Science.gov

Sample records for analysis tool based

  1. JAVA based LCD Reconstruction and Analysis Tools

    SciTech Connect

    Bower, G.

    2004-10-11

    We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities.

  2. Klonos: A Similarity Analysis Based Tool for Software Porting

    Energy Science and Technology Software Center (ESTSC)

    2014-07-30

    The Klonos is a compiler-based tool that can help users for scientific application porting. The tool is based on the similarity analysis with the help of the OpenUH compiler (a branch of Open64 compiler). This tool combines syntactic and cost-model-provided metrics clusters, which aggregate similar subroutines that can be ported similarity. The generated porting plan, which allows programmers and compilers to reuse porting experience as much as possible during the porting process.

  3. Knowledge base navigator facilitating regional analysis inter-tool communication.

    SciTech Connect

    Hampton, Jeffery Wade; Chael, Eric Paul; Hart, Darren M.; Merchant, Bion John; Chown, Matthew N.

    2004-08-01

    To make use of some portions of the National Nuclear Security Administration (NNSA) Knowledge Base (KB) for which no current operational monitoring applications were available, Sandia National Laboratories have developed a set of prototype regional analysis tools (MatSeis, EventID Tool, CodaMag Tool, PhaseMatch Tool, Dendro Tool, Infra Tool, etc.), and we continue to maintain and improve these. Individually, these tools have proven effective in addressing specific monitoring tasks, but collectively their number and variety tend to overwhelm KB users, so we developed another application - the KB Navigator - to launch the tools and facilitate their use for real monitoring tasks. The KB Navigator is a flexible, extensible java application that includes a browser for KB data content, as well as support to launch any of the regional analysis tools. In this paper, we will discuss the latest versions of KB Navigator and the regional analysis tools, with special emphasis on the new overarching inter-tool communication methodology that we have developed to make the KB Navigator and the tools function together seamlessly. We use a peer-to-peer communication model, which allows any tool to communicate with any other. The messages themselves are passed as serialized XML, and the conversion from Java to XML (and vice versa) is done using Java Architecture for XML Binding (JAXB).

  4. Free software tools for atlas-based volumetric neuroimage analysis

    NASA Astrophysics Data System (ADS)

    Bazin, Pierre-Louis; Pham, Dzung L.; Gandler, William; McAuliffe, Matthew

    2005-04-01

    We describe new and freely available software tools for measuring volumes in subregions of the brain. The method is fast, flexible, and employs well-studied techniques based on the Talairach-Tournoux atlas. The software tools are released as plug-ins for MIPAV, a freely available and user-friendly image analysis software package developed by the National Institutes of Health. Our software tools include a digital Talairach atlas that consists of labels for 148 different substructures of the brain at various scales.

  5. Usage-Based Evolution of Visual Analysis Tools

    SciTech Connect

    Hetzler, Elizabeth G.; Rose, Stuart J.; McQuerry, Dennis L.; Medvick, Patricia A.

    2005-06-12

    Visual analysis tools have been developed to help people in many different domains more effectively explore, understand, and make decisions from their information. Challenges in making a successful tool include suitability within a user's work processes, and tradeoffs between analytic power and tool complexity, both of which impact ease of learning. This paper describes experience working with users to help them apply visual analysis tools in several different domains, and examples of how the tools evolved significantly to better match users' goals and processes.

  6. EEG analysis using wavelet-based information tools.

    PubMed

    Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A

    2006-06-15

    Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity. PMID:16675027

  7. Gnome--an Internet-based sequence analysis tool.

    PubMed

    Nakai, K; Tokimori, T; Ogiwara, A; Uchiyama, I; Niiyama, T

    1994-09-01

    Gnome (GenomeNet Open Mail-service Environment) is a sequence analysis tool that enables an end-user to make use of several Internet- (mainly e-mail) based services with an easy-to-use graphical user interface. Users can conduct homology and motif searches, and database-entry retrieval against the latest databases by emitting search requests to and receiving their results form a search-server by e-mail. The search results are viewed and managed efficiently with this system. The Macintosh and X (Motif) versions of the Gnome client and the UNIX version of the Gnome server are available to academic users free of charge. PMID:7828072

  8. CASSIS - Web based tools for the analysis of astrophysical spectra

    NASA Astrophysics Data System (ADS)

    Walters, Adam D.; Klotz, Alain; Caux, Emmanuel; Crovisier, Jacques

    Future instruments for submillimeter and FIR astronomy like the Herschel Space Observatory and Alma will offer the possibility to make high-resolution wide-frequency spectral surveys of the interstellar and circumstellar media. The CASSIS project aims to facilitate the analysis of these spectra by a maximum number of interested researchers. We will give a demonstration of the present state of CASSIS software which is beginning to be made available for testing and validation through the web. By connecting to the CASSIS server a user will be able to visualise a synthetic spectrum created from a choice of models and associated parameters and compare this simulation with the observations. By choosing a template closest to that of the object being observed the user will obtain a set of starting conditions including the principal chemical species, their abundance and linked physical parameters. Various computer tools will then allow the inversion of the spectra to obtain the best set of parameters. In order to run the model chosen the CASSIS server will have access to a variety of different databases and will automatically transform this data into a common format. As of May 2005, two spectroscopic data bases (JPL and CDMS) are periodically updated and combined on the server allowing rapid injection into the models. Access to bases giving collisional parameters is planned in the near future. At this time two models are available: a general Local Thermal Equilibrium model with a correction for the optical depth and a specialised model for comets written by J. Crovisier. Two working modes can be used: (1) a line-by-line mode that steps automatically from one transition of a given species to the next allowing a comparison between the predictions and the observations to be made for each line; (2) a sum mode which shows the convoluted spectra of a variety of species. For the ETL model it is possible to create interactively a rotational diagram to determine N and T for each

  9. Forensic Analysis of Windows Hosts Using UNIX-based Tools

    SciTech Connect

    Cory Altheide

    2004-07-19

    Many forensic examiners are introduced to UNIX-based forensic utilities when faced with investigating a UNIX-like operating system for the first time. They will use these utilities for this very specific task, because in many cases these tools are the only ones for the given job. For example, at the time of this writing, given a FreeBSD 5.x file system, the author's only choice is to use The Coroner's Toolkit running on FreeBSD 5.x. However, many of the same tools examiners use for the occasional UNIX-like system investigation are extremely capable when a Windows system is the target. Indeed, the Linux operating system itself can prove to be an extremely useful forensics platform with very little use of specialized forensics utilities at all.

  10. Principles and tools for collaborative entity-based intelligence analysis.

    PubMed

    Bier, Eric A; Card, Stuart K; Bodnar, John W

    2010-01-01

    Software tools that make it easier for analysts to collaborate as a natural part of their work will lead to better analysis that is informed by more perspectives. We are interested to know if software tools can be designed that support collaboration even as they allow analysts to find documents and organize information (including evidence, schemas, and hypotheses). We have modified the Entity Workspace system, described previously, to test such designs. We have evaluated the resulting design in both a laboratory study and a study where it is situated with an analysis team. In both cases, effects on collaboration appear to be positive. Key aspects of the design include an evidence notebook optimized for organizing entities (rather than text characters), information structures that can be collapsed and expanded, visualization of evidence that emphasizes events and documents (rather than emphasizing the entity graph), and a notification system that finds entities of mutual interest to multiple analysts. Long-term tests suggest that this approach can support both top-down and bottom-up styles of analysis. PMID:20075480

  11. PDAs as Lifelong Learning Tools: An Activity Theory Based Analysis

    ERIC Educational Resources Information Center

    Waycott, Jenny; Jones, Ann; Scanlon, Eileen

    2005-01-01

    This paper describes the use of an activity theory (AT) framework to analyze the ways that distance part time learners and mobile workers adapted and appropriated mobile devices for their activities and in turn how their use of these new tools changed the ways that they carried out their learning or their work. It is argued that there are two key…

  12. ATAMM analysis tool

    NASA Astrophysics Data System (ADS)

    Jones, Robert; Stoughton, John; Mielke, Roland

    1991-10-01

    Diagnostics software for analyzing Algorithm to Architecture Mapping Model (ATAMM) based concurrent processing systems is presented. ATAMM is capable of modeling the execution of large grain algorithms on distributed data flow architectures. The tool graphically displays algorithm activities and processor activities for evaluation of the behavior and performance of an ATAMM based system. The tool's measurement capabilities indicate computing speed, throughput, concurrency, resource utilization, and overhead. Evaluations are performed on a simulated system using the software tool. The tool is used to estimate theoretical lower bound performance. Analysis results are shown to be comparable to the predictions.

  13. ATAMM analysis tool

    NASA Technical Reports Server (NTRS)

    Jones, Robert; Stoughton, John; Mielke, Roland

    1991-01-01

    Diagnostics software for analyzing Algorithm to Architecture Mapping Model (ATAMM) based concurrent processing systems is presented. ATAMM is capable of modeling the execution of large grain algorithms on distributed data flow architectures. The tool graphically displays algorithm activities and processor activities for evaluation of the behavior and performance of an ATAMM based system. The tool's measurement capabilities indicate computing speed, throughput, concurrency, resource utilization, and overhead. Evaluations are performed on a simulated system using the software tool. The tool is used to estimate theoretical lower bound performance. Analysis results are shown to be comparable to the predictions.

  14. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  15. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  16. SDA-based diagnostic and analysis tools for Collider Run II

    SciTech Connect

    Bolshakov, T.B.; Lebrun, P.; Panacek, S.; Papadimitriou, V.; Slaughter, J.; Xiao, A.; /Fermilab

    2005-05-01

    Operating and improving the understanding of the Fermilab Accelerator Complex for the colliding beam experiments requires advanced software methods and tools. The Shot Data Analysis (SDA) has been developed to fulfill this need. Data from the Fermilab Accelerator Complex is stored in a relational database, and is served to programs and users via Web-based tools. Summary tables are systematically generated during and after a store. These tables (the Supertable, the Recomputed Emittances, the Recomputed Intensities and other tables) are discussed here.

  17. Tool and Task Analysis Guide for Vocational Welding (150 Tasks). Performance Based Vocational Education.

    ERIC Educational Resources Information Center

    John H. Hinds Area Vocational School, Elwood, IN.

    This book contains a task inventory, a task analysis of 150 tasks from that inventory, and a tool list for performance-based welding courses in the state of Indiana. The task inventory and tool list reflect 28 job titles found in Indiana. In the first part of the guide, tasks are listed by these domains: carbon-arc, electron beam, G.M.A.W., gas…

  18. MSP-Tool: a VBA-based software tool for the analysis of multispecimen paleointensity data

    NASA Astrophysics Data System (ADS)

    Monster, Marilyn; de Groot, Lennart; Dekkers, Mark

    2015-12-01

    The multispecimen protocol (MSP) is a method to estimate the Earth's magnetic field's past strength from volcanic rocks or archeological materials. By reducing the amount of heating steps and aligning the specimens parallel to the applied field, thermochemical alteration and multi-domain effects are minimized. We present a new software tool, written for Microsoft Excel 2010 in Visual Basic for Applications (VBA), that evaluates paleointensity data acquired using this protocol. In addition to the three ratios (standard, fraction-corrected and domain-state-corrected) calculated following Dekkers and Böhnel (2006) and Fabian and Leonhardt (2010) and a number of other parameters proposed by Fabian and Leonhardt (2010), it also provides several reliability criteria. These include an alteration criterion, whether or not the linear regression intersects the y axis within the theoretically prescribed range, and two directional checks. Overprints and misalignment are detected by isolating the remaining natural remanent magnetization (NRM) and the partial thermoremanent magnetization (pTRM) gained and comparing their declinations and inclinations. The NRM remaining and pTRM gained are then used to calculate alignment-corrected multispecimen plots. Data are analyzed using bootstrap statistics. The program was tested on lava samples that were given a full TRM and that acquired their pTRMs at angles of 0, 15, 30 and 90° with respect to their NRMs. MSP-Tool adequately detected and largely corrected these artificial alignment errors.

  19. HISTORICAL ANALYSIS, A VALUABLE TOOL IN COMMUNITY-BASED ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    A historical analysis of the ecological consequences of development can be a valuable tool in community-based environmental protection. These studies can engage the public in environmental issues and lead to informed decision making. Historical studies provide an understanding of...

  20. Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas

    2014-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054

  1. New Geant4 based simulation tools for space radiation shielding and effects analysis

    NASA Astrophysics Data System (ADS)

    Santina, G.; Nieminen, P.; Evansa, H.; Daly, E.; Lei, F.; Truscott, P. R.; Dyer, C. S.; Quaghebeur, B.; Heynderickx, D.

    2003-09-01

    We present here a set of tools for space applications based on the Geant4 simulation toolkit, developed for radiation shielding analysis as part of the European Space Agency (ESA) activities in the Geant4 collaboration. The Sector Shielding Analysis Tool (SSAT) and the Materials and Geometry Association (MGA) utility will first be described. An overview of the main features of the MUlti-LAyered Shielding SImulation Software tool (MULASSIS) will follow. The tool is specifically addressed to shielding optimization and effects analysis. A Java interface allows the use of MULASSIS by the space community over the World Wide Web, integrated in the widely used SPENVIS package. The analysis of the particle transport output provides automatically radiation fluence, ionising and NIEL dose and effects analysis. ESA is currently funding the porting of this tools to a lowcost parallel processor facility using the GRID technology under the ESA SpaceGRID initiative. Other Geant4 present and future projects will be presented related to the study of space environment effects on spacecrafts.

  2. Multiscale Multiphysics-Based Modeling and Analysis on the Tool Wear in Micro Drilling

    NASA Astrophysics Data System (ADS)

    Niu, Zhichao; Cheng, Kai

    2016-02-01

    In micro-cutting processes, process variables including cutting force, cutting temperature and drill-workpiece interfacing conditions (lubrication and interaction, etc.) significantly affect the tool wear in a dynamic interactive in-process manner. The resultant tool life and cutting performance directly affect the component surface roughness, material removal rate and form accuracy control, etc. In this paper, a multiscale multiphysics oriented approach to modeling and analysis is presented particularly on tooling performance in micro drilling processes. The process optimization is also taken account based on establishing the intrinsic relationship between process parameters and cutting performance. The modeling and analysis are evaluated and validated through well-designed machining trials, and further supported by metrology measurements and simulations. The paper is concluded with a further discussion on the potential and application of the approach for broad micro manufacturing purposes.

  3. Mobility analysis tool based on the fundamental principle of conservation of energy.

    SciTech Connect

    Spletzer, Barry Louis; Nho, Hyuchul C.; Salton, Jonathan Robert

    2007-08-01

    In the past decade, a great deal of effort has been focused in research and development of versatile robotic ground vehicles without understanding their performance in a particular operating environment. As the usage of robotic ground vehicles for intelligence applications increases, understanding mobility of the vehicles becomes critical to increase the probability of their successful operations. This paper describes a framework based on conservation of energy to predict the maximum mobility of robotic ground vehicles over general terrain. The basis of the prediction is the difference between traction capability and energy loss at the vehicle-terrain interface. The mission success of a robotic ground vehicle is primarily a function of mobility. Mobility of a vehicle is defined as the overall capability of a vehicle to move from place to place while retaining its ability to perform its primary mission. A mobility analysis tool based on the fundamental principle of conservation of energy is described in this document. The tool is a graphical user interface application. The mobility analysis tool has been developed at Sandia National Laboratories, Albuquerque, NM. The tool is at an initial stage of development. In the future, the tool will be expanded to include all vehicles and terrain types.

  4. HDAT: web-based high-throughput screening data analysis tools

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Hassan, Taimur; Rallo, Robert; Cohen, Yoram

    2013-01-01

    The increasing utilization of high-throughput screening (HTS) in toxicity studies of engineered nano-materials (ENMs) requires tools for rapid and reliable processing and analyses of large HTS datasets. In order to meet this need, a web-based platform for HTS data analyses tools (HDAT) was developed that provides statistical methods suitable for ENM toxicity data. As a publicly available computational nanoinformatics infrastructure, HDAT provides different plate normalization methods, various HTS summarization statistics, self-organizing map (SOM)-based clustering analysis, and visualization of raw and processed data using both heat map and SOM. HDAT has been successfully used in a number of HTS studies of ENM toxicity, thereby enabling analysis of toxicity mechanisms and development of structure-activity relationships for ENM toxicity. The online approach afforded by HDAT should encourage standardization of and future advances in HTS as well as facilitate convenient inter-laboratory comparisons of HTS datasets.

  5. OEXP Analysis Tools Workshop

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Wright, Robert L.; Badi, Deborah; Findlay, John T.

    1988-01-01

    This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions.

  6. A prototype of an interactive web-based risk analysis tool for floods and landslides

    NASA Astrophysics Data System (ADS)

    Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2015-04-01

    Within the framework of the European project CHANGES, we developed a prototype web-GIS based risk analysis tool for natural hazards, in particular for floods and landslides, based on open-source geospatial software and technologies. This tool is developed based on Boundless (Opengeo) framework and its client side SDK environment with customized plugins for the risk analysis and data management modules of the web based decision support platform. Free and open source components were applied: PostGIS spatial database, GeoServer and GeoWebCache for application servers with tile cache and GeoExt and OpenLayers for user interface development of the platform. The aim of the presented tool is to assist the experts (risk managers) in analyzing the impacts and consequences of a certain hazard event in the considered region as well as to support the responsible authorities and decision makers in making decisions for selection of risk management strategies to be implemented in the region. Within the platform, the users can provide (upload) the necessary maps and data such as hazard maps, elements at risk maps and vulnerability information. For the vulnerability component of the platform, the users can not only upload the vulnerability tables of a certain elements at risk for a given range of hazard intensity values but also create own vulnerability curves by giving the parameter values of a built-in vulnerability function of the platform. Based on these provided input information, the losses (amount of damages and number of people killed) of a certain hazard scenario are calculated on-the-fly and visualized interactively in the web-GIS interface of the platform. The annualized risk per year can also be obtained based on the combination of these calculated loss scenarios with different return periods of a hazard event. The application of the tool at a regional scale is demonstrated using one of the case study sites, Fella River of North Eastern Italy, of the CHANGES project.

  7. SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment.

    PubMed

    Sobolev, Vladimir; Eyal, Eran; Gerzon, Sergey; Potapov, Vladimir; Babor, Mariana; Prilusky, Jaime; Edelman, Marvin

    2005-07-01

    We describe a suite of SPACE tools for analysis and prediction of structures of biomolecules and their complexes. LPC/CSU software provides a common definition of inter-atomic contacts and complementarity of contacting surfaces to analyze protein structure and complexes. In the current version of LPC/CSU, analyses of water molecules and nucleic acids have been added, together with improved and expanded visualization options using Chime or Java based Jmol. The SPACE suite includes servers and programs for: structural analysis of point mutations (MutaProt); side chain modeling based on surface complementarity (SCCOMP); building a crystal environment and analysis of crystal contacts (CryCo); construction and analysis of protein contact maps (CMA) and molecular docking software (LIGIN). The SPACE suite is accessed at http://ligin.weizmann.ac.il/space. PMID:15980496

  8. A System Analysis Tool

    SciTech Connect

    CAMPBELL,PHILIP L.; ESPINOZA,JUAN

    2000-06-01

    In this paper we describe a tool for analyzing systems. The analysis is based on program slicing. It answers the following question for the software: if the value of a particular variable changes, what other variable values also change, and what is the path in between? program slicing was developed based on intra-procedure control and data flow. It has been expanded commercially to inter-procedure flow. However, we extend slicing to collections of programs and non-program entities, which we term multi-domain systems. The value of our tool is that an analyst can model the entirety of a system, not just the software, and we believe that this makes for a significant increase in power. We are building a prototype system.

