Sample records for analysis identifies chromosomal

  1. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis.

    PubMed

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2009-01-01

    Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of "Gene Set Enrichment Analysis" we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21-22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13.

  2. [Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics].

    PubMed

    Douet-Guilbert, N; Basinko, A; Le Bris, M-J; Herry, A; Morel, F; De Braekeleer, M

    2008-09-01

    Supernumerary marker chromosomes (SMCs) are defined as extrastructurally abnormal chromosomes which origin and composition cannot be determined by conventional cytogenetics. SMCs are an heterogeneous group of abnormalities concerning all chromosomes with variable structure and size and are associated with phenotypic heterogeneity. The characterisation of SMCs is of utmost importance for genetic counselling. Different molecular techniques are used to identify chromosomal material present in markers such as 24-colour FISH (MFISH, SKY), centromere specific multicolour FISH (cenMFISH) and derivatives (acroMFISH, subcenMFISH), comparative genomic hybridisation (CGH), arrayCGH, and targeted FISH techniques (banding techniques, whole chromosome painting...). Based on the morphology of SMC with conventional cytogenetic and clinical data, we tried to set up different molecular strategies with all available techniques.

  3. Supernumerary ring chromosome 17 identified by fluorescent in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagan, K.; Edwards, M.

    We present a patient with multiple anomalies and severe developmental delay. A small supernumerary ring chromosome was found in 40% of her lymphocyte cells at birth. The origin of the marker chromosome could not be determined by GTG banding, but fluorescent in situ hybridization (FISH) later identified the marker as deriving from chromosome 17. 20 refs., 2 figs., 1 tab.

  4. Screening for specific chromosome involvement in hematological malignancies using a set of seven chromosome painting probes. An alternative approach for chromosome analysis using standard FISH instrumentation.

    PubMed

    Nacheva, E P; Gribble, S; Andrews, K; Wienberg, J; Grace, C D

    2000-10-15

    We report the application of multi-color fluorescence in situ hydribidization (FISH) for bone marrow metaphase cell analysis of hematological malignancies using a sub-set of the human karyotype for chromosome painting. A combination of chromosome probes labeled with three haptens enabled the construction of a "painting probe" which detects seven different chromosomes. The probe was used to screen three chronic myeloid leukemia (CML) derived cell lines and ten CML patient bone marrow samples for aberrations, additional to the Ph rearrangement, that are associated with the onset of blast crisis of CML. This approach was shown to identify karyotype changes commonly seen by conventional karyotyping, and in addition revealed chromosome changes unresolved or undetected by conventional cytogenetic analysis. The seven-color painting probe provides a useful, fast, and reliable complementary tool for chromosome analysis, especially in cases with poor chromosome morphology. This is a simple approach, since the probes can be displayed in a standard red/green/blue format accessible to standard fluorescence microscopes and image-processing software. The proposed approach using panels of locus-specific probes as well as chromosome paints will be useful in all diagnostic routine environments where analysis is directed towards screening for genetic rearrangements and/or specific patterns of chromosome involvement with diagnostic/prognostic value.

  5. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease.

    PubMed

    Xia, Yu; Yang, Yongchao; Huang, Shufang; Wu, Yueheng; Li, Ping; Zhuang, Jian

    2018-03-24

    This study aimed to determine chromosomal abnormalities and copy number variations (CNVs) in fetuses with congenital heart disease (CHD) by chromosomal microarray analysis (CMA). One hundred and ten cases with CHD detected by prenatal echocardiography were enrolled in the study; 27 cases were simple CHDs, and 83 were complex CHDs. Chromosomal microarray analysis was performed on the Affymetrix CytoScan HD platform. All annotated CNVs were validated by quantitative PCR. Chromosomal microarray analysis identified 6 cases with chromosomal abnormalities, including 2 cases with trisomy 21, 2 cases with trisomy 18, 1 case with trisomy 13, and 1 unusual case of mosaic trisomy 21. Pathogenic CNVs were detected in 15.5% (17/110) of the fetuses with CHDs, including 13 cases with CHD-associated CNVs. We further identified 10 genes as likely novel CHD candidate genes through gene functional enrichment analysis. We also found that pathogenic CMA results impacted the rate of pregnancy termination. This study shows that CMA is particularly effective for identifying chromosomal abnormalities and CNVs in fetuses with CHDs as well as having an effect on obstetrical outcomes. The elucidation of the genetic basis of CHDs will continue to expand our understanding of the etiology of CHDs. © 2018 John Wiley & Sons, Ltd.

  6. [Prevalence of congenital abnormalities identified in fetuses with 13, 18 and 21 chromosomal trisomy].

    PubMed

    Emer, Caroline Soares Cristofari; Duque, Julio Alejandro Peña; Müller, Ana Lúcia Letti; Gus, Rejane; Sanseverino, Maria Teresa Vieira; da Silva, André Anjos; Magalhães, José Antonio de Azevedo

    2015-07-01

    To describe the prevalence of malformations found in fetuses with trisomy of chromosomes 13, 18 and 21 by identifying the most frequent within each condition. A retrospective cross-sectional study with the analysis of trisomy cases of chromosomes 13, 18 and 21 diagnosed through fetal karyotype obtained by amniocentesis/cordocentesis, between October 1994 and May 2014, at a Teaching Hospital in Brazil Southern Region. Malformations identified through morphological ultrasonography were described and, subsequently, confirmed in newborn examinations and/or fetal autopsy. The results were analyzed using Fisher's test and analysis of variance (ANOVA), with a 5% level of significance (p=0.05). Sixty-nine cases of trisomy were diagnosed among 840 exams; nine were excluded due to outcome outside Hospital de Clínicas de Porto Alegre or incomplete records, remaining 60 cases (nine cases of chromosome 13 trisomy, 26 of chromosome 18, and 25 of chromosome 21). In all three groups, heart disease occurred in most cases; the ventricular septal defect was more prevalent and occurred in 66.7% of the trisomy 13 group. Gastrointestinal abnormalities were more prevalent in the trisomy 18 group, especially omphalocele (38.5%; p<0.01). Genitourinary anomalies were more significantly frequent in the trisomy 13 group (pyelectasis, 55.6% - p<0.01; ambiguous genitalia, 33.3% - p=0.01). Central nervous system defects were identified in all cases of trisomy 13. Facial cracks were significantly more prevalent among fetuses with trisomy 13 (66.7%; p<0.01). Hand and feet malformations significantly differed among the trisomy groups. Hand defects occurred in 50% of trisomy 18 cases, and in 44.4% of all trisomy 13 cases (p<0.01); congenital clubfoot was more common in the trisomy 18 group, being detected in 46.2% of fetuses (p<0.01). The abnormalities were found in 50.9, 27.3 and 21.7% of trisomy 18, 13 and 21 cases respectively. Many fetal malformations identified at ultrasound are suggestive of

  7. Automated clinical system for chromosome analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)

    1978-01-01

    An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.

  8. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    PubMed Central

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  9. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  10. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  11. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    PubMed

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    PubMed Central

    2012-01-01

    Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695

  13. Chromosome 17 alterations identify good-risk and poor-risk tumors independently of clinical factors in medulloblastoma

    PubMed Central

    McCabe, Martin G.; Bäcklund, L. Magnus; Leong, Hui Sun; Ichimura, Koichi; Collins, V. Peter

    2011-01-01

    Current risk stratification schemas for medulloblastoma, based on combinations of clinical variables and histotype, fail to accurately identify particularly good- and poor-risk tumors. Attempts have been made to improve discriminatory power by combining clinical variables with cytogenetic data. We report here a pooled analysis of all previous reports of chromosomal copy number related to survival data in medulloblastoma. We collated data from previous reports that explicitly quoted survival data and chromosomal copy number in medulloblastoma. We analyzed the relative prognostic significance of currently used clinical risk stratifiers and the chromosomal aberrations previously reported to correlate with survival. In the pooled dataset metastatic disease, incomplete tumor resection and severe anaplasia were associated with poor outcome, while young age at presentation was not prognostically significant. Of the chromosomal variables studied, isolated 17p loss and gain of 1q correlated with poor survival. Gain of 17q without associated loss of 17p showed a trend to improved outcome. The most commonly reported alteration, isodicentric chromosome 17, was not prognostically significant. Sequential multivariate models identified isolated 17p loss, isolated 17q gain, and 1q gain as independent prognostic factors. In a historical dataset, we have identified isolated 17p loss as a marker of poor outcome and 17q gain as a novel putative marker of good prognosis. Biological markers of poor-risk and good-risk tumors will be critical in stratifying treatment in future trials. Our findings should be prospectively validated independently in future clinical studies. PMID:21292688

  14. An Automated System for Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Melnyk, J. H.

    1976-01-01

    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and to provide a basis for statistical analysis of quantitative chromosome measurement data are described.

  15. Chromosomal microarray analysis as the first-tier test for the identification of pathogenic copy number variants in chromosome 9 pericentric regions and its challenge.

    PubMed

    Wang, Jia-Chi; Boyar, Fatih Z

    2016-01-01

    Chromosomal microarray analysis (CMA) has been recommended and practiced routinely in the large reference laboratories of U.S.A. as the first-tier test for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Using CMA as a diagnostic tool and without a routine setting of fluorescence in situ hybridization with labeled bacterial artificial chromosome probes (BAC-FISH) in the large reference laboratories becomes a challenge in the characterization of chromosome 9 pericentric region. This region has a very complex genomic structure and contains a variety of heterochromatic and euchromatic polymorphic variants. These variants were usually studied by G-banding, C-banding and BAC-FISH analysis. Chromosomal microarray analysis (CMA) was not recommended since it may lead to false positive results. Here, we presented a cohort of four cases, in which high-resolution CMA was used as the first-tier test or simultaneously with G-banding analysis on the proband to identify pathogenic copy number variants (CNVs) in the whole genome. CMA revealed large pathogenic CNVs from chromosome 9 in 3 cases which also revealed different G-banding patterns between the two chromosome 9 homologues. Although we demonstrated that high-resolution CMA played an important role in the identification of pathogenic copy number variants in chromosome 9 pericentric regions, the lack of BAC-FISH analysis or other useful tools renders significant challenges in the characterization of chromosome 9 pericentric regions. None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.

  16. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  17. [Increasing the resolution of chromosome analysis using pyrido[1,2alpha]benzimidazoles].

    PubMed

    Rachinskaia, O A; Popov, K V; Ryzvanovich, G A; Bol'sheva, N L; Begunov, R S; Iurkevich, O Iu; Zelenin, A V; Muravlenko, O V

    2012-10-01

    We studied the influence of three derivatives of pyrido[1,2alpha]benzimidazoles (PBIs), which have DNA-intercalating properties, on plant mitotic chromosome condensation, in order to increase the resolution of chromosome analysis. The efficiency of the influence of these agents was assessed using the median chromosome length on chromosome slides, as well as by the number and size of chromosome DAPI bands. We used the third chromosome of Linum grandiflorum Desf. in these experiments. The chromosome was identified on the slides using its DAPI band pattern and a molecular marker, viz., the 5S rDNA site, which is located in the proximal region of the long arm of the chromosome. The influence of the well-known 9-aminoacridine (9-AMA) DNA intercalator, which is widely used in karyotype studies of short-chromosome organisms, was used as a control in all of the experiments. It was found that the influence of each of the three PBIs in the study on the root meristem of L. grandiflorum resulted in an increase in the median length of the third chromosome, the linear centromeric DAPI band size, and the number ofintercalary DAPI bands. All three PBIs acted more efficiently than 9-AMA. The median chromosome length was increased by 15-40% and the number of intercalary bands increased by 1.5-3 times after PBI treatment, as compared to 9-AMA treatment. At the same time, 7-CF3-PBI, in a similar manner to 9-AMA, did not change the relative size of the centromeric DAPI band, while 7-NH2-PBI and 7-CF3-9-NH2-PBI gradually increased this parameter. It is concluded that these substances can be used as intercalating agents in cytogenetic studies in order to increase the resolution of chromosome analysis.

  18. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    PubMed Central

    2012-01-01

    Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these

  19. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    PubMed

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the

  20. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    PubMed

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  1. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  2. Quantitative Analysis of Chromosome Condensation in Fission Yeast

    PubMed Central

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota

    2013-01-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988

  3. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  4. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich

    1999-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  5. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1999-03-30

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  6. Homozygosity Mapping Identifies an Additional Locus for Wolfram Syndrome on Chromosome 4q

    PubMed Central

    El-Shanti, Hatem; Lidral, Andrew C.; Jarrah, Nadim; Druhan, Lawrence; Ajlouni, Kamel

    2000-01-01

    Wolfram syndrome, which is sometimes referred to as “DIDMOAD” (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), is an autosomal recessive neurodegenerative disorder for which only insulin-dependent diabetes mellitus and optic atrophy are necessary to make the diagnosis. Researchers have mapped Wolfram syndrome to chromosome 4p16.1, and, recently, a gene encoding a putative transmembrane protein has been cloned and mutations have been identified in patients. To pursue the possibility of locus heterogeneity, 16 patients from four different families were recruited. These patients, who have the Wolfram syndrome phenotype, also have additional features that have not previously been reported. There is an absence of diabetes insipidus in all affected family members. In addition, several patients have profound upper gastrointestinal ulceration and bleeding. With the use of three microsatellite markers (D4S432, D4S3023, and D4S2366) reported to be linked to the chromosome 4p16.1 locus, we significantly excluded linkage in three of the four families. The two affected individuals in one family showed homozygosity for all three markers from the region of linkage on chromosome 4p16.1. For the other three families, genetic heterogeneity for Wolfram syndrome was verified by demonstration of linkage to chromosome 4q22-24. In conclusion, we report the unique clinical findings and linkage-analysis results of 16 patients with Wolfram syndrome and provide further evidence for the genetic heterogeneity of this disorder. We also provide data on a new locus that plays a role in the etiology of insulin-dependent diabetes mellitus. PMID:10739754

  7. Sequence analysis of cultivated strawberry (Fragaria × ananassa Duch.) using microdissected single somatic chromosomes.

    PubMed

    Yanagi, Tomohiro; Shirasawa, Kenta; Terachi, Mayuko; Isobe, Sachiko

    2017-01-01

    Cultivated strawberry ( Fragaria  ×  ananassa Duch.) has homoeologous chromosomes because of allo-octoploidy. For example, two homoeologous chromosomes that belong to different sub-genome of allopolyploids have similar base sequences. Thus, when conducting de novo assembly of DNA sequences, it is difficult to determine whether these sequences are derived from the same chromosome. To avoid the difficulties associated with homoeologous chromosomes and demonstrate the possibility of sequencing allopolyploids using single chromosomes, we conducted sequence analysis using microdissected single somatic chromosomes of cultivated strawberry. Three hundred and ten somatic chromosomes of the Japanese octoploid strawberry 'Reiko' were individually selected under a light microscope using a microdissection system. DNA from 288 of the dissected chromosomes was successfully amplified using a DNA amplification kit. Using next-generation sequencing, we decoded the base sequences of the amplified DNA segments, and on the basis of mapping, we identified DNA sequences from 144 samples that were best matched to the reference genomes of the octoploid strawberry, F.  ×  ananassa , and the diploid strawberry, F. vesca . The 144 samples were classified into seven pseudo-molecules of F. vesca . The coverage rates of the DNA sequences from the single chromosome onto all pseudo-molecular sequences varied from 3 to 29.9%. We demonstrated an efficient method for sequence analysis of allopolyploid plants using microdissected single chromosomes. On the basis of our results, we believe that whole-genome analysis of allopolyploid plants can be enhanced using methodology that employs microdissected single chromosomes.

  8. Accommodating Chromosome Inversions in Linkage Analysis

    PubMed Central

    Chen, Gary K.; Slaten, Erin; Ophoff, Roel A.; Lange, Kenneth

    2006-01-01

    This work develops a population-genetics model for polymorphic chromosome inversions. The model precisely describes how an inversion changes the nature of and approach to linkage equilibrium. The work also describes algorithms and software for allele-frequency estimation and linkage analysis in the presence of an inversion. The linkage algorithms implemented in the software package Mendel estimate recombination parameters and calculate the posterior probability that each pedigree member carries the inversion. Application of Mendel to eight Centre d'Étude du Polymorphisme Humain pedigrees in a region containing a common inversion on 8p23 illustrates its potential for providing more-precise estimates of the location of an unmapped marker or trait gene. Our expanded cytogenetic analysis of these families further identifies inversion carriers and increases the evidence of linkage. PMID:16826515

  9. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  10. Chromosome aberration analysis in atomic bomb survivors and Thorotrast patients using two- and three-colour chromosome painting of chromosomal subsets.

    PubMed

    Tanaka, K; Popp, S; Fischer, C; Van Kaick, G; Kamada, N; Cremer, T; Cremer, C

    1996-07-01

    Chromosomal translocations in peripheral lymphocytes of three healthy Hiroshima atomic (A)-bomb survivors, as well as three Thorotrast patients and two non-irradiated age-matched control persons from the German Thorotrast study were studied by two- and three-colour fluorescence in situ hybridization (chromosome painting) with various combinations of whole chromosome composite probes, including chromosomes 1, 2, 3, 4, 6, 7, 8, 9 and 12. Translocation frequencies detected by chromosome painting in cells of the A-bomb survivors were compared with results obtained by G-banding. A direct comparison was made, i.e. only those cells with simple translocations or complex aberrations detected by G-banding were taken into consideration which in principle could be detected also with the respective painting combination. The statistical analysis revealed no significant differences from a 1:1 relationship between the frequencies of aberrant cells obtained by both methods. The use of genomic translocation frequencies estimated from subsets of chromosomes for biological dosimetry is discussed in the light of evidence that chromosomes occupy distinct territories and are variably arranged in human lymphocyte nuclei. This territorial organization of interphase chromosomes implies that translocations will be restricted to chromatin located at the periphery of adjacent chromosome territories.

  11. [Analysis on genetic polymorphism of 5 STR loci selected from X chromosome].

    PubMed

    Liu, Qi-ji; Gong, Yao-qin; Zhang, Xi-yu; Gao, Gui-min; Li, Jiang-xia; Guo, Yi-shou

    2005-02-01

    To select short tandem repeats(STR) from X chromosome. STR is a universal genetic marker that has changeable polymorphism and stable heredity in human genome. It is a specific DNA segment composed of 2-6 base pairs as its core sequence. It is an ideal DNA marker used in linkage analysis and gene mapping. In this study, 8 short tandem repeats were selected from two genomic clones on X chromosome by using BCM Search Launcher. Primers amplifying the STR loci were designed by using Primer 3.0 according to the unique sequence flanking the STRs. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five of these STRs were polymorphic. Chi-square test indicated that the distribution of genotypes agreed with Hardy-Weinberg equilibrium (P>0.05). Five polymorphic short tandem repeats have been identified on chromosome X and will be useful for linkage analysis and gene mapping.

  12. Vibrio chromosomes share common history.

    PubMed

    Kirkup, Benjamin C; Chang, LeeAnn; Chang, Sarah; Gevers, Dirk; Polz, Martin F

    2010-05-10

    While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA) for one chromosome to be applied equally to both chromosomes.

  13. Prospective chromosome analysis of 3429 amniocentesis samples in China using copy number variation sequencing.

    PubMed

    Wang, Jing; Chen, Lin; Zhou, Cong; Wang, Li; Xie, Hanbin; Xiao, Yuanyuan; Zhu, Hongmei; Hu, Ting; Zhang, Zhu; Zhu, Qian; Liu, Zhiying; Liu, Shanlin; Wang, He; Xu, Mengnan; Ren, Zhilin; Yu, Fuli; Cram, David S; Liu, Hongqian

    2018-05-28

    Next generation sequencing (NGS) is emerging as a viable alternative to chromosome microarray analysis for the diagnosis of chromosome disease syndromes. One NGS methodology, copy number variation sequencing (CNV-Seq), has been shown to deliver high reliability, accuracy and reproducibility for detection of fetal CNVs in prenatal samples. However, its clinical utility as a first tier diagnostic method has yet to be demonstrated in a large cohort of pregnant women referred for fetal chromosome testing. To evaluate CNV-Seq as a first tier diagnostic method for detection of fetal chromosome anomalies in a general population of pregnant women with high-risk prenatal indications. Prospective analysis of 3429 pregnant women referred for amniocentesis and fetal chromosome testing for different risk indications, including advanced maternal age (AMA), high-risk maternal serum screening (HR-MSS), and positivity for an ultrasound soft marker (USM). Amniocentesis was performed by standard procedures. Amniocyte DNA was analyzed by CNV-Seq with a chromosome resolution of 0.1 Mb. Fetal chromosome anomalies including whole chromosome aneuploidy and segmental imbalances were independently confirmed by gold standard cytogenetic and molecular methods and their pathogenicity determined following guidelines of the American College of Medical Genetics for sequence variants. Clear interpretable CNV-Seq results were obtained for all 3429 amniocentesis samples. CNV-Seq identified 3293 (96%) samples with a normal molecular karyotype and 136 samples (4%) with an altered molecular karyotype. A total of 146 fetal chromosome anomalies were detected, comprising 46 whole chromosome aneuploidies (pathogenic), 29 submicroscopic microdeletions/microduplications with known or suspected associations with chromosome disease syndromes (pathogenic), 22 other microdeletions/microduplications (likely pathogenic) and 49 variants of uncertain significance (VUS). Overall, the cumulative frequency of

  14. Non-invasive risk assessment of fetal sex chromosome aneuploidy through directed analysis and incorporation of fetal fraction.

    PubMed

    Hooks, J; Wolfberg, A J; Wang, E T; Struble, C A; Zahn, J; Juneau, K; Mohseni, M; Huang, S; Bogard, P; Song, K; Oliphant, A; Musci, T J

    2014-05-01

    To assess the performance of a directed chromosomal analysis approach in the prenatal evaluation of fetal sex chromosome aneuploidy. We analyzed 432 frozen maternal plasma samples obtained from patients prior to undergoing fetal diagnostic testing. The cohort included women greater than 18 years of age with a singleton pregnancy of greater than 10 weeks gestation. Samples were analyzed using a chromosome-selective approach (DANSR(TM) ) and a risk algorithm that incorporates fetal fraction (FORTE(TM) ). The cohort included 34 cases of sex chromosome aneuploidy. The assay correctly identified 26 of 27 (92.6%) cases of Monosomy X, one case of XXX, and all six cases of XXY. There were four false positive cases of sex chromosome aneuploidy among 380 euploid cases for an overall false positive rate of less than 1%. Analysis of the risk for sex chromosome aneuploidies can be accomplished with a targeted assay with high sensitivity. © 2014 John Wiley & Sons, Ltd.

  15. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat.

    PubMed

    Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A

    2016-11-01

    Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.

  16. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  17. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by

  18. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places.

    PubMed

    van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J

    1998-06-01

    DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.

  19. Preparation and Fluorescent Analysis of Plant Metaphase Chromosomes.

    PubMed

    Schwarzacher, Trude

    2016-01-01

    Good preparations are essential for informative analysis of both somatic and meiotic chromosomes, cytogenetics, and cell divisions. Fluorescent chromosome staining allows even small chromosomes to be visualized and counted, showing their morphology. Aneuploidies and polyploidies can be established for species, populations, or individuals while changes occurring in breeding lines during hybridization or tissue culture and transformation protocols can be assessed. The process of division can be followed during mitosis and meiosis including pairing and chiasma distribution, as well as DNA organization and structure during the evolution of chromosomes can be studied. This chapter presents protocols for pretreatment and fixation of material, including tips of how to grow plants to get good and healthy meristem with many divisions. The chromosome preparation technique is described using proteolytic enzymes, but acids can be used instead. Chromosome slide preparations are suitable for fluorochrome staining for fast screening (described in the chapter) or fluorescent in situ hybridization (see Schwarzacher and Heslop-Harrison, In situ hybridization. BIOS Scientific Publishers, Oxford, 2000).

  20. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  1. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances.

    PubMed

    Iourov, Ivan Y; Vorsanova, Svetlana G; Voinova, Victoria Y; Yurov, Yuri B

    2015-01-01

    In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. Using array comparative genomic hybridization, an interstitial deletion of 3p22.1p21.31 (~2.5 Mb in size) in a child with Asperger's syndrome, seborrheic dermatitis and chronic pancreatitis was detected. Original bioinformatic approach to the prioritization of candidate genes/processes identified CCK (cholecystokinin) as a candidate gene for AS. In addition to processes associated with deleted genes, bioinformatic analysis of CCK gene interactome indicated that zinc deficiency might be a pathogenic mechanism in this case. This suggestion was supported by plasma zinc concentration measurements. The increase of zinc intake produced a rise in zinc plasma concentration and the improvement in the patient's condition. Our study supported previous linkage findings and had suggested a new candidate gene in AS. Moreover, bioinformatic analysis identified the pathogenic mechanism, which was used to propose a therapeutic strategy for manifestations of the deletion. The relative success of this strategy allows speculating that therapeutic or dietary normalization of metabolic processes altered by a chromosome imbalance or genomic copy number variations may be a way for treating at least a small proportion of cases of these presumably incurable genetic conditions.

  2. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing.

    PubMed

    Zhu, Xiangyu; Li, Jie; Ru, Tong; Wang, Yaping; Xu, Yan; Yang, Ying; Wu, Xing; Cram, David S; Hu, Yali

    2016-04-01

    To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  3. PCR-based karyotyping of Anopheles gambiae inversion 2Rj identifies the BAMAKO chromosomal form.

    PubMed

    Coulibaly, Mamadou B; Pombi, Marco; Caputo, Beniamino; Nwakanma, Davis; Jawara, Musa; Konate, Lassana; Dia, Ibrahima; Fofana, Abdrahamane; Kern, Marcia; Simard, Frédéric; Conway, David J; Petrarca, Vincenzo; della Torre, Alessandra; Traoré, Sékou; Besansky, Nora J

    2007-10-01

    The malaria vector Anopheles gambiae is polymorphic for chromosomal inversions on the right arm of chromosome 2 that segregate nonrandomly between assortatively mating populations in West Africa. One such inversion, 2Rj, is associated with the BAMAKO chromosomal form endemic to southern Mali and northern Guinea Conakry near the Niger River. Although it exploits a unique ecology and both molecular and chromosomal data suggest reduced gene flow between BAMAKO and other A. gambiae populations, no molecular markers exist to identify this form. To facilitate study of the BAMAKO form, a PCR assay for molecular karyotyping of 2Rj was developed based on sequences at the breakpoint junctions. The assay was extensively validated using more than 700 field specimens whose karyotypes were determined in parallel by cytogenetic and molecular methods. As inversion 2Rj also occurs in SAVANNA populations outside the geographic range of BAMAKO, samples were tested from Senegal, Cameroon and western Guinea Conakry as well as from Mali. In southern Mali, where 2Rj polymorphism in SAVANNA populations was very low and most of the 2Rj homozygotes were found in BAMAKO karyotypes, the molecular and cytogenetic methods were almost perfectly congruent. Elsewhere agreement between the methods was much poorer, as the molecular assay frequently misclassified 2Rj heterozygotes as 2R+j standard homozygotes. Molecular karyotyping of 2Rj is robust and accurate on 2R+j standard and 2Rj inverted homozygotes. Therefore, the proposed approach overcomes the lack of a rapid tool for identifying the BAMAKO form across developmental stages and sexes, and opens new perspectives for the study of BAMAKO ecology and behaviour. On the other hand, the method should not be applied for molecular karyotyping of j-carriers within the SAVANNA chromosomal form.

  4. Fluorescence imaging of chromosomal DNA using click chemistry

    NASA Astrophysics Data System (ADS)

    Ishizuka, Takumi; Liu, Hong Shan; Ito, Kenichiro; Xu, Yan

    2016-09-01

    Chromosome visualization is essential for chromosome analysis and genetic diagnostics. Here, we developed a click chemistry approach for multicolor imaging of chromosomal DNA instead of the traditional dye method. We first demonstrated that the commercially available reagents allow for the multicolor staining of chromosomes. We then prepared two pro-fluorophore moieties that served as light-up reporters to stain chromosomal DNA based on click reaction and visualized the clear chromosomes in multicolor. We applied this strategy in fluorescence in situ hybridization (FISH) and identified, with high sensitivity and specificity, telomere DNA at the end of the chromosome. We further extended this approach to observe several basic stages of cell division. We found that the click reaction enables direct visualization of the chromosome behavior in cell division. These results suggest that the technique can be broadly used for imaging chromosomes and may serve as a new approach for chromosome analysis and genetic diagnostics.

  5. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    PubMed

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  6. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  7. No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis.

    PubMed

    Loley, Christina; Alver, Maris; Assimes, Themistocles L; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C; Kanoni, Stavroula; Kleber, Marcus E; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S; Beutner, Frank; Bottinger, Erwin P; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B; Hall, Alistair S; Hamsten, Anders; Hazen, Stanley L; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K E; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H; Stewart, Alexandre F R; Thompson, John R; Zalloua, Pierre A; Chambers, John C; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J; Kooner, Jaspal S; Lehtimäki, Terho; Loos, Ruth J F; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P; Ripatti, Samuli; Sanghera, Dharambir K; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R

    2016-10-12

    In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.

  8. Cryptic breakpoint identified by whole-genome mate-pair sequencing in a rare paternally inherited complex chromosomal rearrangement.

    PubMed

    Aristidou, Constantia; Theodosiou, Athina; Ketoni, Andria; Bak, Mads; Mehrjouy, Mana M; Tommerup, Niels; Sismani, Carolina

    2018-01-01

    Precise characterization of apparently balanced complex chromosomal rearrangements in non-affected individuals is crucial as they may result in reproductive failure, recurrent miscarriages or affected offspring. We present a family, where the non-affected father and daughter were found, using FISH and karyotyping, to be carriers of a three-way complex chromosomal rearrangement [t(6;7;10)(q16.2;q34;q26.1), de novo in the father]. The family suffered from two stillbirths, one miscarriage, and has a son with severe intellectual disability. In the present study, the family was revisited using whole-genome mate-pair sequencing. Interestingly, whole-genome mate-pair sequencing revealed a cryptic breakpoint on derivative (der) chromosome 6 rendering the rearrangement even more complex. FISH using a chromosome (chr) 6 custom-designed probe and a chr10 control probe confirmed that the interstitial chr6 segment, created by the two chr6 breakpoints, was translocated onto der(10). Breakpoints were successfully validated with Sanger sequencing, and small imbalances as well as microhomology were identified. Finally, the complex chromosomal rearrangement breakpoints disrupted the SIM1 , GRIK2 , CNTNAP2 , and PTPRE genes without causing any phenotype development. In contrast to the majority of maternally transmitted complex chromosomal rearrangement cases, our study investigated a rare case where a complex chromosomal rearrangement, which most probably resulted from a Type IV hexavalent during the pachytene stage of meiosis I, was stably transmitted from a fertile father to his non-affected daughter. Whole-genome mate-pair sequencing proved highly successful in identifying cryptic complexity, which consequently provided further insight into the meiotic segregation of chromosomes and the increased reproductive risk in individuals carrying the specific complex chromosomal rearrangement. We propose that such complex rearrangements should be characterized in detail using a combination

  9. A new approach to chromosome-wide analysis of X-linked markers identifies new associations in Asian and European case-parent triads of orofacial clefts

    PubMed Central

    Gjerdevik, Miriam; Haaland, Øystein A.; Romanowska, Julia; Lie, Rolv T.

    2017-01-01

    Background GWAS discoveries on the X-chromosome are underrepresented in the literature primarily because the analytical tools that have been applied were originally designed for autosomal markers. Our objective here is to employ a new robust and flexible tool for chromosome-wide analysis of X-linked markers in complex traits. Orofacial clefts are good candidates for such analysis because of the consistently observed excess of females with cleft palate only (CPO) and excess of males with cleft lip with or without cleft palate (CL/P). Methods Genotypes for 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European isolated cleft triads were available from a previously published GWAS. The R-package HAPLIN enables genome-wide–level analyses as well as statistical power simulations for a range of biologic scenarios. We analyzed isolated CL/P and isolated CPO for each ethnicity in HAPLIN, using a sliding-window approach to haplotype analysis and two different statistical models, with and without X-inactivation in females. Results There was a larger number of associations in the Asian versus the European sample, and similar to previous reports that have analyzed the same GWAS dataset using different methods, we identified associations with EFNB1/PJA1 and DMD. In addition, new associations were detected with several other genes, among which KLHL4, TBX22, CPXCR1 and BCOR were noteworthy because of their roles in clefting syndromes. A few of the associations were only detected by one particular X-inactivation model, whereas a few others were only detected in one sex. Discussion/Conclusion We found new support for the involvement of X-linked variants in isolated clefts. The associations were specific for ethnicity, sex and model parameterization, highlighting the need for flexible tools that are capable of detecting and estimating such effects. Further efforts are needed to verify and elucidate the potential roles of EFNB1/PJA1, KLHL4, TBX22, CPXCR1 and BCOR in isolated

  10. Flow analysis of human chromosome sets by means of mixing-stirring device

    NASA Astrophysics Data System (ADS)

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.

    1997-05-01

    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  11. Applying deep learning technology to automatically identify metaphase chromosomes using scanning microscopic images: an initial investigation

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin

    2016-03-01

    Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.

  12. Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

    PubMed Central

    Murabito, Joanne M.; White, Charles C.; Kavousi, Maryam; Sun, Yan V.; Feitosa, Mary F.; Nambi, Vijay; Lamina, Claudia; Schillert, Arne; Coassin, Stefan; Bis, Joshua C.; Broer, Linda; Crawford, Dana C.; Franceschini, Nora; Frikke-Schmidt, Ruth; Haun, Margot; Holewijn, Suzanne; Huffman, Jennifer E.; Hwang, Shih-Jen; Kiechl, Stefan; Kollerits, Barbara; Montasser, May E.; Nolte, Ilja M.; Rudock, Megan E.; Senft, Andrea; Teumer, Alexander; van der Harst, Pim; Vitart, Veronique; Waite, Lindsay L.; Wood, Andrew R.; Wassel, Christina L.; Absher, Devin M.; Allison, Matthew A.; Amin, Najaf; Arnold, Alice; Asselbergs, Folkert W.; Aulchenko, Yurii; Bandinelli, Stefania; Barbalic, Maja; Boban, Mladen; Brown-Gentry, Kristin; Couper, David J.; Criqui, Michael H.; Dehghan, Abbas; Heijer, Martin den; Dieplinger, Benjamin; Ding, Jingzhong; Dörr, Marcus; Espinola-Klein, Christine; Felix, Stephan B.; Ferrucci, Luigi; Folsom, Aaron R.; Fraedrich, Gustav; Gibson, Quince; Goodloe, Robert; Gunjaca, Grgo; Haltmayer, Meinhard; Heiss, Gerardo; Hofman, Albert; Kieback, Arne; Kiemeney, Lambertus A.; Kolcic, Ivana; Kullo, Iftikhar J.; Kritchevsky, Stephen B.; Lackner, Karl J.; Li, Xiaohui; Lieb, Wolfgang; Lohman, Kurt; Meisinger, Christa; Melzer, David; Mohler, Emile R; Mudnic, Ivana; Mueller, Thomas; Navis, Gerjan; Oberhollenzer, Friedrich; Olin, Jeffrey W.; O’Connell, Jeff; O’Donnell, Christopher J.; Palmas, Walter; Penninx, Brenda W.; Petersmann, Astrid; Polasek, Ozren; Psaty, Bruce M.; Rantner, Barbara; Rice, Ken; Rivadeneira, Fernando; Rotter, Jerome I.; Seldenrijk, Adrie; Stadler, Marietta; Summerer, Monika; Tanaka, Toshiko; Tybjaerg-Hansen, Anne; Uitterlinden, Andre G.; van Gilst, Wiek H.; Vermeulen, Sita H.; Wild, Sarah H.; Wild, Philipp S.; Willeit, Johann; Zeller, Tanja; Zemunik, Tatijana; Zgaga, Lina; Assimes, Themistocles L.; Blankenberg, Stefan; Boerwinkle, Eric; Campbell, Harry; Cooke, John P.; de Graaf, Jacqueline; Herrington, David; Kardia, Sharon L. R.; Mitchell, Braxton D.; Murray, Anna; Münzel, Thomas; Newman, Anne; Oostra, Ben A.; Rudan, Igor; Shuldiner, Alan R.; Snieder, Harold; van Duijn, Cornelia M.; Völker, Uwe; Wright, Alan F.; Wichmann, H.-Erich; Wilson, James F.; Witteman, Jacqueline C.M.; Liu, Yongmei; Hayward, Caroline; Borecki, Ingrid B.; Ziegler, Andreas; North, Kari E.; Cupples, L. Adrienne; Kronenberg, Florian

    2012-01-01

    Background Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts. Methods and Results Continuous ABI and PAD (ABI≤0.9) phenotypes adjusted for age and sex were examined. Each study conducted genotyping and imputed data to the ~2.5 million SNPs in HapMap. Linear and logistic regression models were used to test each SNP for association with ABI and PAD using additive genetic models. Study-specific data were combined using fixed-effects inverse variance weighted meta-analyses. There were a total of 41,692 participants of European ancestry (~60% women, mean ABI 1.02 to 1.19), including 3,409 participants with PAD and with GWAS data available. In the discovery meta-analysis, rs10757269 on chromosome 9 near CDKN2B had the strongest association with ABI (β= −0.006, p=2.46x10−8). We sought replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical samples (n=16,717). The association for rs10757269 strengthened in the combined discovery and replication analysis (p=2.65x10−9). No other SNP associations for ABI or PAD achieved genome-wide significance. However, two previously reported candidate genes for PAD and one SNP associated with coronary artery disease (CAD) were associated with ABI : DAB21P (rs13290547, p=3.6x10−5); CYBA (rs3794624, p=6.3x10−5); and rs1122608 (LDLR, p=0.0026). Conclusions GWAS in more than 40,000 individuals identified one genome-wide significant association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for CAD are associated with ABI. PMID:22199011

  13. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    PubMed Central

    Mongue, Andrew J.; Nguyen, Petr; Voleníková, Anna; Walters, James R.

    2017-01-01

    We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species), in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics. PMID:28839116

  14. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    PubMed

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  15. Identification of Prostate Cancer Predisposition Genes on the Y Chromosome

    DTIC Science & Technology

    2017-10-01

    sequencing was submitted. We used available Utah data for ~1,000 Y chromosome SNPs on 80 high risk Y chromosomes and 150 low risk Y chromosomes with some Y...chromosome genotype data available . The set of ~1,000 SNPs was used to perform a phylogenetic analysis of the high vs low r isk Y chromosomes; some...SNPs on a set of 80 high risk Y chromosomes and a set of 150 low risk Y chromosomes with some Y chromosome genotype data available . We identified

  16. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man

    PubMed Central

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms. PMID:24611143

  17. Ulcerative colitis loci on chromosomes 1p36 and 12q15 identified by genome-wide association study

    PubMed Central

    Silverberg, Mark S.; Cho, Judy H.; Rioux, John D.; McGovern, Dermot P.B.; Wu, Jing; Annese, Vito; Achkar, Jean-Paul; Goyette, Philippe; Scott, Regan; Xu, Wei; Barmada, M. Michael; Klei, Lambertus; Daly, Mark J.; Abraham, Clara; Bayless, Theodore M.; Bossa, Fabrizio; Griffiths, Anne M.; Ippoliti, Andrew F.; Lahaie, Raymond G.; Latiano, Anna; Paré, Pierre; Proctor, Deborah D.; Regueiro, Miguel D.; Steinhart, A. Hillary; Targan, Stephan R.; Schumm, L. Philip; Kistner, Emily O.; Lee, Annette T.; Gregersen, Peter K.; Rotter, Jerome I.; Brant, Steven R.; Taylor, Kent D.; Roeder, Kathryn; Duerr, Richard H.

    2008-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon that presents as diarrhea and gastrointestinal bleeding. We performed a genome-wide association study using DNA samples from 1,052 individuals with ulcerative colitis and pre-existing data from 2,571 controls, all of European ancestry. In an analysis that controlled for gender and population structure, ulcerative colitis loci attaining genome-wide significance and subsequent replication in two independent populations were identified on chromosomes 1p36 (rs6426833, combined P = 5.1×10−13, combined OR = 0.73) and 12q15 (rs1558744, combined P = 2.5×10−12, combined OR = 1.35). In addition, combined genome-wide significant evidence for association was found in a region spanning BTNL2 to HLA-DQB1 on chromosome 6p21 (rs2395185, combined P = 1.0×10−16, combined OR = 0.66) and at the IL23R locus on chromosome 1p31 (rs11209026, combined P = 1.3×10−8, combined OR = 0.56; rs10889677, combined P = 1.3×10−8, combined OR = 1.29). PMID:19122664

  18. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome.

    PubMed

    Deakin, Janine E; Edwards, Melanie J; Patel, Hardip; O'Meally, Denis; Lian, Jinmin; Stenhouse, Rachael; Ryan, Sam; Livernois, Alexandra M; Azad, Bhumika; Holleley, Clare E; Li, Qiye; Georges, Arthur

    2016-06-10

    Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. Anchoring of the dragon genome has provided substantial insight into

  19. No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis

    PubMed Central

    Loley, Christina; Alver, Maris; Assimes, Themistocles L.; Bjonnes, Andrew; Goel, Anuj; Gustafsson, Stefan; Hernesniemi, Jussi; Hopewell, Jemma C.; Kanoni, Stavroula; Kleber, Marcus E.; Lau, King Wai; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Nelson, Christopher P.; Nikpay, Majid; Qu, Liming; Salfati, Elias; Scholz, Markus; Tukiainen, Taru; Willenborg, Christina; Won, Hong-Hee; Zeng, Lingyao; Zhang, Weihua; Anand, Sonia S.; Beutner, Frank; Bottinger, Erwin P.; Clarke, Robert; Dedoussis, George; Do, Ron; Esko, Tõnu; Eskola, Markku; Farrall, Martin; Gauguier, Dominique; Giedraitis, Vilmantas; Granger, Christopher B.; Hall, Alistair S.; Hamsten, Anders; Hazen, Stanley L.; Huang, Jie; Kähönen, Mika; Kyriakou, Theodosios; Laaksonen, Reijo; Lind, Lars; Lindgren, Cecilia; Magnusson, Patrik K. E.; Marouli, Eirini; Mihailov, Evelin; Morris, Andrew P.; Nikus, Kjell; Pedersen, Nancy; Rallidis, Loukianos; Salomaa, Veikko; Shah, Svati H.; Stewart, Alexandre F. R.; Thompson, John R.; Zalloua, Pierre A.; Chambers, John C.; Collins, Rory; Ingelsson, Erik; Iribarren, Carlos; Karhunen, Pekka J.; Kooner, Jaspal S.; Lehtimäki, Terho; Loos, Ruth J. F.; März, Winfried; McPherson, Ruth; Metspalu, Andres; Reilly, Muredach P.; Ripatti, Samuli; Sanghera, Dharambir K.; Thiery, Joachim; Watkins, Hugh; Deloukas, Panos; Kathiresan, Sekar; Samani, Nilesh J.; Schunkert, Heribert; Erdmann, Jeanette; König, Inke R.

    2016-01-01

    In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD. PMID:27731410

  20. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study.

    PubMed

    Wang, Yan; Cao, Li; Liang, Dong; Meng, Lulu; Wu, Yun; Qiao, Fengchang; Ji, Xiuqing; Luo, Chunyu; Zhang, Jingjing; Xu, Tianhui; Yu, Bin; Wang, Leilei; Wang, Ting; Pan, Qiong; Ma, Dingyuan; Hu, Ping; Xu, Zhengfeng

    2018-02-01

    Currently, chromosomal microarray analysis is considered the first-tier test in pediatric care and prenatal diagnosis. However, the diagnostic yield of chromosomal microarray analysis for prenatal diagnosis of congenital heart disease has not been evaluated based on a large cohort. Our aim was to evaluate the clinical utility of chromosomal microarray as the first-tier test for chromosomal abnormalities in fetuses with congenital heart disease. In this prospective study, 602 prenatal cases of congenital heart disease were investigated using single nucleotide polymorphism array over a 5-year period. Overall, pathogenic chromosomal abnormalities were identified in 125 (20.8%) of 602 prenatal cases of congenital heart disease, with 52.0% of them being numerical chromosomal abnormalities. The detection rates of likely pathogenic copy number variations and variants of uncertain significance were 1.3% and 6.0%, respectively. The detection rate of pathogenic chromosomal abnormalities in congenital heart disease plus additional structural anomalies (48.9% vs 14.3%, P < .0001) or intrauterine growth retardation group (50.0% vs 14.3%, P = .044) was significantly higher than that in isolated congenital heart disease group. Additionally, the detection rate in congenital heart disease with additional structural anomalies group was significantly higher than that in congenital heart disease with soft markers group (48.9% vs 19.8%, P < .0001). No significant difference was observed in the detection rates between congenital heart disease with additional structural anomalies and congenital heart disease with intrauterine growth retardation groups (48.9% vs 50.0%), congenital heart disease with soft markers and congenital heart disease with intrauterine growth retardation groups (19.8% vs 50.0%), or congenital heart disease with soft markers and isolated congenital heart disease groups (19.8% vs 14.3%). The detection rate in fetuses with congenital heart disease plus mild

  1. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    PubMed

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  2. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  3. Analysis of X chromosome genomic DNA sequence copy number variation associated with premature ovarian failure (POF)

    PubMed Central

    Quilter, C.R.; Karcanias, A.C.; Bagga, M.R.; Duncan, S.; Murray, A.; Conway, G.S.; Sargent, C.A.; Affara, N.A.

