Science.gov

Sample records for analysis method sam

  1. A Standard Analysis Method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: Validation and performance

    SciTech Connect

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-11-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a plug-and-play manner into a complete analysis system. These building blocks, which are referred to as Standard laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAM). A SAM for the automated determination of polychlorinated biphenyls (PCBs) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAM consists of the following SLMs: a four-channel Soxhlet extractor, a high-volume concentration, a column clean-up, a gas chromatography, a PCB data-interpretation module, a robot, and a human-computer interface. The SAM is configured to meet the requirements specified in the US Environmental Protection Agency`s (EPA) SW-846 methods 3541/3620A/8082 for the analysis of PCBs in soils. The PCB SAM will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed.

  2. Social Activity Method (SAM): A Fractal Language for Mathematics

    ERIC Educational Resources Information Center

    Dowling, Paul

    2013-01-01

    In this paper I shall present and develop my organisational language, "social activity method" (SAM), and illustrate some of its applications. I shall introduce a new scheme for "modes of recontextualisation" that enables the analysis of the ways in which one activity--which might be school mathematics or social research or any…

  3. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    SciTech Connect

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  4. Social activity method (SAM): A fractal language for mathematics

    NASA Astrophysics Data System (ADS)

    Dowling, Paul

    2013-09-01

    In this paper I shall present and develop my organisational language, social activity method (SAM), and illustrate some of its applications. I shall introduce a new scheme for modes of recontextualisation that enables the analysis of the ways in which one activity - which might be school mathematics or social research or any empirically observed regularity of practice - recontextualises the practice of another and I shall also present, deploy, and develop an existing scheme - domains of action - in an analysis of school mathematics examination papers and in the structuring of what I refer to as the esoteric domain. This domain is here conceived as a hybrid domain of, first, linguistic and extralinguistic resources that are unambiguously mathematical in terms of both expression and content and, second, pedagogic theory - often tacit - that enables the mathematical gaze onto other practices and so recontextualises them. A second and more general theme that runs through the paper is the claim that there is nothing that is beyond semiosis, that there is nothing to which we have direct access, unmediated by interpretation. This state of affairs has implications for mathematics education. Specifically, insofar as an individual's mathematical semiotic system is under continuous development - the curriculum never being graspable all at once - understanding - as a stable semiotic moment - of any aspect or object of mathematics is always localised to the individual and is at best transient, and the sequencing of such moments may well also be more individualised than consistent in some correspondence with the sequencing of the curriculum. This being the case, a concentration on understanding as a goal may well serve to inhibit the pragmatic acquisition and deployment of mathematical technologies, which should be the principal aim of mathematics teaching and learning. The paper is primarily concerned with mathematics education. SAM, however, is a language that is available for

  5. A standard analysis method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: validation and performance

    SciTech Connect

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-10-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a `plug and play` manner into a complete analysis system. These building blocks, which are referred to as Standard Laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAME). A SAME for the automated determination of Polychlorinated Biphenyls (PCB) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAME consists of the following SLMs: a four channel Soxhlet extractor, a High Volume Concentrator, column clean up, a gas chromatograph, a PCB data interpretation module, a robot, and a human- computer interface. The SAME is configured to meet the requirements specified in U.S. Environmental Protection Agency`s (EPA) SW-846 Methods 3541/3620A/8082 for the analysis of pcbs in soils. The PCB SAME will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed.

  6. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  7. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; Leshin, L. A.; Mahaffy, P. R.; McAdam, A. C.; Ming, D. W.; Navvaro-Gonzales, R.; Niles, P. B.; Steele, A.

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  8. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Navarro-Gonzalez, R.; Freissinet, C.; McKay, C. P.; Archer, P. D.; Buch, A.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; Ming, D. W.; Steele, A.; Szopa, C.; Wray, J. J.; Conrad, P. G.; Mahaffy, P. R.; Team, M.

    2013-12-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (δ15N ~ +100‰) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen-bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify unretained compounds

  9. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/; Steele, Andrew; Szopa, Cyril; Wray, James J.; Conrad, Pamela Gales; Mahaffay, Paul R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify

  10. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1993-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  11. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1992-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  12. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; Mahaffy, P. R.; McAdam, A. C.; Ming, D. W.; Niles, P. B.; Steele, A.

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  13. Construct Validation of the Louisiana School Analysis Model (SAM) Instructional Staff Questionnaire

    ERIC Educational Resources Information Center

    Bray-Clark, Nikki; Bates, Reid

    2005-01-01

    The purpose of this study was to validate the Louisiana SAM Instructional Staff Questionnaire, a key component of the Louisiana School Analysis Model. The model was designed as a comprehensive evaluation tool for schools. Principle axis factoring with oblique rotation was used to uncover the underlying structure of the SISQ. (Contains 1 table.)

  14. Analysis of chlorocarbon compounds identified in the SAM Investigation of the Mars Science Laboratory mission

    NASA Astrophysics Data System (ADS)

    Freissinet, Caroline; Mahaffy, P.; Glavin, D.; Buch, A.; Brunner, A.; Eigenbrode, J.; Martin, M.; Miller, K.; Steele, A.; Szopa, C.; SAM; MSL science Team

    2013-10-01

    The gas chromatograph mass spectrometer (GCMS) mode of the Sample Analysis at Mars (SAM) experiment was designed for the separation and identification of the chemical components of the gases released from a solid sample or trapped from the atmosphere. Gases from solid samples are either produced by heating a cell from ambient to >800-1100oC (EGA mode) or by wet chemistry extraction and reactions (not yet employed on Mars). Prior to EGA analysis of portions of the first 3 solid samples (Rocknest, John Klein and Cumberland) collected by MSL and delivered to SAM, an internal SAM blank run was carried out with an empty quartz cup. These blank analyses are required to understand the background signal intrinsic to the GCMS and its gas manifolds and traps. Several peaks have been identified as part of SAM background, some of them below the nmol level, which attests of the sensitivity of the instrument and as-designed performance of the GCMS. The origin of each peak has been investigated, and two major contributors are revealed; residual vapor from one of the chemicals used for SAM wet chemistry experiment: N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide (MTBSTFA), and the Tenax from the hydrocarbon trap. Supporting lab experiments are in progress to understand the reaction pathways of the molecules identified in the SAM background. These experiments help elucidate which molecules may be interpreted as indigenous to Mars. Of the three solid samples analyzed on 11 runs, it was possible to detect and identify several chlorinated compounds including several chlorohydrocarbons. The chlorine is likely derived from the decomposition of martian perchlorates or other indigenous Cl-containing species while the origin of the carbon is presently under investigation for each detected molecule. To date, a subset these molecules have been identified in lab studies and a terrestrial contribution to the observed products are more easily explained. The combined results from SAM and

  15. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  16. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust.

    PubMed

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings. PMID:25285660

  17. Molecular Cloning, Characterization and Expression Analysis of the SAMS Gene during Adventitious Root Development in IBA-Induced Tetraploid Black Locust

    PubMed Central

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings. PMID:25285660

  18. Synthia Tonn, SAM Engineer

    NASA Video Gallery

    The Sample Analysis at Mars (SAM) is a suite of instruments developed for use on the Mars Science Laboratory, designed to help find out whether or not Mars ever supported life. This video profiles ...

  19. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; Coll, Patrice; Cabane, Michel; Mahaffy, Paul; Conrad, Pamela; Martin-Torres, Francisco; Zorzano-Mier, Maria; Grotzinger, John

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests <0.1 percent perchlorate and ppm levels of organic carbon at landing site 1 and 2 [2]. The suggestion of perchlorate in the Viking sites [2] has been challenged on the grounds that the detected compounds (CH3Cl and CH2Cl2) were carried from Earth [4]. Recently the Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of

  20. In situ analysis of Mars soil and rocks samples with the SAM experiment: laboratory measurements supporting treatment and interpretation of the detection of organics

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Glavin, D.; Freissinet, C.; Coll, P.; Cabane, M.; Mahaffy, P.

    2015-10-01

    The Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover detected numerous organic compounds when analyzing the solid samples collected on the way to Mount Sharp. But MTBSTFA, the chemical reactant for the chemical treatment of the refractory molecules present in the solid samples and present in cups of SAM,was shown to be unfortunately present in the Sample Manipulation System(SMS). During the sample analysis, this chemical species reacts with the organic and inorganic molecules present in the samples. This reaction leads to the production and subsequent detection of numerous MTBSTFA derivatives which makes the treatment and the interpretation of the SAM data complex. Moreover, for the first time on Mars, the wet chemistry method was used on a Cumberland sample to help the GC separation and the MS identification of non volatile compounds. To ensure the identification of the organic molecules and try to discriminate organics generated internally to SAM from those present in the samples analyzed, it is mandatory to perform laboratory experimental calibrations under martian operating conditions.

  1. MetaSAMS--a novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets.

    PubMed

    Zakrzewski, Martha; Bekel, Thomas; Ander, Christina; Pühler, Alfred; Rupp, Oliver; Stoye, Jens; Schlüter, Andreas; Goesmann, Alexander

    2013-08-20

    Metagenomics aims at exploring microbial communities concerning their composition and functioning. Application of high-throughput sequencing technologies for the analysis of environmental DNA-preparations can generate large sets of metagenome sequence data which have to be analyzed by means of bioinformatics tools to unveil the taxonomic composition of the analyzed community as well as the repertoire of genes and gene functions. A bioinformatics software platform is required that allows the automated taxonomic and functional analysis and interpretation of metagenome datasets without manual effort. To address current demands in metagenome data analyses, the novel platform MetaSAMS was developed. MetaSAMS automatically accomplishes the tasks necessary for analyzing the composition and functional repertoire of a given microbial community from metagenome sequence data by implementing two software pipelines: (i) the first pipeline consists of three different classifiers performing the taxonomic profiling of metagenome sequences and (ii) the second functional pipeline accomplishes region predictions on assembled contigs and assigns functional information to predicted coding sequences. Moreover, MetaSAMS provides tools for statistical and comparative analyses based on the taxonomic and functional annotations. The capabilities of MetaSAMS are demonstrated for two metagenome datasets obtained from a biogas-producing microbial community of a production-scale biogas plant. The MetaSAMS web interface is available at https://metasams.cebitec.uni-bielefeld.de. PMID:23026555

  2. Investigating the Origin of Chlorohydrocarbons Detected by the Sample Analysis at Mars (SAM) Instrument at Rocknest

    NASA Technical Reports Server (NTRS)

    Glavin, D.; Archer, D.; Brunner, A.; Buch, A.; Cabane, M.; Coll, P.; Conrad, P.; Coscia, D.; Dworkin J.; Eigenbrode, J.; Freissinet, C.; Mahaffy, P.; Martin, M.; McKay, C.; Miller, K.; Ming, D.; Navarro-Gonzalez, R.; Steele, A.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.

    2013-01-01

    The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons.

  3. Detection of Organic Constituents Including Chloromethylpropene in the Analyses of the ROCKNEST Drift by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; Glavin, D.; Coll, P.; Summons, R. E.; Mahaffy, P.; Archer, D.; Brunner, A.; Conrad, P.; Freissinet, C.; Martin, M.; McKay, C.; Hurowitz, J.; Evans, J.; Anderson, M.; Jandura, L.; Brown, K.; Logan C.; Kuhn, S.; Anderson, R.; Beegle, L.; Blakkolb, B.; Katz, I.; Limonadi, D.; Rainen, R.; Umland, J.

    2013-01-01

    key challenge in assessing the habitability of martian environments is the detection of organic matter - a requirement of all life as we know it. The Curiosity rover, which landed on August 6, 2012 in Gale Crater of Mars, includes the Sample Analysis at Mars (SAM) instrument suite capable of in situ analysis of gaseous organic components thermally evolved from sediment samples collected, sieved, and delivered by the MSL rover. On Sol 94, SAM received its first solid sample: scooped sediment from Rocknest that was sieved to <150 m particle size. Multiple 10-40 mg portions of the scoop #5 sample were delivered to SAM for analyses. Prior to their introduction, a blank (empty cup) analysis was performed. This blank served 1) to clean the analytical instrument of SAMinternal materials that accumulated in the gas processing system since integration into the rover, and 2) to characterize the background signatures of SAM. Both the blank and the Rocknest samples showed the presence of hydrocarbon components.

  4. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; Brunner, A. E.; Grotzinger,J. P.; Jones, J. H.; Leshin, L. A.; Miller, K.; Morris, R. V.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T. C.; Summons, R. E.; Sutter, B.; Webster, C. R.

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  5. Beta test results for the CAA mini-SAM system

    SciTech Connect

    Johnson, R.C.; Monagle, M.

    1997-04-01

    The mission of the Chemical Analysis Automation (CAA) Program is to automate methods for chemical analysis of environmental samples. To accomplish this mission, the CAA team has developed automated laboratory systems based on a plug-and-work strategy for integrating components. Realizing that standardization is the key to implementing this strategy, CAA has developed, demonstrated, and encouraged commercialization of standards for laboratory automation. While the CAA mission is driven by the analyses in support of the extensive remediation programs of the Departments of Energy and Defense, it also impacts any industry that depends upon high volumes of repetitive chemical analysis. A Standard Analysis Method (SAM) is any collection of hardware and software used to automate part or all of a method. The method automated for the Mini-SAM testing is EPA Method 3550, which outlines semivolatiles extraction by sonication. The list of semivolatiles includes the polychlorinated biphenyl (PCB) analytes of interest. The basic building block of a SAM is the Standard Laboratory Module (SLM). For the Mini-SAM test an automated sonication SLM and an automated concentration SLM were configured to perform the extraction and concentration processes. The Mini-SAM differs from the Full-SAM in that a fully automated delivery of materials, samples, and extracts is not required. The intent of the Beta Test of the Mini-SAM was threefold. Firstly, the Mini-SAM Beta Test met a milestone mandated by the Department of Energy in the course of the program effort. Secondly, the CAA Program secured an independent assessment of the equipment and its capabilities from Assagai Analytical Laboratory. Lastly, the Program captured real-world sample data. The independent assessment, coupled with CAA observation of equipment performance, was used to determine strengths and weaknesses of the Mini-SAM and to compile possible modifications for CAA engineers to address.

  6. Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 359 first sols

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Navarro-Gonzalez, Rafael; Mahaffy, Paul; Buch, Arnaud; Goutail, Jean Pierre; Cabane, Michel; Glavin, Daniel; Correia, Jean-Jacques; Coll, Patrice; Freissinet, Caroline; Meftah, Mustapha; Coscia, David; Teinturier, Samuel; Brunner, Anna; Bonnet, Jean-Yves; Millan, Maeva; Pascalin

    Amongst the SAM suite of instruments, SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of windblown dust and sand collected at the Rocknest site, while the second site analyzed was a basin called “Yellowknife Bay” where two holes were drilled (John Klein & Cumberland) and analysis showed these sites to be a fluvio-lacustrine sediment.. For their analysis, these samples were subjected to a pyrolysis at temperatures reaching about 850°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of a thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10mol). His channel is thus complementary to the mass spectrometer detection for quantification of such species, as this last instrument does not have linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC is representative of those obtained during calibrations of the instrument in laboratory, and also that results are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions (middle of the 70’s). Moreover, the complementarity of GC towards MS is also shown, both by allowing the

  7. SAM 2.1—A computer program for plotting and formatting surveying data for estimating peak discharges by the slope-area method

    USGS Publications Warehouse

    Hortness, J.E.

    2004-01-01

    The U.S. Geological Survey (USGS) measures discharge in streams using several methods. However, measurement of peak discharges is often impossible or impractical due to difficult access, inherent danger of making measurements during flood events, and timing often associated with flood events. Thus, many peak discharge values often are calculated after the fact by use of indirect methods. The most common indirect method for estimating peak dis- charges in streams is the slope-area method. This, like other indirect methods, requires measuring the flood profile through detailed surveys. Processing the survey data for efficient entry into computer streamflow models can be time demanding; SAM 2.1 is a program designed to expedite that process. The SAM 2.1 computer program is designed to be run in the field on a portable computer. The program processes digital surveying data obtained from an electronic surveying instrument during slope- area measurements. After all measurements have been completed, the program generates files to be input into the SAC (Slope-Area Computation program; Fulford, 1994) or HEC-RAS (Hydrologic Engineering Center-River Analysis System; Brunner, 2001) computer streamflow models so that an estimate of the peak discharge can be calculated.

  8. The Search for Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, Rafael; Stern, Jennifer C.; Freissinet, Caroline; McKay, Chirstopher P.; Sutter, Brad; Archer, P. Douglas, Jr.; McAdam, Amy; Franz, Heather; Coll, Partice J.; Glavin, Daniel Patrick; Eigenbrode, Jennifer L.; Wong, Mike; Atreya, Sushiil K.; Wray, James J.; Steele, Andrew; Prats, Benito D.; Szopa, Cyril; Coscia, David; Teinturier, Samuel; Buch, Arnaud; Leshin, Laurie A.; Ming, Douglas W.; Conrad, Pamela Gales; Cabane, Michel; Mahaffy, Paul R.; Grotzinger, John P.

    2013-01-01

    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that <550degC evolved NO is produced via reaction of HCl with

  9. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Rampe, E. B.; Steele, A.; Wray, J. J.

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (<150 µm) from three sites in Yellowknife Bay, an aeolian bedform termed Rocknest (hereafter "RN") and two samples drilled from the Sheepbed mudstone at sites named John Klein ("JK") and Cumberland ("CB"). SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases. The identity of evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  10. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Ming, D.; Steele, A.; Sutter, B.; Szopa, C.; Wray, J. J.; Conrad, P.; Mahaffy, P. R.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  11. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Conrad, Pamela G.; Mahaffy, Paul R.

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  12. Distributed processing and analysis of physics data in the D0 SAM system at Fermilab

    SciTech Connect

    Igor V. Terekhov

    2001-08-30

    SAM (Sequential Access through Meta-data) is the data access system for the D0 high energy physics (HEP) experiment at Fermilab. The system is being developed and used to handle the Petabyte-scale experiment data. The D0 applications, like virtually all HEP applications, are data-intensive, which poses special problems for the data management and job control facilities in the distributed environment. The fundamental problem is to bring the user applications and the data together, and SAM attacks the problems from both sides. First, we describe how the system moves the data through the distributed disk cache. Second, we describe how SAM interacts with the batch system to synchronize parallel user jobs with the data availability. All the design solutions herein have been implemented in a real system that handles the mission-critical data of the D0 experiment; thus, we present our work from the standpoint of real experience.

  13. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; Mahaffy, P. R.; McAdam, A. C.; McKay, C.; Wray, J.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  14. Detection of influenza virus by a biosensor based on the method combining electrochemiluminescence on binary SAMs modified Au electrode with an immunoliposome encapsulating Ru (II) complex.