  9. Access to microdata on the Internet: Web-based analysis and data subset extraction tools.

    PubMed

    Chung, Kyusuk; Mullner, Ross; Yang, Duckhye

    2002-12-01

    The Internet is increasingly being recognized as an invaluable component of education. At the college and university level, online databases and statistical tools for Web-based analysis and data subset extraction have become important instructional resources. These Internet resources enable students to formulate specific research hypotheses, identify relevant variables, and analyze large existing databases. This article describes three of these resources: the Federal Electronic Research and Review Extraction Tool (FERRET) of the U.S. Bureau of the Census, the Survey Documentation and Analysis (SDA) unit at the University of California, Berkley, and the Inter-University Consortium for Political and Social Research (ICPSR), which is housed at the University of Michigan. PMID:12385537

  10. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    PubMed Central

    Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M

    2006-01-01

    Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281

  11. Providing web-based tools for time series access and analysis

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Time series information is widely used in environmental change analyses and is also an essential information for stakeholders and governmental agencies. However, a challenging issue is the processing of raw data and the execution of time series analysis. In most cases, data has to be found, downloaded, processed and even converted in the correct data format prior to executing time series analysis tools. Data has to be prepared to use it in different existing software packages. Several packages like TIMESAT (Jönnson & Eklundh, 2004) for phenological studies, BFAST (Verbesselt et al., 2010) for breakpoint detection, and GreenBrown (Forkel et al., 2013) for trend calculations are provided as open-source software and can be executed from the command line. This is needed if data pre-processing and time series analysis is being automated. To bring both parts, automated data access and data analysis, together, a web-based system was developed to provide access to satellite based time series data and access to above mentioned analysis tools. Users of the web portal are able to specify a point or a polygon and an available dataset (e.g., Vegetation Indices and Land Surface Temperature datasets from NASA MODIS). The data is then being processed and provided as a time series CSV file. Afterwards the user can select an analysis tool that is being executed on the server. The final data (CSV, plot images, GeoTIFFs) is visualized in the web portal and can be downloaded for further usage. As a first use case, we built up a complimentary web-based system with NASA MODIS products for Germany and parts of Siberia based on the Earth Observation Monitor (www.earth-observation-monitor.net). The aim of this work is to make time series analysis with existing tools as easy as possible that users can focus on the interpretation of the results. References: Jönnson, P. and L. Eklundh (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30

  12. Swift Science Analysis Tools

    NASA Astrophysics Data System (ADS)

    Marshall, F. E.; Swift Team Team

    2003-05-01

    Swift is an autonomous, multiwavelength observatory selected by NASA to study gamma-ray bursts (GRBs) and their afterglows. Its Burst Alert Telescope (BAT) is a large coded mask instrument that will image GRBs in the 15 to 150 keV band. The X-ray Telescope (XRT) focuses X-rays in the 0.2 to 10 keV band onto CCDs, and the co-aligned Ultra-Violet/Optical Telescope (UVOT) has filters and grisms for low-resolution spectroscopy. The Swift team is developing mission-specific tools for processing the telemetry into FITS files and for calibrating and selecting the data for further analysis with such mission-independent tools as XIMAGE and XSPEC. The FTOOLS-based suite of tools will be released to the community before launch with additional updates after launch. Documentation for the tools and standard receipes for their use will be available on the Swift Science Center (SSC) Web site (http://swiftsc.gsfc.nasa.gov), and the SSC will provide user assistance with an e-mail help desk. After the verification phase of the mission, all data will be available to the community as soon as it is processed in the Swift Data Center (SDC). Once all the data for an observation is available, the data will be transferred to the HEASARC and data centers in England and Italy. The data can then be searched and accessed using standard tools such as Browse. Before this transfer the quick-look data will be available on an ftp site at the SDC. The SSC will also provide documentation and simulation tools in support of the Swift Guest Investigator program.

  13. CSTACK: A Web-Based Stacking Analysis Tool for Deep/Wide Chandra Surveys

    NASA Astrophysics Data System (ADS)

    Miyaji, Takamitsu; Griffiths, R. E.; C-COSMOS Team

    2008-03-01

    Stacking analysis is a strong tool to probe the average X-ray properties of X-ray faint objects as a class, each of which are fainter than the detection limit as an individual source. This is especially the case for deep/wide surveys with Chandra, with its superb spatial resolution and the existence of survey data on the fields with extensive multiwavelength coverages. We present an easy-to use web-based tool (http://saturn.phys.cmu.edu/cstack), which enables users to perform a stacking analysis on a number of Chandra survey fields.Currently supported are C-COSMOS, Extended Chandra Deep Field South (proprietary access, password protected), Chandra Deep Fields South, and North (Guest access user=password=guest). For an input list of positions (e.g. galaxies selected from an optical catalog), the WWW tool returns stacked Chandra images in soft and hard bands and statistical analysis results including bootstrap histograms. We present running examples on the C-COSMOS data. The next version will also include the use of off-axis dependent aperture size, automatic exclusions of resolved sources, and histograms of stacks on random positions.

  14. Stack Trace Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2008-01-16

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet free based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a single call prefix tree.more » The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.« less

  15. Stack Trace Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree.more » The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.« less

  16. Stack Trace Analysis Tool

    SciTech Connect

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  17. Stack Trace Analysis Tool

    SciTech Connect

    2008-01-16

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet free based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  18. A web-based tool for groundwater mapping and drought analysis

    NASA Astrophysics Data System (ADS)

    Christensen, S.; Burns, M.; Jones, N.; Strassberg, G.

    2012-12-01

    In 2011-2012, the state of Texas saw the worst one-year drought on record. Fluctuations in gravity measured by GRACE satellites indicate that as much as 100 cubic kilometers of water was lost during this period. Much of this came from reservoirs and shallow soil moisture, but a significant amount came from aquifers. In response to this crisis, a Texas Drought Technology Steering Committee (TDTSC) consisting of academics and water managers was formed to develop new tools and strategies to assist the state in monitoring, predicting, and responding to drought events. In this presentation, we describe one of the tools that was developed as part of this effort. When analyzing the impact of drought on groundwater levels, it is fairly common to examine time series data at selected monitoring wells. However, accurately assessing impacts and trends requires both spatial and temporal analysis involving the development of detailed water level maps at various scales. Creating such maps in a flexible and rapid fashion is critical for effective drought analysis, but can be challenging due to the massive amounts of data involved and the processing required to generate such maps. Furthermore, wells are typically not sampled at the same points in time, and so developing a water table map for a particular date requires both spatial and temporal interpolation of water elevations. To address this challenge, a Cloud-based water level mapping system was developed for the state of Texas. The system is based on the Texas Water Development Board (TWDB) groundwater database, but can be adapted to use other databases as well. The system involves a set of ArcGIS workflows running on a server with a web-based front end and a Google Earth plug-in. A temporal interpolation geoprocessing tool was developed to estimate the piezometric heads for all wells in a given region at a specific date using a regression analysis. This interpolation tool is coupled with other geoprocessing tools to filter

  19. Demand Response Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  20. Demand Response Analysis Tool

    SciTech Connect

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  1. Immunoassay based water quality analysis: A new tool for drinking water supply management

    SciTech Connect

    Kostyshyn, C.R.; Brown, W.; Hervey, E.; Hull, C.

    1996-11-01

    The recent availability of enzyme-linked immunosorbent assay (ELISA) tests for the analysis of organic environmental contaminants provides drinking water utility managers and operators with a new tool for managing treatment operations and monitoring source watersheds. Immunoassay technology permits rapid, inexpensive and accurate in-plant testing of many SDWA regulated organic contaminants at concentrations well below established MCL`s. Analytical testing which would not be practicable due to the high cost or long turnaround time limitations of conventional testing methods is now being performed using immunoassay based analysis. Water quality data generated using immunoassay based methods are being utilized by drinking water utilities as an integral part of source watershed management programs, process operations optimization efforts, pro-active raw and finished water testing programs, and flood and incident response management.

  2. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. PMID:25548139

  3. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  4. GEPAS, a web-based tool for microarray data analysis and interpretation

    PubMed Central

    Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Huerta-Cepas, Jaime; Minguez, Pablo; Alloza, Eva; Al-Shahrour, Fátima; Vegas-Azcárate, Susana; Goetz, Stefan; Escobar, Pablo; Garcia-Garcia, Francisco; Conesa, Ana; Montaner, David; Dopazo, Joaquín

    2008-01-01

    Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org. PMID:18508806

  5. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  6. Neutron multiplicity analysis tool

    SciTech Connect

    Stewart, Scott L

    2010-01-01

    I describe the capabilities of the EXCOM (EXcel based COincidence and Multiplicity) calculation tool which is used to analyze experimental data or simulated neutron multiplicity data. The input to the program is the count-rate data (including the multiplicity distribution) for a measurement, the isotopic composition of the sample and relevant dates. The program carries out deadtime correction and background subtraction and then performs a number of analyses. These are: passive calibration curve, known alpha and multiplicity analysis. The latter is done with both the point model and with the weighted point model. In the current application EXCOM carries out the rapid analysis of Monte Carlo calculated quantities and allows the user to determine the magnitude of sample perturbations that lead to systematic errors. Neutron multiplicity counting is an assay method used in the analysis of plutonium for safeguards applications. It is widely used in nuclear material accountancy by international (IAEA) and national inspectors. The method uses the measurement of the correlations in a pulse train to extract information on the spontaneous fission rate in the presence of neutrons from ({alpha},n) reactions and induced fission. The measurement is relatively simple to perform and gives results very quickly ({le} 1 hour). By contrast, destructive analysis techniques are extremely costly and time consuming (several days). By improving the achievable accuracy of neutron multiplicity counting, a nondestructive analysis technique, it could be possible to reduce the use of destructive analysis measurements required in safeguards applications. The accuracy of a neutron multiplicity measurement can be affected by a number of variables such as density, isotopic composition, chemical composition and moisture in the material. In order to determine the magnitude of these effects on the measured plutonium mass a calculational tool, EXCOM, has been produced using VBA within Excel. This

  7. Draper Station Analysis Tool

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip

    2011-01-01

    Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.

  8. RSAT: regulatory sequence analysis tools.

    PubMed

    Thomas-Chollier, Morgane; Sand, Olivier; Turatsinze, Jean-Valéry; Janky, Rekin's; Defrance, Matthieu; Vervisch, Eric; Brohée, Sylvain; van Helden, Jacques

    2008-07-01

    The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published. PMID:18495751

  9. SearchLight: a freely available web-based quantitative spectral analysis tool (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prabhat, Prashant; Peet, Michael; Erdogan, Turan

    2016-03-01

    In order to design a fluorescence experiment, typically the spectra of a fluorophore and of a filter set are overlaid on a single graph and the spectral overlap is evaluated intuitively. However, in a typical fluorescence imaging system the fluorophores and optical filters are not the only wavelength dependent variables - even the excitation light sources have been changing. For example, LED Light Engines may have a significantly different spectral response compared to the traditional metal-halide lamps. Therefore, for a more accurate assessment of fluorophore-to-filter-set compatibility, all sources of spectral variation should be taken into account simultaneously. Additionally, intuitive or qualitative evaluation of many spectra does not necessarily provide a realistic assessment of the system performance. "SearchLight" is a freely available web-based spectral plotting and analysis tool that can be used to address the need for accurate, quantitative spectral evaluation of fluorescence measurement systems. This tool is available at: http://searchlight.semrock.com/. Based on a detailed mathematical framework [1], SearchLight calculates signal, noise, and signal-to-noise ratio for multiple combinations of fluorophores, filter sets, light sources and detectors. SearchLight allows for qualitative and quantitative evaluation of the compatibility of filter sets with fluorophores, analysis of bleed-through, identification of optimized spectral edge locations for a set of filters under specific experimental conditions, and guidance regarding labeling protocols in multiplexing imaging assays. Entire SearchLight sessions can be shared with colleagues and collaborators and saved for future reference. [1] Anderson, N., Prabhat, P. and Erdogan, T., Spectral Modeling in Fluorescence Microscopy, http://www.semrock.com (2010).

  10. Physics analysis tools

    SciTech Connect

    Kunz, P.F.

    1991-04-01

    There are many tools used in analysis in High Energy Physics (HEP). They range from low level tools such as a programming language to high level such as a detector simulation package. This paper will discuss some aspects of these tools that are directly associated with the process of analyzing HEP data. Physics analysis tools cover the whole range from the simulation of the interactions of particles to the display and fitting of statistical data. For purposes of this paper, the stages of analysis is broken down to five main stages. The categories are also classified as areas of generation, reconstruction, and analysis. Different detector groups use different terms for these stages thus it is useful to define what is meant by them in this paper. The particle generation stage is a simulation of the initial interaction, the production of particles, and the decay of the short lived particles. The detector simulation stage simulates the behavior of an event in a detector. The track reconstruction stage does pattern recognition on the measured or simulated space points, calorimeter information, etc., and reconstructs track segments of the original event. The event reconstruction stage takes the reconstructed tracks, along with particle identification information and assigns masses to produce 4-vectors. Finally the display and fit stage displays statistical data accumulated in the preceding stages in the form of histograms, scatter plots, etc. The remainder of this paper will consider what analysis tools are available today, and what one might expect in the future. In each stage, the integration of the tools with other stages and the portability of the tool will be analyzed.

  11. SOURCE EXPLORER: Towards Web Browser Based Tools for Astronomical Source Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Hayashi, S.; Gopu, A.

    2014-05-01

    As a new generation of large format, high-resolution imagers come online (ODI, DECAM, LSST, etc.) we are faced with the daunting prospect of astronomical images containing upwards of hundreds of thousands of identifiable sources. Visualizing and interacting with such large datasets using traditional astronomical tools appears to be unfeasible, and a new approach is required. We present here a method for the display and analysis of arbitrarily large source datasets using dynamically scaling levels of detail, enabling scientists to rapidly move from large-scale spatial overviews down to the level of individual sources and everything in-between. Based on the recognized standards of HTML5+JavaScript, we enable observers and archival users to interact with their images and sources from any modern computer without having to install specialized software. We demonstrate the ability to produce large-scale source lists from the images themselves, as well as overlaying data from publicly available source ( 2MASS, GALEX, SDSS, etc.) or user provided source lists. A high-availability cluster of computational nodes allows us to produce these source maps on demand and customized based on user input. User-generated source lists and maps are persistent across sessions and are available for further plotting, analysis, refinement, and culling.

  12. Application of Motif-Based Tools on Evolutionary Analysis of Multipartite Single-Stranded DNA Viruses

    PubMed Central

    Wang, Hsiang-Iu; Chang, Chih-Hung; Lin, Po-Heng; Fu, Hui-Chuan; Tang, ChuanYi; Yeh, Hsin-Hung

    2013-01-01

    Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV) (consisting of 6 genome components) and Faba bean necrotic yellows virus (FBNYV) (consisting of 8 genome components). Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses. PMID:23936517

  13. A fully automated trabecular bone structural analysis tool based on T2* -weighted magnetic resonance imaging.

    PubMed

    Kraiger, Markus; Martirosian, Petros; Opriessnig, Peter; Eibofner, Frank; Rempp, Hansjoerg; Hofer, Michael; Schick, Fritz; Stollberger, Rudolf

    2012-03-01

    One major source affecting the precision of bone structure analysis in quantitative magnetic resonance imaging (qMRI) is inter- and intraoperator variability, inherent in delineating and tracing regions of interest along longitudinal studies. In this paper an automated analysis tool, featuring bone marrow segmentation, region of interest generation, and characterization of cancellous bone of articular joints is presented. In evaluation studies conducted at the knee joint the novel analysis tool significantly decreased the standard error of measurement and improved the sensitivity in detecting minor structural changes. It further eliminated the need of time-consuming user interaction, and thereby increasing reproducibility. PMID:21862288

  14. Graphical Contingency Analysis Tool

    SciTech Connect

    2010-03-02

    GCA is a visual analytic tool for power grid contingency analysis to provide more decision support for power grid operations. GCA allows power grid operators to quickly gain situational awareness of power grid by converting large amounts of operational data to graphic domain with a color contoured map; identify system trend and foresee and discern emergencies by performing trending analysis; identify the relationships between system configurations and affected assets by conducting clustering analysis; and identify the best action by interactively evaluate candidate actions.

  15. Web-Based Model Visualization Tools to Aid in Model Optimization and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Alder, J.; van Griensven, A.; Meixner, T.

    2003-12-01

    Individuals applying hydrologic models have a need for a quick easy to use visualization tools to permit them to assess and understand model performance. We present here the Interactive Hydrologic Modeling (IHM) visualization toolbox. The IHM utilizes high-speed Internet access, the portability of the web and the increasing power of modern computers to provide an online toolbox for quick and easy model result visualization. This visualization interface allows for the interpretation and analysis of Monte-Carlo and batch model simulation results. Often times a given project will generate several thousands or even hundreds of thousands simulations. This large number of simulations creates a challenge for post-simulation analysis. IHM's goal is to try to solve this problem by loading all of the data into a database with a web interface that can dynamically generate graphs for the user according to their needs. IHM currently supports: a global samples statistics table (e.g. sum of squares error, sum of absolute differences etc.), top ten simulations table and graphs, graphs of an individual simulation using time step data, objective based dotty plots, threshold based parameter cumulative density function graphs (as used in the regional sensitivity analysis of Spear and Hornberger) and 2D error surface graphs of the parameter space. IHM is ideal for the simplest bucket model to the largest set of Monte-Carlo model simulations with a multi-dimensional parameter and model output space. By using a web interface, IHM offers the user complete flexibility in the sense that they can be anywhere in the world using any operating system. IHM can be a time saving and money saving alternative to spending time producing graphs or conducting analysis that may not be informative or being forced to purchase or use expensive and proprietary software. IHM is a simple, free, method of interpreting and analyzing batch model results, and is suitable for novice to expert hydrologic modelers.

  16. Review and comparison of web- and disk-based tools for residentialenergy analysis

    SciTech Connect

    Mills, Evan

    2002-08-25

    There exist hundreds of building energy software tools, both web- and disk-based. These tools exhibit considerable range in approach and creativity, with some being highly specialized and others able to consider the building as a whole. However, users are faced with a dizzying array of choices and, often, conflicting results. The fragmentation of development and deployment efforts has hampered tool quality and market penetration. The purpose of this review is to provide information for defining the desired characteristics of residential energy tools, and to encourage future tool development that improves on current practice. This project entails (1) creating a framework for describing possible technical and functional characteristics of such tools, (2) mapping existing tools onto this framework, (3) exploring issues of tool accuracy, and (4) identifying ''best practice'' and strategic opportunities for tool design. evaluated 50 web-based residential calculators, 21 of which we regard as ''whole-house'' tools(i.e., covering a range of end uses). Of the whole-house tools, 13 provide open-ended energy calculations, 5 normalize the results to actual costs (a.k.a ''bill-disaggregation tools''), and 3 provide both options. Across the whole-house tools, we found a range of 5 to 58 house-descriptive features (out of 68 identified in our framework) and 2 to 41 analytical and decision-support features (55 possible). We also evaluated 15 disk-based residential calculators, six of which are whole-house tools. Of these tools, 11 provide open-ended calculations, 1 normalizes the results to actual costs, and 3 provide both options. These tools offered ranges of 18 to 58 technical features (70 possible) and 10 to 40 user- and decision-support features (56 possible). The comparison shows that such tools can employ many approaches and levels of detail. Some tools require a relatively small number of well-considered inputs while others ask a myriad of questions and still miss key

  17. Portfolio Analysis Tool

    NASA Technical Reports Server (NTRS)

    Barth, Tim; Zapata, Edgar; Benjamin, Perakath; Graul, Mike; Jones, Doug

    2005-01-01

    Portfolio Analysis Tool (PAT) is a Web-based, client/server computer program that helps managers of multiple projects funded by different customers to make decisions regarding investments in those projects. PAT facilitates analysis on a macroscopic level, without distraction by parochial concerns or tactical details of individual projects, so that managers decisions can reflect the broad strategy of their organization. PAT is accessible via almost any Web-browser software. Experts in specific projects can contribute to a broad database that managers can use in analyzing the costs and benefits of all projects, but do not have access for modifying criteria for analyzing projects: access for modifying criteria is limited to managers according to levels of administrative privilege. PAT affords flexibility for modifying criteria for particular "focus areas" so as to enable standardization of criteria among similar projects, thereby making it possible to improve assessments without need to rewrite computer code or to rehire experts, and thereby further reducing the cost of maintaining and upgrading computer code. Information in the PAT database and results of PAT analyses can be incorporated into a variety of ready-made or customizable tabular or graphical displays.

  18. DataView: A Tutorial Tool for Data Analysis. Template-based Spike Sorting and Frequency Analysis.

    PubMed Central

    Heitler, William J.