    2013-01-01

    BACKGROUND Premature ovarian failure (POF) is a heterogeneous disease defined as amenorrhoea for >6 months before age 40, with an FSH serum level >40 mIU/ml (menopausal levels). While there is a strong genetic association with POF, familial studies have also indicated that idiopathic POF may also be genetically linked. Conventional cytogenetic analyses have identified regions of the X chromosome that are strongly associated with ovarian function, as well as several POF candidate genes. Cryptic chromosome abnormalities that have been missed might be detected by array comparative genomic hybridization. METHODS In this study, samples from 42 idiopathic POF patients were subjected to a complete end-to-end X/Y chromosome tiling path array to achieve a detailed copy number variation (CNV) analysis of X chromosome involvement in POF. The arrays also contained a 1 Mb autosomal tiling path as a reference control. Quantitative PCR for selected genes contained within the CNVs was used to confirm the majority of the changes detected. The expression pattern of some of these genes in human tissue RNA was examined by reverse transcription (RT)–PCR. RESULTS A number of CNVs were identified on both Xp and Xq, with several being shared among the POF cases. Some CNVs fall within known polymorphic CNV regions, and others span previously identified POF candidate regions and genes. CONCLUSIONS The new data reported in this study reveal further discrete X chromosome intervals not previously associated with the disease and therefore implicate new clusters of candidate genes. Further studies will be required to elucidate their involvement in POF. PMID:20570974

  4. CAPER 3.0: A Scalable Cloud-Based System for Data-Intensive Analysis of Chromosome-Centric Human Proteome Project Data Sets.

    PubMed

    Yang, Shuai; Zhang, Xinlei; Diao, Lihong; Guo, Feifei; Wang, Dan; Liu, Zhongyang; Li, Honglei; Zheng, Junjie; Pan, Jingshan; Nice, Edouard C; Li, Dong; He, Fuchu

    2015-09-04

    The Chromosome-centric Human Proteome Project (C-HPP) aims to catalog genome-encoded proteins using a chromosome-by-chromosome strategy. As the C-HPP proceeds, the increasing requirement for data-intensive analysis of the MS/MS data poses a challenge to the proteomic community, especially small laboratories lacking computational infrastructure. To address this challenge, we have updated the previous CAPER browser into a higher version, CAPER 3.0, which is a scalable cloud-based system for data-intensive analysis of C-HPP data sets. CAPER 3.0 uses cloud computing technology to facilitate MS/MS-based peptide identification. In particular, it can use both public and private cloud, facilitating the analysis of C-HPP data sets. CAPER 3.0 provides a graphical user interface (GUI) to help users transfer data, configure jobs, track progress, and visualize the results comprehensively. These features enable users without programming expertise to easily conduct data-intensive analysis using CAPER 3.0. Here, we illustrate the usage of CAPER 3.0 with four specific mass spectral data-intensive problems: detecting novel peptides, identifying single amino acid variants (SAVs) derived from known missense mutations, identifying sample-specific SAVs, and identifying exon-skipping events. CAPER 3.0 is available at http://prodigy.bprc.ac.cn/caper3.

  5. Comprehensive multi-stage linkage analyses identify a locus for adult height on chromosome 3p in a healthy Caucasian population.

    PubMed

    Ellis, Justine A; Scurrah, Katrina J; Duncan, Anna E; Lamantia, Angela; Byrnes, Graham B; Harrap, Stephen B

    2007-04-01

    There have been a number of genome-wide linkage studies for adult height in recent years. These studies have yielded few well-replicated loci, and none have been further confirmed by the identification of associated gene variants. The inconsistent results may be attributable to the fact that few studies have combined accurate phenotype measures with informative statistical modelling in healthy populations. We have performed a multi-stage genome-wide linkage analysis for height in 275 adult sibling pairs drawn randomly from the Victorian Family Heart Study (VFHS), a healthy population-based Caucasian cohort. Height was carefully measured in a standardised fashion on regularly calibrated equipment. Following genome-wide identification of a peak Z-score of 3.14 on chromosome 3 at 69 cM, we performed a fine-mapping analysis of this region in an extended sample of 392 two-generation families. We used a number of variance components models that incorporated assortative mating and shared environment effects, and we observed a peak LOD score of approximately 3.5 at 78 cM in four of the five models tested. We also demonstrated that the most prevalent model in the literature gave the worst fit, and the lowest LOD score (2.9) demonstrating the importance of appropriate modelling. The region identified in this study replicates the results of other genome-wide scans of height and bone-related phenotypes, strongly suggesting the presence of a gene important in bone growth on chromosome 3p. Association analyses of relevant candidate genes should identify the genetic variants responsible for the chromosome 3p linkage signal in our population.

  6. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    PubMed

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  7. Y chromosome STR typing in crime casework.

    PubMed

    Roewer, Lutz

    2009-01-01

    Since the beginning of the nineties the field of forensic Y chromosome analysis has been successfully developed to become commonplace in laboratories working in crime casework all over the world. The ability to identify male-specific DNA renders highly variable Y-chromosomal polymorphisms, the STR sequences, an invaluable addition to the standard panel of autosomal loci used in forensic genetics. The male-specificity makes the Y chromosome especially useful in cases of male/female cell admixture, namely in sexual assault cases. On the other hand, the haploidy and patrilineal inheritance complicates the interpretation of a Y-STR match, because male relatives share for several generations an identical Y-STR profile. Since paternal relatives tend to live in the geographic and cultural territory of their ancestors, the Y chromosome analysis has a potential to make inferences on the population of origin of a given DNA profile. This review addresses the fields of application of Y chromosome haplotyping, the interpretation of results, databasing efforts and population genetics aspects.

  8. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  9. HiCTMap: Detection and analysis of chromosome territory structure and position by high-throughput imaging.

    PubMed

    Jowhar, Ziad; Gudla, Prabhakar R; Shachar, Sigal; Wangsa, Darawalee; Russ, Jill L; Pegoraro, Gianluca; Ried, Thomas; Raznahan, Armin; Misteli, Tom

    2018-06-01

    The spatial organization of chromosomes in the nuclear space is an extensively studied field that relies on measurements of structural features and 3D positions of chromosomes with high precision and robustness. However, no tools are currently available to image and analyze chromosome territories in a high-throughput format. Here, we have developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for the robust and rapid analysis of 2D and 3D chromosome territory positioning in mammalian cells. HiCTMap is a high-throughput imaging-based chromosome detection method which enables routine analysis of chromosome structure and nuclear position. Using an optimized FISH staining protocol in a 384-well plate format in conjunction with a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome territories and their position in 2D and 3D in a large population of cells per experimental condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male and female primary human skin fibroblasts, and show accurate detection of the correct number of chromosomes in the respective genotypes. Given the ability to visualize and quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromosome territory area and volume with high precision and determine the radial position of chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful tool for routine precision mapping of chromosome territories in a wide range of cell types and tissues. Published by Elsevier Inc.

  10. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    PubMed Central

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  11. Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22.

    PubMed

    Parsons, Claire A; Mroczkowski, H Joel; McGuigan, Fiona E A; Albagha, Omar M E; Manolagas, Stavros; Reid, David M; Ralston, Stuart H; Shmookler Reis, Robert J

    2005-11-01

    Bone mineral density (BMD) is a complex trait with a strong genetic component and an important predictor of osteoporotic fracture risk. Here we report the use of a cross-species strategy to identify genes that regulate BMD, proceeding from quantitative trait mapping in mice to association mapping of the syntenic region in the human genome. We identified a quantitative trait locus (QTL) on the mouse X-chromosome for post-maturity change in spine BMD in a cross of SAMP6 and AKR/J mice and conducted association mapping of the syntenic region on human chromosome Xp22. We studied 76 single nucleotide polymorphisms (SNP) from the human region in two sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3100 post-menopausal women. This procedure identified a region of significant association for two adjacent SNP (rs234494 and rs234495) within the Xp22 locus (P<0.001). Individual genotyping for rs234494 in the BMD pools confirmed the presence of an association for alleles (P=0.018) and genotypes (P=0.008). Analysis of rs234494 and rs234495 in 1053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for rs234495 (P=0.01) and for haplotypes defined by both SNP (P=0.002). Our study illustrates that interspecies synteny can be used to identify and refine QTL for complex traits and represents the first example where a human QTL for BMD regulation has been mapped using this approach.

  12. RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement.

    PubMed

    Wang, Zhixiong; Cheng, Yulan; Abraham, John M; Yan, Rong; Liu, Xi; Chen, Wei; Ibrahim, Sariat; Schroth, Gary P; Ke, Xiquan; He, Yulong; Meltzer, Stephen J

    2017-10-15

    Studies of chromosomal rearrangements and fusion transcripts have elucidated mechanisms of tumorigenesis and led to targeted cancer therapies. This study was aimed at identifying novel fusion transcripts in esophageal adenocarcinoma (EAC). To identify new fusion transcripts associated with EAC, targeted RNA sequencing and polymerase chain reaction (PCR) verification were performed in 40 EACs and matched nonmalignant specimens from the same patients. Genomic PCR and Sanger sequencing were performed to find the breakpoint of fusion genes. Five novel in-frame fusion transcripts were identified and verified in 40 EACs and in a validation cohort of 15 additional EACs (55 patients in all): fibroblast growth factor receptor 2 (FGFR2)-GRB2-associated binding protein 2 (GAB2) in 2 of 55 or 3.6%, Niemann-Pick C1 (NPC1)-maternal embryonic leucine zipper kinase (MELK) in 2 of 55 or 3.6%, ubiquitin-specific peptidase 54 (USP54)-calcium/calmodulin dependent protein kinase II γ (CAMK2G) in 2 of 55 or 3.6%, megakaryoblastic leukemia (translocation) 1 (MKL1)-fibulin 1 (FBLN1) in 1 of 55 or 1.8%, and CCR4-NOT transcription complex subunit 2 (CNOT2)-chromosome 12 open reading frame 49 (C12orf49) in 1 of 55 or 1.8%. A genomic analysis indicated that NPC1-MELK arose from a complex interchromosomal translocation event involving chromosomes 18, 3, and 9 with 3 rearrangement points, and this was consistent with chromoplexy. These data indicate that fusion transcripts occur at a stable frequency in EAC. Furthermore, our results indicate that chromoplexy is an underlying mechanism that generates fusion transcripts in EAC. These and other fusion transcripts merit further study as diagnostic markers and potential therapeutic targets in EAC. Cancer 2017;123:3916-24. © 2017 American Cancer Society. © 2017 American Cancer Society.

  13. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  14. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  15. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    USDA-ARS?s Scientific Manuscript database

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  16. Identifying homomorphic sex chromosomes from wild-caught adults with limited genomic resources.

    PubMed

    Brelsford, Alan; Lavanchy, Guillaume; Sermier, Roberto; Rausch, Anna; Perrin, Nicolas

    2017-07-01

    We demonstrate a genotyping-by-sequencing approach to identify homomorphic sex chromosomes and their homolog in a distantly related reference genome, based on noninvasive sampling of wild-caught individuals, in the moor frog Rana arvalis. Double-digest RADseq libraries were generated using buccal swabs from 30 males and 21 females from the same population. Search for sex-limited markers from the unfiltered data set (411 446 RAD tags) was more successful than searches from a filtered data set (33 073 RAD tags) for markers showing sex differences in heterozygosity or in allele frequencies. Altogether, we obtained 292 putatively sex-linked RAD loci, 98% of which point to male heterogamety. We could map 15 of them to the Xenopus tropicalis genome, all but one on chromosome pair 1, which seems regularly co-opted for sex determination among amphibians. The most efficient mapping strategy was a three-step hierarchical approach, where R. arvalis reads were first mapped to a low-coverage genome of Rana temporaria (17 My divergence), then the R. temporaria scaffolds to the Nanorana parkeri genome (90 My divergence), and finally the N. parkeri scaffolds to the X. tropicalis genome (210 My). We validated our conclusions with PCR primers amplifying part of Dmrt1, a candidate sex determination gene mapping to chromosome 1: a sex-diagnostic allele was present in all 30 males but in none of the 21 females. Our approach is likely to be productive in many situations where biological samples and/or genomic resources are limited. © 2016 John Wiley & Sons Ltd.

  17. The gametocidal chromosome as a tool for chromosome manipulation in wheat.

    PubMed

    Endo, T R

    2007-01-01

    Many alien chromosomes have been introduced into common wheat (the genus Triticum) from related wild species (the genus Aegilops). Some alien chromosomes have unique genes that secure their existence in the host by causing chromosome breakage in the gametes lacking them. Such chromosomes or genes, called gametocidal (Gc) chromosomes or Gc genes, are derived from different genomes (C, S, S(l) and M(g)) and belong to three different homoeologous groups 2, 3 and 4. The Gc genes of the C and M(g) genomes induce mild, or semi-lethal, chromosome mutations in euploid and alien addition lines of common wheat. Thus, induced chromosomal rearrangements have been identified and established in wheat stocks carrying deletions of wheat and alien (rye and barley) chromosomes or wheat-alien translocations. The gametocidal chromosomes isolated in wheat to date are reviewed here, focusing on their feature as a tool for chromosome manipulation.

  18. Complex chromosomal rearrangement-a lesson learned from PGS.

    PubMed

    Frumkin, Tsvia; Peleg, Sagit; Gold, Veronica; Reches, Adi; Asaf, Shiri; Azem, Foad; Ben-Yosef, Dalit; Malcov, Mira

    2017-08-01

    The aim of the study is to report a case of non-diagnosed complex chromosomal rearrangement (CCR) identified by preimplantation genetic screening (PGS) followed by preimplantation genetic diagnosis (PGD) which resulted in a pregnancy and delivery of healthy offspring. A 29-year-old woman and her spouse, both diagnosed previously with normal karyotypes, approached our IVF-PGD center following eight early spontaneous miscarriages. PGS using chromosomal microarray analysis (CMA) was performed on biopsied trophectoderm. Fluorescence in situ hybridization (FISH), as well as re-karyotype, were performed on metaphase derived from peripheral blood of the couple. Subsequently, in the following PGD cycle, a total of seven blastocysts underwent CMA. A gain or loss at three chromosomes (3, 7, 9) was identified in six out of seven embryos in the first PGS-CMA cycle. FISH analysis of parental peripheral blood samples demonstrated that the male is a carrier of a CCR involving those chromosomes; this was in spite of a former diagnosis of normal karyotypes for both parents. Re-karyotype verified the complex translocation of 46,XY,t (3;7;9)(q23;q22;q22). Subsequently, in the following cycle, a total of seven blastocysts underwent PGD-CMA for the identified complex translocation. Two embryos were diagnosed with balanced chromosomal constitution. A single balanced embryo was transferred and pregnancy was achieved, resulting in the birth of a healthy female baby. PGS employing CMA is an efficient method to detect unrevealed chromosomal abnormalities, including complicated cases of CCR. The combined application of array CGH and FISH technologies enables the identification of an increased number of CCR carriers for which PGD is particularly beneficial.

  19. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  20. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  1. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  2. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  3. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  4. Microarray-based comparative genomic hybridization analysis in neonates with congenital anomalies: detection of chromosomal imbalances.

    PubMed

    Emy Dorfman, Luiza; Leite, Júlio César L; Giugliani, Roberto; Riegel, Mariluce

    2015-01-01

    To identify chromosomal imbalances by whole-genome microarray-based comparative genomic hybridization (array-CGH) in DNA samples of neonates with congenital anomalies of unknown cause from a birth defects monitoring program at a public maternity hospital. A blind genomic analysis was performed retrospectively in 35 stored DNA samples of neonates born between July of 2011 and December of 2012. All potential DNA copy number variations detected (CNVs) were matched with those reported in public genomic databases, and their clinical significance was evaluated. Out of a total of 35 samples tested, 13 genomic imbalances were detected in 12/35 cases (34.3%). In 4/35 cases (11.4%), chromosomal imbalances could be defined as pathogenic; in 5/35 (14.3%) cases, DNA CNVs of uncertain clinical significance were identified; and in 4/35 cases (11.4%), normal variants were detected. Among the four cases with results considered causally related to the clinical findings, two of the four (50%) showed causative alterations already associated with well-defined microdeletion syndromes. In two of the four samples (50%), the chromosomal imbalances found, although predicted as pathogenic, had not been previously associated with recognized clinical entities. Array-CGH analysis allowed for a higher rate of detection of chromosomal anomalies, and this determination is especially valuable in neonates with congenital anomalies of unknown etiology, or in cases in which karyotype results cannot be obtained. Moreover, although the interpretation of the results must be refined, this method is a robust and precise tool that can be used in the first-line investigation of congenital anomalies, and should be considered for prospective/retrospective analyses of DNA samples by birth defect monitoring programs. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.

    PubMed

    Ho, Karen S; South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-04-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Assessment of fetal sex chromosome aneuploidy using directed cell-free DNA analysis.

    PubMed

    Nicolaides, Kypros H; Musci, Thomas J; Struble, Craig A; Syngelaki, Argyro; Gil, M M

    2014-01-01

    To examine the performance of chromosome-selective sequencing of cell-free (cf) DNA in maternal blood for assessment of fetal sex chromosome aneuploidies. This was a case-control study of 177 stored maternal plasma samples, obtained before fetal karyotyping at 11-13 weeks of gestation, from 59 singleton pregnancies with fetal sex chromosome aneuploidies (45,X, n = 49; 47,XXX, n = 6; 47,XXY, n = 1; 47,XYY, n = 3) and 118 with euploid fetuses (46,XY, n = 59; 46,XX, n = 59). Digital analysis of selected regions (DANSR™) on chromosomes 21, 18, 13, X and Y was performed and the fetal-fraction optimized risk of trisomy evaluation (FORTE™) algorithm was used to estimate the risk for non-disomic genotypes. Performance was calculated at a risk cut-off of 1:100. Analysis of cfDNA provided risk scores for 172 (97.2%) samples; 4 samples (45,X, n = 2; 46,XY, n = 1; 46,XX, n = 1) had an insufficient fetal cfDNA fraction for reliable testing and 1 case (47,XXX) failed laboratory quality control metrics. The classification was correct in 43 (91.5%) of 47 cases of 45,X, all 5 of 47,XXX, 1 of 47,XXY and 3 of 47,XYY. There were no false-positive results for monosomy X. Analysis of cfDNA by chromosome-selective sequencing can correctly classify fetal sex chromosome aneuploidy with reasonably high sensitivity. © 2013 S. Karger AG, Basel.

  7. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    PubMed

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. Copyright © 2016 the authors 0270-6474/16/362438-11$15.00/0.

  8. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes.

    PubMed

    Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John

    2018-05-29

    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.

  9. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    PubMed

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  10. Discovery of Supernumerary B Chromosomes in Drosophila melanogaster

    PubMed Central

    Bauerly, Elisabeth; Hughes, Stacie E.; Vietti, Dana R.; Miller, Danny E.; McDowell, William; Hawley, R. Scott

    2014-01-01

    B chromosomes are small, heterochromatic chromosomes that are transmitted in a non-Mendelian manner. We have identified a stock of Drosophila melanogaster that recently (within the last decade) acquired an average of 10 B chromosomes per fly. These B chromosomes are transmitted by both males and females and can be maintained for multiple generations in a wild-type genetic background despite the fact that they cause high levels of 4th chromosome meiotic nondisjunction in females. Most curiously, these B chromosomes are mitotically unstable, suggesting either the absence of critical chromosomal sites or the inability of the meiotic or mitotic systems to cope with many additional chromosomes. These B chromosomes also contain centromeres and are primarily composed of the heterochromatic AATAT satellite sequence. Although the AATAT sequence comprises the majority of the 4th chromosome heterochromatin, the B chromosomes lack most, if not all, 4th chromosome euchromatin. Presumably as a consequence of their heterochromatic content, these B chromosomes significantly modify position-effect variegation in two separate reporter systems, acting as enhancers of variegation in one case and suppressors in the other. The identification of B chromosomes in a genetically tractable organism like D. melanogaster will facilitate studies of chromosome evolution and the analysis of the mechanisms by which meiotic and mitotic processes cope with additional chromosomes. PMID:24478336

  11. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  12. Human Autoantibodies Reveal Titin as a Chromosomal Protein

    PubMed Central

    Machado, Cristina; Sunkel, Claudio E.; Andrew, Deborah J.

    1998-01-01

    Assembly of the higher-order structure of mitotic chromosomes is a prerequisite for proper chromosome condensation, segregation and integrity. Understanding the details of this process has been limited because very few proteins involved in the assembly of chromosome structure have been discovered. Using a human autoimmune scleroderma serum that identifies a chromosomal protein in human cells and Drosophila embryos, we cloned the corresponding Drosophila gene that encodes the homologue of vertebrate titin based on protein size, sequence similarity, developmental expression and subcellular localization. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle that may also function as a molecular scaffold for myofibrillar assembly. Molecular analysis and immunostaining with antibodies to multiple titin epitopes indicates that the chromosomal and muscle forms of titin may vary in their NH2 termini. The identification of titin as a chromosomal component provides a molecular basis for chromosome structure and elasticity. PMID:9548712

  13. Broad chromosomal domains of histone modification patterns in C. elegans

    PubMed Central

    Liu, Tao; Rechtsteiner, Andreas; Egelhofer, Thea A.; Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Kolasinska-Zwierz, Paulina; Rosenbaum, Heidi; Shin, Hyunjin; Taing, Scott; Takasaki, Teruaki; Iniguez, A. Leonardo; Desai, Arshad; Dernburg, Abby F.; Kimura, Hiroshi; Lieb, Jason D.; Ahringer, Julie; Strome, Susan; Liu, X. Shirley

    2011-01-01

    Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. PMID:21177964

  14. [Utility of chromosome banding with ALU I enzyme for identifying methylated areas in breast cancer].

    PubMed

    Rojas-Atencio, Alicia; Yamarte, Leonard; Urdaneta, Karelis; Soto-Alvarez, Marisol; Alvarez Nava, Francisco; Cañizalez, Jenny; Quintero, Maribel; Atencio, Raquel; González, Richard

    2012-12-01

    Cancer is a group of disorders characterized by uncontrolled cell growth which is produced by two successive events: increased cell proliferation (tumor or neoplasia) and the invasive capacity of these cells (metastasis). DNA methylation is an epigenetic process which has been involved as an important pathogenic factor of cancer. DNA methylation participates in the regulation of gene expression, directly, by preventing the union of transcription factors, and indirectly, by promoting the "closed" structure of the chromatine. The objectives of this study were to identify hypermethyled chromosomal regions through the use of restriction Alu I endonuclease, and to relate cytogenetically these regions with tumor suppressive gene loci. Sixty peripheral blood samples of females with breast cancer were analyzed. Cell cultures were performed and cytogenetic spreads, previously digested with Alu I enzyme, were stained with Giemsa. Chromosomal centromeric and not centromeric regions were stained in 37% of cases. About 96% of stained hypermethyled chromosomal regions (1q, 2q, 6q) were linked with methylated genes associated with breast cancer. In addition, centromeric regions in chromosomes 3, 4, 8, 13, 14, 15 and 17, usually unstained, were found positive to digestion with Alu I enzime and Giemsa staining. We suggest the importance of this technique for the global visualization of the genome which can find methylated genes related to breast cancer, and thus lead to a specific therapy, and therefore a better therapeutic response.

  15. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci

    PubMed Central

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-01-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  16. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci.

    PubMed

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-06-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10(-15)) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  17. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.

    PubMed

    Shen, Yue; Wang, Yun; Chen, Tai; Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M; Jiang, Hui; French, Christopher E; Nieduszynski, Conrad A; Koszul, Romain; Marston, Adele L; Yuan, Yingjin; Wang, Jian; Bader, Joel S; Dai, Junbiao; Boeke, Jef D; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-03-10

    Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. Copyright © 2017, American Association for the Advancement of Science.

  18. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    PubMed

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  19. Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2.

    PubMed

    Skare, Øivind; Lie, Rolv T; Haaland, Øystein A; Gjerdevik, Miriam; Romanowska, Julia; Gjessing, Håkon K; Jugessur, Astanand

    2018-01-01

    Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" ( DMD , Xp21.2-p21.1), "Fibroblast growth factor 13" ( FGF13 , Xq26.3-q27.1) and "EGF-like domain multiple 6" ( EGFL6 , Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6 , the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" ( OFD1 ) and "Midline 1" ( MID1 )]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust

  20. Undetected sex chromosome aneuploidy by chromosomal microarray.

    PubMed

    Markus-Bustani, Keren; Yaron, Yuval; Goldstein, Myriam; Orr-Urtreger, Avi; Ben-Shachar, Shay

    2012-11-01

    We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting. © 2012 John Wiley & Sons, Ltd.

  1. FISH analysis in the derivation of a 12, 15, 21 complex chromosomal rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, C.K.; Muscolino, D.; Baird, N.

    Cytogenetic analysis was performed for a couple referred for recurrent pregnancy loss. Routine GTG banded studies revealed a 46,XY karyotype for the husband, but in the woman, an apparently balanced complex rearrangement involving chromosomes 12, 15, and 21 was detected. The 46,XX,t(12;15)(q13.3;q23),t(12;21)(q21;q11.2) karyotype is the consequence of 2 translocation events resulting in 3 rearranged chromosomes: (1) a derivative 12 arising from the exchange of the short arms of 12 and 21; (2) a derivative chromosome 15 consisting of segments of the long arms of chromosomes 12 and 15; and (3) a complex derivative chromosome 21 which includes the short armmore » and centromere of 21, and portions of the long arms of both chromosomes 12 and 15. Because the 12;21 translocation occurred at the centromeric region on both chromosomes, it was not possible to cytogenetically differentiate the derivative chromosomes 12 and 21. To clarify this issue, fluorescence in situ hybridization (FISH) was performed utilizing a 13/21 alpha-satellite probe. The location of the FITC signal clearly indicated a chromosome 21 centromere present on the derivative containing portions of all three chromosomes. A family history of spontaneous fetal losses suggested the possibility of a familial translocation. However, the likelihood of transmission of such a complex set of translocations is low, leading to the hypothesis that only one of the translocations was inherited with the second a de novo event in this individual. Karyotype analysis of both parents revealed no cytogenetic anomalies. Therefore, the extremely unusual occurrence of two independent translocations involving 3 chromosomes arose de novo in this patient.« less

  2. Chromosome I duplications in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKim, K.S.; Rose, A.M.

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left halfmore » of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.« less

  3. Parsing the genetic heterogeneity of chromosome 12q susceptibility genes for Alzheimer disease by family-based association analysis.

    PubMed

    Lin, Ping-I; Martin, Eden R; Browning-Large, Carrie A; Schmechel, Donald E; Welsh-Bohmer, Kathleen A; Doraiswamy, P Murali; Gilbert, John R; Haines, Jonathan L; Pericak-Vance, Margaret A

    2006-07-01

    Previous linkage studies have suggested that chromosome 12 may harbor susceptibility genes for late-onset Alzheimer disease (LOAD). No risk genes on chromosome 12 have been conclusively identified yet. We have reported that the linkage evidence for LOAD in a 12q region was significantly increased in autopsy-confirmed families particularly for those showing no linkage to alpha-T catenin gene, a LOAD candidate gene on chromosome 10 [LOD score increased from 0.1 in the autopsy-confirmed subset to 4.19 in the unlinked subset (optimal subset); p<0.0001 for the increase in LOD score], indicating a one-LOD support interval spanning 6 Mb. To further investigate this finding and to identify potential candidate LOAD risk genes for follow-up analysis, we analyzed 99 single nucleotide polymorphisms in this region, for the overall sample, the autopsy-confirmed subset, and the optimal subset, respectively, for comparison. We saw no significant association (p<0.01) in the overall sample. In the autopsy-confirmed subset, the best finding was obtained in the activation transcription factor 7 (ATF7) gene (single-locus association, p=0.002; haplotype association global, p=0.007). In the optimal subset, the best finding was obtained in the hypothetical protein FLJ20436 (FLJ20436) gene (single-locus association, p=0.0026). These results suggest that subset and covariate analyses may be one approach to help identify novel susceptibility genes on chromosome 12q for LOAD.

  4. Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    FISH, mFISH, mBAND, telomere and centromere probes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. High-LET induced damages are mostly a single track effect. Unrejoined chromosome breaks (incomplete exchanges) and complex type aberrations were higher for high-LET. Biosignatures may depend on the method the samples are collected. Recent mBAND analysis has revealed more information about the nature of intra-chromosome exchanges. Whether space flight/microgravity affects radiation-induced chromosome aberration frequencies is still an open question.

  5. Characterizing the chromosomes of the platypus (Ornithorhynchus anatinus).

    PubMed

    McMillan, Daniel; Miethke, Pat; Alsop, Amber E; Rens, Willem; O'Brien, Patricia; Trifonov, Vladimir; Veyrunes, Frederic; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Warren, Wesley; Grützner, Frank; Ferguson-Smith, Malcolm A; Graves, Jennifer A Marshall

    2007-01-01

    Like the unique platypus itself, the platypus genome is extraordinary because of its complex sex chromosome system, and is controversial because of difficulties in identification of small autosomes and sex chromosomes. A 6-fold shotgun sequence of the platypus genome is now available and is being assembled with the help of physical mapping. It is therefore essential to characterize the chromosomes and resolve the ambiguities and inconsistencies in identifying autosomes and sex chromosomes. We have used chromosome paints and DAPI banding to identify and classify pairs of autosomes and sex chromosomes. We have established an agreed nomenclature and identified anchor BAC clones for each chromosome that will ensure unambiguous gene localizations.

  6. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    PubMed

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum.

  7. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    PubMed

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  8. Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

    PubMed Central

    Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659

  9. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    PubMed Central

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  10. Origin of the chromosomal radiation of Madeiran house mice: a microsatellite analysis of metacentric chromosomes

    PubMed Central

    Förster, D W; Mathias, M L; Britton-Davidian, J; Searle, J B

    2013-01-01

    Chromosome races of Mus musculus domesticus are characterised by particular sets of metacentric chromosomes formed by Robertsonian fusions and whole-arm reciprocal translocations. The Atlantic island of Madeira is inhabited by six chromosome races of house mice with 6–9 pairs of metacentric chromosomes. Three of these races are characterised by the metacentric 3.8 also found elsewhere in the distribution of M. m. domesticus, including Denmark and Spain. We investigated the possibility that metacentric 3.8 was introduced to Madeira during the initial colonisation, as this could have ‘seeded' the cascade of chromosomal mutation that is the basis of the extraordinary chromosomal radiation observed on the island. Variation at 24 microsatellite loci mapping to three different chromosomal regions (proximal, interstitial and distal) of mouse chromosomes 3 and 8 was investigated in 179 mice from Madeira, Denmark, Portugal, Spain, Italy and Scotland. Analyses of microsatellite loci closely linked to the centromeres of these chromosomes (‘proximal loci') do not support a common evolutionary origin of metacentric 3.8 among Madeiran, Danish and Spanish mouse populations. Our results suggest that Madeiran mice are genetically more similar to standard karyotype mice from Portugal than to metacentric mice from elsewhere. There is expected to be an interruption to gene flow between hybridising metacentric races on Madeira, particularly in the chromosomal regions close to the rearrangement breakpoints. Consistent with this, relating to differentiation involving chromosomes 3 and 8 on Madeira, we found greater genetic structure among races for proximal than interstitial or distal loci. PMID:23232832

  11. Cross-cohort analysis identifies a TEAD4 ↔ MYCN positive-feedback loop as the core regulatory element of high-risk neuroblastoma. | Office of Cancer Genomics

    Cancer.gov

    High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator (MR) proteins that were conserved across independent cohorts.

  12. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    PubMed

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  13. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    PubMed

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  14. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans.

    PubMed

    Kehrer-Sawatzki, H; Sandig, C A; Goidts, V; Hameister, H

    2005-01-01

    During this study, we analysed the pericentric inversion that distinguishes human chromosome 12 (HSA12) from the homologous chimpanzee chromosome (PTR10). Two large chimpanzee-specific duplications of 86 and 23 kb were observed in the breakpoint regions, which most probably occurred associated with the inversion. The inversion break in PTR10p caused the disruption of the SLCO1B3 gene in exon 11. However, the 86-kb duplication includes the functional SLCO1B3 locus, which is thus retained in the chimpanzee, although inverted to PTR10q. The second duplication spans 23 kb and does not contain expressed sequences. Eleven genes map to a region of about 1 Mb around the breakpoints. Six of these eleven genes are not among the differentially expressed genes as determined previously by comparing the human and chimpanzee transcriptome of fibroblast cell lines, blood leukocytes, liver and brain samples. These findings imply that the inversion did not cause major expression differences of these genes. Comparative FISH analysis with BACs spanning the inversion breakpoints in PTR on metaphase chromosomes of gorilla (GGO) confirmed that the pericentric inversion of the chromosome 12 homologs in GGO and PTR have distinct breakpoints and that humans retain the ancestral arrangement. These findings coincide with the trend observed in hominoid karyotype evolution that humans have a karyotype close to an ancestral one, while African great apes present with more derived chromosome arrangements. Copyright (c) 2005 S. Karger AG, Basel.

  15. Elucidating the origin of chromosomal aberrations in IVF embryos by preimplantation genetic analysis.

    PubMed

    Frumkin, Tsvia; Malcov, Mira; Yaron, Yuval; Ben-Yosef, Dalit

    2008-01-30

    Preimplantation genetic screening (PGS) has been proposed as a method for improving success rates in patients with repeated IVF failures. This approach is based on the hypothesis that such failures are the result of aneuploid embryos. It has been suggested that FISH analysis of blastomeres removed from preimplantation embryos represent the chromosomal constitution of the entire embryo. However, it is not yet clear whether it also represents the chromosomal constitution of the implanted embryo. PGS reanalysis on day 5 of embryos designated as "aneuploid" on day 3 may demonstrate a high rate of mosaicism for chromosomal aberration. Some of these mosaic embryos are capable of developing into normal embryos by "self-correction". Others, however, may accumulate additional chromosomal anomalies. It is therefore concluded that the chromosomal constitution of a preimplantation embryo may evolve during early cleavages. Meiotic and post zygotic mitotic errors may account for these chromosomal aberrations. This review will focus on elucidating the origin of chromosomal changes during preimplantation embryo development by studying their chromosomal constitution at different stages.

  16. Evaluation of an automated karyotyping system for chromosome aberration analysis

    NASA Technical Reports Server (NTRS)

    Prichard, Howard M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal.

  17. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies.

    PubMed

    Willemsen, Marjolein H; de Leeuw, Nicole; de Brouwer, Arjan P M; Pfundt, Rolph; Hehir-Kwa, Jayne Y; Yntema, Helger G; Nillesen, Willy M; de Vries, Bert B A; van Bokhoven, Hans; Kleefstra, Tjitske

    2012-11-01

    Genome-wide array studies are now routinely being used in the evaluation of patients with cognitive disorders (CD) and/or congenital anomalies (CA). Therefore, inevitably each clinician is confronted with the challenging task of the interpretation of copy number variations detected by genome-wide array platforms in a diagnostic setting. Clinical interpretation of autosomal copy number variations is already challenging, but assessment of the clinical relevance of copy number variations of the X-chromosome is even more complex. This study provides an overview of the X-Chromosome copy number variations that we have identified by genome-wide array analysis in a large cohort of 4407 male and female patients. We have made an interpretation of the clinical relevance of each of these copy number variations based on well-defined criteria and previous reports in literature and databases. The prevalence of X-chromosome copy number variations in this cohort was 57/4407 (∼1.3%), of which 15 (0.3%) were interpreted as (likely) pathogenic. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. GenomeLandscaper: Landscape analysis of genome-fingerprints maps assessing chromosome architecture.

    PubMed

    Ai, Hannan; Ai, Yuncan; Meng, Fanmei

    2018-01-18

    Assessing correctness of an assembled chromosome architecture is a central challenge. We create a geometric analysis method (called GenomeLandscaper) to conduct landscape analysis of genome-fingerprints maps (GFM), trace large-scale repetitive regions, and assess their impacts on the global architectures of assembled chromosomes. We develop an alignment-free method for phylogenetics analysis. The human Y chromosomes (GRCh.chrY, HuRef.chrY and YH.chrY) are analysed as a proof-of-concept study. We construct a galaxy of genome-fingerprints maps (GGFM) for them, and a landscape compatibility among relatives is observed. But a long sharp straight line on the GGFM breaks such a landscape compatibility, distinguishing GRCh38p1.chrY (and throughout GRCh38p7.chrY) from GRCh37p13.chrY, HuRef.chrY and YH.chrY. We delete a 1.30-Mbp target segment to rescue the landscape compatibility, matching the antecedent GRCh37p13.chrY. We re-locate it into the modelled centromeric and pericentromeric region of GRCh38p10.chrY, matching a gap placeholder of GRCh37p13.chrY. We decompose it into sub-constituents (such as BACs, interspersed repeats, and tandem repeats) and trace their homologues by phylogenetics analysis. We elucidate that most examined tandem repeats are of reasonable quality, but the BAC-sized repeats, 173U1020C (176.46 Kbp) and 5U41068C (205.34 Kbp), are likely over-repeated. These results offer unique insights into the centromeric and pericentromeric regions of the human Y chromosomes.

  19. Chromosomal abnormalities in a psychiatric population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awarenessmore » to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.« less

  20. Deep functional analysis of synII, a 770 kb synthetic yeast chromosome

    PubMed Central

    Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A.; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A.; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M.; Jiang, Hui; French, Christopher E.; Nieduszynski, Conrad A.; Koszul, Romain; Marston, Adele L.; Yuan, Yingjin; Wang, Jian; Bader, Joel S.; Dai, Junbiao; Boeke, Jef D.; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-01-01

    Herein we report the successful design, construction and characterization of a 770 kb synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels, including phenomics, transcriptomics, proteomics, chromosome segregation and replication analysis to provide a thorough and comprehensive analysis of a synthetic chromosome. Our “Trans-Omics” analyses reveal a modest but potentially significant pervasive up-regulation of translational machinery observed in synII is mainly caused by the deletion of 13 tRNAs. By both complementation assays and SCRaMbLE, we targeted and debuged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the HOG response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. PMID:28280153

  1. Painting analysis of chromosome aberrations induced by energetic heavy ions in human cells

    NASA Astrophysics Data System (ADS)

    Wu, H.; Hada, M.; Cucinotta, F. A.

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation genetic mutations and cancer induction Most of these biological endpoints are closely related to chromosomal damage which can be utilized as a biomarker for radiation insults Over the years we have studied chromosomal damage in human fibroblast epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell We will summarize the results of the investigations and discuss the unique radiation signatures and biomarkers for space radiation exposure

  2. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  3. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck.

    PubMed

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L; Liu, Yunlong; Edenberg, Howard J; Econs, Michael J; Foroud, Tatiana; Turner, Charles H

    2008-10-08

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure and density by correlating gene expression in the proximal femur with the femoral neck phenotypes linked to the QTLs on Chr 4. RNA was extracted from proximal femora of 4-wk-old rats from F344 and LEW strains, and two other strains, Copenhagen 2331 and Dark Agouti, were used as a negative control. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 arrays. A total of 99 genes in the 4q21-q41 region were differentially expressed (P < 0.05) among all strains of rats with a false discovery rate <10%. These 99 genes were then ranked based on the strength of correlation between femoral neck phenotypes measured in F2 animals, homozygous for a particular strain's allele at the Chr 4 QTL and the expression level of the gene in that strain. A total of 18 candidate genes were strongly correlated (r(2) > 0.50) with femoral neck width and prioritized for further analysis. Quantitative PCR analysis confirmed 14 of 18 of the candidate genes. Ingenuity pathway analysis revealed several direct or indirect relationships among the candidate genes related to angiogenesis (VEGF), bone growth (FGF2), bone formation (IGF2 and IGF2BP3), and resorption (TNF). This study provides a shortened list of genetic determinants of skeletal traits at the hip and may lead to novel approaches for prevention and treatment of hip fracture.

  4. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck

    PubMed Central

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L.; Liu, Yunlong; Edenberg, Howard J.; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.

    2008-01-01

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure and density by correlating gene expression in the proximal femur with the femoral neck phenotypes linked to the QTLs on Chr 4. RNA was extracted from proximal femora of 4-wk-old rats from F344 and LEW strains, and two other strains, Copenhagen 2331 and Dark Agouti, were used as a negative control. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 arrays. A total of 99 genes in the 4q21-q41 region were differentially expressed (P < 0.05) among all strains of rats with a false discovery rate <10%. These 99 genes were then ranked based on the strength of correlation between femoral neck phenotypes measured in F2 animals, homozygous for a particular strain's allele at the Chr 4 QTL and the expression level of the gene in that strain. A total of 18 candidate genes were strongly correlated (r2 > 0.50) with femoral neck width and prioritized for further analysis. Quantitative PCR analysis confirmed 14 of 18 of the candidate genes. Ingenuity pathway analysis revealed several direct or indirect relationships among the candidate genes related to angiogenesis (VEGF), bone growth (FGF2), bone formation (IGF2 and IGF2BP3), and resorption (TNF). This study provides a shortened list of genetic determinants of skeletal traits at the hip and may lead to novel approaches for prevention and treatment of hip fracture. PMID:18728226

  5. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    PubMed

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A

    2016-05-01

    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.

  6. Partial trisomy of chromosome 22 resulting from a supernumerary marker chromosome 22 in a child with features of cat eye syndrome.

    PubMed

    Bélien, Valérie; Gérard-Blanluet, Marion; Serero, Stéphane; Le Dû, Nathalie; Baumann, Clarisse; Jacquemont, Marie-Line; Dupont, Céline; Krabchi, Kada; Drunat, Séverine; Elbez, Annie; Janaud, Jean-Claude; Benzacken, Brigitte; Verloes, Alain; Tabet, Anne-Claude; Aboura, Azzedine

    2008-07-15

    Small supernumerary marker chromosomes are present in about 0.05% of the human population. In approximately 28% of persons with these markers (excluding the approximately 60% derived from one of the acrocentric chromosomes), an abnormal phenotype is observed. We report on a 3-month-old girl with intrauterine growth retardation, craniofacial features, hypotonia, partial coloboma of iris and total anomalous pulmonary venous return. Cytogenetic analysis showed the presence of a supernumerary marker chromosome, identified by fluorescence in situ hybridization as part of chromosome 22, and conferring a proximal partial trisomy 22q22.21, not encompassing the DiGeorge critical region (RP11-154H4 + , TBX1-). This observation adds new information relevant to cat eye syndrome and partial trisomy of 22q. 2008 Wiley-Liss, Inc.

  7. Chromosomal evolution in the Drosophila cardini group (Diptera: Drosophilidae): photomaps and inversion analysis.

    PubMed

    Cordeiro, Juliana; De Toni, Daniela Cristina; da Silva, Gisele de Souza; Valente, Vera Lucia da Silva

    2014-10-01

    Detailed chromosome photomaps are the first step to develop further chromosomal analysis to study the evolution of the genetic architecture in any set of species, considering that chromosomal rearrangements, such as inversions, are common features of genome evolution. In this report, we analyzed inversion polymorphisms in 25 different populations belonging to six neotropical species in the cardini group: Drosophila cardini, D. cardinoides, D. neocardini, D. neomorpha, D. parthenogenetica and D. polymorpha. Furthermore, we present the first reference photomaps for the Neotropical D. cardini and D. parthenogenetica and improved photomaps for D. cardinoides, D. neocardini and D. polymorpha. We found 19 new inversions for these species. An exhaustive pairwise comparison of the polytene chromosomes was conducted for the six species in order to understand evolutionary patterns of their chromosomes.

  8. An automated system for chromosome analysis. Volume 1: Goals, system design, and performance

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Melnyk, J. H.

    1975-01-01

    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and a basis for statistical analysis of quantitative chromosome measurement data is described. The prototype was assembled, tested, and evaluated on clinical material and thoroughly documented.

  9. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14.

    PubMed

    Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O

    2000-12-15

    Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.

  10. Transfer of chromosome 3 fragments suppresses tumorigenicity of an ovarian cancer cell line monoallelic for chromosome 3p.

    PubMed

    Cody, N A L; Ouellet, V; Manderson, E N; Quinn, M C J; Filali-Mouhim, A; Tellis, P; Zietarska, M; Provencher, D M; Mes-Masson, A-M; Chevrette, M; Tonin, P N

    2007-01-25

    Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.

  11. Chromosome painting reveals asynaptic full alignment of homologs and HIM-8-dependent remodeling of X chromosome territories during Caenorhabditis elegans meiosis.

    PubMed

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M

    2011-08-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.

  12. Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus.

    PubMed

    Kortschak, R Daniel; Tsend-Ayush, Enkhjargal; Grützner, Frank

    2009-01-01

    Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of approximately 700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.

  13. mBAND analysis of chromosome aberrations in lymphocytes exposed in vitro to alpha-particles and gamma-rays.

    PubMed

    Tawn, E Janet; Janet, E; Whitehouse, Caroline A; Holdsworth, Duncan; De Ruyck, Kim; Vandenbulcke, Katia; Thierens, Hubert

    2008-06-01

    To investigate the profiles of chromosome damage induced in vitro by exposure to alpha-particles and gamma-rays. Human peripheral blood lymphocytes were exposed to three dose regimes: alpha-particle doses of 0.2 and 0.5 Gy and a gamma-ray dose of 1.5 Gy. After culturing for 47 hours, chromosome aberrations involving the number 5 chromosomes were identified using a multi-coloured banding (mBAND) technique. Analysis of the frequencies of chromosome 5 breaks within aberrant cells and within aberrant number 5 chromosomes demonstrated that alpha-particle irradiation is more likely to result in multiple breaks in a chromosome than gamma-irradiation. Additionally, overdispersion was observed for all doses for the distribution of breaks amongst all cells analysed and breaks amongst total number 5 chromosomes, with this being greatest for the 0.2 Gy alpha-particle dose. The ratio of interchanges to intrachanges (F ratio) was 1.4 and 2.4 for 0.2 and 0.5 Gy alpha-particles respectively and 5.5 for 1.5 Gy gamma-rays. Evaluation of simple versus complex exchanges indicated ratios of 1.9 and 2.7 for 0.2 and 0.5 Gy alpha-particles respectively and 10.6 for 1.5 Gy gamma-rays. The majority of the intrachanges involving chromosomes 5 induced by alpha-particle radiation were associated with more complex exchanges. This study has confirmed that exchanges induced by exposure to high linear energy transfer (LET) alpha-particle radiation comprise a greater proportion of intrachanges than those induced by exposure to low LET gamma-rays. However, since the majority of these are associated with complex rearrangements and likely to be non-transmissible, this limits their applicability as a marker of past in vivo exposure.