    PubMed

    Katayama, Yumi; Ohgi, Takayuki; Mitoma, Yoshiharu; Hifumi, Emi; Egashira, Naoyoshi

    2016-09-01

    Recently, point of care testing (POCT) used for diagnosis of influenza infection has a problem showing false negative diagnosis because of the low sensitivity. We would like to report detection of influenza virus A (H1N1) by an immunosensor based on electrochemiluminescence (ECL) that uses an immunoliposome encapsulating tris(2,2'-bipyridyl)ruthenium(II) complex. By using the sensor, we could detect the virus that competed with hemagglutinin (HA) peptide immobilized on self-assembled monolayers (SAMs) in immunoreaction of the antibody bound on the surface of liposome. The HA peptide was 19 mer (TGLRNGITNKVNSVIEKAA). We demonstrated great improvement of sensitivity and accuracy by introducing binary SAMs instead of mono SAMs. The binary SAMs was prepared from 3,3'-dithiodipropionic acid and 1-hexanethiol. Use of the binary SAMs enabled to increase the SAMs coverage on Au electrode; the fact was confirmed by observation of the cathodic desorption currents. By using such an electrode, first the detection method of BSA was optimized to lower ECL background signal. Then we applied the method to the detection of influenza virus. We could successfully detect the virus with higher sensitivity compared with that by POCT and ELISA. The detection range was from a concentration of 2.7 × 10(2) to 2.7 × 10(3) PFU/mL. PMID:27173395

  15. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  16. Gas-chromatographic analysis of Mars soil samples at Rocknest site with the SAM instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Cabane, Michel; Coll, Patrice; Szopa, Cyril; Coscia, David; Buch, Aranaud; Teinturier, Samuel; Navarro-gonzalez, Rafael; Gaboriaud, Alain; Mahaffy, Paul; MSL science Team

    2013-04-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site. For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument for the analysis of Rocknest soil first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification of the major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM

  17. Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 180 first sols

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Cabane, M.; Coll, P.; Coscia, D.; Buch, A.; Teinturier, S.; Navarro-Gonzalez, R.; Goutail, J.-P.; Montaron, C.; Rigal, J.-B.; Poinsignon, P.; Guerrini, V.; Clerc, M.-S.; Meftah, M.; Soldani, L.; Mettetal, F.; Jerôme, M.; Philippon, C.; Galic, A.; Sablairolles, J.; Triqueneaux, S.; Chazot, D.; Toffolo, B.; Rakoto, F. Y.; Gaboriaud, A.; Mahaffy, P.

    2013-09-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site, when the second site analyzed was a basin called "Yellowkive Bay". For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification ofthe major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of

  18. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P.; Martin-Torres, F. Javier; Navarro-Gonzalez, R.; Paz-Zorzano, Maria; Stern, J. C.; McKay, C. P.

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  19. Isotopic Composition of Carbon Dioxide Released from Confidence Hills Sediment as Measured by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.; Ming, D.; McAdam, A.; Morris, R.; Navarro-Gozalez, R.; Owen, T.; Steele, A.; Summons, R.; Sutter, B.; Webster, C. R.

    2015-01-01

    In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.

  20. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  1. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; McKay, C.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  2. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM)-like Instrument Protocols

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-12-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB [Popa et al. 2012]. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry [Mahaffy et al. 2012]. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from ~102 to 107 cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500°C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20°C followed by trap heating and analysis by GC/MS. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis [Stalport et al. 2012]. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The

  3. Energy Engineering Analysis Program (EEAP) boiler and chiller study at Fort Sam Houston, San Antonio, Texas. Final report

    SciTech Connect

    1995-09-18

    This energy conservation study was performed by Huitt-Zollars Inc, for the U.S. Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-0015. The study was conducted at Fort Sam Houston (FSH) in San Antonio, Texas, between November 28, 1994 and June 15, 1995. The site survey, data collection and analysis was performed by John Carter, E.I.T, Tom Holthaus, P.E., Walter H. Williams III, P.E., and C.A. Pieper, P.E.. The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility.

  4. Mesospheric effects of solar ultraviolet variations - Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Huang, Z.; Bougher, S. W.

    1991-01-01

    In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.

  5. Analysis of the interactions between host factor Sam68 and viral elements during foot-and-mouth disease virus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68, is a multi-functional protein implicated in the life cycle of retroviru...

  6. Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Stern, J.; Sutter, B.; Archer, D.; McAdam, A.; Franz, H. B.; McKay, C. P.; Coll, P.; Cabane, M.; Ming, D. W.; Brunner, A. E.; Glavin, D.; Eigenbrode, J. L.; Jones, J. H.; Freissinet, C.; Leshin, L.; Wong, M.; Atreya, S.; Wray, J. J.; Steele, A.; Buch, A.; Prats, B. D.; Szopa, C.; Conrad, P.; Mahaffy, P.

    2013-01-01

    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, it has been lost by sputtering and photochemical loss to space [1, 2], impact erosion [3], and chemical oxidation to nitrates [4]. Nitrates, produced early in Mars history, are later decomposed back into N2 by the current impact flux [5], making possible a nitrogen cycle on Mars. It is estimated that a layer of about 3 m of pure NaNO3 should be distributed globally on Mars [5]. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but was unable to detect evolved N-containing species by TEGA and the MECA WCL [6]. Nitrates have been tentatively identified in the Nakhla meteorite [7]. The purpose of this work is to determine if nitrates were detected in first solid sample (Rocknest) in Gale Crater examined by the SAM instrument.

  7. SAM-like Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Morris, R. V.; Ming, D. W.; Bristow, T.; Steele, A.; Amundsen, H.

    2012-12-01

    The Arctic Mars Analog Svalbard Expeditions (AMASE) have investigated a range of geologic settings on Svalbard, using methodologies and techniques being developed for Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. Here we discuss the SAM-like EGA-QMS analyses of a selected subset of samples acquired during several field seasons, together with AMASE CheMin team results. The results enable insight into organic content, organic-mineral associations, and mineralogy. Organic materials evolved from all samples over a range of temperatures. In general, this can indicate that the organics have a range of thermal maturity and/or are bound in different ways to their matrix. Most often, organics that were outside of mineral grains were the dominant pool of organic material inferable from the EGA-QMS, but organics encapsulated within mineral grains, including possibly methane, were also inferred. Organic-mineral associations can influence organic preservation potential and detection. Constraints on these associations, and overall sample organic chemistry, enabled by our SAM-like EGA-QMS analog analyses demonstrate the potential to understand the organic chemical characteristics in materials sampled by MSL, even when utilizing EGA-QMS, the simplest type of solid sample experiment SAM will perform. Any organic chemical information inferred from EGA-QMS analysis could then also be followed by detailed SAM EGA

  8. A nano-patterned self assembled monolayer (SAM) rutile titania cancer chip for rapid, low cost, highly sensitive, direct cancer analysis in MALDI-MS.

    PubMed

    Manikandan, M; Gopal, Judy; Hasan, Nazim; Wu, Hui-Fen

    2014-12-01

    We developed a cancer chip by nano-patterning a highly sensitive SAM titanium surface capable of capturing and sensing concentrations as low as 10 cancer cells/mL from the environment by Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The current approach evades any form of pretreatment and sample preparation processes; it is time saving and does not require the (expensive) conventional MALDI target plate. The home made aluminium (Al) target holder cost, on which we loaded the cancer chips for MALDI-TOF MS analysis, is about 60 USD. While the conventional stainless steel MALDI target plate is more than 700 USD. The SAM surface was an effective platform leading to on-chip direct MALDI-MS detection of cancer cells. We compared the functionality of this chip with the unmodified titanium surfaces and thermally oxidized (TO) titanium surfaces. The lowest detectable concentration of the TO chip was 10(3) cells/mL, while the lowest detectable concentration of the control or unmodified titanium chips was 10(6) cells/mL. Compared to the control surface, the SAM cancer chip showed 100,000 times of enhanced sensitivity and compared with the TO chip, 1000 times of increased sensitivity. The high sensitivity of the SAM surfaces is attributed to the presence of the rutile SAM, surface roughness and surface wettability as confirmed by AFM, XRD, contact angle microscope and FE-SEM. This study opens a new avenue for the potent application of the SAM cancer chip for direct cancer diagnosis by MALDI-TOF MS in the near future. PMID:25159382

  9. Multiple polymer architectures of human Polyhomeotic homolog 3 (PHC3) SAM

    PubMed Central

    Nanyes, David R.; Junco, Sarah E.; Taylor, Alexander B.; Robinson, Angela K.; Patterson, Nicolle L.; Shivarajpur, Ambika; Halloran, Jonathan; Hale, Seth M.; Kaur, Yogeet; Hart, P. John; Kim, Chongwoo A.

    2014-01-01

    The self-association of sterile alpha motifs (SAMs) into a helical polymer architecture is a critical functional component of many different and diverse array of proteins. For the Drosophila Polycomb group (PcG) protein Polyhomeotic (Ph), its SAM polymerization serves as the structural foundation to cluster multiple PcG complexes, helping to maintain a silenced chromatin state. Ph SAM shares 64% sequence identity with its human ortholog, PHC3 SAM, and both SAMs polymerize. However, in the context of their larger protein regions, PHC3 SAM forms longer polymers compared to Ph SAM. Motivated to establish the precise structural basis for the differences, if any, between Ph and PHC3 SAM, we determined the crystal structure of the PHC3 SAM polymer. PHC3 SAM utilizes the same SAM-SAM interaction as the Ph SAM six-fold repeat polymer. Yet, PHC3 SAM polymerizes utilizing just five SAMs per turn of the helical polymer rather than the typical six per turn observed for all SAM polymers reported to date. Structural analysis suggested that malleability of the PHC3 SAM would allow formation of not just the five-fold repeat structure but possibly others. Indeed, a second PHC3 SAM polymer in a different crystal form forms a six-fold repeat polymer. These results suggest that the polymers formed by PHC3 SAM, and likely others, are quite dynamic. The functional consequence of the variable PHC3 SAM polymers may be to create different chromatin architectures. PMID:25044168

  10. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; Conrad, P. G.; Coscia, D.; Dobson, N.; Dworkin, J. P.; Eigenbrode, J. L.; Farley, K. A.; Flesch, G.; Franz, H. B.; Freissinet, C.; Gorevan, S.; Glavin, D. P.; Grotzinger, J. P.; Harpold, D. N.; Hengemihle, J.; Jaeger, F.

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  11. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; Navarro-Gonzalez, R.; McKay, C. .P.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  12. Structural basis for diversity in the SAM clan of riboswitches

    PubMed Central

    Trausch, Jeremiah J.; Xu, Zhenjiang; Edwards, Andrea L.; Reyes, Francis E.; Ross, Phillip E.; Knight, Rob; Batey, Robert T.

    2014-01-01

    In bacteria, sulfur metabolism is regulated in part by seven known families of riboswitches that bind S-adenosyl-l-methionine (SAM). Direct binding of SAM to these mRNA regulatory elements governs a downstream secondary structural switch that communicates with the transcriptional and/or translational expression machinery. The most widely distributed SAM-binding riboswitches belong to the SAM clan, comprising three families that share a common SAM-binding core but differ radically in their peripheral architecture. Although the structure of the SAM-I member of this clan has been extensively studied, how the alternative peripheral architecture of the other families supports the common SAM-binding core remains unknown. We have therefore solved the X-ray structure of a member of the SAM-I/IV family containing the alternative “PK-2” subdomain shared with the SAM-IV family. This structure reveals that this subdomain forms extensive interactions with the helix housing the SAM-binding pocket, including a highly unusual mode of helix packing in which two helices pack in a perpendicular fashion. Biochemical and genetic analysis of this RNA reveals that SAM binding induces many of these interactions, including stabilization of a pseudoknot that is part of the regulatory switch. Despite strong structural similarity between the cores of SAM-I and SAM-I/IV members, a phylogenetic analysis of sequences does not indicate that they derive from a common ancestor. PMID:24753586

  13. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Stern, Jennifer; Freissinet, Caroline; Franz, Heather; McKay, Christopher; Coll, Patrice; Sutter, Brad; Archer, Doug; McAdam, Amy; Cabane, Michel; Ming, Douglas; Glavin, Daniel; Eigenbrode, Jennifer; Leshin, Laurie; Wong, Michael; Atreya, Sushil; Wray, James; Steele, Andrew; Buch, Arnaud; Prats, Benito

    2014-05-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, a fraction of N2 has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars' history by photochemistry may later decompose back into N2 by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO3 of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150° C to 600° C. m/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present and are assessed. The origin of nitric oxide is discussed and its thermal evolution is

  14. Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N _{2}). However, a fraction of N _{2} has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars’ history by photochemistry may later decompose back into N _{2} by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure NaNO _{3} of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150(°) °C to 600(°) °C. M/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present, such as ethane (C _{2}H _{6}), formaldehyde (HCHO), diazene (N

  15. Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications

    PubMed Central

    Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-01-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830

  16. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights

    PubMed Central

    Mercurio, Flavia A.; Marasco, Daniela; Pirone, Luciano; Scognamiglio, Pasqualina L.; Pedone, Emilia M.; Pellecchia, Maurizio

    2013-01-01

    Arap3 is a phosphatidylinositol 3 kinase effector protein that plays a role as GTP-ase activator (GAP) for Arf6 and RhoA. Arap3 contains a sterile alpha motif (Sam) domain that presents high sequence homology with the Sam domain of the EphA2-receptor (EphA2-Sam); both Arap3-Sam and EphA2-Sam are able to associate with the Sam domain of the lipid phosphatase Ship2 (Ship2-Sam). Recently, we have reported on a novel interaction between the first Sam domain of Odin (Odin-Sam1), a protein belonging to the ANKS (ANKyrin repeat and Sam domain containing) family, and EphA2-Sam. In the current work we apply Nuclear Magnetic Resonance (NMR) spectroscopy, Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) to characterize the association between Arap3-Sam and Odin-Sam1. We show that these two Sam domains interact with low micromolar affinity. Moreover, by means of molecular docking techniques, supported by NMR data, we demonstrate that Odin-Sam1 and Arap3-Sam may bind with a topology that is common to several Sam-Sam complexes. The unveiled structural details form the basis for the design of potential peptide-antagonists, that could be used as chemical tools to investigate functional aspects related to heterotypic Arap3-Sam associations. PMID:23239578

  17. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  18. Simultaneous characterization of protein-material and cell-protein interactions using dynamic QCM-D analysis on SAM surfaces.

    PubMed

    Kushiro, Keiichiro; Lee, Chih-Hao; Takai, Madoka

    2016-05-24

    Understanding the interactions among materials, proteins and cells is critical for the development of novel biomaterials, and establishing a highly sensitive and quantitative method to standardize these interactions is desired. In this study, quartz crystal microbalance with dissipation (QCM-D) combined with microscopy was utilized to quantitatively monitor the entirety of the cell adhesion processes, starting from the protein adsorption, on various self-assembled monolayer (SAM) surfaces. Although the resulting cell adhesion morphologies were similar on most of the surfaces, the dynamic QCM-D signal patterns were unique on each surface, suggesting different forms of material-protein-cell interactions. The viscoelasticity and the density of the surface-adsorbed fibronectin (FN), as well as the relative exposure of the cell adhesive arginine-glycine-aspartic acid (RGD) motifs, were correlated to the different cell adhesion dynamics and mechanics. Some surfaces exhibited complicated behaviors alluding to the detachment/rearrangement of surface proteins or highly sparse but bioactive proteins that promote a slow adhesion process. This study underscores the potential use of the QCM-D signal pattern as a rule of thumb for delineating different protein-material and cell-protein interactions, and offers a rapid in vitro platform for the dynamic evaluation of protein and cell behaviors on novel biomaterials. PMID:27127807

  19. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; Evans, J.; Anderson, M.; Jandura, L.; Brown, K.; Logan, C.; Kuhn, S.; Anderson, R.; Beegle, L.; Limonadi, D.; Rainen, R.; Umland, J.

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  20. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; Cabane, Michel; Coll, Patrice; Conrad, Pamela; Dworkin, Jason; Grotzinger, John; Ming, Douglas; Navarro-Gonzales, Rafael; Steele, Andrew; Szopa, Cyril

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  1. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Owen, T. C.; Raaen, E.; Steele, A.; Webster, C. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  2. SAM Photovoltaic Model Technical Reference

    SciTech Connect

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  3. An analytical approach to air defense: cost, effectiveness and SWOT analysis of employing fighter aircraft and modern SAM systems

    NASA Astrophysics Data System (ADS)

    Kus, Orcun; Kocaman, Ibrahim; Topcu, Yucel; Karaca, Volkan

    2012-05-01

    The problem of defending a specific airspace is among the main issues a military commander to solve. Proper protection of own airspace is crucial for mission success at the battlefield. The military doctrines of most world armed forces involve two main options of defending the airspace. One of them is utilizing formations of fighter aircraft, which is a flexible choice. The second option is deploying modern SAM (Surface to Air Missile) systems, which is more expansive. On the other hand the decision makers are to cope with miscellaneous restrictions such as the budgeting problems. This study defines air defense concept according to modern air warfare doctrine. It considers an air defense scenario over an arbitrary airspace and compares the performance and cost-effectiveness of employing fighter aircraft and SAM systems. It also presents SWOT (Strenghts - Weakness - Opportunities - Threats) analyses of air defense by fighter aircraft and by modern SAMs and tries to point out whichever option is better. We conclude that deploying SAMs has important advantages over using fighter aircraft by means of interception capacity within a given time period and is cost-effective.

  4. In situ analysis of martian regolith with the SAM experiment during the first mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements

    NASA Astrophysics Data System (ADS)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; François, P.; Coscia, D.; Bonnet, J. Y.; Teinturier, S.; Cabane, M.; Mahaffy, P. R.

    2016-09-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  5. Stay lean without dieting: Lose Sam68.

    PubMed

    Huot, Marc-Étienne; Richard, Stéphane

    2012-10-01

    Alternative splicing is well known to be tissue-specific. Although several genes have been shown to undergo alternative splicing in adipocytes, little is known about the mechanism that regulates alternative splicing during adipogenesis. We recently reported that Sam68(-/-) mice exhibit a lean phenotype and are protected against diet-induced obesity. Our genome-wide exon array analysis in white adipose tissue (WAT) from wild-type and Sam68(-/-) mice revealed that Sam68 deficiency leads to an abnormal splicing of the mTOR gene. This has been shown to reduce the overall mTOR protein content and activity during in vitro adipose differentiation. In Sam68(-/-) mice, this situation leads to an increased energy expenditure, decreased adipogenesis and WAT formation. PMID:23700540

  6. Detection of Nitric Oxide by the Sample Analysis at Mars (SAM) Instrument Implications for the Presence of Nitrates

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Stern, J.; Freissinet, C.; Franz, H. B.; Eigenbrode, J. L..; McKay, C. P.; Coll, P.; Sutter, B.; Archer, D.; McAdam, A.; Cabane, M.; Ming, D. W.; Glavin, D.; Leshin, L.; Wong, M.; Atreya, S.; Wray, J. J.; Steele, A.; Buch, A.; Prats, B. D.; Szopa, C.; Coscia, D.; Teinturier, S.; Conrad, P.; Owen, T. C.; Mahaffy, P.; Grotzinger, J. P.

