent. Besides technical failures the microbial community itself is commonly assumed as a reason for process instability. To improve the performance and efficiency of BGP, a deeper knowledge of the composition and the metabolic state of the microbial community is required and biomarkers for monitoring of process deviations or even the prediction of process failures have to be identified. Previous work based on 2D-electrophoresis demonstrated that the analysis of the metaproteome is well suited to provide insights into the apparent metabolism of the microbial communities. Using SDS-PAGE with subsequent mass spectrometry, stable protein patterns were evaluated for a number of anaerobic digesters. Furthermore, it was shown that severe changes in process parameters such as acidification resulted in significant modifications of the metaproteome. Monitoring of changing protein patterns derived from anaerobic digesters, however, is still a challenge due to the high complexity of the metaproteome. In this study, different combinations of separation techniques to reduce the complexity of proteomic BGP samples were compared with respect to the subsequent identification of proteins by tandem mass spectrometry (MS/MS): (i) 1D: proteins were tryptically digested and the resulting peptides were separated by reversed phase chromatography prior to MS/MS. (ii) 2D: proteins were separated by GeLC-MS/MS according to proteins molecular weights before tryptic digestion, (iii) 3D: proteins were separated by gel-free fractionation using isoelectric focusing (IEF) conducted before GeLC-MS/MS. For this study, a comparison of two anaerobic digesters operated at mesophilic and at

  12. Enhancement of the conventional anaerobic digestion of sludge: comparison of four different strategies.

    PubMed

    Pérez-Elvira, S I; Fdz-Polanco, M; Fdz-Polanco, F

    2011-01-01

    Anaerobic digestion (AD) is the preferred option to stabilize sludge. However, the rate limiting step of solids hydrolysis makes it worth modifing the conventional mesophilic AD in order to increase the performance of the digester. The main strategies are to introduce a hydrolysis pre-treatment, or to modify the digestion temperature. Among the different pre-treatment alternatives, the thermal hydrolysis (TH) at 170 degrees C for 30 min, and the ultrasounds pre-treatment (US) at 30 kJ/kg TS were selected for the research, while for the non-conventional anaerobic digestion, the thermophilic (TAD) and the two-stage temperature phased AD (TPAD) were considered. Four pilot plants were operated, with the same configuration and size of anaerobic digester (200 L, continuously fed). The biogas results show a general increase compared to the conventional digestion, being the highest production per unit of digester for the process combining the thermal pre-treatment and AD (1.4 L biogas/L digester day compared to the value of 0.26 obtained in conventional digesters). The dewaterability of the digestate became enhanced for processes TH + AD and TPAD when compared with the conventional digestate, while it became worse for processes US + AD and TAD. In all the research lines, the viscosity in the digester was smaller compared to the conventional (which is a key factor for process performance and economics), and both thermal pre-treatment and thermophilic digestion (TAD and TPAD) assure a pathogen free digestate. PMID:22097010

  13. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing.

    PubMed

    Brady, Allyson L; Sharp, Christine E; Grasby, Stephen E; Dunfield, Peter F

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g(-1) (wet weight) day(-1) within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using (13)CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in (13)CO incubations. The predominant bacteria that assimilated (13)C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  14. Novel anaerobic digestion process with sludge ozonation for economically feasible power production from biogas.

    PubMed

    Komatsu, K; Yasui, H; Goel, R; Li, Y Y; Noike, T

    2011-01-01

    A novel process scheme was developed to achieve economically feasible energy recovery from anaerobic digestion. The new process scheme employs a hybrid configuration of mesophilic and thermophilic anaerobic digestion with sludge ozonation: the ozonated sludge is first degraded in a thermophilic digester and then further degraded in a mesophilic digester. In small-scale pilot experiments of the new process scheme, degradation of VSS improved by 3.5% over the control (mesophilic-only configuration) with 20% less ozone consumption. Moreover, biogas conversion also improved by 7.1% over the control. Selective enrichment of inorganic compounds during centrifugation produced a dewatered sludge cake with very low water content (59.4%). This low water content in the sludge cake improved its auto-thermal combustion potential during incineration and added to the overall energy savings. We conducted a case study to evaluate power generation from biogas for a municipal wastewater treatment plant with an average dry weather flow of 43,000 m3/d. Electricity production cost was 5.2 ¢/kWh for the advanced process with power generation, which is lower than the current market price of 7.2 ¢/kWh. The new anaerobic digestion scheme with power generation may reduce greenhouse gas emissions by about 1,000 t-CO(2)/year compared with the conventional process without power generation. PMID:21508552

  15. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    PubMed Central

    Brady, Allyson L.; Sharp, Christine E.; Grasby, Stephen E.; Dunfield, Peter F.

    2015-01-01

    Carbon monoxide (CO) is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45 to 65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 μmoles CO g−1 (wet weight) day−1 within five selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP) combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% 16S rRNA gene sequence identity) to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter, and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies. PMID:26388850

  16. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge.

    PubMed

    Donoso-Bravo, Andrés; Pérez-Elvira, Sara; Fdz-Polanco, Fernando

    2015-01-01

    Two-phase anaerobic systems are being increasingly implemented for the treatment of both sewage sludge and organic fraction of municipal solid waste. Despite the good amount of mathematical models in anaerobic digestion, few have been applied in two-phase systems. In this study, a three-reaction mechanistic model has been developed, implemented and validated by using experimental data from a long-term anaerobic two-phase (TPAD) digester treating sewage sludge. A sensitivity analysis shows that the most influential parameters of the model are the ones related to the hydrolysis reaction and the activity of methanogens in the thermophilic reactor. The calibration procedure highlights a noticeable growth rate of the thermophilic methanogens throughout the evaluation period. Overall, all the measured variables are properly predicted by the model during both the calibration and the cross-validation periods. The model's representation of the organic matter behaviour is quite good. The most important disagreements are observed for the biogas production especially during the validation period. The whole application procedure underlines the ability of the model to properly predict the behaviour of this bioprocess. PMID:25400016

  17. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH.

    PubMed

    Liu, Xiaoguang; Dong, Bin; Dai, Xiaohu

    2013-11-01

    This study investigated the effect of pH (uncontrolled, 8.0, 10.0 and 12.0) and temperature (mesophilic, thermophilic and extreme thermophilic) on hydrolysis and acidification of dewatered sludge in 7-day batch fermentation experiment. Solublization of COD, protein and carbohydrates as well as concentration and composition of VFAs were investigated. Sludge hydrolysis was enhanced with higher pH and temperature. The maximum SCOD, soluble protein and carbohydrates was observed at pH 12.0 at extreme thermophilic condition. The maximum VFAs yield was obtained at thermophilic and was 2.15 times that at mesophilic condition, but it took more time to reach the maximum. The VFAs consisted of acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-valeric acids, and acetic acid was the prevalent product in most cases except for uncontrolled pH and pH 8.0 at mesophilic condition. The methane production was as follows: pH 8.0>pH 10.0>uncontrolled (0.015)>pH 12.0; mesophilic>thermophilic>extreme thermophilic. PMID:24077155

  18. Rheology evolution of sludge through high-solid anaerobic digestion.

    PubMed

    Dai, Xiaohu; Gai, Xin; Dong, Bin

    2014-12-01

    The main purpose of this study was to investigate the rheology evolution of sludge through high-solid anaerobic digestion (AD) and its dependency on sludge retention time (SRT) and temperature of AD reactor. The operation performance of high-solid AD reactors were also studied. The results showed that sludge became much more flowable after high-solid AD. It was found that the sludge from reactors with long SRT exhibited low levels of shear stress, viscosity, yield stress, consistency index, and high value of flow behaviour index. While the flowability of sludge from thermophilic AD reactors were better than that of sludge from mesophilic AD reactors though the solid content of the formers were higher than that of the latters, which could be attributed to the fact that the formers had more amount of free and interstitial moisture. It might be feasible to use sludge rheology as an AD process controlling parameter. PMID:25463776

  19. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents

    PubMed Central

    Topçuoğlu, Begüm D.; Stewart, Lucy C.; Morrison, Hilary G.; Butterfield, David A.; Huber, Julie A.; Holden, James F.

    2016-01-01

    Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7–40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4+ generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments. PMID:27547206

  20. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents.

    PubMed

    Topçuoğlu, Begüm D; Stewart, Lucy C; Morrison, Hilary G; Butterfield, David A; Huber, Julie A; Holden, James F

    2016-01-01

    Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments. PMID:27547206

  1. Gender comparisons in anaerobic power and anaerobic capacity tests.

    PubMed Central

    Maud, P J; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gross work completed and relative to body weight. However, these differences are reduced when data is adjusted for body weight and further reduced when corrected for FFM. The study found no significant differences between men and women in either anaerobic power or anaerobic capacity when values were given relative to FFM. PMID:3730753

  2. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    PubMed Central

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0–9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community. PMID:25798135

  3. Potential for anaerobic treatment of whey

    SciTech Connect

    Schlottfeldt, G.A.B.

    1980-01-01

    Results of experiments on 3 laboratory-scale reactors loaded with whey at different daily rates showed that a daily loading of 85 lb COD/1000 cubic feet achieved a COD reduction efficiency of 86% with a gas yield (50% methane) of 5 cubic feet/gal of treated whey. High microorganism population and pH control were essential for stable operation. Overall 1st order COD removal rate constants were 1.13, 0.70 and 1.73/day at 35, 50 and 60 degrees Celcius respectively. The economic impact of anaerobic whey treatment was evaluated for small, medium and large cheese plants, and annual operating costs were projected for a 20-year period. Among several systems that were compared, the anaerobic treatment of whey was shown to be the only one that had a potential of paying for itself. Treatment costs represented from 0.85 to 2.6% of the mean US milk price to producers.

  4. Comparison of different conditions, substrates and operation modes by dynamic simulation of a full-scale anaerobic SBR plant.

    PubMed

    Rönner-Holm, S G E; Zak, A; Holm, N C

    2012-01-01

    Simulation studies for a full-scale anaerobic unit of a wastewater treatment plant (WWTP) were performed using the anaerobic digestion model no. 1 (ADM1). The anaerobic full-scale plant consists of one mesophilic and one thermophilic digester, operated in an anaerobic sequential batch reactor (ASBR) mode, and sludge enrichment reactors (SER) for each digester. The digesters are fed with a mixture of vegetable waste and process wastewater from the food factory. Characteristics such as COD(total), N(total) and NH(4)-N concentrations in the influent and effluent of the digester and SERs were measured and used for input fractionation. Parameters such as level, pH, biogas amount and composition in the digester were measured online and used for calibration. For simulation studies, different temperatures and operation modes with varying chemical oxygen demand (COD) input loads corresponding to feedstocks such as fruits, vegetables and grain were analysed and compared. Higher gas production and digestion efficiency in the thermophilic reactor and in shorter cycles were found and confirmed at full scale. Serial operation mode increased the gas production, but pH inhibition occurred earlier. Feeding only biosolids into digester I and the effluent of digester I together with process water into digester II further improved gas production in serial operation mode. PMID:22258689

  5. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor

    SciTech Connect

    Weijma, J.; Stams, A.J.M.; Pol, L.W.H.; Lettinga, G.

    2000-02-05

    Sulfate reduction outcompeted methanogenesis at 65 C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 2.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors operated at 14 and 3.5 h, respectively, sulfide production accounted for 80% of the methanol-COD consumed by the sludge. The specific methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down to 3.5 h for a period of 4 months gradually decreased from 0.83 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} at the start to a value of less than 0.05 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1}, showing that the relative number of methanogens decreased and eventually became very low. By contrast, the increase of the specific sulfidogenic activity of sludge from 0.22 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} to a final value of 1.05 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} showed that sulfate reducing bacteria were enriched. Methanol degradation by a methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanol was not important. H{sub 2}/CO{sub 2} and formate, but not acetate, were degraded to methane in the presence of vancomycin. These results indicated that methanol degradation to methane occurs via the intermediates H{sub 2}/CO{sub 2} and formate. The high and low specific methanogenic activity of sludge on H{sub 2}/CO{sub 2} and formate, respectively, indicated that the former substrate probably acts as the main electron donor for the methanogens during methanol degradation. As sulfate reduction in the sludge was also strongly supported by hydrogen, competition between sulfate reducing bacteria and methanogens in the sludge seemed to be mainly for this substrate. Sulfate elimination rates of up to 15 gSO{sub 4}{sup 2{minus}}/L per day were achieved in the reactors. Biomass retention limited the sulfate elimination rate.

  6. The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure

    NASA Astrophysics Data System (ADS)

    Zillig, Wolfram; Schnabel, Ralf; Tu, Jenn; Stetter, Karl Otto

    1982-05-01

    DNA-dependent RNA polymerases of archaebacteria are distinct from those of eubacteria both in structure and in function. They show similarities to those of the eukaryotic cytoplasm. Extremely thermophilic anaerobic sulfur-respiring archaebacteria isolated from solfataric waters represent four different families, the Thermoproteaceae, the “stiff filaments”, the Desulfurococcaceae and the Thermococcaceae, of a novel order, Thermoproteales. Together with the Sulfolobales, they form the second branch of the urkingdom of the archaebacteria besides that of the methanogens and extreme halophiles. Thermoplasma appears isolated.

  7. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report, September 1982-March 1983

    SciTech Connect

    Peck, H.D. Jr.; Ljungdahl, L.G.

    1983-01-01

    Research progress for the period September 1982-March 1983 is reported. The cellulose enzyme system of the anaerobic thermophile Clostridium thermocellum is being studied. Mutants have been obtained from thermoanaerobacter ethanolicus which produce higher amounts of ethanol than does the wild type. Clostridium thermoautotrophicum has been studied with respect to the pathway of acetate synthesis from CO/sub 2/. Progress has been achieved on properties of the NADP-dependent formate dehydrogenase and the CO dehydrogenase of Clostridium thermoaceticum. The CO dehydrogenase of Acetobacterium woodii has been isolated. Research has continued on the bioenergetics of dissimilatory sulfate reduction in sulfate reducing and methanogenic bacteria.

  8. Biocatalysis mechanism for p-fluoronitrobenzene degradation in the thermophilic bioelectrocatalysis system: Sequential combination of reduction and oxidation.

    PubMed

    Wang, Yanfeng; Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Shen, Dongsheng; Long, Yuyang; Zhou, Yuyang; Dai, Qizhou

    2016-09-01

    To verify the potentially synthetic anodic and cathodic biocatalysis mechanism in bioelectrocatalysis systems (BECSs), a single-chamber thermophilic bioelectrocatalysis system (R3) was operated under strictly anaerobic conditions using the biocathode donated dual-chamber (R1) and bioanode donated dual-chamber (R2) BECSs as controls. Direct bioelectrocatalytic oxidation was found to be infeasible while bioelectrocatalytic reduction was the dominant process for p-Fluoronitrobenzene (p-FNB) removal, with p-FNB removal of 0.188 mM d(-1) in R1 and 0.182 mM d(-1) in R3. Cyclic voltammetry experiments confirmed that defluorination in the BECSs was an oxidative metabolic process catalyzed by bioanodes following the reductive reaction, which explained the 0.034 mM d(-1) defluorination in R3, but negligible defluorination in controls. Taken together, these results revealed a sequentially combined reduction and oxidation mechanism in the thermophilic BECS for p-FNB removal. Moreover, the enrichment of Betaproteobacteria and uniquely selected Bacilli in R3 were probably functional populations for p-FNB degradation. PMID:27268793

  9. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    PubMed Central

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  10. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    PubMed

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  11. Thermophilic bio-hydrogen production from corn-bran residue pretreated by calcined-lime mud from papermaking process.

    PubMed

    Zhang, Jishi; Zhang, Junjie; Zang, Lihua

    2015-12-01

    This study investigated the use of calcined-lime mud from papermaking process (CLMP) pretreatment to improve fermentative hydrogen yields from corn-bran residue (CBR). CBR samples were pretreated with different concentrations (0-15 g/L) of CLMP at 55°C for 48 h, prior to the thermophilic fermentation with heat-treated anaerobic sludge inoculum. The maximum hydrogen yield (MHY) of 338.91 ml/g-VS was produced from the CBR pretreated with 10 g/L CLMP, with the corresponding lag-phase time of 8.24h. Hydrogen yield increments increased from 27.76% to 48.07%, compared to the control. The CLMP hydrolyzed more cellulose, which provided adequate substrates for hydrogen production. PMID:26433153

  12. An immunological assay for detection and enumeration of thermophilic biomining microorganisms.

    PubMed

    Amaro, A M; Hallberg, K B; Lindström, E B; Jerez, C A

    1994-09-01

    A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes. PMID:16349398

  13. Protease Production by Different Thermophilic Fungi

    NASA Astrophysics Data System (ADS)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  14. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus.