  14. Examination of X chromosome markers in Rett syndrome: Exclusion mapping with a novel variation on multilocus linkage analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, K.A.; Fill, C.P.; Terwililger, J.

    Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and sterotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Nineteen of themore » loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than [minus]2, the authors were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed.« less

  15. Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target.

    PubMed

    Cook, Peter J; Thomas, Rozario; Kannan, Ram; de Leon, Esther Sanchez; Drilon, Alexander; Rosenblum, Marc K; Scaltriti, Maurizio; Benezra, Robert; Ventura, Andrea

    2017-07-11

    The widespread application of high-throughput sequencing methods is resulting in the identification of a rapidly growing number of novel gene fusions caused by tumour-specific chromosomal rearrangements, whose oncogenic potential remains unknown. Here we describe a strategy that builds upon recent advances in genome editing and combines ex vivo and in vivo chromosomal engineering to rapidly and effectively interrogate the oncogenic potential of genomic rearrangements identified in human brain cancers. We show that one such rearrangement, an microdeletion resulting in a fusion between Brevican (BCAN) and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1), is a potent oncogenic driver of high-grade gliomas and confers sensitivity to the experimental TRK inhibitor entrectinib. This work demonstrates that BCAN-NTRK1 is a bona fide human glioma driver and describes a general strategy to define the oncogenic potential of novel glioma-associated genomic rearrangements and to generate accurate preclinical models of this lethal human cancer.

  16. The chromosomal analysis of teaching: the search for promoter genes.

    PubMed

    Skeff, Kelley M

    2007-01-01

    The process of teaching is ubiquitous in medicine, both in the practice of medicine and the promotion of medical science. Yet, until the last 50 years, the process of medical teaching had been neglected. To improve this process, the research group at the Stanford Faculty Development Center for Medical Teachers developed an educational framework to assist teachers to analyze and improve the teaching process. Utilizing empirical data drawn from videotapes of actual clinical teaching and educational literature, we developed a seven-category systematic scheme for the analysis of medical teaching, identifying key areas and behaviors that could enable teachers to enhance their effectiveness. The organizational system of this scheme is similar to that used in natural sciences, such as genetics. Whereas geneticists originally identified chromosomes and ultimately individual and related genes, this classification system identifies major categories and specific teaching behaviors that can enhance teaching effectiveness. Over the past two decades, this organizational framework has provided the basis for a variety of faculty development programs for improving teaching effectiveness. Results of those programs have revealed several positive findings, including the usefulness of the methods for a wide variety of medical teachers in a variety of settings. This research indicates that the development of a framework for analysis has been, as in the natural sciences, an important way to improve the science of the art of teaching.

  17. X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids

    PubMed Central

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-01-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397

  18. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    PubMed

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-02-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  19. Structural analysis of chromosomal rearrangements associated with the developmental mutations Ph, W19H, and Rw on mouse chromosome 5.

    PubMed Central

    Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M

    1994-01-01

    We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773

  20. Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    PubMed Central

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M.

    2011-01-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners. PMID:21876678

  1. [Diagnosis of a case with Williams-Beuren syndrome with nephrocalcinosis using chromosome microarray analysis].

    PubMed

    Jin, S J; Liu, M; Long, W J; Luo, X P

    2016-12-02

    Objective: To explore the clinical phenotypes and the genetic cause for a boy with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders. Method: Routine G-banding and chromosome microarray analysis were applied to a child with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders treated in the Department of Pediatrics of Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology in September 2015 and his parents to conduct the chromosomal karyotype analysis and the whole genome scanning. Deleted genes were searched in the Decipher and NCBI databases, and their relationships with the clinical phenotypes were analyzed. Result: A six-month-old boy was refered to us because of unexplained growth retardation and feeding intolerance.The affected child presented with abnormal manifestation such as special face, umbilical hernia, growth retardation, hypothyroidism, congenital heart disease, right ear sensorineural deafness, hypercalcemia and nephrocalcinosis. The child's karyotype was 46, XY, 16qh + , and his parents' karyotypes were normal. Chromosome microarray analysis revealed a 1 436 kb deletion on the 7q11.23(72701098_74136633) region of the child. This region included 23 protein-coding genes, which were reported to be corresponding to Williams-Beuren syndrome and its certain clinical phenotypes. His parents' results of chromosome microarray analysis were normal. Conclusion: A boy with characteristic manifestation of Williams-Beuren syndrome and rare nephrocalcinosis was diagnosed using chromosome microarray analysis. The deletion on the 7q11.23 might be related to the clinical phenotypes of Williams-Beuren syndrome, yet further studies are needed.

  2. Detection of Y chromosome sequences in a 45,X/46,XXq - patient by Southern blot analysis of PCR-amplified DNA and fluorescent in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocova, M.; Siegel, S.F.; Wenger, S.L.

    1995-02-13

    In some cases of gonadal dysgenesis, cytogenetic analysis seems to be discordant with the phenotype of the patients. We have applied techniques such as Southern blot analysis and fluorescent in situ hybridization (FISH) to resolve the phenotype/genotype discrepancy in a patient with ambiguous genitalia in whom the peripheral blood karotype was 45,X. Gonadectomy at age 7 months showed the gonadal tissue to be prepubertal testis on the left side and a streak gonad on the right. The karyotype obtained from the left gonad was 45,X/46,XXq- and that from the right gonad was 45,X. Three different techniques, PCR amplification, FISH, andmore » chromosome painting for X and Y chromosomes, confirmed the presence of Y chromosome sequences. Five different tissues were evaluated. The highest percentage of Y chromosome positive cells were detected in the left gonad, followed by the peripheral blood lymphocytes, skin fibroblasts, and buccal mucosa. No Y chromosomal material could be identified in the right gonad. Since the Xq- chromosome is present in the left gonad (testis), it is likely that the Xq- contains Y chromosomal material. Sophisticated analysis in this patient showed that she has at least 2 cell lines, one of which contains Y chromosomal material. These techniques elucidated the molecular basis of the genital ambiguity for this patient. When Y chromosome sequences are present in patients with Ullrich-Turner syndrome or gonadal dysgenesis, the risk for gonadal malignancy is significantly increased. Hence, molecular diagnostic methods to ascertain for the presence of Y chromosome sequences may expedite the evaluation of patients with the ambiguous genitalia. 21 refs., 4 figs., 2 tabs.« less

  3. Comparative cytogenetic analysis of sex chromosomes in several Canidae species using zoo-FISH.

    PubMed

    Bugno-Poniewierska, Monika; Sojecka, Agnieszka; Pawlina, Klaudia; Jakubczak, Andrzej; Jezewska-Witkowska, Grazyna

    2012-01-01

    Sex chromosome differentiation began early during mammalian evolution. The karyotype of almost all placental mammals living today includes a pair of heterosomes: XX in females and XY in males. The genomes of different species may contain homologous synteny blocks indicating that they share a common ancestry. One of the tools used for their identification is the Zoo-FISH technique. The aim of the study was to determine whether sex chromosomes of some members of the Canidae family (the domestic dog, the red fox, the arctic fox, an interspecific hybrid: arctic fox x red fox and the Chinese raccoon dog) are evolutionarily conservative. Comparative cytogenetic analysis by Zoo-FISH using painting probes specific to domestic dog heterosomes was performed. The results show the presence of homologous synteny covering the entire structures of the X and the Y chromosomes. This suggests that sex chromosomes are conserved in the Canidae family. The data obtained through Zoo-FISH karyotype analysis append information obtained using other comparative genomics methods, giving a more complete depiction of genome evolution.

  4. Mapping of the bcl-2 oncogene on mouse chromosome 1.

    PubMed

    Mock, B A; Givol, D; D'Hoostelaere, L A; Huppi, K; Seldin, M F; Gurfinkel, N; Unger, T; Potter, M; Mushinski, J F

    1988-01-01

    Two bcl-2 alleles have been identified in inbred strains of mice by restriction fragment length polymorphism (RFLP). Analysis of a bcl-2 RFLP in a series of bilineal congenic strains (C.D2), developed as a tool for chromosomal mapping studies, revealed linkage of bcl-2 to the Idh-1/Pep-3 region of murine chromosome 1. The co-segregation of bcl-2 alleles with allelic forms of two other chromosome 1 loci, Ren-1,2 and Spna-1, in a set of back-cross progeny, positions bcl-2 7.8 cM centromeric from Ren-1,2.

  5. Mouse chromosomal mapping of a murine leukemia virus integration region (Mis-1) first identified in rat thymic leukemia.

    PubMed Central

    Jolicoeur, P; Villeneuve, L; Rassart, E; Kozak, C

    1985-01-01

    We have previously identified a region of genomic DNA which constitutes the site of frequent provirus integration in rat thymomas induced by Moloney murine leukemia virus (Lemay and Jolicoeur, Proc. Natl. Acad. Sci. USA 81:38-42, 1984). This genetic locus is now designated Mis-1 (Moloney integration site). Cellular sequences homologous to Mis-1 are present in mouse DNA. Using a series of hamster-mouse somatic cell hybrids, we mapped the Mis-1 locus to mouse chromosome 15. Frequent chromosome 15 aberrations have been described in mouse thymomas. Mis-1 represents a putative new oncogene which might be involved in the initiation or maintenance or both of these neoplasms. Images PMID:4068142

  6. Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease.

    PubMed

    Cruts, M; Backhovens, H; Van Gassen, G; Theuns, J; Wang, S Y; Wehnert, A; van Duijn, C M; Karlsson, T; Hofman, A; Adolfsson, R

    1995-10-13

    Linkage analysis studies have indicated that the chromosome band 14q24.3 harbours a major gene for familial early-onset Alzheimer's disease (AD). Recently we localized the chromosome 14 AD gene (AD3) in the 6.4 cM interval between the markers D14S289 and D14S61. We mapped the gene encoding dihydrolipoyl succinyltransferase (DLST), the E2k component of human alpha-ketoglutarate dehydrogenase complex (KGDHC), in the AD3 candidate region using yeast artificial chromosomes (YACs). The DLST gene is a candidate for the AD3 gene since deficiencies in KGDHC activity have been observed in brain tissue and fibroblasts of AD patients. The 15 exons and the promoter region of the DLST gene were analysed for mutations in chromosome 14 linked AD cases and in two series of unrelated early-onset AD cases (onset age < 55 years). Sequence variations in intronic sequences (introns 3, 5 and 10) or silent mutations in exonic sequences (exons 8 and 14) were identified. However, no AD related mutations were observed, suggesting that the DLST gene is not the chromosome 14 AD3 gene.

  7. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    PubMed Central

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143

  8. Differential occurrence of chromosome inversion polymorphisms among Muller's elements in three species of the tripunctata group of Drosophila, including a species with fast chromosomal evolution.

    PubMed

    Brianti, Mitsue T; Ananina, Galina; Klaczko, Louis B

    2013-01-01

    Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.

  9. A Potential Novel Spontaneous Preterm Birth Gene, AR, Identified by Linkage and Association Analysis of X Chromosomal Markers

    PubMed Central

    Karjalainen, Minna K.; Huusko, Johanna M.; Ulvila, Johanna; Sotkasiira, Jenni; Luukkonen, Aino; Teramo, Kari; Plunkett, Jevon; Anttila, Verneri; Palotie, Aarno; Haataja, Ritva; Muglia, Louis J.; Hallman, Mikko

    2012-01-01

    Preterm birth is the major cause of neonatal mortality and morbidity. In many cases, it has severe life-long consequences for the health and neurological development of the newborn child. More than 50% of all preterm births are spontaneous, and currently there is no effective prevention. Several studies suggest that genetic factors play a role in spontaneous preterm birth (SPTB). However, its genetic background is insufficiently characterized. The aim of the present study was to perform a linkage analysis of X chromosomal markers in SPTB in large northern Finnish families with recurrent SPTBs. We found a significant linkage signal (HLOD  = 3.72) on chromosome locus Xq13.1 when the studied phenotype was being born preterm. There were no significant linkage signals when the studied phenotype was giving preterm deliveries. Two functional candidate genes, those encoding the androgen receptor (AR) and the interleukin-2 receptor gamma subunit (IL2RG), located near this locus were analyzed as candidates for SPTB in subsequent case-control association analyses. Nine single-nucleotide polymorphisms (SNPs) within these genes and an AR exon-1 CAG repeat, which was previously demonstrated to be functionally significant, were analyzed in mothers with preterm delivery (n = 272) and their offspring (n = 269), and in mothers with exclusively term deliveries (n = 201) and their offspring (n = 199), all originating from northern Finland. A replication study population consisting of individuals born preterm (n = 111) and term (n = 197) from southern Finland was also analyzed. Long AR CAG repeats (≥26) were overrepresented and short repeats (≤19) underrepresented in individuals born preterm compared to those born at term. Thus, our linkage and association results emphasize the role of the fetal genome in genetic predisposition to SPTB and implicate AR as a potential novel fetal susceptibility gene for SPTB. PMID:23227263

  10. Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    PubMed Central

    Gabrieli, Paolo; Gomulski, Ludvik M.; Bonomi, Angelica; Siciliano, Paolo; Scolari, Francesca; Franz, Gerald; Jessup, Andrew; Malacrida, Anna R.; Gasperi, Giuliano

    2011-01-01

    Background Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. Methodology/Principal Findings A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. Conclusions/Significance The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the

  11. Inducing rye 1R chromosome structural changes in common wheat cv. Chinese spring by the gametocidal chromosome 2C of Aegilops cylindrica.

    PubMed

    Shi, Fang; Liu, Kun-Fan; Endo, Takashi R; Wang, Dao-Wen

    2005-05-01

    To generate 1 R deletion and translocation lines, we introduced a 2C chromosome,which was derived from Aegilops cylindrica and was known to have a gametocidal function when added monosomically into common wheat cv. Chinese Spring (CS) and its derivative, into a wheat-rye 1R chromosome disomic addition line (CS-1R"). When the individuals with chromosome constitution 21" + 1R" + 2C' (2n = 45) were selfed, the 1R chromosome structural changes were found to be induced with high frequency (24.1%) among the progenies. By using C-banding and GISH analysis, we analyzed 1R structural changes in 46 F3 individuals, which came from 23 F2 plants. The rearranged 1R chromosomes could be characterized in about 85% of the F3 individuals. This included telosome 1RL (39.1%), iso-chromosome 1 RL (2.2%), whole arm translocation involving 1RL (32.6%), telosome 1RS (4.3%), iso-chromosome 1RS (4.3%), and 1R deletion mutant with break point in the long arm (2.2%). The mutant 1R lines obtained in this study will potentially be useful in mapping the chromosome locations of agronomically important genes located in 1R. This study also demonstrated that molecular markers might be used to identify wheat chromosome arm involved in translocation with 1R.

  12. Molecular cytogenetic analysis consistently identifies translocations involving chromosomes 1, 2 and 15 in five embryonal rhabdomyosarcoma cell lines and a PAX-FOXO1A fusion gene negative alveolar rhabdomyosarcoma cell line.

    PubMed

    Roberts, I; Gordon, A; Wang, R; Pritchard-Jones, K; Shipley, J; Coleman, N

    2001-01-01

    Rhabdomyosarcoma in children is a "small round blue cell tumour" that displays skeletal muscle differentiation. Two main histological variants are recognised, alveolar (ARMS) and embryonal (ERMS) rhabdomyosarcoma. Whereas consistent chromosome translocations characteristic of ARMS have been reported, no such cytogenetic abnormality has yet been described in ERMS. We have used multiple colour chromosome painting to obtain composite karyotypes for five ERMS cell lines and one PAX-FOXO1A fusion gene negative ARMS. The cell lines were assessed by spectral karyotyping (SKY), tailored multi-fluorophore fluorescence in situ hybridisation (M-FISH) using series of seven colour paint sets generated to examine specific abnormalities, and comparative genomic hybridisation (CGH). This approach enabled us to obtain karyotypes of the cell lines in greater detail than previously possible. Several recurring cytogenetic abnormalities were demonstrated, including translocations involving chromosomes 1 and 15 and chromosomes 2 and 15, in 4/6 and 2/6 cell lines respectively. All six cell lines demonstrated abnormalities of chromosome 15. Translocations between chromosomes 1 and 15 have previously been recorded in two primary cases of ERMS by conventional cytogenetics. Analysis of the translocation breakpoints may suggest mechanisms of ERMS tumourigenesis and may enable the development of novel approaches to the clinical management of this tumour. Copyright 2002 S. Karger AG, Basel

  13. Flow Sorting and Sequencing Meadow Fescue Chromosome 4F1[C][W

    PubMed Central

    Kopecký, David; Martis, Mihaela; Číhalíková, Jarmila; Hřibová, Eva; Vrána, Jan; Bartoš, Jan; Kopecká, Jitka; Cattonaro, Federica; Stočes, Štěpán; Novák, Petr; Neumann, Pavel; Macas, Jiří; Šimková, Hana; Studer, Bruno; Asp, Torben; Baird, James H.; Navrátil, Petr; Karafiátová, Miroslava; Kubaláková, Marie; Šafář, Jan; Mayer, Klaus; Doležel, Jaroslav

    2013-01-01

    The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before. PMID:24096412

  14. Identification of centromere regions in chromosomes of a unicellular red alga, Cyanidioschyzon merolae.

    PubMed

    Kanesaki, Yu; Imamura, Sousuke; Matsuzaki, Motomichi; Tanaka, Kan

    2015-05-08

    To investigate the evolution of centromere architecture in plant cells, it is important to identify centromere regions of primitive algae, such as Cyanidioschyzon merolae. In a previous genome project, in silico analysis predicted an AT-rich region in each chromosome as putative centromere regions. Here, we identified a centromere position in each chromosome by ChIP-on-chip analysis using an anti-CENP-A antibody. The identified centromeres were of the regional type, about 2-3 kb in length and contained no consensus or repeat elements. Centromeres in primitive eukaryotic plant cells may have originated from these regional type centromeres. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias

    PubMed Central

    Söderhäll, Cilla; Körberg, Izabella Baranowska; Thai, Hanh T T; Cao, Jia; Chen, Yougen; Zhang, Xufeng; Shulu, Zu; van der Zanden, Loes F M; van Rooij, Iris A L M; Frisén, Louise; Roeleveld, Nel; Markljung, Ellen; Kockum, Ingrid; Nordenskjöld, Agneta

    2015-01-01

    Hypospadias is a common male genital malformation and is regarded as a complex disease affected by multiple genetic as well as environmental factors. In a previous genome-wide scan for familial hypospadias, we reported suggestive linkage in nine chromosomal regions. We have extended this analysis by including new families and additional markers using non-parametric linkage. The fine mapping analysis displayed an increased LOD score on chromosome 8q24.1 and 10p15 in altogether 82 families. On chromosome 10p15, with the highest LOD score, we further studied AKR1C2, AKR1C3 and AKR1C4 involved in steroid metabolism, as well as KLF6 expressed in preputial tissue from hypospadias patients. Mutation analysis of the AKR1C3 gene showed a new mutation, c.643G>A (p.(Ala215Thr)), in a boy with penile hypospadias. This mutation is predicted to have an impact on protein function and structure and was not found in controls. Altogether, we homed in on four chromosomal regions likely to harbor genes for hypospadias. Future studies will aim for studying regulatory sequence variants in these regions. PMID:24986825

  16. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Hobza, Roman; Feltus, F Alex; Wang, Xiue; Jin, Weiwei; Skelton, Rachel L; Blas, Andrea; Lemke, Cornelia; Saw, Jimmy H; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Vyskot, Boris; Ming, Ray

    2007-08-01

    Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya's small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants.

  17. A pericentric inversion of chromosome X disrupting F8 and resulting in haemophilia A.

    PubMed

    Xin, Yu; Zhou, Jingyi; Ding, Qiulan; Chen, Changming; Wu, Xi; Wang, Xuefeng; Wang, Hongli; Jiang, Xiaofeng

    2017-08-01

    The frequency of X chromosome pericentric inversion is much less than that of autosome chromosome. We hereby characterise a pericentric inversion of X chromosome associated with severe factor VIII (FVIII) deficiency in a sporadic haemophilia A (HA) pedigree. PCR primer walking and genome walking strategies were adopted to identify the exact breakpoints of the inversion. Copy number variations (CNVs) of the F8 and the whole chromosomes were detected by AccuCopy and Affymetrix CytoScan High Definition (HD) assays, respectively. A karyotype analysis was performed by cytogenetic G banding technique. We identified a previously undescribed type of pericentric inversion of the X chromosome [inv(X)(p11.21q28)] in the proband with FVIII:C <1%. One breakpoint was located in the intron 7 of the F 8, which disrupted the transcription of the F8, and the other located in the upstream of the PFKFB1 of the X chromosome. The inversion segment was approximately 64.4% of the total chromosomal length. The karyotype analysis of the X chromosome confirmed the pericentric inversion of the X chromosome in the proband and his mother. A haplotype analysis traced the inversion to his maternal grandfather, who was not a somatic mosaic of the inversion. This finding indicated that the causative mutation may originate from his germ cells or a rare possibility of germ-cell mosaicism. The characterisation of pericentric inversion involving F8 extended the molecular mechanisms causing HA. The pericentric inversion rearrangement involves F8 by non-homologous end joining is responsible for pathogensis of severe HA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma

    PubMed Central

    Wistuba, I I; Maitra, A; Carrasco, R; Tang, M; Troncoso, P; Minna, J D; Gazdar, A F

    2002-01-01

    Our recent genome-wide allelotyping analysis of gallbladder carcinoma identified 3p, 8p, 9q and 22q as chromosomal regions with frequent loss of heterozygosity. The present study was undertaken to more precisely identify the presence and location of regions of frequent allele loss involving those chromosomes in gallbladder carcinoma. Microdissected tissue from 24 gallbladder carcinoma were analysed for PCR-based loss of heterozygosity using 81 microsatellite markers spanning chromosome 3p (n=26), 8p (n=14), 9q (n=29) and 22q (n=12) regions. We also studied the role of those allele losses in gallbladder carcinoma pathogenesis by examining 45 microdissected normal and dysplastic gallbladder epithelia accompanying gallbladder carcinoma, using 17 microsatellite markers. Overall frequencies of loss of heterozygosity at 3p (100%), 8p (100%), 9q (88%), and 22q (92%) sites were very high in gallbladder carcinoma, and we identified 13 distinct regions undergoing frequent loss of heterozygosity in tumours. Allele losses were frequently detected in normal and dysplastic gallbladder epithelia. There was a progressive increase of the overall loss of heterozygosity frequency with increasing severity of histopathological changes. Allele losses were not random and followed a sequence. This study refines several distinct chromosome 3p, 8p, 9q and 22q regions undergoing frequent allele loss in gallbladder carcinoma that will aid in the positional identification of tumour suppressor genes involved in gallbladder carcinoma pathogenesis. British Journal of Cancer (2002) 87, 432–440. doi:10.1038/sj.bjc.6600490 www.bjcancer.com © 2002 Cancer Research UK PMID:12177780

  19. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  20. Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Laureys, G; De Paepe, A; Speleman, F

    2000-12-01

    M-FISH analysis was performed on 18 neuroblastoma cell lines, which were previously studied with cytogenetic, standard FISH and CGH data. One of the most striking findings of this study was the detection of chromosome 2 short arm rearrangements in 61% of the investigated cell lines. These rearrangements resulted from translocations with various partner chromosomes. All translocations, except one were unbalanced, leading to the consistent gain of chromosome segment 2pter-p22. A cryptic balanced translocation t(2;4) was observed with a breakpoint located in the vicinity of MYCN in cell line NBL-S. Combination of M-FISH results together with cytogenetic, standard FISH and CGH data yielded the most comprehensive description of chromosome 2 short arm rearrangements, leading to a consistent gain of chromosome 2 short arm material. Copyright 2000 Wiley-Liss, Inc.

  1. High Resolution Analysis of Meiotic Chromosome Structure and Behaviour in Barley (Hordeum vulgare L.)

    PubMed Central

    Phillips, Dylan; Nibau, Candida; Wnetrzak, Joanna; Jenkins, Glyn

    2012-01-01

    Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM). PMID:22761818

  2. Analysis of Two Cosmid Clones from Chromosome 4 of Drosophila melanogaster Reveals Two New Genes Amid an Unusual Arrangement of Repeated Sequences

    PubMed Central

    Locke, John; Podemski, Lynn; Roy, Ken; Pilgrim, David; Hodgetts, Ross

    1999-01-01

    Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome. PMID:10022978

  3. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    PubMed

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  4. Method for obtaining chromosome painting probes

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for determining a clastogenic signature of a sample of chromosomes by quantifying a frequency of a first type of chromosome aberration present in the sample; quantifying a frequency of a second, different type of chromosome aberration present in the sample; and comparing the frequency of the first type of chromosome aberration to the frequency of the second type of chromosome aberration. A method is also provided for using that clastogenic signature to identify a clastogenic agent or dosage to which the cells were exposed.

  5. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration

    PubMed Central

    Bachtrog, Doris

    2014-01-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112

  6. Dahl (S × R) Rat Congenic Strain Analysis Confirms and Defines a Chromosome 17 Spatial Navigation Quantitative Trait Locus to <10 Mbp

    PubMed Central

    Herrera, Victoria L.; Pasion, Khristine A.; Tan, Glaiza A.; Ruiz-Opazo, Nelson

    2013-01-01

    A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02–74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats. PMID:23469157

  7. Dahl (S × R) rat congenic strain analysis confirms and defines a chromosome 17 spatial navigation quantitative trait locus to <10 Mbp.

    PubMed

    Herrera, Victoria L; Pasion, Khristine A; Tan, Glaiza A; Ruiz-Opazo, Nelson

    2013-01-01

    A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02-74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats.

  8. Linkage analysis of the Fanconi anemia gene FACC with chromosome 9q markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, A.D.; Shin, H.T.; Kaporis, A.G.

    1994-09-01

    Fanconi anemia (FA) is a genetically heterogeneous syndrome, with at least four different complementation groups as determined by cell fusion studies. The gene for complementation group C, FACC, has been cloned and mapped to chromosome 9q22.3 by in situ hybridization, while linkage analysis has supported the placement of another gene on chromosome 20q. We have analyzed five microsatellite markers and one RFLP on chromosome 9q in a panel of FA families from the International Fanconi Anemia Registry (IFAR) in order to place FACC on the genetic map. Polymorphisms were typed in 308 individuals from 51 families. FACC is tightly linkedmore » to both D9S151 [{Theta}{sub max}=0.025, Z{sub max}=7.75] and to D9S196 [{Theta}{sub max}=0.041, Z{sub max}=7.89]; multipoint analysis is in progress. We are currently screening a YAC clone that contains the entire FACC gene for additional microsatellite markers suitable for haplotype analysis of FA families.« less

  9. Sequence conservation on the Y chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, L.H.; Yang-Feng, L.; Lau, C.

    The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid poolsmore » were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.« less

  10. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boghosian-Sell, L.; Mewar, R.; Harrison, W.

    1994-09-01

    In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, the authors have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. The authors have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical featuresmore » and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals. 25 refs., 3 figs., 1 tab.« less

  11. Stable chromosome condensation revealed by chromosome conformation capture

    PubMed Central

    Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.

    2015-01-01

    SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  12. Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.

    PubMed

    Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier

    2004-01-01

    Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.

  13. Karyotyping human chromosomes by optical and x-ray ptychography methods

    DOE PAGES

    Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg; ...

    2015-02-01

    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the massmore » of chromosomes and perform a partial karyotype from the results. Lastly, we also obtain high spatial resolution using this technique with synchrotron source x-rays.« less

  14. Karyotyping human chromosomes by optical and x-ray ptychography methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg

    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the massmore » of chromosomes and perform a partial karyotype from the results. Lastly, we also obtain high spatial resolution using this technique with synchrotron source x-rays.« less

  15. Non-random Mis-segregation of Human Chromosomes.

    PubMed

    Worrall, Joseph Thomas; Tamura, Naoka; Mazzagatti, Alice; Shaikh, Nadeem; van Lingen, Tineke; Bakker, Bjorn; Spierings, Diana Carolina Johanna; Vladimirou, Elina; Foijer, Floris; McClelland, Sarah Elizabeth

    2018-06-12

    A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage.

    PubMed

    Liu, S; Song, L; Cram, D S; Xiong, L; Wang, K; Wu, R; Liu, J; Deng, K; Jia, B; Zhong, M; Yang, F

    2015-10-01

    To compare the performance of traditional G-banding karyotyping with that of copy number variation sequencing (CNV-Seq) for detection of chromosomal abnormalities associated with miscarriage. Products of conception (POC) were collected from spontaneous miscarriages. Chromosomal abnormalities were detected using high-resolution G-banding karyotyping and CNV sequencing. Quantitative fluorescent polymerase chain reaction analysis of maternal and POC DNA for short tandem repeat (STR) markers was used to both monitor maternal cell contamination and confirm the chromosomal status and sex of the miscarriage tissue. A total of 64 samples of POC, comprising 16 with an abnormal and 48 with a normal karyotype, were selected and coded for analysis by CNV-Seq. CNV-Seq results were concordant for 14 (87.5%) of the 16 gross chromosomal abnormalities identified by karyotyping, including 11 autosomal trisomies and three sex chromosomal aneuploidies (45,X). Of the two discordant results, a 69,XXX polyploidy was missed by CNV-Seq, although supporting STR marker analysis confirmed the triploidy. In contrast, CNV-Seq identified a sample with 45,X karyotype as a 45,X/46,XY mosaic. In the remaining 48 samples of POC with a normal karyotype, CNV-Seq detected a 2.58-Mb 22q deletion associated with DiGeorge syndrome and nine different smaller CNVs of no apparent clinical significance. CNV-Seq used in parallel with STR profiling is a reliable and accurate alternative to karyotyping for identifying chromosome copy number abnormalities associated with spontaneous miscarriage. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  17. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    PubMed Central

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes (“H-probes”) for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin. PMID:22745230

  18. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    PubMed

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  19. Chromosomal aberrations evaluated by CGH, FISH and GTG-banding in a case of AIDS-related Burkitt's lymphoma.

    PubMed

    Zunino, A; Viaggi, S; Ottaggio, L; Fronza, G; Schenone, A; Roncella, S; Abbondandolo, A

    2000-03-01

    We have previously reported on a complex chromosome rearrangement [der(17)] in a B-cell line, BRG A, established from an AIDS patient with Burkitt's lymphoma (BL). The aim of the present study was the definition of der(17) composition and the identification of complete or partial chromosome gains and losses in two cell clones (BRG A and BRG M) derived from this patient. We applied comparative genome hybridization (CGH) to detect the DNA misrepresentations in the genome of the two cell clones. Findings from CGH and banding analysis could then direct the choice of probes for chromosome painting experiments to elucidate der(17) composition. CGH analysis identified gains of chromosomes 1q, 7q, 12q, 13q, 15q, 17p, 20p,q and losses of chromosomes 3p and 5q in BRG A and gain of chromosome 1q and loss in chromosome 6q in BRG M. Some of the detected alterations had already been described in lymphomas, while others appeared to be new. The combination of these techniques allowed a precise definition of der(17), composed by translocated regions from chromosomes 12 and 15. We demonstrated CGH to be a powerful tool in the identification of recurrent chromosome aberrations in an AIDS-related BL and in ascertaining the origin of marker chromosomes. We were also able to identify a different pattern of aberrations and assess an independent sequence of events leading to the 1p gain in the two subclones.

  20. AB020. Chromosome rearrangement in patients with 46,XY disorders of sex development

    PubMed Central

    Vu, Dung Chi; Nguyen, Khanh Ngoc; Can, Ngoc Bich; Bui, Thao Phuong; Fukami, Maki

    2017-01-01

    Background Disorders of sex development (DSD) is defined by congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Causative mutations have not been identified in more than 50% 46,XY DSD cases. We aimed to identify chromosomal rearrangement in the development of 46,XY DSD in Vietnamese patients. Methods Case series report including clinical presentations and data from array-based comparative genomic hybridization analysis for six genetic males with genital abnormalities combines with mental disability and other congenital anomalies. Results Heterozygous submicroscopic deletions and/or duplications were identified in six cases. A 7.2 Mb terminal deletion at chromosome 9 including deletion of DMRT1 gene and a 2.7 Mb terminal duplication at chromosome 17 were detected in case 1 that presented with prematurity, dysmorphism and ambiguous genitalia. A terminal deletion affects DMRT1-3 at 9p22-23 was identified in case 2 with ambiguous genitalia, mental disability and dysmorphism. An 18 Mb terminal duplication at chromosome 5 was detected in case 3 with DSD, growth retardation, microcephaly and dysmorphism, ptosis, ventricular septal defect and craniosynostosis. An interstitial deletion including deletions of WT1, PAX6, and PRRG4 genes at chromosome 11 was detected in case 4 with WAGR syndrome. A terminal duplication at chromosome 7 was detected in case 5 with DSD, severe hypospadias, small phallus size (1 cm at 3 years of age), and no testis found clinically. A 5 Mb terminal deletion at chromosome 4 and a 6 Mb terminal duplication of chromosome 16 were detected in case 6 with severe motor-mental retardation, microcephaly (head circumference −3.5 SD), micrognathia, and DSD. Conclusions The results indicate that chromosomal rearrangements constitute an important part of the molecular bases of 46,XY DSD and that submicroscopic deletions and/or duplication can lead to various types of 46,XY DSD combined with other congenital

  1. Linkage group-chromosome correlations in Sordaria macrospora: Chromosome identification by three dimensional reconstruction of their synaptonemal complex.

    PubMed

    Zickler, D; Leblon, G; Haedens, V; Collard, A; Thuriaux, P

    1984-01-01

    Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed, by measuring the lengths of synaptonemal complexes, an assignment of the 7 linkage (LG) groups to the 7 chromosomes in the fungus Sordaria macrospora. The 7 LG have been established using 19 mutants showing low second division segregation frequencies. Eight chromosomal rearrangements mapped on the 7 LG were used to identify the chromosomes involved. The following one to one assignment of the 7 LG to specific chromosomes was obtained: LG a: chromosome (chr) 1, LG b: chr5, LG c: chr6, LG d: chr7, LG e: chr4, LG f: chr3 and LG g: chr2 (the chromosome carrying the nucleolus organizer region).

  2. Molecular cloning of metaphase chromosome protein 1 (MCP1), a novel human autoantigen that associates with condensed chromosomes during mitosis.

    PubMed

    Bronze-da-Rocha, E; Catita, J A; Sunkel, C E

    1998-02-01

    Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31-33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.

  3. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  4. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    PubMed

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  5. Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms.

    PubMed Central

    Sreekantaiah, C.; Ladanyi, M.; Rodriguez, E.; Chaganti, R. S.

    1994-01-01

    In recent years, significant progress has been made in identifying characteristic chromosomal rearrangements associated with several solid tumor types, notably sarcomas, a relatively rare subset of human cancer. Most sarcomas analyzed have been found to be characterized by recurrent chromosome translocations that are specific to histological types. We have reviewed published reports of chromosomal aberrations in benign and malignant soft tissue tumors and found an incidence of specific translocations in these neoplasms that ranged from 20% to 93% within histological tumor types. Identification of recurrent chromosomal abnormalities in benign tumors has resulted in a reappraisal of the general concept that benign tumors have a normal (diploid) chromosome constitution. The variety of recurrent changes present in the different tumor types attests to the cytogenetic diversity inherent in these tumors. The chromosomal rearrangements in each of the tumor types were unique and did not correspond to cancer-associated aberrations known from other solid or hematopoietic malignancies. Cytogenetics thus provides an essential adjunct to diagnostic surgical pathology in the case of malignant soft tissue tumors, which often present substantial diagnostic challenges. In addition, it represents another approach to determine the histogenetic origin of some tumors and identifies sites of gene deregulation for molecular analysis. Indeed, recent molecular analyses of several sarcoma-associated translocations have identified novel genes and novel mechanisms of their dysregulation. PMID:8203453

  6. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells

    PubMed Central

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L.

    2013-01-01

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs “know” the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency. PMID:24082118

  7. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21

    PubMed Central

    Zhang, Mingfeng; Wang, Zhaoming; Obazee, Ofure; Jia, Jinping; Childs, Erica J.; Hoskins, Jason; Figlioli, Gisella; Mocci, Evelina; Collins, Irene; Chung, Charles C.; Hautman, Christopher; Arslan, Alan A.; Beane-Freeman, Laura; Bracci, Paige M.; Buring, Julie; Duell, Eric J.; Gallinger, Steven; Giles, Graham G.; Goodman, Gary E.; Goodman, Phyllis J.; Kamineni, Aruna; Kolonel, Laurence N.; Kulke, Matthew H.; Malats, Núria; Olson, Sara H.; Sesso, Howard D.; Visvanathan, Kala; White, Emily; Zheng, Wei; Abnet, Christian C.; Albanes, Demetrius; Andreotti, Gabriella; Brais, Lauren; Bueno-de-Mesquita, H. Bas; Basso, Daniela; Berndt, Sonja I.; Boutron-Ruault, Marie-Christine; Bijlsma, Maarten F.; Brenner, Hermann; Burdette, Laurie; Campa, Daniele; Caporaso, Neil E.; Capurso, Gabriele; Cavestro, Giulia Martina; Cotterchio, Michelle; Costello, Eithne; Elena, Joanne; Boggi, Ugo; Gaziano, J. Michael; Gazouli, Maria; Giovannucci, Edward L.; Goggins, Michael; Gross, Myron; Haiman, Christopher A.; Hassan, Manal; Helzlsouer, Kathy J.; Hu, Nan; Hunter, David J.; Iskierka-Jazdzewska, Elzbieta; Jenab, Mazda; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay-Tee; Klein, Eric A.; Kogevinas, Manolis; Krogh, Vittorio; Kupcinskas, Juozas; Kurtz, Robert C.; Landi, Maria T.; Landi, Stefano; Marchand, Le Loic; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L.; Neale, Rachel E.; Oberg, Ann L.; Panico, Salvatore; Patel, Alpa V.; Peeters, Petra H. M.; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Purdue, Mark; Quiros, J. Ramón; Riboli, Elio; Rothman, Nathaniel; Scarpa, Aldo; Scelo, Ghislaine; Shu, Xiao-Ou; Silverman, Debra T.; Soucek, Pavel; Strobel, Oliver; Sund, Malin; Małecka-Panas, Ewa; Taylor, Philip R.; Tavano, Francesca; Travis, Ruth C.; Thornquist, Mark; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Vashist, Yogesh; Vodicka, Pavel; Wactawski-Wende, Jean; Wentzensen, Nicolas; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Kooperberg, Charles; Risch, Harvey A.; Jacobs, Eric J.; Li, Donghui; Fuchs, Charles; Hoover, Robert; Hartge, Patricia; Chanock, Stephen J.; Petersen, Gloria M.; Stolzenberg-Solomon, Rachael S.; Wolpin, Brian M.; Kraft, Peter; Klein, Alison P.; Canzian, Federico; Amundadottir, Laufey T.

    2016-01-01

    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88×10−15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22×10−9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70×10−8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 (NR5A2), chr8q24.21 (MYC) and chr5p15.33 (CLPTM1L-TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal (n = 10) and tumor (n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7×10−8). This finding was validated in a second set of paired (n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5×10−4-2.0×10−3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology. PMID:27579533

  8. Constitutive heterochromatin in chromosomes of duck hybrids and goose hybrids.

    PubMed

    Wójcik, E; Smalec, E

    2017-01-01

    Constitutive heterochromatin is a highly condensed fraction of chromatin in chromosomes. It is characterized by a high degree of polymorphism. Heterochromatin is located in the centromeric, telomeric, and interstitial parts of chromosomes. We used the CBG ( C: banding using B: arium hydroxide by G: iemsa) staining technique to identify heterochromatin in chromosomes. Analysis of karyotypes of F1 hybrids resulting from intergeneric hybridization of ducks (A. platyrhynchos × C. moschata) and interspecific crosses of geese (A. anser × A. cygnoides) were used to compare the karyotypes of 2 species of duck and 2 species of geese, as well as to compare the hybrids with the parent species. The localization of C-bands and their size were determined. In the duck hybrid, greater amounts of heterochromatin were noted in the homologous chromosomes from the duck A. platyrhynchos than in the chromosomes from the duck C. moschata. In the goose hybrid more heterochromatin was observed in the homologous chromosomes from the goose A. cygnoides than in the chromosomes from the goose A. anser. Comparison of chromosomes from the duck hybrid with chromosomes of the ducks A. platyrhynchos and C. moschata revealed nearly twice as much constitutive heterochromatin in the chromosomes of the hybrid. When chromosomes from the goose hybrid were compared with those of the geese A. anser and A. cygnoides, differences in the average content of heterochromatin were observed on only a few chromosomes. © 2016 Poultry Science Association Inc.

  9. Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.

    PubMed

    Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi

    2018-04-01

    Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.

  10. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  11. Constructing a 'Chromonome' of Yellowtail (Seriola quinqueradiata) for Comparative Analysis of Chromosomal Rearrangements

    PubMed Central

    Kawase, Junya; Aoki, Jun-ya; Araki, Kazuo

    2018-01-01

    To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored the de novo assembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail genome. Between yellowtail and Japanese medaka (Oryzias latipes), almost all regions of the chromosomes were conserved and some blocks comprising several markers were translocated. Using the genome information of the spotted gar (Lepisosteus oculatus) as a reference, we further documented syntenic relationships and chromosomal rearrangements that occurred during evolution in four other acanthopterygian species (Japanese medaka, zebrafish, spotted green pufferfish and three-spined stickleback). The evolutionary chromosome translocation frequency was 1.5-2-times higher in yellowtail than in medaka, pufferfish, and stickleback. PMID:29290830

  12. Genome-wide linkage analysis of congenital heart defects using MOD score analysis identifies two novel loci

    PubMed Central

    2013-01-01

    Background Congenital heart defects (CHD) is the most common cause of death from a congenital structure abnormality in newborns and is often associated with fetal loss. There are many types of CHD. Human genetic studies have identified genes that are responsible for the inheritance of a particular type of CHD and for some types of CHD previously thought to be sporadic. However, occasionally different members of the same family might have anatomically distinct defects — for instance, one member with atrial septal defect, one with tetralogy of Fallot, and one with ventricular septal defect. Our objective is to identify susceptibility loci for CHD in families affected by distinct defects. The occurrence of these apparently discordant clinical phenotypes within one family might hint at a genetic framework common to most types of CHD. Results We performed a genome-wide linkage analysis using MOD score analysis in families with diverse CHD. Significant linkage was obtained in two regions, at chromosome 15 (15q26.3, Pempirical = 0.0004) and at chromosome 18 (18q21.2, Pempirical = 0.0005). Conclusions In these two novel regions four candidate genes are located: SELS, SNRPA1, and PCSK6 on 15q26.3, and TCF4 on 18q21.2. The new loci reported here have not previously been described in connection with CHD. Although further studies in other cohorts are needed to confirm these findings, the results presented here together with recent insight into how the heart normally develops will improve the understanding of CHD. PMID:23705960

  13. A Genetic and Molecular Analysis of the 46c Chromosomal Region Surrounding the Fmrfamide Neuropeptide Gene in Drosophila Melanogaster

    PubMed Central

    O'Brien, M. A.; Roberts, M. S.; Taghert, P. H.

    1994-01-01

    We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes. PMID:8056304

  14. Computational model for chromosomal instabilty

    NASA Astrophysics Data System (ADS)

    Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina

    2015-03-01

    Faithful segregation of genetic material during cell division requires alignment of the chromosomes between the spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated into a coherent picture. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.

  15. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: Mapping of the Proximal Portion of the Right Arm

    PubMed Central

    Duncan, Ian W.; Kaufman, Thomas C.

    1975-01-01

    In order to define more precisely the most proximal portion of chromosome 3R in Drosophila melanogaster, several new chromosome aberrations involving this region have been recovered and analyzed. These new arrangements were recovered as induced reversions of two dominant mutations, AntpNs and dsxD, located in the region of interest. The results of the analysis have allowed the localization of several existing mutations, have further elucidated the complex homoeotic locus which resides in this region, and have confirmed the efficacy of this type of screen in the analysis of specific chromosome regions. PMID:811500

  16. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2.

    PubMed

    Kim, Jaemin; Lee, Taeheon; Kim, Tae-Hun; Lee, Kyung-Tai; Kim, Heebal

    2012-12-19

    Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.

  17. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion.

    PubMed Central

    Shashi, V.; Golden, W. L.; Allinson, P. S.; Blanton, S. H.; von Kap-Herr, C.; Kelly, T. E.

    1996-01-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8651300

  18. Isolation of mini- and microsatellite loci from chromosome 19 library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosnyak, M.I.; Belajeva, O.V.; Polukarova, L.G.

    Mini- and microsatellite sequences are abundant in the human genome and are very useful as genetic markers. We report the isolation of a panel of clones containing marker sequences from chromosome 19. We screened 10,000 clones from the chromosome 19 cosmid library for the presence of di-(CA)n, tri-(TCC)n, (CAC)n microsatellites and M13-like minisatellite sequences. For this we have used synthetic oligonucleotides and polynucleotides, including micro- (CA, TCC, CAC) and minisatellite (M13 core) sequences. Preliminary results indicated that the chromosome 19 cosmid library contained both human and hamster clones. In order to identify human sequences from this library we have developedmore » the technique of colony and blot hybridization with Alu-PCR, L1-PCR and B1-PCR probes. Dozens of clones have been selected, some of which were analyzed by conventional Southern blot analysis and non-radioactive in situ hybridization of chromosomes. Highly informative markers derived from these clones will be used for physical and genetic mapping of chromosome 19.« less

  19. Flow cytogenetics and chromosome sorting.

    PubMed

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  20. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    DOE R&D Accomplishments Database

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  1. Identification of Stmm3 locus Conferring Resistance to Late-stage Chemically Induced Skin Papillomas on Mouse Chromosome 4 by Congenic Mappingand Allele-specific Alteration Analysis

    PubMed Central

    Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi

    2014-01-01

    Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764

  2. Microscopes and computers combined for analysis of chromosomes

    NASA Technical Reports Server (NTRS)

    Butler, J. W.; Butler, M. K.; Stroud, A. N.