    2007-01-01

    DataView is a Windows program for viewing and analyzing digital data derived from analog signals using A/D acquisition systems. It is primarily designed for research neuroscientists, but its low (or zero) cost makes it a suitable tool for giving students hands-on experience of analysis techniques. It is supplied with many examples of pre-recorded data and also has facilities to allow tutors to use their own - or indeed their students’ - experimental results as the dataset for analysis. This article illustrates the use of DataView with a brief tutorial on template-based spike sorting and frequency analysis. The DataView manual contains detailed instructions and sample datasets for a wide range of other analytical and data-manipulation techniques. PMID:23493818

  19. Development of an analysis tool for cloud base height and visibility

    NASA Astrophysics Data System (ADS)

    Umdasch, Sarah; Reinhold, Steinacker; Manfred, Dorninger; Markus, Kerschbaum; Wolfgang, Pöttschacher

    2014-05-01

    The meteorological variables cloud base height (CBH) and horizontal atmospheric visibility (VIS) at surface level are of vital importance for safety and effectiveness in aviation. Around 20% of all civil aviation accidents in the USA from 2003 to 2007 were due to weather related causes, around 18% of which were owing to decreased visibility or ceiling (main CBH). The aim of this study is to develop a system generating quality-controlled gridded analyses of the two parameters based on the integration of various kinds of observational data. Upon completion, the tool is planned to provide guidance for nowcasting during take-off and landing as well as for flights operated under visual flight rules. Primary input data consists of manual as well as instrumental observation of CBH and VIS. In Austria, restructuring of part of the standard meteorological stations from human observation to automatic measurement of VIS and CBH is currently in progress. As ancillary data, satellite derived products can add 2-dimensional information, e.g. Cloud Type by NWC SAF (Nowcasting Satellite Application Facilities) MSG (Meteosat Second Generation). Other useful available data are meteorological surface measurements (in particular of temperature, humidity, wind and precipitation), radiosonde, radar and high resolution topography data. A one-year data set is used to study the spatial and weather-dependent representativeness of the CBH and VIS measurements. The VERA (Vienna Enhanced Resolution Analysis) system of the Institute of Meteorology and Geophysics of the University of Vienna provides the framework for the analysis development. Its integrated "Fingerprint" technique allows the insertion of empirical prior knowledge and ancillary information in the form of spatial patterns. Prior to the analysis, a quality control of input data is performed. For CBH and VIS, quality control can consist of internal consistency checks between different data sources. The possibility of two

  20. Linking Nurses with Evidence-Based Information via Social Media Tools: An Analysis of the Literature.

    PubMed

    Carter-Templeton, Heather; Krishnamurthy, Mangala; Nelson, Ramona

    2016-01-01

    Many health professional believe that social media tools can play a pivotal role in sharing and facilitating the use of evidence-based information with patients and other healthcare providers. By understanding how social media tools function, healthcare professionals can capitalize on these interactive platforms to improve the health of others. However, limited information exists to guide nurse educators in preparing healthcare professionals to engage patients or share evidence-based information among peers. The purpose of this literature review was to determine the extent to which professional development programs using social media for sharing evidence-based information have reported their research and/or experience in the published literature. PMID:27332455

  1. SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph

    2015-01-01

    This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.

  2. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  3. Logistics Process Analysis ToolProcess Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2008-03-31

    LPAT is the resulting integrated system between ANL-developed Enhanced Logistics Intra Theater Support Tool (ELIST) sponsored by SDDC-TEA and the Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the process Anlysis Tool (PAT) which evolved into a stand=-along tool for detailed process analysis at a location. Combined with ELIST, an inter-installation logistics component wasmore » added to enable users to define large logistical agent-based models without having to program. PAT is the evolution of an ANL-developed software system called Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the Process Analysis Tool(PAT) which evolved into a stand-alone tool for detailed process analysis at a location (sponsored by the SDDC-TEA).« less

  4. Heliostat cost-analysis tool

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Chang, R. E.

    1981-10-01

    A heliostat cost analysis tool (HELCAT) that processes manufacturing transportation, and installation cost data was developed which provides a consistent structure for cost analyses. The HELCAT calculates a representation product price based on direct input data and various economic, financial, and accounting assumptions. The characteristics of this tool and its initial application in the evaluation of second generation heliostat cost estimates are discussed. A set of nominal economic and financial parameters is also suggested.

  5. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  6. PCard Data Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2005-04-01

    The Procurement Card data analysis and monitoring tool enables due-diligence review using predefined user-created queries and reports. The system tracks individual compliance emails. More specifically, the tool: - Helps identify exceptions or questionable and non-compliant purchases, - Creates audit random sample on request, - Allows users to create and run new or ad-hoc queries and reports, - Monitors disputed charges, - Creates predefined Emails to Cardholders requesting documentation and/or clarification, - Tracks audit status, notes,more » Email status (date sent, response), audit resolution.« less

  7. PCard Data Analysis Tool

    SciTech Connect

    Hilts, Jim

    2005-04-01

    The Procurement Card data analysis and monitoring tool enables due-diligence review using predefined user-created queries and reports. The system tracks individual compliance emails. More specifically, the tool: - Helps identify exceptions or questionable and non-compliant purchases, - Creates audit random sample on request, - Allows users to create and run new or ad-hoc queries and reports, - Monitors disputed charges, - Creates predefined Emails to Cardholders requesting documentation and/or clarification, - Tracks audit status, notes, Email status (date sent, response), audit resolution.

  8. DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)

    SciTech Connect

    Not Available

    2013-04-01

    This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

  9. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool

    PubMed Central

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-01-01

    Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080

  10. Graphical Contingency Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2010-03-02

    GCA is a visual analytic tool for power grid contingency analysis to provide more decision support for power grid operations. GCA allows power grid operators to quickly gain situational awareness of power grid by converting large amounts of operational data to graphic domain with a color contoured map; identify system trend and foresee and discern emergencies by performing trending analysis; identify the relationships between system configurations and affected assets by conducting clustering analysis; and identifymore » the best action by interactively evaluate candidate actions.« less

  11. Transmission Planning Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identifymore » weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.« less

  12. Transmission Planning Analysis Tool

    SciTech Connect

    2015-06-23

    Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identify weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysis and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.

  13. Analysis/Design Tool

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Excelerator II, developed by INTERSOLV, Inc., provides a complete environment for rules-based expert systems. The software incorporates NASA's C Language Integrated Production System (CLIPS), a shell for constructing expert systems. Excelerator II provides complex verification and transformation routines based on matching that is simple and inexpensive. *Excelerator II was sold to SELECT Software Tools in June 1997 and is now called SELECT Excelerator. SELECT has assumed full support and maintenance for the product line.

  14. STEAM: a software tool based on empirical analysis for micro electro mechanical systems

    NASA Astrophysics Data System (ADS)

    Devasia, Archana; Pasupuleti, Ajay; Sahin, Ferat

    2006-03-01

    In this research a generalized software framework that enables accurate computer aided design of MEMS devices is developed. The proposed simulation engine utilizes a novel material property estimation technique that generates effective material properties at the microscopic level. The material property models were developed based on empirical analysis and the behavior extraction of standard test structures. A literature review is provided on the physical phenomena that govern the mechanical behavior of thin films materials. This survey indicates that the present day models operate under a wide range of assumptions that may not be applicable to the micro-world. Thus, this methodology is foreseen to be an essential tool for MEMS designers as it would develop empirical models that relate the loading parameters, material properties, and the geometry of the microstructures with its performance characteristics. This process involves learning the relationship between the above parameters using non-parametric learning algorithms such as radial basis function networks and genetic algorithms. The proposed simulation engine has a graphical user interface (GUI) which is very adaptable, flexible, and transparent. The GUI is able to encompass all parameters associated with the determination of the desired material property so as to create models that provide an accurate estimation of the desired property. This technique was verified by fabricating and simulating bilayer cantilevers consisting of aluminum and glass (TEOS oxide) in our previous work. The results obtained were found to be very encouraging.

  15. Development of a management tool for reservoirs in Mediterranean environments based on uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Gómez-Beas, R.; Moñino, A.; Polo, M. J.

    2012-05-01

    In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.

  16. A Semantic Provenance-aware Expert Advisory System in a Web-based Science Data Analysis Tool

    NASA Astrophysics Data System (ADS)

    Zednik, S.; Lynnes, C.; Fox, P. A.; Leptoukh, G. G.; Pan, J.

    2010-12-01

    Web-based science analysis and processing tools allow users to access, analyze, and generate visualizations of data while alleviating users from having to directly manage complex data processing operations. These tools provide value by streamlining the data analysis process, but usually shield users from details of the data processing steps, algorithm assumptions, caveats, etc. Correct interpretation of the final analysis requires user understanding of how data has been generated and processed and what potential biases, anomalies, or errors may have been introduced. By providing services that leverage data lineage provenance and domain-expertise, expert systems can be built to aid the user in understanding data sources, processing, and the suitability for use of products generated by the tools. As an example of such a system, we describe a semantic, provenance-aware, expert-knowledge advisory system applied to an existing web-based Earth science data analysis tool (e.g. Giovanni from NASA/GSFC). First we introduce our integrated semantic data model, which is comprised of provenance, data processing, and science domain ontologies. Then we describe how we developed an initial set of expert rules, to reason over our data model and discover conditions in the processing provenance that could lead to anomalies or errors in the processing results. Finally we will highlight how knowledge from the semantic data model and inferences of the advisory expert ruleset may be presented to the user to assist in user understanding of the suitability of products generated by the analysis tool.

  17. Contamination Analysis Tools

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    This talk presents 3 different tools developed recently for contamination analysis:HTML QCM analyzer: runs in a web browser, and allows for data analysis of QCM log filesJava RGA extractor: can load in multiple SRS.ana files and extract pressure vs. time dataC++ Contamination Simulation code: 3D particle tracing code for modeling transport of dust particulates and molecules. Uses residence time to determine if molecules stick. Particulates can be sampled from IEST-STD-1246 and be accelerated by aerodynamic forces.

  18. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities

  19. Flight Operations Analysis Tool

    NASA Technical Reports Server (NTRS)

    Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca

    2006-01-01

    Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.

  20. Frequency Response Analysis Tool

    SciTech Connect

    Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.

    2014-12-31

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  1. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  2. Reconstruction of Huygens' gedanken experiment and measurements based on video analysis tools

    NASA Astrophysics Data System (ADS)

    Malgieri, Massimiliano; Onorato, Pasquale; Mascheretti, Paolo; De Ambrosis, Anna

    2013-09-01

    In this paper we describe the practical realization and the analysis of a thought experiment devised by Christiaan Huygens, which was pivotal in his derivation of the formula for the radius of gyration of a compound pendulum. Measurements are realized by recording the experiment with a digital camera, and using a video analysis and modelling software tool to process and extract information from the acquired videos. Using this setup, detailed quantitative comparisons between measurements and theoretical predictions can be carried out, focusing on many relevant topics in the undergraduate physics curriculum, such as the ‘radius of gyration’, conservation of energy, moment of inertia, constraint and reaction forces, and the behaviour of the centre of mass.

  3. Climate Data Analysis Tools

    Energy Science and Technology Software Center (ESTSC)

    2009-12-01

    Climate Data Analysis Tools (CDAT) is a software infrastructure that uses an object-oriented scripting language to link together separate software subsystems and packages thus forming an integrated environment for solving model diagnosis problems, The power of the system comes from Python and its ability to seamlissly interconnect software. Python provides a general purpose and full-featured scripting language with a variety of user interfaces including command-line interaction, stand-alone scripts (applications) and fraphical user interfaces (GUI). Themore » CDAT subsystems, implemented as modules, provide access to and management of gridded data (Climate Data Management Systems or CDMS); large-array numerical operations (Numerical Python); and visualization (Visualization and Control System or VCS).« less

  4. Climate Data Analysis Tools

    SciTech Connect

    2009-12-01

    Climate Data Analysis Tools (CDAT) is a software infrastructure that uses an object-oriented scripting language to link together separate software subsystems and packages thus forming an integrated environment for solving model diagnosis problems, The power of the system comes from Python and its ability to seamlissly interconnect software. Python provides a general purpose and full-featured scripting language with a variety of user interfaces including command-line interaction, stand-alone scripts (applications) and fraphical user interfaces (GUI). The CDAT subsystems, implemented as modules, provide access to and management of gridded data (Climate Data Management Systems or CDMS); large-array numerical operations (Numerical Python); and visualization (Visualization and Control System or VCS).

  5. A-MADMAN: Annotation-based microarray data meta-analysis tool

    PubMed Central

    Bisognin, Andrea; Coppe, Alessandro; Ferrari, Francesco; Risso, Davide; Romualdi, Chiara; Bicciato, Silvio; Bortoluzzi, Stefania

    2009-01-01

    Background Publicly available datasets of microarray gene expression signals represent an unprecedented opportunity for extracting genomic relevant information and validating biological hypotheses. However, the exploitation of this exceptionally rich mine of information is still hampered by the lack of appropriate computational tools, able to overcome the critical issues raised by meta-analysis. Results This work presents A-MADMAN, an open source web application which allows the retrieval, annotation, organization and meta-analysis of gene expression datasets obtained from Gene Expression Omnibus. A-MADMAN addresses and resolves several open issues in the meta-analysis of gene expression data. Conclusion A-MADMAN allows i) the batch retrieval from Gene Expression Omnibus and the local organization of raw data files and of any related meta-information, ii) the re-annotation of samples to fix incomplete, or otherwise inadequate, metadata and to create user-defined batches of data, iii) the integrative analysis of data obtained from different Affymetrix platforms through custom chip definition files and meta-normalization. Software and documentation are available on-line at . PMID:19563634

  6. A Tool To Support Failure Mode And Effects Analysis Based On Causal Modelling And Reasoning

    NASA Astrophysics Data System (ADS)

    Underwood, W. E.; Laib, S. L.

    1987-05-01

    A prototype knowledge-based system has been developed that supports Failure Mode & Effects Analysis (FMEA). The knowledge base consists of causal models of components and a representation for coupling these components into assemblies and systems. The causal models are qualitative models. They allow reasoning as to whether variables are increasing, decreasing or steady. The analysis strategies used by the prototype allow it to determine the effects of failure modes on the function of the part, the failure effect on the assembly the part is contained in, and the effect on the subsystem containing the assembly.

  7. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    NASA Astrophysics Data System (ADS)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  8. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    NASA Astrophysics Data System (ADS)

    Sánchez Pineda, A.

    2015-12-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  9. FluxCTTX: A LIMS-based tool for management and analysis of cytotoxicity assays data

    PubMed Central

    2015-01-01

    Background Cytotoxicity assays have been used by researchers to screen for cytotoxicity in compound libraries. Researchers can either look for cytotoxic compounds or screen "hits" from initial high-throughput drug screens for unwanted cytotoxic effects before investing in their development as a pharmaceutical. These assays may be used as an alternative to animal experimentation and are becoming increasingly important in modern laboratories. However, the execution of these assays in large scale and different laboratories requires, among other things, the management of protocols, reagents, cell lines used as well as the data produced, which can be a challenge. The management of all this information is greatly improved by the utilization of computational tools to save time and guarantee quality. However, a tool that performs this task designed specifically for cytotoxicity assays is not yet available. Results In this work, we have used a workflow based LIMS -- the Flux system -- and the Together Workflow Editor as a framework to develop FluxCTTX, a tool for management of data from cytotoxicity assays performed at different laboratories. The main work is the development of a workflow, which represents all stages of the assay and has been developed and uploaded in Flux. This workflow models the activities of cytotoxicity assays performed as described in the OECD 129 Guidance Document. Conclusions FluxCTTX presents a solution for the management of the data produced by cytotoxicity assays performed at Interlaboratory comparisons. Its adoption will contribute to guarantee the quality of activities in the process of cytotoxicity tests and enforce the use of Good Laboratory Practices (GLP). Furthermore, the workflow developed is complete and can be adapted to other contexts and different tests for management of other types of data. PMID:26696462

  10. Discourse-Based Methods across Texts and Semiotic Modes: Three Tools for Micro-Rhetorical Analysis

    ERIC Educational Resources Information Center

    Oddo, John

    2013-01-01

    As the scope of rhetorical inquiry broadens to cover intersemiotic and intertextual phenomena, scholars are increasingly in need of new, defensible analytic procedures. Several scholars have suggested that methods of discourse analysis could enhance rhetorical criticism. Here, I introduce a discourse-based method that is empirical, delicate, and…

  11. What can management theories offer evidence-based practice? A comparative analysis of measurement tools for organisational context

    PubMed Central

    French, Beverley; Thomas, Lois H; Baker, Paula; Burton, Christopher R; Pennington, Lindsay; Roddam, Hazel

    2009-01-01

    Background Given the current emphasis on networks as vehicles for innovation and change in health service delivery, the ability to conceptualise and measure organisational enablers for the social construction of knowledge merits attention. This study aimed to develop a composite tool to measure the organisational context for evidence-based practice (EBP) in healthcare. Methods A structured search of the major healthcare and management databases for measurement tools from four domains: research utilisation (RU), research activity (RA), knowledge management (KM), and organisational learning (OL). Included studies were reports of the development or use of measurement tools that included organisational factors. Tools were appraised for face and content validity, plus development and testing methods. Measurement tool items were extracted, merged across the four domains, and categorised within a constructed framework describing the absorptive and receptive capacities of organisations. Results Thirty measurement tools were identified and appraised. Eighteen tools from the four domains were selected for item extraction and analysis. The constructed framework consists of seven categories relating to three core organisational attributes of vision, leadership, and a learning culture, and four stages of knowledge need, acquisition of new knowledge, knowledge sharing, and knowledge use. Measurement tools from RA or RU domains had more items relating to the categories of leadership, and acquisition of new knowledge; while tools from KM or learning organisation domains had more items relating to vision, learning culture, knowledge need, and knowledge sharing. There was equal emphasis on knowledge use in the different domains. Conclusion If the translation of evidence into knowledge is viewed as socially mediated, tools to measure the organisational context of EBP in healthcare could be enhanced by consideration of related concepts from the organisational and management sciences

  12. Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of

  13. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  14. G-SESAME: web tools for GO-term-based gene similarity analysis and knowledge discovery

    PubMed Central

    Du, Zhidian; Li, Lin; Chen, Chin-Fu; Yu, Philip S.; Wang, James Z.

    2009-01-01

    We have developed a set of online tools for measuring the semantic similarities of Gene Ontology (GO) terms and the functional similarities of gene products, and for further discovering biomedical knowledge from the GO database. The tools have been used for about 6.9 million times by 417 institutions from 43 countries since October 2006. The online tools are available at: http://bioinformatics.clemson.edu/G-SESAME. PMID:19491312

  15. Shot Planning and Analysis Tools

    SciTech Connect

    Casey, A; Beeler, R; Conder, A; Fallejo, R; Flegel, M; Hutton, M; Jancaitis, K; Lakamsani, V; Potter, D; Reisdorf, S; Tappero, J; Whitman, P; Carr, W; Liao, Z

    2011-07-25

    Shot planning and analysis tools (SPLAT) integrate components necessary to help achieve a high over-all operational efficiency of the National Ignition Facility (NIF) by combining near and long-term shot planning, final optics demand and supply loops, target diagnostics planning, and target fabrication requirements. Currently, the SPLAT project is comprised of two primary tool suites for shot planning and optics demand. The shot planning component provides a web-based interface to selecting and building a sequence of proposed shots for the NIF. These shot sequences, or 'lanes' as they are referred to by shot planners, provide for planning both near-term shots in the Facility and long-term 'campaigns' in the months and years to come. The shot planning capabilities integrate with the Configuration Management Tool (CMT) for experiment details and the NIF calendar for availability. Future enhancements will additionally integrate with target diagnostics planning and target fabrication requirements tools. The optics demand component is built upon predictive modelling of maintenance requirements on the final optics as a result of the proposed shots assembled during shot planning. The predictive models integrate energetics from a Laser Performance Operations Model (LPOM), the status of the deployed optics as provided by the online Final Optics Inspection system, and physics-based mathematical 'rules' that predict optic flaw growth and new flaw initiations. These models are then run on an analytical cluster comprised of forty-eight Linux-based compute nodes. Results from the predictive models are used to produce decision-support reports in the areas of optics inspection planning, optics maintenance exchanges, and optics beam blocker placement advisories. Over time, the SPLAT project will evolve to provide a variety of decision-support and operation optimization tools.

  16. Tiling Microarray Analysis Tools

    SciTech Connect

    Nix, Davis Austin

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons), 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)

  17. Common Bolted Joint Analysis Tool

    NASA Technical Reports Server (NTRS)

    Imtiaz, Kauser

    2011-01-01

    Common Bolted Joint Analysis Tool (comBAT) is an Excel/VB-based bolted joint analysis/optimization program that lays out a systematic foundation for an inexperienced or seasoned analyst to determine fastener size, material, and assembly torque for a given design. Analysts are able to perform numerous what-if scenarios within minutes to arrive at an optimal solution. The program evaluates input design parameters, performs joint assembly checks, and steps through numerous calculations to arrive at several key margins of safety for each member in a joint. It also checks for joint gapping, provides fatigue calculations, and generates joint diagrams for a visual reference. Optimum fastener size and material, as well as correct torque, can then be provided. Analysis methodology, equations, and guidelines are provided throughout the solution sequence so that this program does not become a "black box:" for the analyst. There are built-in databases that reduce the legwork required by the analyst. Each step is clearly identified and results are provided in number format, as well as color-coded spelled-out words to draw user attention. The three key features of the software are robust technical content, innovative and user friendly I/O, and a large database. The program addresses every aspect of bolted joint analysis and proves to be an instructional tool at the same time. It saves analysis time, has intelligent messaging features, and catches operator errors in real time.

  18. Web-Based Phylogenetic Assignment Tool for Analysis of Terminal Restriction Fragment Length Polymorphism Profiles of Microbial Communities

    PubMed Central

    Kent, Angela D.; Smith, Dan J.; Benson, Barbara J.; Triplett, Eric W.