    PubMed

    Miller, Scott R; Castenholz, Richard W; Pedersen, Deana

    2007-08-01

    We have taken a phylogeographic approach to investigate the demographic and evolutionary processes that have shaped the geographic patterns of genetic diversity for a sample of isolates of the cosmopolitan thermophilic cyanobacterial Mastigocladus laminosus morphotype collected from throughout most of its range. Although M. laminosus is found in thermal areas throughout the world, our observation that populations are typically genetically differentiated on local geographic scales suggests the existence of dispersal barriers, a conclusion corroborated by evidence for genetic isolation by distance. Genealogies inferred using nitrogen metabolism gene sequence data suggest that a significant amount of the extant global diversity of M. laminosus can be traced back to a common ancestor associated with the western North American hot spot currently located below Yellowstone National Park. Estimated intragenic recombination rates are comparable to those of pathogenic bacteria known for their capacity to exchange DNA, indicating that genetic exchange has played an important role in generating novel variation during M. laminosus diversification. Selection has constrained protein changes at loci involved in the assimilation of both dinitrogen and nitrate, suggesting the historic use of both nitrogen sources in this heterocystous cyanobacterium. Lineage-specific differences in thermal performance were also observed. PMID:17557856

  15. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity. PMID:26942526

  16. Experimental evidence for the thermophilicity of ancestral life

    PubMed Central

    Akanuma, Satoshi; Nakajima, Yoshiki; Yokobori, Shin-ichi; Kimura, Mitsuo; Nemoto, Naoki; Mase, Tomoko; Miyazono, Ken-ichi; Tanokura, Masaru; Yamagishi, Akihiko

    2013-01-01

    Theoretical studies have focused on the environmental temperature of the universal common ancestor of life with conflicting conclusions. Here we provide experimental support for the existence of a thermophilic universal common ancestor. We present the thermal stabilities and catalytic efficiencies of nucleoside diphosphate kinases (NDK), designed using the information contained in predictive phylogenetic trees, that seem to represent the last common ancestors of Archaea and of Bacteria. These enzymes display extreme thermal stabilities, suggesting thermophilic ancestries for Archaea and Bacteria. The results are robust to the uncertainties associated with the sequence predictions and to the tree topologies used to infer the ancestral sequences. Moreover, mutagenesis experiments suggest that the universal ancestor also possessed a very thermostable NDK. Because, as we show, the stability of an NDK is directly related to the environmental temperature of its host organism, our results indicate that the last common ancestor of extant life was a thermophile that flourished at a very high temperature. PMID:23776221

  17. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants.

    PubMed

    Ghosh, Sudeshna; Ramsden, Sara J; LaPara, Timothy M

    2009-09-01

    In this study, the abilities of two anaerobic digestion processes used for sewage sludge stabilization were compared for their ability to reduce the quantities of three genes that encode resistance to tetracycline (tet(A), tet(O), and tet(X)) and one gene involved with integrons (intI1). A two-stage, thermophilic/mesophilic digestion process always resulted in significant decreases in the quantities of tet(X) and intI1, less frequently in decreases of tet(O), and no net decrease in tet(A). The thermophilic stage was primarily responsible for reducing the quantities of these genes, while the subsequent mesophilic stage sometimes caused a rebound in their quantities. In contrast, a conventional anaerobic digestion process rarely caused a significant decrease in the quantities of any of these genes, with significant increases occurring more frequently. Our results demonstrate that anaerobic thermophilic treatment was more efficient in reducing quantities of genes associated with the spread of antibiotic resistance compared to mesophilic digestion. PMID:19597810

  18. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  19. Anaerobic digestion of wheat straw--performance of continuous solid-state digestion.

    PubMed

    Pohl, Marcel; Heeg, Kathrin; Mumme, Jan

    2013-10-01

    In this study the upflow anaerobic solid-state (UASS) reactor was operated at various conditions to optimize the process parameters for anaerobically digesting wheat straw in a continuous process. Additionally, particle size effects have been studied in the operation at 55 and 60°C. Moreover, the incremental effect of the organic loading rate (OLR) to the system was examined from 2.5 to 8 gVS L(-1) d(-1). It was found that the UASS operating at 60 °C with a small OLR yields highest methane production, but the advantage over thermophilic operation is negligible. The rise in OLR reduces the systems yields, as expected. From OLR=8 gVS L(-1) d(-1) a second stage is necessary to circumvent volatile fatty acids accumulation. PMID:23954246

  20. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  1. THERMOPHILE ENDOSPORES HAVE RESPONSIVE EXOSPORIUM FOR ATTACHMENT

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.T.; WARREN,J.; SABATINI,R.

    1999-08-01

    Recently studies examining the colonization of Clostridial pathogens on agar and human tissue culture cells, demonstrated that (C. sporogenes ATCC 3584, C. difficile ATCC 43594 [patient isolate], C. difficile ATCC 9689 [non-clinical], C. clostridioforme [patient isolate]) bacterial spores (endospores) of the genus Clostridia have an outer membrane that becomes responsive at activation and exhibits extensions of the exosporial membrane that facilitate and maintain spore attachment to a nutritive substrate during germination and initial outgrowth of the newly developed bacterial cell. Therefore this attachment phenomenon plays an important role in insuring bacterial colonization of a surface and the initial stages of the infective process. To see if other non-clinical members of this genus also have this ability to attach to a substrate or food-source during spore germination, and how this attachment process in environmental thermophiles compares to the clinical paradigm (in relation to time sequence, exosporial membrane structure, type of attachment structures, composition of the membrane etc...), sediment samples were collected in sterile transport containers at 4 geothermal sites at Yellowstone National Park in Wyoming. Because spore forming bacteria will produce spores when conditions are unfavorable for growth, the samples were sealed and stored at 4 C. After 8 months the samples were screened for the presence of spores by light microscope examination using malachite green/safranin, and traditional endospores were identified in significant quantities from the Terrace Spring site (a 46 C lake with bacterial mats and a rapidly moving run-off channel leading to a traditional hot spring). The highest spore population was found in the top sediment and benthic water of the run-off channel, pH 8.1.

  2. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. PMID:25151445

  3. [Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community].

    PubMed

    Xie, Hai-ying; Wang, Xin; Li, Mu-yuan; Yan, Xu-you; Igarashi, Yasuo; Luo, Feng

    2015-11-01

    This study aimed to analyze the effect of temperature on performance and microbial community structure of an anaerobic packed bed reactor (APBR). The temperature was increased step-wise from room temperature (22 degrees C ± 1 degrees C) to psychrophilic (15 degrees C ± 1 degrees C), mesophilic (37 degrees C ± 1 degrees C) and thermophilic (55 degrees C ± 1 degrees C). The results showed that, in the temperature changing process, the higher the temperature of APBR was, the higher COD removal rate and daily gas production were. After temperature changed to psychrophilic, mesophilic and thermophilic, COD removal rate and daily gas production were 25%, 45%, 60% and 2.3 L x d(-1), 4.0 L x d(-1), 8.5 L x d(-1) respectively. However, there was no significant change in biogas composition (-60%). A sudden temperature change caused a simultaneous increase in the concentration of volatile fatty acids (VFA), which had been fluctuating. Using 16S rRNA gene clone library screening, Euryarchaeota was commonly found, including important methanogens: MBT (Methanobacteriales), Mst (Methanosaetaceae) , Msc (Methanosarcinaceae) and MMB (Methanomicrobiales), as well as thermophilic bacteria and few spring Archaea. However, the diversity of methanogenic groups was reduced, especially at mesophilic. The results of quantitative PCR showed that the 16S rRNA gene concentrations of Mst, MMB and Msc were reduced by temperature changes. Although the relative proportion of every kind of methanogen was significantly affected, Mst was the dominant methanogen. PMID:26911011

  4. Antimicrobials therapy of anaerobic infections.

    PubMed

    Brook, Itzhak

    2016-06-01

    Anaerobes predominant in the normal human skin and mucous membranes bacterial flora are often a cause of endogenous infections. Anaerobic bacteria are difficult to isolate from infectious sites, and are often overlooked. Anaerobic infections caused by anaerobes can occur in all body sites, including the central nervous system (CNS), oral cavity, head and neck, chest, abdomen, pelvis, skin and soft tissues. The treatment of these infections is complicated by the slow growth of these organisms, their polymicrobial nature and the growing resistance of anaerobes to antimicrobials agents. Antimicrobials are frequently the only form of therapy needed, but in others, they are an important adjunct to surgical drainage and correction of pathology. Because anaerobes are often recovered with aerobic and facultative bacteria, the chosen antimicrobials should cover all pathogens. The antimicrobials effective against anaerobic organisms are metronidazole, carbapenems, combinations of a beta-lactam and a beta-lactamase inhibitor, chloramphenicol, tigecycline and clindamycin. PMID:26365224

  5. Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs

    PubMed Central

    Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

    1996-01-01

    The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

  6. [Biodegradation of organic pollutants by thermophiles and their applications: a review].

    PubMed

    Cui, Jing-Lan; Chen, Chen; Qin, Zhi-Hui; Yu, Chun-Na; Shen, Hui; Shen, Chao-Feng; Chen, Ying-Xu

    2012-11-01

    Persistent organic pollutants have increasingly become a critical environmental concern, while thermophiles have the high potential of degrading various kinds of environmental organic pollutants. At high temperatures, thermophiles have higher metabolic activity, and the competition by mesophiles is reduced, meanwhile, the solubility and bioavailability of some persistent organic pollutants are greatly increased, and thus, the degradation of the pollutants by thermophiles is more rapid and complete. Therefore, thermophils are of great significance for the bio-treatment of organic wastewater and the bioremediation of organic pollutants-contaminated sites. This paper introduced the research progress on the degradation of organic pollutants by thermophiles in terms of the characteristics of thermophiles in degrading organic pollutants, the effects of temperature on the degradation, the degradation pathways, the degradation enzymes, their coding genes, and practical engineering applications. The future research directions including the degradation mechanisms of thermophiles, their resources reserve, related technology strategies and their applications were also prospected. PMID:23431811

  7. Effect of temperature on survival of micro-organisms and performance of anaerobic two-stage reactors treating cattle slurry.

    PubMed

    Mohaibes, Mohammed; Heinonen-Tanski, Helvi

    2012-01-01

    A short-term thermophilic treatment was conducted in order to study the survival of micro-organisms in slurry derived from a cattle farm, at temperatures of 58, 63 and 68 degrees C for 6 h. The second trial was a biogas production experiment with an anaerobic mesophilic first stage and a thermophilic second stage. The mesophilic treatment was at 38 degrees C and the second stage was conducted at 55, 58 or 65 degrees C. The results of first trial showed that survival of micro-organisms was decreased remarkably at higher temperatures in spite of the fact that during the experiment part of slurry was replaced with fresh slurry. Meanwhile, the second trial showed that optimum production ofbiogas was at 55 degrees C while the best result for hygienic control was achieved at 65 degrees C. PMID:22629631

  8. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    SciTech Connect

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  9. celB, a gene coding for a bifunctional cellulase from the extreme thermophile "Caldocellum saccharolyticum".

    PubMed Central

    Saul, D J; Williams, L C; Grayling, R A; Chamley, L W; Love, D R; Bergquist, P L

    1990-01-01

    "Caldocellum saccharolyticum" is an obligatory anaerobic thermophilic bacterium. A gene from this organism, designated celB, has been cloned in Escherichia coli as part of a bacteriophage lambda gene library. This gene produces a thermostable cellulase that shows both endoglucanase and exoglucanase activities on test substrates and is able to degrade crystalline cellulose to glucose. The sequence of celB has homology with both exo- and endoglucanases described by others. It appears to have a central domain without enzymatic activity which is joined to the enzymatic domains by runs of amino acids rich in proline and threonine (PT boxes). Deletion analysis shows that the exoglucanase activity is located in the amino-terminal domain of the enzyme and that endoglucanase activity is located in the carboxy-terminal domain. There are internal transcriptional and translational start sites within the gene. The intact gene has been cloned into a temperature-inducible expression vector, pJLA602, and overexpressed in E. coli. Polyacrylamide gel electrophoresis showed that celB produced a protein with a molecular weight of 118,000 to 120,000. A number of smaller proteins with activity against carboxymethyl cellulose and 4-methyl umbelliferyl-beta-D-cellobioside were also produced. These are believed to be the result of alternative translational start sites and/or proteolytic degradation products of the translated gene product. Images PMID:2126700

  10. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes.

    PubMed

    Liebensteiner, Martin G; Pinkse, Martijn W H; Nijsse, Bart; Verhaert, Peter D E M; Tsesmetzis, Nicolas; Stams, Alfons J M; Lomans, Bart P

    2015-12-01

    This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions. PMID:26332065

  11. Cloning, expression and characterization of a novel thermophilic polygalacturonase from Caldicellulosiruptor bescii DSM 6725.

    PubMed

    Chen, Yanyan; Sun, Dejun; Zhou, Yulai; Liu, Liping; Han, Weiwei; Zheng, Baisong; Wang, Zhi; Zhang, Zuoming

    2014-01-01

    We cloned the gene ACM61449 from anaerobic, thermophilic Caldicellulosiruptor bescii, and expressed it in Escherichia coli origami (DE3). After purification through thermal treatment and Ni-NTA agarose column extraction, we characterized the properties of the recombinant protein (CbPelA). The optimal temperature and pH of the protein were 72 °C and 5.2, respectively. CbPelA demonstrated high thermal-stability, with a half-life of 14 h at 70 °C. CbPelA also showed very high activity for polygalacturonic acid (PGA), and released monogalacturonic acid as its sole product. The Vmax and Km of CbPelA were 384.6 U·mg⁻¹ and 0.31 mg·mL⁻¹, respectively. CbPelA was also able to hydrolyze methylated pectin (48% and 10% relative activity on 20%-34% and 85% methylated pectin, respectively). The high thermo-activity and methylated pectin hydrolization activity of CbPelA suggest that it has potential applications in the food and textile industry. PMID:24705464

  12. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum.

    PubMed Central

    Wiegel, J; Ljungdahl, L G; Rawson, J R

    1979-01-01

    Thirteen strains of a strict anaerobic, extreme thermophilic bacterium were isolated from soil samples of moderate temperature, from a sewage plant in Georgia, and from hot springs in Utah and Wyoming. They were identified as strains of Clostridium thermohydrosulfuricum. The guanosine + cytosine content (moles percent) was 37.6 (determined by buoyant density) and 34.1 (determined by melting temperature). All strains required a factor present in yeast extract or tryptone growth. Growth characteristics were as follows: a pH range of 5 to 9, with the optimum between 6.9 to 7.5, in a temperature range of 40 to 78 degrees C, with the optimum at 68 degrees C. The doubling time, when grown on glucose at temperature and pH optima, was 1.2 h. The main products of glucose fermentation were ethanol, lactate, acetate, CO2, and H2. The fermentation was inhibited by H2. Formation of spores occurred easily on glucose-agar medium or when cultures growing at temperatures above 65 degrees C were allowed to cool to temperature below 55 degrees C. C. thermohydrosulfuricum occurs widely distributed in the natural environment. PMID:39062

  13. An Na+-pumping V1V0-ATPase complex in the thermophilic bacterium Clostridium fervidus.

    PubMed Central

    Höner zu Bentrup, K; Ubbink-Kok, T; Lolkema, J S; Konings, W N

    1997-01-01

    Energy transduction in the anaerobic, thermophilic bacterium Clostridium fervidus relies exclusively on Na+ as the coupling ion. The Na+ ion gradient across the membrane is generated by a membrane-bound ATPase (G. Speelmans, B. Poolman, T. Abee, and W. N. Konings, J. Bacteriol. 176:5160-5162, 1994). The Na+-ATPase complex was purified to homogeneity. It migrates as a single band in native polyacrylamide gel electrophoresis and catalyzes Na+-stimulated ATPase activity. Denaturing gel electrophoresis showed that the complex consists of at least six different polypeptides with apparent molecular sizes of 66, 61, 51, 37, 26, and 17 kDa. The N-terminal sequences of the 66- and 51-kDa subunits were found to be significantly homologous to subunits A and B, respectively, of the Na+-translocating V-type ATPase of Enterococcus hirae. The purified V1V0 protein complex was reconstituted in a mixture of Escherichia coli phosphatidylethanolamine and egg yolk phosphatidylcholine and shown to catalyze the uptake of Na+ ions upon hydrolysis of ATP. Na+ transport was completely abolished by monensin, whereas valinomycin stimulated the uptake rate. This is indicative of electrogenic sodium transport. The presence of the protonophore SF6847 had no significant effect on the uptake, indicating that Na+ translocation is a primary event and in the cell is not accomplished by an H+-translocating pump in combination with an Na+-H+ antiporter. PMID:9023212

  14. Growth and metabolic profiling of the novel thermophilic bacterium Thermoanaerobacter sp. strain YS13.

    PubMed

    Peng, Tingting; Pan, Siyi; Christopher, Lew P; Sparling, Richard; Levin, David B

    2016-09-01

    A strictly anaerobic, thermophilic bacterium, designated strain YS13, was isolated from a geothermal hot spring. Phylogenetic analysis using the 16S rRNA genes and cpn60 UT genes suggested strain YS13 as a species of Thermoanaerobacter. Using cellobiose or xylose as carbon source, YS13 was able to grow over a wide range of temperatures (45-70 °C), and pHs (pH 5.0-9.0), with optimum growth at 65 °C and pH 7.0. Metabolic profiling on cellobiose, glucose, or xylose in 1191 medium showed that H2, CO2, ethanol, acetate, and lactate were the major metabolites. Lactate was the predominant end product from glucose or cellobiose fermentations, whereas H2 and acetate were the dominant end products from xylose fermentation. The metabolic balance shifted away from ethanol to H2, acetate, and lactate when YS13 was grown on cellobiose as temperatures increased from 45 to 70 °C. When YS13 was grown on xylose, a metabolic shift from lactate to H2, CO2, and acetate was observed in cultures as the temperature of incubation increased from 45 to 65 °C, whereas a shift from ethanol and CO2 to H2, acetate, and lactate was observed in cultures incubated at 70 °C. PMID:27569998

  15. Extremely thermophilic fermentative archaebacteria of the genus desulfurococcus from deep-sea hydrothermal vents. Technical report

    SciTech Connect

    Jannasch, H.W.; Wirsen, C.O.; Molyneaux, S.J.; Langworthy, T.A.