    2014-01-01

    One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions able to support microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Planetary models suggest that molecular nitrogen was abundant in the early Martian atmosphere, but was rapidly lost to space by photochemistry, sputtering impact erosion, and oxidized and deposited to the surface as nitrate. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of nitrates in soils and rocks is important to assess the habitability of a Martian environment. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. Here we analyze the release of NO from soils and rocks examined by the SAM instrument at Gale crater, and discuss its origin.

  7. System Advisor Model, SAM 2014.1.14: General Description

    SciTech Connect

    Blair, N.; Dobos, A. P.; Freeman, J.; Neises, T.; Wagner, M.; Ferguson, T.; Gilman, P.; Janzou, S.

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  8. Detection of Evolved Carbon Dioxide in the Rocknest Eolian Bedform by the Sample Analysis at Mars(SAM) Instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; McAdam, A.; Franz, H.; Ming, D. W.; Eigenbrode, J. L.; Glavin, D. P.; Mahaffy, P.; Stern, J.; Navarro-Gonzalez, R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument detected four releases of carbon dioxide (CO2) that ranged from 100 to 700 C from the Rocknest eolian bedform material (Fig. 1). Candidate sources of CO2 include adsorbed CO2, carbonate(s), combusted organics that are either derived from terrestrial contamination and/or of martian origin, occluded or trapped CO2, and other sources that have yet to be determined. The Phoenix Lander s Thermal Evolved Gas Analyzer (TEGA) detected two CO2 releases (400-600, 700-840 C) [1,2]. The low temperature release was attributed to Fe- and/or Mg carbonates [1,2], per-chlorate interactions with carbonates [3], nanophase carbonates [4] and/or combusted organics [1]. The high temperature CO2 release was attributed to a calcium bearing carbonate [1,2]. No evidence of a high temperature CO2 release similar to the Phoenix material was detected in the Rocknest materials by SAM. The objectives of this work are to evaluate the temperature and total contribution of each Rocknest CO2 release and their possible sources. Four CO2 releases from the Rocknest material were detected by SAM. Potential sources of CO2 are adsorbed CO2, (peak 1) and Fe/Mg carbonates (peak 4). Only a fraction of peaks 2 and 3 (0.01 C wt.%) may be partially attributed to combustion of organic contamination. Meteoritic organics mixed in the Rocknest bedform could be present, but the peak 2 and 3 C concentration (approx.0.21 C wt. %) is likely too high to be attributed solely to meteoritic organic C. Other inorganic sources of C such as interactions of perchlorates and carbonates and sources yet to be identified will be evaluated to account for CO2 released from the thermal decomposition of Rocknest material.

  9. Significance Analysis of Microarrays (SAM) Offers Clues to Differences Between the Genomes of Adult Philadelphia Positive ALL and the Lymphoid Blast Transformation of CML

    PubMed Central

    Grace, Colin; Nacheva, Elisabeth P.

    2012-01-01

    Philadelphia positive malignant disorders are a clinically divergent group of leukemias. These include chronic myeloid leukemia (CML) and de novo acute Philadelphia positive (Ph(+)) leukemia of both myeloid, and lymphoid origin. Recent whole genome screening of Ph(+)ALL in both children and adults identified an almost obligatory cryptic loss of Ikaros, required for the normal B cell maturation. Although similar losses were found in lymphoid blast crisis the genetic background of the transformation in CML is still poorly defined. We used Significance Analysis of Microarrays (SAM) to analyze comparative genomic hybridization (aCGH) data from 30 CML (10 each of chronic phase, myeloid and lymphoid blast stage), 10 Ph(+)ALL adult patients and 10 disease free controls and were able to: (a) discriminate between the genomes of lymphoid and myeloid blast cells and (b) identify differences in the genome profile of de novo Ph(+)ALL and lymphoid blast transformation of CML (BC/L). Furthermore we were able to distinguish a sub group of Ph(+) ALL characterized by gains in chromosome 9 and recurrent losses at several other genome sites offering genetic evidence for the clinical heterogeneity. The significance of these results is that they not only offer clues regarding the pathogenesis of Ph(+) disorders and highlight the potential clinical implications of a set of probes but also demonstrates what SAM can offer for the analysis of genome data. PMID:23071388

  10. Analysis of the Sam50 translocase of Excavate organisms supports evolution of divergent organelles from a common endosymbiotic event

    PubMed Central

    Kay, Christopher J.; Lawler, Karen; Kerr, Ian D.

    2013-01-01

    As free-living organisms the ancestors of mitochondria and plastids encoded complete genomes, proteomes and metabolomes. As these symbionts became organelles all these aspects were reduced – genomes have degenerated with the host nucleus now encoding the most of the remaining endosymbiont proteome, while the metabolic processes of the symbiont have been streamlined to the functions of the emerging organelle. By contrast, the topology of the endosymbiont membrane has been preserved, necessitating the development of complex pathways for membrane insertion and translocation. In this study, we examine the characteristics of the endosymbiont-derived β-barrel insertase Sam501 in the excavate super-group. A candidate is further characterized in Trichomonas vaginalis, an unusual eukaryote possessing degenerate hydrogen-producing mitochondria called hydrogenosomes. This information supports a mitochondriate eukaryotic common ancestor with a similarly evolved β-barrel insertase, which has continued to be conserved in degenerate mitochondria. PMID:24147756

  11. Validation of SAM 2 and SAGE satellite

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Wang, P.-H.; Farrukh, U. O.; Yue, G. K.

    1987-01-01

    Presented are the results of a validation study of data obtained by the Stratospheric Aerosol and Gas Experiment I (SAGE I) and Stratospheric Aerosol Measurement II (SAM II) satellite experiments. The study includes the entire SAGE I data set (February 1979 - November 1981) and the first four and one-half years of SAM II data (October 1978 - February 1983). These data sets have been validated by their use in the analysis of dynamical, physical and chemical processes in the stratosphere. They have been compared with other existing data sets and the SAGE I and SAM II data sets intercompared where possible. The study has shown the data to be of great value in the study of the climatological behavior of stratospheric aerosols and ozone. Several scientific publications and user-oriented data summaries have appeared as a result of the work carried out under this contract.

  12. Common themes and differences in SAM recognition among SAM riboswitches

    PubMed Central

    Price, Ian R.; Grigg, Jason C.; Ke, Ailong

    2014-01-01

    The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-L-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. PMID:24863160

  13. Influence of the sample mineralogy on the nature of the organic compounds detected by the SAM experiment analysis condition at Gale Crater.

    NASA Astrophysics Data System (ADS)

    Belmahdi, I.; Buch, A.; François, P.; Szopa, C.; Eigenbrode, J.; Coll, P.; Dequaire, T.; Millan, M.; Tenturier, S.; Bonnet, J. Y.; Mahaffy, P.; Cabane, M.

    2015-10-01

    Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. It is devoted to analyze the composition in volatile species contained in solid samples collected by the Curiosity rover. To do it, it is composed of 3 complementary analyzers : the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS)(Mahaffy et al., 2012).Solid samples can be treated by different ways to extract the volatile compounds and inject them in the analyzers :(a)a pyrolysis system, (b)wet chemistry:MTBSTFA and TMAH (c)the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G)and the injector trap (Tenax® GR) (Mahaffy et al., 2012).

  14. Mineral classification map using MF and SAM techniques: A case study in the Nohwa Island, Korea

    SciTech Connect

    Son, Young-Sun; Yoon, Wang-Jung

    2015-03-10

    The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.

  15. Iron-rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) instrument in Gale Crater.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D., Jr.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A.; Navarro-Gonzalez, R.; Mahaffy, P. R.; Stern, J. C.; Mertzman, S. A.

    2015-12-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502°C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (<53μm) with varying Fe amounts (Fe0.66X0.34- to Fe0.99X0.01-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715°C (35°C min-1) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe0.99X0.01-CO3) yielded CO2 peak temperatures between 466-487°C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe0.66X0.34CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (~0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through metamorphic and

  16. Iron-Rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Navarro-Gonzalez, R.; Niles, P. B.; Mahaffy, P. R.; Stern, J. C.; Mertzman, S.

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502 C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (<53 microns) with varying Fe amounts (Fe(0.66)X(0.34)- to Fe(0.99)X(0.01)-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715 C (35 C/min) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe(0.99)X(0.01)-CO3) yielded CO2 peak temperatures between 466-487 C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe(0.66)X(0.34)CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (approx.0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through

  17. Curiosity Shakes, Bakes, and Tastes Mars with SAM

    NASA Video Gallery

    NASA's Curiosity rover analyzed its first solid sample of Mars with a variety of instruments, including the Sample Analysis at Mars (SAM) instrument suite. Developed at NASA's Goddard Space Flight ...

  18. SAM 2 and SAGE data management and processing

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Trepte, C. R.

    1987-01-01

    The data management and processing supplied by ST Systems Corporation (STX) for the Stratospheric Aerosol Measurement 2 (SAM 2) and Stratospheric Aerosol and Gas Experiment (SAGE) experiments for the years 1983 to 1986 are described. Included are discussions of data validation, documentation, and scientific analysis, as well as the archival schedule met by the operational reduction of SAM 2 and SAGE data. Work under this contract resulted in the archiving of the first seven years of SAM 2 data and all three years of SAGE data. A list of publications and presentations supported was also included.

  19. In-Orbit Calibration of a SAMS Triaxial Sensor Head

    NASA Technical Reports Server (NTRS)

    Chestney, Louis S.; Sicker, Ronald J.

    1996-01-01

    This report describes the results of in orbit calibration data collected for a Space Acceleration Measurement System (SAMS) Triaxial Sensor Head (TS H) and the methods used to process the data for bias and gravity levels.

  20. Data handling with SAM and art at the NOvA experiment

    DOE PAGESBeta

    Aurisano, A.; Backhouse, C.; Davies, G. S.; Illingworth, R.; Mayer, N.; Mengel, M.; Norman, A.; Rocco, D.; Zirnstein, J.

    2015-12-23

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we havemore » adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this study we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.« less

  1. Data handling with SAM and art at the NOνA experiment

    NASA Astrophysics Data System (ADS)

    Aurisano, A.; Backhouse, C.; Davies, G. S.; Illingworth, R.; Mayer, N.; Mengel, M.; Norman, A.; Rocco, D.; Zirnstein, J.

    2015-12-01

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this paper we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.

  2. Summary Status of the Space Acceleration Measurement System (SAMS), September 1993

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1994-01-01

    The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.

  3. Structural insights into SAM domain-mediated tankyrase oligomerization.

    PubMed

    DaRosa, Paul A; Ovchinnikov, Sergey; Xu, Wenqing; Klevit, Rachel E

    2016-09-01

    Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation. PMID:27328430

  4. SAM Gcms Chromatography Performed at Mars : Elements of Interpretation

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Buch, A.; François, P.; Cabane, M.; Coscia, D.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Mahaffy, P. R.

    2013-12-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Interpretation of the data collected after SAM pyrolysis evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS) experiments on the first soil samples collected by MSL at the Rocknest Aeolian Deposit in Gale Crater has been challenging due to the concomitant presence in the ovens of an oxychlorine phase present in the samples, and a derivatization agent coming from the SAM wet chemistry experiment (Glavin et al., 2013). Moreover, accurate identification and quantification, in the SAM EGA mode, of volatiles released from the heated sample, or generated by reactions occurring in the SAM pyrolysis oven, is also difficult for a few compounds due to evolution over similar temperature ranges and overlap of their MS signatures. Hence, the GC analyses, coupled with MS, enabled the separation and identification and quantification of most of the volatile compounds detected. These results can have been obtained through tests and calibration done with GC individual spare components and with the SAM testbed. This paper will present a view of the interpretation of the chromatograms obtained when analyzing the Rocknest and John Klein solid samples delivered to SAM, on sols 96 and 199 respectively, supported by laboratory calibrations.

  5. System Advisor Model, SAM 2011.12.2: General Description

    SciTech Connect

    Gilman, P.; Dobos, A.

    2012-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  6. SAM II Data and Information

    Atmospheric Science Data Center

    2016-07-06

    ... Data obtained from the Stratospheric Aerosol Measurement (SAM) II instrument, which flew on board the Nimbus-7 ... Spatial Resolution:  The altitude profiles of aerosol extinction have a 1 km vertical resolution. Temporal ...

  7. Faces of Marshall: Sam Ortega

    NASA Video Gallery

    Several Marshall employees were interviewed as part of Marshall's 50th Anniversary activities. Engineer Sam Ortega tells his story of how he came to work as an engineer at Marshall and how sewing a...

  8. Technical Manual for the SAM Physical Trough Model

    SciTech Connect

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  9. The Investigation of Magnesium Perchlorate/Iron Phase-mineral Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Heil, E.; Archer, P. D.; Ming, D. W.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P. R.; Niles, P. B.; Stern, J. C.; Navarro-Gonzalez, R.; McKay, C. P.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumber-land (CB) drill hole materials in Gale Crater (Fig. 1) [1,2]. Chlorinated hydrocarbons have also been detect-ed by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [1,2,3,4]. These detections along with the detection of perchlorate (ClO4(-)) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) [5] suggesting perchlo-rate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal tempera-ture match to the SAM O2 and HCl release data [1,2]. Catalytic reactions of Fe phases in the Gale Crater ma-terial with perchlorates can potentially reduce the de-composition temperatures of these otherwise pure per-chlorate/chlorate phases [e.g., 6,7]. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate was found to cause O2 release temperatures to be closer match to the SAM O2 release data and enhance HCl gas releases. Exact matches to the SAM data has unfortnunately not been achieved with Ca-perchlorate-Fe-phase mixtures [8]. The effects of Fe-phases on magnesium perchlorate thermal decomposi-tion release of O2 and HCl have not been evaluated and may provide improved matches to the SAM O2 and HCl release data. This work will evaluate the thermal decomposition of magnesium perchlorate mixed with fayalite/magnetite phase and a Mauna Kea palagonite (HWMK 919). The objectives are to 1) summarize O2 and HCl releases from the Gale Crater materials, and 2) evaluate the O2 and HCl releases from the Mg-perchlorate + Fe phase mixtures to determine if Mg-perchlorate mixed with Fe-phases can explain the Gale Crater O2 and HCl releases.

  10. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  11. Detection of reduced sulfur and other S-bearing species evolved from Rocknest sample in the Sample Analysis at Mars (SAM) experiment

    NASA Astrophysics Data System (ADS)

    Freissinet, Caroline; McAdam, Amy; Archer, Doug; Buch, Arnaud; Eigenbrode, Jen; Franz, Heather; Glavin, Daniel; Ming, Doug; Navarro-Gonzalez, Rafael; Steele, Andrew; Stern, Jen; Mahaffy, Paul; SAM, The; MSL science Teams

    2013-04-01

    The SAM instrument suite onboard the Mars Science Laboratory (MSL) Curiosity Rover detected sulfur-bearing compounds during pyrolysis of soil fines obtained from aeolian material at Rocknest in Gale Crater. SO2 and H2S were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis mass spectrometry (EGA-MS) and after gas chromatograph separation (GC-MS) [1]. In EGA-MS, the 34 Da trace shows at least 3 peaks. The first peak is evolved at relatively low temperature (T), near 400°C, and the other peaks evolved as part of a "hump" at higher T, between ~500°C and ~800°C. The higher T releases at 34 Da occur at T close to, but not at exactly the same, as an evolution of SO2 from the samples. We hypothesize that these 34 Da releases are due to H2S. This assertion is supported by peaks in 35 and 36 Da traces at the same T. The lower T release of 34 Da species corresponds to a large O2 release from the Rocknest samples, and can be attributed for the most part to an isotopologue of O2. However, the GCMS analysis of the temperature cut involving this first evolved peak displays evidence of H2S based on a comparison of the mass spectrum to a NIST library. Therefore, we propose that H2S must be contributing to the 400°C peak. The quantification of H2S from GCMS shows an amount of this species of less than 1 nmol. It is unclear what the source of this lower T H2S is and how sulfur remains in its reduced form instead of undergoing oxidation to SO2 at the temperature where O2 is evolved; laboratory work with relevant analogs to inform these questions is ongoing. An initial hypothesis for the low temperature H2S source is the product of a reaction between an S-bearing phase and a hydrogen-bearing phase, such as the abundant water evolved at less than 500°C from the sample. Potential sources of this water are adsorbed water or mineral structural water. There is also EGA-MS evidence of reaction of reduced S with CO2 in the pyrolysis oven to form

  12. The Investigation of Chlorate/Iron-Phase Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Clark, J.; Sutter, B.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P.; Mahaffy, P.; Navarro-Gonzalez, R.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected oxygen and HCl gas releases from all analyzed Gale Crater sediments. The presence of perchlorate ClO4(sup-) and/or chlorates ClO3(sup-) are potential sources of the aforementioned O2 releases. The detections of O2 and HCl gas releases and chlorinated hydrocarbons by SAM coupled with the detection of perchlorates by Phoenix Lander's 2008 Wet Chemistry Laboratory all suggest that perchlorates, and possibly chorates, may be present in the Gale Crater sediments. Previous laboratory studies have attempted to replicate these O2 releases by heating perchlorates and chlorates in instruments operated similarly to those in the SAM instrument. Early studies found that pure perchlorates release O2 at temperatures higher than those observed in SAM data. Subsequently, studies were done to test the effects of mixing iron-phase minerals, analogous to those detected on Mars by ChemMin, with perchlorates. The iron in these minerals acts as a catalyst and causes O2 to be released from the perchlorate at a lower temperature. These studies found that perchlorate solutions mixed with either Hawaii palagonite or ferrihydrite produce O2 releases at temperatures similar to the Rocknest (RN) windblown deposit and the John Klein (JK) drill sample from the Sheepbed mudstone. The study also determined that perchlorate mixtures with magnetite, hematite, fayalite-magnetite, ilmentite, and pyrrhotite produce O2 releases at temperatures similar to the Confidence Hills (CH) drill sample from the Murray mudstone. Oxygen re-leases from pure chlorates were recently compared with the SAM data. Laboratory analyses determined that Ca-chlorate produces O2 and HCl peaks that are similar to those detected in RN and JK materials. Currently, no perchlorate/chlorate mixture with iron-phase minerals can explain the O2 releases from either the Cumberland (CB) drill sample from the Sheepbed mudstone or Windjana (WJ) drill

  13. SAM 2 data user's guide

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Osborn, M. T.; Mcmaster, L. R.