    2003-01-01

    Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library. PMID:14602639

  19. Tiling Microarray Analysis Tools

    Energy Science and Technology Software Center (ESTSC)

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons),more » 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)« less

  20. FSSC Science Tools: Pulsar Analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2010-01-01

    This slide presentation reviews the typical pulsar analysis, giving tips for screening of the data, the use of time series analysis, and utility tools. Specific information about analyzing Vela data is reviewed.

  1. Failure Environment Analysis Tool (FEAT)

    NASA Technical Reports Server (NTRS)

    Lawler, D. G.

    1991-01-01

    Information is given in viewgraph form on the Failure Environment Analysis Tool (FEAT), a tool designed to demonstrate advanced modeling and analysis techniques to better understand and capture the flow of failures within and between elements of the Space Station Freedom (SSF) and other large complex systems. Topics covered include objectives, development background, the technical approach, SSF baseline integration, and FEAT growth and evolution.

  2. Image-based pupil plane characterization via principal component analysis for EUVL tools

    NASA Astrophysics Data System (ADS)

    Levinson, Zac; Burbine, Andrew; Verduijn, Erik; Wood, Obert; Mangat, Pawitter; Goldberg, Kenneth A.; Benk, Markus P.; Wojdyla, Antoine; Smith, Bruce W.

    2016-03-01

    We present an approach to image-based pupil plane amplitude and phase characterization using models built with principal component analysis (PCA). PCA is a statistical technique to identify the directions of highest variation (principal components) in a high-dimensional dataset. A polynomial model is constructed between the principal components of through-focus intensity for the chosen binary mask targets and pupil amplitude or phase variation. This method separates model building and pupil characterization into two distinct steps, thus enabling rapid pupil characterization following data collection. The pupil plane variation of a zone-plate lens from the Semiconductor High-NA Actinic Reticle Review Project (SHARP) at Lawrence Berkeley National Laboratory will be examined using this method. Results will be compared to pupil plane characterization using a previously proposed methodology where inverse solutions are obtained through an iterative process involving least-squares regression.

  3. Pushover Analysis Methodologies: A Tool For Limited Damage Based Design Of Structure For Seismic Vibration

    NASA Astrophysics Data System (ADS)

    Dutta, Sekhar Chandra; Chakroborty, Suvonkar; Raychaudhuri, Anusrita

    Vibration transmitted to the structure during earthquake may vary in magnitude over a wide range. Design methodology should, therefore, enumerates steps so that structures are able to survive in the event of even severe ground motion. However, on account of economic reason, the strengths can be provided to the structures in such a way that the structure remains in elastic range in low to moderate range earthquake and is allowed to undergo inelastic deformation in severe earthquake without collapse. To implement this design philosophy a rigorous nonlinear dynamic analysis is needed to be performed to estimate the inelastic demands. Furthermore, the same is time consuming and requires expertise to judge the results obtained from the same. In this context, the present paper discusses and demonstrates an alternative simple method known as Pushover method, which can be easily used by practicing engineers bypassing intricate nonlinear dynamic analysis and can be thought of as a substitute of the latter. This method is in the process of development and is increasingly becoming popular for its simplicity. The objective of this paper is to emphasize and demonstrate the basic concept, strength and ease of this state of the art methodology for regular use in design offices in performance based seismic design of structures.

  4. Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety.

    PubMed

    Mogol, Burçe Ataç; Gökmen, Vural

    2014-05-01

    Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. PMID:24288215

  5. NCC: A Physics-Based Design and Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    2000-01-01

    The National Combustion Code (NCC) is an integrated system of computer codes for physics-based design and analysis of combustion systems. It uses unstructured meshes and runs on parallel computing platforms. The NCC is composed of a set of distinct yet closely related modules. They are: (1) a gaseous flow module solving 3-D Navier-Stokes equations; (2) a turbulence module containing the non-linear k-epsilon models; (3) a chemistry module using either the conventional reduced kinetics approach of solving species equations or the Intrinsic Low Dimensional Manifold (ILDM) kinetics approach of table looking up in conjunction with solving the equations of the progressive variables; (4) a turbulence-chemistry interaction module including the option of solving the joint probability density function (PDF) for species and enthalpy; and (5) a spray module for solving the liquid phase equations. In early 1995, an industry-government team was formed to develop the NCC. In July 1998, the baseline beta version was completed and presented in two NCC sessions at the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 1998. An overview of this baseline beta version was presented at the NASA HPCCP/CAS Workshop 98, August 1998. Since then, the effort has been focused on the streamlining, validation, and enhancement of the th baseline beta version. The progress is presented in two NCC sessions at the AIAA 38 Aerospace Sciences Meeting & Exhibit, January 2000. At this NASA HPCCP/CAS Workshop 2000, an overview of the NCC papers presented at the AIAA 38 th Aerospace Sciences Meeting & Exhibit is presented, with emphasis on the reduction of analysis time of simulating the (gaseous) reacting flows in full combustors. In addition, results of NCC simulation of a modern turbofan combustor will also be reported.

  6. A wavelet spectral analysis tool for multipoint space and ground-based observations of ULF wave activity

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Balasis, G.; Georgiou, M.; Papadimitriou, C.; Zesta, E.; Anastasiadis, A.

    2012-01-01

    Magnetospheric ULF waves influence radiation belt dynamics and are therefore of particular relevance for space weather nowcasting and forecasting efforts. We have used novel algorithms based on wavelet spectral methods to analyze multipoint observations of ULF wave activity by the Cluster and THEMIS missions and by ground-based magnetometers. Wavelet analysis is becoming a common tool for analyzing localized variations of power within a time series. By decomposing a time series into time-frequency space, we are able to determine both the dominant modes of variability and how these modes vary in time. The advantage of analyzing a signal with wavelets as the analyzing kernel is that it enables us to study features of the signal locally with a detail matched to their scale. Owing to its unique time-frequency localization, wavelet analysis is especially useful for signals that are non-stationary, have short-lived transient components, have features at different scales, or have singularities. The results are rather promising for the development of automatic identification tools, which will allow the detection and classification of various categories of ULF waves from multipoint magnetospheric observations according to well-defined criteria.

  7. IKOS: A Framework for Static Analysis based on Abstract Interpretation (Tool Paper)

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.; Laserna, Jorge A.; Shi, Nija; Venet, Arnaud Jean

    2014-01-01

    The RTCA standard (DO-178C) for developing avionic software and getting certification credits includes an extension (DO-333) that describes how developers can use static analysis in certification. In this paper, we give an overview of the IKOS static analysis framework that helps developing static analyses that are both precise and scalable. IKOS harnesses the power of Abstract Interpretation and makes it accessible to a larger class of static analysis developers by separating concerns such as code parsing, model development, abstract domain management, results management, and analysis strategy. The benefits of the approach is demonstrated by a buffer overflow analysis applied to flight control systems.

  8. An Agro-Climatological Early Warning Tool Based on the Google Earth Engine to Support Regional Food Security Analysis

    NASA Astrophysics Data System (ADS)

    Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.

  9. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone.

    PubMed

    Jaecques, S V N; Van Oosterwyck, H; Muraru, L; Van Cleynenbreugel, T; De Smet, E; Wevers, M; Naert, I; Vander Sloten, J

    2004-04-01

    Load-bearing tissues, like bone, can be replaced by engineered tissues or tissue constructs. For the success of this treatment, a profound understanding is needed of the mechanical properties of both the native bone tissue and the construct. Also, the interaction between mechanical loading and bone regeneration and adaptation should be well understood. This paper demonstrates that microfocus computer tomography (microCT) based finite element modelling (FEM) can have an important contribution to the field of functional bone engineering as a biomechanical analysis tool to quantify the stress and strain state in native bone tissue and in tissue constructs. Its value is illustrated by two cases: (1) in vivo microCT-based FEM for the analysis of peri-implant bone adaptation and (2) design of biomechanically optimised bone scaffolds. The first case involves a combined animal experimental and numerical study, in which the peri-implant bone adaptive response is monitored by means of in vivo microCT scanning. In the second case microCT-based finite element models were created of native trabecular bone and bone scaffolds and a mechanical analysis of both structures was performed. Procedures to optimise the mechanical properties of bone scaffolds, in relation to those of native trabecular bone are discussed. PMID:14697870

  10. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet.

    PubMed

    Nowinski, Wieslaw L; Belov, Dmitry

    2003-09-01

    The article introduces an atlas-assisted method and a tool called the Cerefy Neuroradiology Atlas (CNA), available over the Internet for neuroradiology and human brain mapping. The CNA contains an enhanced, extended, and fully segmented and labeled electronic version of the Talairach-Tournoux brain atlas, including parcelated gyri and Brodmann's areas. To our best knowledge, this is the first online, publicly available application with the Talairach-Tournoux atlas. The process of atlas-assisted neuroimage analysis is done in five steps: image data loading, Talairach landmark setting, atlas normalization, image data exploration and analysis, and result saving. Neuroimage analysis is supported by a near-real-time, atlas-to-data warping based on the Talairach transformation. The CNA runs on multiple platforms; is able to process simultaneously multiple anatomical and functional data sets; and provides functions for a rapid atlas-to-data registration, interactive structure labeling and annotating, and mensuration. It is also empowered with several unique features, including interactive atlas warping facilitating fine tuning of atlas-to-data fit, navigation on the triplanar formed by the image data and the atlas, multiple-images-in-one display with interactive atlas-anatomy-function blending, multiple label display, and saving of labeled and annotated image data. The CNA is useful for fast atlas-assisted analysis of neuroimage data sets. It increases accuracy and reduces time in localization analysis of activation regions; facilitates to communicate the information on the interpreted scans from the neuroradiologist to other clinicians and medical students; increases the neuroradiologist's confidence in terms of anatomy and spatial relationships; and serves as a user-friendly, public domain tool for neuroeducation. At present, more than 700 users from five continents have subscribed to the CNA. PMID:14527569

  11. STRESSED SEBATES: A TRAIT-BASED EVALUATION OF CLIMATE RISKS TO ROCKFISHES OF THE NORTHEASTERN PACIFIC USING THE COASTAL BIOGEOGRAPHIC RISK ANALYSIS TOOL (CBRAT)

    EPA Science Inventory

    The EPA and USGS have developed a framework to evaluate the relative vulnerability of near-coastal species to impacts of climate change. This framework is implemented in a web-based tool, the Coastal Biogeographic Risk Analysis Tool (CBRAT). We evaluated the vulnerability of the ...

  12. Stressed Sebastes: A Trait-Based Evaluation of Climate Risks to Rockfishes of the Northeastern Pacific Using the Coastal Biogeographic Risk Analysis Tool (CBRAT)

    EPA Science Inventory

    The EPA and USGS have developed a framework to evaluate the relative vulnerability of near-coastal species to impacts of climate change. This framework was implemented in a web-based tool, the Coastal Biogeographic Risk Analysis Tool (CBRAT). We evaluated the vulnerability of the...

  13. Atlas Distributed Analysis Tools

    NASA Astrophysics Data System (ADS)

    de La Hoz, Santiago Gonzalez; Ruiz, Luis March; Liko, Dietrich

    2008-06-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale. Up to 10000 jobs were processed in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC File Catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using Grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the Grid; it provides job splitting and merging, and includes automated job monitoring and output retrieval.

  14. Flow Analysis Tool White Paper

    NASA Technical Reports Server (NTRS)

    Boscia, Nichole K.

    2012-01-01

    Faster networks are continually being built to accommodate larger data transfers. While it is intuitive to think that implementing faster networks will result in higher throughput rates, this is often not the case. There are many elements involved in data transfer, many of which are beyond the scope of the network itself. Although networks may get bigger and support faster technologies, the presence of other legacy components, such as older application software or kernel parameters, can often cause bottlenecks. Engineers must be able to identify when data flows are reaching a bottleneck that is not imposed by the network and then troubleshoot it using the tools available to them. The current best practice is to collect as much information as possible on the network traffic flows so that analysis is quick and easy. Unfortunately, no single method of collecting this information can sufficiently capture the whole endto- end picture. This becomes even more of a hurdle when large, multi-user systems are involved. In order to capture all the necessary information, multiple data sources are required. This paper presents a method for developing a flow analysis tool to effectively collect network flow data from multiple sources and provide that information to engineers in a clear, concise way for analysis. The purpose of this method is to collect enough information to quickly (and automatically) identify poorly performing flows along with the cause of the problem. The method involves the development of a set of database tables that can be populated with flow data from multiple sources, along with an easyto- use, web-based front-end interface to help network engineers access, organize, analyze, and manage all the information.

  15. Evaluating the Evidence Base of Video Analysis: A Special Education Teacher Development Tool

    ERIC Educational Resources Information Center

    Nagro, Sarah A.; Cornelius, Kyena E.

    2013-01-01

    Special education teacher development is continually studied to determine best practices for improving teacher quality and promoting student learning. Video analysis is commonly included in teacher development targeting both teacher thinking and practice intended to improve learning opportunities for students. Positive research findings support…

  16. Sandia PUF Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2014-06-11

    This program is a graphical user interface for measuring and performing inter-active analysis of physical unclonable functions (PUFs). It is intended for demonstration and education purposes. See license.txt for license details. The program features a PUF visualization that demonstrates how signatures differ between PUFs and how they exhibit noise over repeated measurements. A similarity scoreboard shows the user how close the current measurement is to the closest chip signatures in the database. Other metrics suchmore » as average noise and inter-chip Hamming distances are presented to the user. Randomness tests published in NIST SP 800-22 can be computed and displayed. Noise and inter-chip histograms for the sample of PUFs and repeated PUF measurements can be drawn.« less

  17. Sandia PUF Analysis Tool

    SciTech Connect

    2014-06-11

    This program is a graphical user interface for measuring and performing inter-active analysis of physical unclonable functions (PUFs). It is intended for demonstration and education purposes. See license.txt for license details. The program features a PUF visualization that demonstrates how signatures differ between PUFs and how they exhibit noise over repeated measurements. A similarity scoreboard shows the user how close the current measurement is to the closest chip signatures in the database. Other metrics such as average noise and inter-chip Hamming distances are presented to the user. Randomness tests published in NIST SP 800-22 can be computed and displayed. Noise and inter-chip histograms for the sample of PUFs and repeated PUF measurements can be drawn.

  18. DanteR: an extensible R-based tool for quantitative analysis of -omics data

    SciTech Connect

    Taverner, Thomas; Karpievitch, Yuliya; Polpitiya, Ashoka D.; Brown, Joseph N.; Dabney, Alan R.; Anderson, Gordon A.; Smith, Richard D.

    2012-09-15

    Motivation: The size and complex nature of LC-MS proteomics data sets motivates development of specialized software for statistical data analysis and exploration. We present DanteR, a graphical R package that features extensive statistical and diagnostic functions for quantitative proteomics data analysis, including normalization, imputation, hypothesis testing, interactive visualization and peptide-to-protein rollup. More importantly, users can easily extend the existing functionality by including their own algorithms under the Add-On tab. Availability: DanteR and its associated user guide are available for download at http://omics.pnl.gov/software/. For Windows, a single click automatically installs DanteR along with the R programming environment. For Linux and Mac OS X, users must first install R and then follow instructions on the DanteR web site for package installation.

  19. Structured Assessment Approach: a microcomputer-based insider-vulnerability analysis tool

    SciTech Connect

    Patenaude, C.J.; Sicherman, A.; Sacks, I.J.

    1986-01-01

    The Structured Assessment Approach (SAA) was developed to help assess the vulnerability of safeguards systems to insiders in a staged manner. For physical security systems, the SAA identifies possible diversion paths which are not safeguarded under various facility operating conditions and insiders who could defeat the system via direct access, collusion or indirect tampering. For material control and accounting systems, the SAA identifies those who could block the detection of a material loss or diversion via data falsification or equipment tampering. The SAA, originally desinged to run on a mainframe computer, has been converted to run on a personal computer. Many features have been added to simplify and facilitate its use for conducting vulnerability analysis. For example, the SAA input, which is a text-like data file, is easily readable and can provide documentation of facility safeguards and assumptions used for the analysis.

  20. Web-based tools for the analysis of TAOS data and much more

    NASA Astrophysics Data System (ADS)

    Ricci, D.; Sprimont, P.-G.; Ayala, C.; Ramón-Fox, F. G.; Michel, R.; Navarro, S.; Wang, S.-Y.; Zhang, Z.-W.; Lehner, M. J.; Nicastro, L.; Reyes-Ruiz, M.

    2014-12-01

    We suggest a new web-based approach for browsing and visualizing data produced by a network of telescopes, such as those of the ongoing TAOS and the forthcoming TAOS II projects. We propose a modern client-side technology and we present two examples based on two software packages developed for different kinds of server-side database approaches. In spite our examples are specific for the browsing of TAOS light curves, the software is coded in a way to be suitable for the use in several types of astronomical projects.

  1. VCAT: Visual Crosswalk Analysis Tool

    SciTech Connect

    Cleland, Timothy J.; Forslund, David W.; Cleland, Catherine A.

    2012-08-31

    VCAT is a knowledge modeling and analysis tool. It was synthesized from ideas in functional analysis, business process modeling, and complex network science. VCAT discovers synergies by analyzing natural language descriptions. Specifically, it creates visual analytic perspectives that capture intended organization structures, then overlays the serendipitous relationships that point to potential synergies within an organization or across multiple organizations.

  2. Femtosecond laser ablation-based mass spectrometry: An ideal tool for stoichiometric analysis of thin films

    PubMed Central

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-01-01

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T′-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations. PMID:26285795

  3. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE PAGESBeta

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T´-La2CuO4 to demonstrate themore » capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  4. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    SciTech Connect

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T´-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.

  5. APL@Voro: a Voronoi-based membrane analysis tool for GROMACS trajectories.

    PubMed

    Lukat, Gunther; Krüger, Jens; Sommer, Björn

    2013-11-25

    APL@Voro is a new program developed to aid in the analysis of GROMACS trajectories of lipid bilayer simulations. It can read a GROMACS trajectory file, a PDB coordinate file, and a GROMACS index file to create a two-dimensional geometric representation of a bilayer. Voronoi diagrams and Delaunay triangulations--generated for different selection models of lipids--support the analysis of the bilayer. The values calculated on the geometric structures can be visualized in a user-friendly interactive environment and, then, plotted and exported to different file types. APL@Voro supports complex bilayers with a mix of various lipids and proteins. For the calculation of the projected area per lipid, a modification of the well-known Voronoi approach is presented as well as the presentation of a new approach for including atoms into an existing triangulation. The application of the developed software is discussed for three example systems simulated with GROMACS. The program is written in C++, is open source, and is available free of charge. PMID:24175728

  6. Internet-Based Software Tools for Analysis and Processing of LIDAR Point Cloud Data via the OpenTopography Portal

    NASA Astrophysics Data System (ADS)

    Nandigam, V.; Crosby, C. J.; Baru, C.; Arrowsmith, R.

    2009-12-01

    LIDAR is an excellent example of the new generation of powerful remote sensing data now available to Earth science researchers. Capable of producing digital elevation models (DEMs) more than an order of magnitude higher resolution than those currently available, LIDAR data allows earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible, yet essential for their appropriate representation. Along with these high-resolution datasets comes an increase in the volume and complexity of data that the user must efficiently manage and process in order for it to be scientifically useful. Although there are expensive commercial LIDAR software applications available, processing and analysis of these datasets are typically computationally inefficient on the conventional hardware and software that is currently available to most of the Earth science community. We have designed and implemented an Internet-based system, the OpenTopography Portal, that provides integrated access to high-resolution LIDAR data as well as web-based tools for processing of these datasets. By using remote data storage and high performance compute resources, the OpenTopography Portal attempts to simplify data access and standard LIDAR processing tasks for the Earth Science community. The OpenTopography Portal allows users to access massive amounts of raw point cloud LIDAR data as well as a suite of DEM generation tools to enable users to generate custom digital elevation models to best fit their science applications. The Cyberinfrastructure software tools for processing the data are freely available via the portal and conveniently integrated with the data selection in a single user-friendly interface. The ability to run these tools on powerful Cyberinfrastructure resources instead of their own labs provides a huge advantage in terms of performance and compute power. The system also encourages users to explore data processing methods and the

  7. Integrating Reliability Analysis with a Performance Tool

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  8. Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes.