    1969-01-01

    Scanning machine CHLOE, developed for photographic use, is combined with a digital computer to obtain quantitative and statistically significant data on chromosome shapes, distribution, density, and pairing. CHLOE permits data acquisition about a chromosome complement to be obtained two times faster than by manual pairing.

  3. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.

    PubMed

    Lysak, Martin A; Cheung, Kwok; Kitschke, Michaela; Bures, Petr

    2007-10-01

    The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n = 14, 18, 20, 32, and 36. In high-polyploid (n >or= 30) species Crambe maritima (2n = 60), Crambe cordifolia (2n = 120), and Vella pseudocytisus (2n = 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2-2.5 pg/2C) has been found in Brassiceae species with 2n = 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n = 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships.

  4. [Chromosome analysis of bulls in relation to disorders of sexual activity].

    PubMed

    Staník, J; Izariková, A

    1984-05-01

    Chromosomal analysis was used for the examination of 16 bulls of different breeds from the Milhostov breeding station. The examined bulls exhibited disorders of sexual activity (disorders of spermiogenesis, aspermia, bad quality of semen, hypoplasia of testes, etc.). The examination was performed by the method after Moorhead et al. (1960) modified by Lojda et al. (1974): metaphase plates were evaluated microscopically (100 X 12) and from photos. The chromosomes were counted by means of the counting documator (from film negatives) and from photos. A card was prepared for each animal. Hyposomy (11 sires--68.75%) and hyperploidy (10 sires--62.5%) were found to be the most frequent numerical aberrations, followed by polysomy (4 sires--25.0%) and other aneuploidies (one case--6.2%). As to structural defects, breaks occurred in 14 sires (87.5%), bichromatid breaks in five sires (31.25%) and breaks on sexual chromosomes in three sires (18.75%). Centric fusion was observed in one case (6.25%), association in two cases (12.5%) and mixed aberrations in four cases (25.00%).

  5. Human sperm chromosome analysis after subzonal sperm insemination of hamster oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, J.

    1994-09-01

    Sperm microinjection techniques, subzonal sperm insemination (SUZI) and intracytoplasmic sperm injection (ICSI), have achieved a wide spread clinical application for the treatment of male infertility. To date, only one study has focused on sperm karyotypes after microinjection. Martin et al. reported a very high incidence of abnormal human sperm complements after ICSI into hamster oocytes. In the present study, are reported the first human sperm karyotypes after SUZI of hamster oocytes. Spermatozoa from two control donors were treated by calcium ionophore A23187 and injected under the zona of hamster eggs. The microinjected eggs were then cultured for cytogenetic analysis ofmore » the pronuclei. Out of 47 analyzed sperm chromosome metaphases, 5 (10.6%) were abnormal, 4 (8.5%) were hypohaploid and 1 (2.1%) had a structural abnormality. The sex ratio was not significantly different from the expected 1:1 ratio. Rates of chromosomal abnormalities in microinjected spermatozoa were similar to those observed in spermatozoa inseminated with zona free eggs, suggesting that SUZI procedure per se does not increase sperm chromosomal abnormalities.« less

  6. Uniparental Disomy of Chromosome 15 in Two Cases by Chromosome Microarray: A Lesson Worth Thinking.

    PubMed

    Liu, Shu; Zhang, Kaihui; Song, Fengling; Yang, Yali; Lv, Yuqiang; Gao, Min; Liu, Yi; Gai, Zhongtao

    2017-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders caused by loss of function of the imprinted genes at 15q11q13. A 5-7 Mb paternal/maternal deletion of chromosomal region 15q11.2q13 is the major genetic cause of PWS/AS, but in a small group of patients, the PWS/AS phenotype can result from maternal/paternal uniparental disomy (UPD) of chromosome 15. Various mechanisms leading to UPD include gametic complementation, trisomy rescue, and compensatory UPD, which can be inferred from the pattern of uniparental heterodisomy (heteroUPD) or uniparental isodisomy (isoUPD). However, heteroUPD and isoUPD, especially mixed heteroUPD and isoUPD, are very rare in patients with PWS/AS. Here, we report 2 children with PWS/AS caused by mixed segmental heteroUPD 15 and isoUPD 15 which failed to be identified by chromosome microarray (CMA) but could be detected by other molecular genetic methods. The present report unravels the mechanism of mixed iso/heteroUPD 15 in PWS/AS and phenotype-genotype correlations. Moreover, our study suggests that CMA is prone to misdiagnosis for imprinting disorders such as PWS/AS, though it is considered a highly useful tool for copy number variations. As a result, other molecular detection methods, such as methylation analysis and STR marker analysis for UPD, should be supplementary used in this situation. © 2017 S. Karger AG, Basel.

  7. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    PubMed Central

    2010-01-01

    Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two

  8. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  9. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    PubMed

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

  10. A chromosomal analysis of eleven species of Gyrinidae (Coleoptera)

    PubMed Central

    Angus, Robert B.; Holloway, Teresa C.

    2016-01-01

    Abstract Karyotypes are presented for 10 species of Gyrinus Geoffroy, 1762: Gyrinus minutus Fabricius, 1798, Gyrinus caspius Ménétriés, 1832, Gyrinus paykulli Ochs, 1927, Gyrinus distinctus Aubé, 1836 var. fairmairei Régimbart, 1883, Gyrinus marinus Gyllenhal, 1808, Gyrinus natator (Linnaeus, 1758), Gyrinus opacus Sahlberg, 1819, Gyrinus substriatus Stephens, 1869, Gyrinus suffriani Scriba, 1855, Gyrinus urinator Illiger, 1807 and for Orectochilus villosus (Müller, 1776) (Coleoptera: Gyrinidae). The 10 Gyrinus species have karyotypes comprising 13 pairs of autosomes plus sex chromosomes which are X0 (♂), XX (♀), with the X chromosomes the longest in the nucleus. Orectochilus villosus has 16 pairs of autosomes plus X0, XX sex chromosomes. The data obtained by Saxod and Tetart (1967) and Tetart and Saxod (1968) for five of the Gyrinus species are compared with our results. Saxod and Tetart considered the X chromosome to be the smallest in the nucleus in all cases, and this is considered to result from confusion arising from uneven condensation of some of the chromosomes. Small differences between the chromosomes of different Gyrinus species have been detected, but not between Greenland and Swedish populations of Gyrinus opacus, nor between typical Gyrinus distinctus from France and Gyrinus distinctus var. fairmairei from Kuwait. PMID:27186347

  11. Linkage Disequilibrium Mapping in Domestic Dog Breeds Narrows the Progressive Rod-Cone Degeneration (prcd) Interval and Identifies Ancestral Disease Transmitting Chromosome

    PubMed Central

    Goldstein, Orly; Zangerl, Barbara; Pearce-Kelling, Sue; Sidjanin, Duska J.; Kijas, James W.; Felix, Jeanette; Acland, Gregory M; Aguirre, Gustavo D.

    2014-01-01

    Canine progressive rod-cone degeneration (prcd) is a retinal disease previously mapped to a broad, gene-rich centromeric region of canine chromosome 9. As allelic disorders are present in multiple breeds, we used linkage disequilibrium (LD) to narrow the ∼6.4 Mb interval candidate region. Multiple dog breeds, each representing genetically isolated populations, were typed for SNPs and other polymorphisms identified from BACs. The candidate region was initially localized to a 1.5 Mb zero recombination interval between growth factor receptor-bound protein 2 (GRB2) and SEC14-like 1 (SEC14L). A fine-scale haplotype of the region was developed which reduced the LD interval to 106 Kb, and identified a conserved haplotype of 98 polymorphisms present in all prcd-affected chromosomes from 14 different dog breeds. The findings strongly suggest that a common ancestor transmitted the prcd disease allele to many of the modern dog breeds, and demonstrate the power of LD approach in the canine model. PMID:16859891

  12. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis

    PubMed Central

    Pucholt, Pascal; Wright, Alison E.; Conze, Lei Liu; Mank, Judith E.; Berlin, Sofia

    2017-01-01

    Abstract Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. PMID:28453634

  13. Analysis of Chromosomal Aberrations in the Blood Lymphocytes of Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    George, K.; Kim, M. Y.; Elliott, T.; Cucinotta, F. A.

    2007-01-01

    It is a NASA requirement that biodosimetry analysis be performed on all US astronauts who participate in long duration missions of 3 months or more onboard the International Space Station. Cytogenetic analysis of blood lymphocytes is the most sensitive and reliable biodosimetry method available at present, especially if chromosome damage is assessed before as well as after space flight. Results provide a direct measurement of space radiation damage in vivo that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present data obtained from all twenty-five of the crewmembers who have participated in the biodosimetry program so far. The yield of chromosome exchanges, measured using fluorescence in situ hybridization (FISH) technique with chromosome painting probes, increased after space flight for all these individuals. In vivo dose was derived from frequencies of chromosome exchanges using preflight calibration curves of in vitro exposed cells from the same individual, and RBE was compared with individually measured physically absorbed dose and projected organ dose equivalents. Biodosimetry estimates using samples collected within a few weeks of return from space lie within the range expected from physical dosimetry. For some of these individuals chromosome aberrations were assessed again several months after their respective missions and a temporal decline in stable exchanges was observed in some cases, suggesting that translocations are unstable with time after whole body exposure to space radiation. This may indicate complications with the use of translocations for retrospective dose reconstruction. Data from one crewmember who has participated in two separate long duration space missions and has been followed up for over 10 years provides limited data on the effect of repeat flights and shows a possible adaptive response to space radiation exposure.

  14. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    PubMed

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  15. Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1

    PubMed Central

    Fluch, Silvia; Kopecky, Dieter; Burg, Kornel; Šimková, Hana; Taudien, Stefan; Petzold, Andreas; Kubaláková, Marie; Platzer, Matthias; Berenyi, Maria; Krainer, Siegfried; Doležel, Jaroslav; Lelley, Tamas

    2012-01-01

    Background The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. Methodology/Principal Findings Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. Conclusions The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye. PMID:22328922

  16. Meiotic Chromosome Analysis of the Giant Water Bug, Lethocerus indicus

    PubMed Central

    Wisoram, Wijit; Saengthong, Pradit; Ngernsiri, Lertluk

    2013-01-01

    The giant water bug, Lethocerus indicus (Lepeletier and Serville) (Heteroptera: Belostomatidae), a native species of Southeast Asia, is one of the largest insects belonging to suborder Heteroptera. In this study, the meiotic chromosome of L. indicus was studied in insect samples collected from Thailand, Myanmar, Loas, and Cambodia. Testicular cells stained with lacto-acetic orcein, Giemsa, DAPI, and silver nitrate were analyzed. The results revealed that the chromosome complement of L. indicus was 2n = 22A + neo-XY + 2m, which differed from that of previous reports. Each individual male contained testicular cells with three univalent patterns. The frequency of cells containing neo-XY chromosome univalent (∼5%) was a bit higher than that of cells with autosomal univalents (∼3%). Some cells (∼0.5%) had both sex chromosome univalents and a pair of autosomal univalents. None of the m-chromosome univalents were observed during prophase I. In addition, this report presents clear evidence about the existence of m-chromosomes in Belostomatidae. PMID:23895100

  17. Cre recombinase-mediated site-specific recombination between plant chromosomes.

    PubMed Central

    Qin, M; Bayley, C; Stockton, T; Ow, D W

    1994-01-01

    We report the use of the bacteriophage P1 Cre-lox system for generating conservative site-specific recombination between tobacco chromosomes. Two constructs, one containing a promoterless hygromycin-resistance gene preceded by a lox site (lox-hpt) and the other containing a cauliflower mosaic virus 35S promoter linked to a lox sequence and the cre coding region (35S-lox-cre), were introduced separately into tobacco plants. Crosses between plants harboring either construct produced plants with the two constructs situated on different chromosomes. Plants with recombination events were identified by selecting for hygromycin resistance, a phenotype expressed upon recombination. Molecular analysis showed that these recombination events occurred specifically at the lox sites and resulted in the reciprocal exchange of flanking host DNA. Progenies of these plants showed 67-100% cotransmission of the new transgenes, 35S-lox-hpt and lox-cre, consistent with the preferential cosegregation of translocated chromosomes. These results illustrate that site-specific recombination systems can be useful tools for the large-scale manipulation of eukaryotic chromosomes in vivo. Images PMID:8127869

  18. Origin of B chromosomes in Characidium alipioi (Characiformes, Crenuchidae) and its relationship with supernumerary chromosomes in other Characidium species.

    PubMed

    Serrano, Érica Alves; Utsunomia, Ricardo; Scudeller, Patrícia Sobrinho; Oliveira, Claudio; Foresti, Fausto

    2017-01-01

    B chromosomes are apparently dispensable components found in the genomes of many species that are mainly composed of repetitive DNA sequences. Among the numerous questions concerning B chromosomes, the origin of these elements has been widely studied. To date, supernumerary chromosomes have been identified in approximately 60 species of fish, including species of the genus Characidium Reinhardt, 1867 in which these elements appear to have independently originated. In this study, we used molecular cytogenetic techniques to investigate the origin of B chromosomes in a population of Characidium alipioi Travassos, 1955 and determine their relationship with the extra chromosomes of other species of the genus. The results showed that the B chromosomes of Characidium alipioi had an intraspecific origin, apparently originated independently in relation to the B chromosomes of Characidium gomesi Travassos, 1956 Characidium pterostictum Gomes, 1947 and Characidium oiticicai Travassos, 1967, since they do not share specific DNA sequences, as well as their possible ancestral chromosomes and belong to different phylogenetic clades. The shared sequences between the supernumerary chromosomes and the autosommal sm pair indicate the origin of these chromosomes.

  19. Genomic convergence to identify candidate genes for Alzheimer disease on chromosome 10

    PubMed Central

    Liang, Xueying; Slifer, Michael; Martin, Eden R.; Schnetz-Boutaud, Nathalie; Bartlett, Jackie; Anderson, Brent; Züchner, Stephan; Gwirtsman, Harry; Gilbert, John R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.

    2009-01-01

    A broad region of chromosome 10 (chr10) has engendered continued interest in the etiology of late-onset Alzheimer Disease (LOAD) from both linkage and candidate gene studies. However, there is a very extensive heterogeneity on chr10. We converged linkage analysis and gene expression data using the concept of genomic convergence that suggests that genes showing positive results across multiple different data types are more likely to be involved in AD. We identified and examined 28 genes on chr10 for association with AD in a Caucasian case-control dataset of 506 cases and 558 controls with substantial clinical information. The cases were all LOAD (minimum age at onset ≥ 60 years). Both single marker and haplotypic associations were tested in the overall dataset and 8 subsets defined by age, gender, ApoE and clinical status. PTPLA showed allelic, genotypic and haplotypic association in the overall dataset. SORCS1 was significant in the overall data sets (p=0.0025) and most significant in the female subset (allelic association p=0.00002, a 3-locus haplotype had p=0.0005). Odds Ratio of SORCS1 in the female subset was 1.7 (p<0.0001). SORCS1 is an interesting candidate gene involved in the Aβ pathway. Therefore, genetic variations in PTPLA and SORCS1 may be associated and have modest effect to the risk of AD by affecting Aβ pathway. The replication of the effect of these genes in different study populations and search for susceptible variants and functional studies of these genes are necessary to get a better understanding of the roles of the genes in Alzheimer disease. PMID:19241460

  20. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    PubMed

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  1. Genome-wide analysis of multiethnic cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

    PubMed Central

    Vitart, Veronique; Nag, Abhishek; Hewitt, Alex W; Höhn, René; Venturini, Cristina; Mirshahi, Alireza; Ramdas, Wishal D.; Thorleifsson, Gudmar; Vithana, Eranga; Khor, Chiea-Chuen; Stefansson, Arni B; Liao, Jiemin; Haines, Jonathan L; Amin, Najaf; Wang, Ya Xing; Wild, Philipp S; Ozel, Ayse B; Li, Jun Z; Fleck, Brian W; Zeller, Tanja; Staffieri, Sandra E; Teo, Yik-Ying; Cuellar-Partida, Gabriel; Luo, Xiaoyan; Allingham, R Rand; Richards, Julia E; Senft, Andrea; Karssen, Lennart C; Zheng, Yingfeng; Bellenguez, Céline; Xu, Liang; Iglesias, Adriana I; Wilson, James F; Kang, Jae H; van Leeuwen, Elisabeth M; Jonsson, Vesteinn; Thorsteinsdottir, Unnur; Despriet, Dominiek D.G.; Ennis, Sarah; Moroi, Sayoko E; Martin, Nicholas G; Jansonius, Nomdo M; Yazar, Seyhan; Tai, E-Shyong; Amouyel, Philippe; Kirwan, James; van Koolwijk, Leonieke M.E.; Hauser, Michael A; Jonasson, Fridbert; Leo, Paul; Loomis, Stephanie J; Fogarty, Rhys; Rivadeneira, Fernando; Kearns, Lisa; Lackner, Karl J; de Jong, Paulus T.V.M.; Simpson, Claire L; Pennell, Craig E; Oostra, Ben A; Uitterlinden, André G; Saw, Seang-Mei; Lotery, Andrew J; Bailey-Wilson, Joan E; Hofman, Albert; Vingerling, Johannes R; Maubaret, Cécilia; Pfeiffer, Norbert; Wolfs, Roger C.W.; Lemij, Hans G; Young, Terri L; Pasquale, Louis R; Delcourt, Cécile; Spector, Timothy D; Klaver, Caroline C.W.; Small, Kerrin S; Burdon, Kathryn P; Stefansson, Kari; Wong, Tien-Yin; Viswanathan, Ananth; Mackey, David A; Craig, Jamie E; Wiggs, Janey L; van Duijn, Cornelia M; Hammond, Christopher J; Aung, Tin

    2014-01-01

    Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma and IOP variability may herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multiethnic participants for IOP. We confirm genetic association of known loci for IOP and primary open angle glaucoma (POAG) and identify four new IOP loci located on chromosome 3q25.31 within the FNDC3B gene (p=4.19×10−08 for rs6445055), two on chromosome 9 (p=2.80×10−11 for rs2472493 near ABCA1 and p=6.39×10−11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best p=1.04×10−11 for rs747782). Separate meta-analyses of four independent POAG cohorts, totaling 4,284 cases and 95,560 controls, show that three of these IOP loci are also associated with POAG. PMID:25173106

  2. Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana.

    PubMed

    Armstrong, Susan J; Jones, Gareth H

    2003-01-01

    This article reviews the historical development of cytology and cytogenetics in Arabidopsis, and summarizes recent developments in molecular cytogenetics, with special emphasis on meiotic studies. Despite the small genome and small chromosomes of Arabidopsis, considerable progress has been made in developing appropriate cytogenetical techniques for chromosome analysis. Fluorescence in situ hybridization (FISH) applied to extended meiotic pachytene chromosomes has resulted in a standardized karyotype (idiogram) for the species that has also been aligned with the genetical map. A better understanding of floral and meiotic development has been achieved by combining cytological studies, based on both sectioning and spreading techniques, with morphometric data and developmental landmarks. The meiotic interphase, preceding prophase I, has been investigated by marking the nuclei undergoing DNA replication with BrdU. This allowed the subclasses of meiotic interphase to be distinguished and also provided a means to time the duration of meiosis and its constituent phases. The FISH technique has been used to analyse in detail the meiotic organization of telomeres and centromeric regions. The results indicate that centromere regions do not play an active role in chromosome pairing and synapsis; however, telomeres pair homologously in advance of general chromosome synapsis. The FISH technique is currently being applied to analysing the pairing and synapsis of interstitial chromosome regions through interphase and prophase I. FISH probes also allow the five bivalents of Arabidopsis to be identified at metaphase I and this has permitted an analysis of chiasma frequencies in individual bivalents, both in wild-type Arabidopsis and in two meiotic mutants.

  3. Haplotype Analysis in Multiple Crosses to Identify a QTL Gene

    PubMed Central

    Wang, Xiaosong; Korstanje, Ron; Higgins, David; Paigen, Beverly

    2004-01-01

    Identifying quantitative trait locus (QTL) genes is a challenging task. Herein, we report using a two-step process to identify Apoa2 as the gene underlying Hdlq5, a QTL for plasma high-density lipoprotein cholesterol (HDL) levels on mouse chromosome 1. First, we performed a sequence analysis of the Apoa2 coding region in 46 genetically diverse mouse strains and found five different APOA2 protein variants, which we named APOA2a to APOA2e. Second, we conducted a haplotype analysis of the strains in 21 crosses that have so far detected HDL QTLs; we found that Hdlq5 was detected only in the nine crosses where one parent had the APOA2b protein variant characterized by an Ala61-to-Val61 substitution. We then found that strains with the APOA2b variant had significantly higher (P ≤ 0.002) plasma HDL levels than those with either the APOA2a or the APOA2c variant. These findings support Apoa2 as the underlying Hdlq5 gene and suggest the Apoa2 polymorphisms responsible for the Hdlq5 phenotype. Therefore, haplotype analysis in multiple crosses can be used to support a candidate QTL gene. PMID:15310659

  4. Haplotype analysis in multiple crosses to identify a QTL gene.

    PubMed

    Wang, Xiaosong; Korstanje, Ron; Higgins, David; Paigen, Beverly

    2004-09-01

    Identifying quantitative trait locus (QTL) genes is a challenging task. Herein, we report using a two-step process to identify Apoa2 as the gene underlying Hdlq5, a QTL for plasma high-density lipoprotein cholesterol (HDL) levels on mouse chromosome 1. First, we performed a sequence analysis of the Apoa2 coding region in 46 genetically diverse mouse strains and found five different APOA2 protein variants, which we named APOA2a to APOA2e. Second, we conducted a haplotype analysis of the strains in 21 crosses that have so far detected HDL QTLs; we found that Hdlq5 was detected only in the nine crosses where one parent had the APOA2b protein variant characterized by an Ala61-to-Val61 substitution. We then found that strains with the APOA2b variant had significantly higher (P < or = 0.002) plasma HDL levels than those with either the APOA2a or the APOA2c variant. These findings support Apoa2 as the underlying Hdlq5 gene and suggest the Apoa2 polymorphisms responsible for the Hdlq5 phenotype. Therefore, haplotype analysis in multiple crosses can be used to support a candidate QTL gene.

  5. Ancestral Chromosomal Blocks Are Triplicated in Brassiceae Species with Varying Chromosome Number and Genome Size1

    PubMed Central

    Lysak, Martin A.; Cheung, Kwok; Kitschke, Michaela; Bureš, Petr

    2007-01-01

    The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n = 14, 18, 20, 32, and 36. In high-polyploid (n ≥ 30) species Crambe maritima (2n = 60), Crambe cordifolia (2n = 120), and Vella pseudocytisus (2n = 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2–2.5 pg/2C) has been found in Brassiceae species with 2n = 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n = 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships. PMID:17720758

  6. [Analysis of chromosome composition in interspecific embryonic stem hybrid cells of mice].

    PubMed

    Pristiazhniuk, I E; Matveeva, N M; Grafodatskiĭ, A S; Serdiukova, N A; Serov, O L

    2010-01-01

    Chromosome complements of twenty hybrid clones obtained by fusion of Mus musculus embryonic stem cells (ESC) and M. caroli splenocytes were studied. Using of double-color in situ hybridization with chromosome- and species-specific probes we were able to detect the parental origin for each chromosome in hybrid cells. Based on parental chromosome ratio, all 20 hybrid clones were separated in some different groups: from the group containing practically tetraploid M. musculus genome with single M. caroli chromosomes to hybrids with dominance of M. caroli chromosome homologues. In 8 hybrid cells clones we observed prevalence of chromosomes originated from ESC in ratio from 5:1 to 3:1. Another hybrid cells clones have either equal (1:1, 1:2) ratio of M. musculus to M. caroli chromosomes or with the prevalence of ESC- (2:1) or splenocyte- (1:2) originated parental chromosome homologues. In 3 hybrid cells clones, we observed preferable segregation of ESC-originated pluripotent chromosomes. This phenomenon was found for the first time and it possibly indicates compensation of the epigenetic differences between parental chromosomes of ESC- and splenocyte-origination.

  7. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement

    PubMed Central

    Ohno, Yuko; Ogiyama, Yuki; Kubota, Yoshino; Kubo, Takuya; Ishii, Kojiro

    2016-01-01

    The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR. PMID:26433224

  8. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    PubMed Central

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  9. Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient.

    PubMed

    Plaisancié, Julie; Kleinfinger, Pascale; Cances, Claude; Bazin, Anne; Julia, Sophie; Trost, Detlef; Lohmann, Laurence; Vigouroux, Adeline

    2014-10-01

    Structural alterations in chromosomes are a frequent cause of cancers and congenital diseases. Recently, the phenomenon of chromosome crisis, consisting of a set of tens to hundreds of clustered genomic rearrangements, localized in one or a few chromosomes, was described in cancer cells under the term chromothripsis. Better knowledge and recognition of this catastrophic chromosome event has brought to light two distinct entities, chromothripsis and chromoanasynthesis. The complexity of these rearrangements and the original descriptions in tumor cells initially led to the thought that it was an acquired anomaly. In fact, a few patients have been reported with constitutional chromothripsis or chromoanasynthesis. Using microarray we identified a very complex chromosomal rearrangement in a patient who had a cytogenetically visible rearrangement of chromosome 18. The rearrangement contained more than 15 breakpoints localized on a single chromosome. Our patient displayed intellectual disability, behavioral troubles and craniofacial dysmorphism. Interestingly, the succession of duplications and triplications identified in our patient was not clustered on a single chromosomal region but spread over the entire chromosome 18. In the light of this new spectrum of chromosomal rearrangements, this report outlines the main features of these catastrophic events and discusses the underlying mechanism of the complex chromosomal rearrangement identified in our patient, which is strongly evocative of a chromoanasynthesis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Flow karyotyping and sorting of human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Lucas, J.; Peters, D.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purificationmore » of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.« less

  11. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons

    PubMed Central

    Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta

    2012-01-01

    Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276

  12. [Linkage analysis of susceptibility loci in 2 target chromosomes in pedigrees with paranoid schizophrenia and undifferentiated schizophrenia].

    PubMed

    Zeng, Li-ping; Hu, Zheng-mao; Mu, Li-li; Mei, Gui-sen; Lu, Xiu-ling; Zheng, Yong-jun; Li, Pei-jian; Zhang, Ying-xue; Pan, Qian; Long, Zhi-gao; Dai, He-ping; Zhang, Zhuo-hua; Xia, Jia-hui; Zhao, Jing-ping; Xia, Kun

    2011-06-01

    To investigate the relationship of susceptibility loci in chromosomes 1q21-25 and 6p21-25 and schizophrenia subtypes in Chinese population. A genomic scan and parametric and non-parametric analyses were performed on 242 individuals from 36 schizophrenia pedigrees, including 19 paranoid schizophrenia and 17 undifferentiated schizophrenia pedigrees, from Henan province of China using 5 microsatellite markers in the chromosome region 1q21-25 and 8 microsatellite markers in the chromosome region 6p21-25, which were the candidates of previous studies. All affected subjects were diagnosed and typed according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR; American Psychiatric Association, 2000). All subjects signed informed consent. In chromosome 1, parametric analysis under the dominant inheritance mode of all 36 pedigrees showed that the maximum multi-point heterogeneity Log of odds score method (HLOD) score was 1.33 (α = 0.38). The non-parametric analysis and the single point and multi-point nonparametric linkage (NPL) scores suggested linkage at D1S484, D1S2878, and D1S196. In the 19 paranoid schizophrenias pedigrees, linkage was not observed for any of the 5 markers. In the 17 undifferentiated schizophrenia pedigrees, the multi-point NPL score was 1.60 (P= 0.0367) at D1S484. The single point NPL score was 1.95(P= 0.0145) and the multi-point NPL score was 2.39 (P= 0.0041) at D1S2878. Additionally, the multi-point NPL score was 1.74 (P= 0.0255) at D1S196. These same three loci showed suggestive linkage during the integrative analysis of all 36 pedigrees. In chromosome 6, parametric linkage analysis under the dominant and recessive inheritance and the non-parametric linkage analysis of all 36 pedigrees and the 17 undifferentiated schizophrenia pedigrees, linkage was not observed for any of the 8 markers. In the 19 paranoid schizophrenias pedigrees, parametric analysis showed that under recessive

  13. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients.

    PubMed

    Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum

    2016-12-01

    Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits.

    PubMed

    Xie, Liang; Luo, Chenglong; Zhang, Chengguang; Zhang, Rong; Tang, Jun; Nie, Qinghua; Ma, Li; Hu, Xiaoxiang; Li, Ning; Da, Yang; Zhang, Xiquan

    2012-01-01

    Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5-175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0-90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22-48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29-42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22-42 d.

  15. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C- and diethylstilboestrol-induced micronuclei.

    PubMed

    Fauth, E; Scherthan, H; Zankl, H

    2000-11-01

    Cultures of human blood lymphocytes from three subjects were incubated with the clastogen mitomycin C (MMC, 500 ng/ml) and the aneugen diethylstilboestrol (DES, 80 microM) 23 h before harvesting, to induce formation of micronuclei (MN) and numerical and structural alterations in metaphase chromosomes. We used fluorescence in situ hybridization (FISH) with painting probes for all human chromosomes to determine which chromosomes had contributed material to the induced MN. MMC treatment induced an approximately 18-fold increase in MN and led to a significant increase in hypodiploidy and structural chromosome aberrations in metaphase preparations. Undercondensation of pericentromeric heterochromatin of chromosomes 9 and 1 occurred in 20-75% of metaphases and FISH disclosed an abundance of material from these chromosomes in induced MN (62-69% from chromosome 9 and 7-12% from chromosome 1). DES treatment of lymphocytes induced a seven-fold increase in MN frequency and four-fold increase in the frequency of numerical aberrations; structural aberrations were not significantly increased. FISH analysis showed that material from all chromosomes was present in DES-induced MN, with material from chromosome 1 present in 16% of MN and material from each other chromosomes being present in 2-10% of MN. Material from chromosomes 14, 19 and 21 was significantly more frequent material from chromosome Y significantly less frequent in DES-treated cells than in controls. The findings of the MMC studies indicate that the heterochromatin block of chromosome 9 is a specific target for MMC-induced undercondensation, which induces a preferential occurrence of chromosome 9 material in MN. DES, in contrast, does not trigger heterochromatin decondensation and fails to induce such a significant appearance of material of particular chromosomes in MN.

  16. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    PubMed Central

    2012-01-01

    Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1

  17. Molecular Characterization of the Pericentric Inversion That Causes Differences Between Chimpanzee Chromosome 19 and Human Chromosome 17

    PubMed Central

    Kehrer-Sawatzki, Hildegard; Schreiner, Bettina; Tänzer, Simone; Platzer, Matthias; Müller, Stefan; Hameister, Horst

    2002-01-01

    A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2–39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes. PMID:12094327

  18. Chromosome 14 and late-onset familial alzheimer disease (FAD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberg, G.D.; Anderson, L.; Nemens, E.

    1993-09-01

    Familial Alzheimer disease (FAD) is genetically heterogeneous. Two loci responsible for early-onset FAD have been identified: the amyloid precursor protein gene on chromosome 21 and the as-yet-unidentified locus on chromosome 14. The genetics of late-onset FAD is unresolved. Maximum-likelihood, affected-pedigree-member (APM), and sib-pair analysis were used, in 49 families with a mean age at onset [>=]60 years, to determine whether the chromosome 14 locus is responsible for late-onset FAD. The markers used were D14S53, D14S43, and D14S52. The LOD score method was used to test for linkage of late-onset FAD to the chromosome 14 markers, under three different models: age-dependentmore » penetrance, an affected-only analysis, and age-dependent penetrance with allowance for possible age-dependent sporadic cases. No evidence for linkage was obtained under any of these conditions for the late-onset kindreds, and strong evidence against linkage (LOD score [>=]2.0) to this region was obtained. Heterogeneity tests of the LOD score results for the combined group of families (early onset, Volga Germans, and late onset) favored the hypothesis of linkage to chromosome 14 with genetic heterogeneity. The positive results are primarily from early-onset families. APM analysis gave significant evidence for linkage of D14S43 and D14S52 to FAD in early-onset kindreds (P<.02). No evidence for linkage was found for the entire late-onset family group. Significant evidence for linkage to D14S52, however, was found for a subgroup of families of intermediate age at onset (mean age at onset [>=]60 years and <70 years). These results indicate that the chromosome 14 locus is not responsible for Alzheimer disease in most late-onset FAD kindreds but could play a role in a subset of these kindreds. 37 refs., 1 fig., 6 tabs.« less

  19. Spatial organization of bacterial chromosomes

    PubMed Central

    Wang, Xindan; Rudner, David Z.

    2014-01-01

    Bacterial chromosomes are organized in stereotypical patterns that are faithfully and robustly regenerated in daughter cells. Two distinct spatial patterns were described almost a decade ago in our most tractable model organisms. In recent years, analysis of chromosome organization in a larger and more diverse set of bacteria and a deeper characterization of chromosome dynamics in the original model systems have provided a broader and more complete picture of both chromosome organization and the activities that generate the observed spatial patterns. Here, we summarize these different patterns highlighting similarities and differences and discuss the protein factors that help establish and maintain them. PMID:25460798

  20. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis.

    PubMed

    Pucholt, Pascal; Wright, Alison E; Conze, Lei Liu; Mank, Judith E; Berlin, Sofia

    2017-08-01

    Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Regional gene mapping using mixed radiation hybrids and reverse chromosome painting.

    PubMed

    Lin, J Y; Bedford, J S

    1997-11-01

    We describe a new approach for low-resolution physical mapping using pooled DNA probe from mixed (non-clonal) populations of human-CHO cell hybrids and reverse chromosome painting. This mapping method is based on a process in which the human chromosome fragments bearing a complementing gene were selectively retained in a large non-clonal population of CHO-human hybrid cells during a series of 12- to 15-Gy gamma irradiations each followed by continuous growth selection. The location of the gene could then be identified by reverse chromosome painting on normal human metaphase spreads using biotinylated DNA from this population of "enriched" hybrid cells. We tested the validity of this method by correctly mapping the complementing human HPRT gene, whose location is well established. We then demonstrated the method's usefulness by mapping the chromosome location of a human gene which complemented the defect responsible for the hypersensitivity to ionizing radiation in CHO irs-20 cells. This method represents an efficient alternative to conventional concordance analysis in somatic cell hybrids where detailed chromosome analysis of numerous hybrid clones is necessary. Using this approach, it is possible to localize a gene for which there is no prior sequence or linkage information to a subchromosomal region, thus facilitating association with known mapping landmarks (e.g. RFLP, YAC or STS contigs) for higher-resolution mapping.

  2. Chromosome characterization using single fluorescent dye

    DOEpatents

    Crissman, Harry A.; Hirons, Gregory T.

    1995-01-01

    Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

  3. Chromosome jumping from D4S10 (G8) toward the Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, J.E.; Gilliam, T.C.; Cole, J.L.

    1988-09-01

    The gene for Huntington disease (HD) has been localized to the distal portion of the short arm of human chromosome 4 by linkage analysis. Currently, the two closest DNA markers are D4S10 (G8), located /approx/3 centimorgans centromeric to HD, and D4S43 (C4H), positioned 0-1.5 centimorgans from HD. In an effort to move closer to the HD gene, with the eventual goal of identifying the gene itself, the authors have applied the technique of chromosome jumping to this region. A 200-kilobase jumping library has been constructed, and a jump from D4S10 has been obtained and its approximate distance verified by pulsedmore » field gel electrophoresis. Two restriction fragment length polymorphisms have been identified at the jump locus, which is denoted D4S81. Linkage analysis of previously identified recombinants between D4S10 and HD or D4S10 and D4S43 shows that in two of five events the jump has crossed the recombination points. This unequivocally orients D4S10 and D4S81 on the chromosome, provides additional markers for HD, and suggests that recombination frequency in this region of chromosome 4 may be increased, so that the physical distance from D4S10 to HD may not be as large as originally suspected.« less

  4. X Chromosome Evolution in Cetartiodactyla

    PubMed Central

    Proskuryakova, Anastasia A.; Kulemzina, Anastasia I.; Makunin, Alexey I.; Kukekova, Anna V.; Lynn Johnson, Jennifer; Lemskaya, Natalya A.; Beklemisheva, Violetta R.; Roelke-Parker, Melody E.; Bellizzi, June; Ryder, Oliver A.; O’Brien, Stephen J.; Graphodatsky, Alexander S.

    2017-01-01

    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups. PMID:28858207

  5. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    PubMed Central

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes

  6. DOP-PCR based painting of rye chromosomes in a wheat background.

    PubMed

    Deng, Chuanliang; Bai, Lili; Li, Shufen; Zhang, Yingxin; Li, Xiang; Chen, Yuhong; Wang, Richard R-C; Han, Fangpu; Hu, Zanmin

    2014-09-01

    To determine the appropriateness of chromosome painting for identifying genomic elements in rye, we microdissected the 1R and 1RS chromosomes from rye (Secale cereale L. var. King II) and wheat-rye addition line 1RS, respectively. Degenerate oligonucleotide primed - polymerase chain reaction (DOP-PCR) amplification of 1R and 1RS products from dissected chromosomes were used as probes to hybridize to metaphase chromosomes of rye, wheat-rye addition lines 1R and 1RS, translocation line 1RS.1BL, and allohexaploid triticale. The results showed that (i) the hybridization signal distribution patterns on rye chromosomes using 1R-derived DOP-PCR products as the probe were similar to those using 1RS-derived DOP-PCR products as the probe; (ii) 1R and (or) 1RS could not be distinguished from other rye chromosomes solely by the hybridization patterns using 1R- and (or) 1RS-derived DOP-PCR products as the probe; (iii) rye chromosomes and (or) rye chromosome fragments could be clearly identified in wheat-rye hybrids using either 1R- or 1RS-derived DOP-PCR products as the probe and could be more accurate in the nontelomeric region than using genomic in situ hybridization (GISH). Our results suggested that 1R- and (or) 1RS-derived DOP-PCR products contain many repetitive DNA sequences, are similar on different rye chromosomes, are R-genome specific, and can be used to identify rye chromosomes and chromosome fragments in wheat-rye hybrids. Our research widens the application range of chromosome painting in plants.

  7. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes.

    PubMed

    George, K; Durante, M; Willingham, V; Cucinotta, F A

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel

  8. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.

  9. Biomarker for Space Radiation Risk: Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, Kerry; Cucinotta, Francis A.; Wu, Honglu

    2007-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Over the years, we have studied chromosomal damage in human fibroblast, epithelia and lymphocyte cells exposed in vitro to energetic charged particles generated at several accelerator facilities in the world. We have also studied chromosome aberrations in astronaut s peripheral blood lymphocytes before and after space flight. Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell. We will summarize the results of the investigations, and discuss the unique radiation signatures and biomarkers for space radiation exposure.

  10. Extreme selective sweeps independently targeted the X chromosomes of the great apes

    PubMed Central

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger; Dutheil, Julien Yann; Veeramah, Krishna R.; Woerner, August E.; Hammer, Michael F.; Mailund, Thomas; Schierup, Mikkel Heide

    2015-01-01

    The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis. PMID:25941379

  11. Ordered-subsets linkage analysis detects novel Alzheimer disease loci on chromosomes 2q34 and 15q22.

    PubMed

    Scott, William K; Hauser, Elizabeth R; Schmechel, Donald E; Welsh-Bohmer, Kathleen A; Small, Gary W; Roses, Allen D; Saunders, Ann M; Gilbert, John R; Vance, Jeffery M; Haines, Jonathan L; Pericak-Vance, Margaret A

    2003-11-01

    Alzheimer disease (AD) is a complex disorder characterized by a wide range, within and between families, of ages at onset of symptoms. Consideration of age at onset as a covariate in genetic-linkage studies may reduce genetic heterogeneity and increase statistical power. Ordered-subsets analysis includes continuous covariates in linkage analysis by rank ordering families by a covariate and summing LOD scores to find a subset giving a significantly increased LOD score relative to the overall sample. We have analyzed data from 336 markers in 437 multiplex (>/=2 sampled individuals with AD) families included in a recent genomic screen for AD loci. To identify genetic heterogeneity by age at onset, families were ordered by increasing and decreasing mean and minimum ages at onset. Chromosomewide significance of increases in the LOD score in subsets relative to the overall sample was assessed by permutation. A statistically significant increase in the nonparametric multipoint LOD score was observed on chromosome 2q34, with a peak LOD score of 3.2 at D2S2944 (P=.008) in 31 families with a minimum age at onset between 50 and 60 years. The LOD score in the chromosome 9p region previously linked to AD increased to 4.6 at D9S741 (P=.01) in 334 families with minimum age at onset between 60 and 75 years. LOD scores were also significantly increased on chromosome 15q22: a peak LOD score of 2.8 (P=.0004) was detected at D15S1507 (60 cM) in 38 families with minimum age at onset >/=79 years, and a peak LOD score of 3.1 (P=.0006) was obtained at D15S153 (62 cM) in 43 families with mean age at onset >80 years. Thirty-one families were contained in both 15q22 subsets, indicating that these results are likely detecting the same locus. There is little overlap in these subsets, underscoring the utility of age at onset as a marker of genetic heterogeneity. These results indicate that linkage to chromosome 9p is strongest in late-onset AD and that regions on chromosome 2q34 and 15q22 are

  12. A 15 Mb large paracentric chromosome 21 inversion identified in Czech population through a pair of flanking duplications.

    PubMed

    Drabova, Jana; Trkova, Marie; Hancarova, Miroslava; Novotna, Drahuse; Hejtmankova, Michaela; Havlovicova, Marketa; Sedlacek, Zdenek

    2014-01-01

    Inversions are balanced structural chromosome rearrangements, which can influence gene expression and the risk of unbalanced chromosome constitution in offspring. Many examples of inversion polymorphisms exist in human, affecting both heterochromatic regions and euchromatin. We describe a novel, 15 Mb long paracentric inversion, inv(21)(q21.1q22.11), affecting more than a third of human 21q. Despite of its length, the inversion cannot be detected using karyotyping due to similar band patterns on the normal and inverted chromosomes, and is therefore likely to escape attention. Its identification was aided by the repeated observation of the same pair of 150 kb long duplications present in cis on chromosome 21 in three Czech families subjected to microarray analysis. The finding prompted us to hypothesise that this co-occurrence of two remote duplications could be associated with an inversion of the intervening segment, and this speculation turned out to be right. The inversion was confirmed in a series of FISH experiments which also showed that the second copy of each of the duplications was always located at the opposite end of the inversion. The presence of the same pair of duplications in additional individuals reported in public databases indicates that the inversion may also be present in other populations. Three out of the total of about 4000 chromosomes 21 examined in our sample carried the duplications and were inverted, corresponding to carrier frequency of about 1/660. Although the breakpoints affect protein-coding genes, the occurrence of the inversion in normal parents and siblings of our patients and the occurrence of the duplications in unaffected controls in databases indicate that this rare variant is rather non-pathogenic. The inverted segment carried an identical shared haplotype in the three families studied. The haplotypes, however, diverged very rapidly in the flanking regions, possibly pointing to an ancient founder event at the origin of the

  13. Chromosome rearrangements in canine fibrosarcomas.

    PubMed

    Sargan, D R; Milne, B S; Hernandez, J Aguirre; O'Brien, P C M; Ferguson-Smith, M A; Hoather, T; Dobson, J M

    2005-01-01

    We have previously reported the use of six- and seven-color paint sets in the analysis of canine soft tissue sarcomas. Here we combine this technique with flow sorting of translocation chromosomes, reverse painting, and polymerase chain reaction (PCR) analysis of the gene content of the reverse paint in order to provide a more detailed analysis of cytogenetic abnormalities in canine tumors. We examine two fibrosarcomas, both from female Labrador retrievers, and show abnormalities in chromosomes 11 and 30 in both cases. Evidence of involvement of TGFBR1 is presented for one tumor.

  14. [A boy with Meier-Gorlin syndrome carrying a novel ORC6 mutation and uniparental disomy of chromosome 16].

    PubMed

    Li, Juan; Ding, Yu; Chang, Guoying; Cheng, Qing; Li, Xin; Wang, Jian; Wang, Xiumin; Shen, Yiping

    2017-02-10

    To identify the genetic cause for a 11-year-old Chinese boy with Meier-Gorlin syndrome (MGS). Chromosomal microarray analysis (CMA) was used to detect potential variations, while whole exome sequencing (WES) was used to identify sequence variants. Sanger sequencing was used to confirm the suspected variants. The boy has featured short stature, microtia, small patella, slender body build, craniofacial anomalies, and small testes with normal gonadotropin. A complete uniparental disomy of chromosome 16 was revealed by CMA. WES has identified a novel homozygous mutation c.67A>G (p.Lys23Glu) in ORC6 gene mapped to chromosome 16. As predicted by Alamut functional software, the mutation may affect the function of structural domain of the ORC6 protein. The patient is probably the first diagnosed MGS case in China, who carried a novel homozygous mutation of the ORC6 gene and uniparental disomy of chromosome 16. The effect of this novel mutation on the growth and development needs to be further investigated.

  15. First Pass Annotation of Promoters on Human Chromosome 22

    PubMed Central

    Scherf, Matthias; Klingenhoff, Andreas; Frech, Kornelie; Quandt, Kerstin; Schneider, Ralf; Grote, Korbinian; Frisch, Matthias; Gailus-Durner, Valérie; Seidel, Alexander; Brack-Werner, Ruth; Werner, Thomas

    2001-01-01

    The publication of the first almost complete sequence of a human chromosome (chromosome 22) is a major milestone in human genomics. Together with the sequence, an excellent annotation of genes was published which certainly will serve as an information resource for numerous future projects. We noted that the annotation did not cover regulatory regions; in particular, no promoter annotation has been provided. Here we present an analysis of the complete published chromosome 22 sequence for promoters. A recent breakthrough in specific in silico prediction of promoter regions enabled us to attempt large-scale prediction of promoter regions on chromosome 22. Scanning of sequence databases revealed only 20 experimentally verified promoters, of which 10 were correctly predicted by our approach. Nearly 40% of our 465 predicted promoter regions are supported by the currently available gene annotation. Promoter finding also provides a biologically meaningful method for “chromosomal scaffolding”, by which long genomic sequences can be divided into segments starting with a gene. As one example, the combination of promoter region prediction with exon/intron structure predictions greatly enhances the specificity of de novo gene finding. The present study demonstrates that it is possible to identify promoters in silico on the chromosomal level with sufficient reliability for experimental planning and indicates that a wealth of information about regulatory regions can be extracted from current large-scale (megabase) sequencing projects. Results are available on-line at http://genomatix.gsf.de/chr22/. PMID:11230158

  16. Genetical Analysis of Chromosomal Interaction Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Miyashita, Naohiko; Laurie-Ahlberg, C. C.