    1988-05-01

    Two strains of extremely thermophilic, anaerobic bacteria are described that are representative of isolates obtained from a variety of oceanic hydrothermal vent sites at depths from 2,000 to 3,700 m. The isolates were similar in their requirements for complex organic media, elemental sulfur, and seawater-range salinities (optimum, 2.1 to 2.4%); their high tolerance for sulfide (100 mM) and oxic conditions below growth-range temperatures (50 to 95%C); and their archaebacterial characteristics: absence of murein, presence of certain di-and tetraethers, and response to specific antibiotics. The two strains (S and SY, respectively) differed slightly in their optimum growth temperatures (85 and 90 C), optimum pHs for growth (7.5 and 7.0), and DNA base compositions (52.01 and 52.42 G+C mol%). At their in situ pressure of about 250 atm (25,313 kPa), growth rates at 80 and 90 C were about 40% lower than those at 1 atm (101.29 kPa), and no growth occurred at 100 and 110 C, respectively, at either pressure. In yeast extract medium, only 2% of the organic carbon was used and appeared to stem largely from the proteinaceous constituents. According to physiological criteria, the isolates belong to the genus Desulfurococcus.

  16. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    PubMed Central

    Bielen, Abraham A. M.; Verhaart, Marcel R. A.; van der Oost, John; Kengen, Servé W. M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus. PMID:25371332

  17. Bench-scale Analysis of Surrogates for Anaerobic Digestion Processes.

    PubMed

    Carroll, Zachary S; Long, Sharon C

    2016-05-01

    Frequent monitoring of anaerobic digestion processes for pathogen destruction is both cost and time prohibitive. The use of surrogates to supplement regulatory monitoring may be one solution. To evaluate surrogates, a semi-batch bench-scale anaerobic digester design was tested. Bench-scale reactors were operated under mesophilic (36 °C) and thermophilic (53-55 °C) conditions, with a 15 day solids retention time. Biosolids from different facilities and during different seasons were examined. USEPA regulated pathogens and surrogate organisms were enumerated at different times throughout each experiment. The surrogate organisms included fecal coliforms, E. coli, enterococci, male-specific and somatic coliphages, Clostridium perfringens, and bacterial spores. Male-specific coliphages tested well as a potential surrogate organism for virus inactivation. None of the tested surrogate organisms correlated well with helminth inactivation under the conditions studied. There were statistically significant differences in the inactivation rates between the facilities in this study, but not between seasons. PMID:27131309

  18. Bacteriostatic activities of monoacyl sugar alcohols against thermophilic sporeformers.

    PubMed

    Piao, Junkui; Kawahara-Aoyama, Yumiko; Inoue, Takashi; Adachi, Shuji

    2006-01-01

    The bacteriostatic activities of monoacyl sugar alcohols with different acyl chains and hydrophilic heads were examined against some thermophilic sporeformers. Monomyristoyl erythritol and xylitol efficaciously suppressed their spore development. The number and orientation of the hydroxyl groups also played important roles in this activity, and monomyristoyl xylitol exhibited the highest activity among the monomyristoyl sugar alcohols. PMID:16428845

  19. Anaerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Roopathy, R.

    1995-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used aerobic tempts to degrade nitroaromatics under aerobic microorganisms. In many cases attempts to degrade nitroaromatics under aerobic conditions results in no mineralization and only superficial modifications of the structure. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. Trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitrate from trinitrotoluene is achieved by a series of reductive reactions with the production of ammonia and toluene by Desulfovibrio sp. (B strain). Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. This presentation will review the data supporting the anaerobic transformation of TNT and other nitroaromatics.

  20. Anaerobic lung infections.

    PubMed

    Vincent, M T; Goldman, B S

    1994-06-01

    Aspiration is the leading cause of anaerobic lung infections. Risk factors for these infections include a depressed level of consciousness, a history of seizure, general anesthesia, central nervous system or neuromuscular disease, cerebrovascular accident, impaired swallowing and use of a tracheal or nasogastric tube. Clinical presentation includes fever, weight loss, malaise and cough productive of foul-smelling sputum. Diagnosis is based on radiographic findings, clinical features and a characteristic morphology of mixed flora on Gram stain of uncontaminated pulmonary specimens. The diagnosis is confirmed by isolation of organisms, usually polymicrobial, on culture. Treatment includes proper drainage, debridement of necrotic tissue and an antibiotic regimen (often initially empiric) with an agent active against anaerobic and aerobic organisms. PMID:8203319

  1. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    NASA Astrophysics Data System (ADS)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  2. Anaerobic digestion of food waste - Effect of recirculation and temperature on performance and microbiology.

    PubMed

    Zamanzadeh, Mirzaman; Hagen, Live H; Svensson, Kine; Linjordet, Roar; Horn, Svein J

    2016-06-01

    Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures. PMID:27060528

  3. Anaerobic digestion of sulfate-acidified cattle slurry: One-stage vs. two-stage.

    PubMed

    Moset, Veronica; Ottosen, Lars Ditlev Mørck; Xavier, Cristiane de Almeida Neves; Møller, Henrik Bjarne

    2016-05-15

    Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology. PMID:26985731

  4. Anaerobic digestion process

    SciTech Connect

    Ishida, M.; Haga, R.; Odawara, Y.

    1982-10-19

    An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

  5. Penta- and 2,4,6-tri-chlorophenol biodegradation during municipal solid waste anaerobic digestion.

    PubMed

    Limam, Intissar; Limam, Rim Driss; Mezni, Mohamed; Guenne, Angéline; Madigou, Céline; Driss, Mohamed Ridha; Bouchez, Théodore; Mazeas, Laurent

    2016-08-01

    In this study isotopic tracing using (13)C labelled pentachlorophenol (PCP) and 2,4,6-trichlorophenol (2,4,6-TCP) is proposed as a tool to distinguish the loss of PCP and 2,4,6-TCP due to biodegradation from other physical processes. This isotopic approach was applied to accurately assess in situ PCP and 2,4,6-TCP degradation under methanogenic conditions in several microcosms made up of household waste. These microcosms were incubated in anaerobic conditions at 35°C (mesophilic) and 55°C (thermophilic) without agitation. The volume of biogas produced (CH4 and CO2), was followed for a period of 130 days. At this stage of stable methanogenesis, (13)C6-PCP and (13)C6-2,4,6-TCP were introduced anaerobically in microcosms and its monitoring at mesophilic and thermophilic conditions was performed in parallel by gas chromatography mass spectrometry (GC-MS) and gas chromatography isotope-ratio mass spectrometry (GC-IRMS). This study proved the almost total dechlorination of bioavailable PCP and 2,4,6-TCP into 4-CP at 35°C. Nevertheless, high rate adsorption in particular materials of the two compounds was observed. Furthermore, Carbon-13 Nuclear Magnetic Resonance ((13)C-NMR) Spectroscopy analysis of (13)C labelled 2,4,6-TCP mesophilic incubations showed the partial mineralization of 4-CP at 35°C to acetate and then to HCO(3-). Consequently, NMR results confirm the biogas isotopic results indicating the mineralization of (13)C labelled 2,4,6-TCP into (13)C (CH4 and CO2). Concerning (13)C labelled PCP mesophilic incubations, the isotopic composition of the biogas still natural until the day 262. In contrast, no dechlorination was observed at 55°C. Thus PCP and 2,4,6-TCP were persistent in thermophilic conditions. PMID:27151678

  6. Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge.

    PubMed

    Scaglia, Barbara; D'Imporzano, Giuliana; Garuti, Gilberto; Negri, Marco; Adani, Fabrizio

    2014-01-01

    A small amount of ammonia is used in full-scale plants to partially sanitize sewage sludge, thereby allowing successive biological processes to enable the high biological stability of the organic matter. Nevertheless, ammonia and methane are both produced during the anaerobic digestion (AD) of sludge. This paper describes the evaluation of a lab-scale study on the ability of anaerobic process to sanitize sewage sludge and produce biogas, thus avoiding the addition of ammonia to sanitize sludge. According to both previous work and a state of the art full-scale plant, ammonia was added to a mixture of sewage sludge at a rate so that the pH values after stirring were 8.5, 9 and 9.5. This procedure determined an ammonia addition lower than that generally indicated in the literature. The same sludge was also subjected to an AD process for 60 days under psychrophilic, mesophilic and thermophilic conditions. The levels of fecal coliform, Salmonella spp. helmints ova, pH, total N, ammonia fractions and biogas production were measured at different times during each process. The results obtained suggested that sludge sanitation can be achieved using an AD process; however, the addition of a small amount of ammonia was not effective in sludge sanitation because the buffer ability of the sludge reduced the pH and thus caused ammonia toxicity. Mesophilic and thermophilic AD sanitized better than psychrophilic AD did, but the total free ammonia concentration under the thermophilic condition inhibited biogas production. The mesophilic condition, however, allowed for both sludge sanitation and significant biogas production. PMID:23973551

  7. Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: analysis of the advantages of microbial community and metabolism.

    PubMed

    Zheng, He-Shan; Guo, Wan-Qian; Yang, Shan-Shan; Feng, Xiao-Chi; Du, Juan-Shan; Zhou, Xian-Jiao; Chang, Jo-Shu; Ren, Nan-Qi

    2014-11-01

    In this study, the effects of thermophilic bacteria pretreatment and elevated fermentation temperature on hydrogen production from sludge were examined. The highest hydrogen yield of 19.9mlH2g(-1) VSS was achieved at 55°C by using pretreated sludge, which was 48.6% higher than raw sludge without pretreatment, and 28.39% higher than when fermented at 35°C. To explore the internal factors of this superior hydrogen production performance, the microbial community and the metabolism analysis were performed by using high-throughput sequencing and excitation-emission matrix. The pretreated sludge showed better utilization of dissolved organic matter and less inhibition of metabolism, especially at thermophilic condition. The 454 sequencing data indicated that microbial abundance was distinctly reduced and extremely high proportion of hydrogen-producing bacteria was found in the thermophilic community (Thermoanaerobacterium accounted for 93.75%). Thus, the pretreated sludge and thermophilic condition showed significant advantages in the hydrogen production using waste sludge as substrate. PMID:25260350

  8. Optimization of anaerobic digestion of municipal solid waste in combined process and sequential staging.

    PubMed

    Juanga, Jeanger P; Visvanathan, Chettiyappen; Tränkler, Josef

    2007-02-01

    The optimization of anaerobic digestion aims to maximize organic waste stabilization after a short digestion period. This paper presents the optimization performance of the combined anaerobic digestion and sequential staging concept in a thermophilic, solid-state batch system as a treatment technology prior to landfill. The former involves enhanced pre-stage flushing with the addition of microaeration and inoculum in the methane phase. The latter involves leachate cross-recirculation between the mature and fresh waste reactors without conducting a pre-stage operation. The optimized process for combined anaerobic digestion showed that reducing the pre-stage operation with the maximum removal of organics from the waste bed is beneficial. Moreover, the sequential staging concept offers an improved process over the combined anaerobic digestion wherein the specific methane yield of 11.9 and 7.2 L CH4 kg(-1) volatile solids (VS) per day was achieved, respectively. After 28 days of operation, the sequential staging process showed an improved waste stabilization with 86 and 79% mass and volume reduction, respectively. A higher methane yield of 334 L CH4 kg(-1) VS with 86% VS reduction, which is equivalent to 84% process efficiency was obtained. PMID:17346005

  9. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors.

    PubMed

    Ni, Zhe; Liu, Jianguo; Girotto, Francesca; Cossu, Raffaello; Qi, Guangxia

    2016-09-01

    Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling. PMID:27243602

  10. Insight into Glycoside Hydrolases for Debranched Xylan Degradation from Extremely Thermophilic Bacterium Caldicellulosiruptor lactoaceticus

    PubMed Central

    Jia, Xiaojing; Mi, Shuofu; Wang, Jinzhi; Qiao, Weibo; Peng, Xiaowei; Han, Yejun

    2014-01-01

    Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH) provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A) and GH67 α-glucuronidase (Agu67A) from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80°C and pH 6.5, as 75°C and pH 6.5 for Agu67A. Xyn10A had good stability at 75°C, 80°C, and pH 4.5–8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs) and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA) sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus. PMID:25184498

  11. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Roshayu; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  12. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  13. [Conversion of acetic acid to methane by thermophiles

    SciTech Connect

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  14. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    PubMed

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. PMID:26140749

  15. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism. PMID:23696451

  16. Transformation of chenodeoxycholic acid by thermophilic Geobacillus stearothermophilus.

    PubMed

    Afzal, Mohammad; Oommen, Sosamma; Al-Awadi, Samira

    2011-01-01

    We performed a series of experiments with Geobacillus stearothermophilus, a thermophile isolated from oil-contaminated soil in the Kuwaiti desert. The organism has a good potential for the transformation of a broad spectrum of organic molecules such as steroids, amino acids, and aromatic hydrocarbons. In the present study, we tested its potential for the transformation of a bile component, chenodeoxycholic acid (CDCA). Five transformed products, namely, cholic acid, methylcholate, methylchenodeoxycholate, 3α-hydroxy-7-oxo-5β-cholanic acid, and 7α-hydroxy-3-oxo-5β-cholanic acid, were the major transformation products catalyzed by G. stearothermophilus. Under aerobic conditions, no evidence of side chain degradation, ring cleavage, or dehydrogenation was found among the metabolites of CDCA. CDCA transformation by a thermophile is reported for the first time. PMID:21838799

  17. Diversity of anaerobic halophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Oremland, Roland S.

    2000-12-01

    Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect

  18. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge.

    PubMed

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Rensing, Christopher; Chen, Hong

    2016-07-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S rRNA gene sequencing. A two-phase thermophilic digestion reduced the presence of tetA, tetG, tetX, sul1, ermB, dfrA1, dfrA12 and intI1 exhibiting 0.1-0.72 log unit removal; in contrast, tetO, tetW, sul3, ermF and blaTEM even increased relative to the feed, and sul2 showed no significant decrease. The acidogenic phase of thermophilic digestion was primarily responsible for reducing the quantity of these genes, while the subsequent methanogenic phase caused a rebound in their quantity. In contrast, a two-phase mesophilic digestion process did not result in reducing the quantity of all ARGs and intI1 except for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion. PMID:27035472

  19. Comparative performance and microbial diversity of hyperthermophilic and thermophilic co-digestion of kitchen garbage and excess sludge.