    PubMed

    Claypool, Joshua T; Raman, D Raj

    2013-12-01

    By using cost correlations and standard scale-factors, a spreadsheet-based early-stage cost estimation tool was developed. Named BioPET (Biorenewables Process Evaluation Tool), this tool allows users to specify up to seven primary unit operations--fermentation, separation, three catalytic stages, and purification--along with key parameters for each. BioPET then computes an estimated minimum selling price for the pathway. Model validation was conducted by selecting three molecules (ethanol, succinic acid, and adipic acid), and comparing BioPET's results to literature values and to results from a commercial process design tool. BioPET produced virtually identical prices to the process design tool, although the costs were not identically distributed amongst the categories. BioPET produced estimates that were within 40% of other literature values at low feedstock costs, and within 5% at high feedstock costs. PMID:24041977

  9. Development of a virtual tool for the quantification and the analysis of soil erosion in olive orchards based on RUSLE

    NASA Astrophysics Data System (ADS)

    Marín, Víctor; Taguas, Encarnación V.; Redel, María Dolores; Gómez, Jose A.

    2013-04-01

    Erosion rates above 30 t ha-1 yr-1 have been measured in hilly agricultural regions such as Andalusia in Southern Spain, associated to orchard crops (Gómez et al., 2008). In this region, there are 1.48 Mha of olive groves (CAP, 2007), which are essential in terms of income, employment and landscape. The acquisition of training and experience in modelling soil erosion is difficult by the conventional system teaching for students as well as specific technicians. This paper presents a telematic training/analysis tool, CREO (Calculator of Rates of Erosion in Olive crops/ Calculadora RUSLE para Erosión en Olivar), to quantify erosion rates in olive grove areas based on the Revised Universal Soil Loss Equation (RUSLE; Renard et al., 1997) and on specific information published on soil losses and soil characteristics in olive orchards in Southern Spain. The tool has been programmed with Matlab R2008a from MathWorks Inc. (USA), although it could be used as an executable program in Spanish and English language by interested users. It consists of seven menus with visual material where different sources, databases and methodologies are presented to quantify soil rates (A = R.K.LS.C.P) by the calculation of six factors.A is computed in t ha-1 yr-1; R is the rainfall erosivity factor (MJ mm ha-1.h-1 yr-1); K represents the soil erodibility (t ha h ha-1 MJ-1 mm-1); L is the slope length factor and S is the slope gradient factor (dimensionless); C is a cover management factor (dimensionless) and P is a support practice factor (dimensionless). Different equations and methodologies can be selected by the user for the calculation of each factor while recommendations and advice can be showed for the suitable use of the tool. It is expected that CREO was a valuable helpful tool in environmental studies associated to olive orchard land use and its further use allows a better understanding of the interaction among the different factors involved, and better access to available

  10. Assessment of HTGR Helium Compressor Analysis Tool Based on Newton-Raphson Numerical Application to Through-flow Analysis

    SciTech Connect

    Ji Hwan Kim; Hyeun Min Kim; Hee Cheon NO

    2006-07-01

    This study describes the development of a computer program for analyzing the off-design performance of axial flow helium compressors, which is one of the major concerns for the power conversion system of a high temperature gas-cooled reactor (HTGR). The compressor performance has been predicted by the aerodynamic analysis of meridional flow with allowances for losses. The governing equations have been derived from Euler turbomachine equation and the streamline curvature method, and then they have been merged into linearized equations based on the Newton-Raphson numerical method. The effect of viscosity is considered by empirical correlations to introduce entropy rises caused by primary loss sources. Use of the method has been illustrated by applying it to a 20-stage helium compressor of the GTHTR300 plant. As a result, the flow throughout the stages of the compressor has been predicted and the compressor characteristics have been also investigated according to the design specification. The program results show much better stability and good convergence with respect to other through-flow methods, and good agreement with the compressor performance map provided by JAEA. (authors)

  11. Data Mining and Knowledge Discovery in Gaia survey: GUASOM, an analysis tool based on Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Manteiga, Minia; Dafonte, Jose Carlos; Ulla, Ana; Alvarez, Marco Antonio; Garabato, Daniel; Fustes, Diego

    2015-08-01

    Gaia, the astrometric cornerstone mission of the European Space Agency (ESA) was successfully launched in December 2013. In June 2014 Gaia started its scientific operations phase scanning the sky with the different instruments on board. Gaia was designed to measure positions, parallaxes and motions to the microarcsec level, thus providing the first highly accurate 6-D map of about a thousand million objects of the Milky Way. A vast community of astronomers are looking forward to the delivery of the promise of the first non-biased survey of the entire sky down to magnitude 20.We present GUASOM a data mining tool designed for knowledge discovery in large astronomical spectrophotometric archives, that was developed in the framework of Gaia DPAC (Data Processing and Analysis Consocium). Our tool is based on a type of unsupervised learning Artificial Neural Networks named Self-organizing maps (SOMs).SOMs are used to organize the information in clusters of objects, as homogeneously as possible according to their spectral energy distributions, and to project them onto a 2D grid where the data structure can be visualized. Each cluster has a representative, called prototype which is a virtual pattern that better represents or resembles the set of input patterns belonging to such a cluster. Prototypes make easier the task of determining the physical nature of the objects populating each cluster. Our algorithm has been tested on SDSS observations and theoretical spectral libraries covering a wide sample of astronomical objects.Self-organizing maps permit the grouping and visualization of big amount of data for which there is no a priori knowledge..GUASOM provides a useful toolbox for data visualization and crossmatching. To this effect, we have used SIMBAD catalog to perform astrometric crossmatching with a sample of SDSS classification outliers, seeking for identifications.

  12. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms

    PubMed Central

    2010-01-01

    Background An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Results Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. Conclusions GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions

  13. PhenoDB: a new web-based tool for the collection, storage, and analysis of phenotypic features.

    PubMed

    Hamosh, Ada; Sobreira, Nara; Hoover-Fong, Julie; Sutton, V Reid; Boehm, Corinne; Schiettecatte, François; Valle, David

    2013-04-01

    To interpret whole exome/genome sequence data for clinical and research purposes, comprehensive phenotypic information, knowledge of pedigree structure, and results of previous clinical testing are essential. With these requirements in mind and to meet the needs of the Centers for Mendelian Genomics project, we have developed PhenoDB (http://phenodb.net), a secure, Web-based portal for entry, storage, and analysis of phenotypic and other clinical information. The phenotypic features are organized hierarchically according to the major headings and subheadings of the Online Mendelian Inheritance in Man (OMIM®) clinical synopses, with further subdivisions according to structure and function. Every string allows for a free-text entry. All of the approximately 2,900 features use the preferred term from Elements of Morphology and are fully searchable and mapped to the Human Phenotype Ontology and Elements of Morphology. The PhenoDB allows for ascertainment of relevant information from a case in a family or cohort, which is then searchable by family, OMIM number, phenotypic feature, mode of inheritance, genes screened, and so on. The database can also be used to format phenotypic data for submission to dbGaP for appropriately consented individuals. PhenoDB was built using Django, an open source Web development tool, and is freely available through the Johns Hopkins McKusick-Nathans Institute of Genetic Medicine (http://phenodb.net). PMID:23378291

  14. Microcomputer based simulation of coal preparation plants: a planning and performance analysis tool for operating personnel in the coal industry

    SciTech Connect

    Chaves, M.M.

    1983-01-01

    The performance of a coal preparation plant can be simulated using an existing process simulation program and a large mainframe computer. Large computers, however, are not common in a preparation plant environment. The objective of this study was to transfer the simulation technology from a large scale mainframe computer environment to a small scale microcomputer environment. This was accomplished by logically decomposing and physically restructuring the existing program; adding interactive data entry/revision modules; providing a series of modules to control the execution of the individual programs; and adding the facility to review summary output on-line. The completed project was assessed by representatives from industry, government, and academia. The assessors state that the microcomputer based simulator is a valuable planning and analysis tool for design and operations engineers in the coal industry. The simulator created during this project utilized the microcomputer technolgy which was available in 1981-1982. Since that time, technological advances in the field of microcomputers have appeared in the marketplace. These advances involve extended memory capacities, higher density storage disks and faster execution times.

  15. Who Values Information from a Health Plan Internet-Based Decision Tool and Why: A Demographic and Utilization Analysis

    PubMed Central

    Chen, Song; Karaca-Mandic, Pinar; Levin, Regina

    2012-01-01

    Objectives The aim of this study was to investigate factors associated with utilization of health plan Internet-based decision tools. Data Sources and Study Setting Enrollment, claims, plan design, and web transaction data during 2008 provided by a national health insurer for 253,398 subscribers from 919 employers. Study Design Multivariate models of the effects of demographic, health, employer, and plan benefit design characteristics on the use of the tool and its individual function categories. Data Extraction Methods Subscribers, who were either an individual member or a family, were included if at least one family member had 12 months of coverage in 2008. Members older than 65 and those with multiple insurance carriers were excluded. Principal Findings Higher education, higher income, younger age, female gender, higher co-morbidity risk, prevalence of chronic conditions, Caucasian race, and English as the primary language were positively associated with using the tool. Plan benefit characteristics such as free preventive coverage, higher deductible, moderate coinsurance rate, family coverage, and enrollment in health savings accounts were also associated with higher likelihood of using the tool. Conclusions Insurers provide consumers information on cost efficiency, quality, and wellness through Internet-based decision tools, but more effort is needed to reach certain demographics. PMID:22091487

  16. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  17. Grid Stiffened Structure Analysis Tool

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.

  18. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1993-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  19. Failure environment analysis tool applications

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Wadsworth, David B.

    1994-01-01

    Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.

  20. Dynamic Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  1. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data

    PubMed Central

    Matuszewski, Damian J.; Wählby, Carolina

    2016-01-01

    Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s) for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler—a new software tool that reduces per-cell measurements to population statistics. The software imports measurements from a simple text file, visualizes population distributions in a compact and comprehensive way, and can create gates for subpopulation classes based on control samples. We validate the tool by showing how PopulationProfiler can be used to analyze the effect of drugs that disturb the cell cycle, and compare the results to those obtained with flow cytometry. PMID:26987120

  2. mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes.

    PubMed

    Shao, Yucheng; He, Xinyi; Harrison, Ewan M; Tai, Cui; Ou, Hong-Yu; Rajakumar, Kumar; Deng, Zixin

    2010-07-01

    mGenomeSubtractor performs an mpiBLAST-based comparison of reference bacterial genomes against multiple user-selected genomes for investigation of strain variable accessory regions. With parallel computing architecture, mGenomeSubtractor is able to run rapid BLAST searches of the segmented reference genome against multiple subject genomes at the DNA or amino acid level within a minute. In addition to comparison of protein coding sequences, the highly flexible sliding window-based genome fragmentation approach offered can be used to identify short unique sequences within or between genes. mGenomeSubtractor provides powerful schematic outputs for exploration of identified core and accessory regions, including searches against databases of mobile genetic elements, virulence factors or bacterial essential genes, examination of G+C content and binucleotide distribution bias, and integrated primer design tools. mGenomeSubtractor also allows for the ready definition of species-specific gene pools based on available genomes. Pan-genomic arrays can be easily developed using the efficient oligonucleotide design tool. This simple high-throughput in silico 'subtractive hybridization' analytical tool will support the rapidly escalating number of comparative bacterial genomics studies aimed at defining genomic biomarkers of evolutionary lineage, phenotype, pathotype, environmental adaptation and/or disease-association of diverse bacterial species. mGenomeSubtractor is freely available to all users without any login requirement at: http://bioinfo-mml.sjtu.edu.cn/mGS/. PMID:20435682

  3. Universal tool microscope remanufacture based on CCD

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Hu, Zhongxiang; Zhang, Xunming; Zhang, Jiaying

    2006-02-01

    To overcome the drawback of traditional universal tool microscopes, a remanufacturing scheme based on charge coupled devices (CCD) is proposed. In this paper, the remanufacturing of old tool microscopes is replaced gradually by CCD and grating ruler and the development of a novel measuring system designed to directly analyze image of the screw to be measured is discussed. For the analysis of image, such novel image processing methods as adaptive switching median (ASM) filter and edge detection based on the modified Sobel operator are designed. For the line detection algorithm, HOUGH transform also is used to measure the screw parameter. Experiments on screw images demonstrate that the scheme of remanufactured universal tool microscope is of feasibility and the proposed measurement is of validity.

  4. simuwatt - A Tablet Based Electronic Auditing Tool

    SciTech Connect

    Macumber, Daniel; Parker, Andrew; Lisell, Lars; Metzger, Ian; Brown, Matthew

    2014-05-08

    'simuwatt Energy Auditor' (TM) is a new tablet-based electronic auditing tool that is designed to dramatically reduce the time and cost to perform investment-grade audits and improve quality and consistency. The tool uses the U.S. Department of Energy's OpenStudio modeling platform and integrated Building Component Library to automate modeling and analysis. simuwatt's software-guided workflow helps users gather required data, and provides the data in a standard electronic format that is automatically converted to a baseline OpenStudio model for energy analysis. The baseline energy model is calibrated against actual monthly energy use to ASHRAE Standard 14 guidelines. Energy conservation measures from the Building Component Library are then evaluated using OpenStudio's parametric analysis capability. Automated reporting creates audit documents that describe recommended packages of energy conservation measures. The development of this tool was partially funded by the U.S. Department of Defense's Environmental Security Technology Certification Program. As part of this program, the tool is being tested at 13 buildings on 5 Department of Defense sites across the United States. Results of the first simuwatt audit tool demonstration are presented in this paper.

  5. Expert-novice interaction in problematizing a complex environmental science issue using Web-based information and analysis tools

    NASA Astrophysics Data System (ADS)

    Schroeder, Carolyn M.

    Solving complex problems is integral to science. Despite the importance of this type of problem solving, little research has been done on how collaborative teams of expert scientists and teams of informed novices solve problems in environmental science and how experiences of this type affect the novices' understandings of the nature of science (NOS) and the novices' teaching. This study addresses these questions: (1) how do collaborative teams of scientists with distributed expertise and teams of informed novices with various levels of distributed expertise solve complex environmental science issues using web-based information and information technology (IT) analysis tools? and, (2) how does working in a collaborative scientific team improve informed novices' understandings of the nature of authentic scientific inquiry and impact their classroom inquiry products? This study was conducted during Cohort II of the Information Technology in Science project within the Sustainable Coastal Margins scientific group. Over two summers, four environmental scientists from various disciplines led ten science teacher and graduate student participants in learning how each discipline approaches and solves environmental problems. Participants were also instructed about NOS by science educators and designed an inquiry project for use in their classroom. After performing a pilot study of the project, they revised it during the second summer and the entire experience culminated with diverse teams problematizing and solving environmental issues. Data were analyzed using statistical and qualitative techniques. Analysis included evaluation of participants' responses to a NOS pre- and posttest, their inquiry projects, interviews, and final projects. Results indicate that scientists with distributed expertise approach solving environmental problems differently depending on their backgrounds, but that informed novice and expert teams used similar problem-solving processes and had similar

  6. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  7. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  8. Mars Reconnaissance Orbiter Uplink Analysis Tool

    NASA Technical Reports Server (NTRS)

    Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; Hwang, Pauline

    2008-01-01

    This software analyzes Mars Reconnaissance Orbiter (MRO) orbital geometry with respect to Mars Exploration Rover (MER) contact windows, and is the first tool of its kind designed specifically to support MRO-MER interface coordination. Prior to this automated tool, this analysis was done manually with Excel and the UNIX command line. In total, the process would take approximately 30 minutes for each analysis. The current automated analysis takes less than 30 seconds. This tool resides on the flight machine and uses a PHP interface that does the entire analysis of the input files and takes into account one-way light time from another input file. Input flies are copied over to the proper directories and are dynamically read into the tool s interface. The user can then choose the corresponding input files based on the time frame desired for analysis. After submission of the Web form, the tool merges the two files into a single, time-ordered listing of events for both spacecraft. The times are converted to the same reference time (Earth Transmit Time) by reading in a light time file and performing the calculations necessary to shift the time formats. The program also has the ability to vary the size of the keep-out window on the main page of the analysis tool by inputting a custom time for padding each MRO event time. The parameters on the form are read in and passed to the second page for analysis. Everything is fully coded in PHP and can be accessed by anyone with access to the machine via Web page. This uplink tool will continue to be used for the duration of the MER mission's needs for X-band uplinks. Future missions also can use the tools to check overflight times as well as potential site observation times. Adaptation of the input files to the proper format, and the window keep-out times, would allow for other analyses. Any operations task that uses the idea of keep-out windows will have a use for this program.

  9. Budget Risk & Prioritization Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    BRPAtool performs the following: •Assists managers in making solid decisions on what scope/activities to reduce and/or eliminate, to meet constrained budgets, based on multiple risk factors •Enables analysis of different budget scenarios •Can analyze risks and cost for each activity based on technical, quantifiable risk criteria and management-determined risks •Real-time analysis •Enables managers to determine the multipliers and where funding is best applied •Promotes solid budget defense

  10. General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  11. Climate Data Analysis Tools - (CDAT)

    NASA Astrophysics Data System (ADS)

    Doutriaux, C.; Jennifer, A.; Drach, R.; Dubois, P.; Williams, D.

    2003-12-01

    Climate Data Analysis Tools (CDAT) is a software infrastructure that uses an object-oriented scripting language to link together separate software subsystems and packages thus forming an integrated environment for solving model diagnosis problems. The power of the system comes from Python and its ability to seamlessly interconnect software. Python provides a general purpose and full-featured scripting language with a variety of user interfaces including command-line interaction, stand-alone scripts (applications) and graphical user interfaces (GUI). The CDAT subsystems, implemented as modules, provide access to and management of gridded data (Climate Data Management System or CDMS); large-array numerical operations (Numerical Python); and visualization (Visualization and Control System or VCS). One of the most difficult challenges facing climate researchers today is the cataloging and analysis of massive amounts of multi-dimensional global atmospheric and oceanic model data. To reduce the labor intensive and time-consuming process of data management, retrieval, and analysis, PCMDI and other DOE sites have come together to develop intelligent filing system and data management software for the linking of storage devices located throughout the United States and the international climate research community. This effort, headed by PCMDI, NCAR, and ANL will allow users anywhere to remotely access this distributed multi-petabyte archive and perform analysis. PCMDI's CDAT is an innovative system that supports exploration and visualization of climate scientific datasets. As an "open system", the software sub-systems (i.e., modules) are independent and freely available to the global climate community. CDAT is easily extended to include new modules and as a result of its flexibility, PCMDI has integrated other popular software components, such as: the popular Live Access Server (LAS) and the Distributed Oceanographic Data System (DODS). Together with ANL's Globus middleware

  12. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  13. Systems Thinking Tools for Improving Evidence-Based Practice: A Cross-Case Analysis of Two High School Leadership Teams

    ERIC Educational Resources Information Center

    Kensler, Lisa A. W.; Reames, Ellen; Murray, John; Patrick, Lynne

    2012-01-01

    Teachers and administrators have access to large volumes of data but research suggests that they lack the skills to use data effectively for continuous school improvement. This study involved a cross-case analysis of two high school leadership teams' early stages of evidence-based practice development; differing forms of external support were…

  14. Web Based Personal Nutrition Management Tool

    NASA Astrophysics Data System (ADS)

    Bozkurt, Selen; Zayim, Neşe; Gülkesen, Kemal Hakan; Samur, Mehmet Kemal

    Internet is being used increasingly as a resource for accessing health-related information because of its several advantages. Therefore, Internet tailoring becomes quite preferable in health education and personal health management recently. Today, there are many web based health programs de-signed for individuals. Among these studies nutrition and weight management is popular because, obesity has become a heavy burden for populations worldwide. In this study, we designed a web based personal nutrition education and management tool, The Nutrition Web Portal, in order to enhance patients’ nutrition knowledge, and provide behavioral change against obesity. The present paper reports analysis, design and development processes of The Nutrition Web Portal.

  15. In Search of Practitioner-Based Social Capital: A Social Network Analysis Tool for Understanding and Facilitating Teacher Collaboration in a US-Based STEM Professional Development Program

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.; Yoon, Susan A.

    2011-01-01

    This paper presents the first in a series of studies on the informal advice networks of a community of teachers in an in-service professional development program. The aim of the research was to use Social Network Analysis as a methodological tool to reveal the social networks developed by the teachers, and to examine whether these networks…

  16. Interactive Graphics Tools for Analysis of MOLA and Other Data

    NASA Technical Reports Server (NTRS)

    Frey, H.; Roark, J.; Sakimoto, S.

    2000-01-01

    We have developed several interactive analysis tools based on the IDL programming language for the analysis of Mars Orbiting Laser Altimeter (MOLA) profile and gridded data which are available to the general community.

  17. System analysis: Developing tools for the future

    SciTech Connect

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  18. Survey of visualization and analysis tools

    NASA Technical Reports Server (NTRS)

    Meyer, P. J.

    1994-01-01

    A large number of commercially available visualization and analysis tools are available to the researcher. Some of the strengths and limitations of some of these tools, from the viewpoint of the earth sciences discipline, are discussed. Visualization and analysis tools fall into one of two categories: those that are designed to a specific purpose and are non-extensive and those that are generic visual programming tools that are extensible. Most of the extensible packages examined incorporate a data flow paradigm.