    1984-01-01

    By combining ten second and ten third chromosomes, we investigated chromosomal interaction with respect to the action of the modifier factors on G6PD and 6PGD activities in Drosophila melanogaster. Analysis of variance revealed that highly significant chromosomal interaction exists for both enzyme activities. From the estimated variance components, it was concluded that the variation in enzyme activity attributed to the interaction is as great as the variation attributed to the second chromosome but less than attributed to the third chromosome. The interaction is not explained by the variation of body size (live weight). The interaction is generated from both the lack of correlation of second chromosomes for third chromosome backgrounds and the heterogeneous variance of second chromosomes for different third chromosome backgrounds. Large and constant correlation between G6PD and 6PGD activities were found for third chromosomes with any second chromosome background, whereas the correlations for second chromosomes were much smaller and varied considerably with the third chromosome background. This result suggests that the activity modifiers on the second chromosome are under the influence of third chromosome factors. PMID:6425115

  17. Chromosome

    MedlinePlus

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  18. Compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  19. Compositions for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1998-05-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.

  20. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    PubMed

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  1. Characterization of a rice variety with high hydraulic conductance and identification of the chromosome region responsible using chromosome segment substitution lines

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Kondo, Motohiko; Yamamoto, Toshio; Arai-Sanoh, Yumiko; Ando, Tsuyu; Ookawa, Taiichiro; Yano, Masahiro; Hirasawa, Tadashi

    2010-01-01

    Background and Aims The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance. Methods Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used. Key Results The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’. Conclusions The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one

  2. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    PubMed

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  3. Method for detecting a pericentric inversion in a chromosome

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for determining a clastogenic signature of a sample of chromosomes by quantifying a frequency of a first type of chromosome aberration present in the sample; quantifying a frequency of a second, different type of chromosome aberration present in the sample; and comparing the frequency of the first type of chromosome aberration to the frequency of the second type of chromosome aberration. A method is also provided for using that clastogenic signature to identify a clastogenic agent or dosage to which the cells were exposed.

  4. High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae.

    PubMed

    Wang, Renjie; Normand, Christophe; Gadal, Olivier

    2016-01-01

    Spatial organization of the genome has important impacts on all aspects of chromosome biology, including transcription, replication, and DNA repair. Frequent interactions of some chromosome domains with specific nuclear compartments, such as the nucleolus, are now well documented using genome-scale methods. However, direct measurement of distance and interaction frequency between loci requires microscopic observation of specific genomic domains and the nucleolus, followed by image analysis to allow quantification. The fluorescent repressor operator system (FROS) is an invaluable method to fluorescently tag DNA sequences and investigate chromosome position and dynamics in living cells. This chapter describes a combination of methods to define motion and region of confinement of a locus relative to the nucleolus in cell's nucleus, from fluorescence acquisition to automated image analysis using two dedicated pipelines.

  5. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders or learning disability presenting for genetic services.

    PubMed

    Roberts, Jennifer L; Hovanes, Karine; Dasouki, Majed; Manzardo, Ann M; Butler, Merlin G

    2014-02-01

    Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009-2012). Of the 215 patients [140 males and 75 females (male/female ratio=1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n=20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n=8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group. © 2013 Elsevier B.V. All rights reserved.

  6. [Meiotic drive for aberrant chromosome 1 in mice is determined by a linked distorter].

    PubMed

    Agul'nik, S I; Sabantsev, I D; Orlova, G V; Ruvinskiĭ, A O

    1992-12-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from natural populations of Mus musculus. A meiotic drive favouring the aberrant chromosome was previously demonstrated for heterozygous females. The cause for this was the preferential passage of the chromosome 1 to the oocyte. Genetic analysis made it possible to identify a two-component system conditioning the deviation from equal segregation of the homologues. The system consists of the postulated distorter and a responder. The distorter is located on the chromosome 1 distally to the responder, between the 1n and Pep 3 genes, the former acting on the responder when in the trans position. Polymorphism of the distorters was manifested as variation in their effect on the meiotic drive level in the laboratory strain and mice from natural populations.

  7. First Polish DNA "manhunt"--an application of Y-chromosome STRs.

    PubMed

    Dettlaff-Kakol, A; Pawlowski, R

    2002-10-01

    This study presents the application of Y-chromosomal STR polymorphisms to male identification in the case of a serial rapist and woman murderer in Poland. Since August 1996 a rapist from Swinoujscie (northwest Poland) committed at least 14 rapes. In the year 2000 he brutally raped 8 young girls and murdered a 22-year-old girl. DNA profiles obtained from semen stains left at the scenes of crime gave information that one and the same man had committed all the rapes. The Y-chromosome haplotype (9 loci) obtained was used for the elimination process of 421 suspects. One man was found who had an identical DNA profile in all Y-chromosome STR loci analysed and possessed common alleles in 9 out of 10 autosomal loci, strongly suggesting that the real rapist and the typed man were closely related males. Analysis of reference DNA obtained from the man's brother revealed an identical DNA STR profile to that identified at the crime scenes. To the best of our knowledge this is the first case in Poland and probably in Eastern Europe where DNA typing of a large population was used to identify the offender.

  8. Balanced complex chromosome rearrangements: reproductive aspects. A review.

    PubMed

    Madan, Kamlesh

    2012-04-01

    This review examines the reproductive consequences for carriers of a balanced complex chromosome rearrangement (CCR). It is based on an analysis of CCRs in 103 adults referred for reproductive problems, including male infertility. The main focus is on reproductive risks based on data from 84 CCRs. Carriers of balanced CCRs have a high risk of an abortion and/or a chromosomally unbalanced child. I have identified roughly four different types of CCRs (I-IV); most (44%) belong to Type I with a simple 3-way or 4-way exchange of segments and risk factors similar to those for reciprocal translocations. There were only three CCRs (4%) of type II, which involve an inversion. Type III CCRs (21%) involve one or more insertions with ∼35% risk of a child with a duplication or a deletion of the inserted segment. Type IV CCRs (31%) involve a "middle segment" in a derivative chromosome with segments from at least three chromosomes. In ∼35% of these CCRs, recombination occurs in this segment, which can produce imbalance but in many cases it changes a CCR into a simpler balanced rearrangement in the next generation. Balanced CCRs, which have been often considered together in one group, can now be split into four types, each with a risk of a different type of imbalance. This analysis provides a better understanding of the reproductive consequences for carriers of balanced CCRs and should be useful in prenatal diagnosis and genetic counseling. Copyright © 2012 Wiley Periodicals, Inc.

  9. Identification of Y-Chromosome Sequences in Turner Syndrome.

    PubMed

    Silva-Grecco, Roseane Lopes da; Trovó-Marqui, Alessandra Bernadete; Sousa, Tiago Alves de; Croce, Lilian Da; Balarin, Marly Aparecida Spadotto

    2016-05-01

    To investigate the presence of Y-chromosome sequences and determine their frequency in patients with Turner syndrome. The study included 23 patients with Turner syndrome from Brazil, who gave written informed consent for participating in the study. Cytogenetic analyses were performed in peripheral blood lymphocytes, with 100 metaphases per patient. Genomic DNA was also extracted from peripheral blood lymphocytes, and gene sequences DYZ1, DYZ3, ZFY and SRY were amplified by Polymerase Chain Reaction. The cytogenetic analysis showed a 45,X karyotype in 9 patients (39.2 %) and a mosaic pattern in 14 (60.8 %). In 8.7 % (2 out of 23) of the patients, Y-chromosome sequences were found. This prevalence is very similar to those reported previously. The initial karyotype analysis of these patients did not reveal Y-chromosome material, but they were found positive for Y-specific sequences in the lymphocyte DNA analysis. The PCR technique showed that 2 (8.7 %) of the patients with Turner syndrome had Y-chromosome sequences, both presenting marker chromosomes on cytogenetic analysis.

  10. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter.

    PubMed

    Agulnik, S I; Sabantsev, I D; Orlova, G V; Ruvinsky, A O

    1993-04-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from wild populations of Mus musculus. Meiotic drive favouring the aberrant chromosome was demonstrated for heterozygous females. Its cause was preferential passage of aberrant chromosome 1 to the oocyte. Genetic analysis allowed us to identify a two-component system conditioning deviation from equal segregation of the homologues. The system consists of a postulated distorter and responder. The distorter is located on chromosome 1 distally to the responder, between the ln and Pep-3 genes, and it acts on the responder when in trans position. Polymorphism of the distorters was manifested as variation in their effect on meiotic drive level in the laboratory strain and mice from wild populations.

  11. Normalization of a chromosomal contact map.

    PubMed

    Cournac, Axel; Marie-Nelly, Hervé; Marbouty, Martial; Koszul, Romain; Mozziconacci, Julien

    2012-08-30

    Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their spatial proximity in a population of cells. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to minimize the influence of these unwanted but inevitable events on the final results. Careful analysis of the raw data generated previously for budding yeast S. cerevisiae led to the identification of three main biases affecting the final datasets, including a previously unknown bias resulting from the circularization of DNA molecules. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. We quantitatively reanalyzed the

  12. Variants for HDL-C, LDL-C and Triglycerides Identified from Admixture Mapping and Fine-Mapping Analysis in African-American Families

    PubMed Central

    Shetty, Priya B.; Tang, Hua; Feng, Tao; Tayo, Bamidele; Morrison, Alanna C.; Kardia, Sharon L.R.; Hanis, Craig L.; Arnett, Donna K.; Hunt, Steven C.; Boerwinkle, Eric; Rao, D.C.; Cooper, R.S.; Risch, Neil; Zhu, Xiaofeng

    2015-01-01

    Background Admixture mapping of lipids was followed-up by family-based association analysis to identify variants for cardiovascular disease in African-Americans. Methods and Results The present study conducted admixture mapping analysis for total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides. The analysis was performed in 1,905 unrelated African-American subjects from the National Heart, Lung and Blood Institute’s Family Blood Pressure Program. Regions showing admixture evidence were followed-up with family-based association analysis in 3,556 African-American subjects from the FBPP. The admixture mapping and family-based association analyses were adjusted for age, age2, sex, body-mass-index, and genome-wide mean ancestry to minimize the confounding due to population stratification. Regions that were suggestive of local ancestry association evidence were found on chromosomes 7 (LDL-C), 8 (HDL-C), 14 (triglycerides) and 19 (total cholesterol and triglycerides). In the fine-mapping analysis, 52,939 SNPs were tested and 11 SNPs (8 independent SNPs) showed nominal significant association with HDL-C (2 SNPs), LDL-C (4 SNPs) and triglycerides (5 SNPs). The family data was used in the fine-mapping to identify SNPs that showed novel associations with lipids and regions including genes with known associations for cardiovascular disease. Conclusions This study identified regions on chromosomes 7, 8, 14 and 19 and 11 SNPs from the fine-mapping analysis that were associated with HDL-C, LDL-C and triglycerides for further studies of cardiovascular disease in African-Americans. PMID:25552592

  13. Variants for HDL-C, LDL-C, and triglycerides identified from admixture mapping and fine-mapping analysis in African American families.

    PubMed

    Shetty, Priya B; Tang, Hua; Feng, Tao; Tayo, Bamidele; Morrison, Alanna C; Kardia, Sharon L R; Hanis, Craig L; Arnett, Donna K; Hunt, Steven C; Boerwinkle, Eric; Rao, Dabeeru C; Cooper, Richard S; Risch, Neil; Zhu, Xiaofeng

    2015-02-01

    Admixture mapping of lipids was followed-up by family-based association analysis to identify variants for cardiovascular disease in African Americans. The present study conducted admixture mapping analysis for total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. The analysis was performed in 1905 unrelated African American subjects from the National Heart, Lung and Blood Institute's Family Blood Pressure Program (FBPP). Regions showing admixture evidence were followed-up with family-based association analysis in 3556 African American subjects from the FBPP. The admixture mapping and family-based association analyses were adjusted for age, age(2), sex, body mass index, and genome-wide mean ancestry to minimize the confounding caused by population stratification. Regions that were suggestive of local ancestry association evidence were found on chromosomes 7 (low-density lipoprotein cholesterol), 8 (high-density lipoprotein cholesterol), 14 (triglycerides), and 19 (total cholesterol and triglycerides). In the fine-mapping analysis, 52 939 single-nucleotide polymorphisms (SNPs) were tested and 11 SNPs (8 independent SNPs) showed nominal significant association with high-density lipoprotein cholesterol (2 SNPs), low-density lipoprotein cholesterol (4 SNPs), and triglycerides (5 SNPs). The family data were used in the fine-mapping to identify SNPs that showed novel associations with lipids and regions, including genes with known associations for cardiovascular disease. This study identified regions on chromosomes 7, 8, 14, and 19 and 11 SNPs from the fine-mapping analysis that were associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides for further studies of cardiovascular disease in African Americans. © 2014 American Heart Association, Inc.

  14. Dose estimation by chromosome aberration analysis and micronucleus assays in victims accidentally exposed to 60Co radiation

    PubMed Central

    Liu, Q; Cao, J; Wang, Z Q; Bai, Y S; Lü, Y M; Huang, Q L; Zhao, W Z; Li, J; Jiang, L P; Tang, W S; Fu, B H; Fan, F Y

    2009-01-01

    The objective of this study was to assess the radiation exposure levels in victims of a 60Co radiation accident using chromosome aberration analysis and the micronucleus assay. Peripheral blood samples were collected from three victims exposed to 60Co 10 days after the accident and were used for the chromosome aberration and micronucleus assays. After in vitro culture of the lymphocytes, the frequencies of dicentric chromosomes and rings (dic+r) and the numbers of cytokinesis blocking micronuclei (CBMN) in the first mitotic division were determined and used to estimate radiation dosimetry. The Poisson distribution of the frequency of dic+r in lymphocytes was used to assess the uniformity of the exposure to 60Co radiation. Based on the frequency of dic+r in lymphocytes, estimates of radiation exposure of the three victims were 5.61 Gy (A), 2.48 Gy (B) and 2.68 Gy (C). The values were estimated based on the frequencies of CBMN, which were 5.45 Gy (A), 2.78 Gy (B) and 2.84 Gy (C). The estimated radiation dosimetry demonstrated a critical role in estimating the radiation dose and facilitating an accurate clinical diagnosis. Furthermore, the frequencies of dir+r in victims A and B deviated significantly from a normal Poisson distribution. Chromosome aberration analysis offers a reliable means for estimating biological exposure to radiation. In the present study, the micronucleus assay demonstrated a high correlation with the chromosome aberration analysis in determining the radiation dosimetry 10 days after radiation exposure. PMID:19366736

  15. Sequencing of a Patient with Balanced Chromosome Abnormalities and Neurodevelopmental Disease Identifies Disruption of Multiple High Risk Loci by Structural Variation

    PubMed Central

    Blake, Jonathon; Riddell, Andrew; Theiss, Susanne; Gonzalez, Alexis Perez; Haase, Bettina; Jauch, Anna; Janssen, Johannes W. G.; Ibberson, David; Pavlinic, Dinko; Moog, Ute; Benes, Vladimir; Runz, Heiko

    2014-01-01

    Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception. PMID:24625750

  16. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.

    1983-08-31

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  17. Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12.

    PubMed

    Pericak-Vance, M A; Bass, M P; Yamaoka, L H; Gaskell, P C; Scott, W K; Terwedow, H A; Menold, M M; Conneally, P M; Small, G W; Vance, J M; Saunders, A M; Roses, A D; Haines, J L

    1997-10-15

    Four genetic loci have been identified as contributing to Alzheimer disease (AD), including the amyloid precursor protein gene, the presenilin 1 gene, the presenilin 2 gene, and the apolipoprotein E gene, but do not account for all the genetic risk for AD. To identify additional genetic risk factors for late-onset AD. A complete genomic screen was performed (N=280 markers). Critical values for chromosomal regional follow-up were a P value of .05 or less for affected relative pair analysis or sibpair analysis, a parametric lod score of 1.0 or greater, or both. Regional follow-up included analysis of additional markers and a second data set. Clinic populations in the continental United States. From a series of multiplex families affected with late-onset (> or =60 years) AD ascertained during the last 14 years (National Insititute of Neurological Disorders and Stroke-Alzheimer's Disease and Related Disorders Association diagnostic criteria) and for which DNA has been obtained, a subset of 16 families (135 total family members, 52 of whom were patients with AD) was used for the genomic screen. A second subset of 38 families (216 total family members, 89 of whom were patients with AD) was used for the follow-up analysis. Linkage analysis results generated using both genetic model-dependent (lod score) and model-independent methods. Fifteen chromosomal regions warranted initial follow-up. Follow-up analyses revealed 4 regions of continued interest on chromosomes 4, 6, 12, and 20, with the strongest results observed forchromosome 12. Peak 2-point affecteds-only lod scores (n=54) were 1.3, 1.6, 2.7, and 2.2 and affected relative pairs P values (n=54) were .04, .03, .14, and .04 for D12S373, D12S1057, D12S1042, and D12S390, respectively. Sibpair analysis (n=54) resulted in maximum lod scores (MLSs) of 1.5, 2.6, 3.2, and 2.3 for these markers, with a peak multipoint MLS of 3.5. A priori stratification by APOE genotype identified 27 families that had at least 1 member with AD

  18. Genetic linkage analysis of schizophrenia using chromosome 11q13-24 markers in Israeli pedigrees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulcrone, J.; Marchblanks, R.; Whatley, S.A.

    It is generally agreed that there is a genetic component in the etiology of schizophrenia which may be tested by the application of linkage analysis to multiply-affected families. One genetic region of interest is the long arm of chromosome 11 because of previously reported associations of genetic variation in this region with schizophrenia, and because of the fact that it contains the locus for the dopamine D2 receptor gene. In this study we have examined the segregation of schizophrenia with microsatellite dinucleotide repeat DNA markers along chromosome 11q in 5 Israeli families multiply-affected for schizophrenia. The hypothesis of linkage undermore » genetic homogeneity of causation was tested under a number of genetic models. Linkage analysis provided no evidence for significant causal mutations within the region bounded by INT and D11S420 on chromosome 11q. It is still possible, however, that a gene of major effect exists in this region, either with low penetrance or with heterogeneity. 32 refs., 2 figs., 4 tabs.« less

  19. Plasmids with a Chromosome-Like Role in Rhizobia ▿ †

    PubMed Central

    Landeta, Cristina; Dávalos, Araceli; Cevallos, Miguel Ángel; Geiger, Otto; Brom, Susana; Romero, David

    2011-01-01

    Replicon architecture in bacteria is commonly comprised of one indispensable chromosome and several dispensable plasmids. This view has been enriched by the discovery of additional chromosomes, identified mainly by localization of rRNA and/or tRNA genes, and also by experimental demonstration of their requirement for cell growth. The genome of Rhizobium etli CFN42 is constituted by one chromosome and six large plasmids, ranging in size from 184 to 642 kb. Five of the six plasmids are dispensable for cell viability, but plasmid p42e is unusually stable. One possibility to explain this stability would be that genes on p42e carry out essential functions, thus making it a candidate for a secondary chromosome. To ascertain this, we made an in-depth functional analysis of p42e, employing bioinformatic tools, insertional mutagenesis, and programmed deletions. Nearly 11% of the genes in p42e participate in primary metabolism, involving biosynthetic functions (cobalamin, cardiolipin, cytochrome o, NAD, and thiamine), degradation (asparagine and melibiose), and septum formation (minCDE). Synteny analysis and incompatibility studies revealed highly stable replicons equivalent to p42e in content and gene order in other Rhizobium species. A systematic deletion analysis of p42e allowed the identification of two genes (RHE_PE00001 and RHE_PE00024), encoding, respectively, a hypothetical protein with a probable winged helix-turn-helix motif and a probable two-component sensor histidine kinase/response regulator hybrid protein, which are essential for growth in rich medium. These data support the proposal that p42e and its homologous replicons (pA, pRL11, pRLG202, and pR132502) merit the status of secondary chromosomes. PMID:21217003

  20. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Correlation of Physical and Cytogenetic Maps in Chromosomal Region 86e-87f

    PubMed Central

    Deak, P.; Omar, M. M.; Saunders, RDC.; Pal, M.; Komonyi, O.; Szidonya, J.; Maroy, P.; Zhang, Y.; Ashburner, M.; Benos, P.; Savakis, C.; Siden-Kiamos, I.; Louis, C.; Bolshakov, V. N.; Kafatos, F. C.; Madueno, E.; Modolell, J.; Glover, D. M.

    1997-01-01

    We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven ``supercontigs'' that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms. PMID:9409831

  1. Use of fluorescence in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (Coffea arabica L.).

    PubMed

    Herrera, Juan Carlos; D'Hont, Angelique; Lashermes, Philippe

    2007-07-01

    Fluorescence in situ hybridization (FISH) was used to study the presence of alien chromatin in interspecific hybrids and one introgressed line (S.288) derived from crosses between the cultivated species Coffea arabica and the diploid relatives C. canephora and C. liberica. In situ hybridization using genomic DNA from C. canephora and C. arabica as probes showed elevated cross hybridization along the hybrid genome, confirming the weak differentiation between parental genomes. According to our genomic in situ hybridization (GISH) data, the observed genomic resemblance between the modern C. canephora genome (C) and the C. canephora-derived subgenome of C. arabica (Ca) appears rather considerable. Poor discrimination between C and Ca chromosomes supports the idea of low structural modifications of both genomes since the C. arabica speciation, at least in the frequency and distribution of repetitive sequences. GISH was also used to identify alien chromatin segments on chromosome spreads of a C. liberica-introgressed line of C. arabica. Further, use of GISH together with BAC-FISH analysis gave us additional valuable information about the physical localization of the C. liberica fragments carrying the SH3 factor involved in resistance to the coffee leaf rust. Overall, our results illustrate that FISH analysis is a complementary tool for molecular cytogenetic studies in coffee, providing rapid localization of either specific chromosomes or alien chromatin in introgressed genotypes derived from diploid species displaying substantial genomic differentiation from C. arabica.

  2. Chromosomal polymorphism in mammals: an evolutionary perspective.

    PubMed

    Dobigny, Gauthier; Britton-Davidian, Janice; Robinson, Terence J

    2017-02-01

    Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species. © 2015 Cambridge Philosophical Society.

  3. IDENTIFICATION OF SEX CHROMOSOME MOLECULAR MARKERS USING RAPDS AND FLUORESCENT IN SITU HYBRIDIZATION IN RAINBOW TROUT

    EPA Science Inventory

    The goal of this work is to identify molecular markers associated with the sex chromosomes in rainbow trout to study the mode of sex determination mechanisms in this species. Using the RAPD assay and bulked segregant analysis, two markers were identified that generated polymorphi...

  4. Genetics of the connective tissue proteins: Assignment of the gene for human type I procollagen to chromosome 17 by analysis of cell hybrids and microcell hybrids*

    PubMed Central

    Raj, Cholappadi V. Sundar; Church, Robert L.; Klobutcher, Lawrence A.; Ruddle, Frank H.

    1977-01-01

    Somatic cell hybrids between mouse and human cell lines have been used to identify the specific chromosome that governs the synthesis of type I procollagen. Fourteen hybrid clones and subclones were derived independently from crosses between mouse parents [LM (thymidine kinase-negative) or A9 (hypoxanthine phosphoribosyltransferase-negative)] and human cells (human diploid lung fibroblasts WI-38 or diploid skin fibroblasts GM5, GM17, and GM9). The cultures were labeled with [3H]proline in modified Eagle's medium without serum. Radioactive procollagens were purified from the medium by the method of Church et al. [(1974) J. Mol. Biol. 86, 785-799]. DEAE-cellulose chromatography was used to separate collagen and type I and type III procollagen. Human type I procollagen was assayed by double immunodiffusion analysis with type I procollagen antibodies prepared by immunizing rabbits with purified human type I procollagen. These analyses combined with karyology and isozyme analyses of each hybrid line have produced evidence for the assignment of the gene for human type I procollagen to chromosome 17. A human microcell-mouse hybrid cell line containing only human chromosome 17 was positive for human type I procollagen, lending further support to the assignment of the human type I procollagen gene to chromosome 17. Finally, by using a hybrid line containing only the long arm of human chromosome 17 translocated onto a mouse chromosome, the type I procollagen gene can be assigned more specifically to the long arm of chromosome 17. Images PMID:412188

  5. Genetic Mapping and Phylogenetic Analysis Reveal Intraspecific Variation in Sex Chromosomes of the Virginian Strawberry.

    PubMed

    Wei, Na; Govindarajulu, Rajanikanth; Tennessen, Jacob A; Liston, Aaron; Ashman, Tia-Lynn

    2017-10-30

    With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of 2 other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0-5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major quantitative trait locus (QTL) for female fertility overlapped the male sterility region. However, the SDR mapped to yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. ×ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Twenty years of endocrinologic treatment in transsexualism: analyzing the role of chromosomal analysis and hormonal profiling in the diagnostic work-up.

    PubMed

    Auer, Matthias K; Fuss, Johannes; Stalla, Guenter K; Athanasoulia, Anastasia P

    2013-10-01

    To demonstrate that adequate pubertal history, physical examination, and a basal hormone profile is sufficient to exclude disorders of sexual development (DSD) in adult transsexuals and that chromosomal analysis could be omitted in cases of unremarkable hormonal profile and pubertal history. Retrospective chart analysis. Endocrine outpatient clinic of a psychiatric research institute. A total of 475 subjects (302 male-to-female transsexuals [MtF], 173 female-to-male transsexuals [FtM]). Data from 323 (192 MtF/131 FtM) were collected for hormonal and pubertal abnormalities. Information regarding chromosomal analysis was available for 270 patients (165 MtF/105 FtM). None. Pubertal abnormalities, menstrual cycle, and hormonal irregularities in relation to chromosomal analysis conducted by karyotype or hair root analysis. In the MtF group, 5.2% of the patients reported pubertal irregularities and 5.7% hormonal abnormalities, and in the FtM group 3.8% and 19.1%, respectively. Overall chromosomal abnormality in both groups was 1.5% (2.9% in the FtM and 0.6% in the MtF group). The aneuploidies found included one gonosomal aneuploidy (45,X[10]/47,XXX[6]/46,XX[98]), two Robertsonian translocations (45,XXder(14;22)(q10;q10)), and one Klinefelter syndrome (47,XXY) that had already been diagnosed in puberty. Our data show a low incidence of chromosomal abnormalities and thus question routine chromosomal analysis at the baseline evaluation of transsexualism, and suggest that it be considered only in cases of abnormal history or hormonal examination. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    PubMed Central

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  8. Partial hexasomy of chromosome 15.

    PubMed

    Huang, Bing; Bartley, James

    2003-09-01

    Marker chromosomes originating from chromosome 15, often referred to as inv dup(15), is the most common marker chromosome found in humans. The large marker 15 that contains the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) chromosome region is usually associated with an abnormal phenotype of moderate to severe mental retardation, seizures, poor motor coordination, behavioral problems, and mild dysmorphic features. We report here an infant boy with two copies of the large inv dup(15). A 10-day-old infant was found to have infantile spasms, microcephaly, hypotonia, and lethargy. Lymphocyte chromosome analysis revealed a 48,XY, +2mar karyotype. Fluorescence in situ hybridization with probes rRNA, D15Z4, D15S11, and GABRB3 demonstrated that both markers were chromosome 15 in origin and contained the Prader-Willi/Angelman syndrome chromosome region. Therefore, this patient is hexasomic for the PWS/AS region. The phenotype of this patient does not appear to be significantly more severe than patients with one copy of the large inv dup(15) at birth, however, follow-up evaluation of the patient at 21 months of age shows that this patient has frequent and severe seizure activity, severe bilateral hearing loss, and cortical blindness. Copyright 2003 Wiley-Liss, Inc.

  9. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    NASA Technical Reports Server (NTRS)

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  10. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements

    PubMed Central

    Dickson, Laura B.; Sharakhova, Maria V.; Timoshevskiy, Vladimir A.; Fleming, Karen L.; Caspary, Alex; Sylla, Massamba; Black, William C.

    2016-01-01

    was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3. PMID:27105225

  11. The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression

    PubMed Central

    Charlesworth, Deborah

    2018-01-01

    Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution. PMID:29783761

  12. Chromosome evolution with naked eye: Palindromic context of the life origin

    NASA Astrophysics Data System (ADS)

    Larionov, Sergei; Loskutov, Alexander; Ryadchenko, Eugeny

    2008-03-01

    Based on the representation of the DNA sequence as a two-dimensional (2D) plane walk, we consider the problem of identification and comparison of functional and structural organizations of chromosomes of different organisms. According to the characteristic design of 2D walks we identify telomere sites, palindromes of various sizes and complexity, areas of ribosomal RNA, transposons, as well as diverse satellite sequences. As an interesting result of the application of the 2D walk method, a new duplicated gigantic palindrome in the X human chromosome is detected. A schematic mechanism leading to the formation of such a duplicated palindrome is proposed. Analysis of a large number of the different genomes shows that some chromosomes (or their fragments) of various species appear as imperfect gigantic palindromes, which are disintegrated by many inversions and the mutation drift on different scales. A spread occurrence of these types of sequences in the numerous chromosomes allows us to develop a new insight of some accepted points of the genome evolution in the prebiotic phase.

  13. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, P.E.; Gosden, J.; Lawson, D.

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize andmore » spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.« less

  14. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  15. Centromere pairing precedes meiotic chromosome pairing in plants.

    PubMed

    Zhang, Jing; Han, Fangpu

    2017-11-01

    Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing, synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation, and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.

  16. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21

    PubMed Central

    Lyle, Robert; Béna, Frédérique; Gagos, Sarantis; Gehrig, Corinne; Lopez, Gipsy; Schinzel, Albert; Lespinasse, James; Bottani, Armand; Dahoun, Sophie; Taine, Laurence; Doco-Fenzy, Martine; Cornillet-Lefèbvre, Pascale; Pelet, Anna; Lyonnet, Stanislas; Toutain, Annick; Colleaux, Laurence; Horst, Jürgen; Kennerknecht, Ingo; Wakamatsu, Nobuaki; Descartes, Maria; Franklin, Judy C; Florentin-Arar, Lina; Kitsiou, Sophia; Aït Yahya-Graison, Emilie; Costantine, Maher; Sinet, Pierre-Marie; Delabar, Jean M; Antonarakis, Stylianos E

    2009-01-01

    Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype. PMID:19002211

  17. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing.

    PubMed

    Kurtoglu, Kuaybe Yucebilgili; Kantar, Melda; Lucas, Stuart J; Budak, Hikmet

    2013-01-01

    MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.

  18. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis.

    PubMed

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A; Silva, Kathleen A; Kennedy, Victoria E; Cario, Clinton L; Richardson, Matthew A; Chase, Thomas H; Schofield, Paul N; Uitto, Jouni; Sundberg, John P

    2016-06-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.

  19. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11 and 15 for age-related cardiac fibrosis

    PubMed Central

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A.; Silva, Kathleen A.; Kennedy, Victoria E.; Cario, Clinton L; Richardson, Matthew A.; Chase, Thomas H.; Schofield, Paul N.; Uitto, Jouni; Sundberg, John P.

    2017-01-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscal loci 1 through 4. Here we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximate 6 Mb away from the Dyscal 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits. PMID:27126641

  20. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species

    USDA-ARS?s Scientific Manuscript database

    To Identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode and fungal disease resistance traits, a series of interspecific cotton (Gossypium spp.) chromosome substitution (CS) lines were used in this study. The CS lines were developed in ...

  1. Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo‐telomere formation

    PubMed Central

    Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert

    2007-01-01

    Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463

  2. Analysis of the temporal program of replication initiation in yeast chromosomes.

    PubMed

    Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J

    1995-01-01

    The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating

  3. Y-chromosome polymorphism: Possible largest Y chromosome in man?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L.

    The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq regionmore » or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.« less

  4. Dahl (S x R) congenic strain analysis confirms and defines a chromosome 5 female-specific blood pressure quantitative trait locus to <7 Mbp.

    PubMed

    Herrera, Victoria L M; Pasion, Khristine A; Moran, Ann Marie; Ruiz-Opazo, Nelson

    2012-01-01

    The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (-26.5 mmHg, P = 0.002), DBP (-23.7 mmHg, P = 0.004) and MAP (-25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9-141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.

  5. Dahl (S x R) Congenic Strain Analysis Confirms and Defines a Chromosome 5 Female-Specific Blood Pressure Quantitative Trait Locus to <7 Mbp

    PubMed Central

    Herrera, Victoria L. M.; Pasion, Khristine A.; Moran, Ann Marie; Ruiz-Opazo, Nelson

    2012-01-01

    The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure. PMID:22860086

  6. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  7. Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib).

    PubMed

    Bastepe, Murat; Altug-Teber, Ozge; Agarwal, Chhavi; Oberfield, Sharon E; Bonin, Michael; Jüppner, Harald

    2011-03-01

    Pseudohypoparathyoridism type Ib (PHP-Ib) typically defines the presence of end-organ resistance to parathyroid hormone in the absence of Albright's hereditary osteodystrophy. Patients affected by this disorder present with imprinting defects in the complex GNAS locus. Microdeletions within STX16 or GNAS have been identified in familial cases with PHP-Ib, but the molecular cause of the GNAS imprinting defects in sporadic PHP-Ib cases remains poorly defined. We now report a case with sporadic PHP-Ib for whom a SNPlex analysis revealed loss of the maternal GNAS allele. Further analysis of the entire genome with a 100K SNP chip identified a paternal uniparental isodisomy affecting the entire chromosome 20 without evidence for another chromosomal abnormality. Our findings explain the observed GNAS methylation changes and the patient's hormone resistance, and furthermore suggest that chromosome 20 harbors, besides GNAS, no additional imprinted region that contributes to the clinical and laboratory phenotype. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    PubMed Central

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-01-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. Images Figure 5 PMID:2479266

  9. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review

    PubMed Central

    2013-01-01

    Background Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. Result We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Conclusion Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions. PMID:23639048

  10. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    PubMed

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  11. Chromosome dynamics in meiotic prophase I in plants.

    PubMed

    Ronceret, A; Pawlowski, W P

    2010-07-01

    Early stages of meiotic prophase are characterized by complex and dramatic chromosome dynamics. Chromosome behavior during this period is associated with several critical meiotic processes that take place at the molecular level, such as recombination and homologous chromosome recognition and pairing. Studies to characterize specific patterns of chromosome dynamics and to identify their exact roles in the progression of meiotic prophase are only just beginning in plants. These studies are facilitated by advances in imaging technology in the recent years, including development of ultra-resolution three-dimensional and live microscopy methods. Studies conducted so far indicate that different chromosome regions exhibit different dynamics patterns in early prophase. In many species telomeres cluster at the nuclear envelope at the beginning of zygotene forming the telomere bouquet. The bouquet has been traditionally thought to facilitate chromosome pairing by bringing chromosome ends into close proximity, but recent studies suggest that its main role may rather be facilitating rapid movements of chromosomes during zygotene. In some species, including wheat and Arabidopsis, there is evidence that centromeres form pairs (couple) before the onset of pairing of chromosome arms. While significant advances have been achieved in elucidating the patterns of chromosome behavior in meiotic prophase I, factors controlling chromosome dynamics are still largely unknown and require further studies. Copyright 2010 S. Karger AG, Basel.

  12. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    PubMed

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-11-01

    Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Replication profile of Saccharomyces cerevisiae chromosome VI.

    PubMed

    Friedman, K L; Brewer, B J; Fangman, W L

    1997-11-01

    An understanding of the replication programme at the genome level will require the identification and characterization of origins of replication through large, contiguous regions of DNA. As a step toward this goal, origin efficiencies and replication times were determined for 10 ARSs spanning most of the 270 kilobase (kb) chromosome VI of Saccharomyces cerevisiae. Chromosome VI shows a wide variation in the percentage of cell cycles in which different replication origins are utilized. Most of the origins are activated in only a fraction of cells, suggesting that the pattern of origin usage on chromosome VI varies greatly within the cell population. The replication times of fragments containing chromosome VI origins show a temporal pattern that has been recognized on other chromosomes--the telomeres replicate late in S phase, while the central region of the chromosome replicates early. As demonstrated here for chromosome VI, analysis of the direction of replication fork movement along a chromosome and determination of replication time by measuring a period of hemimethylation may provide an efficient means of surveying origin activity over large regions of the genome.

  14. Convergent evolution of Y chromosome gene content in flies.

    PubMed

    Mahajan, Shivani; Bachtrog, Doris

    2017-10-04

    Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species.While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.

  15. Construction of a yeast artificial chromosome contig encompassing the chromosome 14 Alzheimer`s disease locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, V.; Bonnycastle, L.; Poorkai, P.

    1994-09-01

    We have constructed a yeast artificial chromosome (YAC) contig of chromosome 14q24.3 which encompasses the chromosome 14 Alzheimer`s disease locus (AD3). Determined by linkage analysis of early-onset Alzheimer`s disease kindreds, this interval is bounded by the genetic markers D14S61-D14S63 and spans approximately 15 centimorgans. The contig consists of 29 markers and 74 YACs of which 57 are defined by one or more sequence tagged sites (STSs). The STS markers comprise 5 genes, 16 short tandem repeat polymorphisms and 8 cDNA clones. An additional number of genes, expressed sequence tags and cDNA fragments have been identified and localized to the contigmore » by hybridization and sequence analysis of anonymous clones isolated by cDNA direct selection techniques. A minimal contig of about 15 YACs averaging 0.5-1.5 megabase in length will span this interval and is, at first approximation, in rough agreement with the genetic map. For two regions of the contig, our coverage has relied on L1/THE fingerprint and Alu-PCR hybridization data of YACs provided by CEPH/Genethon. We are currently developing sequence tagged sites from these to confirm the overlaps revealed by the fingerprint data. Among the genes which map to the contig are transforming growth factor beta 3, c-fos, and heat shock protein 2A (HSPA2). C-fos is not a candidate gene for AD3 based on the sequence analysis of affected and unaffected individuals. HSPA2 maps to the proximal edge of the contig and Calmodulin 1, a candidate gene from 4q24.3, maps outside of the region. The YAC contig is a framework physical map from which cosmid or P1 clone contigs can be constructed. As more genes and cDNAs are mapped, a highly resolved transcription map will emerge, a necessary step towards positionally cloning the AD3 gene.« less

  16. A real-time polymerase chain reaction-based protocol for low/medium-throughput Y-chromosome microdeletions analysis.

    PubMed

    Segat, Ludovica; Padovan, Lara; Doc, Darja; Petix, Vincenzo; Morgutti, Marcello; Crovella, Sergio; Ricci, Giuseppe

    2012-12-01

    We describe a real-time polymerase chain reaction (PCR) protocol based on the fluorescent molecule SYBR Green chemistry, for a low- to medium-throughput analysis of Y-chromosome microdeletions, optimized according to the European guidelines and aimed at making the protocol faster, avoiding post-PCR processing, and simplifying the results interpretation. We screened 156 men from the Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Institute for Maternal and Child Health IRCCS Burlo Garofolo (Trieste, Italy), 150 not presenting Y-chromosome microdeletion, and 6 with microdeletions in different azoospermic factor (AZF) regions. For each sample, the Zinc finger Y-chromosomal protein (ZFY), sex-determining region Y (SRY), sY84, sY86, sY127, sY134, sY254, and sY255 loci were analyzed by performing one reaction for each locus. AZF microdeletions were successfully detected in six individuals, confirming the results obtained with commercial kits. Our real-time PCR protocol proved to be a rapid, safe, and relatively cheap method that was suitable for a low- to medium-throughput diagnosis of Y-chromosome microdeletion, which allows an analysis of approximately 10 samples (with the addition of positive and negative controls) in a 96-well plate format, or approximately 46 samples in a 384-well plate for all markers simultaneously, in less than 2 h without the need of post-PCR manipulation.

  17. Molecular analysis of defects in the CFTR gene and AZF locus of the Y chromosome in male infertility.

    PubMed

    Sobczyńska-Tomaszewska, Agnieszka; Bak, Daniel; Wolski, Jan Karol; Bablok, Leszek; Nawara, Magdalena; Mazurczak, Tadeusz; Bal, Jerzy

    2006-02-01

    To investigate the frequency and potential impact of mutations and polymorphisms in the CFTR gene and deletions in AZF locus of the Y chromosome in patients with azoospermia (AZOO), cryptozoospermia (CRYPTO) or oligoasthenoteratozoospermia (OAT) who were to be included in an assisted reproductive technologies (ART) program. A total of 188 infertile men were enrolled in the study: 100 patients with AZOO, 38 with CRYPTO and 50 with OAT. The CFTR gene mutations or IVS8-5T variant in at least 1 allele was identified with similar frequencies among the AZOO (33%) and CRYPTO (21%) patients; 55% of the AZOO patients with normal spermatogenesis (NS) had mutations in 1 or 2 alleles. The novel R810G mutation in exon 13 was identified in 1 NS patient. The OAT or AZOO patients with Sertoli cell only syndrome (SCO) had mutations in the CFTR gene with similar frequencies to that in the general Polish population. The deletions in the AZF locus were detected in 20% of SCO patients, 11.5% of AZOO patients with maturation arrest and in 5% of CRYPTO patients. The other groups (NS, OAT) did not carry deletions in the region studied. Molecular diagnosis of the CFTR gene, Y chromosome deletion analysis and genetic counseling are necessary diagnostic elements for patients with male infertility, especially if the are included in an ART program.

  18. Oocyte spindle proteomics analysis leading to rescue of chromosome congression defects in cloned embryos

    PubMed Central

    Duan, Xunbao; Zhong, Zhisheng; Potireddy, Santhi; Moncada, Camilo; Merali, Salim; Latham, Keith E.

    2015-01-01

    Embryos produced by somatic cell nuclear transfer (SCNT) display low term developmental potential. This is associated with deficiencies in spindle composition prior to activation and at early mitotic divisions, including failure to assemble certain proteins on the spindle. The protein-deficient spindles are accompanied by chromosome congression defects prior to activation and during the first mitotic divisions of the embryo. The molecular basis for these deficiencies and how they might be avoided are unknown. Proteomic analyses of spindles isolated from normal metaphase II (MII) stage oocytes and SCNT constructs, along with a systematic immunofluorescent survey of known spindle-associated proteins were undertaken. This was the first proteomics study of mammalian oocyte spindles. The study revealed four proteins as being deficient in spindles of SCNT embryos in addition to those previously identified; these were clathrin heavy chain (CLTC), aurora B kinase, dynactin 4, and casein kinase 1 alpha. Due to substantial reduction in CLTC abundance after spindle removal, we undertook functional studies to explore the importance of CLTC in oocyte spindle function and in chromosome congression defects of cloned embryos. Using siRNA knockdown we demonstrated an essential role for CLTC in chromosome congression during oocyte maturation. We also demonstrated rescue of chromosome congression defects in SCNT embryos at the first mitosis using CLTC mRNA injection. These studies are the first to employ proteomics analyses coupled to functional interventions to rescue a specific molecular defect in cloned embryos. PMID:20883044

  19. Exceptional complex chromosomal rearrangements in three generations.

    PubMed

    Kartapradja, Hannie; Marzuki, Nanis Sacharina; Pertile, Mark D; Francis, David; Suciati, Lita Putri; Anggaratri, Helena Woro; Ambarwati, Debby Dwi; Idris, Firman Prathama; Lesmana, Harry; Trimarsanto, Hidayat; Paramayuda, Chrysantine; Harahap, Alida Roswita

    2015-01-01

    We report an exceptional complex chromosomal rearrangement (CCR) found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband's mother, which was confirmed using the whole chromosome painting (WCP) FISH. High resolution whole genome microarray analysis of DNA from the proband's mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother's and grandmother's CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  20. Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines.

    PubMed

    Saha, S; Wu, J; Jenkins, J N; McCarty, J C; Stelly, D M

    2013-01-01

    The untapped potential of the beneficial alleles from Gossypium barbadense L. has not been well utilized in G. hirsutum L. (often referred to as Upland cotton) breeding programs. This is primarily due to genomic incompatibility and technical challenges associated with conventional methods of interspecific introgression. In this study, we used a hypoaneuploid-based chromosome substitution line as a means for systematically introgressing G. barbadense doubled-haploid line '3-79' germplasm into a common Upland genetic background, inbred 'Texas marker-1' ('TM-1'). We reported on the chromosomal effects, lint percentage, boll weight, seedcotton yield and lint yield in chromosome substitution CS-B (G. barbadense L.) lines. Using an additive-dominance genetic model, we studied the interaction of alleles located on two alien substituted chromosomes versus one alien substituted chromosome using a partial diallel mating design of selected CS-B lines (CS-B05sh, CS-B06, CS-B09, CS-B10, CS-B12, CS-B17 and CS-B18). Among these parents, CS-B09 and CS-B10 were reported for the first time. The donor parent 3-79, had the lowest additive effect for all of the agronomic traits. All of the CS-B lines had significant additive effects with boll weight and lint percentage. CS-B10 had the highest additive effects for lint percentage, and seedcotton and lint yield among all of the lines showing a transgressive genetic mode of inheritance for these traits. CS-B09 had greater additive genetic effects on lint yield, while CS-B06, CS-B10 and CS-B17 had superior additive genetic effects on both lint and seedcotton yield compared to TM-1 parent. The 3-79 line had the highest dominance effects for boll weight (0.513 g) and CS-B10 had the lowest dominance effect for boll weight (-0.702). Some major antagonistic genetic effects for the agronomic traits were present with most of the substituted chromosomes and chromosome arms, a finding suggested their recalcitrance to conventional breeding efforts

  1. Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture

    PubMed Central

    2013-01-01

    Background The packaging of long chromatin fibers in the nucleus poses a major challenge, as it must fulfill both physical and functional requirements. Until recently, insights into the chromosomal architecture of plants were mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine and improve our view on chromosomal architecture and to provide a more generalized description of nuclear organization. Results Employing circular chromosome conformation capture, this study describes chromosomal architecture in Arabidopsis nuclei from a genome-wide perspective. Surprisingly, the linear organization of chromosomes is reflected in the genome-wide interactome. In addition, we study the interplay of the interactome and epigenetic marks and report that the heterochromatic knob on the short arm of chromosome 4 maintains a pericentromere-like interaction profile and interactome despite its euchromatic surrounding. Conclusion Despite the extreme condensation that is necessary to pack the chromosomes into the nucleus, the Arabidopsis genome appears to be packed in a predictive manner, according to the following criteria: heterochromatin and euchromatin represent two distinct interactomes; interactions between chromosomes correlate with the linear position on the chromosome arm; and distal chromosome regions have a higher potential to interact with other chromosomes. PMID:24267747

  2. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions.