    PubMed

    Lee, Myungyeol; Hidaka, Taira; Hagiwara, Wataru; Tsuno, Hiroshi

    2009-01-01

    The objective of this study was to evaluate the performance characteristics of a hyperthermophilic digester system that consists of an acidogenic reactor operated at hyperthermophilic (70 degrees C) conditions in series with a methane reactor operated at mesophilic (35 degrees C), thermophilic (55 degrees C), and hyperthermophilic (65 degrees C) conditions. Lab-scale reactors were operated continuously, and were fed with co-substrates composed of artificial kitchen garbage (TS 9.8%) and excess sludge (TS 0.5%) at the volumetric ratio of 20:80. In the acidification step, COD solubilization was in the range of 22-46% at 70 degrees C, while it was 21-29% at 55 degrees C. The average protein solubilization was 44% at 70 degrees C. The double bond fatty acid removal ratio at 70 degrees C was much higher than at 55 degrees C. These results suggested that the optimal operation conditions for the acidogenic fermenter were about 3.1 days of HRT and 4 days of SRT at 70 degrees C. Methane conversion efficiency and the VS removal percentage in the methanogenic step following acidification was around 65% and 64% on average at 55 degrees C, respectively. The optimal operational conditions for this system are acidogenesis performed at 70 degrees C and methanogenesis at 55 degrees C. The key microbes determined in the hyperthermophilic acidification step were Anaerobic thermophile IC-BH at 6.4 days of HRT and Thermoanaerobacter thermohydrosulfuricus DSM 567 at 2.4 days of HRT. These results indicated that the hyperthermophilic system provides considerable advantages in treating co-substrates containing high concentrations of proteins, lipids, and nonbiodegradable solid matter. PMID:18752938

  20. Isolation of full-length RNA from a thermophilic cyanobacterium.

    PubMed

    Luo, X Z; Stevens, S E

    1997-11-01

    Isolation of full-length mRNA without degradation is critical in the study of in vivo gene regulation and transcription, cDNA synthesis and reverse transcription (RT)-PCR. It is particularly difficult to isolate full-length mRNA from thermophiles, which have higher turnover rates of mRNA degradation. Mastigocladus laminosus is a thermophilic heterocystous cyanobacterium. The assay of M. laminosus cell lysates showed that RNase activity was high and was resistant to the conventional guanidine thiocyanate and 2-mercaptoethanol denaturation methods. The mRNA isolated by several conventional methods was completely degraded. A method was developed to purify full-length mRNA by a combination of fast cooling, vanadyl-ribonucleoside-complex inhibition, phenol-chloroform-isoamyl alcohol extraction, lithium chloride precipitation and the lysing of cells with the French Press. This method produced high-quality, full-length mRNA in high yield. Purified mRNA was suitable for Northern blotting, cDNA synthesis and RT-PCR. This method could be applicable to other thermophiles in which the RNase activity is high and/or is resistant to guanidine thiocyanate. PMID:9383558

  1. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    PubMed Central

    Turner, Pernilla; Mamo, Gashaw; Karlsson, Eva Nordberg

    2007-01-01

    In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts. PMID:17359551

  2. Community dynamics of cellulose-adapted thermophilic bacterial consortia.

    PubMed

    Eichorst, Stephanie A; Varanasi, Patanjali; Stavila, Vatalie; Zemla, Marcin; Auer, Manfred; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2013-09-01

    Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed. PMID:23763762

  3. Thermophilic methane production from cattle waste.

    PubMed Central

    Varel, V H; Isaacson, H R; Bryant, M P

    1977-01-01

    Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste. PMID:557954

  4. Anaerobic Metabolism of Indoleacetate

    PubMed Central

    Ebenau-Jehle, Christa; Thomas, Markus; Scharf, Gernot; Kockelkorn, Daniel; Knapp, Bettina; Schühle, Karola; Heider, Johann

    2012-01-01

    The anaerobic metabolism of indoleacetate (indole-3-acetic acid [IAA]) in the denitrifying betaproteobacterium Azoarcus evansii was studied. The strain oxidized IAA completely and grew with a generation time of 10 h. Enzyme activities that transformed IAA were present in the soluble cell fraction of IAA-grown cells but were 10-fold downregulated in cells grown on 2-aminobenzoate or benzoate. The transformation of IAA did not require molecular oxygen but required electron acceptors like NAD+ or artificial dyes. The first products identified were the enol and keto forms of 2-oxo-IAA. Later, polar products were observed, which could not yet be identified. The first steps likely consist of the anaerobic hydroxylation of the N-heterocyclic pyrrole ring to the enol form of 2-oxo-IAA, which is catalyzed by a molybdenum cofactor-containing dehydrogenase. This step is probably followed by the hydrolytic ring opening of the keto form, which is catalyzed by a hydantoinase-like enzyme. A comparison of the proteome of IAA- and benzoate-grown cells identified IAA-induced proteins. Owing to the high similarity of A. evansii with strain EbN1, whose genome is known, we identified a cluster of 14 genes that code for IAA-induced proteins involved in the early steps of IAA metabolism. These genes include a molybdenum cofactor-dependent dehydrogenase of the xanthine oxidase/aldehyde dehydrogenase family, a hydantoinase, a coenzyme A (CoA) ligase, a CoA transferase, a coenzyme B12-dependent mutase, an acyl-CoA dehydrogenase, a fusion protein of an enoyl-CoA hydratase and a 3-hydroxyacyl-CoA dehydrogenase, a beta-ketothiolase, and a periplasmic substrate binding protein for ABC transport as well as a transcriptional regulator of the GntR family. Five predicted enzymes form or act on CoA thioesters, indicating that soon after the initial oxidation of IAA and possibly ring opening, CoA thioesters are formed, and the carbon skeleton is rearranged, followed by a CoA-dependent thiolytic

  5. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  6. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment.

    PubMed

    Maus, Irena; Cibis, Katharina Gabriela; Bremges, Andreas; Stolze, Yvonne; Wibberg, Daniel; Tomazetto, Geizecler; Blom, Jochen; Sczyrba, Alexander; König, Helmut; Pühler, Alfred; Schlüter, Andreas

    2016-08-20

    The genome sequence of Defluviitoga tunisiensis L3 originating from a thermophilic biogas-production plant was established and recently published as Genome Announcement by our group. The circular chromosome of D. tunisiensis L3 has a size of 2,053,097bp and a mean GC content of 31.38%. To analyze the D. tunisiensis L3 genome sequence in more detail, a phylogenetic analysis of completely sequenced Thermotogae strains based on shared core genes was performed. It appeared that Petrotoga mobilis DSM 10674(T), originally isolated from a North Sea oil-production well, is the closest relative of D. tunisiensis L3. Comparative genome analyses of P. mobilis DSM 10674(T) and D. tunisiensis L3 showed moderate similarities regarding occurrence of orthologous genes. Both genomes share a common set of 1351 core genes. Reconstruction of metabolic pathways important for the biogas production process revealed that the D. tunisiensis L3 genome encodes a large set of genes predicted to facilitate utilization of a variety of complex polysaccharides including cellulose, chitin and xylan. Ethanol, acetate, hydrogen (H2) and carbon dioxide (CO2) were found as possible end-products of the fermentation process. The latter three metabolites are considered to represent substrates for methanogenic Archaea, the key organisms in the final step of the anaerobic digestion process. To determine the degree of relatedness between D. tunisiensis L3 and dominant biogas community members within the thermophilic biogas-production plant, metagenome sequences obtained from the corresponding microbial community were mapped onto the L3 genome sequence. This fragment recruitment revealed that the D. tunisiensis L3 genome is almost completely covered with metagenome sequences featuring high matching accuracy. This result indicates that strains highly related or even identical to the reference strain D. tunisiensis L3 play a dominant role within the community of the thermophilic biogas-production plant. PMID

  7. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  8. Cefamandole Therapy in Anaerobic Infections

    PubMed Central

    Greenberg, Richard N.; Scalcini, Marcella C.; Sanders, Charles V.; Lewis, A. Carter

    1979-01-01

    Thirty-one adult patients with infections due to anaerobic bacteria were treated with cefamandole. Bacteroides fragilis group (17) and Bacteroides melaninogenicus (13) were the most frequent anaerobes isolated. Duration of therapy varied from 2 to 49 days. Results were judged satisfactory in 26 cases, and unsatisfactory in 1 case. Four cases could not be evaluated. Adverse reactions occurred in 16 patients and included positive direct Coombs' test without hemolysis, transient liver function abnormalities, phlebitis, reversible neutropenia, fever, eosinophilia, and toxic epidermal necrolysis. The more significant reactions were associated with prolonged therapy. None was lethal. These data suggest that cefamandole is effective in treatment of most anaerobic infections. PMID:380458

  9. PCB breakdown by anaerobic microorganisms

    SciTech Connect

    Not Available

    1989-03-01

    Recently, altered PCB cogener distribution patterns observed in anaerobic sediment samples from the upper Hudson River are being attributed to biologically mediated reductive dechlorination. The authors report their successful demonstration of biologically mediated reductive dechlorination of an Aroclor mixture. In their investigation, they assessed the ability of microorganisms from PCB-contaminated Hudson River sediments (60-562 ppm PCBs) to dechlorinate Aroclor 1242 under anaerobic conditions by eluting microorganisms from the PCB- contaminated sediments and transferring them to a slurry of reduced anaerobic mineral medium and PCB-free sediments in tightly stoppered bottles. They observed dechlorination to be the most rapid at the highest PCB concentration tried by them.

  10. Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant: reactor performance and microbial community monitoring.

    PubMed

    Martín-González, Lucia; Castro, Rita; Pereira, M Alcina; Alves, M Madalena; Font, Xavier; Vicent, Teresa

    2011-04-01

    Working at thermophilic conditions instead of mesophilic, and also the addition of a co-substrate, are both the ways to intend to improve the anaerobic digestion of the source-collected organic fraction of municipal solid wastes (SC-OFMSW). Addition of sewage treatment plant fat, oil and grease wastes (STP-FOGW), that are nowadays sent to landfill, would represent an opportunity to recover a wasted methane potential and, moreover, improve the whole process. In this study, after a first period feeding only SC-OFMSW, a co-digestion step was performed maintaining thermophilic conditions. During the co-digestion period enhancements in biogas production (52%) and methane yield (36%) were achieved. In addition, monitoring of microbial structure by using PCR-DGGE and cloning techniques showed that bacterial community profiles clustered in two distinct groups, before and after the extended contact with STP-FOGW, being more affected by the STP-FOGW addition than the archaeal one. PMID:21320771

  11. Fe(II)EDTA-NO reduction by a newly isolated thermophilic Anoxybacillus sp. HA from a rotating drum biofilter for NOx removal.

    PubMed

    Chen, Jun; Li, Yan; Hao, Hong-hong; Zheng, Ji; Chen, Jian-meng

    2015-02-01

    The reduction of Fe(II)EDTA-NO is one of the core processes in BioDeNOx, an integrated physicochemical and biological technique for NOx removal from industrial flue gases. A newly isolated thermophilic Anoxybacillus sp. HA, identified by 16S rRNA sequence analysis, could simultaneously reduce Fe(II)EDTA-NO and Fe(III)EDTA. A maximum NO removal efficiency of 98.7% was achieved when 3mM Fe(II)EDTA-NO was used in the nutrient solution at 55°C. Results of this study strongly indicated that the biological oxidation of Fe(II)EDTA played an important role in the formation of Fe(III)EDTA in the anaerobic system. Fe(II)EDTA-NO was more competitive than Fe(III)EDTA as an electron acceptor, and the presence of Fe(III)EDTA slightly affected the reduction rate of Fe(II)EDTA-NO. At 55°C, the maximum microbial specific growth rate μmax reached the peak value of 0.022h(-1). The maximum NO removal efficiency was also measured (95.4%) under this temperature. Anoxybacillus sp. HA, which grew well at 50°C-60°C, is a potential microbial resource for Fe(II)EDTA-NO reduction at thermophilic temperatures. PMID:25541258

  12. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    PubMed Central

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Koonin, Eugene V; Makarova, Kira S; Wolf, Yuri I; Rigden, Daniel J; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. PMID:19014707

  13. Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity

    PubMed Central

    Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore

    2014-01-01

    Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially. PMID:23949661

  14. Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov.

    PubMed

    Kozianowski, G; Canganella, F; Rainey, F A; Hippe, H; Antranikian, G

    1997-11-01

    A novel thermophilic spore-forming anaerobic microorganism (strain Ab9) able to grow on citrus pectin and polygalacturonic acid (pectate) was isolated from a thermal spa in Italy. The newly isolated strain grows optimally at 70 degrees C with a growth rate of 0.23 h(-1) with pectin and 0.12 h(-1) with pectate as substrates. Xylan, starch, and glycogen are also utilized as carbon sources and thermoactive xylanolytic (highest activity at 70 degrees - 75 degrees C), amylolytic as well as pullulolytic enzymes (highest activity at 80 degrees - 85 degrees C) are formed. Two thermoactive pectate lyases were isolated from the supernatant of a 300-l culture of isolate Ab9 after growth on citrus pectin. The two enzymes (lyases a and b) were purified to homogeneity by ammonium sulfate treatment, anion exchange chromatography, hydrophobic chromatography and finally by preparative gel electrophoresis. After sodium dodecylsulfate (SDS) gel electrophoresis, lyase a appeared as a single polypeptide with a molecular mass of 135000 Da whereas lyase b consisted of two subunits with molecular masses of 93000 Da and 158000 Da. Both enzymes displayed similar catalytic properties with optimal activity at pH 9.0 and 80 degrees C. The enzymes were very stable at 70 degrees C and at 80 degrees C with a half-life of more than 60 min. The maximal activity of the purified lyases was observed with orange pectate (100%) and pectate-sodium salt (90%), whereas pectin was attacked to a much lesser extent (50%). The Km values of both lyases for pectate and citrus pectin were 0.5 g(-1) and 5.0 g(-1), respectively. After incubation with polygalacturonic acid, mono-, di-, and trigalacturonate were detected as final products. A 2.5-fold increase of activity was obtained when pectate lyases were incubated in the presence of 1 mM Ca2+. The addition of 1 mM ethylenediaminetetraacetic acid (EDTA) resulted in complete inhibition of the enzymes. These heat-stable enzymes represent the first pectate

  15. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This document describes a promising technology — autothermal thermophilic aerobic digestion — for meeting the current and proposed U.S. federal requirements for pathogen controJ and land application of municipal wastewater sludge. Autothermal thermophilic aerobic digestion, or AT...

  16. The isolation and characterization of new C. thermocellum strains and the evaluation of multiple anaerobic digestion systems

    NASA Astrophysics Data System (ADS)

    Lv, Wen

    The overall objective of my research was to improve the efficiencies of bioconversions that produce renewable energy from lignocellulosic biomass. To this end, my studies addressed issues important to two promising strategies: consolidated bioprocessing (CBP) and anaerobic digestion (AD). CBP achieves saccharolytic enzyme production, hydrolysis, and fermentation in a single step and is considered to be the most cost-effective model. Anaerobic bacteria that can be used in CBP are highly desirable. To that end, two thermophilic and cellulolytic bacterial strains were isolated and characterized (Chapter 3). Based on 16S rRNA gene sequence analysis, both strains CS7 and CS8 are closely related to Clostridium thermocellum ATCC 27405. However, they had significantly higher specific cellulase activities and ethanol/acetate ratios than C. thermocellum ATCC 27405. As a result, CS7 and CS8 are two new highly cellulolytic and ethanologenic C. thermocellum strains, with application potentials in research and development of CBP. As some of the most promising AD processes, two temperature-phased AD (TPAD) systems, in comparison with a thermophilic single-stage AD (TSAD) system and a mesophilic two-stage AD (MTAD) system, were studied in treating high-strength dairy cattle manure. The TPAD systems, with the thermophilic digesters acidified (AT-TPAD, Chapter 4) or operated at neutral pH (NT-TPAD, Chapter 5), were optimized at the thermophilic temperature of 50°C and a volume ratio between the thermophilic and the mesophilic digesters of 1:2. Despite similar methane productions, the NT-TPAD system achieved significantly higher volatile solid (VS) removal than the AT-TPAD system and needed no external pH adjustments (Chapter 6). At the same overall OLR, the TSAD system achieved the highest performance, followed by the NT-TPAD and the MTAD systems (Chapter 7). Each digester harbored distinct yet dynamic microbial populations, some of which were significantly correlated or associated

  17. Parotitis due to anaerobic bacteria.

    PubMed

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  18. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  19. Bioenergy from anaerobically treated wastewater

    SciTech Connect

    Richards, E.A.

    1981-01-01

    Breweries and other processing plants including dairy cooperatives, sugar plants, grain mills, gasohol plants, etc., produce wastewater containing complex organic matter, either in solution or as volatile suspended solids, which can be treated anaerobically to effectively reduce the pollutants by 85-95% and generate a CH4 containing gas. An example anaerobic plant to serve a 10 to the power of 6-bbl brewery is discussed.

  20. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    SciTech Connect

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  1. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris.

    PubMed

    Berka, Randy M; Grigoriev, Igor V; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M; Lombard, Vincent; Natvig, Donald O; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P; Allijn, Iris E; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J; Paulsen, Ian T; Elbourne, Liam D H; Baker, Scott E; Magnuson, Jon; Laboissiere, Sylvie; Clutterbuck, A John; Martinez, Diego; Wogulis, Mark; de Leon, Alfredo Lopez; Rey, Michael W; Tsang, Adrian

    2011-10-01

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics. PMID:21964414

  2. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and thielavia terrestris

    SciTech Connect

    Berka, Randy; Grigoriev, Igor V.; Otillar, Robert P.; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; john, tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott E.; Magnuson, Jon K.; LaBoissiere, Sylvie; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  3. Dynamics of the anaerobic process: effects of volatile fatty acids.