  19. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    PubMed

    Pal, P; Kumar, R; Srivastava, N; Chowdhury, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater. PMID:23982824

  20. EpiHosp: A web-based visualization tool enabling the exploratory analysis of complications of implantable medical devices from a nationwide hospital database.

    PubMed

    Ficheur, Grégoire; Ferreira Careira, Lionel; Beuscart, Régis; Chazard, Emmanuel

    2015-01-01

    Administrative data can be used for the surveillance of the outcomes of implantable medical devices (IMDs). The objective of this work is to build a web-based tool allowing for an exploratory analysis of time-dependent events that may occur after the implementation of an IMD. This tool should enable a pharmacoepidemiologist to explore on the fly the relationship between a given IMD and a potential outcome. This tool mine the French nationwide database of inpatient stays from 2008 to 2013. The data are preprocessed in order to optimize the queries. A web tool is developed in PHP, MySQL and Javascript. The user selects one or a group of IMD from a tree, and can filter the results using years and hospital names. Four result pages describe the selected inpatient stays: (1) temporal and demographic description, (2) a description of the geographical location of the hospital, (3) a description of the geographical place of residence of the patient and (4) a table showing the rehospitalization reasons by decreasing order of frequency. Then, the user can select one readmission reason and display dynamically the probability of readmission by mean of a Kaplan-Meier curve with confidence intervals. This tool enables to dynamically monitor the occurrence of time-dependent complications of IMD. PMID:25991176

  1. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  2. Teaching tools in Evidence Based Practice: evaluation of reusable learning objects (RLOs) for learning about Meta-analysis

    PubMed Central

    2011-01-01

    Background All healthcare students are taught the principles of evidence based practice on their courses. The ability to understand the procedures used in systematically reviewing evidence reported in studies, such as meta-analysis, are an important element of evidence based practice. Meta-analysis is a difficult statistical concept for healthcare students to understand yet it is an important technique used in systematic reviews to pool data from studies to look at combined effectiveness of treatments. In other areas of the healthcare curricula, by supplementing lectures, workbooks and workshops with pedagogically designed, multimedia learning objects (known as reusable learning objects or RLOs) we have shown an improvement in students' perceived understanding in subjects they found difficult. In this study we describe the development and evaluation of two RLOs on meta-analysis. The RLOs supplement associated lectures and aim to improve students' understanding of meta-analysis in healthcare students. Methods Following a quality controlled design process two RLOs were developed and delivered to two cohorts of students, a Master in Public Health course and Postgraduate diploma in nursing course. Students' understanding of five key concepts of Meta-analysis were measured before and after a lecture and again after RLO use. RLOs were also evaluated for their educational value, learning support, media attributes and usability using closed and open questions. Results Students rated their understanding of meta-analysis as improved after a lecture and further improved after completing the RLOs (Wilcoxon paired test, p < 0.01 in all cases) Whilst the media components of the RLOs such as animations helped most students (86%) understand concepts including for example Forest plots, 93% of students rated usability and control as important to their learning. A small number of students stated they needed the support of a lecturer alongside the RLOs (7% 'Agreed' and 21% 'Neutral

  3. Analysis Tools for CFD Multigrid Solvers

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Diskin, Boris

    2004-01-01

    Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.

  4. A Performance-Based Web Budget Tool

    ERIC Educational Resources Information Center

    Abou-Sayf, Frank K.; Lau, Wilson

    2007-01-01

    A web-based formula-driven tool has been developed for the purpose of performing two distinct academic department budgeting functions: allocation funding to the department, and budget management by the department. The tool's major features are discussed and its uses demonstrated. The tool's advantages are presented. (Contains 10 figures.)

  5. General Mission Analysis Tool (GMAT) Mathematical Specifications

    NASA Technical Reports Server (NTRS)

    Hughes, Steve

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.

  6. Multi-mission telecom analysis tool

    NASA Technical Reports Server (NTRS)

    Hanks, D.; Kordon, M.; Baker, J.

    2002-01-01

    In the early formulation phase of a mission it is critically important to have fast, easy to use, easy to integrate space vehicle subsystem analysis tools so that engineers can rapidly perform trade studies not only by themselves but in coordination with other subsystem engineers as well. The Multi-Mission Telecom Analysis Tool (MMTAT) is designed for just this purpose.

  7. Using Kepler for Tool Integration in Microarray Analysis Workflows

    PubMed Central

    Gan, Zhuohui; Stowe, Jennifer C.; Altintas, Ilkay; McCulloch, Andrew D.; Zambon, Alexander C.

    2015-01-01

    Increasing numbers of genomic technologies are leading to massive amounts of genomic data, all of which requires complex analysis. More and more bioinformatics analysis tools are being developed by scientist to simplify these analyses. However, different pipelines have been developed using different software environments. This makes integrations of these diverse bioinformatics tools difficult. Kepler provides an open source environment to integrate these disparate packages. Using Kepler, we integrated several external tools including Bioconductor packages, AltAnalyze, a python-based open source tool, and R-based comparison tool to build an automated workflow to meta-analyze both online and local microarray data. The automated workflow connects the integrated tools seamlessly, delivers data flow between the tools smoothly, and hence improves efficiency and accuracy of complex data analyses. Our workflow exemplifies the usage of Kepler as a scientific workflow platform for bioinformatics pipelines. PMID:26605000

  8. Analysis of Utility and Use of a Web-Based Tool for Digital Signal Processing Teaching by Means of a Technological Acceptance Model

    ERIC Educational Resources Information Center

    Toral, S. L.; Barrero, F.; Martinez-Torres, M. R.

    2007-01-01

    This paper presents an exploratory study about the development of a structural and measurement model for the technological acceptance (TAM) of a web-based educational tool. The aim consists of measuring not only the use of this tool, but also the external variables with a significant influence in its use for planning future improvements. The tool,…

  9. An image-based software tool for screening retinal fundus images using vascular morphology and network transport analysis

    NASA Astrophysics Data System (ADS)

    Clark, Richard D.; Dickrell, Daniel J.; Meadows, David L.

    2014-03-01

    As the number of digital retinal fundus images taken each year grows at an increasing rate, there exists a similarly increasing need for automatic eye disease detection through image-based analysis. A new method has been developed for classifying standard color fundus photographs into both healthy and diseased categories. This classification was based on the calculated network fluid conductance, a function of the geometry and connectivity of the vascular segments. To evaluate the network resistance, the retinal vasculature was first manually separated from the background to ensure an accurate representation of the geometry and connectivity. The arterial and venous networks were then semi-automatically separated into two separate binary images. The connectivity of the arterial network was then determined through a series of morphological image operations. The network comprised of segments of vasculature and points of bifurcation, with each segment having a characteristic geometric and fluid properties. Based on the connectivity and fluid resistance of each vascular segment, an arterial network flow conductance was calculated, which described the ease with which blood can pass through a vascular system. In this work, 27 eyes (13 healthy and 14 diabetic) from patients roughly 65 years in age were evaluated using this methodology. Healthy arterial networks exhibited an average fluid conductance of 419 ± 89 μm3/mPa-s while the average network fluid conductance of the diabetic set was 165 ± 87 μm3/mPa-s (p < 0.001). The results of this new image-based software demonstrated an ability to automatically, quantitatively and efficiently screen diseased eyes from color fundus imagery.

  10. Patent analysis as a tool for research planning: study on natural based therapeutics against cancer stem cells.

    PubMed

    Arya, Richa; Bhutkar, Smita; Dhulap, Sivakami; Hirwani, R R

    2015-01-01

    Medicines developed from traditional systems are well known for their various important pharmaceutical uses. Cancer has been known since ancient times and has been mentioned in the ancient Ayurvedic books. Thus natural based products play a significant role in cancer chemotherapeutics. Further, approximately 70% of anticancer compounds are based on natural products or have been derived from their structural scaffolds. Hence, there is a growing interest for developing medicines from these natural resources. Amongst the methods of treating cancer, therapies targeting cancer stem cell are found to control metastatic tumor which is a newly identified factor associated with relapse. This patent review aims to highlight the use of natural products to treat cancer by targeting the cancer stem cells. The review will also provide insights into the reported mechanisms by which the natural products act in order to suppress or kill cancer stem cells. The analysis has been done using various criteria such as the patenting trend over the years, comparison of active assignee and a comparison of the technical aspects as disclosed in the different patent documents. The analysis further highlights different bioactives, the scaffolds of which could thus be a promising candidate in the development of anti-cancer drugs by targeting the cancer stem cells. The technical aspects covered in this review include: Bioactives and formulations comprising the extracts or bioactives, their mode of action and the type of assay considered to study the efficacy of the natural products. Further the mapping has helped us to identify potential therapeutic areas to evaluate herbs/bioactives and their uses for developing new formulations. PMID:25138131

  11. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execu...

  12. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYRDOLOGIC MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly

    developed by the USDA Agricultural Research Service, the U.S. Environmental Protection

    Agency, the University of Arizona, and the University of Wyoming to automate the

    parame...

  13. AUTOMATED GEOSPATICAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOICAL MODELING TOOL FOR WATERSHED ASSESSMENT AND ANALYSIS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execut...

  14. HydrogeoSieveXL: an Excel-based tool to estimate hydraulic conductivity from grain-size analysis

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2015-04-01

    For over a century, hydrogeologists have estimated hydraulic conductivity (K) from grain-size distribution curves. The benefits of the practice are simplicity, cost, and a means of identifying spatial variations in K. Many techniques have been developed over the years, but all suffer from similar shortcomings: no accounting of heterogeneity within samples (i.e., aquifer structure is lost), loss of grain packing characteristics, and failure to account for the effects of overburden pressure on K. In addition, K estimates can vary by an order of magnitude between the various methods, and it is not generally possible to identify the best method for a given sample. The drawbacks are serious, but the advantages have seen the use of grain-size distribution curves for K estimation continue, often using a single selected method to estimate K in a given project. In most cases, this restriction results from convenience. It is proposed here that extending the analysis to include several methods would be beneficial since it would provide a better indication of the range of K that might apply. To overcome the convenience limitation, an Excel-based spreadsheet program, HydrogeoSieveXL, is introduced here. HydrogeoSieveXL is a freely available program that calculates K from grain-size distribution curves using 15 different methods. HydrogeoSieveXL was found to calculate K values essentially identical to those reported in the literature, using the published grain-size distribution curves.

  15. Prospector: A web-based tool for rapid acquisition of gold standard data for pathology research and image analysis

    PubMed Central

    Wright, Alexander I.; Magee, Derek R.; Quirke, Philip; Treanor, Darren E.

    2015-01-01

    Background: Obtaining ground truth for pathological images is essential for various experiments, especially for training and testing image analysis algorithms. However, obtaining pathologist input is often difficult, time consuming and expensive. This leads to algorithms being over-fitted to small datasets, and inappropriate validation, which causes poor performance on real world data. There is a great need to gather data from pathologists in a simple and efficient manner, in order to maximise the amount of data obtained. Methods: We present a lightweight, web-based HTML5 system for administering and participating in data collection experiments. The system is designed for rapid input with minimal effort, and can be accessed from anywhere in the world with a reliable internet connection. Results: We present two case studies that use the system to assess how limitations on fields of view affect pathologist agreement, and to what extent poorly stained slides affect judgement. In both cases, the system collects pathologist scores at a rate of less than two seconds per image. Conclusions: The system has multiple potential applications in pathology and other domains. PMID:26110089

  16. Problem-Based Learning Tools

    ERIC Educational Resources Information Center

    Chin, Christine; Chia, Li-Gek

    2008-01-01

    One way of implementing project-based science (PBS) is to use problem-based learning (PBL), in which students formulate their own problems. These problems are often ill-structured, mirroring complex real-life problems where data are often messy and inclusive. In this article, the authors describe how they used PBL in a ninth-grade biology class in…

  17. AtCAST3.0 update: a web-based tool for analysis of transcriptome data by searching similarities in gene expression profiles.

    PubMed

    Kakei, Yusuke; Shimada, Yukihisa

    2015-01-01

    In transcriptome experiments, the experimental conditions (e.g. mutants and/or treatments) cause transcriptional changes. Identifying experimental conditions that induce similar or opposite transcriptional changes can be useful to identify experimental conditions that affect the same biological process. AtCAST (http://atpbsmd.yokohama-cu.ac.jp) is a web-based tool to analyze the relationship between experimental conditions among transcriptome data. Users can analyze 'user's transcriptome data' of a new mutant or a new chemical compound whose function remains unknown to generate novel biological hypotheses. This tool also allows for mining of related 'experimental conditions' from the public microarray data, which are pre-included in AtCAST. This tool extracts a set of genes (i.e. module) that show significant transcriptional changes and generates a network graph to present related transcriptome data. The updated AtCAST now contains data on >7,000 microarrays, including experiments on various stresses, mutants and chemical treatments. Gene ontology term enrichment (GOE) analysis is introduced to assist the characterization of transcriptome data. The new AtCAST supports input from multiple platforms, including the 'Arabisopsis gene 1.1 ST array', a new microarray chip from Affymetrix and RNA sequencing (RNA-seq) data obtained using next-generation sequencing (NGS). As a pilot study, we conducted microarray analysis of Arabidopsis under auxin treatment using the new Affymetrix chip, and then analyzed the data in AtCAST. We also analyzed RNA-seq data of the pifq mutant using AtCAST. These new features will facilitate analysis of associations between transcriptome data obtained using different platforms. PMID:25505006

  18. A tool management system based on RFID

    NASA Astrophysics Data System (ADS)

    Wang, Z. G.; Xu, L. D.; Cai, D. S.; Xu, L.; Yu, H. H.

    2010-12-01

    Built the RFID (Radio Frequency Identification) hardware system then developed a tool management system based on Labview in the paper. The software can control the read/write device to read/write data through the serial port and use the database management module to add, query, modify and delete record. So, the automatic identification and management of cutting tool is realized.

  19. A tool management system based on RFID

    NASA Astrophysics Data System (ADS)

    Wang, Z. G.; Xu, L. D.; Cai, D. S.; Xu, L.; Yu, H. H.

    2011-05-01

    Built the RFID (Radio Frequency Identification) hardware system then developed a tool management system based on Labview in the paper. The software can control the read/write device to read/write data through the serial port and use the database management module to add, query, modify and delete record. So, the automatic identification and management of cutting tool is realized.

  20. Model Analysis ToolKit

    Energy Science and Technology Software Center (ESTSC)

    2015-05-15

    MATK provides basic functionality to facilitate model analysis within the Python computational environment. Model analysis setup within MATK includes: - define parameters - define observations - define model (python function) - define samplesets (sets of parameter combinations) Currently supported functionality includes: - forward model runs - Latin-Hypercube sampling of parameters - multi-dimensional parameter studies - parallel execution of parameter samples - model calibration using internal Levenberg-Marquardt algorithm - model calibration using lmfit package - modelmore » calibration using levmar package - Markov Chain Monte Carlo using pymc package MATK facilitates model analysis using: - scipy - calibration (scipy.optimize) - rpy2 - Python interface to R« less

  1. Model Analysis ToolKit

    SciTech Connect

    Harp, Dylan R.

    2015-05-15

    MATK provides basic functionality to facilitate model analysis within the Python computational environment. Model analysis setup within MATK includes: - define parameters - define observations - define model (python function) - define samplesets (sets of parameter combinations) Currently supported functionality includes: - forward model runs - Latin-Hypercube sampling of parameters - multi-dimensional parameter studies - parallel execution of parameter samples - model calibration using internal Levenberg-Marquardt algorithm - model calibration using lmfit package - model calibration using levmar package - Markov Chain Monte Carlo using pymc package MATK facilitates model analysis using: - scipy - calibration (scipy.optimize) - rpy2 - Python interface to R

  2. JavaProtein Dossier: a novel web-based data visualization tool for comprehensive analysis of protein structure

    PubMed Central

    Neshich, Goran; Rocchia, Walter; Mancini, Adauto L.; Yamagishi, Michel E. B.; Kuser, Paula R.; Fileto, Renato; Baudet, Christian; Pinto, Ivan P.; Montagner, Arnaldo J.; Palandrani, Juliana F.; Krauchenco, Joao N.; Torres, Renato C.; Souza, Savio; Togawa, Roberto C.; Higa, Roberto H.

    2004-01-01

    JavaProtein Dossier (JPD) is a new concept, database and visualization tool providing one of the largest collections of the physicochemical parameters describing proteins' structure, stability, function and interaction with other macromolecules. By collecting as many descriptors/parameters as possible within a single database, we can achieve a better use of the available data and information. Furthermore, data grouping allows us to generate different parameters with the potential to provide new insights into the sequence–structure–function relationship. In JPD, residue selection can be performed according to multiple criteria. JPD can simultaneously display and analyze all the physicochemical parameters of any pair of structures, using precalculated structural alignments, allowing direct parameter comparison at corresponding amino acid positions among homologous structures. In order to focus on the physicochemical (and consequently pharmacological) profile of proteins, visualization tools (showing the structure and structural parameters) also had to be optimized. Our response to this challenge was the use of Java technology with its exceptional level of interactivity. JPD is freely accessible (within the Gold Sting Suite) at http://sms.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS, http://trantor.bioc.columbia.edu/SMS and http://www.es.embnet.org/SMS/ (Option: JavaProtein Dossier). PMID:15215458

  3. 2010 Solar Market Transformation Analysis and Tools

    SciTech Connect

    none,

    2010-04-01

    This document describes the DOE-funded solar market transformation analysis and tools under development in Fiscal Year 2010 so that stakeholders can access available resources and get engaged where interested.

  4. Statistical methods for the forensic analysis of striated tool marks

    SciTech Connect

    Hoeksema, Amy Beth

    2013-01-01

    In forensics, fingerprints can be used to uniquely identify suspects in a crime. Similarly, a tool mark left at a crime scene can be used to identify the tool that was used. However, the current practice of identifying matching tool marks involves visual inspection of marks by forensic experts which can be a very subjective process. As a result, declared matches are often successfully challenged in court, so law enforcement agencies are particularly interested in encouraging research in more objective approaches. Our analysis is based on comparisons of profilometry data, essentially depth contours of a tool mark surface taken along a linear path. In current practice, for stronger support of a match or non-match, multiple marks are made in the lab under the same conditions by the suspect tool. We propose the use of a likelihood ratio test to analyze the difference between a sample of comparisons of lab tool marks to a field tool mark, against a sample of comparisons of two lab tool marks. Chumbley et al. (2010) point out that the angle of incidence between the tool and the marked surface can have a substantial impact on the tool mark and on the effectiveness of both manual and algorithmic matching procedures. To better address this problem, we describe how the analysis can be enhanced to model the effect of tool angle and allow for angle estimation for a tool mark left at a crime scene. With sufficient development, such methods may lead to more defensible forensic analyses.

  5. Statistical Tools for Forensic Analysis of Toolmarks

    SciTech Connect

    David Baldwin; Max Morris; Stan Bajic; Zhigang Zhou; James Kreiser

    2004-04-22

    Recovery and comparison of toolmarks, footprint impressions, and fractured surfaces connected to a crime scene are of great importance in forensic science. The purpose of this project is to provide statistical tools for the validation of the proposition that particular manufacturing processes produce marks on the work-product (or tool) that are substantially different from tool to tool. The approach to validation involves the collection of digital images of toolmarks produced by various tool manufacturing methods on produced work-products and the development of statistical methods for data reduction and analysis of the images. The developed statistical methods provide a means to objectively calculate a ''degree of association'' between matches of similarly produced toolmarks. The basis for statistical method development relies on ''discriminating criteria'' that examiners use to identify features and spatial relationships in their analysis of forensic samples. The developed data reduction algorithms utilize the same rules used by examiners for classification and association of toolmarks.