    1988-01-01

    This document is intended to serve as a guide to the use of the data products from the Stratospheric Aerosol Measurement (SAM) 2 experiment for scientific investigations of polar stratospheric aerosols. Included is a detailed description of the Beta and Aerosol Number Density Archive Tape (BANAT), which is the SAM 2 data product containing the aerosol extinction data available for these investigations. Also included are brief descriptions of the instrument operation, data collection, processing and validation, and some of the scientific analyses conducted to date.

  14. Auxiliary iron-sulfur cofactors in radical SAM enzymes.

    PubMed

    Lanz, Nicholas D; Booker, Squire J

    2015-06-01

    A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25597998

  15. SAM II Data and Information (ASCII)

    Atmospheric Science Data Center

    2016-09-01

    SAM II (ASCII) Data and Information Data obtained from the Stratospheric Aerosol Measurement (SAM) II instrument, ... Parameters:  Aerosols Order Data:  ASDC Order Tool:  Order Data Guide Documents:  ...

  16. SAM Overview: The Habitability of Mars

    NASA Video Gallery

    Featuring an interview with Paul Mahaffy, SAM's Principal Investigator, this video gives a general overview of SAM's mission aboard the Mars Science Laboratory, otherwise known as the Curiosity rover.

  17. Further Development of Synchronous Array Method for Ad Hoc Wireless Networks

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Huang, Yi; Zhao, Bin; Hua, Yingbo

    2008-12-01

    A further development of the synchronous array method (SAM) as a medium access control scheme for large-scale ad hoc wireless networks is presented. Under SAM, all transmissions of data packets between adjacent nodes are synchronized on a frame-by-frame basis, and the spacing between concurrent cochannel transmissions of data packets is properly controlled. An opportunistic SAM (O-SAM) is presented which allows concurrent cochannel transmissions to be locally adaptive to channel gain variations. A distributed SAM (D-SAM) is discussed that schedules all concurrent cochannel transmissions in a distributed fashion. For networks of low mobility, the control overhead required by SAM can be made much smaller than the payload. By analysis and simulation, the intranetwork throughput of O-SAM and D-SAM is evaluated. The effects of traffic load and multiple antennas on the intranetwork throughput are studied. The throughput of ALOHA is also analyzed and compared with that of O-SAM and D-SAM. By a distance-weighted throughput, a comparison of long distance transmission versus short distance transmission is also presented. The study of D-SAM reveals an important insight into the MSH-DSCH protocol adopted in IEEE 802.16 standards.

  18. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    NASA Technical Reports Server (NTRS)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  19. Data handling with SAM and art at the NOvA experiment

    SciTech Connect

    Aurisano, A.; Backhouse, C.; Davies, G. S.; Illingworth, R.; Mayer, N.; Mengel, M.; Norman, A.; Rocco, D.; Zirnstein, J.

    2015-12-23

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this study we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment.

  20. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  1. Sam.

    ERIC Educational Resources Information Center

    Wilson, James C.

    1988-01-01

    A father writes about his six-year-old son born with hydrocephalus. He describes such day-to-day experiences as going to a baseball game and the grocery store, reactions of friends and strangers to his son's social interactions, and a special day at preschool. The boy's medical treatment, including surgeries, are also described. (VW)

  2. Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis

    PubMed Central

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Becker, Thomas

    2015-01-01

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM–SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. PMID:26416958

  3. SAM -- A Spectral Extraction Package

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.

    In this note a description is given of SAM, a package written at RGO for the extraction of spectra from two dimensional data frames. The need to extract spectra from two dimensional frames in an optimal manner (e.g. one in which the signal to noise ratio was maximised) was the primary reason for the writing of the package. The programs were originally written with FOS, ISIS and IDS in mind, but contain nothing which is instrument specific and hence should be applicable to any two dimensional spectral data frame.

  4. Comparison of feature selection methods for cross-laboratory microarray analysis.

    PubMed

    Liu, Hsi-Che; Peng, Pei-Chen; Hsieh, Tzung-Chien; Yeh, Ting-Chi; Lin, Chih-Jen; Chen, Chien-Yu; Hou, Jen-Yin; Shih, Lee-Yung; Liang, Der-Cherng

    2013-01-01

    The amount of gene expression data of microarray has grown exponentially. To apply them for extensive studies, integrated analysis of cross-laboratory (cross-lab) data becomes a trend, and thus, choosing an appropriate feature selection method is an essential issue. This paper focuses on feature selection for Affymetrix (Affy) microarray studies across different labs. We investigate four feature selection methods: $(t)$-test, significance analysis of microarrays (SAM), rank products (RP), and random forest (RF). The four methods are applied to acute lymphoblastic leukemia, acute myeloid leukemia, breast cancer, and lung cancer Affy data which consist of three cross-lab data sets each. We utilize a rank-based normalization method to reduce the bias from cross-lab data sets. Training on one data set or two combined data sets to test the remaining data set(s) are both considered. Balanced accuracy is used for prediction evaluation. This study provides comprehensive comparisons of the four feature selection methods in cross-lab microarray analysis. Results show that SAM has the best classification performance. RF also gets high classification accuracy, but it is not as stable as SAM. The most naive method is $(t)$-test, but its performance is the worst among the four methods. In this study, we further discuss the influence from the number of training samples, the number of selected genes, and the issue of unbalanced data sets. PMID:24091394

  5. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  6. Selecting Needs Analysis Methods.

    ERIC Educational Resources Information Center

    Newstrom, John W.; Lilyquist, John M.

    1979-01-01

    Presents a contingency model for decision making with regard to needs analysis methods. Focus is on 12 methods with brief discussion of their defining characteristics and some operational guidelines for their use. (JOW)

  7. Obituary: Sam Roweis (1972-2010)

    NASA Astrophysics Data System (ADS)

    Hogg, David

    2011-12-01

    Computer scientist and statistical astronomer Sam Roweis took his own life in New York City on 2010 January 12. He was a brilliant and accomplished researcher in the field of machine learning, and a strong advocate for the use of computational statistics for automating discovery and scientific data analysis. He made several important contributions to astronomy and was working on adaptive astronomical data analysis at the time of his death. Roweis obtained his PhD in 1999 from the California Institute of Technology, where he worked on a remarkable range of subjects, including DNA computing, modeling of dynamical systems, signal processing, and speech recognition. During this time he unified and clarified some of the most important data analysis techniques, including Principal Component Analysis, Hidden Markov Models, and Expectation Maximization. His work was aimed at making data analysis and modeling faster, but also better justified scientifically. The last years of his PhD were spent in Princeton NJ, where he came in contact with a young generation of cosmologists thinking about microwave background and large-scale structure data. In a postdoc at University College London, Roweis co-created the Locally Linear Embedding (LLE) algorithm; a simple but flexible technique for mapping a large data set onto a low-dimensional manifold. The LLE paper obtained more than 2700 citations in 9 years, launched a new sub-field of machine learning known as "manifold learning," and inspired work in data visualization, search, and applied mathematics. In 2001, Roweis took a faculty job at the University of Toronto Computer Science Department. He continued working on data analysis methods that have probabilistic interpretation and therefore scientific applicability, but at the same time have good performance on large data sets. He was awarded a Sloan Fellowship, a Canada Research Chair, and a fellowship of the Canadian Institute for Advanced Research, among other honors and awards

  8. Streptomyces serine protease (SAM-P20): recombinant production, characterization, and interaction with endogenous protease inhibitor.

    PubMed Central

    Taguchi, S; Suzuki, M; Kojima, S; Miura, K; Momose, H

    1995-01-01

    Previously, we isolated a candidate for an endogenous target enzyme(s) of the Streptomyces subtilisin inhibitor (SSI), termed SAM-P20, from a non-SSI-producing mutant strain (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In this study, in order to investigate the detailed enzymatic properties of this protease, an overproduction system of recombinant SAM-P20 was established in Streptomyces coelicolor with the SSI gene promoter. The recombinant SAM-P20 was purified by salting out and by two successive ion-exchange chromatographies to give a homogeneous band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial peptide mapping and amino acid composition analysis revealed that the recombinant SAM-P20 was identical to natural SAM-P20. From the results for substrate specificity and inhibitor sensitivity, SAM-P20 could be categorized as a chymotrypsin-like protease with an arginine-cleavable activity, i.e., a serine protease with broad substrate specificity. For proteolytic activity, the optimal pH was 10.0 and the optimal temperature was shifted from 50 to 80 degrees C by the addition of 10 mM calcium ion. The strong stoichiometric inhibition of SAM-P20 activity by SSI dimer protein occurred in a subunit molar ratio of these two proteins of about 1, and an inhibitor constant of SSI toward SAM-P20 was estimated to be 8.0 x 10(-10) M. The complex formation of SAM-P20 and SSI was monitored by analytical gel filtration, and a complex composed of two molecules of SAM-P20 and one dimer molecule of SSI was detected, in addition to a complex of one molecule of SAM-P20 bound to one dimer molecule of SSI. The reactive site of SSI toward SAM-P20 was identified as Met-73-Val-74 by sequence analysis of the modified form of SSI, which was produced by the acidification of the complex of SSI and SAM-P20. This reactive site is the same that toward an exogenous target enzyme, subtilisin BPN'. PMID:7592444

  9. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    SciTech Connect

    Basu, Supratim; Roychoudhury, Aryadeep; Sengupta, Dibyendu N.

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  10. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  11. NES Live Video Chat: Engineer Sam Ortega

    NASA Video Gallery

    The NES project invited all K-12 students to participate in a one-hour-long NASA video webchat on April 19, 2011 with NASA engineer Sam Ortega. Ortega answered questions about building and testing ...

  12. STS-134 Crew Talks With Sam Ting

    NASA Video Gallery

    The STS-134 crew talks with Sam Ting, principal investigator for the Alpha Magnetic Spectrometer, following the installation of the particle physics detector on the International Space Station duri...

  13. Sam Donaldson: Tips from A Cancer Survivor

    MedlinePlus

    ... little bit about the disease now and the survivability of various forms and stages. Klose: Do you ... More "Understanding Cancer" Articles Understanding Cancer / Cancer Today / Survivability and Hope / Sam Donaldson: Tips From a Cancer ...

  14. First use of SAM onboard calibration gas cell

    NASA Astrophysics Data System (ADS)

    Malespin, C.; Trainer, M. G.; Manning, H. L.; Franz, H. B.; Conrad, P. G.; Raaen, E.; Webster, C. R.; Flesch, G.; Eigenbrode, J. L.; Wong, M. H.; Mahaffy, P. R.

    2015-12-01

    The Sample Analysis at Mars (SAM) instrument (Mahaffy et al 2012) suite on Curiosity completed its first measurement of the onboard calibration gas cell on MSL Mission Sol 1042. The cell consists of a gas mixture of four primary gases, along with trace fluorinated hydrocarbon high mass calibrants. The mix is comprised of approximately 25% CO2, N2, Xe and Ar, where the 129Xe has been given a three times enrichment relative to terrestrial xenon in order to distinguish it isotopically from Martian atmospheric Xe. Analysis of the calibration cell is intended to identify changes in instrument performance between pre-launch calibrations and operations on Mars, for any of the three main subsystems in SAM: the Quadrupole Mass Spectrometer (QMS), Tunable Laser Spectrometer (TLS), and Gas Chromatograph (GC). Here we present the experimental approach, results, and implications for instrument performance after almost three years of measurements on Mars.

  15. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; Mahaffy, P.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  16. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  17. Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants.

    PubMed

    Kim, Sun Hee; Kim, Sang Hyon; Palaniyandi, Sasikumar Arunachalam; Yang, Seung Hwan; Suh, Joo-Won

    2015-02-01

    S-adenosyl-L-methionine (SAM) synthase (SAMS) catalyze the biosynthesis of SAM, which is a precursor for ethylene and polyamines, and a methyl donor for a number of biomolecules. A full-length cDNA of SAMS from Solanum brevidens was expressed in Arabidopsis thaliana to study its physiological function. RT-PCR analysis showed that SbSAMS expression was enhanced significantly in S. brevidens leaves upon treatment with salt, mannitol, ethephon, IAA and ABA. The transgenic SbSAMS overexpression lines accumulated higher levels S-adenosyl homocysteine (SAHC) and ethylene concomitantly with increased SAM level. Expression levels of genes related to ethylene biosynthesis such as ACC synthase, but not polyamine biosynthesis genes were enhanced in SbSAMS overexpressing Arabidopsis lines. In addition, ABA responsive, wound and pathogen-inducible genes were upregulated in SbSAMS transgenic Arabidopsis plants. Transgenic Arabidopsis lines exhibited higher salt and drought stress tolerance compared to those of vector control. Based on these results we conclude that SbSAMS is expressed under abiotic stress to produce SAM as a broad-spectrum signal molecule to upregulate stress-related genes including ethylene and ABA biosynthetic pathway genes responsible for ABA, pathogen and wound responses. PMID:25559387

  18. Surface adhesion and confinement variation of Bacillus subtilis on SAM surfaces

    NASA Astrophysics Data System (ADS)

    Swiger, Lauren; Pasquale, Rose; Calabrese, Joseph; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Bacillus subtilis is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic variants B. anthracis and B. cereus. Further as a study for bio-machine interfacing systems. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured B. subtilis were used for the analysis. The SAM layered surfaces were dipped in 2 -- 5 Log/ml B. subtilis solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  19. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    NASA Astrophysics Data System (ADS)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  20. Obituary: Sam Roweis (1972-2010)

    NASA Astrophysics Data System (ADS)

    Hogg, David

    2011-12-01

    Computer scientist and statistical astronomer Sam Roweis took his own life in New York City on 2010 January 12. He was a brilliant and accomplished researcher in the field of machine learning, and a strong advocate for the use of computational statistics for automating discovery and scientific data analysis. He made several important contributions to astronomy and was working on adaptive astronomical data analysis at the time of his death. Roweis obtained his PhD in 1999 from the California Institute of Technology, where he worked on a remarkable range of subjects, including DNA computing, modeling of dynamical systems, signal processing, and speech recognition. During this time he unified and clarified some of the most important data analysis techniques, including Principal Component Analysis, Hidden Markov Models, and Expectation Maximization. His work was aimed at making data analysis and modeling faster, but also better justified scientifically. The last years of his PhD were spent in Princeton NJ, where he came in contact with a young generation of cosmologists thinking about microwave background and large-scale structure data. In a postdoc at University College London, Roweis co-created the Locally Linear Embedding (LLE) algorithm; a simple but flexible technique for mapping a large data set onto a low-dimensional manifold. The LLE paper obtained more than 2700 citations in 9 years, launched a new sub-field of machine learning known as "manifold learning," and inspired work in data visualization, search, and applied mathematics. In 2001, Roweis took a faculty job at the University of Toronto Computer Science Department. He continued working on data analysis methods that have probabilistic interpretation and therefore scientific applicability, but at the same time have good performance on large data sets. He was awarded a Sloan Fellowship, a Canada Research Chair, and a fellowship of the Canadian Institute for Advanced Research, among other honors and awards

  1. Genetic characterization of senescence-accelerated mouse (SAM).

    PubMed

    Higuchi, K

    1997-01-01

    The Senescence-Accelerated Mouse (SAM) strains are unique and appropriate models for genetic studies on aging because the SAMP strains have an "accelerated senescence" phenotype for which the SAMR strains are controls, and each SAMP strain has a strain-specific age-associated disorder. Furthermore, because they have gone through sufficient generations of sister-brother mating, they can be considered inbred strains, which can be analyzed genetically. There are now 11 SAMP strains and 3 SAMR strains descended from the progenitor litters. Analysis with the Gompertz function shows that the SAMP strains have the same initial mortality rate (IMR) as the SAMR strains but a shorter mortality rate doubling time (MRDT), presumably due to genes that accelerated the rate of senescence in the SAMP strains. This accelerated senescence may also occur in cultured fibroblast-like cells. We performed molecular genetic characterization of all the SAM strains to acquire a base of genetic information from which we could develop hypotheses on the mechanism of development of SAM strains and genetic factors that contribute to accelerated senescence. PMID:9088910

  2. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  3. Sam, Brookhaven, and the Physical Review

    NASA Astrophysics Data System (ADS)

    Blume, Martin

    2010-03-01

    Sam Goudsmit came to Brookhaven National Laboratory in 1948, just after the first year of operation of the new institution, and after a year of his postwar appointment as Professor of Physics at Northwestern University. He was named an associate editor of the Physical Review at that time, under the then Managing Editor John T. Tate of the University of Minnesota. Tate had been Editor since 1926, and had presided over the growth of Physical Review to leadership of publication in the world of physics. Tate died in 1950, and after a search under an interim Editor Sam was, in 1951, named Managing Editor. In 1952 he became Chair of the Brookhaven Physics Department, founded Physical Review Letters, and served as department chair until 1960, when he stepped down but remained an Associate Chair. I will discuss my own interactions with Sam during this later period, when I learned of his many faceted talents and accomplishments.

  4. [Research on identification of cabbages and weeds combining spectral imaging technology and SAM taxonomy].

    PubMed

    Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing

    2015-02-01

    Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of

  5. The SAMS: Smartphone Addiction Management System and verification.

    PubMed

    Lee, Heyoung; Ahn, Heejune; Choi, Samwook; Choi, Wanbok

    2014-01-01

    While the popularity of smartphones has given enormous convenience to our lives, their pathological use has created a new mental health concern among the community. Hence, intensive research is being conducted on the etiology and treatment of the condition. However, the traditional clinical approach based surveys and interviews has serious limitations: health professionals cannot perform continual assessment and intervention for the affected group and the subjectivity of assessment is questionable. To cope with these limitations, a comprehensive ICT (Information and Communications Technology) system called SAMS (Smartphone Addiction Management System) is developed for objective assessment and intervention. The SAMS system consists of an Android smartphone application and a web application server. The SAMS client monitors the user's application usage together with GPS location and Internet access location, and transmits the data to the SAMS server. The SAMS server stores the usage data and performs key statistical data analysis and usage intervention according to the clinicians' decision. To verify the reliability and efficacy of the developed system, a comparison study with survey-based screening with the K-SAS (Korean Smartphone Addiction Scale) as well as self-field trials is performed. The comparison study is done using usage data from 14 users who are 19 to 50 year old adults that left at least 1 week usage logs and completed the survey questionnaires. The field trial fully verified the accuracy of the time, location, and Internet access information in the usage measurement and the reliability of the system operation over more than 2 weeks. The comparison study showed that daily use count has a strong correlation with K-SAS scores, whereas daily use times do not strongly correlate for potentially addicted users. The correlation coefficients of count and times with total K-SAS score are CC = 0.62 and CC =0.07, respectively, and the t-test analysis for the

  6. Discrimination between closely related cellular metabolites by the SAM-I riboswitch.

    PubMed

    Montange, Rebecca K; Mondragón, Estefanía; van Tyne, Daria; Garst, Andrew D; Ceres, Pablo; Batey, Robert T

    2010-02-26

    The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-A X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA-ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-A improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH. PMID:20006621

  7. Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch

    SciTech Connect

    Montange, R.; Mondragon, E; van Tyne, D; Garst, A; Ceres, P; Batey, R

    2010-01-01

    The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-{angstrom} X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA-ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-{angstrom} improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.