    PubMed

    Pind, Peter F; Angelidaki, Irini; Ahring, Birgitte K

    2003-06-30

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected both CH(4) yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive effect on process yield and the levels of all VFA were shown to stabilize at a lower level after the biomass had been subjected to several pulses. The response to pulses of propionate or acetate was different from the response to butyrate, iso-butyrate, valerate, or iso-valerate. High concentrations of propionate affected the degradation of all VFAs, while a pulse of acetate affected primarily the degradation of iso-valerate or 2-methylbutyrate. Pulses of n-butyrate, iso-butyrate, and iso-valerate yielded only acetate, while degradation of n-valerate gave both propionate and acetate. Product sensitivity or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems. PMID:12701145

  4. Enhanced Versus Conventional Sludge Anaerobic Processes: Performances and Techno-Economic Assessment.

    PubMed

    Gianico, Andrea; Bertanza, Giorgio; Braguglia, Camilla M; Canato, Matteo; Gallipoli, Agata; Laera, Giuseppe; Levantesi, Caterina; Mininni, Giuseppe

    2016-05-01

    Sewage sludge processing is a key issue in water resource recovery facilities due to the inefficacy of conventional treatments to produce high quality biosolids to be safely used in agriculture. Under this framework, the performances of several enhanced stabilization processes, namely ultrasound-pretreated Mesophilic Anaerobic Digestion (US+MAD), thermophilic anaerobic digestion (TAD), thermal-pretreated TAD (TH+TAD) and ultrasound-pretreated inverse Temperature Phased Anaerobic Digestion (US+iTPAD) have been investigated. Such enhanced processes resulted in higher biogas yields and higher destruction of pathogens with respect to conventional MAD process, thus suggesting their feasibility in full-scale implementation perspectives. A procedure for technical-economic comparison of new sludge processing lines against conventional ones (benchmarking) was developed, based on the definition of technical issues (e.g. reliability, complexity, etc.) which are rated for each situation. Moreover, capital and operating costs were estimated. The enhanced processes analyzed in this work showed some potentially critical items, mainly related to energy balance and reagent consumption. PMID:27131310

  5. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    SciTech Connect

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  6. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    NASA Astrophysics Data System (ADS)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  7. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals

    PubMed Central

    Archibald, S. Bruce; Johnson, Kirk R.; Mathewes, Rolf W.; Greenwood, David R.

    2011-01-01

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene. PMID:21543354

  8. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers.

    PubMed

    Zhao, Yu; Caspers, Martien P M; Metselaar, Karin I; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    2013-09-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  9. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    PubMed Central

    Zhao, Yu; Caspers, Martien P. M.; Metselaar, Karin I.; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C.; Abee, Tjakko

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  10. Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates.

    PubMed

    Gehring, Tito; Klang, Johanna; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Klocke, Michael; Wichern, Marc; Lübken, Manfred

    2015-04-01

    This study used carbon isotope (δ(13)C)-based calculations to quantify the specific methanogenic pathways in a two-stage experimental biogas plant composed of three thermophilic leach bed reactors (51-56 °C) followed by a mesophilic (36.5 °C) anaerobic filter. Despite the continuous dominance of the acetoclastic Methanosaeta in the anaerobic filter, the methane (CH4) fraction derived from carbon dioxide reduction (CO2), fmc, varied significantly over the investigation period of 200 days. At organic loading rates (OLRs) below 6.0 gCOD L(-1) d(-1), the average fmc value was 33%, whereas at higher OLRs, with a maximum level of 17.0 gCOD L(-1) d(-1), the fmc values reached 47%. The experiments allowed for a clear differentiation of the isotope fractionation related to the formation and consumption of acetate in both stages of the plant. Our data indicate constant carbon isotope fractionation for acetate formation at different OLRs within the thermophilic leach bed reactors as well as a negligible contribution of homoacetogenesis. These results present the first quantification of methanogenic pathway (fmc values) dynamics for a continually operated mesophilic bioreactor and highlight the enormous potential of δ(13)C analysis for a more comprehensive understanding of the anaerobic degradation processes in CH4-producing biogas plants. PMID:25741999

  11. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  12. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    PubMed Central

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  13. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions

    PubMed Central

    Cusick, Kathleen D.; Fitzgerald, Lisa A.; Cockrell, Allison L.; Biffinger, Justin C.

    2015-01-01

    The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification

  14. Hydrogen and thiosulfate limits for growth of a thermophilic, autotrophic Desulfurobacterium species from a deep-sea hydrothermal vent.

    PubMed

    Stewart, Lucy C; Llewellyn, James G; Butterfield, David A; Lilley, Marvin D; Holden, James F

    2016-04-01

    Hydrothermal fluids (341°C and 19°C) were collected < 1 m apart from a black smoker chimney and a tubeworm mound on the Boardwalk edifice at the Endeavour Segment in the northeastern Pacific Ocean to study anaerobic microbial growth in hydrothermal mineral deposits. Geochemical modelling of mixed vent fluid and seawater suggests the mixture was anoxic above 55°C and that low H2 concentrations (79 μmol kg(-1) in end-member hydrothermal fluid) limit anaerobic hydrogenotrophic growth above this temperature. A thermophilic, hydrogenotrophic sulfur reducer, Desulfurobacterium strain HR11, was isolated from the 19°C fluid raising questions about its H2 -dependent growth kinetics. Strain HR11 grew at 40-77°C (Topt 72-75°C), pH 5-8.5 (pHopt 6-7) and 1-5% (wt vol(-1) ) NaCl (NaClopt 3-4%). The highest growth rates occurred when S2 O3 (2-) and S° were reduced to H2 S. Modest growth occurred by NO3 (-) reduction. Monod constants for its growth were Ks of 30 μM for H2 and Ks of 20 μM for S2 O3 (2-) with a μmax of 2.0 h(-1) . The minimum H2 and S2 O3 (2-) concentrations for growth were 3 μM and 5 μM respectively. Possible sources of S2 O3 (2-) and S° are from abiotic dissolved sulfide and pyrite oxidation by O2 . PMID:26696328

  15. Comparison of solid-state anaerobic digestion and composting of yard trimmings with effluent from liquid anaerobic digestion.

    PubMed

    Lin, Long; Yang, Liangcheng; Xu, Fuqing; Michel, Frederick C; Li, Yebo

    2014-10-01

    Solid-state anaerobic digestion (SS-AD) and composting of yard trimmings with effluent from liquid AD were compared under thermophilic condition. Total solids (TS) contents of 22%, 25%, and 30% were studied for SS-AD, and 35%, 45%, and 55% for composting. Feedstock/effluent (F/E) ratios of 2, 3, 4, 5, and 6 were tested. In composting, the greatest carbon loss was obtained at 35% TS, which was 2-3 times of that at 55% TS and was up to 50% higher than that in SS-AD. In SS-AD, over half of the degraded carbon was converted to methane with the greatest methane yield of 121 L/kg VS(feedstock). Methane production from SS-AD was low at F/E ratios of 2 and 3, likely due to the inhibitory effect of high concentrations of ammonia nitrogen (up to 5.6g/kg). The N-P-K values were similar for SS-AD digestate and compost with different dominant nitrogen forms. PMID:25079209

  16. Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation.

    PubMed

    Kobayashi, T; Li, Y Y; Harada, H; Yasui, H; Noike, T

    2009-01-01

    Upgrading of the anaerobic digestion of waste activated sludge (WAS) by the combination of temperature-phased two-stage digestion and intermediate ozonation was investigated by a continuous experiment with two processes, TM and TOM. The TM process is a temperature-phased two-stage system, which consists of a thermophilic digester and a mesophilic digester in series. The TOM process is a temperature-phased two-stage process with the intermediate ozonation. Two processes were operated at hydraulic retention times of 30 days for over 123 days. Waste activated sludge taken from wastewater treatment plant was fed as a substrate. Microbial community structure in each digester was analysed with molecular tools. Despite of less amount of ozone dose in TOM than ozone pre-treatment process, better effect of ozonation on performance improvement was obtained in TOM. TOM had the highest methane yield and COD(Cr) reduction among comparative processes. Furthermore, flocculation efficiency of TOM followed that of mesophilic digestion. Quality of dewatered supernatant is comparable to mesophilic digestion. PMID:19151501

  17. Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1).

    PubMed

    Batstone, D J; Keller, J

    2003-01-01

    In this paper, the IWA anaerobic digestion model No. 1 (ADM1) is applied to two case studies from contract work on industrial treatment plants. The first was the assessment of acid addition for pH decrease and avoidance of calcium carbonate (CaCO3) precipitation in a paper mill fed UASB. The simulation work found, with a high degree of confidence, that acid dosing was neither economical for pH control, nor had any real effect on the CaCO3 levels present in the reactor. A specific calcium carbonate precipitation equation was added to the ADM1 to undertake this study. The second case study was an assessment of the benefits of thermophilic (as opposed to mesophilic operation) for reduced ammonia inhibition, improved stability and gas production in a solids digester at a gelatine production facility. Here, it was predicted that thermophilic operation could not attain either goal to a satisfactory extent. In addition to demonstrating the application of the ADM1 to the two systems, we have also assessed the predictions generated in the case studies in terms of quality and utility. PMID:12926689

  18. Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems.

    PubMed

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-12-01

    The influence of differing operational conditions of two-stage digesters on biokinetic characteristics and communities of methanogenic archaea was evaluated. Operating temperature of each phase influenced the archaeal communities significantly. Also, a strong correlation was observed between community composition and temperature and pH. The maximum specific substrate utilization rates (k max) of acetoclastic methanogens in the mesophilic and thermophilic 1st phases were 11.4 and 22.0 mgCOD mgCOD(-1)d(-1), respectively, whereas significantly lower k max values were estimated for the mesophilic and thermophilic 2nd-phase digesters which were 7.6 and 16.6 mgCOD mgCOD(-1)d(-1), respectively. It appeared that the biokinetic characteristics of the acetoclastic methanogen communities were reliant on digester loading rates. Also, higher temperature dependency coefficients (θ) were observed for the long retention time digesters when compared to the values computed for the 1st-phase digesters. Accordingly, the implementation of two sets of biokinetic parameters for acetoclastic methanogen will improve modeling of phased anaerobic digesters. PMID:24125797

  19. Anaerobic wastewater treatment and membrane filtration: a one night stand or a sustainable relationship?

    PubMed

    Jeison, D; van Lier, J B

    2008-01-01

    Several anaerobic membrane bioreactors (AnMBR) were operated, under various conditions, applying different reactor configurations. Applicable fluxes were strongly determined by the physical properties of the sludge present in the reactors. Results show that particle size is a key determining factor for the attainable fluxes. Under thermophilic conditions, small sludge particle size was observed, resulting in low critical fluxes reaching 6-7 L/m2h for the submerged configuration and acidified substrate. In contrast, under mesophilic conditions critical fluxes of 20 L/m2h were obtained. The acidification level also showed a strong effect. Under thermophilic conditions, the presence of a significant fraction of non-acidified organic matter induced the growth of suspended acidogenic biomass that seriously affected the applicable fluxes, both in submerged and side-stream configurations. Under all conditions tested cake formation showed to be the limiting factor determining the applicable fluxes. Only low levels of irreversible fouling were observed. Due to technical and economical considerations, most interesting perspectives for the application of AnMBR are expected with the treatment of high-strength particulate wastewaters, and with extreme wastewaters characterised by high temperature, salinity, etc. PMID:18359991

  20. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    PubMed Central

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  1. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1).

    PubMed

    Yuan, Xufeng; Ma, Lei; Wen, Boting; Zhou, Dayun; Kuang, Meng; Yang, Weihua; Cui, Zongjun

    2016-05-01

    Microbial pretreatment is beneficial in some anaerobic digestion systems, but the consortia used to date have not been able to effectively increase methane production from cotton stalk. In this study, a thermophilic microbial consortium (MC1) was used for pretreatment in order to enhance biogas and methane production yields. The results indicated that the concentrations of soluble chemical oxygen demand and volatile organic products increased significantly in the early stages of pretreatment. Ethanol, acetic acid, propionic acid, and butyric acid were the predominant volatile organic products in the MC1 hydrolysate. Biogas and methane production yields from cotton stalk were significantly increased following MC1 pretreatment. In addition, the methane production rate from the treated cotton stalk was greater than that from the untreated sample. PMID:26896713

  2. The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

    SciTech Connect

    Galperin, M.Y.; Noll, K.M.; Romano, A.H.

    1996-08-01

    The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external D-glucose. This active transport of 2-DOG was dependent upon the presence of sodium ion and an external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T.neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation. 33 refs., 3 figs., 1 tab.

  3. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    PubMed

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy. PMID:18469393

  4. Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding.

    PubMed

    Tang, Yue-Qin; Ji, Pan; Hayashi, Junpei; Koike, Yoji; Wu, Xiao-Lei; Kida, Kenji

    2011-09-01

    Thermophilic dry anaerobic digestion of sludge for cellulose methanization was acclimated at 53 °C for nearly 5 years using a waste paper-based medium. The stability of the microbial community structure and the microbial community responsible for the cellulose methanization were studied by 16S rRNA gene-based clone library analysis. The microbial community structure remained stable during the long-term acclimation period. Hydrogenotrophic methanogens dominated in methanogens and Methanothermobacter, Methanobacterium, Methanoculleus, and Methanosarcina were responsible for the methane production. Bacteria showed relatively high diversity and distributed mainly in the phyla Firmicutes, Bacteroidetes, and Synergistetes. Ninety percent of operational taxonomic units (OTUs) were affiliated with the phylum Firmicutes, indicating the crucial roles of this phylum in the digestion. Relatives of Clostridium stercorarium, Clostridium thermocellum, and Halocella cellulosilytica were dominant cellulose degraders. The acclimated stable sludge was used to treat garbage stillage discharged from a fuel ethanol production process, and the shift of microbial communities with the change of feed was analyzed. Both archaeal and bacterial communities had obviously changed: Methanoculleus spp. and Methanothermobacter spp. and the protein- and fatty acid-degrading bacteria became dominant. Accumulation of ammonia as well as volatile fatty acids led to the inhibition of microbial activity and finally resulted in the deterioration of methane fermentation of the garbage stillage. PMID:21789494

  5. Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6.

    PubMed Central

    Yoon, K S; Ishii, M; Igarashi, Y; Kodama, T

    1996-01-01

    2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively. PMID:8655524

  6. Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities.

    PubMed

    Symsaris, Evangelos C; Fotidis, Ioannis A; Stasinakis, Athanasios S; Angelidaki, Irini

    2015-06-30

    In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion (AD) process. Additionally, the influence of DCF, TCS, and NP on the relative abundance of the methanogenic populations was investigated. Results obtained demonstrated that, in terms of methane production, SI inoculum was more resistant to the toxicity effect of DCF, TCS, and NP, compared to the MI inoculum. The IC50 values were 546, 35, and 363 mg L(-1) for SI inoculum and 481, 32, and 74 mg L(-1) for MI inoculum for DCF, TCS, and NP, respectively. For both inocula, higher biomass concentrations reduced the toxic effect of TCS (higher methane production up to 64%), contrary to DCF, where higher biomass loads decreased methane yield up to 31%. Fluorescence in situ hybridization analysis showed that hydrogenotrophic methanogens were more resistant to the inhibitory effect of DCF, TCS, and NP compared to aceticlastic methanogens. PMID:25768988

  7. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles.

    PubMed

    Chellapandi, P; Ranjani, J

    2015-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology. PMID:26279704

  8. Aeration control of thermophilic aerobic digestion using fluorescence monitoring.

    PubMed

    Kim, Young-Kee; Oh, Byung-Keun

    2009-01-01

    The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate. PMID:19190414

  9. Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions.

    PubMed

    Viamajala, Sridhar; Peyton, Brent M; Richards, Lee A; Petersen, James N

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 degrees C, 40 degrees C and 60 degrees C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 degrees C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 degrees C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates. PMID:16934313

  10. Global transport of thermophilic bacteria in atmospheric dust.

    PubMed

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. PMID:23766086

  11. Hyper-thermophilic aerobic bacterial ecology for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, T.; Kanazawa, S.; Moriya, T.; Ishikawa, Y.; Hashimoto, H.; Yamashita, M.; Space Agriculture Task Force, J.

    A material recycling is one of core issues in engineering for habitation on extraterrestrial bodies such as Mars A new composting system has been developed in Japan which utilizes some thermophilic bacteria to attain higher temperature than normally expected in the ordinary composting system Dead body of rat was found to be eaten up by the thermophilic bacteria under aerated condition and oxidized to carbon dioxide and few other inorganics within two hours Ecology of these composting bacteria is structured on the intensive symbiotic interactions among various species that participate in various reaction networks in a concert Complexity in the composting bacteria might be based on multiple interaction and interdependency among participating species and organisms Species identification and phylogeny of symbiotic bacteria and understanding of their ecology have been made Those bacterial systems are active and durable under temperature high in a range of 80 to 100 r C Biological combustion release heat and temperature goes up when air is fed through the reaction bed Since microbial activity decreases at exceeding temperature and release of heat decreases as well temperature in the reacting bed itself-regulated in the range Even though it should be verified composting bacteria themselves are presumed to be safe for human agricultural plant and animal species Their activity is restricted only to the condition under elevated temperature Their activities depend greatly on their symbiotic partners and extreme environment created by them The

  12. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    SciTech Connect

    Viamajala, S.; Peyton, B. M.; Richards, L. A.; Petersen, J. N.

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.