    PubMed

    Fan, Yanjie; Wu, Yanming; Wang, Lili; Wang, Yu; Gong, Zhuwen; Qiu, Wenjuan; Wang, Jingmin; Zhang, Huiwen; Ji, Xing; Ye, Jun; Han, Lianshu; Jin, Xingming; Shen, Yongnian; Li, Fei; Xiao, Bing; Liang, Lili; Zhang, Xia; Liu, Xiaomin; Gu, Xuefan; Yu, Yongguo

    2018-05-24

    Developmental delay (DD) and intellectual disability (ID) are frequently associated with a broad spectrum of additional phenotypes. Chromosomal microarray analysis (CMA) has been recommended as a first-tier test for DD/ID in general, whereas the diagnostic yield differs significantly among DD/ID patients with different comorbid conditions. To investigate the genotype-phenotype correlation, we examined the characteristics of identified pathogenic copy number variations (pCNVs) and compared the diagnostic yields among patient subgroups with different co-occurring conditions. This study is a retrospective review of CMA results generated from a mixed cohort of 710 Chinese patients with DD/ID. A total of 247 pCNVs were identified in 201 patients (28%). A large portion of these pCNVs were copy number losses, and the size of copy number losses was generally smaller than gains. The diagnostic yields were significantly higher in subgroups with co-occurring congenital heart defects (55%), facial dysmorphism (39%), microcephaly (34%) or hypotonia (35%), whereas co-occurring conditions of skeletal malformation (26%), brain malformation (24%) or epilepsy (24%) did not alter the yield. In addition, the diagnostic yield nominally correlated with ID severity. Varied yields exist in DD/ID patients with different phenotypic presentation. The presence of comorbid conditions can be among factors to consider when planning CMA.

  3. Direct and inverted reciprocal chromosome insertions between chromosomes 7 and 14 in a woman with recurrent miscarriages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying-Tai Wang; Zhao-Cai Wang; Bajalica, S.

    We present the first case of direct and inverted reciprocal chromosome insertions between human chromosomes 7 and 14, ascertained because of repeated spontaneous abortions. Prometaphase GTG banding analysis showed the karyotype to be 46, XX, inv ins (7;14)(7pter {yields} 7q11.23::14q32.2 {yields} 14q22::7q21.2 {yields} 7qter), dir ins(14;7)(14pter {yields} 14q22::7q11.23 {yields} 7q21.2::14q32.2 {yields} 14qter). Origins of the insertion have been confirmed by chromosome painting with libraries specific for chromosomes 7 and 14 using fluorescence in situ hybridization. 5 refs., 3 figs.

  4. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  5. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival

    PubMed Central

    Jain, Ajay N.; Chin, Koei; Børresen-Dale, Anne-Lise; Erikstein, Bjorn K.; Lonning, Per Eystein; Kaaresen, Rolf; Gray, Joe W.

    2001-01-01

    We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data. PMID:11438741

  6. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

    PubMed

    Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon

    2015-06-01

    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.

  7. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events

    PubMed Central

    Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon

    2016-01-01

    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species. PMID:25961941

  8. Construction of human chromosome 21-specific yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, M.K.; Shero, J.H.; Hieter, P.A.

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to > 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtainedmore » from a mouse-human hybrid, ranging in size from 200 to > 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from {approx} 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.« less

  9. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less

  10. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  11. Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia

    PubMed Central

    Simpson, Nuala H; Addis, Laura; Brandler, William M; Slonims, Vicky; Clark, Ann; Watson, Jocelynne; Scerri, Thomas S; Hennessy, Elizabeth R; Bolton, Patrick F; Conti-Ramsden, Gina; Fairfax, Benjamin P; Knight, Julian C; Stein, John; Talcott, Joel B; O'Hare, Anne; Baird, Gillian; Paracchini, Silvia; Fisher, Simon E; Newbury, Dianne F; Consortium, SLI

    2014-01-01

    Aim Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. PMID:24117048

  12. The gene for PAX7, a member of the paired-box-containing genes, is localized on human chromosome arm 1p36.

    PubMed

    Shapiro, D N; Sublett, J E; Li, B; Valentine, M B; Morris, S W; Noll, M

    1993-09-01

    The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multigene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.

  13. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    PubMed

    Plamadeala, Cristina; Wojcik, Andrzej; Creanga, Dorina

    2015-03-01

    An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  14. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells

    PubMed Central

    PLAMADEALA, Cristina; WOJCIK, Andrzej; CREANGA, Dorina

    2015-01-01

    Background: An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. Methods: In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. Results: The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Conclusion: Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes (i=(1,5)¯) - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest. PMID:25905075

  15. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    PubMed

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  16. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    PubMed Central

    Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur; Morris, Andrew P; Dina, Christian; Welch, Ryan P; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S; Thorleifsson, Gudmar; McCulloch, Laura J; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J; Raychaudhuri, Soumya; McCarroll, Steve A; Langenberg, Claudia; Hofmann, Oliver M; Dupuis, Josée; Qi, Lu; Segrè, Ayellet V; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L; Boström, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noisël P; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn; Couper, David J; Crawford, Gabe; Doney, Alex S F; Elliott, Katherine S; Elliott, Amanda L; Erdos, Michael R; Fox, Caroline S; Franklin, Christopher S; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U; Johnson, Paul R V; Jørgensen, Torben; Kao, Wen H L; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Payne, Felicity; Perry, John R B; Petersen, Ann-Kristin; Platou, Carl; Proença, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N William; Robertson, Neil R; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J; Saxena, Richa; Shields, Beverley M; Shrader, Peter; Sigurdsson, Gunnar; Sparsø, Thomas; Strassburger, Klaus; Stringham, Heather M; Sun, Qi; Swift, Amy J; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M; van Haeften, Timon W; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V; Walters, G Bragi; Weedon, Michael N; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N; Cauchi, Stephane; Collins, Francis S; Gloyn, Anna L; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A; Hitman, Graham A; Hofman, Albert; Hunter, David J; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L; Morris, Andrew D; Palmer, Colin N A; Pramstaller, Peter P; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J; Watanabe, Richard M; Abecasis, Gonçalo R; Boehm, Bernhard O; Campbell, Harry; Daly, Mark J; Hattersley, Andrew T; Hu, Frank B; Meigs, James B; Pankow, James S; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Inês; Florez, Jose C; Frayling, Timothy M; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I

    2011-01-01

    By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits. PMID:20581827

  17. Analysis of the origin of the extra chromosome in trisomy 8 in 4 cases of spontaneous abortions.

    PubMed

    Nicolaidis, P; von Beust, G; Bugge, M; Karadima, G; Vassilopoulos, D; Brøndum-Nielsen, K; Petersen, M B

    1998-01-01

    To determine the origin of the extra chromosome in trisomy 8 in spontaneous abortions. We analyzed 4 cases of nonmosaic trisomy 8 in 1st-trimester spontaneous abortions and their parents with DNA polymorphism analysis using microsatellite DNA markers. In 3 cases the extra chromosome was maternal in origin and in 1 case paternal in origin. In 2 of the cases the nondisjunction had occurred in maternal meiosis, while the other 2 cases were consistent with a postzygotic (mitotic) origin of the additional chromosome. Although a small number of cases studied, these results suggest differences from the common autosomal trisomies 21, 18, 16, and 13 where the vast majority of cases are due to errors in maternal meiosis.

  18. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  19. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  20. Organisation of the plant genome in chromosomes.

    PubMed

    Heslop-Harrison, J S Pat; Schwarzacher, Trude

    2011-04-01

    The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  1. Chromosome number evolution in skippers (Lepidoptera, Hesperiidae)

    PubMed Central

    Lukhtanov, Vladimir A.

    2014-01-01

    Abstract Lepidoptera (butterflies and moths), as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae) based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (syn)apomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819]) and between-species (e.g. the genus Agathymus Freeman, 1959) levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution. PMID:25610542

  2. Chromosomal phylogeny of Vampyressine bats (Chiroptera, Phyllostomidae) with description of two new sex chromosome systems.

    PubMed

    Gomes, Anderson José Baia; Nagamachi, Cleusa Yoshiko; Rodrigues, Luis Reginaldo Ribeiro; Benathar, Thayse Cristine Melo; Ribas, Talita Fernanda Augusto; O'Brien, Patricia Caroline Mary; Yang, Fengtang; Ferguson-Smith, Malcolm Andrew; Pieczarka, Julio Cesar

    2016-06-04

    The subtribe Vampyressina (sensu Baker et al. 2003) encompasses approximately 43 species and seven genera and is a recent and diversified group of New World leaf-nosed bats specialized in fruit eating. The systematics of this group continues to be debated mainly because of the lack of congruence between topologies generated by molecular and morphological data. We analyzed seven species of all genera of vampyressine bats by multidirectional chromosome painting, using whole-chromosome-painting probes from Carollia brevicauda and Phyllostomus hastatus. Phylogenetic analyses were performed using shared discrete chromosomal segments as characters and the Phylogenetic Analysis Using Parsimony (PAUP) software package, using Desmodontinae as outgroup. We also used the Tree Analysis Using New Technology (TNT) software. The result showed a well-supported phylogeny congruent with molecular topologies regarding the sister taxa relationship of Vampyressa and Mesophylla genera, as well as the close relationship between the genus Chiroderma and Vampyriscus. Our results supported the hypothesis that all genera of this subtribe have compound sex chromosome systems that originated from an X-autosome translocation, an ancestral condition observed in the Stenodermatinae. Additional rearrangements occurred independently in the genus Vampyressa and Mesophylla yielding the X1X1X2X2/X1X2Y sex chromosome system. This work presents additional data supporting the hypothesis based on molecular studies regarding the polyphyly of the genus Vampyressa and its sister relationship to Mesophylla.

  3. Analysis and Modeling of Chromosome Congression During Mitosis in the Chemotherapy Drug Cisplatin.

    PubMed

    Chacón, Jeremy M; Gardner, Melissa K

    2013-12-01

    The chemotherapy drug Cisplatin (cis-diamminedichloroplatinum(II)) induces crosslinks within and between DNA strands, and between DNA and nearby proteins. Therefore, Cisplatin-treated cells which progress into cell division may do so with altered chromosome mechanical properties. This could have important consequences for the successful completion of mitosis. Using Total Internal Reflection Fluorescence (TIRF) microscopy of live Cisplatin-treated Saccharomyces cerevisiae cells, we found that metaphase mitotic spindles have disorganized kinetochores relative to untreated cells, and also that there is increased variability in the chromosome stretching distance between sister centromeres. This suggests that chromosome stiffness may become more variable after Cisplatin treatment. We explored the effect of variable chromosome stiffness during mitosis using a stochastic model in which kinetochore microtubule dynamics were regulated by tension imparted by stretched sister chromosomes. Consistent with experimental results, increased variability of chromosome stiffness in the model led to disorganization of kinetochores in simulated metaphase mitotic spindles. Furthermore, the variability in simulated chromosome stretching tension was increased as chromosome stiffness became more variable. Because proper chromosome stretching tension may serve as a signal that is required for proper progression through mitosis, tension variability could act to impair this signal and thus prevent proper mitotic progression. Our results suggest a possible mitotic mode of action for the anti-cancer drug Cisplatin.

  4. Analysis of α-particle-induced chromosomal aberrations by chemically-induced PCC. Elaboration of dose-effect curves.

    PubMed

    Puig, Roser; Pujol, Mònica; Barrios, Leonardo; Caballín, María Rosa; Barquinero, Joan-Francesc

    2016-09-01

    In a similar way to high-dose exposures to low-LET radiations, cells show difficulties reaching mitosis after high-LET radiation exposure. For this reason, techniques have been proposed that are able to analyze chromosome aberrations in interphase by prematurely condensing the chromosomes (PCC-techniques). Few dose-effect curves for high-LET radiation types have been reported, and none for α-particles. The aim of this study was to evaluate, by chemically-induced PCC, the chromosome aberrations induced by several doses of α-particles. Monolayers of peripheral lymphocytes were exposed to an α-source of Americium-241 with a mean energy entering the cells of 2.7 MeV. Lymphocytes were exposed to 10 doses, from 0-2.5 Gy, and then cultured for 48 h. Colcemid and Calyculin-A were added at 24 and 1 h before harvesting, respectively. During microscope analysis, chromosome rings and extra chromosome pieces were scored in G2/M-PCC and M cells, while dicentric chromosomes were only scored in M cells. As the dose increased, fewer cells were able to reach mitosis and the proportion of G2/M-PCC cells increased. Chromosome rings were hardly observed in M cells when compared to G2/M-PCC cells. Extra fragments were more frequent than rings in both G2/M-PCC and M cells, but with lower frequencies than in G2/M-PCC cells. The distribution of dicentrics and extra fragments showed a clear overdispersion; this was not so evident for rings. The dose-effect curves obtained fitted very well to a linear model. Damaged cells after α-particle irradiation show more difficulties in reaching mitosis than cells exposed to γ-rays. After α-particle irradiation the frequency of all the chromosome aberrations considered increased linearly with the dose, and α-particles clearly produced more dicentrics and extra chromosome pieces with respect to γ-rays. After α-particle exposure, the existence of extra chromosome fragments in PCC cells seems to be a good candidate for use as a biomarker

  5. CENP-A and topoisomerase-II antagonistically affect chromosome length.

    PubMed

    Ladouceur, A-M; Ranjan, Rajesh; Smith, Lydia; Fadero, Tanner; Heppert, Jennifer; Goldstein, Bob; Maddox, Amy Shaub; Maddox, Paul S

    2017-09-04

    The size of mitotic chromosomes is coordinated with cell size in a manner dependent on nuclear trafficking. In this study, we conducted an RNA interference screen of the Caenorhabditis elegans nucleome in a strain carrying an exceptionally long chromosome and identified the centromere-specific histone H3 variant CENP-A and the DNA decatenizing enzyme topoisomerase-II (topo-II) as candidate modulators of chromosome size. In the holocentric organism C. elegans , CENP-A is positioned periodically along the entire length of chromosomes, and in mitosis, these genomic regions come together linearly to form the base of kinetochores. We show that CENP-A protein levels decreased through development coinciding with chromosome-size scaling. Partial loss of CENP-A protein resulted in shorter mitotic chromosomes, consistent with a role in setting chromosome length. Conversely, topo-II levels were unchanged through early development, and partial topo-II depletion led to longer chromosomes. Topo-II localized to the perimeter of mitotic chromosomes, excluded from the centromere regions, and depletion of topo-II did not change CENP-A levels. We propose that self-assembly of centromeric chromatin into an extended linear array promotes elongation of the chromosome, whereas topo-II promotes chromosome-length shortening. © 2017 Ladouceur et al.

  6. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients.

    PubMed

    Popescu, F; Jaslow, C R; Kutteh, W H

    2018-04-01

    Will the addition of 24-chromosome microarray analysis on miscarriage tissue combined with the standard American Society for Reproductive Medicine (ASRM) evaluation for recurrent miscarriage explain most losses? Over 90% of patients with recurrent pregnancy loss (RPL) will have a probable or definitive cause identified when combining genetic testing on miscarriage tissue with the standard ASRM evaluation for recurrent miscarriage. RPL is estimated to occur in 2-4% of reproductive age couples. A probable cause can be identified in approximately 50% of patients after an ASRM recommended workup including an evaluation for parental chromosomal abnormalities, congenital and acquired uterine anomalies, endocrine imbalances and autoimmune factors including antiphospholipid syndrome. Single-center, prospective cohort study that included 100 patients seen in a private RPL clinic from 2014 to 2017. All 100 women had two or more pregnancy losses, a complete evaluation for RPL as defined by the ASRM, and miscarriage tissue evaluated by 24-chromosome microarray analysis after their second or subsequent miscarriage. Frequencies of abnormal results for evidence-based diagnostic tests considered definite or probable causes of RPL (karyotyping for parental chromosomal abnormalities, and 24-chromosome microarray evaluation for products of conception (POC); pelvic sonohysterography, hysterosalpingogram, or hysteroscopy for uterine anomalies; immunological tests for lupus anticoagulant and anticardiolipin antibodies; and blood tests for thyroid stimulating hormone (TSH), prolactin and hemoglobin A1c) were evaluated. We excluded cases where there was maternal cell contamination of the miscarriage tissue or if the ASRM evaluation was incomplete. A cost analysis for the evaluation of RPL was conducted to determine whether a proposed procedure of 24-chromome microarray evaluation followed by an ASRM RPL workup (for those RPL patients who had a normal 24-chromosome microarray evaluation

  7. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  8. A Marfan syndrome-like phenotype caused by a neocentromeric supernumerary ring chromosome 15.

    PubMed

    Quinonez, Shane C; Gelehrter, Thomas D; Uhlmann, Wendy R

    2017-01-01

    Small supernumerary marker chromosomes (sSMC) are abnormal chromosomes that cannot be characterized by standard banding cytogenetic techniques. A minority of sSMC contain a neocentromere, which is an ectopic centromere lacking the characteristic alpha-satellite DNA. The phenotypic manifestations of sSMC and neocentromeric sSMC are variable and range from severe intellectual disability and multiple congenital anomalies to a normal phenotype. Here we report a patient with a diagnosis of Marfan syndrome and infertility found to have an abnormal karyotype consisting of a chromosome 15 deletion and a ring-type sSMC likely stabilized by a neocentromere derived via a mechanism initially described by Barbara McClintock in 1938. Analysis of the sSMC identified that it contained the deleted chromosome 15 material and also one copy of FBN1, the gene responsible for Marfan syndrome. We propose that the patient's diagnosis arose from disruption of the FBN1 allele on the sSMC. To date, a total of 29 patients have been reported with an sSMC derived from a chromosomal deletion. We review these cases with a specific focus on the resultant phenotypes and note significant difference between this class of sSMC and other types of sSMC. Through this review we also identified a patient with a clinical diagnosis of neurofibromatosis type 1 who lacked a family history of the condition but was found to have a chromosome 17-derived sSMC that likely contained NF1 and caused the patient's disorder. We also review the genetic counseling implications and recommendations for a patient or family harboring an sSMC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana.

    PubMed

    Lin, X; Kaul, S; Rounsley, S; Shea, T P; Benito, M I; Town, C D; Fujii, C Y; Mason, T; Bowman, C L; Barnstead, M; Feldblyum, T V; Buell, C R; Ketchum, K A; Lee, J; Ronning, C M; Koo, H L; Moffat, K S; Cronin, L A; Shen, M; Pai, G; Van Aken, S; Umayam, L; Tallon, L J; Gill, J E; Adams, M D; Carrera, A J; Creasy, T H; Goodman, H M; Somerville, C R; Copenhaver, G P; Preuss, D; Nierman, W C; White, O; Eisen, J A; Salzberg, S L; Fraser, C M; Venter, J C

    1999-12-16

    Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.

  10. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle

    PubMed Central

    1979-01-01

    The degree of mechanical coupling of chromosomes to the spindles of Nephrotoma and Trimeratropis primary spermatocytes varies with the stage of meiosis and the birefringent retardation of the chromosomal fibers. In early prometaphase, before birefringent chromosomal fibers have formed, a bivalent can be displaced toward a spindle pole by a single, continuous pull with a microneedle. Resistance to poleward displacement increases with increased development of the chromosomal fibers, reaching a maximum at metaphase. At this stage kinetochores cannot be displaced greater than 1 micrometer toward either spindle pole, even by a force which is sufficient to displace the entire spindle within the cell. The abolition of birefringence with either colcemid or vinblastine results in the loss of chromosome-spindle attachment. In the absence of birefringent fibers a chromosome can be displaced anywhere within the cell. The photochemical inactivation of colcemid by irradiation with 366-nm light results in the reformation of birefringent chromosomal fibers and the concomitant re-establishment of chromosome attachment to the spindle. These results support the hypothesis that the birefringent chromosomal fibers anchor the chromosomes to the spindle and transmit the force for anaphase chromosome movement. PMID:479316

  11. XX/XY Sex Chromosomes in the South American Dwarf Gecko (Gonatodes humeralis).

    PubMed

    Gamble, Tony; McKenna, Erin; Meyer, Wyatt; Nielsen, Stuart V; Pinto, Brendan J; Scantlebury, Daniel P; Higham, Timothy E

    2018-05-11

    Sex-specific genetic markers identified using restriction site-associated DNA sequencing, or RADseq, permits the recognition of a species' sex chromosome system in cases where standard cytogenetic methods fail. Thus, species with male-specific RAD markers have an XX/XY sex chromosome system (male heterogamety) while species with female-specific RAD markers have a ZZ/ZW sex chromosome (female heterogamety). Here, we use RADseq data from 5 male and 5 female South American dwarf geckos (Gonatodes humeralis) to identify an XX/XY sex chromosome system. This is the first confidently known sex chromosome system in a Gonatodes species. We used a low-coverage de novo G. humeralis genome assembly to design PCR primers to validate the male-specificity of a subset of the sex-specific RADseq markers and describe how even modest genome assemblies can facilitate the design of sex-specific PCR primers in species with diverse sex chromosome systems.

  12. Landscape of X chromosome inactivation across human tissues.

    PubMed

    Tukiainen, Taru; Villani, Alexandra-Chloé; Yen, Angela; Rivas, Manuel A; Marshall, Jamie L; Satija, Rahul; Aguirre, Matt; Gauthier, Laura; Fleharty, Mark; Kirby, Andrew; Cummings, Beryl B; Castel, Stephane E; Karczewski, Konrad J; Aguet, François; Byrnes, Andrea; Lappalainen, Tuuli; Regev, Aviv; Ardlie, Kristin G; Hacohen, Nir; MacArthur, Daniel G

    2017-10-11

    X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

  13. Chromosome Abnormalities

    MedlinePlus

    ... chromosome has attached to another at the centromere. Inversions: A portion of the chromosome has broken off, ... individual and was not inherited from the parents. Inversion: A portion of the chromosome has broken off, ...

  14. The scale and nature of Viking settlement in Ireland from Y-chromosome admixture analysis.

    PubMed

    McEvoy, Brian; Brady, Claire; Moore, Laoise T; Bradley, Daniel G

    2006-12-01

    The Vikings (or Norse) played a prominent role in Irish history but, despite this, their genetic legacy in Ireland, which may provide insights into the nature and scale of their immigration, is largely unexplored. Irish surnames, some of which are thought to have Norse roots, are paternally inherited in a similar manner to Y-chromosomes. The correspondence of Scandinavian patrilineal ancestry in a cohort of Irish men bearing surnames of putative Norse origin was examined using both slow mutating unique event polymorphisms and relatively rapidly changing short tandem repeat Y-chromosome markers. Irish and Scandinavian admixture proportions were explored for both systems using six different admixture estimators, allowing a parallel investigation of the impact of method and marker type in Y-chromosome admixture analysis. Admixture proportion estimates in the putative Norse surname group were highly consistent and detected little trace of Scandinavian ancestry. In addition, there is scant evidence of Scandinavian Y-chromosome introgression in a general Irish population sample. Although conclusions are largely dependent on the accurate identification of Norse surnames, the findings are consistent with a relatively small number of Norse settlers (and descendents) migrating to Ireland during the Viking period (ca. AD 800-1200) suggesting that Norse colonial settlements might have been largely composed of indigenous Irish. This observation adds to previous genetic studies that point to a flexible Viking settlement approach across North Atlantic Europe.

  15. Chromosome Painting in Trogon s. surrucura (Aves, Trogoniformes) Reveals a Karyotype Derived by Chromosomal Fissions, Fusions, and Inversions.

    PubMed

    Degrandi, Tiago M; Del Valle Garnero, Analía; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Kretschmer, Rafael; de Oliveira, Edivaldo H C; Gunski, Ricardo J

    2017-01-01

    Trogons are forest birds with a wide distribution, being found in Africa, Asia, and America, and are included in the order Trogoniformes, family Trogonidae. Phylogenetic studies using molecular data have not been able to determine the phylogenetic relationship among the different genera of trogons. So far, no cytogenetic data for these birds exist. Hence, the aim of this study was to characterize the karyotype of Trogon surrucura surrucura by means of classical and molecular cytogenetics. We found a diploid chromosome number of 2n = 82, similar to most birds, with several derived features compared to chicken and the putative ancestral avian karyotype. T. s. surrucura showed 3 pairs of microchromosomes bearing 18S rDNA clusters. The Z and W sex chromosomes were of similar size but could readily be identified by morphological differences. Using chromosome painting with whole chromosome probes from Gallus gallus and Leucopternis albicollis, we found that the chromosomes homologous to chicken chromosomes 2 and 5 correspond to 2 different pairs in T. s. surrucura and L. albicollis, due to the occurrence of centric fissions. Paracentric inversions were detected in the segment homologous to chicken chromosome 1q, and we confirmed the recurrence of breakpoints when our results were compared to other species of birds already analyzed by FISH or by in silico genome assembly. © 2017 S. Karger AG, Basel.

  16. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    PubMed

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  17. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  18. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi.

    PubMed

    Artemov, Gleb N; Gordeev, Mikhail I; Kokhanenko, Alina A; Moskaev, Anton V; Velichevskaya, Alena I; Stegniy, Vladimir N; Sharakhov, Igor V; Sharakhova, Maria V

    2018-03-27

    Anopheles beklemishevi is a member of the Maculipennis group of malaria mosquitoes that has the most northern distribution among other members of the group. Although a cytogenetic map for the larval salivary gland chromosomes of this species has been developed, a high-quality standard cytogenetic photomap that enables genomics and population genetics studies of this mosquito at the adult stage is still lacking. In this study, a cytogenetic map for the polytene chromosomes of An. beklemishevi from ovarian nurse cells was developed using high-resolution digital imaging from field collected mosquitoes. PCR-amplified DNA probes for fluorescence in situ hybridization (FISH) were designed based on the genome of An. atroparvus. The DNA probe obtained by microdissection procedures from the breakpoint region was labelled in a DOP-PCR reaction. Population analysis was performed on 371 specimens collected in 18 locations. We report the development of a high-quality standard photomap for the polytene chromosomes from ovarian nurse cells of An. beklemishevi. To confirm the suitability of the map for physical mapping, several PCR-amplified probes were mapped to the chromosomes of An. beklemishevi using FISH. In addition, we identified and mapped DNA probes to flanking regions of the breakpoints of two inversions on chromosome X of this species. Inversion polymorphism was determined in 13 geographically distant populations of An. beklemishevi. Four polymorphic inversions were detected. The positions of common chromosomal inversions were indicated on the map. The study constructed a standard photomap for ovarian nurse cell chromosomes of An. beklemishevi and tested its suitability for physical genome mapping and population studies. Cytogenetic analysis determined inversion polymorphism in natural populations of An. beklemishevi related to this species' adaptation.

  19. Ovarian dysgenesis in an alpaca with a minute chromosome 36.

    PubMed

    Fellows, Elizabeth; Kutzler, Michelle; Avila, Felipe; Das, Pranab J; Raudsepp, Terje

    2014-01-01

    A 4-year-old female alpaca (Lama pacos [LPA]) was presented to the Oregon State Veterinary Teaching Hospital for failure to display receptive behavior to males. Although no abnormalities were found on physical examination, transrectal ultrasonographic examination of the reproductive tract revealed uterine hypoplasia and ovarian dysgenesis. Cytogenetic analysis demonstrated a normal female 74,XX karyotype with 1 exceptionally small (minute) homologue of autosome LPA36. Chromosome analysis by Giemsa staining and DAPI- and C-banding revealed that the minute LPA36 was submetacentric, AT-rich, and largely heterochromatic. Because of the small size and lack of molecular markers, it was not possible to identify the origin of the minute. There is a need to improve molecular cytogenetic tools to further study the phenomenon of this minute chromosome and its relation to female reproduction in alpacas and llamas. © The American Genetic Association. 2012. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Linkage analysis of candidate genes in autoimmune thyroid disease. II. Selected gender-related genes and the X-chromosome. International Consortium for the Genetics of Autoimmune Thyroid Disease.

    PubMed

    Barbesino, G; Tomer, Y; Concepcion, E S; Davies, T F; Greenberg, D A

    1998-09-01

    Hashimoto's thyroiditis (HT) and Graves' disease (GD) are autoimmune thyroid diseases (AITD) in which multiple genetic factors are suspected to play an important role. Until now, only a few minor risk factors for these diseases have been identified. Susceptibility seems to be stronger in women, pointing toward a possible role for genes related to sex steroid action or mechanisms related to genes on the X-chromosome. We have studied a total of 45 multiplex families, each containing at least 2 members affected with either GD (55 patients) or HT (72 patients), and used linkage analysis to target as candidate susceptibility loci genes involved in estrogen activity, such as the estrogen receptor alpha and beta and the aromatase genes. We then screened the entire X-chromosome using a set of polymorphic microsatellite markers spanning the whole chromosome. We found a region of the X-chromosome (Xq21.33-22) giving positive logarithm of odds (LOD) scores and then reanalyzed this area with dense markers in a multipoint analysis. Our results excluded linkage to the estrogen receptor alpha and aromatase genes when either the patients with GD only, those with HT only, or those with any AITD were considered as affected. Linkage to the estrogen receptor beta could not be totally ruled out, partly due to incomplete mapping information for the gene itself at this time. The X-chromosome data revealed consistently positive LOD scores (maximum of 1.88 for marker DXS8020 and GD patients) when either definition of affectedness was considered. Analysis of the family data using a multipoint analysis with eight closely linked markers generated LOD scores suggestive of linkage to GD in a chromosomal area (Xq21.33-22) extending for about 6 cM and encompassing four markers. The maximum LOD score (2.5) occurred at DXS8020. In conclusion, we ruled out a major role for estrogen receptor alpha and the aromatase genes in the genetic predisposition to AITD. Estrogen receptor beta remains a

  1. The role of fusion in ant chromosome evolution: insights from cytogenetic analysis using a molecular phylogenetic approach in the genus mycetophylax.

    PubMed

    Cardoso, Danon Clemes; das Graças Pompolo, Silvia; Cristiano, Maykon Passos; Tavares, Mara Garcia

    2014-01-01

    Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution.

  2. Chromosomal abnormalities and copy number variations in fetal left-sided congenital heart defects.

    PubMed

    Jansen, Fenna A R; Hoffer, Mariette J V; van Velzen, Christine L; Plati, Stephani Klingeman; Rijlaarsdam, Marry E B; Clur, Sally-Ann B; Blom, Nico A; Pajkrt, Eva; Bhola, Shama L; Knegt, Alida C; de Boer, Marion A; Haak, Monique C

    2016-02-01

    To demonstrate the spectrum of copy number variants (CNVs) in fetuses with isolated left-sided congenital heart defects (CHDs), and analyse genetic content. Between 2003 and 2012, 200 fetuses were identified with left-sided CHD. Exclusion criteria were chromosomal rearrangements, 22q11.2 microdeletion and/or extra-cardiac malformations (n = 64). We included cases with additional minor anomalies (n = 39), such as single umbilical artery. In 54 of 136 eligible cases, stored material was available for array analysis. CNVs were categorized as either (likely) benign, (likely) pathogenic or of unknown significance. In 18 of the 54 isolated left-sided CHDs we found 28 rare CNVs (prevalence 33%, average 1.6 CNV per person, size 10.6 kb-2.2 Mb). Our interpretation yielded clinically significant CNVs in two of 54 cases (4%) and variants of unknown significance in three other cases (6%). In left-sided CHDs that appear isolated, with normal chromosome analysis and 22q11.2 FISH analysis, array analysis detects clinically significant CNVs. When counselling parents of a fetus with a left-sided CHD it must be taken into consideration that aside from the cardiac characteristics, the presence of extra-cardiac malformations and chromosomal abnormalities influence the treatment plan and prognosis. © 2015 John Wiley & Sons, Ltd.

  3. XYY chromosome abnormality in sexual homicide perpetrators.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2006-03-05

    In a retrospective investigation of the court reports about sexual homicide perpetrators chromosome analysis had been carried out in 13 of 166 (7.8%) men. Three men (1.8%) with XYY chromosome abnormality were found. This rate is much higher than that found in unselected samples of prisoners (0.7-0.9%) or in the general population (0.01%). The three men had shown prepubescent abnormalities, school problems, and had suffered from physical abuse. The chromosome analysis in all cases had been carried out in connection with the forensic psychiatric court report due to the sexual homicide. However, two men had earlier psychiatric referrals. All were diagnosed as sexual sadistic, showed a psychopathic syndrome or psychopathy according to the Psychopathy Checklist-Revised [Hare RD, 1991, The Hare Psychopathy Checklist-Revised, Toronto, Ontario, Canada: Multi-Health Systems]. Two were multiple murderers. Especially forensic psychiatrists should be vigilant of the possibility of XYY chromosome abnormalities in sexual offenders. (c) 2006 Wiley-Liss, Inc.

  4. Cosegregation of Robertsonian metacentric chromosomes in the first meiotic division of multiple heterozygous male mice as revealed by FISH analysis of spermatocyte II metaphases.

    PubMed

    Scascitelli, M; Pacchierotti, F; Rizzoni, M; Gustavino, B; Spirito, F

    2003-01-01

    Contrasting results (random segregation or cosegregation of isomorphic chromosomes) have been reported up to now on the segregation pattern of Robertsonian metacentric chromosomes of Mus musculus domesticus in multiple heterozygotes, using different approaches (karyotypical analysis of the progeny or of second meiotic metaphases). In the present contribution data are presented based on FISH (Fluorescence In Situ Hybridisation) analysis with telomeric probes, which allowed us to distinguish metacentric chromosomes from pairs of acrocentric chromosomes with their centromeric regions close to each other. Probes were hybridized to DAPI stained metaphases of spermatocytes II of mice heterozygous for two, three or four Robertsonian metacentrics in an all-acrocentric background, the karyotype of which has been reconstructed starting from laboratory strains. Isomorphic chromosomes tend to cosegregate (metacentrics with metacentrics, acrocentrics with acrocentrics); the values found for cosegregation have a clear even if moderate effect on the reproductive isolation caused by underdominant chromosomal rearrangements. Copyright 2003 S. Karger AG, Basel

  5. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    PubMed Central

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053

  6. Reconstruction and evolutionary history of eutherian chromosomes

    PubMed Central

    Kim, Jaebum; Auvil, Loretta; Capitanu, Boris; Larkin, Denis M.; Ma, Jian; Lewin, Harris A.

    2017-01-01

    Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases. PMID:28630326

  7. Evidence that meiotic pairing starts at the telomeres: Molecular analysis of recombination in a family with a pericentric X chromosome inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashi, V.; Allinson, P.S.; Golden, W.L.

    1994-09-01

    Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational eventmore » causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.« less

  8. Chromosome aberrations in the blood lymphocytes of astronauts after space flight.

    PubMed

    George, K; Durante, M; Wu, H; Willingham, V; Badhwar, G; Cucinotta, F A

    2001-12-01

    Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.

  9. Chromosome aberrations in the blood lymphocytes of astronauts after space flight

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Wu, H.; Willingham, V.; Badhwar, G.; Cucinotta, F. A.

    2001-01-01

    Cytogenetic analysis of the lymphocytes of astronauts provides a direct measurement of space radiation damage in vivo, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. Chromosome exchanges were measured in the blood lymphocytes of eight crew members after their respective space missions, using fluorescence in situ hybridization (FISH) with chromosome painting probes. Significant increases in aberrations were observed after the long-duration missions. The in vivo dose was derived from the frequencies of translocations and total exchanges using calibration curves determined before flight, and the RBE was estimated by comparison with individually measured physical absorbed doses. The values for average RBE were compared to the average quality factor (Q) from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. The ratio of aberrations identified as complex was slightly higher after flight, which is thought to be an indication of exposure to high-LET radiation. To determine whether the frequency of complex aberrations measured in metaphase spreads after exposure to high-LET radiation was influenced by a cell cycle delay, chromosome damage was analyzed in prematurely condensed chromosome samples collected from two crew members before and after a short-duration mission. The frequency of complex exchanges after flight was higher in prematurely condensed chromosomes than in metaphase cells for one crew member.

  10. Mothers' appreciation of chromosomal microarray analysis for autism spectrum disorder.

    PubMed

    Giarelli, Ellen; Reiff, Marian

    2015-10-01

    The aim of this study was to examine mothers' experiences with chromosomal microarray analysis (CMA) for a child with autism spectrum disorder (ASD). This is a descriptive qualitative study using thematic content analysis of in-depth interview with 48 mothers of children who had genetic testing for ASD. The principal theme, "something is missing," included missing knowledge about genetics, information on use of the results, explanations of the relevance to the diagnosis, and relevance to life-long care. Two subordinate themes were (a) disappreciation of the helpfulness of scientific information to explain the diagnosis, and (b) returning to personal experience for interpretation. The test "appreciated" in value when results could be linked to the phenotype. © 2015, Wiley Periodicals, Inc.

  11. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  12. Deletion or underexpression of the Y-chromosome genes CDY2 and HSFY is associated with maturation arrest in American men with nonobstructive azoospermia.

    PubMed

    Stahl, Peter J; Mielnik, Anna N; Barbieri, Christopher E; Schlegel, Peter N; Paduch, Darius A

    2012-09-01

    Maturation arrest (MA) refers to failure of germ cell development leading to clinical nonobstructive azoospermia. Although the azoospermic factor (AZF) region of the human Y chromosome is clearly implicated in some cases, thus far very little is known about which individual Y-chromosome genes are important for complete male germ cell development. We sought to identify single genes on the Y chromosome that may be implicated in the pathogenesis of nonobstructive azoospermia associated with MA in the American population. Genotype-phenotype analysis of 132 men with Y-chromosome microdeletions was performed. Protein-coding genes associated with MA were identified by visual analysis of a genotype-phenotype map. Genes associated with MA were selected as those genes within a segment of the Y chromosome that, when completely or partially deleted, were always associated with MA and absence of retrievable testicular sperm. Expression of each identified gene transcript was then measured with quantitative RT-PCR in testicular tissue from separate cohorts of patients with idiopathic MA and obstructive azoospermia. Ten candidate genes for association with MA were identified within an 8.4-Mb segment of the Y chromosome overlapping the AZFb region. CDY2 and HSFY were the only identified genes for which differences in expression were observed between the MA and obstructive azoospermia cohorts. Men with obstructive azoospermia had 12-fold higher relative expression of CDY2 transcript (1.33 ± 0.40 vs. 0.11 ± 0.04; P=0.0003) and 16-fold higher expression of HSFY transcript (0.78 ± 0.32 vs. 0.05 ± 0.02; P=0.0005) compared to men with MA. CDY2 and HSFY were also underexpressed in patients with Sertoli cell only syndrome. These data indicate that CDY2 and HSFY are located within a segment of the Y chromosome that is important for sperm maturation, and are underexpressed in testicular tissue derived from men with MA. These observations suggest that impairments in CDY2 or HSFY

  13. Chromosomally Encoded mcr-5 in Colistin non-susceptible Pseudomonas aeruginosa.

    PubMed

    Snesrud, Erik; Maybank, Rosslyn; Kwak, Yoon I; Jones, Anthony R; Hinkle, Mary K; Mc Gann, Patrick

    2018-05-29

    Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn 3 -like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa .

  14. Chromosomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  15. Molecular cytogenetic studies in structural abnormalities of chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozzio, C.B.; Bamberger, E.; Anderson, I.

    1994-09-01

    A partial trisomy 13 was detected prenatally in an amniocentesis performed due to the following ultrasound abnormalities: open sacral neural tube defect (NTD), a flattened cerebellum, and lumbar/thoracic hemivertebrae. Elevated AFP and positive acetylcholinesterase in amniotic fluid confirmed the open NTD. Chromosome analysis showed an extra acrocentric chromosome marker. FISH analysis with the painting probe 13 showed that most of the marker was derived from this chromosome. Chromosomes on the parents revealed that the mother had a balanced reciprocal translocation t(2;13)(q23;q21). Dual labeling with painting chromosomes 2 and 13 on cells from the mother and from the amniotic fluid identifiedmore » the marker as a der(13)t(2;13)(p23;q21). Thus, the fetus had a partial trisomy 13 and a small partial trisomy 2p. The maternal grandfather was found to be a carrier for this translocation. Fetal demise occurred a 29 weeks of gestation. The fetus had open lumbar NTD and showed dysmorphic features, overlapping fingers and imperforate anus. This woman had a subsequent pregnancy and chorionic villi sample showed that this fetus was normal. Another case with an abnormal chromosome 13 was a newborn with partial monosomy 13 due to the presence of a ring chromosome 13. This infant had severe intrauterine growth retardation, oligohydramnios, dysmorphic features and multiple congenital microphthalmia, congenital heart disease, absent thumbs and toes and cervical vertebral anomalies. Chromosome studies in blood and skin fibroblast cultures showed that one chromosome 3 was replaced by a ring chromosome of various sizes. This ring was confirmed to be derived from chromosome 13 using the centromeric 21/13 probe.« less

  16. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.

    PubMed

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-11

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  17. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-01

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  18. [Introduction of hexaploid of Chinese narcissus and analysis of its chromosome change].

    PubMed

    Wang, Rui; Zhang, Ya Nan; Wang, Ya Ying; Tian, Hui Qiao

    2007-06-01

    Anthers of Chinese narcissus (Narcissus tazetta L. var chinesis Roem) were used as explants for callus induction and plant regeneration. About 80% anthers produced callus and 28% of the callus differentiated out bulbs, making a good experiment system of tissue culture of Chinese narcissus for further cellular and gene engineering. The 700 callus were treated by 0.5% colchicin for 5-6 days and then transformed into a MS medium containing 3 mg/L 6-BA to induce differentiation. 90 bulbs were obtained and 55 bulbs among them were checked the chromosome number from their root tips for three times. 29 bulbs (53%, 29/55) still kept triploidy and the most cells of root tips contained 30 chromosomes. 22 bulbs (40%, 22/55) displayed aneuploidy and the most cells of its root tips contained 10-50 chromosomes. 4 bulbs displayed hexaploidy and contained 60 chromosomes. After three months growing, the cells of root tips containing aneuploidy chromosomes disappeared, and the bulbs became triploidy. The chromosomes of 4 hexaploidy bulbs did not changed during three checks. The origin and disappearance of aneuploidy cells of Chinese narcissus after treated by colchicin were discussed.

  19. A New Fractal Model of Chromosome and DNA Processes

    NASA Astrophysics Data System (ADS)

    Bouallegue, K.

    Dynamic chromosome structure remains unknown. Can fractals and chaos be used as new tools to model, identify and generate a structure of chromosomes?Fractals and chaos offer a rich environment for exploring and modeling the complexity of nature. In a sense, fractal geometry is used to describe, model, and analyze the complex forms found in nature. Fractals have also been widely not only in biology but also in medicine. To this effect, a fractal is considered an object that displays self-similarity under magnification and can be constructed using a simple motif (an image repeated on ever-reduced scales).It is worth noting that the problem of identifying a chromosome has become a challenge to find out which one of the models it belongs to. Nevertheless, the several different models (a hierarchical coiling, a folded fiber, and radial loop) have been proposed for mitotic chromosome but have not reached a dynamic model yet.This paper is an attempt to solve topological problems involved in the model of chromosome and DNA processes. By combining the fractal Julia process and the numerical dynamical system, we have finally found out four main points. First, we have developed not only a model of chromosome but also a model of mitosis and one of meiosis. Equally important, we have identified the centromere position through the numerical model captured below. More importantly, in this paper, we have discovered the processes of the cell divisions of both mitosis and meiosis. All in all, the results show that this work could have a strong impact on the welfare of humanity and can lead to a cure of genetic diseases.

  20. Chromosomal disorders and male infertility

    PubMed Central

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility. PMID:22120929

  1. Chromosomal disorders and male infertility.

    PubMed

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  2. Distinct chromosome segregation roles for spindle checkpoint proteins.

    PubMed

    Warren, Cheryl D; Brady, D Michelle; Johnston, Raymond C; Hanna, Joseph S; Hardwick, Kevin G; Spencer, Forrest A

    2002-09-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage.

  3. Distinct Chromosome Segregation Roles for Spindle Checkpoint Proteins

    PubMed Central

    Warren, Cheryl D.; Brady, D. Michelle; Johnston, Raymond C.; Hanna, Joseph S.; Hardwick, Kevin G.; Spencer, Forrest A.

    2002-01-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage. PMID:12221113

  4. A novel method for sex determination by detecting the number of X chromosomes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  5. Two Siblings with Alternate Unbalanced Recombinants Derived from a Large Cryptic Maternal Pericentric Inversion of Chromosome 20

    PubMed Central

    DeScipio, Cheryl; Morrissette, Jennifer J.D.; Conlin, Laura K.; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B.; Krantz, Ian D.

    2009-01-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologues, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially-available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, ~900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, ~1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e. between RP11-93B14 and proximal BAC RP11-765G16). PMID:20101690

  6. Two siblings with alternate unbalanced recombinants derived from a large cryptic maternal pericentric inversion of chromosome 20.