  8. Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch

    PubMed Central

    Montange, Rebecca K.; Mondragón, Estefanía; van Tyne, Daria; Garst, Andrew D.; Ceres, Pablo; Batey, Robert T.

    2009-01-01

    The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-Å X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA–ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-Å improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH. PMID:20006621

  9. Electronic patient self-assessment and management (SAM): a novel framework for cancer survivorship

    PubMed Central

    2010-01-01

    Background We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM). SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Methods Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC) and the University of California, San Francisco (UCSF) for aiding the clinical management of patients after surgery for prostate cancer. Results Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate) or security. Conclusion SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. PMID:20565745

  10. Generalized Multicoincidence Analysis Methods

    SciTech Connect

    Warren, Glen A.; Smith, Leon E.; Aalseth, Craig E.; Ellis, J. E.; Valsan, Andrei B.; Mengesha, Wondwosen

    2005-10-01

    The ability to conduct automated trace radionuclide analysis at or near the sample collection point would provide a valuable tool for emergency response, nuclear forensics and environmental monitoring. Pacific Northwest National Laboratory is developing systems for this purpose based on dual gamma-ray spectrometers, e.g. NaI(TI) or HPGe, combined with thin organic scintillator sensors to detect light charged particles. Translating the coincident signatures recorded by these systems, which include , and , into the concentration of detectable radionuclides in the sample requires generalized multicoincidence analysis tools. The development and validation of the Coincidence Lookup Library, which currently contains the probabilities of single and coincidence signatures from more than 420 isotopes, is described. Also discussed is a method to calculate the probability of observing a coincidence signature which incorporates true coincidence summing effects. These effects are particularly important for high-geometric-efficiency detection systems. Finally, a process for validating the integrated analysis software package is demonstrated using GEANT 4 simulations of the prototype detector systems.

  11. Generalized Multicoincidence Analysis Methods

    SciTech Connect

    Warren, Glen A.; Smith, Leon E.; Aalseth, Craig E.; Ellis, J. E.; Valsan, Andrei B.; Mengesha, Wondwosen

    2006-02-01

    The ability to conduct automated trace radionuclide analysis at or near the sample collection point would provide a valuable tool for emergency response, environmental monitoring, and verification of treaties and agreements. Pacific Northwest National Laboratory is developing systems for this purpose based on dual gamma-ray spectrometers, e.g. NaI(TI) or HPGe, combined with thin organic scintillator sensors to detect light charged particles. Translating the coincident signatures recorded by these systems, which include beta-gamma, gamma-gamma and beta-gamma-gamma, into the concentration of detectable radionuclides in the sample requires generalized multicoincidence analysis tools. The development and validation of the Coincidence Lookup Library, which currently contains the probabilities of single and coincidence signatures from more than 420 isotopes, is described. Also discussed is a method to calculate the probability of observing a coincidence signature which incorporates true coincidence summing effects. These effects are particularly important for high-geometric-efficiency detection systems. Finally, a process for verifying the integrated analysis software package is demonstrated using GEANT 4 simulations of the prototype detector systems.

  12. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  13. Structural Basis for Methyl Transfer by a Radical SAM Enzyme

    SciTech Connect

    Boal, Amie K.; Grove, Tyler L.; McLaughlin, Monica I.; Yennawar, Neela H.; Booker, Squire J.; Rosenzweig, Amy C.

    2014-10-02

    The radical S-adenosyl-l-methionine (SAM) enzymes RlmN and Cfr methylate 23S ribosomal RNA, modifying the C2 or C8 position of adenosine 2503. The methyl groups are installed by a two-step sequence involving initial methylation of a conserved Cys residue (RlmN Cys{sup 355}) by SAM. Methyl transfer to the substrate requires reductive cleavage of a second equivalent of SAM. Crystal structures of RlmN and RlmN with SAM show that a single molecule of SAM coordinates the [4Fe-4S] cluster. Residue Cys{sup 355} is S-methylated and located proximal to the SAM methyl group, suggesting the SAM that is involved in the initial methyl transfer binds at the same site. Thus, RlmN accomplishes its complex reaction with structural economy, harnessing the two most important reactivities of SAM within a single site.

  14. 77 FR 50493 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Southwestern Power Administration Sam Rayburn Dam Project Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of proposed extension. SUMMARY: The current Sam Rayburn Dam Project rate was... cost recovery criteria. In accordance with Southwestern's isolated project rate adjustment...

  15. Sam's Journey to "Reach for the Stars"

    ERIC Educational Resources Information Center

    Mayer, Sue

    2007-01-01

    In this article, the author shares her experiences as a parent of a child with Down syndrome. Although her son Sam's first years were filled with numerous hospitalizations and visits to pediatricians, which she feared would further delay his development, she soon discovered an organization known as the National Association of Child Development…

  16. 78 FR 62627 - Sam Rayburn Dam Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ...The U.S. Department of Energy Deputy Secretary has approved and placed into effect on an interim basis Rate Order No. SWPA-67, which increases the power rate for the Sam Rayburn Dam (Rayburn) project pursuant to the Rayburn rate schedule (SRD-13) to supersede the existing rate...

  17. Emerging themes in radical SAM chemistry

    PubMed Central

    Shisler, Krista A; Broderick, Joan B

    2014-01-01

    Enzymes in the radical SAM (RS) superfamily catalyze a wide variety of reactions through unique radical chemistry. The characteristic markers of the superfamily include a [4Fe–4S] cluster coordinated to the protein via a cysteine triad motif, typically CX3CX2C, with the fourth iron coordinated by S-adenosylmethionine (SAM). The SAM serves as a precursor for a 5′-deoxyadenosyl radical, the central intermediate in nearly all RS enzymes studied to date. The SAM-bound [4Fe–4S] cluster is located within a partial or full triosephosphate isomerase (TIM) barrel where the radical chemistry occurs protected from the surroundings. In addition to the TIM barrel and a RS [4Fe–4S] cluster, many members of the superfamily contain additional domains and/or additional Fe–S clusters. Recently characterized superfamily members are providing new examples of the remarkable range of reactions that can be catalyzed, as well as new structural and mechanistic insights into these fascinating reactions. PMID:23141873

  18. Identification of trans-acting factors regulating SamDC expression in Oryza sativa.

    PubMed

    Basu, Supratim; Roychoudhury, Aryadeep; Sengupta, Dibyendu N

    2014-03-01

    Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression. PMID:24530223

  19. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  20. Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions

    NASA Astrophysics Data System (ADS)

    Suchand Sangeeth, C. S.; Wan, Albert; Nijhuis, Christian A.

    2015-07-01

    It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of AgTS-SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible.It is challenging to quantify the contact resistance and to determine the nature of the molecule-electrode contacts in molecular two-terminal junctions. Here we show that potentiodynamic and temperature dependent impedance measurements give insights into the nature of the SAM-electrode interface and other bottlenecks of charge transport (the capacitance of the SAM (CSAM) and the resistance of the SAM (RSAM)), unlike DC methods, independently of each other. We found that the resistance of the top-electrode-SAM contact for junctions with the form of AgTS-SCn//GaOx/EGaIn with n = 10, 12, 14, 16 or 18 is bias and temperature independent and hence Ohmic (non-rectifying) in nature, and is orders of magnitude smaller than RSAM. The CSAM and RSAM are independent of the temperature, indicating that the mechanism of charge transport in these SAM-based junctions is coherent tunneling and the charge carrier trapping at the interfaces is negligible. Electronic supplementary information (ESI) available: Detailed experimental procedure, Nyquist

  1. EFFECTS OF CYANOPHAGE SAM-1 UPON 'MICROCYSTIS AERUGINOSA'

    EPA Science Inventory

    Cyanophage SAM-1, which infects Synechoccus cedrorum, Anacystis nidulans and certain strains of Microcystis aeruginosa has been isolated from sewage. The host range of cyanophage SAM-1 differs from those of other reported cyanophages. Phage SAM-1 stocks are rapidly inactivated at...

  2. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. PMID:27573794

  3. Hydrogen transfer in SAM-mediated enzymatic radical reactions.

    PubMed

    Hioe, Johnny; Zipse, Hendrik

    2012-12-14

    S-adenosylmethionine (SAM) plays an essential role in a variety of enzyme-mediated radical reactions. One-electron reduction of SAM is currently believed to generate the C5'-desoxyadenosyl radical, which subsequently abstracts a hydrogen atom from the actual substrate in a catalytic or a non-catalytic fashion. Using a combination of theoretical and experimental bond dissociation energy (BDE) data, the energetics of these radical processes have now been quantified. SAM-derived radicals are found to react with their respective substrates in an exothermic fashion in enzymes using SAM in a stoichiometric (non-catalytic) way. In contrast, the catalytic use of SAM appears to be linked to a sequence of moderately endothermic and exothermic reaction steps. The use of SAM in spore photoproduct lyase (SPL) appears to fit neither of these general categories and appears to constitute the first example of a SAM-initiated radical reaction propagated independently of the cofactor. PMID:23139189

  4. SAM Sample preparation and its impact on the detection of organic compounds on Mars

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Szopa, Cyril; Coll, Patrice; Freissinet, Caroline; Glavin, Daniel; Belmahdi, Imene; François, Pascaline; Millan, Maeva; Eigenbrode, Jennifer; navarro, Rafael; Stern, Jennifer; Pinnick, Veronica; Coscia, David; Teinturier, Samuel; Miller, Kristen; Summons, Roger; Mahaffy, Paul

    2014-05-01

    The wet chemistry experiments on the Sample Analysis at Mars (SAM) [1] experiment in the Curiosity rover of the Mars Science Laboratory mission supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The wet chemistry approach provides an alternative to the nominal inert-thermal desorption/pyrolysis analytical protocol used by SAM [1] that is more aptly suited for polar components. SAM, includes two different wet chemistry experiments: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4]. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA products in the SAM evolved gas analysis and GCMS experiments, and the implications of this detection. Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25µm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device. We have investigated the thermal degradation of Tenax®, and possible interaction with MTBSTFA and perchlorate in the SAM trap (Tenax®) to better constrain interpretations of SAM results on Mars. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [3] Stalport, F. et al. (2012) Planet. Space Sci. 67: 1-13 [4] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency

  5. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  6. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; Graham, H. V.; McAdam, A. C.; Ming, D. W.; Navarro-Gonzalez, R.; Niles, P. B.; Steele, A.; Sutter, B.; Trainer, M. G.

    2014-01-01

    The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these

  7. SAM-Like Evolved Gas Analyses of Phyllosilicate Minerals and Applications to SAM Analyses of the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.; Bish, D. L.; Atreya, S. K.

    2014-01-01

    While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.

  8. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. PMID:26496619

  9. The survey of autobiographical memory (SAM): a novel measure of trait mnemonics in everyday life.

    PubMed

    Palombo, Daniela J; Williams, Lynne J; Abdi, Hervé; Levine, Brian

    2013-06-01

    Compared to the abundance of laboratory-based memory tasks, few measures exist to assess self-reported memory function. This need is particularly important for naturalistic mnemonic capacities, such as autobiographical memory (recall of events and facts from one's past), because it is difficult to reliably assess in the laboratory. Furthermore, naturalistic mnemonic capacities may show stable individual differences that evade the constraints of laboratory testing. The Survey of Autobiographical Memory (SAM) was designed to assess such trait mnemonics, or the dimensional characterization of self-reported mnemonic characteristics. The SAM comprises items assessing self-reported episodic autobiographical, semantic, and spatial memory, as well as future prospection. In a large sample of healthy young adults, the latent dimensional structure of the SAM was characterized with multiple correspondence analysis (MCA). This analysis revealed dimensions corresponding to general mnemonic abilities (i.e., good vs poor memory across subtypes), spatial memory, and future prospection. While episodic and semantic items did not separate in this data-driven analysis, these categories did show expected dissociations in relation to depression history and to laboratory-based measures of recollection. Remote spatial memory as assessed by the SAM showed the expected advantage for males over females. Spatial memory was also related to autobiographical memory performance. Brief versions of the SAM are provided for efficient research applications. Individual differences in memory function are likely related to other health-related factors, including personality, psychopathology, dementia risk, brain structure and function, and genotype. In conjunction with laboratory or performance based assessments, the SAM can provide a useful measure of naturalistic self-report trait mnemonics for probing these relationships. PMID:23063319

  10. The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii.

    SciTech Connect

    Sun, W.; Xu, X.; Pavlova, M.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Christendat, D.; Biosciences Division; Univ. of Toronto; Univ. Health Network

    2005-01-01

    The S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse and biologically important class of enzymes. These enzymes utilize the ubiquitous methyl donor SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. Here we present the crystal structure of PH1915 from Pyrococcus horikoshii OT3, a predicted SAM-dependent methyltransferase. This protein belongs to the Cluster of Orthologous Group 1092, and the presented crystal structure is the first representative structure of this protein family. Based on sequence and 3D structure analysis, we have made valuable functional insights that will facilitate further studies for characterizing this group of proteins. Specifically, we propose that PH1915 and its orthologs are rRNA- or tRNA-specific methyltransferases.

  11. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    NASA Technical Reports Server (NTRS)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; Mahaffy, P.

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  12. Communication Network Analysis Methods.

    ERIC Educational Resources Information Center

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  13. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital. PMID:25941756

  14. Interfacial tension analysis of oligo(ethylene glycol)-terminated self-assembled monolayers and their resistance to bacterial attachment.

    PubMed

    Ista, Linnea K; López, Gabriel P

    2012-09-01

    The fouling resistance of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) of alkanethiolates on gold has been well established. Although hydration of the OEG chains seems key to OEG-SAM resistance to macromolecular adsorption and cellular attachment, the details of how hydration prevents biofouling have been inferred largely through computational methods. Because OEG-SAMs of different lengths exhibit differing degrees of fouling resistance, the interactions between water and OEG-SAMs leading to fouling resistance can be deduced by comparing the properties of fouling and nonfouling OEG-SAMs. While all OEG-SAMs had similar water contact angles, contact angles taken with glycerol were able to individuate between different OEG-SAMs and between fouling and nonfouling OEG-SAMs. Subsequent estimation of surface and interfacial tension using a colloidal model showed that nonfouling surfaces are associated with an increased negative interfacial tension between those OEG-SAMs that resisted attachment and water. Further analysis of this interfacial tension experimentally confirmed current mathematical models that cite OEG-water hydrogen-bond formation as a driving force behind short-term fouling resistance. Finally, we found a correlation between solid-water interfacial tension and packing density and molecular density of ethylene glycol. PMID:22891854

  15. MMW, IR, and SAM signature collection

    NASA Astrophysics Data System (ADS)

    Reichstetter, Fred; Ward, Mary E.

    2002-08-01

    During the development of smart weapon's seeker/sensors, it is imperative to collect high quality signatures of the targets the system is intended to engage. These signatures are used to support algorithm development so the system can find and engage the targets of interest in the specific kill area on the target. Englin AFB FL is the AF development center for munitions; and in support of the development effort, the 46th Test Wing (46 TW) has initiated significant improvements in collection capabilities for signatures in the MMW, Infrared and Seismic, Acoustic and Magnetic (SAM) spectrum. Additionally, the Joint Munitions Test and Evaluation program office maintains a fleet of foreign ground vehicle targets used for such signature collection including items such as tanks, SCUD missile launchers, air defense units such as SA-06, SA-8, SA-13, and associated ground support trucks and general purpose vehicles. The major test facility includes a 300 ft tower used for mounting the instrumentation suite that currently includes, 10, 35 and 94 GHz MMW and 2-5(mu) and 8-12(mu) IR instrumentation systems. This facility has undergone major improvements in terms of background signature reduction, construction of a high bay building to house the turntable on which the targets are mounted, and an additional in- ground stationary turntable primarily for IR signature collection. Our experience using this facility to collect signatures for the smart weapons development community has confirmed a significant improvement in quality and efficiency. The need for the stationary turntable signature collection capability was driven by the requirements of the IR community who are interested in collecting signatures in clutter. This tends to be contrary to the MMW community that desires minimum background clutter. The resulting location, adjacent to the MMW tower, allows variations in the type and amount of clutter background that could be incorporated and also provides maximum utilization of

  16. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-Gonzalez, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  17. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-González, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-10-01

    A single scoop of the Rocknest aeolian deposit was sieved (< 150 µm), and four separate sample portions, each with a mass of ~50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of ~0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.

  18. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  19. Public Data at CeSAM

    NASA Astrophysics Data System (ADS)

    Moreau, C.; Le Brun, V.; Agneray, F.; Gimenez, S.; Roehlly, Y.

    2014-05-01

    Modern large observational programs produce important amounts of data from various origins, and need high level data-quality control, fast data access via easy-to-use graphic interfaces, as well as possibility to cross-correlate informations coming from different observations. The Centre de donneS Astrophysique de Marseille (CeSAM) has for mission to provide support to the teams in charge of the observational programs (specifications, software development and infrastructures), to produce and give the final data by proposing tools increasing their scientific value. We present here the various datasets hosted by the CeSAM under the ANIS environment. Even if mainly oriented towards large spectro-photometric extragalactic samples, we host as well an exoplanet transit database, or resolved galaxy data. The main datasets are those from the VVDS final release (45000 spectra), the Herschel extragalactic surveys (HerMES, HRS, GOODS-Herschel, VNGS), the CFHTLS-WIDE photometric redshifts catalog (17 millions objects), or the HST-COSMOS information system, that allows request from any of the 6 and access to the corresponding values in the other catalogs.

  20. Traditional Methods for Mineral Analysis

    NASA Astrophysics Data System (ADS)

    Ward, Robert E.; Carpenter, Charles E.

    This chapter describes traditional methods for analysis of minerals involving titrimetric and colorimetric procedures, and the use of ion selective electrodes. Other traditional methods of mineral analysis include gravimetric titration (i.e., insoluble forms of minerals are precipitated, rinse, dried, and weighed) and redox reactions (i.e., mineral is part of an oxidation-reduction reaction, and product is quantitated). However, these latter two methods will not be covered because they currently are used little in the food industry. The traditional methods that will be described have maintained widespread usage in the food industry despite the development of more modern instrumentation such as atomic absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy (Chap. 24). Traditional methods generally require chemicals and equipment that are routinely available in an analytical laboratory and are within the experience of most laboratory technicians. Additionally, traditional methods often form the basis for rapid analysis kits (e.g., Quantab®; for salt determination) that are increasingly in demand. Procedures for analysis of minerals of major nutritional or food processing concern are used for illustrative purposes. For additional examples of traditional methods refer to references (1-6). Slight modifications of these traditional methods are often needed for specific foodstuffs to minimize interferences or to be in the range of analytical performance. For analytical requirements for specific foods see the Official Methods of Analysis of AOAC International (5) and related official methods (6).