  13. Purification and physicochemical properties of lipase from thermophilic Bacillus aerius.

    PubMed

    Saun, Nitin Kumar; Mehta, Poonam; Gupta, Reena

    2014-01-01

    A thermophilic bacterial isolate producing lipase was isolated from soil of hot spring and identified as Bacillus aerius (MTCC 10978). Peak lipase activity was observed when 30 h old inoculum was used and incubated in shaking conditions for 48 h. The optimal temperature and pH for the bacterial growth and lipase production was found to be 55°C and 8.0 respectively with cottonseed oil as carbon source, yeast extract and beef extract as nitrogen source. The enzyme produced by thermophilic Bacillus aerius (MTCC 10978) was purified to 9-fold with 7.2% recovery by ammonium sulfate precipitation and DEAE-Cellulose Column Chromatography. The enzyme was found to be a protein having a molecular weight of 33 kDa on SDS-PAGE. The Km and Vmax value of lipase using p-nitrophenyl palmitate as calculated from Lineweaver-Burk plot was 2.13 mM and 0.66 µmol/ml/min respectively. PMID:25391687

  14. Report: antibiotic production by thermophilic Bacillus specie SAT-4.

    PubMed

    Muhammad, Syed Aun; Ahmad, Safia; Hameed, Abdul

    2009-07-01

    Production of antimicrobial compounds seems to be a general phenomenon for most bacteria. The prevalence of antimicrobial resistance among key microbial pathogens is increasing at an alarming rate worldwide. Current solutions involve development of a more rationale approach to antibiotic use and discover of new antimicrobials. Bacillus species produce a large number of biological compounds active against bacteria, fungi, protozoa and viruses. The process of production usually involves screening of wide range of microorganisms, testing and modification. Production is carried out using fermentation. Thermophilic spore-forming, gram positive, motile rod bacterial strains were isolated from the Thar Desserts, Sindh Province, Pakistan. These strains were screened and checked for antibacterial activity. The best activity was observed by SAT4 against Micrococcus luteus, Staphylococcus aureus and Pseudomonas aeroginosa. The activity was only observed against gram positive bacteria and no activity was seen against Pseudomonas aeroginosa. Thermophilic Bacillus specie SAT4 was found to be active in the fermentation process to produce the antimicrobial agents. Further optimizations of different conditions (time of incubation, media, pH, glucose concentrations, nitrogen concentrations, and temperature) for antimicrobial production by the selected bacterial strain was performed. Agar diffusion assay was performed to evaluate the antibacterial activity. Optimum conditions for the production of antimicrobials by selected isolate were observed to be 48 hour, pH 5, temperature 55 degrees C, 2% glucose and 1.5% nitrogen concentration. This newly isolated bacterial strain has great potential for antimicrobial production at industrial scale. PMID:19553186

  15. Conformational Preferences Underlying Reduced Activity of a Thermophilic Ribonuclease H

    PubMed Central

    Stafford, Kate A.; Trbovic, Nikola; Butterwick, Joel A.; Abel, Robert; Friesner, Richard A.; Palmer, Arthur G.

    2015-01-01

    The conformational basis for reduced activity of the thermophilic ribonuclease HI enzyme from Thermus thermophilus, compared to its mesophilic homolog from Escherichia coli, is elucidated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. Explicit-solvent all-atom MD simulations of the two wild-type proteins and an E. coli mutant in which a glycine residue is inserted after position 80 to mimic the T. thermophilus protein reproduce the differences in conformational dynamics determined from 15N spin-relaxation NMR spectroscopy of three loop regions that surround the active site and contain functionally important residues: the glycine-rich region, the handle region, and the β5/αE loop. Examination of the MD trajectories indicates that the thermophilic protein samples conformations productive for substrate binding and activity less frequently than the mesophilic enzyme, although these differences may manifest as either increased or decreased relative flexibility of the different regions. Additional MD simulations indicate that mutations increasing activity of the T. thermophilus enzyme at mesophilic temperatures do so by reconfiguring the local environments of the mutated sites to more closely resemble active conformations. Taken together, the results show that both locally increased and decreased flexibility contribute to an overall reduction in activity of T. thermophilus ribonuclease H compared to its mesophilic E. coli homolog. PMID:25550198

  16. Psychrophilic, mesophilic, and thermophilic triosephosphate isomerases from three clostridial species.

    PubMed Central

    Shing, Y W; Akagi, J M; Himes, R H

    1975-01-01

    Triosephosphate isomerase was purified to homogeneity as judged by analytical gel electrophoresis from clostridium sp. strain 69, clostridium pasteurianum, and C. thermosaccharolyticum, which grow optimally at 18, 37, and 55 C, respectively. Comparative studies on these purified proteins showed that they had the same molecular weight (53,000) and subunit molecular weight (26,500). They were equally susceptible to the active site-directed inhibitor, glycidol phosphate. However, their temperature and pH optima, as well as their stabilities to heat, urea, and sodium dodecyl sulfate, differed. The proteins also had different mobilities in acrylamide gel electrophoresis. This difference in ionic character was also reflected in the elution behavior of the enzymes from hydroxyapatite and in the isoelectric points determined by isoelectric focusing in acrylamide gel. The amino acid composition of these proteins showed that the thermophilic enzyme contains a greater amount of proline than the other enzymes. The ratio of acidic amino acids to basic amino acids was 1.79, 1.38, and 1.66 for the thermophilic mesophilic and psychrophilic enzymes, respectively. This is consistent with the relative isoelectric point values of these three enzymes. Images PMID:235509

  17. PILOT ANAEROBIC BIOLOGICAL TREATMENT OF PULP MILL EVAPORATOR FOUL CONDENSATE

    EPA Science Inventory

    The performance of three new anaerobic biological treatment technologies were compared and evaluated. Data were obtained from the operation of pilot plants representative of the anaerobic filter, anaerobic upflow sludge bed, and anaerobic fluidized bed. A review of recent literat...

  18. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  19. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  20. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  1. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio.

    PubMed

    Palaniappan, Krishna; Meier-Kolthoff, Jan P; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2013-10-16

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883(T), the type strain of T. acidaminovorans, stain Z-9701(T) is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. PMID:24501645

  2. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    SciTech Connect

    Massé, Daniel I. Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.

  3. Microbial community dynamics in thermophilic undefined milk starter cultures.

    PubMed

    Parente, Eugenio; Guidone, Angela; Matera, Attilio; De Filippis, Francesca; Mauriello, Gianluigi; Ricciardi, Annamaria

    2016-01-18

    Model undefined thermophilic starter cultures were produced from raw milk of nine pasta-filata cheesemaking plants using a selective procedure based on pasteurization and incubation at high temperature with the objective of studying the microbial community dynamics and the variability in performances under repeated (7-13) reproduction cycles with backslopping. The traditional culture-dependent approach, based on random isolation and molecular characterization of isolates was coupled to the determination of pH and the evaluation of the ability to produce acid and fermentation metabolites. Moreover, a culture-independent approach based on amplicon-targeted next-generation sequencing was employed. The microbial diversity was evaluated by 16S rRNA gene sequencing (V1-V3 regions), while the microdiversity of Streptococcus thermophilus populations was explored by using novel approach based on sequencing of partial amplicons of the phosphoserine phosphatase gene (serB). In addition, the occurrence of bacteriophages was evaluated by qPCR and by multiplex PCR. Although it was relatively easy to select for a community dominated by thermophilic lactic acid bacteria (LAB) within a single reproduction cycle, final pH, LAB populations and acid production activity fluctuated over reproduction cycles. Both culture-dependent and -independent methods showed that the cultures were dominated by either S. thermophilus or Lactobacillus delbrueckii subsp. lactis or by both species. Nevertheless, subdominant mesophilic species, including lactococci and spoilage organisms, persisted at low levels. A limited number of serB sequence types (ST) were present in S. thermophilus populations. L. delbrueckii and Lactococcus lactis bacteriophages were below the detection limit of the method used and high titres of cos type S. thermophilus bacteriophages were detected in only two cases. In one case a high titre of bacteriophages was concurrent with a S. thermophilus biotype shift in the culture

  4. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function.

    PubMed

    Kim, Jaai; Lee, Changsoo

    2016-02-01

    Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up

  5. ENGINEERING AND ECONOMIC ASSESSMENT OF AUTOHEATED THERMOPHILIC AEROBIC DIGESTION WITH AIR AERATION

    EPA Science Inventory

    A major disadvantage of aerobic digestion is that it requires long detention times, particularly in colder climates, to insure adequate stabilization. Autoheated thermophilic aerobic digestion (ATAD) offers the potential to decrease the required detention time. ATAD takes advanta...

  6. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. PMID:24658107

  7. [Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter].

    PubMed

    Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Ding, Wen-iie; Li, Lin; Lin, Jian; Liu, Jun-xin

    2016-01-15

    A thermophilic biofilter was employed to treat the flue gas generated from sludge drying process, and the performance in both the start period and the stationary phase was studied under the gas flow rate of 2 700-3 100 m3 x h(-1) and retention time of 21.88-25.10 s. The results showed that the thermophilic biofilter could effectively treat gases containing sulfur dioxide, ammonia and volatile organic compounds (VOC). The removal efficiencies could reach 100%, 93.61% and 87.01%, respectively. Microbial analysis indicated that most of the population belonged to thermophilic bacteria. Paenibacillus sp., Chelatococcus sp., Bacillus sp., Clostridium thermosuccinogenes, Pseudoxanthomonas sp. and Geobacillus debilis which were abundant in the thermophilic biofilter, had the abilities of denitrification, desulfurization and degradation of volatile organic compounds. PMID:27078980

  8. Coal Depyritization by the Thermophilic Archaeon Metallosphaera sedula

    PubMed Central

    Clark, Thomas R.; Baldi, Franco; Olson, Gregory J.

    1993-01-01

    The kinetics of pyrite oxidation by Metallosphaera sedula were investigated with mineral pyrite and two coals with moderate (Pittsburgh no. 8) and high (New Brunswick, Canada) pyritic sulfur content. M. sedula oxidized mineral pyrite at a greater rate than did another thermophile, Acidianus brierleyi, or a mesophile, Thiobacillus ferrooxidans. Maximum rates of coal depyritization were also greater with M. sedula, although the magnitude of biological stimulation above abiotic rates was notably less than with mineral pyrite. Coal depyritization appears to be limited by the oxidation of pyrite with ferric ions and not by the rate of biotic oxidation of ferrous iron, as evidenced by the maintenance of a high ratio of ferric to ferrous iron in solution by M. sedula. Significant precipitation of hydronium jarosite at elevated temperature occurred only with New Brunswick coal. PMID:16349006

  9. Genetics of thermophilic bacteria. [Bacillus stearothermophilus:a2

    SciTech Connect

    Welker, N.E.

    1991-01-01

    Organisms adapted to high temperature have evolved a variety of unique solutions to the biochemical problems imposed by this environment. Adaptation is commonly used to describe the biochemical properties of organisms which have become adapted to their environment (genetic adaptation). It can also mean the direct response-at the cellular level-of an organism to changes in temperature (physiological adaptation). Thermophilic bacilli (strains of Bacillus stearothermophilus) can exhibit a variety of biochemical adaptations in response to changes in temperature. These include changes in the composition and stability of the membrane, metabolic potential, the transport of amino acids, regulatory mechanisms, ribose methylation of tRNA, protein thermostability, and nutritional requirements. The objectives of the research were to develop efficient and reliable genetic systems to analyze and manipulate B. Stearothermophilus, and to use these systems initiate a biochemical, molecular, and genetic investigations of genes that are required for growth at high temperature.

  10. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  11. The bioleaching of different sulfide concentrates using thermophilic bacteria

    NASA Astrophysics Data System (ADS)

    Torres, F.; Blázquez, M. L.; González, F.; Ballester, A.; Mier, J. L.

    1995-05-01

    The bioleaching of different mineral sulfide concentrates with thermophilic bacteria (genus Sulfolobus @#@) was studied. Since the use of this type of bacteria in leaching systems involves stirring and the control of temperature, the influence of the type of stirring and the pulp density on dissolution rates was studied in order to ascertain the optimum conditions for metal recovery. At low pulp densities, the dissolution kinetic was favored by pneumatic stirring, but for higher pulp densities, orbital stirring produced the best results. A comparative study of three differential concentrates, one mixed concentrate, and one global concentrate was made. Copper and iron extraction is directly influenced by bacterial activity, while zinc dissolution is basically due to an indirect mechanism that is activated in the presence of copper ions. Galvanic interactions between the different sulfides favors the selective bioleaching of some phases (sphalerite and chalcopyrite) and leads to high metal recovery rates. However, the formation of galvanic couples depends on the type of concentrate.

  12. A hexokinase with broad sugar specificity from a thermophilic bacterium.

    PubMed

    Bae, Jungdon; Kim, Dooil; Choi, Yongseok; Koh, Sukhoon; Park, Jung Eun; Su Kim, Joong; Moon, Seong Hoon; Park, Bo-Hyun; Park, Miri; Song, Hye-Eun; Hong, Suk-In; Lee, Dae-Sil

    2005-09-01

    A recombinant thermophilic Thermus caldophilus GK24 hexokinase, one of the ROK-type (repressor protein, open reading frames, and sugar kinase) proteins, exists uniquely as a 120 kDa molecule with four subunits (31 kDa), in contrast to eukaryotic and bacterial sugar kinases which are monomers or dimers. The optimal temperature and pH for the enzyme reaction are 70-80 degrees C and 7.5, respectively. This enzyme shows broad specificity toward glucose, mannose, glucosamine, allose, 2-deoxyglucose, and fructose. To understand the sugar specificity at a structural level, the enzyme-ATP/Mg2+-sugar binding complex models have been constructed. It has been shown that the sugar specificity is probably dependent on the interaction energy occurred by the positional proximity of sugars bound in the active site of the enzyme, which exhibits a tolerance to modification at C2 or C3 of glucose. PMID:16053915

  13. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment

    PubMed Central

    Caspers, Martien P. M.; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  14. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment.

    PubMed

    Caspers, Martien P M; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja; Abee, Tjakko

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  15. Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci

    PubMed Central

    van der Mei, H. C.; de Vries, J.; Busscher, H. J.

    1993-01-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose added, strains were relatively hydrophilic (showing low initial removal rates by hexadecane) and slightly negatively charged. A tendency exists for cells grown with sucrose added to be more hydrophilic than cells grown with glucose or lactose added. Also, the lowest isoelectric points, i.e., the pH values for which the zeta potentials are zero, were measured for strains with glucose added to the growth medium. The isoelectric points for the strains were all rather high, between pH 3 and 5, indicative of protein-rich surfaces, although X-ray photoelectron spectroscopy did not measure excessively large amounts of nitrogen on the cell surfaces. Both MATH and microelectrophoresis were done as a function of pH. Maxima in hydrophobicity were observed at certain pH values. Usually these pH values were in the range of the isoelectric points of the cells. Thus it appears that MATH measures an interplay of hydrophobicity and electrostatic interactions. MATH measures solely hydrophobicity only when electrostatic interactions are absent, i.e., close to the isoelectric points of the cells. Considering that these thermophilic streptococci are all rather hydrophilic, a possible pathway to prevent fouling in the pasteurization process might be to render the heat exchanger plates of the pasteurizer more hydrophobic. PMID:16349127

  16. The metabolism of hydrogen by extremely thermophilic bacteria

    SciTech Connect

    Adams, M.W.W.

    1991-01-01

    The novel archaebacterium, Pyrococcus furiosus, grows optimally at 100{degree}C by a fermentative metabolism and produces hydrogen (H{sub 2}). We have shown that this organism appears to ferment glucose and evolve H{sub 2} by a novel pathway. The following metalloenzymes and proteins involved in H{sub 2} metabolism have been purified and characterized: hydrogenase (NiFeS), ferredoxin (FeS), pyruvate ferredoxin oxidoreductase (FeS), and an new enzyme which contains tungsten, glyceraldehyde ferredoxin oxidoreductase (WFeS). A rubredoxin was also purified, and it and the ferredoxin have been sequenced. In addition, a second new enzyme has been identified, glucose ferredoxin oxidoreductase. These represent the first enzymes and proteins to be purified from any organism able to grow optimally above 90{degree}C. All are remarkably thermostable and show maximal catalytic activity >95{degree}C. The ferredoxin has several unique properties and is potentially an extremely thermostable model for the catalytic sites of a variety of mesophilic metalloenzymes. In addition, the FeS-containing enzymes, hydrogenase and pyruvate ferredoxin oxidoreductase, and a ferredoxin, have been purified from the most thermophilic eubacterium currently known, Thermotoga maritima. This organism grows up to 90{degree}C, also by fermentation. The hydrogenases of T. maritima and P. furiosus each have many unique properties in comparison with mesophilic hydrogenases, and both appear to contain new types of metal centers that are specifically adapted to catalyze H{sub 2} production at the extreme temperatures. Hydrogenase activity has also been measured in four other extremely thermophilic organisms, one of which is capable of growth at 120{degree}C. 1 fig.

  17. Silicification of Thermophilic Biofilms: Do Aquificales Affect the Mineralisation Process?

    NASA Astrophysics Data System (ADS)

    Konhauser, K.; Lalonde, S.; Aguiar, P.; Reysenbach, A.