    PubMed

    Descipio, Cheryl; Morrissette, Jennifer D; Conlin, Laura K; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B; Krantz, Ian D

    2010-02-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologs, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, approximately 900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, approximately 1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e., between RP11-93B14 and proximal BAC RP11-765G16). Copyright 2010 Wiley-Liss, Inc.

  7. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA).

    PubMed

    Oestreicher, Ursula; Samaga, Daniel; Ainsbury, Elizabeth; Antunes, Ana Catarina; Baeyens, Ans; Barrios, Leonardo; Beinke, Christina; Beukes, Philip; Blakely, William F; Cucu, Alexandra; De Amicis, Andrea; Depuydt, Julie; De Sanctis, Stefania; Di Giorgio, Marina; Dobos, Katalin; Dominguez, Inmaculada; Duy, Pham Ngoc; Espinoza, Marco E; Flegal, Farrah N; Figel, Markus; Garcia, Omar; Monteiro Gil, Octávia; Gregoire, Eric; Guerrero-Carbajal, C; Güçlü, İnci; Hadjidekova, Valeria; Hande, Prakash; Kulka, Ulrike; Lemon, Jennifer; Lindholm, Carita; Lista, Florigio; Lumniczky, Katalin; Martinez-Lopez, Wilner; Maznyk, Nataliya; Meschini, Roberta; M'kacher, Radia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Noditi, Mihaela; Pajic, Jelena; Radl, Analía; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Slabbert, Jacobus; Sommer, Sylwester; Stuck Oliveira, Monica; Subramanian, Uma; Suto, Yumiko; Que, Tran; Testa, Antonella; Terzoudi, Georgia; Vral, Anne; Wilkins, Ruth; Yanti, LusiYanti; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.

  8. Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1.

    PubMed

    Schiklenk, Christoph; Petrova, Boryana; Kschonsak, Marc; Hassler, Markus; Klein, Carlo; Gibson, Toby J; Haering, Christian H

    2018-05-07

    Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C 2 H 2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation. © 2018 Schiklenk et al.

  9. Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia.

    PubMed

    Simpson, Nuala H; Addis, Laura; Brandler, William M; Slonims, Vicky; Clark, Ann; Watson, Jocelynne; Scerri, Thomas S; Hennessy, Elizabeth R; Bolton, Patrick F; Conti-Ramsden, Gina; Fairfax, Benjamin P; Knight, Julian C; Stein, John; Talcott, Joel B; O'Hare, Anne; Baird, Gillian; Paracchini, Silvia; Fisher, Simon E; Newbury, Dianne F

    2014-04-01

    Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  10. Methods And Compositions For Chromosome-Specific Staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2003-08-19

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  11. Multidirectional chromosome painting in Synallaxis frontalis (Passeriformes, Furnariidae) reveals high chromosomal reorganization, involving fissions and inversions.

    PubMed

    Kretschmer, Rafael; de Lima, Vanusa Lilian Camargo; de Souza, Marcelo Santos; Costa, Alice Lemos; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José; Garnero, Analía Del Valle

    2018-01-01

    In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetacentric and acrocentric. Hybridization of GGA probes showed syntenies in the majority of ancestral macrochromosomes, except for GGA1 and GGA2, which hybridized to more than one pair of chromosomes each. LAL probes confirmed the occurrence of intrachromosomal rearrangements in the chromosomes corresponding to GGA1q, as previously proposed for species from the order Passeriformes. In addition, LAL probes suggest that pericentric inversions or centromere repositioning were responsible for variations in the morphology of the heteromorphic pairs 1 and 3. Altogether, the analysis of our data on chromosome painting and the data published in other Passeriformes highlights chromosomal changes that have occurred during the evolution of Passeriformes.

  12. Multidirectional chromosome painting in Synallaxis frontalis (Passeriformes, Furnariidae) reveals high chromosomal reorganization, involving fissions and inversions

    PubMed Central

    Kretschmer, Rafael; de Lima, Vanusa Lilian Camargo; de Souza, Marcelo Santos; Costa, Alice Lemos; O’Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José; Garnero, Analía Del Valle

    2018-01-01

    Abstract In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetacentric and acrocentric. Hybridization of GGA probes showed syntenies in the majority of ancestral macrochromosomes, except for GGA1 and GGA2, which hybridized to more than one pair of chromosomes each. LAL probes confirmed the occurrence of intrachromosomal rearrangements in the chromosomes corresponding to GGA1q, as previously proposed for species from the order Passeriformes. In addition, LAL probes suggest that pericentric inversions or centromere repositioning were responsible for variations in the morphology of the heteromorphic pairs 1 and 3. Altogether, the analysis of our data on chromosome painting and the data published in other Passeriformes highlights chromosomal changes that have occurred during the evolution of Passeriformes. PMID:29675139

  13. Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene.

    PubMed

    Pecker, I; Avraham, K B; Gilbert, D J; Savitsky, K; Rotman, G; Harnik, R; Fukao, T; Schröck, E; Hirotsune, S; Tagle, D A; Collins, F S; Wynshaw-Boris, A; Ried, T; Copeland, N G; Jenkins, N A; Shiloh, Y; Ziv, Y

    1996-07-01

    Atm, the mouse homolog of the human ATM gene defective in ataxia-telangiectasia (A-T), has been identified. The entire coding sequence of the Atm transcript was cloned and found to contain an open reading frame encoding a protein of 3066 amino acids with 84% overall identity and 91% similarity to the human ATM protein. Variable levels of expression of Atm were observed in different tissues. Fluorescence in situ hybridization and linkage analysis located the Atm gene on mouse chromosome 9, band 9C, in a region homologous to the ATM region on human chromosome 11q22-q23.

  14. M-FISH Analysis of Chromosome Aberrations in Human Fibroblast Cells After In Vitro Exposure to Low- and High-LET Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis

    2002-01-01

    The recently commercialized multiplex fluorescence in situ hybridization (m-FISH) technique, which allows human chromosomes to be painted in 24 different colors, was used to analyze chromosome aberrations in diploid human fibroblast cells after in vitro radiation exposure. Confluent flasks of a normal primary fibroblast cell line (AG 1522) were irradiated at high dose rates with either gamma rays or 200 MeV/nucleon Fe ions (LET = 440 keV/micron), incubated at 37 C for 24 hours after exposure, and subsequently subcultured. A chemically induced premature chromosome condensation technique was used to collect chromosome samples 32 hours after subculture. Results showed that the fraction of exchanges which were identified as complex, i.e. involving misrejoining of three or more DSB, were higher in the Fe-irradiated samples compared with the gamma-irradiated samples, as has been shown previously using FISH with one or two painted chromosomes . The ratios of complex/simple type exchanges were similar for samples irradiated with 0.7 Gy and 3 Gy of Fe ions, although exchanges involving five or more breaks were found only in 3 Gy irradiated samples. The fraction of incomplete exchanges was also higher in Fe- than gamma-irradiated samples. Data on the distribution of individual chromosome involvement in interchromosomal exchanges will be presented.

  15. Oecomys catherinae (Sigmodontinae, Cricetidae): Evidence for chromosomal speciation?

    PubMed

    Malcher, Stella Miranda; Pieczarka, Julio Cesar; Geise, Lena; Rossi, Rogério Vieira; Pereira, Adenilson Leão; O'Brien, Patricia Caroline Mary; Asfora, Paulo Henrique; Fonsêca da Silva, Victor; Sampaio, Maria Iracilda; Ferguson-Smith, Malcolm Andrew; Nagamachi, Cleusa Yoshiko

    2017-01-01

    Among the Oryzomyini (Sigmodontinae), Oecomys is the most speciose, with 17 species. This genus presents high karyotypic diversity (2n = 54 to 2n = 86) and many taxonomic issues at the species level because of the presence of cryptic species and the overlap of morphological characters. For these reasons the real number of species of Oecomys may be underestimated. With the aim of verifying if the taxon Oecomys catherinae is composed of more than one species, we made comparative studies on two populations from two regions of Brazil, one from the Amazon and another from the Atlantic Forest using both classical cytogenetics (G- and C-banding) and comparative genomic mapping with whole chromosome probes of Hylaeamys megacephalus (HME), molecular data (cytochrome b mitochondrial DNA) and morphology. Our results confirm that Oecomys catherinae occurs in the southeast Amazon, and reveal a new karyotype for the species (2n = 62, FNa = 62). The comparative genomic analysis with HME probes identified chromosomal homeologies between both populations and rearrangements that are responsible for the different karyotypes. We compared our results in Sigmodontinae genera with other studies that also used HME probes. These chromosomal differences together with the absence of consistent differentiation between the two populations on morphological and molecular analyses suggest that these populations may represent cryptic species.

  16. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme.

    PubMed

    Cowell, John K; Matsui, Sei-Ichi; Wang, Yong D; LaDuca, Jeffrey; Conroy, Jeffrey; McQuaid, Devin; Nowak, Norma J

    2004-05-01

    Identification of genetic losses and gains is valuable in analysis of brain tumors. Locus-by-locus analyses have revealed correlations between prognosis and response to chemotherapy and loss or gain of specific genes and loci. These approaches are labor intensive and do not provide a global view of the genetic changes within the tumor cells. Bacterial artificial chromosome (BAC) arrays, which cover the genome with an average resolution of less than 1 MbP, allow defining the sum total of these genetic changes in a single comparative genomic hybridization (CGH) experiment. These changes are directly overlaid on the human genome sequence, thus providing the extent of the amplification or deletion, reflected by a megabase position, and gene content of the abnormal region. Although this array-based CGH approach (CGHa) seems to detect the extent of the genetic changes in tumors reliably, it has not been robustly tested. We compared genetic changes in four newly derived, early-passage glioma cell lines, using spectral karyotyping (SKY) and CGHa. Chromosome changes seen in cell lines under SKY analysis were also detected with CGHa. In addition, CGHa detected cryptic genetic gains and losses and resolved the nature of subtle marker chromosomes that could not be resolved with SKY, thus providing distinct advantages over previous technologies. There was remarkable general concordance between the CGHa results comparing the cell lines to the original tumor, except that the magnitude of the changes seen in the tumor sample was generally suppressed compared with the cell lines, a consequence of normal cells contaminating the tumor sample. CGHa revealed changes in cell lines that were not present in the original tumors and vice versa, even when analyzed at the earliest passage possible, which highlights the adaptation of the cells to in vitro culture. CGHa proved to be highly accurate and efficient for identifying genetic changes in tumor cells. This approach can accurately

  17. Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization.

    PubMed

    Matoba, Hideyuki; Mizutani, Takayuki; Nagano, Katsuya; Hoshi, Yoshikazu; Uchiyama, Hiroshi

    2007-12-01

    In this study, in addition to the karyotype analysis, the chromosomal distributions of 5 S and 18 S rDNAs, and the Arabidopsis-type (T3AG3) telomeric sequences were detected by means of fluorescence in situ hybridization (FISH) to promote the information of chromosomal organization and evolution in the cultivated lettuce and its wild relatives, L. sativa, L. serriola, L. saligna and L. virosa. The karyotype analysis revealed the dissimilarity between L. virosa and the remaining species. In all four Lactuca species studied, one 5 S rDNA and two 18 S rDNA loci were detected. The simultaneous FISH of 5 S and 18 S rDNAs revealed that both rDNA loci of L. sativa, L. serriola and L. saligna were identical, however, that of L. virosa was different from the other species. These analyses indicate the closer relationships between L. sativa/L. serriola and L. saligna rather than L. virosa. Arabidopsis-type telomeric sequences were detected at both ends of their chromatids of all chromosomes not in the other regions. This observation suggests the lack of telomere-mediated chromosomal rearrangements among the Lactuca chromosomes.

  18. Analysis of chromosome 22 deletions in neurofibromatosis type 2-related tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, R.K.; Frazer, K.A.; Jackler, R.K.

    The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, the authors have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas,more » and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, the authors identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model. 33 refs., 2 figs., 1 tab.« less

  19. Analysis of chromosome 22 deletions in neurofibromatosis type 2-related tumors.

    PubMed

    Wolff, R K; Frazer, K A; Jackler, R K; Lanser, M J; Pitts, L H; Cox, D R

    1992-09-01

    The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, we have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas, and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, we identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model.

  20. Analysis of chromosome 22 deletions in neurofibromatosis type 2-related tumors.

    PubMed Central

    Wolff, R K; Frazer, K A; Jackler, R K; Lanser, M J; Pitts, L H; Cox, D R

    1992-01-01

    The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, we have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas, and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, we identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model. Images Figure 1 Figure 2 PMID:1496981

  1. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    PubMed

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. © 2013 S. Karger AG, Basel.

  2. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    PubMed

    Meiklejohn, Colin D; Landeen, Emily L; Cook, Jodi M; Kingan, Sarah B; Presgraves, Daven C

    2011-08-01

    The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI)--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  3. Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome

    PubMed Central

    Castillo, Almudena; Atienza, Sergio G.; Martín, Azahara C.

    2014-01-01

    Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S, has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S, the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. PMID:25271260

  4. Nine (9) marker chromosomes diagnosed prenatally in 6,234 cases and their outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunathan, L.; Demarest, A.; Wisniewski, L.

    1994-09-01

    Marker chromosomes have a frequency of 0.06-0.08 per 1000 in prenatal diagnosis specimens and often pose a dilemma in counseling because of an inability in most cases to identify the marker chromosome cytogenetically. An attempt is made in this study to characterize the marker chromosomes we found in our prenatal diagnosis from 1991-1993. We diagnosed 9 cases of marker chromosomes out of 6,234 prenatal diagnostic studies. Eight cases were patients referred because of advanced maternal age and one (GS) was referred after abnormal ultrasound findings. Six cases were mosaic for a marker. Seven of these patients continued their pregnancies, onemore » patient had a dizygotic twin pregnancy (CM) where the co-twin had normal chromosome complement. Parental chromosomes on all of these cases were normal (in one couple the wife (VA) had a 46,XX/47,XXX karyotype). Special staining methods used for identifying the markers were DAPI/DA, NOR, C, R and FISH. Of the seven pregnancies that were continued, two babies were born with complications, and one of them (GS) subsequently died at six months of age. The marker in this baby was identified as chromosome 14 in origin by FISH. The other (LM) baby was born with extrophy of the bladder. The marker in the dizygotic twin (CM) was identified as chromosome 13 in origin by FISH. The rest of the pregnancies with a marker chromosome had a normal outcome with phenotypically normal babies without any complications. By parental report, babies were developing normally at 1 day (VA), 4 months (CM), 8 months (CL), 9 months (KP) and 22 months (EN) of age. Results of FISH studies on these cases will be presented along with a detailed table.« less

  5. Analysis of complex-type chromosome exchanges in astronauts' lymphocytes after space flight as a biomarker of high-LET exposure

    NASA Technical Reports Server (NTRS)

    George, Kerry; Wu, Honglu; Willingham, Veronica; Cucinotta, Francis A.

    2002-01-01

    High-LET radiation is more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after long duration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cells collected at one time point after irradiation, and analysis of chemically-induced PCC may be more accurate since problems with complicated cell-cycle delays are avoided. However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.

  6. Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity

    PubMed Central

    Jalali, Ali; Aldinger, Kimberly A.; Chary, Ajit; Mclone, David G.; Bowman, Robin M.; Le, Luan Cong; Jardine, Phillip; Newbury-Ecob, Ruth; Mallick, Andrew; Jafari, Nadereh; Russell, Eric J.; Curran, John; Nguyen, Pam; Ouahchi, Karim; Lee, Charles; Dobyns, William B.; Millen, Kathleen J.; Pina-Neto, Joao M.; Kessler, John A.; Bassuk, Alexander G.

    2010-01-01

    We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC. PMID:18204864

  7. High resolution replication banding combined with in situ hybridization for the delineation of a subtle chromosome rearrangement.

    PubMed

    Qumsiyeh, M B; Wilroy, R S; Peeden, J N; Tharapel, A T

    1991-10-01

    Molecular cytogenetic techniques were used to delineate a subtle chromosome rearrangement in an infant with growth and psychomotor retardation, abnormal scalp hair pattern, narrow palpebral fissures, broad nasal bridge, bulbous nose, small nostrils, thin lips in a cupid's bow configuration, bilateral simian creases, and unilateral cryptorchidism. Analysis using GTG-banded chromosomes at about 400 band level showed no obvious abnormality. Prometaphase analysis at about 600 band level showed an extra band at 14q32 on GTG-banding. The father had the same extra band suggesting a reciprocal translocation but the second chromosome involved in the translocation could not be identified. High resolution replication banding on the father's lymphocytes showed a balanced reciprocal translocation 46,XY,rcp(8;14)(q24.1;q32.1). The translocation was confirmed by in situ hybridization with an immunoglobulin heavy chain probe which maps to 14q32.3. The infant therefore had duplication of 8q24.1----qter and deficiency of 14q32.1----qter. His phenotype resembled that of patients with partial duplications of the distal long arm of chromosome 8.

  8. On the origin of sex chromosomes from meiotic drive

    PubMed Central

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  9. A new chromosome was born: comparative chromosome painting in Boechera.

    PubMed

    Koch, Marcus A

    2015-09-01

    Comparative chromosome painting is a powerful tool to study the evolution of chromosomes and genomes. Analyzing karyotype evolution in cruciferous plants highlights the origin of aberrant chromosomes in apomictic Boechera and further establishes the cruciferous plants as important model system for our understanding of plant chromosome and genome evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones

  11. High-Density Genomewide Linkage Analysis of Exceptional Human Longevity Identifies Multiple Novel Loci

    PubMed Central

    Boyden, Steven E.; Kunkel, Louis M.

    2010-01-01

    Background Human lifespan is approximately 25% heritable, and genetic factors may be particularly important for achieving exceptional longevity. Accordingly, siblings of centenarians have a dramatically higher probability of reaching extreme old age than the general population. Methodology/Principal Findings To map the loci conferring a survival advantage, we performed the second genomewide linkage scan on human longevity and the first using a high-density marker panel of single nucleotide polymorphisms. By systematically testing a range of minimum age cutoffs in 279 families with multiple long-lived siblings, we identified a locus on chromosome 3p24-22 with a genomewide significant allele-sharing LOD score of 4.02 (empirical P = 0.037) and a locus on chromosome 9q31-34 with a highly suggestive LOD score of 3.89 (empirical P = 0.054). The empirical P value for the combined result was 0.002. A third novel locus with a LOD score of 4.05 on chromosome 12q24 was detected in a subset of the data, and we also obtained modest evidence for a previously reported interval on chromosome 4q22-25. Conclusions/Significance Our linkage data should facilitate the discovery of both common and rare variants that determine genetic variability in lifespan. PMID:20824210

  12. [Identification of Y-chromosomal Genetic Types for the Soldier's Remains from Huaihai Campaign].

    PubMed

    Wang, C Z; Wen, S Q; Shi, M S; Yu, X E; Wang, X J; Pan, Y L; Zhang, Y F; Li, H; Tan, J Z

    2017-08-01

    To identify the Y-chromosomal genetic types for the soldier's remains from Huaihai Campaign, and to offer a clue for search of their paternal relatives. DNA of the remains were extracted by the ancient DNA extraction method. Yfiler kit was used for the multiplex amplification of 17 Y-STR loci. The haplogroups of the samples were speculated. Detailed genotyping of the selected Y-SNP was performed based on the latest Y-chromosome phylogenetic tree. Haplotype-sharing analysis was done based on the data of Y-SNP and Y-STR, the closest modern individual information to the genetic relationship of remains was gained. A total of 8 Y-STR haplotypes were observed on 17 Y-STR loci of 8 male individuals. Furthermore, 6 Y-SNP haplogroups were identified, which were O2a1-M95+, O1a1-P203+, O3*-M122+/M234-, D1-M15+, C3*-ST and R1a1-M17+. Identification of Y-chromosomal genetic types for the soldier's remains from Huaihai Campaign shows a reference value on inferring the geographical origins of old materials. Copyright© by the Editorial Department of Journal of Forensic Medicine

  13. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-01-01

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.

  14. The architecture of chicken chromosome territories changes during differentiation

    PubMed Central

    Stadler, Sonja; Schnapp, Verena; Mayer, Robert; Stein, Stefan; Cremer, Christoph; Bonifer, Constanze; Cremer, Thomas; Dietzel, Steffen

    2004-01-01

    Background Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown. Results We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions. Conclusions Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes. PMID:15555075

  15. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.

    PubMed

    Brown, Judith D; O'Neill, Rachel J

    2010-01-01

    Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.

  16. Chromosome identification by new molecular markers and genomic in situ hybridization in the Triticum-Secale-Thinopyrum trigeneric hybrids.

    PubMed

    Dai, Yi; Duan, Yamei; Chi, Dawn; Liu, Huiping; Huang, Shuai; Cao, Wenguang; Gao, Yong; Fedak, George; Chen, Jianmin

    2017-08-01

    It is very important to use chromosome-specific markers for identifying alien chromosomes in advanced generations of distant hybridization. The chromosome-specific markers of rye and Thinopyrum elongatum, as well as genomic in situ hybridization, were used to identify the alien chromosomes in eight lines that were derived from the crossing between Triticum trititrigia (AABBEE) and triticale (AABBRR). The results showed that four lines contained all rye chromosomes but no Th. elongatum chromosomes. The line RE36-1 contained all of the rye chromosomes except for chromosome 2R. The lines RE33-2 and RE62-1 contained all rye chromosomes and 1E and 5E translocated chromosome, respectively. The line RE24-4 contained 12 rye chromosomes plus a 7E chromosome or 12 rye chromosomes plus one R-E translocated chromosome. Chromosome identification in the above lines was consistent using chromosome-specific markers and genomic in situ hybridization. These chromosome-specific markers provide useful tools for detecting alien chromosomes in trigeneric hybrids, and these lines could be utilized as valuable germplasm in wheat improvement.

  17. Human Chromosome Y and Haplogroups; introducing YDHS Database.

    PubMed

    Tiirikka, Timo; Moilanen, Jukka S

    2015-12-01

    As the high throughput sequencing efforts generate more biological information, scientists from different disciplines are interpreting the polymorphisms that make us unique. In addition, there is an increasing trend in general public to research their own genealogy, find distant relatives and to know more about their biological background. Commercial vendors are providing analyses of mitochondrial and Y-chromosomal markers for such purposes. Clearly, an easy-to-use free interface to the existing data on the identified variants would be in the interest of general public and professionals less familiar with the field. Here we introduce a novel metadatabase YDHS that aims to provide such an interface for Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants. The database uses ISOGG Y-DNA tree as the source of mutations and haplogroups and by using genomic positions of the mutations the database links them to genes and other biological entities. YDHS contains analysis tools for deeper Y-SNP analysis. YDHS addresses the shortage of Y-DNA related databases. We have tested our database using a set of different cases from literature ranging from infertility to autism. The database is at http://www.semanticgen.net/ydhs Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants have not been in the scientific limelight, excluding certain specialized fields like forensics, mainly because there is not much freely available information or it is scattered in different sources. However, as we have demonstrated Y-SNPs do play a role in various cases on the haplogroup level and it is possible to create a free Y-DNA dedicated bioinformatics resource.

  18. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    PubMed

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  19. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    PubMed

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  20. Overview of recurrent chromosomal losses in retinoblastoma detected by low coverage next generation sequencing

    PubMed Central

    García-Chequer, A.J.; Méndez-Tenorio, A.; Olguín-Ruiz, G.; Sánchez-Vallejo, C.; Isa, P.; Arias, C.F.; Torres, J.; Hernández-Angeles, A.; Ramírez-Ortiz, M.A.; Lara, C.; Cabrera-Muñoz, M.L.; Sadowinski-Pine, S.; Bravo-Ortiz, J.C.; Ramón-García, G.; Diegopérez-Ramírez, J.; Ramírez-Reyes, G.; Casarrubias-Islas, R.; Ramírez, J.; Orjuela, M.A.; Ponce-Castañeda, M.V.

    2016-01-01

    Genes are frequently lost or gained in malignant tumors and the analysis of these changes can be informative about the underlying tumor biology. Retinoblastoma is a pediatric intraocular malignancy, and since deletions in chromosome 13 have been described in this tumor, we performed genome wide sequencing with the Illumina platform to test whether recurrent losses could be detected in low coverage data from DNA pools of Rb cases. An in silico reference profile for each pool was created from the human genome sequence GRCh37p5; a chromosome integrity score and a graphics 40 Kb window analysis approach, allowed us to identify with high resolution previously reported non random recurrent losses in all chromosomes of these tumors. We also found a pattern of gains and losses associated to clear and dark cytogenetic bands respectively. We further analyze a pool of medulloblastoma and found a more stable genomic profile and previously reported losses in this tumor. This approach facilitates identification of recurrent deletions from many patients that may be biological relevant for tumor development. PMID:26883451

  1. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: a review.

    PubMed

    Hada, Megumi; Wu, Honglu; Cucinotta, Francis A

    2011-06-03

    During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations. 2011 Elsevier B.V. All rights reserved.

  2. Chromosomal aberrations in 2000 couples of Indian ethnicity with reproductive failure.

    PubMed

    Gada Saxena, S; Desai, K; Shewale, L; Ranjan, P; Saranath, D

    2012-08-01

    Constitutional chromosomal aberrations contribute to infertility and repeated miscarriage leading to reproductive failure in couples. These aberrations may show no obvious clinical manifestations and remain undetected across multiple generations. However, infertility or recurrent spontaneous pregnancy loss, and/or genotypic/phenotypic aberrations may be manifested in the progeny during gametogenesis. The current study was a retrospective analysis to examine the chromosomal aberrations and prevalence in 2000 couples of Indian ethnicity with reproductive failure. Cytogenetic analysis via conventional G-band karyotyping analysis was carried out on phytohaemagglutinin stimulated peripheral blood lymphocytes, cultured in RPMI1640 medium. The chromosomes were enumerated as per International System for Human Cytogenetic Nomenclature at 500-550 band resolution, and recorded in the screening sheets. Chromosomal aberrations were detected in a total of 110 (2.78%) couples, with structural chromosomal aberrations in 88 cases including reciprocal translocations in 56 cases, Robertsonian translocations in 16 cases, inversions in eight cases, deletions in three cases, derivative chromosomes in five cases and numerical chromosome aberrations in 23 cases. The study emphasizes the importance of cytogenetic work up in both the partners associated with a history of reproductive failure. Genetic counselling with an option of prenatal diagnosis should be offered to couples with chromosomal aberrations. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Chromosome Nomenclature and Cytological Characterization of Sacred Lotus.

    PubMed

    Meng, Zhuang; Hu, Xiaoxu; Zhang, Zhiliang; Li, Zhanjie; Lin, Qingfang; Yang, Mei; Yang, Pingfang; Ming, Ray; Yu, Qingyi; Wang, Kai

    2017-01-01

    Sacred lotus is a basal eudicot plant that has been cultivated in Asia for over 7,000 years for its agricultural, ornamental, religious, and medicinal importance. A notable characteristic of lotus is the seed longevity. Extensive endeavors have been devoted to dissect its genome assembly, including the variety China Antique, which germinated from a 1,300-year-old seed. Here, cytogenetic markers representing the 10 largest megascaffolds, which constitute approximately 70% of the lotus genome assembly, were developed. These 10 megascaffolds were then anchored to the corresponding lotus chromosomes by fluorescence in situ hybridization using these cytogenetic markers, and a set of chromosome-specific cytogenetic markers that could unambiguously identify each of the 8 chromosomes was generated. Karyotyping was conducted, and a nomenclature based on chromosomal length was established for the 8 chromosomes of China Antique. Comparative karyotyping revealed relatively conserved chromosomal structures between China Antique and 3 modern cultivars. Interestingly, significant variations in the copy number of 45S rDNA were detected between China Antique and modern cultivars. Our results provide a comprehensive view on the chromosomal structure of sacred lotus and will facilitate further studies and the genome assembly of lotus. © 2018 S. Karger AG, Basel.

  4. Chromosome Rearrangements in Cornelia de Lange Syndrome (CdLS): Report of a der(3)t(3;12)(p25.3;p13.3) in Two Half Sibs With Features of CdLS and Review of Reported CdLS Cases With Chromosome Rearrangements

    PubMed Central

    DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459

  5. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

    PubMed

    Yaguchi, Shigenori; Hang, Tran Thi Minh; Tsukazaki, Hikaru; Hoa, Vu Quynh; Masuzaki, Shin-ichi; Wako, Tadayuki; Masamura, Noriya; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2009-02-01

    To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.

  6. Novel QTLs for HDL levels identified in mice by controlling for Apoa2 allelic effects: confirmation of a chromosome 6 locus in a congenic strain.

    PubMed

    Welch, Carrie L; Bretschger, Sara; Wen, Ping-Zi; Mehrabian, Margarete; Latib, Nashat; Fruchart-Najib, Jamila; Fruchart, Jean Charles; Myrick, Christy; Lusis, Aldons J

    2004-03-12

    Atherosclerosis is a complex disease resulting from the interaction of multiple genes, including those causing dyslipidemia. Relatively few of the causative genes have been identified. Previously, we identified Apoa2 as a major determinant of high-density lipoprotein cholesterol (HDL-C) levels in the mouse model. To identify additional HDL-C level quantitative trait loci (QTLs), while controlling for the effect of the Apoa2 locus, we performed linkage analysis in 179 standard diet-fed F(2) mice derived from strains BALB/cJ and B6.C-H25(c) (a congenic strain carrying the BALB/c Apoa2 allele). Three significant QTLs and one suggestive locus were identified. A female-specific locus mapping to chromosome 6 (Chr 6) also exhibited effects on plasma non-HDL-C, apolipoprotein AII (apoAII), apoB, and apoE levels. A Chr 6 QTL was independently isolated in a related congenic strain (C57BL/6J vs. B6.NODc6: P = 0.003 and P = 0.0001 for HDL-C and non-HDL-C levels, respectively). These data are consistent with polygenic inheritance of HDL-C levels in the mouse model and provide candidate loci for HDL-C and non-HDL-C level determination in humans.

  7. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users

    PubMed Central

    Rocha, Rodrigo dos Santos; Meireles, José Roberto Cardoso; de Moraes Marcílio Cerqueira, Eneida

    2014-01-01

    Chromosomal damage and apoptosis were analyzed in users of mouthwash and/or alcoholic beverages, using the micronucleus test on exfoliated oral mucosa cells. Samples from four groups of 20 individuals each were analyzed: three exposed groups (EG1, EG2 and EG3) and a control group (CG). EG1 comprised mouthwash users; EG2 comprised drinkers, and EG3 users of both mouthwashes and alcoholic beverages. Cell material was collected by gently scraping the insides of the cheeks. Then the cells were fixed in a methanol/acetic acid (3:1) solution and stained and counterstained, respectively, with Schiff reactive and fast green. Endpoints were computed on 2,000 cells in a blind test. Statistical analysis showed that chromosomal damage and apoptosis were significantly higher in individuals of groups EG1 and EG3 than in controls (p < 0.005 and p < 0.001, respectively). No significant difference in chromosomal damage and apoptosis was observed between the exposed groups. In EG2, only the occurrence of apoptosis was significantly higher than in the controls. These results suggest that mouthwashes alone or in association with alcoholic drinks induce genotoxic effects, manifested as chromosomal damage and apoptosis. They also suggest that alcoholic drinks are effective for stimulating the process of apoptosis. However, these data need to be confirmed in larger samples. PMID:25505845

  8. A role for a neo-sex chromosome in stickleback speciation

    PubMed Central

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  9. A role for a neo-sex chromosome in stickleback speciation.

    PubMed

    Kitano, Jun; Ross, Joseph A; Mori, Seiichi; Kume, Manabu; Jones, Felicity C; Chan, Yingguang F; Absher, Devin M; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M; Peichel, Catherine L

    2009-10-22

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.

  10. Recurrent sequence exchange between homeologous grass chromosomes.

    PubMed

    Wicker, Thomas; Wing, Rod A; Schubert, Ingo

    2015-11-01

    All grass species evolved from an ancestor that underwent a whole-genome duplication (WGD) approximately 70 million years ago. Interestingly, the short arms of rice chromosomes 11 and 12 (and independently their homologs in sorghum) were found to be much more similar to each other than other homeologous regions within the duplicated genome. Based on detailed analysis of rice chromosomes 11 and 12 and their homologs in seven grass species, we propose a mechanism that explains the apparently 'younger' age of the duplication in this region of the genome, assuming a small number of reciprocal translocations at the chromosome termini. In each case the translocations were followed by unbalanced transmission and subsequent lineage sorting of the involved chromosomes to offspring. Molecular dating of these translocation events also allowed us to date major chromosome 'fusions' in the evolutionary lineages that led to Brachypodium and Triticeae. Furthermore, we provide evidence that rice is exceptional regarding the evolution of chromosomes 11 and 12, inasmuch as in other species the process of sequence exchange between homeologous chromosomes ceased much earlier than in rice. We presume that random events rather than selective forces are responsible for the observed high similarity between the short arm ends of rice chromosomes 11 and 12. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines.

    PubMed

    Li, Daiyan; Li, Tinghui; Wu, Yanli; Zhang, Xiaohui; Zhu, Wei; Wang, Yi; Zeng, Jian; Xu, Lili; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Kang, Houyang

    2018-01-01

    Tetraploid Thinopyrum elongatum , which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.

  12. The SIDER2 elements, interspersed repeated sequences that populate the Leishmania genomes, constitute subfamilies showing chromosomal proximity relationship.

    PubMed

    Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen

    2008-06-02

    Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania

  13. RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes.

    PubMed

    Begnis, Martina; Apte, Manasi S; Masuda, Hirohisa; Jain, Devanshi; Wheeler, David Lee; Cooper, Julia Promisel

    2018-04-01

    The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming "HAATI rDNA " chromosomes), it is dispensable for HAATI rDNA maintenance. Surprisingly, Dicer (Dcr1) plays a separate, RNAi-independent role in preventing formation of the rare HAATI subtype in which a different repetitive element (the subtelomeric element) replaces telomeres. Using genetics and fusions between shelterin components and rDNA-binding proteins, we mapped the mechanism by which rDNA loci engage crucial end protection factors-despite the absence of telomere repeats-and secure end protection. Sequence analysis of HAATI rDNA genomes allowed us to propose RNA and DNA polymerase template-switching models for the mechanism of RNAi-triggered rDNA translocations. Collectively, our results reveal unforeseen roles for noncoding RNAs (ncRNAs) in assembling a telomere-free chromosome end protection device. © 2018 Begnis et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Chromosome analysis in embryos from young patients with previous parity.

    PubMed

    Kilani, Z; Magli, Mc; Qaddomi, E; Ferraretti, Ap; Shaban, M; Crippa, A; Haj Hassan, L; Shenfield, F; Gianaroli, L

    2014-09-01

    This study included 173 young couples of proven fertility who had previously undergone preimplantation genetic screening for chromosomes X and Y for family balancing. Several months later, when the outcome of the pregnancies was already known, the blastomeres from the corresponding embryos transferred were reanalysed by fluorescence in-situ hybridization (FISH) for chromosomes 13, 16, 18, 21, 22 with the aim of investigating correlation with embryo viability and the level of FISH sensitivity (embryos confirmed to be euploid). According to the results, informative in 152 couples, the proportion of euploid embryos was significantly lower in 53 nonpregnant women when compared with 99 women with term pregnancy (49% versus 75% respectively, P < 0.001). In addition, in 21 nonpregnant patients, all embryos transferred were found to be chromosomally abnormal. The level of FISH sensitivity was calculated in the group of term pregnancies where the number of euploid embryos was expected to exceed or match with the number of babies born. The resulting false-negative rate was 4.0% per patient and 1.9% per embryo. These findings confirmed the limited prediction power of embryo morphology on implantation but also the relevance of chromosomal abnormalities in causing embryo demise. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Molecular cytogenetic characterization of an inv dup(15) chromosome presenting as a small supernumerary marker chromosome associated with the inv dup(15) syndrome.

    PubMed

    Chen, Chih-Ping; Lin, Shuan-Pei; Chern, Schu-Rern; Wu, Peih-Shan; Chen, Yen-Ni; Chen, Shin-Wen; Lee, Chen-Chi; Town, Dai-Dyi; Yang, Chien-Wen; Wang, Wayseen

    2016-10-01

    To present molecular cytogenetic characterization of an inverted duplication of proximal chromosome 15 [inv dup(15)] presenting as a small supernumerary marker chromosome (sSMC) associated with the inv dup(15) syndrome. A 35-year-old woman underwent amniocentesis because of advanced maternal age at 27 weeks of gestation, which revealed an sSMC that was confirmed by fluorescence in situ hybridization (FISH) to be derived from chromosome 15. Prenatal ultrasound findings were unremarkable. A 3434-g male baby was delivered at term with no phenotypic abnormalities. The cord blood analysis revealed a bisatellited dicentric inv dup(15). When followed up at 21 years of age, the proband manifested hypotonia, ataxic gait, developmental delay, intellectual disability, epilepsy, poor speech, and autism consistent with the inv dup(15) syndrome. Array comparative genomic hybridization of the peripheral blood revealed arr 15q11.1q13.2 (20,686,219-30,390,043) × 4, 15q13.2q13.3 (30,390,043-32,445,226) × 3. Conventional cytogenetic analysis of the peripheral blood revealed a karyotype of 47,XY,+inv dup(15)(pter→q13::q13→pter). Quantitative fluorescent polymerase chain reaction analysis showed a maternal origin of the inv dup(15) chromosome. FISH analysis confirmed an inv dup(15) chromosome. Molecular cytogenetic techniques are useful for rapid diagnosis of an inv dup(15) chromosome associated with the inv dup(15) syndrome. Copyright © 2016. Published by Elsevier B.V.

  16. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed Central

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-01-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype. Images Figure 2 Figure 3 PMID:1384329

  17. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  18. Sjögren's syndrome X-chromosome dose effect: An epigenetic perspective.

    PubMed

    Mougeot, J-Lc; Noll, B D; Bahrani Mougeot, F K

    2018-01-09

    Sjögren's syndrome (SS) is a chronic autoimmune disease affecting exocrine glands leading to mouth and eyes dryness. The extent to which epigenetic DNA methylation changes are responsible for an X-chromosome dose effect has yet to be determined. Our objectives were to (i) describe how epigenetic DNA methylation changes could explain an X-chromosome dose effect in SS for women with normal 46,XX genotype and (ii) determine the relevant relationships to this dose effect, between X-linked genes, genes controlling X-chromosome inactivation (XCI) and genes encoding associated transcription factors, all of which are differentially expressed and/or differentially methylated in the salivary glands of patients with SS. We identified 58 upregulated X-chromosome genes, including 22 genes previously shown to escape XCI, based on the analysis of SS patient salivary gland GEO2R gene expression datasets. Moreover, we found XIST and its cis regulators RLIM, FTX, and CHIC1, and polycomb repressor genes of the PRC1/2 complexes to be upregulated. Many of the X-chromosome genes implicated in SS pathogenesis can be regulated by transcription factors which we found to be overexpressed and/or differentially methylated in patients with SS. Determination of the mechanisms underlying methylation-dependent gene expression and impaired XCI is needed to further elucidate the etiopathogenesis of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2.

    PubMed

    Curk, Franck; Ancillo, Gema; Garcia-Lor, Andres; Luro, François; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Navarro, Luis; Ollitrault, Patrick

    2014-12-29

    The most economically important Citrus species originated by natural interspecific hybridization between four ancestral taxa (Citrus reticulata, Citrus maxima, Citrus medica, and Citrus micrantha) and from limited subsequent interspecific recombination as a result of apomixis and vegetative propagation. Such reticulate evolution coupled with vegetative propagation results in mosaic genomes with large chromosome fragments from the basic taxa in frequent interspecific heterozygosity. Modern breeding of these species is hampered by their complex heterozygous genomic structures that determine species phenotype and are broken by sexual hybridisation. Nevertheless, a large amount of diversity is present in the citrus gene pool, and breeding to allow inclusion of desirable traits is of paramount importance. However, the efficient mobilization of citrus biodiversity in innovative breeding schemes requires previous understanding of Citrus origins and genomic structures. Haplotyping of multiple gene fragments along the whole genome is a powerful approach to reveal the admixture genomic structure of current species and to resolve the evolutionary history of the gene pools. In this study, the efficiency of parallel sequencing with 454 methodology to decipher the hybrid structure of modern citrus species was assessed by analysis of 16 gene fragments on chromosome 2. 454 amplicon libraries were established using the Fluidigm array system for 48 genotypes and 16 gene fragments from chromosome 2. Haplotypes were established from the reads of each accession and phylogenetic analyses were performed using the haplotypic data for each gene fragment. The length of 454 reads and the level of differentiation between the ancestral taxa of modern citrus allowed efficient haplotype phylogenetic assignations for 12 of the 16 gene fragments. The analysis of the mixed genomic structure of modern species and cultivars (i) revealed C. maxima introgressions in modern mandarins, (ii) was

  20. Identification of supernumerary ring chromosome 1 mosaicism using fluorescence in situ hybridization.

    PubMed

    Chen, H; Tuck-Muller, C M; Batista, D A; Wertelecki, W

    1995-03-27

    We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.

  1. First description of multivalent ring structures in eutherian mammalian meiosis: new chromosomal characterization of Cormura brevirostris (Emballonuridae, Chiroptera).

    PubMed

    de Araújo, Ramon Everton Ferreira; Nagamachi, Cleusa Yoshiko; da Costa, Marlyson Jeremias Rodrigues; Noronha, Renata Coelho Rodrigues; Rodrigues, Luís Reginaldo Ribeiro; Pieczarka, Julio César

    2016-08-01

    Twelve specimens of the bat Cormura brevirostris (Emballonuridae: Chiroptera) were collected from four localities in the Brazilian Amazon region and analyzed by classical and molecular cytogenetics. The diploid number and autosomal fundamental number were as previously reported (2n = 22 and FNa = 40, respectively). Fluorescence in situ hybridization using rDNA probes and silver nitrate technique demonstrated the presence of two NOR sites and the presence of internal telomeric sequences at pericentromeric regions of all chromosomes with exception of Y. Based on meiotic studies and chromosome banding we suggest that the sex chromosome pair of C. brevirostris was equivocally identified as it appears in the literature. Meiotic analysis demonstrated that at diplotene-diakinesis the cells had a ring conformation involving four chromosome pairs. This suggests the occurrence of multiple reciprocal translocations among these chromosomes, which is a very rare phenomenon in vertebrates, and has never been described in Eutheria.

  2. A high-density SNP linkage scan with 142 combined subtype ADHD sib pairs identifies linkage regions on chromosomes 9 and 16.

    PubMed

    Asherson, P; Zhou, K; Anney, R J L; Franke, B; Buitelaar, J; Ebstein, R; Gill, M; Altink, M; Arnold, R; Boer, F; Brookes, K; Buschgens, C; Butler, L; Cambell, D; Chen, W; Christiansen, H; Feldman, L; Fleischman, K; Fliers, E; Howe-Forbes, R; Goldfarb, A; Heise, A; Gabriëls, I; Johansson, L; Lubetzki, I; Marco, R; Medad, S; Minderaa, R; Mulas, F; Müller, U; Mulligan, A; Neale, B; Rijsdijk, F; Rabin, K; Rommelse, N; Sethna, V; Sorohan, J; Uebel, H; Psychogiou, L; Weeks, A; Barrett, R; Xu, X; Banaschewski, T; Sonuga-Barke, E; Eisenberg, J; Manor, I; Miranda, A; Oades, R D; Roeyers, H; Rothenberger, A; Sergeant, J; Steinhausen, H-C; Taylor, E; Thompson, M; Faraone, S V

    2008-05-01

    As part of the International Multi-centre ADHD Genetics project we completed an affected sibling pair study of 142 narrowly defined Diagnostic and Statistical Manual of Mental Disorders, fourth edition combined type attention deficit hyperactivity disorder (ADHD) proband-sibling pairs. No linkage was observed on the most established ADHD-linked genomic regions of 5p and 17p. We found suggestive linkage signals on chromosomes 9 and 16, respectively, with the highest multipoint nonparametric linkage signal on chromosome 16q23 at 99 cM (log of the odds, LOD=3.1) overlapping data published from the previous UCLA (University of California, Los Angeles) (LOD>1, approximately 95 cM) and Dutch (LOD>1, approximately 100 cM) studies. The second highest peak in this study was on chromosome 9q22 at 90 cM (LOD=2.13); both the previous UCLA and German studies also found some evidence of linkage at almost the same location (UCLA LOD=1.45 at 93 cM; German LOD=0.68 at 100 cM). The overlap of these two main peaks with previous findings suggests that loci linked to ADHD may lie within these regions. Meta-analysis or reanalysis of the raw data of all the available ADHD linkage scan data may help to clarify whether these represent true linked loci.

  3. A comparative analysis of MC4R gene sequence, polymorphism, and chromosomal localization in Chinese raccoon dog and Arctic fox.

    PubMed

    Skorczyk, Anna; Flisikowski, Krzysztof; Switonski, Marek

    2012-05-01

    Numerous mutations of the human melanocortin receptor type 4 (MC4R) gene are responsible for monogenic obesity, and some of them appear to be associated with predisposition or resistance to polygenic obesity. Thus, this gene is considered a functional candidate for fat tissue accumulation and body weight in domestic mammals. The aim of the study was comparative analysis of chromosome localization, nucleotide sequence, and polymorphism of the MC4R gene in two farmed species of the Canidae family, namely the Chinese raccoon dog (Nycterutes procyonoides procyonoides) and the arctic fox (Alopex lagopus). The whole coding sequence, including fragments of 3'UTR and 5'UTR, shows 89% similarity between the arctic fox (1276 bp) and Chinese raccoon dog (1213 bp). Altogether, 30 farmed Chinese raccoon dogs and 30 farmed arctic foxes were searched for polymorphisms. In the Chinese raccoon dog, only one silent substitution in the coding sequence was identified; whereas in the arctic fox, four InDels and two single-nucleotide polymorphisms (SNPs) in the 5'UTR and six silent SNPs in the exon were found. The studied gene was mapped by FISH to the Chinese raccoon dog chromosome 9 (NPP9q1.2) and arctic fox chromosome 24 (ALA24q1.2-1.3). The obtained results are discussed in terms of genome evolution of species belonging to the family Canidae and their potential use in animal breeding.