  1. Inhibition of Sam68 triggers adipose tissue browning.

    PubMed

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  2. Inhibition of Sam68 triggers adipose tissue browning

    PubMed Central

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam Mina; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A.; Tang, Yao-Liang; Zhao, Ting C.; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-01-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms promoting energy expenditure may be utilized for effective therapy. Src-associated-in-mitosis-of-68kDa (Sam68) is potentially significant because knockout (KO) of Sam68 leads to markedly-reduced adiposity. Here we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We firstly found in Sam68-KO mice a significantly-reduced body weight with the difference explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake, but rather associated with enhanced physical activity. When fed high-fat diet, Sam68-KO mice gained much lesser body weight and fat mass as compared to wild-type (WT) littermates and displayed an improved glucose and insulin tolerance. The brown adipose tissue (BAT), inguinal and epididymal depots are smaller and their adipocytes less hypertrophy in Sam68-KO mice than in WT littermates. The BAT of Sam68-KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty-acid-oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68-KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16 and Ppargc1a genes was greater as compared to WT controls, suggesting that loss of Sam68 also promotes WAT browning. Furthermore, in all fat depots of Sam68-KO mice, the expression of M2 macrophage markers were upregulated and M1 markers downregulated. Thus Sam68 plays a crucial role in the control of thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  3. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation

    PubMed Central

    Zhang, Hua; Song, Lei; Cong, Haolong

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5′ untranslated region (5′UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. IMPORTANCE The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection

  4. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  5. Using SAM Assessment and Training for Office 2003

    ERIC Educational Resources Information Center

    Whittle, Gary

    2005-01-01

    This presentation will demonstrate the uses of SAM 2003 from Course Technology as a skills assessment and training software that is used via the Internet. Historically, testing in computer education has taken the form of pencil and paper or standardized testing. The actual computer skills of the student have not been properly assessed. With SAM,…

  6. SamACO: variable sampling ant colony optimization algorithm for continuous optimization.

    PubMed

    Hu, Xiao-Min; Zhang, Jun; Chung, Henry Shu-Hung; Li, Yun; Liu, Ou

    2010-12-01

    An ant colony optimization (ACO) algorithm offers algorithmic techniques for optimization by simulating the foraging behavior of a group of ants to perform incremental solution constructions and to realize a pheromone laying-and-following mechanism. Although ACO is first designed for solving discrete (combinatorial) optimization problems, the ACO procedure is also applicable to continuous optimization. This paper presents a new way of extending ACO to solving continuous optimization problems by focusing on continuous variable sampling as a key to transforming ACO from discrete optimization to continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e., the generation of candidate variable values for selection, the ants' solution construction, and the pheromone update process. The distinct characteristics of SamACO are the cooperation of a novel sampling method for discretizing the continuous search space and an efficient incremental solution construction method based on the sampled values. The performance of SamACO is tested using continuous numerical functions with unimodal and multimodal features. Compared with some state-of-the-art algorithms, including traditional ant-based algorithms and representative computational intelligence algorithms for continuous optimization, the performance of SamACO is seen competitive and promising. PMID:20371409

  7. Arrays of high quality SAM-based junctions and their application in molecular diode based logic.

    PubMed

    Wan, Albert; Suchand Sangeeth, C S; Wang, Lejia; Yuan, Li; Jiang, Li; Nijhuis, Christian A

    2015-12-14

    This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS bottom-electrodes, which are ultra-flat with large grains, free from potential contamination of photoresist residues, and do not have electrode-edges where the molecules are unable to pack well. We formed tunneling junctions with n-alkanethiolate SAMs in yields of ∼80%, with good reproducibility and electrical stability. Temperature dependent J(V) measurements indicated that the mechanism of charge transport across the junction is coherent tunneling. To demonstrate the usefulness of these junctions, we formed molecular diodes based on SAMs with Fc head groups. These junctions rectify currents with a rectification ratio R of 45. These molecular diodes were incorporated in simple electronic circuitry to demonstrate molecular diode-based Boolean logic. PMID:26537895

  8. Comparing Surfaces and Engineered Interfaces using Self-Assembled Monolayers (SAMs) and Injected SAMs Silanes

    SciTech Connect

    Morris, Mark J.; Simmons, Kevin L.

    2003-11-01

    The objective of this study was to show a comparison between property changes by formation of a self-assembled monolayer on the surface of PPG synthetic precipitated silica, which is a technique developed at PNNL, and by adding the SAMs silane chemical directly into the mixing bowl. These coatings have the potential to greatly increase the bond strength and enhance other properties between the particle and the rubber matrix of a rubber compound. Tensile testing measured peak stress and elongation at break. The increase in tensile strength shows how well the polymer-filler interfacial adhesion is doing. The study used five different SAM systems with a sulfur cured styrene butadiene rubber (SBR) tire rubber formulation. The three propylsilanes were propyl triethoxysilane, allyl triethoxysilane and 3-mercaptopropyl triethoxysilane. Five combinations of silanes were used in this study. The application of the silanes were 100% propyl triethoxy silane (100% Alkyl); a 10/90 mixture of allyl and propyl triethoxy silanes (10% vinyl/90% alkyl); a 50/50 mixture of the allyl and propyl (50% vinyl/50% alkyl); a 10/90mixture of 3-mercaptopropyl trimethoxysilane and propyl trimethoxysilane (10% mercaptan/90% alkyl) and lastly a 50/50 3-mercaptopropyl and propylsilanes (50% mercaptan/alkyl). The data not only shows improvement with SAMs, the peak stress data (ultimate strength) shows that the by changing the amount of silane content can change the physical properties

  9. SAM-based Cell Transfer to Photopatterned Hydrogels for Microengineering Vascular-Like Structures

    PubMed Central

    Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali

    2011-01-01

    A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. PMID:21802723

  10. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michael; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro-Gonzalez, Rafael; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R.

    2013-01-01

    Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.

  11. Stability of mixed PEO-thiol SAMs for biosensing applications.

    PubMed

    Jans, Karolien; Bonroy, Kristien; De Palma, Randy; Reekmans, Gunter; Jans, Hilde; Laureyn, Wim; Smet, Mario; Borghs, Gustaaf; Maes, Guido

    2008-04-15

    The secret of a successful affinity biosensor partially hides in the chemical interface layer between the transducer system and the biological receptor molecules. Over the past decade, several methodologies for the construction of such interface layers have been developed on the basis of the deposition of self-assembled monolayers (SAMs) of alkanethiols on gold. Moreover, mixed SAMs of polyethylene oxide (PEO) containing thiols have been applied for the immobilization of biological receptors. Despite the intense research in the field of thiol SAMs, relatively little is known about their biosensing properties in correlation with their long-term stability. Especially the impact of the storage conditions on their biosensing characteristics has not been reported before to our knowledge. To address these issues, we prepared mixed PEO SAMs and tested their stability and biosensing performance in several storage conditions, i.e., air, N2, ethanol, phosphate buffer, and H2O. The quality of the SAMs was monitored as a function of time using various characterization techniques such as cyclic voltammetry, contact angle, grazing angle Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. In addition, the impact of the different storage conditions on the biosensor properties was investigated using surface plasmon resonance. Via the latter technique, the receptor immobilization, the analyte recognition, and the nonspecific binding were extensively studied using the prostate specific antigen as a model system. Our experiments showed that very small structural differences in the SAM can have a great impact in their final biosensing properties. In addition it was shown that the mixed SAMs stored in air or N2 are very stable and retain their biosensor properties for at least 30 days, while ethanol appeared to be the worst storage medium due to partial oxidation of the thiol headgroup. In conclusion, care must be taken to avoid SAM degradation during storage

  12. Zen and Behavior Analysis

    PubMed Central

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless—a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to Enlightenment and Samādhi. The concept of stimulus singularity is introduced to account for why, within Zen's frame of reference, its methods can be studied but its primary outcomes (e.g., Samādhi and Satori) cannot be described in any conventional sense. PMID:22479128

  13. Recent Advances in Radical SAM Enzymology: New Structures and Mechanisms

    PubMed Central

    2015-01-01

    The radical S-adenosylmethionine (SAM) superfamily of enzymes catalyzes an amazingly diverse variety of reactions ranging from simple hydrogen abstraction to complicated multistep rearrangements and insertions. The reactions they catalyze are important for a broad range of biological functions, including cofactor and natural product biosynthesis, DNA repair, and tRNA modification. Generally conserved features of the radical SAM superfamily include a CX3CX2C motif that binds an [Fe4S4] cluster essential for the reductive cleavage of SAM. Here, we review recent advances in our understanding of the structure and mechanisms of these enzymes that, in some cases, have overturned widely accepted mechanisms. PMID:25009947

  14. Crystal structures of the SAM-III/S[subscript MK] riboswitch reveal the SAM-dependent translation inhibition mechanism

    SciTech Connect

    Lu, C.; Smith, A.M.; Fuchs, R.T.; Ding, F.; Rajashankar, K.; Henkin, T.M.; Ke, A.

    2010-01-07

    Three distinct classes of S-adenosyl-L-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The SMK box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-{angstrom} crystal structure of the Enterococcus faecalis SMK box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti-Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions with the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the SMK box riboswitch sampling the near-cognate ligand S-adenosyl-L-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions.

  15. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  16. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  17. Early Results from the Curiosity Rover's SAM Investigation at Gale Crater

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul; Webster, Chris; Cabane, Michael; Coll, Patrice

    2013-04-01

    The goals of the Mars Science Laboratory Mission (1, 2) are to explore the potential of the Gale Crater landing site to support life either in the distant past or the present. The contribution of the Sample Analysis at Mars (SAM) instrument suite (3) in this exploration of habitability is (A) to search for organic compounds in rocks and soils, (B) to determine the composition of inorganic volatiles compounds in the atmosphere or extracted from solid materials, and (C) to measure the isotopic composition of several of these volatiles. While prime exploration targets of MSL's Curiosity Rover are the layers in the central mound (Mt. Sharp) of Gale crater the initial exploration of region near the landing point has revealed a diverse geology and the early part of the mission has been spent both commissioning the 10 Curiosity instruments and the Rover subsystems and making first time measurements of both atmospheric and solid samples. SAM is located in the interior of MSL's Curiosity rover next to the XRD/XRF CheMin instrument. A variety of imaging, laser induced breakdown spectroscopy, and elemental analysis instrumentation serves to locate sampling sites and interogate candidate materials before solid sample is collected either with a drill or a scoop for delivery to SAM and CheMin. SAM's instruments are a quadrupole mass spectrometer (QMS), a tunable laser spectrometer (TLS), and a 6-column gas chromatograph (GC). These are coupled through a solid sample transport system and a gas processing and enrichment system. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. Early results from SAM atmospheric runs include a determination of: new volume mixing ratios for the 5 major isotopic constituents showing Ar approximately equal to N2; an upper limit of 3.5 ppb for the volume mixing ratio of methane; C and O isotope ratios showing both heavier than terrestrial averages

  18. SAM II Data and Information (HDF-EOS)

    Atmospheric Science Data Center

    2016-09-01

    ... Data obtained from the Stratospheric Aerosol Measurement (SAM) II instrument, which flew on board the Nimbus-7 ... Spatial Resolution:  The altitude profiles of aerosol extinction have a 1 km vertical resolution. Temporal ...

  19. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  20. Method of photon spectral analysis

    DOEpatents

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  1. Method of photon spectral analysis

    DOEpatents

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  2. Analogue Experiments Identify Possible Precursor Compounds for Chlorohydrocarbons Detected in SAM

    NASA Astrophysics Data System (ADS)

    Miller, K.; Summons, R. E.; Eigenbrode, J. L.; Freissinet, C.; Glavin, D. P.; Martin, M. G.; Team, M.

    2013-12-01

    Since landing at Gale Crater on August 6, 2012, the Sample Analysis at Mars (SAM) instrument suite, aboard the Curiosity Rover, has conducted multiple analyses of scooped and drilled samples and has identified a suite of chlorohydrocarbons including chloromethane, dichloromethane, trichloromethane, chloromethylpropene, and chlorobenzene (Glavin et al., 2013; Leshin et al., 2013). These compounds were identified after samples were pyrolysed at temperatures up to ~835°C through a combination of Evolved Gas Analysis (EGA) and Gas Chromatography Mass Spectrometry (GCMS). Since these chlorinated species were well above the background levels determined by empty cup blanks analyzed prior to solid sample analyses, thermal degradation of oxychlorine phases, such as perchlorate, present in the Martian soil, are the most likely source of chlorine needed to generate these chlorohydrocarbons. Laboratory analogue experiments show that terrestrial organics internal to SAM, such as N-methyl-N(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a derivatization agent, can react with perchlorates to produce all of the chlorohydrocarbons detected by SAM. However, in pyrolysis-trap-GCMS laboratory experiments with MTBSTFA, C4 compounds are the predominant chlorohydrocarbon observed, whereas on SAM the C1 chlorohydrocarbons dominate (Glavin et al., 2013). This, in addition to the previous identification of chloromethane and dichloromethane by the 1976 Viking missions (Biemann et al., 1977), suggest that there could be another, possibly Martian, source of organic carbon contributing to the formation of the C1 chlorohydrocarbons, or other components of the solid samples analyzed by SAM are having a catalytic effect on chlorohydrocarbon generation. Laboratory analogue experiments investigated a suite of organic compounds that have the potential to accumulate on Mars (Benner et al., 2000) and thus serve as sources of carbon for the formation of chlorohydrocarbons detected by the SAM and

  3. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  4. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  5. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  6. Study of the resistance of SAMs on aluminium to acidic and basic solutions using dynamic contact angle measurement.

    PubMed

    Liakos, Ioannis L; Newman, Roger C; McAlpine, Eoghan; Alexander, Morgan R

    2007-01-30

    We report the development of a method to determine the aqueous stability of self-assembled monolayers (SAMs) using the Wilhelmy plate dynamic contact angle (DCA) experiment. The DCA is measured in solutions over a range of pH values for alkyl carboxylic and alkyl phosphonic acid SAMs formed on magnetron-sputtered aluminum. The change in DCA on repeated immersion is used as a measure of the degradation of the SAMs by hydrolytic attack. The short and intermediate chain length alkyl acids are not stable in water of neutral pH, whereas molecules with the longest alkyl chains show considerably greater stability in neutral and both high and low pH solutions. The packing density inferred from the DCA and the contact angle hysteresis suggests the C18CO2H monolayer to be slightly less well packed than that of the C18P(=O)(OH)2; this is consistent with related friction force microscopy and infrared reflection absorption spectroscopy findings published elsewhere (Foster, T. T.; Alexander, M. R.; Leggett, G. J.; McAlpine, E. Langmuir 2006, 22, 9254-9259). The resistance of the SAMs to acid and alkaline environments is discussed in the context of aluminum oxide solubility, SAM packing density, and the resistance of the interfacial phosphate and carboxylate functionalities to different aqueous conditions. PMID:17241003

  7. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro

    PubMed Central

    Módis, Katalin; Coletta, Ciro; Asimakopoulou, Antonia; Szczesny, Bartosz; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R.; Szabo, Csaba

    2014-01-01

    Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1 – 3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time-and concentration-dependent modulatory effects on cell proliferation. At 0.1–1 mM SAM increased HCT116 proliferation between 0–12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12–24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at

  8. In Situ Assessment of Habitability with the SAM Suite Investigation on the 2011 Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul R.; Cabane, M.; Coll, P.; Webster, C. R.; Conrad, P. G.

    2009-09-01

    The 2011 Mars Science Laboratory (MSL) is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. With a substantially more comprehensive measurement capability that any other Mars rover, to date, its science goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite consists of a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS) and supporting sample manipulation and gas processing systems. SAM will implement a sensitive search for organic molecules and carry out chemical and isotopic analysis of martian volatiles while MSL contact and remote surface and subsurface survey instruments establish geological context. Mineralogy measurements are made by a companion XRD/XRF instrument in the MSL Analytical Laboratory on identically processed samples. SAM is designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to 1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of organics which have been trapped out of the gas stream. The general chemical survey is enhanced by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and complex organics with the GCMS.

  9. SAMMate: a GUI tool for processing short read alignments in SAM/BAM format

    PubMed Central

    2011-01-01

    Background Next Generation Sequencing (NGS) technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing this information. Results We have developed a Graphical User Interface (GUI) software tool named SAMMate. SAMMate allows biomedical researchers to quickly process SAM/BAM files and is compatible with both single-end and paired-end sequencing technologies. SAMMate also automates some standard procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized annotation files, SAMMate allows users to accurately calculate the short read coverage of genomic intervals. In particular, for RNA-seq data SAMMate can accurately calculate the gene expression abundance scores for customized genomic intervals using short reads originating from both exons and exon-exon junctions. Furthermore, SAMMate can quickly calculate a whole-genome signal map at base-wise resolution allowing researchers to solve an array of bioinformatics problems. Finally, SAMMate can export both a wiggle file for alignment visualization in the UCSC genome browser and an alignment statistics report. The biological impact of these features is demonstrated via several case studies that predict miRNA targets using short read alignment information files. Conclusions With just a few mouse clicks, SAMMate will provide biomedical researchers easy access to important alignment information stored in SAM/BAM files. Our software is constantly updated and will greatly facilitate the downstream analysis of NGS data. Both the source code and the GUI executable are freely available under the GNU General Public License at http://sammate.sourceforge.net. PMID:21232146

  10. Recursive SAM-based band selection for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    He, Yuanlei; Liu, Daizhi; Yi, Shihua

    2010-10-01

    Band selection has been widely used in hyperspectral image processing for dimension reduction. In this paper, a recursive SAM-based band selection (RSAM-BBS) method is proposed. Once two initial bands are given, RSAM-BBS is performed in a sequential manner, and at each step the band that can best describe the spectral separation of two hyperspectral signatures is added to the bands already selected until the spectral angle reaches its maximum. In order to demonstrate the utility of the proposed band selection method, an anomaly detection algorithm is developed, which first extracts the anomalous target spectrum from the original image using automatic target detection and classification algorithm (ATDCA), followed by maximum spectral screening (MSS) to estimate the background average spectrum, then implements RSAM-BBS to select bands that participate in the subsequent adaptive cosine estimator (ACE) target detection. As shown in the experimental result on the AVIRIS dataset, less than five bands selected by the RSAM-BBS can achieve comparable detection performance using the full bands.

  11. Toward a prediction of the redox properties of electroactive SAMs: a free energy calculation by molecular simulation.