    2003-12-01

    In geothermal environments, biomineralisation is an inevitable consequence of microbes growing in solute-rich waters. The process of silicification is of particular interest due to (1) apparent discrepancies between natural and laboratory silicification rates and (2) siliceous microfossils currently serve as the earliest physical evidence for life on Earth. Although mesophilic microbe-silica interactions have been studied in great detail, there is a paucity of information on the role that thermophiles play in the silicification process, i.e., does their metabolism in any way facilitate silicification and do their cellular remains fossilise? To help resolve some of these uncertainties, a thermophilic, biofilm-forming member of the Aquificales order, Sulfurihydrogenobium azorense, was grown in the presence of various concentrations of silica, ranging from undersaturated to those extremely supersaturated with respect to amorphous silica. Since the chemolithoautotrophic Aquificales use of a wide range and combination of electron donors and acceptors, the bacteria cultured were grown in the presence of H2 with O2, S and Fe(III) as terminal electron acceptors. This study focused on the rates of pH-induced silica polymerisation during a 48 hour interval, when the soluble silica phase was at its most reactive stage, and when the greatest amount of silica immobilisation was likely to occur. S. azorense was found to have no detectable effect on the polymerisation rate of silica under any condition tested, nor did it cause silica to precipitate in undersaturated conditions. In addition, transmission electron microscopy showed that although silica did indeed precipitate from solution, there was no obvious association between solid-phase silica and the cells walls. This suggests that under high silica levels there is such a strong chemical driving force for silica polymerisation, homogeneous nucleation, and ultimately silica precipitation that there is no obvious need for

  18. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics.

    PubMed

    Lü, Fan; Hao, Liping; Guan, Dongxing; Qi, Yujiao; Shao, Liming; He, Pinjing

    2013-05-01

    Combined effects of acids and ammonium on functional pathway and microbial structure during organics methanization were investigated by stable isotopic method and quantitative PCR. The results showed that the stress from acids and ammonium was synergetic, resulted in different inhibition for acetoclastic and hydrogenotrophic methanogenesis and syntrophic acetate oxidation, leading to pathway shift. Methane production from acetate was affected more by acetate than by ammonium until the ammonium concentration reached 6-7 g-N/L. When the ammonium concentration exceeded 6 g-N/L, ammonium inhibition was strengthened by the increased concentration of acetate. At a low acetate concentration (50 mmol/L), acetoclastic methanogenesis dominated, regardless of ammonium concentration. At higher acetate concentrations (150 and 250 mmol/L) and at low-medium ammonium levels (1-4 g-N/L), acetate was mainly degraded by acetoclastic methanogenesis, while residual acetate was degraded by a combination of acetoclastic methanogenesis and the syntrophic reaction of syntrophic acetate oxidization and hydrogenotrophic methanogenesis with the latter dominating at 250 mmol/L acetate. At high ammonium levels (6-7 g-N/L), the degradation of acetate in the 150 mmol/L treatment was firstly through a combination of acetoclastic methanogenesis and the syntrophic pathway and then gradually shifted to the syntrophic pathway, while the degradation of acetate in the 250 mmol/L treatment was completely by the syntrophic pathway. PMID:23434042

  19. Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent.

    PubMed

    Zhou, Meixian; Xie, Yunbiao; Dong, Binbin; Liu, Qing; Chen, Xiaoyao

    2015-01-01

    Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter. PMID:26679595

  20. Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent

    PubMed Central

    Xie, Yunbiao; Dong, Binbin; Liu, Qing; Chen, Xiaoyao

    2015-01-01

    Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter. PMID:26679595

  1. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.

    SciTech Connect

    Slobodkin, A.; Wiegel, J.; Reysenbach, A.L.

    1997-10-01

    A thermophilic, anaerobic, spore-forming bacterium (strain JW/AS-Y6) was isolated from a mixed sediment-water sample from a hot spring (Calcite Spring area) at Yellowstone National Park. The vegetative cells of this organism were straight rods, 0.5 to 0.6 by 3.0 to 6.5 {mu}m. Cells occurred singly and exhibited a slight tumbling motility. They formed round refractile endospores in terminal swollen sporangia. Cells stained gram positive. The temperature range for growth at pH 6.8 was 43 to 65{degrees}C, with optimum growth at 58{degrees}C. The range for growth at 60{degrees}C (pH{sup 60C}; with the pH meter calibrated at 60{degrees}C) was 5.9 to 7.8, with an optimum pH{sub 60C} of 6.3 to 6.5. The substrates utilized included glycerol, glucose, fructose, mannose, galactose, xylose, lactate, glycerate, pyruvate, and yeast extract. In the presence of CO{sub 2}, acetate was the only organic product from glyerol and carbohydrate fermentation. No H{sub 2} was produced during growth. The strain was not able to grow chemolithotrophically at the expense of H{sub 2}-CO{sub 2}; however, suspensions of cells in the exponential growth phase consumed H{sub 2}. The bacterium reduced fumarate to succinate and thiosulfate to elemental sulfur. Growth was exhibited by ampicillin, chloramphenicol, erythromycin, rifampin, and tetracycline, but not by streptomycin. The G+C content of the DNA was 54.5 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolate in the Gram type-positive Bacillus-Clostridium subphylum. On the basis of physiological properties and phylogenetic analysis we propose that the isolated strain constitutes a new species, Moorella glycerini; the type strain is JW/AS-Y6 (= DSM 11254 = ATCC 700316).

  2. Anoxybacillus suryakundensis sp. nov, a Moderately Thermophilic, Alkalitolerant Bacterium Isolated from Hot Spring at Jharkhand, India

    PubMed Central

    Deep, Kamal; Poddar, Abhijit; Das, Subrata K.

    2013-01-01

    Four closely related facultative anaerobe, moderately thermophilic, Gram positive rods (JS1T, JS5, JS11, and JS15) were isolated from sediment samples from a hot spring at Suryakund, Jharkhand, India. Colonies were pale yellow, rough surface with uneven edges on TSA after 72 h incubation. Heterotrophic growth was observed at 40-60°C and pH 5.5-11.5; optimum growth occurred at 55°C and pH 7.5. 16S rRNA gene sequence analysis revealed the strains belong to genus Anoxybacillus. DNA-DNA homology values among strains were above 70% and showed distinct ERIC and REP PCR profile. On the basis of morphology and biochemical characteristics, strain JS1T was studied further. Strain JS1T showed 99.30% sequence similarity with A. flavithermus subsp. yunnanensis, 99.23% with A. mongoliensis, 99.16% with A. eryuanensis, 98.74% with A. flavithermus subsp. flavithermus, 98.54% with A. tengchongensis, 98.51% with A. pushchinoensis, 97.91% with A. thermarum, 97.82% with A. kaynarcensis, 97.77% with A. ayderensis and A. kamchatkensis, 97.63% with A. salavatliensis, 97.55% with A. kestanbolensis, 97.48% with A. contaminans, 97.27% with A. gonensis and 97.17% with A. voinovskiensis. In 16S rRNA secondary structure based phylogenetic comparison, strain JS1T was clustered with Anoxybacillus eryuanensis, A. mongoliensis, and A. flavithermus subsp. yunnanensis and showed 15 species specific base substitutions with maximum variability in helix 6. Moreover, DNA-DNA relatedness between JS1T and the closely related type strains were well below 70%. The DNA G+C content was 42.1 mol%. The major fatty acids were C15:0 iso, C16:0 iso and C17:0iso. The polar lipids were a phosphatidylgylycerol, a diphosphatidylglycerol, a phosphatidylethnolamine, a phosphatidylcholine, a phosphatidyl monomethylethanolamine and four unknown lipids. Based on polyphasic approach, strain JS1T represent a novel species of the genus Anoxybacillus for which Anoxybacillus suryakundensis sp. nov. is proposed. The type

  3. Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant.

    PubMed

    Cihan, Arzu Coleri; Cokmus, Cumhur; Koc, Melih; Ozcan, Birgul

    2014-01-01

    A novel thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming, motile, rod-shaped bacterium, strain C161ab(T), was isolated from a soil sample collected near Kizildere, Saraykoy-Buharkent power plant in Denizli. The isolate could grow at temperatures between 35 and 70 °C (optimum 55 °C), at pH 6.5-9.0 (optimum pH 8.0-8.5) and with 0-2.5 % NaCl (optimum 0.5 %, w/v). The strain formed cream-coloured, circular colonies and tolerated up to 70 mM boron. Its DNA G+C content was 37.8 mol%. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. Strain C161ab(T) contained menaquinones MK-7 (96 %) and MK-6 (4 %). The major cellular fatty acids were iso-branched fatty acids: iso-C15 : 0 (52.2 %) and iso-C17 : 0 (28.0 %,) with small amounts of C16 : 0 (7.4 %). Phylogenetic analysis based on the 16S rRNA gene revealed 94.6-96.8 % sequence similarity with all recognized species of the genus Anoxybacillus. Strain C161ab(T) showed the greatest sequence similarity to Anoxybacillus rupiensis DSM 17127(T) and Anoxybacillus voinovskiensis DSM 17075(T), both had 96.8 % similarity to strain C161ab(T), as well as to Anoxybacillus caldiproteolyticus DSM 15730(T) (96.6 %). DNA-DNA hybridization revealed low levels of relatedness with the closest relatives of strain C161ab(T), A. rupiensis (21.2 %) and A. voinovskiensis (16.5 %). On the basis of the results obtained from phenotypic, chemotaxonomic, genomic fingerprinting, phylogenetic and hybridization analyses, the isolate is proposed to represent a novel species, Anoxybacillus calidus sp. nov. (type strain C161ab(T) = DSM 25520(T) = NCIMB 14851(T)). PMID:24052627

  4. Presence and potential role of thermophilic bacteria in temperate terrestrial environments.

    PubMed

    Portillo, M C; Santana, M; Gonzalez, J M

    2012-01-01

    Organic sulfur and nitrogen are major reservoirs of these elements in terrestrial systems, although their cycling remains to be fully understood. Both sulfur and nitrogen mineralization are directly related to microbial metabolism. Mesophiles and thermophiles were isolated from temperate environments. Thermophilic isolates were classified within the Firmicutes, belonging to the Geobacillus, Brevibacillus, and Ureibacillus genera, and showed optimum growth temperatures between 50°C and 60°C. Sulfate and ammonium produced were higher during growth of thermophiles both for isolated strains and natural bacterial assemblages. They were positively related to organic nutrient load. Temperature also affected the release of sulfate and ammonium by thermophiles. Quantitative, real-time reverse-transcription polymerase chain reaction on environmental samples indicated that the examined thermophilic Firmicutes represented up to 3.4% of the total bacterial community RNA. Temperature measurements during summer days showed values above 40°C for more than 10 h a day in soils from southern Spain. These results support a potential role of thermophilic bacteria in temperate terrestrial environments by mineralizing organic sulfur and nitrogen ruled by the existence and length of warm periods. PMID:22159635

  5. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project.

    PubMed

    Ike, Michihiko; Inoue, Daisuke; Miyano, Tomoki; Liu, Tong Tong; Sei, Kazunari; Soda, Satoshi; Kadoshin, Shiro

    2010-06-01

    The microbial community in a full-scale anaerobic digester (2300m3) treating industrial food waste in the Kyoto Eco-Energy Project was analyzed using terminal restriction fragment length polymorphism for eubacterial and archaeal 16S rRNA genes. Both thermophilic and mesophilic sludge of treated swine waste were seeded to the digestion tank. During the 150-day startup period, coffee grounds as a main food waste, along with potato, kelp and boiled beans, tofu, bean curd lees, and deep-fried bean curd were fed to the digestion process step-by-step (max. 40t/d). Finally, the methane yield reached 360m3/t-feed with 40days' retention time, although temporary accumulation of propionate was observed. Eubacterial communities that formed in the thermophilic digestion tank differed greatly from both thermophilic and mesophilic types of seed sludge. Results suggest that the Actinomyces/Thermomonospora and Ralstonia/Shewanella were contributors for hydrolyzation and degradation of food waste into volatile fatty acids. Acetate-utilizing methanogens, Methanosaeta, were dominant in seed sludges of both types, but they decreased drastically during processing in the digestion tank. Methanosarcina and Methanobrevibacter/Methanobacterium were, respectively, possible main contributors for methane production from acetate and H2 plus CO2. PMID:20129780

  6. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985. PMID:16142505

  7. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    PubMed

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. PMID:26365369

  8. Anaerobic digestion technologies for closing the domestic water, carbon and nutrient cycles.

    PubMed

    Hammes, F; Kalogo, Y; Verstraete, W

    2000-01-01

    Sustainable wastewater treatment requires that household wastewater is collected and treated separately from industrial wastewater and rainwater run-offs. This separate treatment is, however, still inadequate, as more than 70% of the nutrients and much of the chemical oxygen demand (COD) and potential pathogens of a domestic sewage system are confined to the few litres of black water (faeces, urine and toilet water). Whilst grey water can easily be filter treated and re-used for secondary household purposes, black water requires more intensive treatment due to its high COD and microbial (pathogens) content. Recently developed vacuum/dry toilets produce a nutrient rich semi-solid waste stream, which, with proper treatment, offers the possibility of nutrient, carbon, water and energy recovery. This study investigates the terrestrial applicability of Life Support System (LSS) concepts as a framework for future domestic waste management. The possibilities of treating black water together with other types of human-generated solid waste (biowastes/mixed wastes) in an anaerobic reactor system at thermophilic conditions, as well as some post treatment alternatives for product recovery and re-use, are considered. Energy can partially be recovered in the form of biogas produced during anaerobic digestion. The system is investigated in the form of theoretical mass balances, together with an assessment of the current feasibility of this technology and other post-treatment alternatives. PMID:11381993

  9. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    PubMed

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery. PMID:21099053

  10. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge.

    PubMed

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba, Yuzaburo; Nishio, Naomichi

    2008-07-01

    The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system. PMID:18491038

  11. Composting of anaerobic sludge: an economically feasible element of a sustainable sewage sludge management.

    PubMed

    Cukjati, N; Zupančič, G D; Roš, M; Grilc, V

    2012-09-15

    An investigation into the feasibility of anaerobic sludge composting, as a sustainable treatment of sewage sludge management, was carried out under actual Slovenian environmental conditions. In order to demonstrate successful composting, five pilot plant experiments were performed during the summer and winter conditions. The first three experiments were performed with pile aeration, while experiments 4 and 5 were carried out by pile turning. Anaerobic sludge to bulking agent ratios were set at 1-6.4:1. The composting was successful and thermophilic temperature being achieved in all cases. In winter conditions, the composting process was prolonged; and low ambient temperatures had a significant impact in pile turning experiments. During winter, a temperature drop of 30 °C during turning of the material doubled the necessary time for an adequate composting process. Five scenarios were considered within an economic feasibility study and in the most favourable scenario, where 60% of compost was commercialised and 40% was used as landfill cover. The payback period in this scenario was 2.9 years. The study of compost quality showed that it can be used in variety of civil engineering applications, especially as a landfill cover and for recultivation of degraded areas. PMID:22562011

  12. Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants.

    PubMed

    Hospido, Almudena; Carballa, Marta; Moreira, Maite; Omil, Francisco; Lema, Juan M; Feijoo, Gumersindo

    2010-05-01

    Agricultural application of sewage sludge has been emotionally discussed in the last decades, because the latter contains organic micropollutants with unknown fate and risk potential. In this work, the reuse of anaerobically digested sludge in agriculture is evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of emerging micropollutants, such as pharmaceuticals and personal care products, present in the sludge have been quantified. Four scenarios were considered according to the temperature of the anaerobic digestion (mesophilic or thermophilic) and the sludge retention time (20 or 10d), and they have been compared with the non-treated sludge. From an environmental point of view, the disposal of undigested sludge is not the most suitable alternative, except for global warming due to the dominance (65-85%) of the indirect emissions associated to the electricity use. Nutrient-related direct emissions dominate the eutrophication category impact in all the scenarios (>71.4%), although a beneficial impact related to the avoidance of industrial fertilisers production is also quantified (up to 6.7%). In terms of human and terrestrial toxicity, the direct emissions of heavy metals to soil dominate these two impact categories (>70%), and the contribution of other micropollutants is minimal. Moreover, only six (Galaxolide, Tonalide, Diazepam, Ibuprofen, Sulfamethoxazole and 17alpha-ethinyloestradiol) out of the 13 substances considered are really significant since they account for more than 95% of the overall micropollutants impact. PMID:20347114

  13. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  14. Isolation and Screening of Thermophilic Bacilli from Compost for Electrotransformation and Fermentation: Characterization of Bacillus smithii ET 138 as a New Biocatalyst

    PubMed Central

    Bosma, Elleke F.; van de Weijer, Antonius H. P.; Daas, Martinus J. A.; van der Oost, John; de Vos, Willem M.

    2015-01-01

    Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216T and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 103 colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals. PMID:25556192

  15. Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

    PubMed Central

    Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

  16. Anaerobic degradation of monoazo dyes

    SciTech Connect

    Kremer, F.V.