  4. The Precarious Prokaryotic Chromosome

    PubMed Central

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other “precarious” features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction. PMID:24633873

  5. Parents' Perceptions of the Usefulness of Chromosomal Microarray Analysis for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Reiff, Marian; Giarelli, Ellen; Bernhardt, Barbara A.; Easley, Ebony; Spinner, Nancy B.; Sankar, Pamela L.; Mulchandani, Surabhi

    2015-01-01

    Clinical guidelines recommend chromosomal microarray analysis (CMA) for all children with autism spectrum disorders (ASDs). We explored the test's perceived usefulness among parents of children with ASD who had undergone CMA, and received a result categorized as pathogenic, variant of uncertain significance, or negative. Fifty-seven parents…

  6. Chromosomal evolution and phylogeny in the Nullicauda group (Chiroptera, Phyllostomidae): evidence from multidirectional chromosome painting.

    PubMed

    Gomes, Anderson José Baia; Nagamachi, Cleusa Yoshiko; Rodrigues, Luis Reginaldo Ribeiro; Ferguson-Smith, Malcolm Andrew; Yang, Fengtang; O'Brien, Patricia Caroline Mary; Pieczarka, Julio Cesar

    2018-04-25

    The family Phyllostomidae (Chiroptera) shows wide morphological, molecular and cytogenetic variation; many disagreements regarding its phylogeny and taxonomy remains to be resolved. In this study, we use chromosome painting with whole chromosome probes from the Phyllostomidae Phyllostomus hastatus and Carollia brevicauda to determine the rearrangements among several genera of the Nullicauda group (subfamilies Gliphonycterinae, Carolliinae, Rhinophyllinae and Stenodermatinae). These data, when compared with previously published chromosome homology maps, allow the construction of a phylogeny comparable to those previously obtained by morphological and molecular analysis. Our phylogeny is largely in agreement with that proposed with molecular data, both on relationships between the subfamilies and among genera; it confirms, for instance, that Carollia and Rhinophylla, previously considered as part of the same subfamily are, in fact, distant genera. The occurrence of the karyotype considered ancestral for this family in several different branches suggests that the diversification of Phyllostomidae into many subfamilies has occurred in a short period of time. Finally, the comparison with published maps using human whole chromosome probes allows us to track some syntenic associations prior to the emergence of this family.

  7. On the origin of sex chromosomes from meiotic drive.

    PubMed

    Úbeda, Francisco; Patten, Manus M; Wild, Geoff

    2015-01-07

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Towards the delineation of the ancestral eutherian genome organization: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting.

    PubMed Central

    Frönicke, Lutz; Wienberg, Johannes; Stone, Gary; Adams, Lisa; Stanyon, Roscoe

    2003-01-01

    This study presents a whole-genome comparison of human and a representative of the Afrotherian clade, the African elephant, generated by reciprocal Zoo-FISH. An analysis of Afrotheria genomes is of special interest, because recent DNA sequence comparisons identify them as the oldest placental mammalian clade. Complete sets of whole-chromosome specific painting probes for the African elephant and human were constructed by degenerate oligonucleotide-primed PCR amplification of flow-sorted chromosomes. Comparative genome maps are presented based on their hybridization patterns. These maps show that the elephant has a moderately rearranged chromosome complement when compared to humans. The human paint probes identified 53 evolutionary conserved segments on the 27 autosomal elephant chromosomes and the X chromosome. Reciprocal experiments with elephant probes delineated 68 conserved segments in the human genome. The comparison with a recent aardvark and elephant Zoo-FISH study delineates new chromosomal traits which link the two Afrotherian species phylogenetically. In the absence of any morphological evidence the chromosome painting data offer the first non-DNA sequence support for an Afrotherian clade. The comparative human and elephant genome maps provide new insights into the karyotype organization of the proto-afrotherian, the ancestor of extant placental mammals, which most probably consisted of 2n=46 chromosomes. PMID:12965023

  9. Differences in X-chromosome transcriptional activity and cholesterol metabolism between placentae from swine breeds from Asian and Western origins.

    PubMed

    Bischoff, Steve R; Tsai, Shengdar Q; Hardison, Nicholas E; Motsinger-Reif, Alison A; Freking, Bradley A; Nonneman, Dan J; Rohrer, Gary A; Piedrahita, Jorge A

    2013-01-01

    To gain insight into differences in placental physiology between two swine breeds noted for their dissimilar reproductive performance, that is, the Chinese Meishan and white composite (WC), we examined gene expression profiles of placental tissues collected at 25, 45, 65, 85, and 105 days of gestation by microarrays. Using a linear mixed model, a total of 1,595 differentially expressed genes were identified between the two pig breeds using a false-discovery rate q-value ≤0.05. Among these genes, we identified breed-specific isoforms of XIST, a long non-coding RNA responsible X-chromosome dosage compensation in females. Additionally, we explored the interaction of placental gene expression and chromosomal location by DIGMAP and identified three Sus scrofa X chromosomal bands (Xq13, Xq21, Xp11) that represent transcriptionally active clusters that differ between Meishan and WC during placental development. Also, pathway analysis identified fundamental breed differences in placental cholesterol trafficking and its synthesis. Direct measurement of cholesterol confirmed that the cholesterol content was significantly higher in the Meishan versus WC placentae. Taken together, this work identifies key metabolic pathways that differ in the placentae of two swine breeds noted for differences in reproductive prolificacy.

  10. A cytogenetic view of sex chromosome evolution in plants.

    PubMed

    Armstrong, S J; Filatov, D A

    2008-01-01

    The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel

  11. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes.

    PubMed

    Szamalek, Justyna M; Goidts, Violaine; Cooper, David N; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2006-08-01

    The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.

  12. [Chromosome banding analysis of peripheral blood lymphocytes stimulated with IL2 and CpG oligonucleotide DSP30 in patients with chronic lymphocytic leukemia].

    PubMed

    Stěpanovská, K; Vaňková, G; Némethová, V; Tomášiková, L; Smuhařová, P; Divíšková, E; Vallová, V; Kuglík, P; Plevová, K; Oltová, A; Doubek, M; Pospíšilová, S; Mayer, J

    2013-01-01

    Chromosomal aberrations play an important role as prognostic factors in chronic lymphocytic leukemia (CLL). These aberrations are mostly detected by fluorescent in situ hybridization (FISH), as chromosomal banding analysis has been scarce due to low proliferative activity of malignant B-lymphocytes in vitro. In 2006, a new method using stimulation with IL-2 and CpG oligonucleotide DSP30 for metaphase generation in CLL was published [1]. The objective of our study was to verify the efficacy of stimulation and to evaluate if the method is suitable for routine diagnostics. In total, peripheral blood samples of 369 CLL patients were analyzed in parallel by chromosomal banding analysis and by FISH probes for 13q14, 11q22-23, CEP12 and 17p13. Out of 369 patients, 307 (83%) were successfully stimulated for metaphase generation. Chromosomal aberrations were detected in 243 (79%) out of 307 patients evaluated by chromosomal banding analysis. Other aberrations that are not included into standard FISH panel were detected in patients karyotypes, e.g. del(6q), del(14q), t(14;18)(q32;q21), t(11;14)(q13;q32) and t(18;22)(q21;q11). One hundred and three (42%) patients showed complex aberrant karyotype not detected by FISH analysis. Stimulation with IL-2 and oligonucleotide DSP30 is an efficient method how to induce proliferation of malignant B-lymphocytes and allows detection of a substantial number of chromosomal aberrations in addition to those detected by standard FISH panel. Using this method in routine diagnostics is helpful particularly in identification of patients with complex aberrant karyotype.

  13. Oral lichen planus patients exhibit consistent chromosomal numerical aberrations: A follow-up analysis.

    PubMed

    Yahalom, Ran; Yarom, Noam; Shani, Tali; Amariglio, Ninet; Kaplan, Ilana; Trakhtenbrot, Luba; Hirshberg, Abraham

    2016-04-01

    Oral lichen planus (OLP) carries an increased risk for malignant transformation with aneuploid cells (ACs) being found in brush samples of a quarter of patients with OLP. Patients with OLP were followed and repeated brush samples were simultaneously analyzed for morphology and fluorescent in situ hybridization (FISH) using centromeric probes for chromosomes 2 and 8. Three patients with a high proportion of ACs developed oral cancer. Fifteen patients had ≥1% ACs (13 in affected sites and 2 in nonaffected sites), whereas only 2 of the 15 patients with <1% ACs in the first sample had ≥1% ACs in the second sample. A strong positive correlation between the results of the initial and repeated samples was found. High proportion of ACs in brush samples from patients with OLP may imply an impending malignant transformation. As FISH analysis is consistent over time, it can be used to identify a subgroup of patients who would require close follow-up. © 2015 Wiley Periodicals, Inc. Head Neck 38: E741-E746, 2016. © 2015 Wiley Periodicals, Inc.

  14. Chromosomal inversion differences correlate with range overlap in passerine birds.

    PubMed

    Hooper, Daniel M; Price, Trevor D

    2017-10-01

    Chromosomal inversions evolve frequently but the reasons for this remain unclear. We used cytological descriptions of 411 species of passerine birds to identify large pericentric inversion differences between species, based on the position of the centromere. Within 81 small clades comprising 284 of the species, we found 319 differences on the 9 largest autosomes combined, 56 on the Z chromosome, and 55 on the W chromosome. We also identified inversions present within 32 species. Using a new fossil-calibrated phylogeny, we examined the phylogenetic, demographic and genomic context in which these inversions have evolved. The number of inversion differences between closely related species is consistently predicted by whether the ranges of species overlap, even when time is controlled for as far as is possible. Fixation rates vary across the autosomes, but inversions are more likely to be fixed on the Z chromosome than the average autosome. Variable mutagenic input alone (estimated by chromosome size, map length, GC content or repeat density) cannot explain the differences between chromosomes in the number of inversions fixed. Together, these results support a model in which inversions increase because of their effects on recombination suppression in the face of hybridization. Other factors associated with hybridization may also contribute, including the possibility that inversions contain incompatibility alleles, making taxa less likely to collapse following secondary contact.

  15. Amphibian and Avian Karyotype Evolution: Insights from Lampbrush Chromosome Studies

    PubMed Central

    Zlotina, Anna; Dedukh, Dmitry; Krasikova, Alla

    2017-01-01

    Amphibian and bird karyotypes typically have a complex organization, which makes them difficult for standard cytogenetic analysis. That is, amphibian chromosomes are generally large, enriched with repetitive elements, and characterized by the absence of informative banding patterns. The majority of avian karyotypes comprise a small number of relatively large macrochromosomes and numerous tiny morphologically undistinguishable microchromosomes. A good progress in investigation of amphibian and avian chromosome evolution became possible with the usage of giant lampbrush chromosomes typical for growing oocytes. Due to the giant size, peculiarities of organization and enrichment with cytological markers, lampbrush chromosomes can serve as an opportune model for comprehensive high-resolution cytogenetic and cytological investigations. Here, we review the main findings on chromosome evolution in amphibians and birds that were obtained using lampbrush chromosomes. In particular, we discuss the data on evolutionary chromosomal rearrangements, accumulation of polymorphisms, evolution of sex chromosomes as well as chromosomal changes during clonal reproduction of interspecies hybrids. PMID:29117127

  16. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence

    PubMed Central

    Nguyen, Scott V.; McShan, William M.

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5′ end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges. PMID:25161960

  17. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    PubMed

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  18. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  19. [Origin and morphological features of small supernumerary marker chromosomes in Turner syndrome].

    PubMed

    Liu, Nan; Tong, Tong; Chen, Yue; Chen, Yanling; Cai, Chunquan

    2018-02-10

    OBJECTIVE To explore the origin and morphological features of small supernumerary marker chromosomes (sSMCs) in Turner syndrome. METHODS For 5 cases of Turner syndrome with a sSMC identified by conventional G-banding, dual-color fluorescence in situ hybridization (FISH) was applied to explore their origin and morphological features. RESULTS Among the 5 cases, 3 have derived from the X chromosome, which included 2 ring chromosomes and 1 centric minute. For the 2 sSMCs derived from the Y chromosome, 1 was ring or isodicentric chromosome, while the other was an isodicentric chromosome. CONCLUSION The sSMCs found in Turner syndrome have almost all derived from sex chromosomes. The majority of sSMCs derived from the X chromosome will form ring chromosomes, while a minority will form centric minute. While most sSMC derived from Y chromosome may exist as isodicentric chromosomes, and a small number may exist as rings. For Turner syndrome patients with sSMCs, dual-color FISH may be used to delineate their origins to facilitate genetic counseling and selection of clinical regime.

  20. High-throughput physical mapping of chromosomes using automated in situ hybridization.

    PubMed

    George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V

    2012-06-28

    Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and

  1. Y-chromosomal analysis of Greek Cypriots reveals a primarily common pre-Ottoman paternal ancestry with Turkish Cypriots

    PubMed Central

    Fernández-Domínguez, Eva; Bertoncini, Stefania; Chimonas, Marios; Christofi, Vasilis; King, Jonathan; Budowle, Bruce; Manoli, Panayiotis

    2017-01-01

    Genetics can provide invaluable information on the ancestry of the current inhabitants of Cyprus. A Y-chromosome analysis was performed to (i) determine paternal ancestry among the Greek Cypriot (GCy) community in the context of the Central and Eastern Mediterranean and the Near East; and (ii) identify genetic similarities and differences between Greek Cypriots (GCy) and Turkish Cypriots (TCy). Our haplotype-based analysis has revealed that GCy and TCy patrilineages derive primarily from a single gene pool and show very close genetic affinity (low genetic differentiation) to Calabrian Italian and Lebanese patrilineages. In terms of more recent (past millennium) ancestry, as indicated by Y-haplotype sharing, GCy and TCy share much more haplotypes between them than with any surrounding population (7–8% of total haplotypes shared), while TCy also share around 3% of haplotypes with mainland Turks, and to a lesser extent with North Africans. In terms of Y-haplogroup frequencies, again GCy and TCy show very similar distributions, with the predominant haplogroups in both being J2a-M410, E-M78, and G2-P287. Overall, GCy also have a similar Y-haplogroup distribution to non-Turkic Anatolian and Southwest Caucasian populations, as well as Cretan Greeks. TCy show a slight shift towards Turkish populations, due to the presence of Eastern Eurasian (some of which of possible Ottoman origin) Y-haplogroups. Overall, the Y-chromosome analysis performed, using both Y-STR haplotype and binary Y-haplogroup data puts Cypriot in the middle of a genetic continuum stretching from the Levant to Southeast Europe and reveals that despite some differences in haplotype sharing and haplogroup structure, Greek Cypriots and Turkish Cypriots share primarily a common pre-Ottoman paternal ancestry. PMID:28622394

  2. Y-chromosomal analysis of Greek Cypriots reveals a primarily common pre-Ottoman paternal ancestry with Turkish Cypriots.

    PubMed

    Heraclides, Alexandros; Bashiardes, Evy; Fernández-Domínguez, Eva; Bertoncini, Stefania; Chimonas, Marios; Christofi, Vasilis; King, Jonathan; Budowle, Bruce; Manoli, Panayiotis; Cariolou, Marios A

    2017-01-01

    Genetics can provide invaluable information on the ancestry of the current inhabitants of Cyprus. A Y-chromosome analysis was performed to (i) determine paternal ancestry among the Greek Cypriot (GCy) community in the context of the Central and Eastern Mediterranean and the Near East; and (ii) identify genetic similarities and differences between Greek Cypriots (GCy) and Turkish Cypriots (TCy). Our haplotype-based analysis has revealed that GCy and TCy patrilineages derive primarily from a single gene pool and show very close genetic affinity (low genetic differentiation) to Calabrian Italian and Lebanese patrilineages. In terms of more recent (past millennium) ancestry, as indicated by Y-haplotype sharing, GCy and TCy share much more haplotypes between them than with any surrounding population (7-8% of total haplotypes shared), while TCy also share around 3% of haplotypes with mainland Turks, and to a lesser extent with North Africans. In terms of Y-haplogroup frequencies, again GCy and TCy show very similar distributions, with the predominant haplogroups in both being J2a-M410, E-M78, and G2-P287. Overall, GCy also have a similar Y-haplogroup distribution to non-Turkic Anatolian and Southwest Caucasian populations, as well as Cretan Greeks. TCy show a slight shift towards Turkish populations, due to the presence of Eastern Eurasian (some of which of possible Ottoman origin) Y-haplogroups. Overall, the Y-chromosome analysis performed, using both Y-STR haplotype and binary Y-haplogroup data puts Cypriot in the middle of a genetic continuum stretching from the Levant to Southeast Europe and reveals that despite some differences in haplotype sharing and haplogroup structure, Greek Cypriots and Turkish Cypriots share primarily a common pre-Ottoman paternal ancestry.

  3. Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae)

    PubMed Central

    Vittorazzi, Stenio Eder; Lourenço, Luciana Bolsoni; Solé, Mirco; Faria, Renato Gomes; Recco-Pimentel, Shirlei Maria

    2016-01-01

    Abstract All the species of Physalaemus Fitzinger, 1826 karyotyped up until now have been classified as 2n = 22. The species of the Physalaemus cuvieri group analyzed by C-banding present a block of heterochromatin in the interstitial region of the short arm of pair 5. Physalaemus cicada Bokermann, 1966 has been considered to be a member of the Physalaemus cuvieri species group, although its interspecific phylogenetic relationships remain unknown. The PcP190 satellite DNA has been mapped on the chromosomes of most of the species of the Physalaemus cuvieri group. For two species, Physalaemus cicada and Physalaemus kroyeri (Reinhardt & Lütken, 1862), however, only the chromosome number and morphology are known. Given this, the objective of the present study was to analyze the chromosomes of Physalaemus cicada and Physalaemus kroyeri, primarily by C-banding and PcP190 mapping. The results indicate that Physalaemus kroyeri and Physalaemus cicada have similar karyotypes, which were typical of Physalaemus. In both species, the NORs are located on the long arm of pair 8, and the C-banding indicated that, among other features, Physalaemus kroyeri has the interstitial band on chromosome 5, which is however absent in Physalaemus cicada. Even so, a number of telomeric bands were observed in Physalaemus cicada. The mapping of the PcP190 satellite DNA highlighted areas of the centromeric region of the chromosomes of pair 1 in both species, although in Physalaemus kroyeri, heteromorphism was also observed in pair 3. The cytogenetic evidence does not support the inclusion of Physalaemus cicada in the Physalaemus cuvieri group. In the case of Physalaemus kroyeri, the interstitial band on pair 5 is consistent with the existence of a cytogenetic synapomorphy in the Physalaemus cuvieri species group. PMID:27551351

  4. Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae).

    PubMed

    Vittorazzi, Stenio Eder; Lourenço, Luciana Bolsoni; Solé, Mirco; Faria, Renato Gomes; Recco-Pimentel, Shirlei Maria

    2016-01-01

    All the species of Physalaemus Fitzinger, 1826 karyotyped up until now have been classified as 2n = 22. The species of the Physalaemus cuvieri group analyzed by C-banding present a block of heterochromatin in the interstitial region of the short arm of pair 5. Physalaemus cicada Bokermann, 1966 has been considered to be a member of the Physalaemus cuvieri species group, although its interspecific phylogenetic relationships remain unknown. The PcP190 satellite DNA has been mapped on the chromosomes of most of the species of the Physalaemus cuvieri group. For two species, Physalaemus cicada and Physalaemus kroyeri (Reinhardt & Lütken, 1862), however, only the chromosome number and morphology are known. Given this, the objective of the present study was to analyze the chromosomes of Physalaemus cicada and Physalaemus kroyeri, primarily by C-banding and PcP190 mapping. The results indicate that Physalaemus kroyeri and Physalaemus cicada have similar karyotypes, which were typical of Physalaemus. In both species, the NORs are located on the long arm of pair 8, and the C-banding indicated that, among other features, Physalaemus kroyeri has the interstitial band on chromosome 5, which is however absent in Physalaemus cicada. Even so, a number of telomeric bands were observed in Physalaemus cicada. The mapping of the PcP190 satellite DNA highlighted areas of the centromeric region of the chromosomes of pair 1 in both species, although in Physalaemus kroyeri, heteromorphism was also observed in pair 3. The cytogenetic evidence does not support the inclusion of Physalaemus cicada in the Physalaemus cuvieri group. In the case of Physalaemus kroyeri, the interstitial band on pair 5 is consistent with the existence of a cytogenetic synapomorphy in the Physalaemus cuvieri species group.

  5. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  6. Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (Carica papaya)

    PubMed Central

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Yh) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Yh chromosome, implying a loss of many genes on the Yh chromosome. Nevertheless, candidate Yh chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya. PMID:22815863

  7. Chromosome 16 inversion-associated translocations in acute myeloid leukemia elucidated using a dual-color CBFB DNA probe.

    PubMed

    Aventín, Anna; Espadaler, Montserrat; Casas, Sílvia; Duarte, José; Nomdedéu, Josep; Sierra, Jorge

    2002-04-15

    We describe two cases of acute myelomonocytic leukemia with eosinophilia (AML-M4Eo) that were diagnosed with an inv(16)(p13q22) based on conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) technique using a chromosome 16p arm specific paint probe. Additional FISH analysis with a dual-color CBFB DNA probe showed that the 3' portion of the CBFB gene was translocated to chromosome 10p13 in the first patient and 1p36 in the other. These two cases indicate that some inv(16)(p13q22) identified by CC and FISH with chromosome arm-specific painting probe may represent cases of inversion-associated translocation. We suggest that all cases with inv(16)(p13q22) should be investigated by FISH with appropriate probes for a possible translocation of 16q22-->qter to another chromosome.

  8. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure.

    PubMed

    Kemppainen, Petri; Knight, Christopher G; Sarma, Devojit K; Hlaing, Thaung; Prakash, Anil; Maung Maung, Yan Naung; Somboon, Pradya; Mahanta, Jagadish; Walton, Catherine

    2015-09-01

    Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  9. Risk of Gonadoblastoma Development in Patients with Turner Syndrome with Cryptic Y Chromosome Material.

    PubMed

    Kwon, Ahreum; Hyun, Sei Eun; Jung, Mo Kyung; Chae, Hyun Wook; Lee, Woo Jung; Kim, Tae Hyuk; Kim, Duk Hee; Kim, Ho-Seong

    2017-06-01

    Current guidelines recommend that testing for Y chromosome material should be performed only in patients with Turner syndrome harboring a marker chromosome and exhibiting virilization in order to detect individuals who are at high risk of gonadoblastoma. However, cryptic Y chromosome material is suggested to be a risk factor for gonadoblastoma in patients with Turner syndrome. Here, we aimed to estimate the frequency of cryptic Y chromosome material in patients with Turner syndrome and determine whether Y chromosome material increased the risk for development of gonadoblastoma. A total of 124 patients who were diagnosed with Turner syndrome by conventional cytogenetic techniques underwent additional molecular analysis to detect cryptic Y chromosome material. In addition, patients with Turner syndrome harboring Y chromosome cell lines had their ovaries removed prophylactically. Finally, we assessed the occurrence of gonadoblastoma in patients with Turner syndrome. Molecular analysis demonstrated that 10 patients had Y chromosome material among 118 patients without overt Y chromosome (8.5%). Six patients with overt Y chromosome and four patients with cryptic Y chromosome material underwent oophorectomy. Histopathological analysis revealed that the occurrence of gonadoblastoma in the total group was 2.4%, and gonadoblastoma occurred in one of six patients with an overt Y chromosome (16.7%) and 2 of 10 patients with cryptic Y chromosome material (20.0%). The risk of developing gonadoblastoma in patients with cryptic Y chromosome material was similar to that in patients with overt Y chromosome. Therefore, molecular screening for Y chromosome material should be recommended for all patients with Turner syndrome to detect individuals at a high risk of gonadoblastoma and to facilitate proper management of the disease.

  10. Y-Chromosome Markers for the Red Fox.

    PubMed

    Rando, Halie M; Stutchman, Jeremy T; Bastounes, Estelle R; Johnson, Jennifer L; Driscoll, Carlos A; Barr, Christina S; Trut, Lyudmila N; Sacks, Benjamin N; Kukekova, Anna V

    2017-09-01

    The de novo assembly of the red fox (Vulpes vulpes) genome has facilitated the development of genomic tools for the species. Efforts to identify the population history of red foxes in North America have previously been limited by a lack of information about the red fox Y-chromosome sequence. However, a megabase of red fox Y-chromosome sequence was recently identified over 2 scaffolds in the reference genome. Here, these scaffolds were scanned for repeated motifs, revealing 194 likely microsatellites. Twenty-three of these loci were selected for primer development and, after testing, produced a panel of 11 novel markers that were analyzed alongside 2 markers previously developed for the red fox from dog Y-chromosome sequence. The markers were genotyped in 76 male red foxes from 4 populations: 7 foxes from Newfoundland (eastern Canada), 12 from Maryland (eastern United States), and 9 from the island of Great Britain, as well as 48 foxes of known North American origin maintained on an experimental farm in Novosibirsk, Russia. The full marker panel revealed 22 haplotypes among these red foxes, whereas the 2 previously known markers alone would have identified only 10 haplotypes. The haplotypes from the 4 populations clustered primarily by continent, but unidirectional gene flow from Great Britain and farm populations may influence haplotype diversity in the Maryland population. The development of new markers has increased the resolution at which red fox Y-chromosome diversity can be analyzed and provides insight into the contribution of males to red fox population diversity and patterns of phylogeography. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Association of MTHFR polymorphisms and chromosomal abnormalities in leukemia.

    PubMed

    Sinthuwiwat, Thivaratana; Poowasanpetch, Phanasit; Wongngamrungroj, Angsana; Soonklang, Kamonwan; Promso, Somying; Auewarakul, Chirayu; Tocharoentanaphol, Chintana

    2012-01-01

    Genetic variation in MTHFR gene might explain the interindividual differences in the reduction of DNA repaired and the increase of chromosome breakage and damage. Nowadays, chromosomal rearrangement is recognized as a major cause of lymphoid malignancies. In addition, the association of MTHFR polymorphisms with aneuploidy was found in several studies, making the MTHFR gene as a good candidate for leukemia etiology. Therefore, in this study, we investigated the common sequence variation, 677C>T and 1298A>C in the MTHFR gene of 350 fixed cell specimens archived after chromosome analysis. The distribution of the MTHFR polymorphisms frequency was compared in leukemic patients with structural chromosome abnormality and chromosome aneuploidy, as well as in those with no evidence of chromosome abnormalities. We observed a significant decrease in the distribution of T allele in 677C>T polymorphisms among patients with chromosomal abnormalities including both structural aberration and aneuploidy. The same significance result also found in patients with structural aberration when compare with the normal karyotype patients. Suggesting that polymorphism in the MTHFR gene was involved in chromosome abnormalities of leukemia. However, further investigation on the correlation with the specific types of chromosomal aberrations is needed.

  12. Molecular characterization of Brucella abortus chromosome II recombination.

    PubMed

    Tsoktouridis, Georgios; Merz, Christian A; Manning, Simon P; Giovagnoli-Kurtz, Renée; Williams, Leanne E; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; Redkar, Rajendra J; Patra, Guy; DelVecchio, Vito G

    2003-10-01

    Large-scale genomic rearrangements including inversions, deletions, and duplications are significant in bacterial evolution. The recently completed Brucella melitensis 16M and Brucella suis 1330 genomes have facilitated the investigation of such events in the Brucella spp. Suppressive subtractive hybridization (SSH) was employed in identifying genomic differences between B. melitensis 16M and Brucella abortus 2308. Analysis of 45 SSH clones revealed several deletions on chromosomes of B. abortus and B. melitensis that encoded proteins of various metabolic pathways. A 640-kb inversion on chromosome II of B. abortus has been reported previously (S. Michaux Charachon, G. Bourg, E. Jumas Bilak, P. Guigue Talet, A. Allardet Servent, D. O'Callaghan, and M. Ramuz, J. Bacteriol. 179:3244-3249, 1997) and is further described in this study. One end of the inverted region is located on a deleted TATGC site between open reading frames BMEII0292 and BMEII0293. The other end inserted at a GTGTC site of the cyclic-di-GMP phosphodiesterase A (PDEA) gene (BMEII1009), dividing PDEA into two unequal DNA segments of 160 and 977 bp. As a consequence of inversion, the 160-bp segment that encodes the N-terminal region of PDEA was relocated at the opposite end of the inverted chromosomal region. The splitting of the PDEA gene most likely inactivated the function of this enzyme. A recombination mechanism responsible for this inversion is proposed.

  13. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    NASA Astrophysics Data System (ADS)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1

  14. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains

    PubMed Central

    Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.

    2014-01-01

    X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853

  15. Methods of biological dosimetry employing chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2000-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  16. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    EPA Science Inventory

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  17. Repetitive telomeric sequences in chromosomal translocations involving chromosome 21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Dallaire, L.; Fetni, R.

    Telomeres perform key functions in maintaining chromosome integrity. In some structural rearrangements the structure and polymorphism in human telomeres may play a significant role. However, of all the telomeric and subtelomeric sequences, only the terminal TTAGGG repeats are believed essential for telomere function. During the course of a study on the role of telomere structure and polymorphism in chromosomal rearrangements observed in families referred for prenatal diagnosis, we studied three cases in which chromosome 21 was involved. Repetitive TTAGGG sequences for all human chromosomes were used as probes (Oncor). Case 1, a de novo cryptic translocation (2;21) was initially identifiedmore » as monosomy 21 in a child with psychomotor delay and mild dysmorphism. Using a cosmid probe specific for region 21q22.3 and whole chromosome 21 specific painting probe, the long arm of 21 was found on the short arm of chromosome 2 with an interstitial telomere at the breakpoint junction. All the cells were monosomic for 21pter{yields}q21. Case 2 is a familial (19;21) translocation. GTG-banding and FISH with a satellite probe showed no apparent loss of material at the end of either 19q or 21q, with an interstitial telomere at the fusion site of the two intact chromosomes. In case 3, a four generation reciprocal (20;21) translocation, there was no interstitial telomere. The persistence of an interstitial telomere is a relatively rare event which can now be observed with in situ hybridization. Its study may lead to a better understanding of the dynamics of translocations and of chromosome imbalance.« less

  18. Chromosomal microarray analysis as a first-tier clinical diagnostic test: Estonian experience.

    PubMed

    Zilina, Olga; Teek, Rita; Tammur, Pille; Kuuse, Kati; Yakoreva, Maria; Vaidla, Eve; Mölter-Väär, Triin; Reimand, Tiia; Kurg, Ants; Ounap, Katrin

    2014-03-01

    Chromosomal microarray analysis (CMA) is now established as the first-tier cytogenetic diagnostic test for fast and accurate detection of chromosomal abnormalities in patients with developmental delay/intellectual disability (DD/ID), multiple congenital anomalies (MCA), and autism spectrum disorders (ASD). We present our experience with using CMA for postnatal and prenatal diagnosis in Estonian patients during 2009-2012. Since 2011, CMA is on the official service list of the Estonian Health Insurance Fund and is performed as the first-tier cytogenetic test for patients with DD/ID, MCA or ASD. A total of 1191 patients were analyzed, including postnatal (1072 [90%] patients and 59 [5%] family members) and prenatal referrals (60 [5%] fetuses). Abnormal results were reported in 298 (25%) patients, with a total of 351 findings (1-3 per individual): 147 (42%) deletions, 106 (30%) duplications, 89 (25%) long contiguous stretches of homozygosity (LCSH) events (>5 Mb), and nine (3%) aneuploidies. Of all findings, 143 (41%) were defined as pathogenic or likely pathogenic; for another 143 findings (41%), most of which were LCSH, the clinical significance remained unknown, while 61 (18%) reported findings can now be reclassified as benign or likely benign. Clinically relevant findings were detected in 126 (11%) patients. However, the proportion of variants of unknown clinical significance was quite high (41% of all findings). It seems that our ability to detect chromosomal abnormalities has far outpaced our ability to understand their role in disease. Thus, the interpretation of CMA findings remains a rather difficult task requiring a close collaboration between clinicians and cytogeneticists.

  19. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    PubMed Central

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  20. Banding studies on chromosomes in diffuse histiocytic lymphomas: correlation of 14q+ marker chromosome with cytology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuhara, S.; Rowley, J.D.; Variakojis, D.

    1978-11-01

    Chromosomes were studied in cells from tissues primarily involved by diffuse histiocytic lymphoma in nine patients. Two of the patients had stage II disease; their tumors were fibrotic and had no mitotic cells. One patient was in stage III, and the remaining six patients had stage IV disease. The modal chromosome number of abnormal cells from these last seven patients was hypodiploid in two, hyperdiploid in four, and near-triploid in one. Complete banding studies of six cases and partial analysis of the seventh indicate that (1) every patient had a distinct cell line with common markers, with a few cellsmore » showing minor variants; (2) although certain chromosomes (Nos. 1, 2, 3, 9, 12, and 14) were structurally affected more often than others, no markers with the same banding pattern were noted among them; and (3) the cytologic type of lymphoma could be correlated with the karyotype in all seven patients. When the Lukes and Collins classification was used, three patients whose tumors were composed predominantly of large noncleaved cells showed a 14q translocation leading to the formation of a 14q+ marker chromosome. This marker was not observed in four patients whose tumors had a majority of large cleaved cells. These preliminary results, if confirmed in a larger series of patients, will provide additional evidence that there are consistent chromosome changes associated with specific subtypes of lymphoproliferative disorders analogous to the Ph/sup 1/ chromosome in chronic myelogenous leukemia.« less

  1. Hierarchical radial and polar organisation of chromosomes in human sperm.

    PubMed

    Millan, N M; Lau, P; Hann, M; Ioannou, D; Hoffman, D; Barrionuevo, M; Maxson, W; Ory, S; Tempest, H G

    2012-10-01

    It is well established that chromosomes occupy distinct positions within the interphase nuclei, conferring a potential functional implication to the genome. In addition, alterations in the nuclear organisation patterns have been associated with disease phenotypes (e.g. cancer or laminopathies). The human sperm is the smallest cell in the body with specific DNA packaging and the mission of delivering the paternal genome to the oocyte during fertilisation. Studies of nuclear organisation in the sperm have postulated nonrandom chromosome position and have proposed a chromocentre model with the centromeres facing toward the interior and the telomeres toward the periphery of the nucleus. Most studies have assessed the nuclear address in the sperm longitudinally predominantly using centromeric or telomeric probes and to a lesser extent with whole chromosome paints. To date, studies investigating the radial organisation of human sperm have been limited. The purpose of this study was to utilise whole chromosome paints for six clinically important chromosomes (18, 19, 21, 22, X, and Y) to investigate nuclear address by assessing their radial and longitudinal nuclear organisation. A total of 10,800 sperm were analysed in nine normozoospermic individuals. The results have shown nonrandom chromosome position for all chromosomes using both methods of analysis. We present novel radial and polar analysis of chromosome territory localization within the human sperm nucleus. Specifically, a hierarchical organisation was observed radially with chromosomes organised from the interior to the periphery (chromosomes 22, 21, Y, X, 19, and 18 respectively) and polar organisation from the sperm head to tail (chromosomes X, 19, Y, 22, 21, and 18, respectively). We provide evidence of defined nuclear organisation in the human sperm and discuss the function of organisation and potential possible clinical ramifications of these results in regards to male infertility and early human development.

  2. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  3. Analysis of Heavy Ion-Induced Chromosome Aberrations in Human Fibroblast Cells Using In Situ Hybridization

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 0 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Unrejoined chromosomal breaks and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating the maximum number of chromosome domains traversed by a single Fe ion track. 2

  4. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    PubMed Central

    Mazzoleni, Sofia; Rovatsos, Michail; Schillaci, Odessa; Dumas, Francesca

    2018-01-01

    Abstract We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates. PMID:29416829

  5. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  6. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay.

    PubMed

    Hemmat, Morteza; Yang, Xiaojing; Chan, Patricia; McGough, Robert A; Ross, Leslie; Mahon, Loretta W; Anguiano, Arturo L; Boris, Wang T; Elnaggar, Mohamed M; Wang, Jia-Chi J; Strom, Charles M; Boyar, Fatih Z

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient's developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.

  7. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay

    PubMed Central

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient. PMID:25478007

  8. Male infertility associated with de novo pericentric inversion of chromosome 1.

    PubMed

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  9. Efficiency of cytogenetic methods in detecting a chromosome rearrangement induced by ionizing radiation in a cultivated chili pepper line (Capsicum baccatum var. pendulum--Solanaceae).

    PubMed

    Scaldaferro, Marisel A; Grabiele, Mauro; Seijo, J Guillermo; Debat, Humberto; Romero, M Victoria; Ducasse, Daniel A; Prina, Alberto R; Moscone, Eduardo A

    2014-01-01

    To locate transient chromosome aberrations on a selected pepper cultivar and determine the tracing efficiency of different cytogenetic methods. Seeds from Capsicum baccatum var. pendulum cultivar 'Cayenne' were treated with an acute dose of X-rays (300 Gy) and chromosome aberrations were analysed by different cytogenetic methods [Feulgen, silver staining for nucleolus organizer regions (silver positive nucleolus organizing regions or AgNOR), fluorescent banding, fluorescence in situ hybridization (FISH) and meiotic analysis]. A rearranged chromosome carrying two nucleolus organizing regions (NOR) induced by ionizing radiation was detected in the cultivar, with the occurrence of a small reciprocal exchange between a chromosome of pair no. 1 and another chromosome of pair no. 3, both carrying active NOR in short arms and associated chromomycin A positive/diamidino-phenylindole negative (CMA+/DAPI-) heterochromatin. Meiotic analysis showed a quadrivalent configuration, confirming a reciprocal translocation between two chromosomes. The use of X-rays in Capsicum allowed us to develop and identify a pepper line with structural rearrangements between two NOR-carrying chromosomes. We postulate that all the cytological techniques employed in this research were efficient in the search for chromosome aberrations. Particularly, Feulgen and AgNOR were the most suitable in those cases of transient rearrangements, whereas fluorescent banding and FISH were appropriate for intransitive ones.

  10. Genetic analysis of indefinite division in human cells: Evidence for a cell senescence-related gene(s) on human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Ning; Ledbetter, D.H.; Smith, J.R.

    1991-07-01

    Earlier studies had demonstrated that fusion of normal with immortal human cells yielded hybrids having limited division potential. This indicated that the phenotype of limited proliferation (cellular senescence) is dominant and that immortal cells result from recessive changes in normal growth-regulatory genes. In additional studies, the authors exploited the fact that the immortal phenotype is recessive and, by fusing various immortal human cell lines with each other, identified four complementation groups for indefinite division. Assignment of cell lines to specific groups allowed us to take a focused approach to identify the chromosomes and genes involved in growth regulation that havemore » been modified in immortal cells. They report here that introduction of a normal human chromosome 4 into three immortal cell lines (HeLa, J82, T98G) assigned to complementation group B resulted in loss of proliferation and reversal of the immortal phenotype. No effect on the proliferation potential of cell lines representative of the other complementation groups was observed. This result suggests that a gene(s) involved in cellular senescence and normal growth regulation resides on chromosome 4.« less

  11. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering.

    PubMed

    Niu, Zhixia; Klindworth, Daryl L; Friesen, Timothy L; Chao, Shiaoman; Jin, Yue; Cai, Xiwen; Xu, Steven S

    2011-04-01

    Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87-9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.

  12. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  13. Distributions of Low- and High-LET Radiation-Induced Breaks in Chromosomes are Associated with Inter- and Intrachromosome Exchanges

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Zhang, Ye; Feiveson, Alan; Cucinotta, Francis A.; Wu, Honglu

    2010-01-01

    To study the breakpoint along the length of the chromosome induced by low- and high-LET radiations, we exposed human epithelial cells in vitro to Cs-137 rays at both low and high dose rates, secondary neutrons at a low dose rate, and 600 MeV/u Fe ions at a high dose rate. The location of the breaks was identified using the multicolor banding in situ hybridization (mBAND) that paints Chromosome 3 in 23 different colored bands. The breakpoint distributions were found to be similar between rays of low and high dose rates and between the two high-LET radiation types. Detailed analysis of the chromosome break ends involved in inter- and intrachromosome exchanges revealed that only the break ends participating in interchromosome exchanges contributed to the hot spots found for low-LET. For break ends participating in intrachromosome exchanges, the distributions for all four radiation scenarios were similar with clusters of breaks found in three regions. Analysis of the locations of the two break ends in Chromosome 3 that joined to form an intrachromosome exchange demonstrated that two breaks with a greater genomic separation may be more likely to rejoin than two closer breaks, indicating that chromatin folding can play an important role in the rejoining of chromosome breaks. Our study demonstrated that the gene-rich regions do not necessarily contain more breaks. The breakpoint distribution depends more on the likelihood that a break will join with another break in the same chromosome or in a different chromosome.

  14. Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis

    PubMed Central

    Bolaños-Villegas, Pablo; Yang, Xiaohui; Wang, Huei-Jing; Juan, Chien-Ta; Chuang, Min-Hsiang; Makaroff, Christopher A; Jauh, Guang-Yuh

    2013-01-01

    The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inactivation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed characterization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2. Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of genome integrity and meiosis. PMID:23750584

  15. The Discovery of XY Sex Chromosomes in a Boa and Python.

    PubMed

    Gamble, Tony; Castoe, Todd A; Nielsen, Stuart V; Banks, Jaison L; Card, Daren C; Schield, Drew R; Schuett, Gordon W; Booth, Warren

    2017-07-24

    For over 50 years, biologists have accepted that all extant snakes share the same ZW sex chromosomes derived from a common ancestor [1-3], with different species exhibiting sex chromosomes at varying stages of differentiation. Accordingly, snakes have been a well-studied model for sex chromosome evolution in animals [1, 4]. A review of the literature, however, reveals no compelling support that boas and pythons possess ZW sex chromosomes [2, 5]. Furthermore, phylogenetic patterns of facultative parthenogenesis in snakes and a sex-linked color mutation in the ball python (Python regius) are best explained by boas and pythons possessing an XY sex chromosome system [6, 7]. Here we demonstrate that a boa (Boa imperator) and python (Python bivittatus) indeed possess XY sex chromosomes, based on the discovery of male-specific genetic markers in both species. We use these markers, along with transcriptomic and genomic data, to identify distinct sex chromosomes in boas and pythons, demonstrating that XY systems evolved independently in each lineage. This discovery highlights the dynamic evolution of vertebrate sex chromosomes and further enhances the value of snakes as a model for studying sex chromosome evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Somatically Acquired Isodicentric Y and Mosaic Loss of Chromosome Y in a Boy with Hypospadias.

    PubMed

    Miyado, Mami; Muroya, Koji; Katsumi, Momori; Saito, Kazuki; Kon, Masafumi; Fukami, Maki

    2018-04-07

    Isodicentric Y chromosome [idic(Y)] represents a relatively common subtype of Y chromosomal rearrangements in the germline; however, limited evidence supports the postzygotic occurrence of idic(Y). Here, we report a boy with hypospadias and somatically acquired idic(Y). The 3.5-year-old boy has been identified in our previous study for patients with hypospadias. In the present study, cytogenetic analysis including FISH revealed a 45,X[5]/46,X,idic(Y)[7]/46,XY[8] karyotype. MLPA showed a mosaic deletion involving PPP1R12BP1 and RBMY2DP. The idic(Y) was likely to have been formed through aberrant recombination between P1 palindromes and subsequently underwent mosaic loss. The patient's phenotype was attributable to deletion of some Y chromosomal genes and/or mosaic loss of chromosome Y (mLOY). The results suggest that idic(Y) can originate in postzygotic cells via palindrome-mediated crossovers. Moreover, our data indicate that somatically acquired idic(Y) can trigger mLOY, which usually appears as an aging-related phenomenon in elderly men. © 2018 S. Karger AG, Basel.

  17. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  18. Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13; 14) trisomy 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonarakis, S.E.; Blouin, J.L.; Maher, J.

    1993-06-01

    Uniparental disomy (UPD) for particular chromosomes is increasingly recognized as a cause of abnormal phenotypes in humans. The authors recently studied a 9-year-old female with a de novo Robertsonian translocation t(13;14), short stature, mild developmental delay, scoliosis, hyperextensible joints, hydrocephalus that resolved spontaneously during the first year of life, and hyperchloesterolemia. To determine the parental origin of chromosomes 13 and 14 in the proband, they have studied the genotypes of DNA polymorphic markers due to (GT)n repeats in the patient and her parents' blood DNA. The genotypes of markers D14S43, D14S45, D14S49, and D14S54 indicated maternal UPD for chromosome 14.more » There was isodisomy for proximal markers and heterodisomy for distal markers, suggesting a recombination event on maternal chromosomes 14. In addition, DNA analysis first revealed -- and subsequent cytogenetic analysis confirmed -- that there was mosaic trisomy 14 in 5% of blood lymphocytes. There was normal (biparental) inheritance for chromosome 13, and there was no evidence of false paternity in genotypes of 11 highly polymorphic markers on human chromosome 21. Two cases of maternal UPD for chromosome 14 have previously been reported, one with a familial rob t(13;14) and the other with a t(14;14). There are several similarities among these patients, and a [open quotes]maternal UPD chromosome 14 syndrome[close quotes] is emerging; however, the contribution of the mosaic trisomy 14 to the phenotype cannot be evaluated. The study of de novo Robertsonian translocations of the type reported here should reveal both the extent of UPD in these events and the contribution of particular chromosomes involved in certain phenotypes. 33 refs., 3 figs., 1 tab.« less

  19. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  20. Chromosome congression by kinesin-5 motor-mediated disassembly of longer kinetochore microtubules

    PubMed Central

    Gardner, Melissa K; Bouck, David C.; Paliulis, Leocadia V.; Meehl, Janet B.; O’Toole, Eileen T.; Haase, Julian; Soubry, Adelheid; Joglekar, Ajit P.; Winey, Mark; Salmon, Edward D.; Bloom, Kerry; Odde, David J.

    2008-01-01

    Summary During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus-ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely-conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus-end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression. PMID:19041752