  6. Simplified building energy analysis tool for architects

    NASA Astrophysics Data System (ADS)

    Chaisuparasmikul, Pongsak

    Energy Modeler is an energy software program designed to study the relative change of energy uses (heating, cooling, and lighting loads) in different architectural design schemes. This research focuses on developing a tool to improve energy efficiency of the built environment. The research studied the impact of different architectural design response for two distinct global climates: temperate and tropical climatic zones. This energy-based interfacing program is intended to help architects, engineers, educators, students, building designers, major consumers of architectural services, and other professionals whose work interfaces with that of architects, perceive, quickly visualize, and compare energy performance and savings of different design schemes. The buildings in which we live or work have a great impact on our natural environment. Energy savings and consumption reductions in our buildings probably are the best indications of solutions to help environmental sustainability; by reducing the depletion of the world's fossil fuel (oil, natural gas, coal etc.). Architects when they set about designing an environmentally responsive building for an owner or the public, often lack the energy-based information and design tools to tell them whether the building loads and energy consumption are very responsive to the modifications that they made. Buildings are dynamic in nature and changeable over time, with many design variables involved. Architects really need energy-based rules or tools to assist them in the design process. Energy efficient design for sustainable solutions requires attention throughout the design process and is very related to architectural solutions. Early involvement is the only guaranteed way of properly considering fundamental building design issues related to building site, form and exposure. The research presents the methodology and process, which leads to the discussion of the research findings. The innovative work is to make these tools

  7. Tools for Basic Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Statistical Analysis Toolset is a collection of eight Microsoft Excel spreadsheet programs, each of which performs calculations pertaining to an aspect of statistical analysis. These programs present input and output data in user-friendly, menu-driven formats, with automatic execution. The following types of calculations are performed: Descriptive statistics are computed for a set of data x(i) (i = 1, 2, 3 . . . ) entered by the user. Normal Distribution Estimates will calculate the statistical value that corresponds to cumulative probability values, given a sample mean and standard deviation of the normal distribution. Normal Distribution from two Data Points will extend and generate a cumulative normal distribution for the user, given two data points and their associated probability values. Two programs perform two-way analysis of variance (ANOVA) with no replication or generalized ANOVA for two factors with four levels and three repetitions. Linear Regression-ANOVA will curvefit data to the linear equation y=f(x) and will do an ANOVA to check its significance.

  8. Method and tool for network vulnerability analysis

    DOEpatents

    Swiler, Laura Painton; Phillips, Cynthia A.

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  9. Cumulative effects analysis (CEA) tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective rangeland management requires careful consideration of the possible cumulative effects of different management options prior to making major management decisions. State-and-transition (S/T) models, based on ecological sites, capture our understanding ecosystem functioning and can be used t...

  10. A Meta-Analysis Method to Advance Design of Technology-Based Learning Tool: Combining Qualitative and Quantitative Research to Understand Learning in Relation to Different Technology Features

    ERIC Educational Resources Information Center

    Zhang, Lin

    2014-01-01

    Educators design and create various technology tools to scaffold students' learning. As more and more technology designs are incorporated into learning, growing attention has been paid to the study of technology-based learning tool. This paper discusses the emerging issues, such as how can learning effectiveness be understood in relation to…

  11. Computer simulation is an undervalued tool for genetic analysis: a historical view and presentation of SHIMSHON--a Web-based genetic simulation package.

    PubMed

    Greenberg, David A

    2011-01-01

    Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467

  12. Website Analysis as a Tool for Task-Based Language Learning and Higher Order Thinking in an EFL Context

    ERIC Educational Resources Information Center

    Roy, Debopriyo

    2014-01-01

    Besides focusing on grammar, writing skills, and web-based language learning, researchers in "CALL" and second language acquisition have also argued for the importance of promoting higher-order thinking skills in ESL (English as Second Language) and EFL (English as Foreign Language) classrooms. There is solid evidence supporting the…

  13. Environmental Inquiry by College Students: Original Research and Peer Review Using Web-Based Collaborative Tools. Preliminary Quantitative Data Analysis.

    ERIC Educational Resources Information Center

    Cakir, Mustafa; Carlsen, William S.

    The Environmental Inquiry (EI) program (Cornell University and Pennsylvania State University) supports inquiry based, student-centered science teaching on selected topics in the environmental sciences. Texts to support high school student research are published by the National Science Teachers Association (NSTA) in the domains of environmental…

  14. Correcting rainfall using satellite-based surfae soil moisture retrievals: The soil moisture analysis rainfall tool(SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work in Crow et al. (2009) developed an algorithm for enhancing satellite-based land rainfall products via the assimilation of remotely-sensed surface soil moisture retrievals into a water balance model. As a follow-up, this paper describes the benefits of modifying their approach to incorpor...

  15. Surface analysis of stone and bone tools

    NASA Astrophysics Data System (ADS)

    Stemp, W. James; Watson, Adam S.; Evans, Adrian A.

    2016-03-01

    Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.

  16. PepTool and GeneTool: platform-independent tools for biological sequence analysis.

    PubMed

    Wishart, D S; Stothard, P; Van Domselaar, G H

    2000-01-01

    Although we are unable to discuss all of the functionality available in PepTool and GeneTool, it should be evident from this brief review that both packages offer a great deal in terms of functionality and ease-of-use. Furthermore, a number of useful innovations including platform-independent GUI design, networked parallelism, direct internet connectivity, database compression, and a variety of enhanced or improved algorithms should make these two programs particularly useful in the rapidly changing world of biological sequence analysis. More complete descriptions of the programs, algorithms and operation of PepTool and GeneTool are available on the BioTools web site (www.biotools.com), in the associated program user manuals and in the on-line Help pages. PMID:10547833

  17. Wide applications of design based metrology with tool integration

    NASA Astrophysics Data System (ADS)

    Yang, Hyunjo; Kim, Jungchan; Jung, Areum; Lee, Taehyeong; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2008-03-01

    Recently several DBMs(Design Based Metrologies) are introduced for the wafer verification and feed back to DFM. The major applications of DBM are OPC accuracy feed back, process window qualification and advanced process control feed back. In general, however, DBM brings out huge amount of measurement data and it is necessary to provide special server system for uploading and handling the raw data. And since it also takes much time and labor to analyze the raw data for valuable feed back, it is desirable to connect to EDA tools such as OPC tools or MBV(Model Based Verification) tools for data analysis. If they can communicate with a common language between them, the DBM measurement result can be sent back to OPC or MBV tools for better model calibration. For advanced process control of wafer CDU, DBM measurement results of field CDU can be fed back to scanner for illumination uniformity correction. In this work, we discuss tool integration of DBM with other tools like EDA tools. These tool integrations are targeted for the verification procedure automation and as a result for faster and more exact analysis of measurement data. The procedures of tool integration and automatic data conversion between them will be presented in detail.

  18. Lab-Based Nanofocus X-ray CT as a Supplemental Analysis Tool in Studies of Earth Materials

    NASA Astrophysics Data System (ADS)

    Santillan, J. D.; Maher, K.; O'Henley, G.; Zacher, G.; Brunke, O.

    2009-12-01

    In recent years, lab-based X-ray CT has become a viable alternative to the use of a synchrotron beamline for Earth Science researchers. CT for geological research purposes can lead to a new dimension of understanding of the distribution of rock properties. Because it has only been a few years since lab-based nano-CT has been applied to such problems, the breadth of these studies in quickly expanding. Results of studies we have performed show data consistent with those obtained using synchrotron radiation. Our presentation will focus on studies where CT is not the primary investigative technique, but where the information gained can strongly inform the approach taken using other methods, such as XRD. Using CT to bolster other techniques will be of great interest as X-ray CT is applied to solving a greater variety of geological problems. We have examined several samples using X-ray CT in sizes up to 120 mm in diameter and weighing up to 1 kg with voxel-resolutions down to <500 nm (<0.5 microns). This ability to resolve pores of increasingly smaller size has increased the diversity of systems that can be analyzed with non-synchrotron based radiation. Additional studies that will be discussed include microcrystalline materials with a focus on samples where very little material is available and handling or processing of the materials must therefore be very limited. Our work will also describe recent advances in the hardware and software that is being used for high-resolution non-synchrotron based X-ray CT. X-ray CT (positive image)

  19. Photogrammetry Tool for Forensic Analysis

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.

  20. Enabling Web-Based GIS Tools for Internet and Mobile Devices To Improve and Expand NASA Data Accessibility and Analysis Functionality for the Renewable Energy and Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Ross, A.; Stackhouse, P. W.; Tisdale, B.; Tisdale, M.; Chandler, W.; Hoell, J. M., Jr.; Kusterer, J.

    2014-12-01

    The NASA Langley Research Center Science Directorate and Atmospheric Science Data Center have initiated a pilot program to utilize Geographic Information System (GIS) tools that enable, generate and store climatological averages using spatial queries and calculations in a spatial database resulting in greater accessibility of data for government agencies, industry and private sector individuals. The major objectives of this effort include the 1) Processing and reformulation of current data to be consistent with ESRI and openGIS tools, 2) Develop functions to improve capability and analysis that produce "on-the-fly" data products, extending these past the single location to regional and global scales. 3) Update the current web sites to enable both web-based and mobile application displays for optimization on mobile platforms, 4) Interact with user communities in government and industry to test formats and usage of optimization, and 5) develop a series of metrics that allow for monitoring of progressive performance. Significant project results will include the the development of Open Geospatial Consortium (OGC) compliant web services (WMS, WCS, WFS, WPS) that serve renewable energy and agricultural application products to users using GIS software and tools. Each data product and OGC service will be registered within ECHO, the Common Metadata Repository, the Geospatial Platform, and Data.gov to ensure the data are easily discoverable and provide data users with enhanced access to SSE data, parameters, services, and applications. This effort supports cross agency, cross organization, and interoperability of SSE data products and services by collaborating with DOI, NRCan, NREL, NCAR, and HOMER for requirements vetting and test bed users before making available to the wider public.

  1. PHYLOViZ Online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees.

    PubMed

    Ribeiro-Gonçalves, Bruno; Francisco, Alexandre P; Vaz, Cátia; Ramirez, Mário; Carriço, João André

    2016-07-01

    High-throughput sequencing methods generated allele and single nucleotide polymorphism information for thousands of bacterial strains that are publicly available in online repositories and created the possibility of generating similar information for hundreds to thousands of strains more in a single study. Minimum spanning tree analysis of allelic data offers a scalable and reproducible methodological alternative to traditional phylogenetic inference approaches, useful in epidemiological investigations and population studies of bacterial pathogens. PHYLOViZ Online was developed to allow users to do these analyses without software installation and to enable easy accessing and sharing of data and analyses results from any Internet enabled computer. PHYLOViZ Online also offers a RESTful API for programmatic access to data and algorithms, allowing it to be seamlessly integrated into any third party web service or software. PHYLOViZ Online is freely available at https://online.phyloviz.net. PMID:27131357

  2. PHYLOViZ Online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees

    PubMed Central

    Ribeiro-Gonçalves, Bruno; Francisco, Alexandre P.; Vaz, Cátia; Ramirez, Mário; Carriço, João André

    2016-01-01

    High-throughput sequencing methods generated allele and single nucleotide polymorphism information for thousands of bacterial strains that are publicly available in online repositories and created the possibility of generating similar information for hundreds to thousands of strains more in a single study. Minimum spanning tree analysis of allelic data offers a scalable and reproducible methodological alternative to traditional phylogenetic inference approaches, useful in epidemiological investigations and population studies of bacterial pathogens. PHYLOViZ Online was developed to allow users to do these analyses without software installation and to enable easy accessing and sharing of data and analyses results from any Internet enabled computer. PHYLOViZ Online also offers a RESTful API for programmatic access to data and algorithms, allowing it to be seamlessly integrated into any third party web service or software. PHYLOViZ Online is freely available at https://online.phyloviz.net. PMID:27131357

  3. Genomic sequence analysis tools: a user's guide.

    PubMed

    Fortna, A; Gardiner, K

    2001-03-01

    The wealth of information from various genome sequencing projects provides the biologist with a new perspective from which to analyze, and design experiments with, mammalian systems. The complexity of the information, however, requires new software tools, and numerous such tools are now available. Which type and which specific system is most effective depends, in part, upon how much sequence is to be analyzed and with what level of experimental support. Here we survey a number of mammalian genomic sequence analysis systems with respect to the data they provide and the ease of their use. The hope is to aid the experimental biologist in choosing the most appropriate tool for their analyses. PMID:11226611

  4. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect

    Porter, C.

    2013-04-01

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  6. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  7. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    NASA Astrophysics Data System (ADS)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  8. CancerMA: a web-based tool for automatic meta-analysis of public cancer microarray data

    PubMed Central

    Feichtinger, Julia; McFarlane, Ramsay J.; Larcombe, Lee D.

    2012-01-01

    The identification of novel candidate markers is a key challenge in the development of cancer therapies. This can be facilitated by putting accessible and automated approaches analysing the current wealth of ‘omic’-scale data in the hands of researchers who are directly addressing biological questions. Data integration techniques and standardized, automated, high-throughput analyses are needed to manage the data available as well as to help narrow down the excessive number of target gene possibilities presented by modern databases and system-level resources. Here we present CancerMA, an online, integrated bioinformatic pipeline for automated identification of novel candidate cancer markers/targets; it operates by means of meta-analysing expression profiles of user-defined sets of biologically significant and related genes across a manually curated database of 80 publicly available cancer microarray datasets covering 13 cancer types. A simple-to-use web interface allows bioinformaticians and non-bioinformaticians alike to initiate new analyses as well as to view and retrieve the meta-analysis results. The functionality of CancerMA is shown by means of two validation datasets. Database URL: http://www.cancerma.org.uk PMID:23241162

  9. Performance Analysis of GYRO: A Tool Evaluation

    SciTech Connect

    Worley, P.; Roth, P.; Candy, J.; Shan, Hongzhang; Mahinthakumar,G.; Sreepathi, S.; Carrington, L.; Kaiser, T.; Snavely, A.; Reed, D.; Zhang, Y.; Huck, K.; Malony, A.; Shende, S.; Moore, S.; Wolf, F.

    2005-06-26

    The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five high performance computing systems. First, a manual approach is taken, using custom scripts to analyze the output of embedded wall clock timers, floating point operation counts collected using hardware performance counters, and traces of user and communication events collected using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis are then repeated or extended using a number of sophisticated performance analysis tools: IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses what has been discovered via this manual analysis process, what performance analyses are inconvenient or infeasible to attempt manually, and to what extent the tools show promise in accelerating or significantly extending the manual performance analyses.

  10. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  11. Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: a Tool for Data Analysis and Hypothesis Generation

    SciTech Connect

    Pinchuk, Grigoriy E.; Hill, Eric A.; Geydebrekht, Oleg V.; De Ingeniis, Jessica; Zhang, Xiaolin; Osterman, Andrei; Scott, James H.; Reed, Samantha B.; Romine, Margaret F.; Konopka, Allan; Beliaev, Alex S.; Fredrickson, Jim K.; Reed, Jennifer L.

    2010-06-24

    Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and flexibility of the electron transfer networks as well as central and peripheral carbon metabolism pathways. To understand the factors contributing to the ecophysiological success of Shewanellae, the metabolic network of S. oneidensis MR-1 was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify futile cycles, (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism

  12. Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation

    PubMed Central

    Hill, Eric A.; Geydebrekht, Oleg V.; De Ingeniis, Jessica; Zhang, Xiaolin; Osterman, Andrei; Scott, James H.; Reed, Samantha B.; Romine, Margaret F.; Konopka, Allan E.; Beliaev, Alexander S.; Fredrickson, Jim K.

    2010-01-01

    Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems

  13. Friction analysis between tool and chip

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xu, Binshi; Zhang, Jiaying; Dong, Shiyun

    2010-12-01

    The elastic-plasticity mechanics are applied to analyze the friction between tool and chip. According to the slip-line field theory, a series of theoretical formula and the friction coefficient is derived between the tool and chip. So the cutting process can be investigated. Based on the Orthogonal Cutting Model and the Mohr's circle stress, the cutting mechanism of the cladding and the surface integrity of machining can be studied.

  14. Friction analysis between tool and chip

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xu, Binshi; Zhang, Jiaying; Dong, Shiyun

    2011-05-01

    The elastic-plasticity mechanics are applied to analyze the friction between tool and chip. According to the slip-line field theory, a series of theoretical formula and the friction coefficient is derived between the tool and chip. So the cutting process can be investigated. Based on the Orthogonal Cutting Model and the Mohr's circle stress, the cutting mechanism of the cladding and the surface integrity of machining can be studied.

  15. Analysis of Ultra-Deep Pyrosequencing and Cloning Based Sequencing of the Basic Core Promoter/Precore/Core Region of Hepatitis B Virus Using Newly Developed Bioinformatics Tools

    PubMed Central

    Yousif, Mukhlid; Bell, Trevor G.; Mudawi, Hatim; Glebe, Dieter; Kramvis, Anna

    2014-01-01

    Aims The aims of this study were to develop bioinformatics tools to explore ultra-deep pyrosequencing (UDPS) data, to test these tools, and to use them to determine the optimum error threshold, and to compare results from UDPS and cloning based sequencing (CBS). Methods Four serum samples, infected with either genotype D or E, from HBeAg-positive and HBeAg-negative patients were randomly selected. UDPS and CBS were used to sequence the basic core promoter/precore region of HBV. Two online bioinformatics tools, the “Deep Threshold Tool” and the “Rosetta Tool” (http://hvdr.bioinf.wits.ac.za/tools/), were built to test and analyze the generated data. Results A total of 10952 reads were generated by UDPS on the 454 GS Junior platform. In the four samples, substitutions, detected at 0.5% threshold or above, were identified at 39 unique positions, 25 of which were non-synonymous mutations. Sample #2 (HBeAg-negative, genotype D) had substitutions in 26 positions, followed by sample #1 (HBeAg-negative, genotype E) in 12 positions, sample #3 (HBeAg-positive, genotype D) in 7 positions and sample #4 (HBeAg-positive, genotype E) in only four positions. The ratio of nucleotide substitutions between isolates from HBeAg-negative and HBeAg-positive patients was 3.5∶1. Compared to genotype E isolates, genotype D isolates showed greater variation in the X, basic core promoter/precore and core regions. Only 18 of the 39 positions identified by UDPS were detected by CBS, which detected 14 of the 25 non-synonymous mutations detected by UDPS. Conclusion UDPS data should be approached with caution. Appropriate curation of read data is required prior to analysis, in order to clean the data and eliminate artefacts. CBS detected fewer than 50% of the substitutions detected by UDPS. Furthermore it is important that the appropriate consensus (reference) sequence is used in order to identify variants correctly. PMID:24740330

  16. Lightweight Object Oriented Structure analysis: Tools for building Tools to Analyze Molecular Dynamics Simulations

    PubMed Central

    Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan

    2014-01-01

    LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784

  17. Web Based Tools for Research and Teaching

    NASA Astrophysics Data System (ADS)

    Svirsky, E.; Hijazi, A.; Betterton, D.; Doxas, I.

    2005-05-01

    The Solar System Collaboratory is a web based set of tools that has been used for the past seven years in introductory classes in Astronomy, Physics, Environmental Science, and Engineering. The present paper will discuss the integration into the tool set of a recently developed Magnetospheric package. The package is written in Java 3D, and has a modular design, so that different models and datasets, both real-time and historical, can be seamlessly compared using a variety of goodness-of-fit measures. The package is used both in research and education at the undergraduate as well as secondary level. In addition to the science components, the package includes web based tools for conceptual student assessment, as well as resources for teachers, and videotaped case studies of classroom interactions.

  18. Comparing Work Skills Analysis Tools. Project Report.

    ERIC Educational Resources Information Center

    Barker, Kathryn

    This document outlines the processes and outcomes of a research project conducted to review work skills analysis tools (products and/or services) that profile required job skills and/or assess individuals' acquired skills. The document begins with a brief literature review and discussion of pertinent terminology. Presented next is a list of…

  19. Web-Based Learning Design Tool

    ERIC Educational Resources Information Center

    Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.

    2012-01-01

    Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…

  20. Paramedir: A Tool for Programmable Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    Performance analysis of parallel scientific applications is time consuming and requires great expertise in areas such as programming paradigms, system software, and computer hardware architectures. In this paper we describe a tool that facilitates the programmability of performance metric calculations thereby allowing the automation of the analysis and reducing the application development time. We demonstrate how the system can be used to capture knowledge and intuition acquired by advanced parallel programmers in order to be transferred to novice users.

  1. Integrated multidisciplinary analysis tool IMAT users' guide

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  2. New Tools for Mendelian Disease Gene Identification: PhenoDB Variant Analysis Module; and GeneMatcher, a Web-Based Tool for Linking Investigators with an Interest in the Same Gene

    PubMed Central

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2016-01-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). PMID:25684268

  3. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.

    PubMed

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2015-04-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). PMID:25684268

  4. Process-Based Quality (PBQ) Tools Development

    SciTech Connect

    Cummins, J.L.

    2001-12-03

    The objective of this effort is to benchmark the development of process-based quality tools for application in CAD (computer-aided design) model-based applications. The processes of interest are design, manufacturing, and quality process applications. A study was commissioned addressing the impact, current technologies, and known problem areas in application of 3D MCAD (3-dimensional mechanical computer-aided design) models and model integrity on downstream manufacturing and quality processes. The downstream manufacturing and product quality processes are profoundly influenced and dependent on model quality and modeling process integrity. The goal is to illustrate and expedite the modeling and downstream model-based technologies for available or conceptual methods and tools to achieve maximum economic advantage and advance process-based quality concepts.

  5. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    SciTech Connect

    Bush, B.; Penev, M.; Melaina, M.; Zuboy, J.