    1989-01-01

    The anaerobic degradation of two monoazo dyes, acid red 88 (AR88) and acid orange 7, was studied utilizing serum bottle assays. When either dye was present between .05 and 50 mg/L as the sole substrate, inhibition was demonstrated, with no mineralization occurring. However, when a supplemental carbon and energy source was available no inhibition was evidence with mineralization occurring at intermediate concentrations. The degradation of AR88 and metabolite formation was examined utilizing laboratory-scale semi-continuous anaerobic reactors. Addition of 50 mg/L of dye resulted in >98% removal, although mineralization was not achieved. Metabolites identified were naphthionic acid, 2-naphthol, 1,2-naphthoquinone, isoquinoline, and quinacridone. The presence of the metabolites, some of which were products of complexation and polymerization, exerted a slight inhibitory effect on the non-methanogens. The availability of a supplemental carbon source demonstrated an effect on the metabolites that are evolved and the rate at which they are formed.

  17. Fate of pathogen indicators in a domestic blend of food waste and wastewater through a two-stage anaerobic digestion system.

    PubMed

    Rounsefell, B D; O'Sullivan, C A; Chinivasagam, N; Batstone, D; Clarke, W P

    2013-01-01

    Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5±0.3) to 10(1.1±0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 µm membrane, to investigate membrane filtration as a possible sanitation technique. PMID:23168637

  18. Anaerobic digestion of brewery byproducts

    SciTech Connect

    Keenan, J.D.; Kormi, I.

    1981-01-01

    Energy recovery in the brewery industry by mesophilic anaerobic digesion of process by-products is technically feasible. The maximum achievable loading rate is 6g dry substrate/L-day. CH4 gas production declines as the loading rate increases in the range 2-6 g/L day. CH4 production increases in the range 8-15 days; optimal design criteria are a 10-day detention time with a loading rate of 6 g dry substrate/L day.

  19. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey.

    PubMed

    Li, Yueh-Fen; Abraham, Christopher; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Yu, Zhongtang

    2015-10-01

    Temperature-phased anaerobic digestion (TPAD) has gained increasing attention because it provides the flexibility to operate digesters under conditions that enhance overall digester performance. However, research on impact of organic overloading rate (OLR) to microbiota of TPAD systems was limited. In this study, we investigated the composition and successions of the microbiota in both the thermophilic and the mesophilic digesters of a laboratory-scale TPAD system co-digesting dairy manure and waste whey before and during organic overloading. The thermophilic and the mesophilic digesters were operated at 50 and 35 °C, respectively, with a hydraulic retention time (HRT) of 10 days for each digester. High OLR (dairy manure with 5 % total solid and waste whey of ≥60.4 g chemical oxygen demand (COD)/l/day) resulted in decrease in pH and in biogas production and accumulation of volatile fatty acids (VFAs) in the thermophilic digester, while the mesophilic digester remained unchanged except a transient increase in biogas production. Both denaturant gradient gel electrophoresis (DGGE) and Illumina sequencing of 16S ribosomal RNA (rRNA) gene amplicons showed dramatic change in microbiota composition and profound successions of both bacterial and methanogenic communities. During the overloading, Thermotogae was replaced by Proteobacteria, while Methanobrevibacter and archaeon classified as WCHD3-02 grew in predominance at the expense of Methanoculleus in the thermophilic digester, whereas Methanosarcina dominated the methanogenic community, while Methanobacterium and Methanobrevibacter became less predominant in the mesophilic digester. Canonical correspondence analysis (CCA) revealed that digester temperature and pH were the most influential environmental factors that explained much of the variations of the microbiota in this TPAD system when it was overloaded. PMID:26084892

  20. Trade-off between mesophilic and thermophilic denitrification: rates vs. sludge production, settleability and stability.

    PubMed

    Courtens, Emilie N P; Vlaeminck, Siegfried E; Vilchez-Vargas, Ramiro; Verliefde, Arne; Jauregui, Ruy; Pieper, Dietmar H; Boon, Nico

    2014-10-15

    The development of thermophilic nitrogen removal strategies will facilitate sustainable biological treatment of warm nitrogenous wastewaters. Thermophilic denitrification was extensively compared to mesophilic denitrification for the first time in this study. Two sequential batch reactors (SBR) at 34 °C and 55 °C were inoculated with mesophilic activated sludge (26 °C), fed with synthetic influent in a first phase. Subsequently, the carbon source was switched from acetate to molasses, whereas in a third phase, the nitrate source was fertilizer industry wastewater. The denitrifying sludge maintained its activity at 55 °C, resulting in an immediate process start-up, obtaining nitrogen removal rates higher than 500 mg N g(-1) VSS d(-1) in less than one week. Although the mesophilic SBR showed twice as high specific nitrogen removal rates, the maximum thermophilic denitrifying activity in this study was nearly 10 times higher than the activities reported thus far. The thermophilic SBR moreover had a 73% lower sludge volume index, a 45% lower sludge production and a higher resilience towards a change in carbon source compared with the mesophilic SBR. The higher resilience was potentially related to a higher microbial diversity and evenness of the thermophilic community at the end of the synthetic feeding period. The thermophilic microbial community showed a higher similarity over the different feeding periods implying a more stable community. Overall, this study showed the capability of mesophilic denitrifiers to maintain their activity after a large temperature increase. Existing mesophilic process systems with cooling for the treatment of warm wastewaters could thus efficiently be converted to thermophilic systems with low sludge production and good settling properties. PMID:25007305

  1. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  2. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    DOE PAGESBeta

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions bymore » this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  3. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    PubMed Central

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h−1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  4. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    SciTech Connect

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of

  5. Effects of influent fractionation, kinetics, stoichiometry and mass transfer on CH4, H2 and CO2 production for (plant-wide) modeling of anaerobic digesters.

    PubMed

    Solon, Kimberly; Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2015-01-01

    This paper examines the importance of influent fractionation, kinetic, stoichiometric and mass transfer parameter uncertainties when modeling biogas production in wastewater treatment plants. The anaerobic digestion model no. 1 implemented in the plant-wide context provided by the benchmark simulation model no. 2 is used to quantify the generation of CH₄, H₂and CO₂. A comprehensive global sensitivity analysis based on (i) standardized regression coefficients (SRC) and (ii) Morris' screening's (MS's) elementary effects reveals the set of parameters that influence the biogas production uncertainty the most. This analysis is repeated for (i) different temperature regimes and (ii) different solids retention times (SRTs) in the anaerobic digester. Results show that both SRC and MS are good measures of sensitivity unless the anaerobic digester is operating at low SRT and mesophilic conditions. In the latter situation, and due to the intrinsic nonlinearities of the system, SRC fails in decomposing the variance of the model predictions (R² < 0.7) making MS a more reliable method. At high SRT, influent fractionations are the most influential parameters for predictions of CH₄and CO₂emissions. Nevertheless, when the anaerobic digester volume is decreased (for the same load), the role of acetate degraders gains more importance under mesophilic conditions, while lipids and fatty acid metabolism is more influential under thermophilic conditions. The paper ends with a critical discussion of the results and their implications during model calibration and validation exercises. PMID:25812096

  6. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques

    PubMed Central

    Porsch, Katharina; Wirth, Balázs; Tóth, Erika M; Schattenberg, Florian; Nikolausz, Marcell

    2015-01-01

    Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion. PMID:25737100

  7. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques.

    PubMed

    Porsch, Katharina; Wirth, Balázs; Tóth, Erika M; Schattenberg, Florian; Nikolausz, Marcell

    2015-09-01

    Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion. PMID:25737100

  8. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.

    PubMed

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH(4)) production rate, CH(4) yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2m(3)CH(4)/m(3)(system)/d (0.2m(3)CH(4)/kgVS(added)) at organic loading rate of 6.1gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization. PMID:21600764

  9. Anaerobic infections in children: a prospective survey.

    PubMed Central

    Thirumoorthi, M C; Keen, B M; Dajani, A S

    1976-01-01

    Over an 18-month period, cultures from 95 infants and children yielded 146 anaerobic organisms in 110 clinical specimens. Bacteroides was the most frequently isolated anaerobe, followed by Propionibacterium and Clostridium species. Intra-abdominal sources, soft tissues, and blood were the three major sources (82%) of isolation of anaerobes. Whereas most patients (58%) were over 5 years of age and only 11% were newborns, anaerobic infections constituted a rather uniform proportion of all infections, regardless of sources, in all age groups. Anaerobes accounted for only 2.9% of all positive cultures encountered from the various sources. Rates of recovery of anaerobes from intra-abdominal sources were significantly the highest, and from soft-tissue infections they were significantly the lowest. The anaerobic bacteremias observed were of no clinical significance when Propionibacterium species were isolated; however, recovery of other anaerobes from the blood, and primarily Bacteroides species, was usually associated with clinical disease. Except in blood cultures, anaerobes almost invariably coexisted with facultative bacteria. PMID:1270594

  10. Basic Laboratory Culture Methods for Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Strobel, Herbert J.

    Oxygen is either limiting or absent in many ecosystems. Anaerobic bacteria are often key players in such environments and these organisms have important roles in geo-elemental cycling, agriculture, and medicine. The metabolic versatility of anaerobes is exploited in a variety of industrial processes including fermented food production, biochemical synthesis, and bioremediation. There has been recent considerable interest in developing and enhancing technologies that employ anaerobes as biocatalysts. The study of anaerobic bacteria requires specialized techniques, and specific methods are described for the culture and manipulation of these microbes.

  11. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring.

    PubMed

    Slepova, Tatiana V; Sokolova, Tatyana G; Kolganova, Tatyana V; Tourova, Tatyana P; Bonch-Osmolovskaya, Elizaveta A

    2009-02-01

    A novel anaerobic, thermophilic, Fe(III)-reducing, CO-utilizing bacterium, strain 1315(T), was isolated from a hot spring of Geyser Valley on the Kamchatka Peninsula. Cells of the new isolate were Gram-positive, short rods. Growth was observed at 52-70 degrees C, with an optimum at 65 degrees C, and at pH 5.5-8.5, with an optimum at pH 6.5-7.2. In the presence of Fe(III) or 9,10-anthraquinone 2,6-disulfonate (AQDS), the bacterium was capable of growth with CO and yeast extract (0.2 g l(-1)); during growth under these conditions, strain 1315(T) produced H(2) and CO(2) and Fe(II) or AQDSH(2), respectively. Strain 1315(T) also grew by oxidation of yeast extract, glucose, xylose or lactate under a N(2) atmosphere, reducing Fe(III) or AQDS. Yeast extract (0.2 g l(-1)) was required for growth. Isolate 1315(T) grew exclusively with Fe(III) or AQDS as an electron acceptor. The generation time under optimal conditions with CO as growth substrate was 9.3 h. The G+C content of the DNA was 41.5+/-0.5 mol%. 16S rRNA gene sequence analysis placed the organism in the genus Carboxydothermus (97.8 % similarity with the closest relative). On the basis of physiological features and phylogenetic analysis, it is proposed that strain 1315(T) should be assigned to a novel species, Carboxydothermus siderophilus sp. nov., with the type strain 1315(T) (=VKPM 9905B(T) =VKM B-2474(T) =DSM 21278(T)). PMID:19196756

  12. Impact of abrupt temperature increase on the performance of an anaerobic hybrid bioreactor and its intrinsic microbial community.

    PubMed

    Kundu, K; Bergmann, I; Klocke, M; Sharma, S; Sreekrishnan, T R

    2014-09-01

    This study aimed to analyse the effect of sudden temperature increases (in the range of 45-65 °C) on the performance and the microbial community structure of a hybrid anaerobic reactor. The reactor recovered with time after every temperature shock up to the operating temperature of 55 °C. At 55 °C, a 10 °C shock resulting in an operating temperature of 65 °C, deteriorated the reactor's performance. At this condition, both, the diversity and the relative abundance of methanogenic groups, especially of Methanosaetaceae, were significantly affected as observed by DGGE fingerprinting and quantitative PCR. In contrast, at lower temperatures (i.e., 45 and 55 °C), thermal shocks seemed to have less effect due to the presence and maintenance of thermophilic strains, which prevented system deterioration. At 65 °C, the absence of any acetoclastic methanogen is assumed to be the cause of system failure. PMID:24556342

  13. Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature.

    PubMed

    Montañés, Rocío; Solera, Rosario; Pérez, Montserrat

    2015-03-01

    The feasibility of anaerobic co-digestion of sewage sludge (SS) and sugar beet pulp lixiviation (SBPL) was assessed. Mesophilic and thermophilic batch assays of five different SS/SBPL ratios were used to investigate the effect of temperature, providing basic data on methane yield and reduction in total volatiles. Microbe concentrations (Eubacteria and methanogenic Archaea) were linked to traditional parameters, namely biogas production and removal of total volatile solids (TVS). The relationship between Eubacteria and Archaea was analysed. Given equal masses of organic matter, net methane generation was higher in the mesophilic range on the biochemical methane potential (BMP) test. Methane yield, TVS removal data and high levels of volatile fatty acids provided further evidence of the best behaviour of the mesophilic range. At the end of testing the microbial population under of the reactors consisted of Eubacteria and Archaea, with Eubacteria predominant in all cases. PMID:25600010

  14. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE PAGESBeta

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-07

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  15. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

    PubMed Central

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367

  16. Probing the Folding-Unfolding Transition of a Thermophilic Protein, MTH1880

    PubMed Central

    Jung, Youngjin; Han, Jeongmin; Yun, Ji-Hye; Chang, Iksoo; Lee, Weontae

    2016-01-01

    The folding mechanism of typical proteins has been studied widely, while our understanding of the origin of the high stability of thermophilic proteins is still elusive. Of particular interest is how an atypical thermophilic protein with a novel fold maintains its structure and stability under extreme conditions. Folding-unfolding transitions of MTH1880, a thermophilic protein from Methanobacterium thermoautotrophicum, induced by heat, urea, and GdnHCl, were investigated using spectroscopic techniques including circular dichorism, fluorescence, NMR combined with molecular dynamics (MD) simulations. Our results suggest that MTH1880 undergoes a two-state N to D transition and it is extremely stable against temperature and denaturants. The reversibility of refolding was confirmed by spectroscopic methods and size exclusion chromatography. We found that the hyper-stability of the thermophilic MTH1880 protein originates from an extensive network of both electrostatic and hydrophobic interactions coordinated by the central β-sheet. Spectroscopic measurements, in combination with computational simulations, have helped to clarify the thermodynamic and structural basis for hyper-stability of the novel thermophilic protein MTH1880. PMID:26766214

  17. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    SciTech Connect

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  18. A comparative study on thermomechanical pulping pressate treatment using thermophilic and mesophilic sequencing batch reactors.

    PubMed

    Zheng, Meiru; Liao, B Q

    2014-01-01

    A comparative study on the treatment of thermomechanical pulping (TMP) pressate was conducted under thermophilic (55 degrees C) and mesophilic (30 degrees C) temperatures to explore in-mill biological treatment, with the intention to operate under heat-efficient conditions. The experimental study involved sequencing batch reactors (SBRs) operated over 114 days. Receiving a total influent chemical oxygen demand (COD) of 3700-4100 mg L(-1), the COD removal efficiencies of 80-90% and 75-85% were achieved for the mesophilic and thermophilic SBRs, respectively, at a hydraulic retention time (HRT) of 12 and 24h. Excellent sludge settleability (sludge volume index < 100 mL g(-1) mixed liquor suspended solids) was obtained at both thermophilic and mesophilic SBRs. A higher level of effluent suspended solids was observed under thermophilic conditions. The results support the feasibility of applying thermophilic biological treatment of TMP pressate. The treated effluent has the potential for subsequent reuse as process water after polishing, thus addressing the long-standing desire to develop water system closure for the pulp and paper mill operation. PMID:24701939

  19. Genetic tool development underpins recent advances in thermophilic whole‐cell biocatalysts

    PubMed Central

    Taylor, M. P.; van Zyl, L.; Tuffin, I. M.; Leak, D. J.; Cowan, D. A.

    2011-01-01

    Summary The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose‐derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other ‘valuable bioproduct’ synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process. PMID:21310009

  20. CO Metabolism in the Thermophilic Acetogen Thermoanaerobacter kivui.

    PubMed

    Weghoff, Marie Charlotte; Müller, Volker

    2016-04-01

    The thermophilic acetogenic bacterium Thermoanaerobacter kivui, previously described not to use carbon monoxide as a carbon and energy source, was adapted to grow on CO. This was achieved by using a preculture grown on H2 plus CO2 and by increasing the CO concentration in small, 10% increments.T. kivui was finally able to grow within a 100% CO atmosphere. Growth on CO was found in complex and mineral media, and vitamins were not required. Carbon monoxide consumption was accompanied by acetate and hydrogen production. Cells also grew on synthesis gas (syngas) with the simultaneous use of CO and H2 coupled to acetate production. CO oxidation in resting cells was coupled to hydrogen and acetate production and accompanied by the synthesis of ATP. A protonophore abolished ATP synthesis but stimulated H2 production, which is consistent with a chemiosmotic mechanism of ATP synthesis. Hydrogenase activity was highest in crude extracts of CO-grown cells, and carbon monoxide dehydrogenase (CODH) activity was highest in H2-plus-CO2- or CO-grown cells. The genome of T. kivui harbors two CODH gene clusters, and both CODH proteins were present in crude extracts, but one CODH was more prevalent in crude extracts from CO-grown cells. PMID:26850300