    PubMed

    Filippini, Gaëlle; Goujon, Florent; Bonal, Christine; Malfreyt, Patrice

    2010-10-14

    We report free energy calculations of FcC(6)S-/C(4)S-Au and FcC(6)S-/C(12)S-Au binary self-assembled monolayers (SAMs) formed by one ferrocenylhexanethiolate chain and alkylthiolate chains. We demonstrate that the free energy perturbation methods are able to reproduce the positive shift of the redox potential when the coadsorbed butanethiolate C(4)S chains are replaced by dodecanethiolate C(12)S chains. The different contributions to the Ewald summation involved in the perturbation process are thoroughly described. We complete the study by a microscopic description of the binary SAMs before and after oxidation. The molecular dynamics (MD) simulations evidence that the formation of the ion-pair between the ferricinium and a single perchlorate anion of the supporting electrolyte is more favored in FcC(6)S-/C(12)S-Au SAM. PMID:20860387

  12. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; Glavin, D. P.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Mahaffy, P. R.; Navarro-Gonzalez, R.; McKay, C. P.; Wilhelm, M. B.

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  13. Background and Artifacts Generated by the by the Sample Preparation Experiment on SAM

    NASA Astrophysics Data System (ADS)

    Belmahdi, Imene; Buch, Arnaud; Szopa, Cyril; Freissinet, Caroline; Glavin, Daniel; Coll, Patrice; Cabane, Michel; Millan, Maeva; Eigenbrode, Jennifer; Navarro-Gonzalez, Rafael; Stern, Jennifer; Coscia, David; Bonnet, Jean-Yves; Teinturier, Samuel; Morisson, Marietta; Stambouli, Moncef; Dequaire, Tristan; Mahaffy, Paul

    2016-04-01

    Sample Analysis at Mars (SAM) is one of the instruments of the Mars Science Laboratory mission. Three analytical devices composed the SAM experiment: the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS). To adapt the nature of a sample to the analytical devices used, a sample preparation and gas processing system implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G) and the injection trap (Tenax® GR composed of Tenax® TA and 30% of graphite) are employed to concentrate volatiles released from the sample prior to GC-MS analysis. Our study investigates several propositions for chlorinated hydrocarbon formation detected in the SAM background by looking for: (a) all products coming from the interaction of Tenax® and perchlorates present on Mars, (b) also between some soil sample and perchlorates and (c) sources of chlorinated hydrocarbon precursors. Here we report on the detection of chlorohydrocarbon compounds and their potential origin.

  14. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  15. Voltammetric analysis apparatus and method

    DOEpatents

    Almon, A.C.

    1993-06-08

    An apparatus and method is described for electrochemical analysis of elements in solution. An auxiliary electrode, a reference electrode, and five working electrodes are positioned in a container containing a sample solution. The working electrodes are spaced apart evenly from each other and the auxiliary electrode to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between the auxiliary electrode and each of the working electrodes. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in the sample solution and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  16. Voltametric analysis apparatus and method

    DOEpatents

    Almon, Amy C.

    1993-01-01

    An apparatus and method for electrochemical analysis of elements in solution. An auxiliary electrode 14, a reference electrode 18, and five working electrodes 20, 22, 26, 28, and 30 are positioned in a container 12 containing a sample solution 34. The working electrodes are spaced apart evenly from each other and auxiliary electrode 14 to minimize any inter-electrode interference that may occur during analysis. An electric potential is applied between auxiliary electrode 14 and each of the working electrodes 20, 22, 26, 28, and 30. Simultaneous measurements taken of the current flow through each of the working electrodes for each given potential in a potential range are used for identifying chemical elements present in sample solution 34 and their respective concentrations. Multiple working electrodes enable a more positive identification to be made by providing unique data characteristic of chemical elements present in the sample solution.

  17. Arrays of high quality SAM-based junctions and their application in molecular diode based logic

    NASA Astrophysics Data System (ADS)

    Wan, Albert; Suchand Sangeeth, C. S.; Wang, Lejia; Yuan, Li; Jiang, Li; Nijhuis, Christian A.

    2015-11-01

    This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS bottom-electrodes, which are ultra-flat with large grains, free from potential contamination of photoresist residues, and do not have electrode-edges where the molecules are unable to pack well. We formed tunneling junctions with n-alkanethiolate SAMs in yields of ~80%, with good reproducibility and electrical stability. Temperature dependent J(V) measurements indicated that the mechanism of charge transport across the junction is coherent tunneling. To demonstrate the usefulness of these junctions, we formed molecular diodes based on SAMs with Fc head groups. These junctions rectify currents with a rectification ratio R of 45. These molecular diodes were incorporated in simple electronic circuitry to demonstrate molecular diode-based Boolean logic.This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS

  18. Correlation method of electrocardiogram analysis

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Timochko, Katerina B.

    2002-02-01

    The electrocardiograph method is the informational source for functional heart state characteristics. The electrocardiogram parameters are the integrated map of many component characteristics of the heart system and depend on disturbance requirements of each device. In the research work the attempt of making the skeleton diagram of perturbation of the heart system is made by the characteristic description of its basic components and connections between them through transition functions, which are written down by the differential equations of the first and second order with the purpose to build-up and analyze electrocardiogram. Noting the vector character of perturbation and the various position of heart in each organism, we offer own coordinate system connected with heart. The comparative analysis of electrocardiogram was conducted with the usage of correlation method.

  19. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  20. ExoDat Information System at CeSAM

    NASA Astrophysics Data System (ADS)

    Agneray, F.; Moreau, C.; Chabaud, P.; Damiani, C.; Deleuil, M.

    2014-05-01

    CoRoT (Convection Rotation and planetary transits) is a space based mission led by French space agency (CNES) in association with French and international laboratories. One of CoRoT's goal is to detect exoplanets by the transit method. The Exoplanet Database (Exodat) is a VO compliant information system for the CoRoT exoplanet program. The main functions of ExoDat are to provide a source catalog for the observation fields and targets selection; to characterize the CoRoT targets (spectral type, variability , contamination...);and to support follow up programs. ExoDat is built using the AstroNomical Information System (ANIS) developed by the CeSAM (Centre de donneeS Astrophysique de Marseille). It offers download of observation catalogs and additional services like: search, extract and display data by using a combination of criteria, object list, and cone-search interfaces. Web services have been developed to provide easy access for user's softwares and pipelines.

  1. SAM68: Signal Transduction and RNA Metabolism in Human Cancer

    PubMed Central

    Frisone, Paola; Pradella, Davide; Di Matteo, Anna; Belloni, Elisa; Ghigna, Claudia; Paronetto, Maria Paola

    2015-01-01

    Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting splicing regulatory sequences contribute to cancer phenotypes. Genome-wide studies have revealed more than 15,000 tumor-associated splice variants derived from genes involved in almost every aspect of cancer cell biology, including proliferation, differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to the STAR (signal transduction and activation of RNA metabolism) family of RBPs. SAM68 is involved in several steps of mRNA metabolism, from transcription to alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling pathways associated with cell response to stimuli, cell cycle transitions, and viral infections. Recent evidence has linked this RBP to the onset and progression of different tumors, highlighting misregulation of SAM68-regulated splicing events as a key step in neoplastic transformation and tumor progression. Here we review recent studies on the role of SAM68 in splicing regulation and we discuss its contribution to aberrant pre-mRNA processing in cancer. PMID:26273626

  2. Ensuring GRID resource availability with the SAM framework in LHCb

    NASA Astrophysics Data System (ADS)

    Closier, J.; Paterson, S.; Santinelli, R.

    2008-07-01

    The LHCb experiment has chosen to use the SAM framework (Service Availability Monitoring Environment from EGEE-II) [1] make extensive tests of the LHCb environment at all the accessible grid resources. The availability and the proper definition of the local Computing and Storage Elements, user interfaces as well as the WLCG software environment are checked. The SAM framework is also used to pre-install the LHCb applications in the shared software area provided by each site. The deployment of the LHCb applications is based on a python tool developed inside the experiment. It is used for software management including incremental installation of interdependent packages and clean package removal. After the application software is installed a validation test of the whole MC chain is run. According to the results of the experiment specific SAM tests, the sites are (re)integrated into the LHCb production system managed by DIRAC [2]. The possibility of automated dynamic site certification using the SAM test suite is explored. This paper will describe the various ways of the LHCb use of the SAM framework. Practical experience in the recent production runs, current limitations and future developments will be presented.

  3. A study on the formation and thermal stability of 11-MUA SAMs on Au(111)/mica and on polycrystalline gold foils.

    PubMed

    Stettner, Johanna; Frank, Paul; Griesser, Thomas; Trimmel, Gregor; Schennach, Robert; Gilli, Eduard; Winkler, Adolf

    2009-02-01

    In this article we present a comprehensive study of 11-mercaptoundecanoic acid self-assembled monolayer (SAM) formation on gold surfaces. The SAMs were prepared in ethanolic solution, utilizing two different substrates: Au(111)/mica and polycrystalline gold foils. Several experimental methods (X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy) reveal a well-defined SAM. The main focus of this work, however, was to test the stability of these SAMs by thermal desorption spectroscopy. The spectra show different desorption peaks indicating different adsorption states and/or decomposition products on the surface. The assumed monolayer peak, which can be attributed to desorption of the intact molecule, is detected at 550 K. Further desorption peaks can be found, which result, e.g., from cracking of the S-C bond on the surface, depending on the substrate quality and on the residence time under ambient conditions. PMID:19119802

  4. Methods for Cancer Epigenome Analysis

    PubMed Central

    Nagarajan, Raman P.; Fouse, Shaun D.; Bell, Robert J.A.; Costello, Joseph F.

    2014-01-01

    Accurate detection of epimutations in tumor cells is crucial for understanding the molecular pathogenesis of cancer. Alterations in DNA methylation in cancer are functionally important and clinically relevant, but even this well-studied area is continually re-evaluated in light of unanticipated results, including a strong connection between aberrant DNA methylation in adult tumors and polycomb group profiles in embryonic stem cells, cancer-associated genetic mutations in epigenetic regulators such as DNMT3A and TET family genes, and the discovery of abundant 5-hydroxymethylcytosine, a product of TET proteins acting on 5-methylcytosine, in human tissues. The abundance and distribution of covalent histone modifications in primary cancer tissues relative to normal cells is a largely uncharted area, although there is good evidence for a mechanistic role of cancer-specific alterations in epigenetic marks in tumor etiology, drug response and tumor progression. Meanwhile, the discovery of new epigenetic marks continues, and there are many useful methods for epigenome analysis applicable to primary tumor samples, in addition to cancer cell lines. For DNA methylation and hydroxymethylation, next-generation sequencing allows increasingly inexpensive and quantitative whole-genome profiling. Similarly, the refinement and maturation of chromatin immunoprecipitation with next-generation sequencing (ChIP-seq) has made possible genome-wide mapping of histone modifications, open chromatin and transcription factor binding sites. Computational tools have been developed apace with these epigenome methods to better enable the accuracy and interpretation of the data from the profiling methods. PMID:22956508

  5. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  6. Experience producing simulated events for the DZero experiment on the SAM-Grid

    SciTech Connect

    Garzoglio, G.; Terekhov, I.; Snow, J.; Jain, S.; Nishandar, A.; /Texas U., Arlington

    2004-12-01

    Most of the simulated events for the DZero experiment at Fermilab have been historically produced by the ''remote'' collaborating institutions. One of the principal challenges reported concerns the maintenance of the local software infrastructure, which is generally different from site to site. As the understanding of the distributed computing community over distributively owned and shared resources progresses, the adoption of grid technologies to address the production of Monte Carlo events for high energy physics experiments becomes increasingly interesting. SAM-Grid is a software system developed at Fermilab, which integrates standard grid technologies for job and information management with SAM, the data handling system of the DZero and CDF experiments. During the past few months, this grid system has been tailored for the Monte Carlo production of DZero. Since the initial phase of deployment, this experience has exposed an interesting series of requirements to the SAM-Grid services, the standard middleware, the resources and their management and to the analysis framework of the experiment. As of today, the inefficiency due to the grid infrastructure has been reduced to as little as 1%. In this paper, we present our statistics and the ''lessons learned'' in running large high energy physics applications on a grid infrastructure.

  7. Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure.

    PubMed

    Ding, Chengli; Wu, Zhifei; Huang, Lei; Wang, Yajie; Xue, Jie; Chen, Si; Deng, Zixin; Wang, Lianrong; Song, Zhiyin; Chen, Shi

    2015-01-01

    The inner mitochondrial membrane (IMM) invaginates to form cristae and the maintenance of cristae depends on the mitochondrial contact site (MICOS) complex. Mitofilin and CHCHD6, which physically interact, are two components of the MICOS. In this study, we performed immunoprecipitation experiments with Mitofilin and CHCHD6 antibodies and identified a complex containing Mitofilin, Sam50, and CHCHD 3 and 6. Using transcription activator-like effector nucleases (TALENs), we generated knockdown/knockout clones of Mitofilin and CHCHD6. Transmission electron microscopy (TEM) revealed that vesicle-like cristae morphology appeared in cell lines lacking Mitofilin, and mitochondria exhibited lower cristae density in CHCHD6-knockout cells. Immunoblot analysis showed that knockdown of Mitofilin, but not knockout of CHCHD6, affected their binding partners that control cristae morphology. We also demonstrated that Mitofilin and CHCHD6 directly interacted with Sam50. Additionally, we observed that Mitofilin-knockdown cells showed decreased mitochondrial membrane potential (ΔΨm) and intracellular ATP content, which were minimally affected in CHCHD6-knockout cells. Taken together, we conclude that the integrity of MICOS and its efficient interaction with Sam50 are indispensable for cristae organization, which is relevant to mitochondrial function. PMID:26530328

  8. Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure

    PubMed Central

    Ding, Chengli; Wu, Zhifei; Huang, Lei; Wang, Yajie; Xue, Jie; Chen, Si; Deng, Zixin; Wang, Lianrong; Song, Zhiyin; Chen, Shi

    2015-01-01

    The inner mitochondrial membrane (IMM) invaginates to form cristae and the maintenance of cristae depends on the mitochondrial contact site (MICOS) complex. Mitofilin and CHCHD6, which physically interact, are two components of the MICOS. In this study, we performed immunoprecipitation experiments with Mitofilin and CHCHD6 antibodies and identified a complex containing Mitofilin, Sam50, and CHCHD 3 and 6. Using transcription activator-like effector nucleases (TALENs), we generated knockdown/knockout clones of Mitofilin and CHCHD6. Transmission electron microscopy (TEM) revealed that vesicle-like cristae morphology appeared in cell lines lacking Mitofilin, and mitochondria exhibited lower cristae density in CHCHD6-knockout cells. Immunoblot analysis showed that knockdown of Mitofilin, but not knockout of CHCHD6, affected their binding partners that control cristae morphology. We also demonstrated that Mitofilin and CHCHD6 directly interacted with Sam50. Additionally, we observed that Mitofilin-knockdown cells showed decreased mitochondrial membrane potential (ΔΨm) and intracellular ATP content, which were minimally affected in CHCHD6-knockout cells. Taken together, we conclude that the integrity of MICOS and its efficient interaction with Sam50 are indispensable for cristae organization, which is relevant to mitochondrial function. PMID:26530328

  9. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    SciTech Connect

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  10. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  11. Aircraft accidents : method of analysis

    NASA Technical Reports Server (NTRS)

    1929-01-01

    This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author)

  12. Description of ferrocenylalkylthiol SAMs on gold by molecular dynamics simulations.

    PubMed

    Goujon, F; Bonal, C; Limoges, B; Malfreyt, P

    2009-08-18

    Molecular dynamics simulations of mixed monolayers consisting of Fc(CH2)12S-/C10S-Au SAMs are carried out to calculate structural (density profiles, angular distributions, positions of atoms) and energetic properties. The purpose of this paper is to explore the possible inhomogeneity of the neutral ferrocene moieties within the monolayer. Five systems have been studied using different grafting densities for the ferrocenylalkylthiolates. The angular distributions are described in terms of the relative contributions from isolated and clustered ferrocene moieties in the binary SAMs. It is shown that the energetic contributions strongly depend on the state of the ferrocene. The ability of molecular dynamics simulations to enable better understanding the SAM structure is illustrated in this work. PMID:19449821

  13. SAM-T08, HMM-based protein structure prediction

    PubMed Central

    Karplus, Kevin

    2009-01-01

    The SAM-T08 web server is a protein structure prediction server that provides several useful intermediate results in addition to the final predicted 3D structure: three multiple sequence alignments of putative homologs using different iterated search procedures, prediction of local structure features including various backbone and burial properties, calibrated E-values for the significance of template searches of PDB and residue–residue contact predictions. The server has been validated as part of the CASP8 assessment of structure prediction as having good performance across all classes of predictions. The SAM-T08 server is available at http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html PMID:19483096

  14. Computational methods for global/local analysis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  15. Technoeconomic Modeling of Battery Energy Storage in SAM

    SciTech Connect

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven; Nelson, Austin; Lundstrom, Blake

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  16. The methylthiolation reaction mediated by the Radical-SAM enzymes

    PubMed Central

    Atta, Mohamed; Arragain, Simon; Fontecave, Marc; Mulliez, Etienne; Hunt, John F.; Luff, Jon D.; Forouhar, Farhad

    2014-01-01

    Over the past ten years, considerable progress has been made in our understanding of the mechanistic enzymology of the Radical-SAM enzymes. It is now clear that these enzymes appear to be involved in a remarkably wide range of chemically challenging reactions. This review article highlights mechanistic and structural aspects of the methylthiotransferases (MTTases) sub-class of the Radical-SAM enzymes. The mechanism of methylthio insertion, now observed to be performed by three different enzymes is an exciting unsolved problem. PMID:22178611

  17. Detecting Complex Organic Compounds Using the SAM Wet Chemistry Experiment on Mars

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Buch, A.; Glavin, D. P.; Brault, A.; Eigenbrode, J. L.; Kashyap, S.; Martin, M. G.; Miller, K.; Mahaffy, P. R.; Team, M.

    2013-12-01

    The search for organic molecules on Mars can provide important first clues of abiotic chemistry and/or extinct or extant biota on the planet. Gas Chromatography Mass Spectrometry (GC-MS) is currently the most relevant space-compatible analytical tool for the detection of organic compounds. Nevertheless, GC separation is intrinsically restricted to volatile molecules, and many molecules of astrobiological interest are chromatographically refractory or polar. To analyze these organics such as amino acids, nucleobases and carboxylic acids in the Martian regolith, an additional derivatization step is required to transform them into volatile derivatives that are amenable to GC analysis. As part of the Sample Analysis at Mars (SAM) experiment onboard Mars Science Laboratory (MSL) Curiosity rover, a single-step protocol of extraction and chemical derivatization with the silylating reagent N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) has been developed to reach a wide range of astrobiology-relevant refractory organic molecules (Mahaffy et al. 2012; Stalport et al. 2012). Seven cups in the SAM instrument are devoted to MTBSTFA derivatization. However, this chemical reaction adds a protective silyl group in place of each labile hydrogen, which makes the molecule non-identifiable in common mass spectra libraries. Therefore, we have created an extended library of mass spectra of MTBSTFA derivatized compounds of interest, considering their potential occurrence in Mars soils. We then looked specifically for MTBSTFA derivatized compounds using the existing and the newly created library, in various Mars analog soils. To enable a more accurate interpretation of the in situ derivatization GC-MS results that will be obtained by SAM, the lab experiments were performed as close as possible to the SAM flight instrument experimental conditions. Our first derivatization experiments display promising results, the laboratory system permitting an extraction and detection

  18. First results from the CheMin, DAN and SAM instruments on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Mahaffy, P. R.; Mitrofanov, I.

    2012-12-01

    One of the principal goals of the Mars Science Laboratory rover Curiosity is to identify and characterize the early habitable environments of Mars, as recorded in the stratified rocks and soil of Gale crater. The suite of instruments aboard Curiosity will make measurements useful for determining the presence and lateral/vertical distribution of hydrated phases, the mineralogy and "preservation potential" of sediments and rocks, and the identity and isotopic composition of organic and other carbon containing molecules, should such be present. Three of Curiosity's instruments, DAN ("Dynamic Albedo of Neutrons," a soil hydrogen detector), CheMin ("Chemistry and Mineralogy," a mineralogy instrument) and SAM ("Surface Analysis at Mars," an organic molecule and isotopic analysis instrument) are uniquely suited to this purpose. DAN consists of a pulsed neutron generator and neutron detector that will measure the hydrogen content (i.e., hydrated phases, water ice) in the upper meter of the soil. Both passive and active measurements will be obtained, resulting in a meter-scale resolution transect map of near-surface hydrogen along the path of the rover. These measurements will provide context for the mineralogical and organic measurements of drilled and scooped samples analyzed by CheMin and SAM. CheMin, a powder X-ray Diffraction (pXRD) instrument, will determine the mineralogy of scooped soils and powders obtained from drilled rocks. Hydrated minerals will be identified, along with whole-rock mineralogy for characterizing the environment of formation and preservation potential for organic molecules. SAM consists of a sample handling system, a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. SAM will accept the same powdered rock and soil samples as CheMin, and will measure and identify organic carbon in these samples as well as evolved inorganic gases such as CO2, CH4, and H2O. Isotopic composition of noble gases and several light elements are

  19. Radical-Mediated Enzymatic Methylation: A Tale of Two SAMS

    PubMed Central

    2011-01-01

    Methylation is an essential and ubiquitous reaction that plays an important role in a wide range of biological processes. Most biological methylations use S-adenosylmethionine (SAM) as the methyl donor and proceed via an SN2 displacement mechanism. However, researchers have discovered an increasing number of methylations that involve radical chemistry. The enzymes known to catalyze these reactions all belong to the radical SAM superfamily. This family of enzymes utilizes a specialized [4Fe-4S] cluster for reductive cleavage of SAM to yield a highly reactive 5'-deoxyadenosyl (dAdo) radical. Radical chemistry is then imposed on a variety of organic substrates, leading to a diverse array of transformations. Until recently, researchers had not fully understood how these enzymes employ radical chemistry to mediate a methyl transfer reaction. Sequence analyses reveal that the currently identified radical SAM methyltransferases (RSMTs) can be grouped into three classes, which appear distinct in protein architecture and mechanism. Class A RSMTs mainly include the rRNA methyltransferases RlmN and Cfr from various origins. As exemplified by Escherichia coli RlmN, these proteins have a single canonical radical SAM core domain that includes an (βα)6 partial barrel most similar to that of pyruvate formate lyase-activase. The exciting recent studies on RlmN and Cfr are beginning to provide insights into the intriguing chemistry of class A RSMTs. These enzymes utilize a methylene radical generated on a unique methylated cysteine residue. However, based on the variety of substrates used by the other classes of RSMTs, alternative mechanisms are likely to be discovered. Class B RSMTs contain a proposed N-terminal cobalamin binding domain in addition to a radical SAM domain at the C-terminus. This class of proteins methylates diverse substrates at inert sp3 carbons, aromatic heterocycles, and phosphinates, possibly involving a cobalamin-mediated methyl transfer process. Class C

  20. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  1. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection

  2. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Franz, H.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, A.; Sutter, B.; Archer, P. D.; Ming, D. W.; Morris, R. V.; Atreya, S. K.; Team, M.

    2013-12-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise ~20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000oC and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures <500oC, and an evolution peak at higher temperatures near ~750oC. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the ~20% observed in the mudstone samples. This potential detection underscores the

  3. Probabilistic methods for structural response analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Burnside, O. H.; Cruse, T. A.

    1988-01-01

    This paper addresses current work to develop probabilistic structural analysis methods for integration with a specially developed probabilistic finite element code. The goal is to establish distribution functions for the structural responses of stochastic structures under uncertain loadings. Several probabilistic analysis methods are proposed covering efficient structural probabilistic analysis methods, correlated random variables, and response of linear system under stationary random loading.

  4. EFFECTS OF POLYCYCLIC AROMATIC HYDROCARBON OF SAM-COATED ELECTRODES USING FERRYICYANIDE AS THE REDOX INDICATOR

    EPA Science Inventory

    Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...

  5. Skill Acquisition Measures (SAM). Elementary Mathematics Level V. Teacher's Manual.

    ERIC Educational Resources Information Center

    Lancaster City School District, PA.

    The Skill Acquisition Measures (SAM) were designed by the Lancaster (Pennsylvania) School District as criterion referenced tests for mathematics. This manual consists of copies of the student test forms for level 5, with additional information for the teacher's use. Each of the test items is presented with the correct answers and the criteria for…

  6. Skill Acquisition Measures (SAM). Elementary Mathematics Level IV. Teacher's Manual.

    ERIC Educational Resources Information Center

    Lancaster City School District, PA.

    The Skill Acquisition Measures (SAM) were designed by the Lancaster (Pennsylvania) School District as criterion referenced tests for mathematics. This manual consists of copies of the student test forms for level 4, with additional information for the teacher's use. Each of the test items is presented with the correct answers and the criteria for…

  7. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  8. Information System through ANIS at CeSAM

    NASA Astrophysics Data System (ADS)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  9. The fSAM Model of False Recall

    ERIC Educational Resources Information Center

    Kimball, Daniel R.; Smith, Troy A.; Kahana, Michael J.

    2007-01-01

    The authors report a new theory of false memory building upon existing associative memory models and implemented in fSAM, the first fully specified quantitative model of false recall. Participants frequently intrude unstudied critical words while recalling lists comprising their strongest semantic associates but infrequently produce other…

  10. 78 FR 47695 - Sam Rayburn Dam Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... September 30, 2013 (77 FR 67813, November. 14, 2012). The Administrator, Southwestern Power Administration (Southwestern), has prepared Current and Revised 2013 Power Repayment Studies which show the need for an... Southwestern Power Administration Sam Rayburn Dam Power Rate AGENCY: Southwestern Power Administration,...

  11. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Rayburn power rate extension were announced by a Federal Register (77 FR 50493) notice published on August... published notice in the Federal Register, (77 FR 50493), of the proposed rate extension for the Rayburn... Southwestern Power Administration Sam Rayburn Dam Project Power Rate AGENCY: Southwestern Power...

  12. Dynamics within alkylsiloxane SAMs studied by sensitive dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Scott, Mary; Stevens, Derrick; Bochinski, Jason; Clarke, Laura

    2009-03-01

    Self assembled monolayers (SAMs) are a ubiquitous tool in modern research and their static structure has been extensively studied. Fewer investigations have addressed dynamics within these systems; however, such motions within SAMs will affect surface properties such as friction and blocking ability (permeability). In this study, sensitive, dielectric spectroscopy over a broad temperature range (4-400 K) has been employed to study relaxations within planar alkylsiloxane SAMs[1] . Highly disordered SAMs of varying density were grown by vapor deposition. Two dielectric relaxations were observed. The first, a polyethylene-like relaxation similar to that previously reported in phase-segregated alkyl side-chain polymers, is observed for all films with alkyl chains containing four or more carbons. This is an interacting or glassy relaxation. The second motion, which is observable only at high film densities, is a local mode, which follows an Arrhenius dependence on temperature, and has been previously assigned to a sub-chain rotation. [1] M.C. Scott, D.R. Stevens, J.R. Bochinski, L.I. Clarke, ACS Nano. DOI: 10.1021/nn800543j.

  13. Yield estimation from hyperspectral imagery using Spectral Angle Mapper (SAM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation indices (VIs) derived from remotely sensed imagery are commonly used to estimate crop yields. Spectral angle mapper (SAM) provides an alternative approach to quantifying the spectral differences among all pixels in imagery and therefore has the potential for mapping yield variability. The...

  14. Isothiourea-Mediated Organocatalytic Michael Addition-Lactonization on a Surface: Modification of SAMs on Silicon Oxide Substrates.

    PubMed

    Chisholm, Ross; Parkin, John D; Smith, Andrew D; Hähner, Georg

    2016-04-01

    Tailoring the functionality of self-assembled monolayers (SAMs) can be achieved either by depositing prefunctionalized molecules with the appropriate terminal groups or by chemical modification of an existing SAM in situ. The latter approach is particularly advantageous to allow for diversity of surface functionalization from a single SAM and if the incorporation of bulky groups is desired. In the present study an organocatalytic isothiourea-mediated Michael addition-lactonization process analogous to a previously reported study in solution is presented. An achiral isothiourea, 3,4-dihydro-2H-pyrimido[2,1-b]benzothiazole (DHPB), promotes the intermolecular Michael addition-lactonization of a trifluoromethylenone terminated SAM and a variety of arylacetic acids affording C(6)-trifluoromethyldihydropyranones tethered to the surface. X-ray photoelectron spectroscopy, atomic force microscopy, contact angle, and ellipsometry analysis were conducted to confirm the presence of the substituted dihydropyranone. A model study of this approach was also performed in solution to probe the reaction diastereoselectivity as it cannot be measured directly on the surface. PMID:27015037

  15. Fabrication of self-assembled monolayers (SAMs) and inorganic micropattern on flexible polymer substrate.

    PubMed

    Xiang, Junhui; Zhu, Peixin; Masuda, Yoshitake; Koumoto, Kunihito

    2004-04-13

    By grafting (aminopropyl)triethoxysilane (APTES) as the buffer layer on poly(ethylene terephthalate) (PET) surface, the SAMs ofoctadecyltrichlorosilane (OTS), phenyltrichlorosilane (PTCS), vinyltrichlorosilane (VTCS), andp-tolyltrichlorosilane (TTCS) were fabricated on the flexible polymer substrate. The properties of SAMs were accurately controlled by adjusting the immersing time of substrates in the solutions and the concentration of the solutions. The SAMs acted as templates, and TiO2 micropattern was successfully deposited on OTS, TTCS, and PTCS SAMs. PMID:15875858

  16. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.

    PubMed

    Wostenberg, Christopher; Ceres, Pablo; Polaski, Jacob T; Batey, Robert T

    2015-11-01

    RNA folding in vivo is significantly influenced by transcription, which is not necessarily recapitulated by Mg(2+)-induced folding of the corresponding full-length RNA in vitro. Riboswitches that regulate gene expression at the transcriptional level are an ideal system for investigating this aspect of RNA folding as ligand-dependent termination is obligatorily co-transcriptional, providing a clear readout of the folding outcome. The folding of representative members of the SAM-I family of riboswitches has been extensively analyzed using approaches focusing almost exclusively upon Mg(2+) and/or S-adenosylmethionine (SAM)-induced folding of full-length transcripts of the ligand binding domain. To relate these findings to co-transcriptional regulatory activity, we have investigated a set of structure-guided mutations of conserved tertiary architectural elements of the ligand binding domain using an in vitro single-turnover transcriptional termination assay, complemented with phylogenetic analysis and isothermal titration calorimetry data. This analysis revealed a conserved internal loop adjacent to the SAM binding site that significantly affects ligand binding and regulatory activity. Conversely, most single point mutations throughout key conserved features in peripheral tertiary architecture supporting the SAM binding pocket have relatively little impact on riboswitch activity. Instead, a secondary structural element in the peripheral subdomain appears to be the key determinant in observed differences in regulatory properties across the SAM-I family. These data reveal a highly coupled network of tertiary interactions that promote high-fidelity co-transcriptional folding of the riboswitch but are only indirectly linked to regulatory tuning. PMID:26343759

  17. Selective Plasma Deposition of Fluorocarbon Films on SAMs

    NASA Technical Reports Server (NTRS)

    Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.

    2006-01-01

    A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.

  18. Ethnographic Analysis of Instructional Method.

    ERIC Educational Resources Information Center

    Brooks, Douglas M.

    1980-01-01

    Instructional methods are operational exchanges between participants within environments that attempt to produce a learning outcome. The classroom teacher's ability to produce a learning outcome is the measure of instructional competence within that learning method. (JN)

  19. 78 FR 3024 - Sam D. Hamilton Noxubee National Wildlife Refuge, MS; Intent To Prepare a Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Fish and Wildlife Service Sam D. Hamilton Noxubee National Wildlife Refuge, MS; Intent To Prepare a... conservation plan (CCP) and associated National Environmental Policy Act (NEPA) documents for Sam D. Hamilton... information to: Mr. Steve Reagan, Project Leader, Sam D. Hamilton Noxubee NWR, 2970 Bluff Lake...

  20. Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase.

    PubMed

    Vranken, C; Fin, A; Tufar, P; Hofkens, J; Burkart, M D; Tor, Y

    2016-07-14

    SalL, an enzyme that catalyzes the synthesis of SAM from l-methionine and 5'-chloro-5'-deoxyoadenosine, is shown to accept 5'-chloro-5'-deoxythienoadenosine as a substrate and facilitate the synthesis of a synthetic SAM analog with an unnatural nucleobase. This synthetic cofactor is demonstrated to replace SAM in the DNA methylation reaction with M.TaqI. PMID:27270873

  1. Methods of Building Cost Analysis.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Presentation of symposium papers includes--(1) a study describing techniques for economic analysis of building designs, (2) three case studies of analysis techniques, (3) procedures for measuring the area and volume of buildings, and (4) an open forum discussion. Case studies evaluate--(1) the thermal economics of building enclosures, (2) an…

  2. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  3. Status Report on NEAMS System Analysis Module Development

    SciTech Connect

    Hu, R.; Fanning, T. H.; Sumner, T.; Yu, Y.

    2015-12-01

    Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This report provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.

  4. PROPOSED STANDARDIZED ASSESSMENT METHODS (SAMS) FOR ELECTROFISHING LARGE RIVERS

    EPA Science Inventory

    The effects of electrofishing design and sampling distance were studied at 49 sites across four boatable rivers ranging in drainage area from 13,947 to 23,041 km2 in the Ohio River basin. Two general types of sites were sampled: Run-of-the-River (Free-flowing sites or with smal...

  5. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors.

    PubMed

    Kim, Jieun; Lee, Haeryung; Kim, Yujin; Yoo, Sooyeon; Park, Eunjeong; Park, Soochul

    2010-04-01

    We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process. PMID:20100865

  6. The SAM Domains of Anks Family Proteins Are Critically Involved in Modulating the Degradation of EphA Receptors ▿

    PubMed Central

    Kim, Jieun; Lee, Haeryung; Kim, Yujin; Yoo, Sooyeon; Park, Eunjeong; Park, Soochul

    2010-01-01

    We recently reported that the phosphotyrosine-binding (PTB) domain of Anks family proteins binds to EphA8, thereby positively regulating EphA8-mediated signaling pathways. In the current study, we identified a potential role for the SAM domains of Anks family proteins in EphA signaling. We found that SAM domains of Anks family proteins directly bind to ubiquitin, suggesting that Anks proteins regulate the degradation of ubiquitinated EphA receptors. Consistent with the role of Cbl ubiquitin ligases in the degradation of Eph receptors, our results revealed that the ubiquitin ligase c-Cbl induced the ubiquitination and degradation of EphA8 upon ligand binding. Ubiquitinated EphA8 also bound to the SAM domains of Odin, a member of the Anks family proteins. More importantly, the overexpression of wild-type Odin protected EphA8 and EphA2 from undergoing degradation following ligand stimulation and promoted EphA-mediated inhibition of cell migration. In contrast, a SAM domain deletion mutant of Odin strongly impaired the function of endogenous Odin, suggesting that the mutant functions in a dominant-negative manner. An analysis of Odin-deficient primary embryonic fibroblasts indicated that Odin levels play a critical role in regulating the stability of EphA2 in response to ligand stimulation. Taken together, our studies suggest that the SAM domains of Anks family proteins play a pivotal role in enhancing the stability of EphA receptors by modulating the ubiquitination process. PMID:20100865

  7. Prognostic Analysis System and Methods of Operation

    NASA Technical Reports Server (NTRS)

    MacKey, Ryan M. E. (Inventor); Sneddon, Robert (Inventor)

    2014-01-01

    A prognostic analysis system and methods of operating the system are provided. In particular, a prognostic analysis system for the analysis of physical system health applicable to mechanical, electrical, chemical and optical systems and methods of operating the system are described herein.

  8. Convergence analysis of combinations of different methods

    SciTech Connect

    Kang, Y.

    1994-12-31

    This paper provides a convergence analysis for combinations of different numerical methods for solving systems of differential equations. The author proves that combinations of two convergent linear multistep methods or Runge-Kutta methods produce a new convergent method of which the order is equal to the smaller order of the two original methods.

  9. Convex geometry analysis method of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, XiChang; Qi, Hongxing; Yu, BingXi

    2003-06-01

    We present matrix expression of convex geometry analysis method of hyperspectral data by linear mixing model and establish a mathematic model of endmembers. A 30-band remote sensing image is applied to testify the model. The results of analysis reveal that the method can analyze mixed pixel questions. The targets that are smaller than earth surface pixel can be identified by applying the method.

  10. [Preliminary study on autoregulation of samR involved in development and differentiation of Streptomyces ansochromogenes].

    PubMed

    Yang, Yan-ling; Yang, Hai-hua; Tan, Hua-rong

    2005-02-01

    The previous result showed that samR plays an important role in the development progress of Streptomyces ansochromogenes. It was reported that the differentiation progress of S. ansochromogenes was accelerated by a recombinant plasmid containing an extra copy of samR gene. However, the differentiation progress of S. ansochromogenes was not further accelerated by a multicopy plasmid containing samR gene. Electrophoresis mobility shift assay (EMSA) demonstrated that SamR binds to its own promoter region specifically. All these results hint that samR is an autoregulatory gene in Streptomyces ansochromogenes. PMID:15847153