    2015-05-11

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  6. From sensor networks to connected analysis tools

    NASA Astrophysics Data System (ADS)

    Dawes, N.; Bavay, M.; Egger, T.; Sarni, S.; Salehi, A.; Davison, A.; Jeung, H.; Aberer, K.; Lehning, M.

    2012-04-01

    Multi-disciplinary data systems provide excellent tools for locating data, but most eventually provide a series of local files for further processing, providing marginal advantages for the regular user. The Swiss Experiment Platform (SwissEx) was built with the primary goal of enabling high density measurements, integrating them with lower density existing measurements and encouraging cross/inter-disciplinary collaborations. Nearing the end of the project, we have exceeded these goals, also providing connected tools for direct data access from analysis applications. SwissEx (www.swiss-experiment.ch) provides self-organising networks for rapid deployment and integrates these data with existing measurements from across environmental research. The data are categorised and documented according to their originating experiments and fieldsites as well as being searchable globally. Data from SwissEx are available for download, but we also provide tools to directly access data from within common scientific applications (Matlab, LabView, R) and numerical models such as Alpine3D (using a data acquisition plugin and preprocessing library, MeteoIO). The continuation project (the Swiss Environmental Data and Knowledge Platform) will aim to continue the ideas developed within SwissEx and (alongside cloud enablement and standardisation) work on the development of these tools for application specific tasks. We will work alongside several projects from a wide range of disciplines to help them to develop tools which either require real-time data, or large data samples. As well as developing domain specific tools, we will also be working on tools for the utilisation of the latest knowledge in data control, trend analysis, spatio-temporal statistics and downscaling (developed within the CCES Extremes project), which will be a particularly interesting application when combined with the large range of measurements already held in the system. This presentation will look at the

  7. Web100-based Network Diagnostic Tool

    Energy Science and Technology Software Center (ESTSC)

    2003-03-20

    NDT is a client/server based network diagnostic tool developed to aid in finding network performance and configuration problems. The tool measures data transfer rates between two internet hosts (client and server). It also gathers detailed TCP statistical variable counters supplied by the Web100 modified server and uses these TCP variables to compute the theoretical performance rate between the two internet hosts. It then compares these analytical results with the measured results to determine if performancemore » or configuration problems exist and translates these results into plain text messages to aid users and network operators in resolving reported problems.« less

  8. Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using historical satellite surface soil moisture products, the Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available ground observations. In order to adapt...

  9. Software Construction and Analysis Tools for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.

  10. A 3D image analysis tool for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  11. Fairing Separation Analysis Using SepTOOL

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F.; Dial, William B.; Kosareo, Daniel N.

    2015-01-01

    This document describes the relevant equations programmed in spreadsheet software, SepTOOL, developed by ZIN Technologies, Inc. (ZIN) to determine the separation clearance between a launch vehicle payload fairing and remaining stages. The software uses closed form rigid body dynamic solutions of the vehicle in combination with flexible body dynamics of the fairing, which is obtained from flexible body dynamic analysis or from test data, and superimposes the two results to obtain minimum separation clearance for any given set of flight trajectory conditions. Using closed form solutions allows SepTOOL to perform separation calculations several orders of magnitude faster compared to numerical methods which allows users to perform real time parameter studies. Moreover, SepTOOL can optimize vehicle performance to minimize separation clearance. This tool can evaluate various shapes and sizes of fairings along with different vehicle configurations and trajectories. These geometries and parameters are inputted in a user friendly interface. Although the software was specifically developed for evaluating the separation clearance of launch vehicle payload fairings, separation dynamics of other launch vehicle components can be evaluated provided that aerodynamic loads acting on the vehicle during the separation event are negligible. This document describes the development of SepTOOL providing analytical procedure and theoretical equations whose implementation of these equations is not disclosed. Realistic examples are presented, and the results are verified with ADAMS (MSC Software Corporation) simulations. It should be noted that SepTOOL is a preliminary separation clearance assessment software for payload fairings and should not be used for final clearance analysis.

  12. FDTD simulation tools for UWB antenna analysis.

    SciTech Connect

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  13. FDTD simulation tools for UWB antenna analysis.

    SciTech Connect

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  14. Web-based discovery, access and analysis tools for the provision of different data sources like remote sensing products and climate data

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Hese, S.; Schmullius, C.

    2012-12-01

    To provide different of Earth Observation products in the area of Siberia, the Siberian Earth System Science Cluster (SIB-ESS-C) was established as a spatial data infrastructure at the University of Jena (Germany), Department for Earth Observation. The infrastructure implements standards published by the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO) for data discovery, data access and data analysis. The objective of SIB-ESS-C is to faciliate environmental research and Earth system science in Siberia. Several products from the Moderate Resolution Imaging Spectroradiometer sensor were integrated by serving ISO-compliant Metadata and providing OGC-compliant Web Map Service for data visualization and Web Coverage Services / Web Feature Service for data access. Furthermore climate data from the World Meteorological Organization were downloaded, converted, provided as OGC Sensor Observation Service. Each climate data station is described with ISO-compliant Metadata. All these datasets from multiple sources are provided within the SIB-ESS-C infrastructure (figure 1). Furthermore an automatic workflow integrates updates of these datasets daily. The brokering approach within the SIB-ESS-C system is to collect data from different sources, convert the data into common data formats, if necessary, and provide them with standardized Web services. Additional tools are made available within the SIB-ESS-C Geoportal for an easy access to download and analysis functions (figure 2). The data can be visualized, accessed and analysed with this Geoportal. Providing OGC-compliant services the data can also be accessed with other OGC-compliant clients.; Figure 1. Technical Concept of SIB-ESS-C providing different data sources ; Figure 2. Screenshot of the web-based SIB-ESS-C system.

  15. Vibration analysis as a predictive maintenance tool

    SciTech Connect

    Dischner, J.M.

    1995-09-01

    Vibration analysis is a powerful and effective tool in both predicting and isolating incipient fault conditions. Vibration can assist in the identification of root cause failure analysis and can be used to establish maintenance procedures on a condition assessment basis rather than a scheduled or calendar basis. Recent advances in technology allow for not only new types of testing to be performed, but when integrated with other types of machine information, can lead to even greater insight and accuracy of the entire predictive maintenance program. Case studies and recent findings will be presented along with a discussion of how vibration is used as an invaluable tool in the detection of defects in gearboxes, mill stands, and roll chatter detection and correction. Acceptable vibration criteria and cost benefit summaries will be included.

  16. Integrated tools for control-system analysis

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  17. Nonlinear Robustness Analysis Tools for Flight Control Law Validation & Verification

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhijit

    Loss of control in flight is among the highest aviation accident categories for both the number of accidents and the number of fatalities. The flight controls community is seeking an improved validation tools for safety critical flight control systems. Current validation tools rely heavily on linear analysis, which ignore the inherent nonlinear nature of the aircraft dynamics and flight control system. Specifically, current practices in validating the flight control system involve gridding the flight envelope and checking various criteria based on linear analysis to ensure safety of the flight control system. The analysis and certification methods currently applied assume the aircrafts' dynamics is linear. In reality, the behavior of the aircraft is always nonlinear due to its aerodynamic characteristics and physical limitations imposed by the actuators. This thesis develops nonlinear analysis tools capable of certifying flight control laws for nonlinear aircraft dynamics. The proposed analysis tools can handle both the aerodynamic nonlinearities and the physical limitations imposed by the actuators in the aircrafts' dynamics. This proposed validation technique will extend and enrich the predictive capability of existing flight control law validation methods to analyze nonlinearities. The objective of this thesis is to provide the flight control community with an advanced set of analysis tools to reduce aviation fatalities and accidents rate.

  18. Challenges Facing Design and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)

    2001-01-01

    The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools

  19. Correlating Petrophysical Well Logs Using Fractal-based Analysis to Identify Changes in the Signal Complexity Across Neutron, Density, Dipole Sonic, and Gamma Ray Tool Types

    NASA Astrophysics Data System (ADS)

    Matthews, L.; Gurrola, H.

    2015-12-01

    Typical petrophysical well log correlation is accomplished by manual pattern recognition leading to subjective correlations. The change in character in a well log is dependent upon the change in the response of the tool to lithology. The petrophysical interpreter looks for a change in one log type that would correspond to the way a different tool responds to the same lithology. To develop an objective way to pick changes in well log characteristics, we adapt a method of first arrival picking used in seismic data to analyze changes in the character of well logs. We chose to use the fractal method developed by Boschetti et al[1] (1996). This method worked better than we expected and we found similar changes in the fractal dimension across very different tool types (sonic vs density vs gamma ray). We reason the fractal response of the log is not dependent on the physics of the tool response but rather the change in the complexity of the log data. When a formation changes physical character in time or space the recorded magnitude in tool data changes complexity at the same time even if the original tool response is very different. The relative complexity of the data regardless of the tool used is dependent upon the complexity of the medium relative to tool measurement. The relative complexity of the recorded magnitude data changes as a tool transitions from one character type to another. The character we are measuring is the roughness or complexity of the petrophysical curve. Our method provides a way to directly compare different log types based on a quantitative change in signal complexity. For example, using changes in data complexity allow us to correlate gamma ray suites with sonic logs within a well and then across to an adjacent well with similar signatures. Our method creates reliable and automatic correlations to be made in data sets beyond the reasonable cognitive limits of geoscientists in both speed and consistent pattern recognition. [1] Fabio Boschetti

  20. Parachute system design, analysis, and simulation tool

    SciTech Connect

    Sundberg, W.D.; McBride, D.D.; Gwinn, K.W.; Waye, D.E.; Hailey, C.E.

    1992-01-01

    For over twenty years designers at Sandia National Laboratories have developed various parachute simulation codes to model deployment, inflation, loading, trajectories, aircraft downwash and line sail. In addition to these codes, material property data bases have been acquired. Recently we have initiated project to integrate these codes and data bases into a single software tool entitled SPARSYS (Sandia PARachute SYstem Simulation). We have constructed a graphical user interface as the driver and framework for SPARSYS. In this paper we present a status report on SPARSYS describing progress in developing and incorporating independent modules, in developing an integrated trajectory package, and in developing a materials data base including high-rate-of-strain data.

  1. Orienting the Neighborhood: A Subdivision Energy Analysis Tool; Preprint

    SciTech Connect

    Christensen, C.; Horowitz, S.

    2008-07-01

    This paper describes a new computerized Subdivision Energy Analysis Tool being developed to allow users to interactively design subdivision street layouts while receiving feedback about energy impacts based on user-specified building design variants and availability of roof surfaces for photovoltaic and solar water heating systems.

  2. The Adversarial Route Analysis Tool: A Web Application

    SciTech Connect

    Casson, William H. Jr.

    2012-08-02

    The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.

  3. RSAT 2015: Regulatory Sequence Analysis Tools.

    PubMed

    Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2015-07-01

    RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. PMID:25904632

  4. RSAT 2015: Regulatory Sequence Analysis Tools

    PubMed Central

    Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A.; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M.; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2015-01-01

    RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. PMID:25904632

  5. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Technical Reports Server (NTRS)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  6. Web Based Tool for Mission Operations Scenarios

    NASA Technical Reports Server (NTRS)

    Boyles, Carole A.; Bindschadler, Duane L.

    2008-01-01

    A conventional practice for spaceflight projects is to document scenarios in a monolithic Operations Concept document. Such documents can be hundreds of pages long and may require laborious updates. Software development practice utilizes scenarios in the form of smaller, individual use cases, which are often structured and managed using UML. We have developed a process and a web-based scenario tool that utilizes a similar philosophy of smaller, more compact scenarios (but avoids the formality of UML). The need for a scenario process and tool became apparent during the authors' work on a large astrophysics mission. It was noted that every phase of the Mission (e.g., formulation, design, verification and validation, and operations) looked back to scenarios to assess completeness of requirements and design. It was also noted that terminology needed to be clarified and structured to assure communication across all levels of the project. Attempts to manage, communicate, and evolve scenarios at all levels of a project using conventional tools (e.g., Excel) and methods (Scenario Working Group meetings) were not effective given limitations on budget and staffing. The objective of this paper is to document the scenario process and tool created to offer projects a low-cost capability to create, communicate, manage, and evolve scenarios throughout project development. The process and tool have the further benefit of allowing the association of requirements with particular scenarios, establishing and viewing relationships between higher- and lower-level scenarios, and the ability to place all scenarios in a shared context. The resulting structured set of scenarios is widely visible (using a web browser), easily updated, and can be searched according to various criteria including the level (e.g., Project, System, and Team) and Mission Phase. Scenarios are maintained in a web-accessible environment that provides a structured set of scenario fields and allows for maximum

  7. Interoperability of the analysis tools within the IMPEx project

    NASA Astrophysics Data System (ADS)

    Génot, Vincent; Khodachenko, Maxim; Kallio, Esa; Al-Ubaidi, Tarek; Gangloff, Michel; Budnik, Elena; Bouchemit, Myriam; Renard, Benjamin; Bourel, Natacha; Modolo, Ronan; Hess, Sébastien; André, Nicolas; Penou, Emmanuel; Topf, Florian; Alexeev, Igor; Belenkaya, Elena; Kalegaev, Vladimir; Schmidt, Walter

    2013-04-01

    The growing amount of data in planetary sciences requires adequate tools for visualisation enabling in depth analysis. Within the FP7 IMPEx infrastructure data will originate from heterogeneous sources : large observational databases (CDAWeb, AMDA at CDPP, ...), simulation databases for hybrid and MHD codes (FMI, LATMOS), planetary magnetic field models database and online services (SINP). Together with the common "time series" visualisation functionality for both in-situ and modeled data (provided by AMDA and CLWeb tools), IMPEx will also provide immersion capabilities into the complex 3D data originating from models (provided by 3DView). The functionalities of these tools will be described. The emphasis will be put on how these tools 1/ can share information (for instance Time Tables or user composed parameters) and 2/ be operated synchronously via dynamic connections based on Virtual Observatory standards.

  8. Data Analysis with Graphical Models: Software Tools

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1994-01-01

    Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.

  9. Enhancement of Local Climate Analysis Tool

    NASA Astrophysics Data System (ADS)

    Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.

    2012-12-01

    The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).

  10. Pattern recognition tool based on complex network-based approach

    NASA Astrophysics Data System (ADS)

    Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir

    2013-02-01

    This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.

  11. Risk analysis for confined space entries: Critical analysis of four tools applied to three risk scenarios.

    PubMed

    Burlet-Vienney, Damien; Chinniah, Yuvin; Bahloul, Ali; Roberge, Brigitte

    2016-06-01

    Investigation reports of fatal confined space accidents nearly always point to a problem of identifying or underestimating risks. This paper compares 4 different risk analysis tools developed for confined spaces by applying them to 3 hazardous scenarios. The tools were namely 1. a checklist without risk estimation (Tool A), 2. a checklist with a risk scale (Tool B), 3. a risk calculation without a formal hazard identification stage (Tool C), and 4. a questionnaire followed by a risk matrix (Tool D). Each tool's structure and practical application were studied. Tools A and B gave crude results comparable to those of more analytic tools in less time. Their main limitations were lack of contextual information for the identified hazards and greater dependency on the user's expertise and ability to tackle hazards of different nature. Tools C and D utilized more systematic approaches than tools A and B by supporting risk reduction based on the description of the risk factors. Tool D is distinctive because of 1. its comprehensive structure with respect to the steps suggested in risk management, 2. its dynamic approach to hazard identification, and 3. its use of data resulting from the risk analysis. PMID:26864350

  12. Web-based machine tool condition monitoring

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Morteza; Victory, J. L.

    2000-12-01

    This paper looks at the advantages of using the Internet, as the basis for the implementation of low-cost condition monitoring systems, in the manufacturing industry. A model based condition monitoring system, is presented where a number of machining stations dispersed at different physical locations can be inspected via Internet access and the signals from the process analyzed in a dedicated condition monitoring center. Incentive for the new approach to the system health monitoring, logging and surveillance are presented. These extend into advantages of using model-based techniques and the need for an appropriate mathematical model of the machine tool. Finally, the data acquisition and communication system to be used in this application for Internet access will be explained.

  13. Integrated FDIR Analysis Tool for Space Applications

    NASA Astrophysics Data System (ADS)

    Piras, Annamaria; Malucchi, Giovanni; Di Tommaso, Umberto

    2013-08-01

    The crucial role of health management in space applications has been the subject of many studies carried out by NASA and ESA and is held in high regard by Thales Alenia Space. The common objective is to improve reliability and availability of space systems. This paper will briefly illustrate the evolution of IDEHAS (IntegrateD Engineering Harness Avionics and Software), an advanced tool currently used in Thales Alenia Space - Italy in several space programs and recently enhanced to fully support FDIR (Fault Detection Isolation and Recovery) analysis. The FDIR analysis logic flow will be presented, emphasizing the improvements offered to Mission Support & Operations activities. Finally the benefits provided to the Company and a list of possible future enhancements will be given.

  14. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  15. A Tool for Requirements-Based Programming

    NASA Technical Reports Server (NTRS)

    Rash, James L.; Hinchey, Michael G.; Rouff, Christopher A.; Gracanin, Denis; Erickson, John

    2005-01-01

    Absent a general method for mathematically sound, automated transformation of customer requirements into a formal model of the desired system, developers must resort to either manual application of formal methods or to system testing (either manual or automated). While formal methods have afforded numerous successes, they present serious issues, e.g., costs to gear up to apply them (time, expensive staff), and scalability and reproducibility when standards in the field are not settled. The testing path cannot be walked to the ultimate goal, because exhaustive testing is infeasible for all but trivial systems. So system verification remains problematic. System or requirements validation is similarly problematic. The alternatives available today depend on either having a formal model or pursuing enough testing to enable the customer to be certain that system behavior meets requirements. The testing alternative for non-trivial systems always have some system behaviors unconfirmed and therefore is not the answer. To ensure that a formal model is equivalent to the customer s requirements necessitates that the customer somehow fully understands the formal model, which is not realistic. The predominant view that provably correct system development depends on having a formal model of the system leads to a desire for a mathematically sound method to automate the transformation of customer requirements into a formal model. Such a method, an augmentation of requirements-based programming, will be briefly described in this paper, and a prototype tool to support it will be described. The method and tool enable both requirements validation and system verification for the class of systems whose behavior can be described as scenarios. An application of the tool to a prototype automated ground control system for NASA mission is presented.

  16. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool - A case of predicting potential zones of sustainable groundwater resources

    NASA Astrophysics Data System (ADS)

    Adiat, K. A. N.; Nawawi, M. N. M.; Abdullah, K.

    2012-05-01

    SummaryInappropriate handling/integration of data from various sources is a problem that can make any spatial prediction tasking and inaccurate. Attempt was made in this study to offer solution to this problem by exploring the capability of GIS-based elementary MCDA as a spatial prediction tool. In order to achieve the set objectives, spatial prediction of potential zones of sustainable groundwater resources in a given study area was used as a case study. A total of five set of criteria/factors believed to be influencing groundwater storage potential in the area were selected. Each criterion/factor was assigned appropriate weight based on Saaty's 9 point scale and the weights were normalized through the analytic hierarchy process (AHP). The process was integrated in the GIS environment to produce the groundwater potential prediction map for the area. The effect of coherence of criteria on the efficiency of MCDA as a prediction tool was also examined. The prediction map produced was found to be 81.25% accurate. The results of the examination of the effect of coherence of criteria revealed that the ability of the method to produce accurate prediction is dependent on the exhaustiveness of the set of criteria used. It was established in the study that the GIS-based elementary MCDA technique is capable of producing accurate and reliable prediction particularly if the set of criteria use for the prediction is coherent.

  17. A conceptual design tool for RBCC engine performance analysis

    NASA Astrophysics Data System (ADS)

    Olds, John R.; Saks, Greg

    1997-01-01

    Future reusable launch vehicles will depend on new propulsion technologies to lower system operational costs while maintaining adequate performance. Recently, a number of vehicle systems utilizing rocket-based combined-cycle (RBCC) propulsion have been proposed as possible low-cost space launch solutions. Vehicles using RBCC propulsion have the potential to combine the best aspects of airbreathing propulsion (high average Isp) with the best aspects of rocket propulsion (high propellant bulk density and engine T/W). Proper conceptual assessment of each proposed vehicle will require computer-based tools that allow for quick and cheap, yet sufficiently accurate disciplinary analyses. At Georgia Tech, a spreadsheet-based tool has been developed that uses quasi-1D flow analysis with component efficiencies to parametrically model RBCC engine performance in ejector, fan-ramjet, ramjet and pure rocket modes. The technique is similar to an earlier RBCC modeling technique developed by the Marquardt Corporation in the mid-1960's. For a given sea-level static thrust requirement, the current tool generates engine weight and size data, as well as Isp and thrust data vs. altitude and Mach number. The latter is output in tabular form for use in a trajectory optimization program. This paper reviews the current state of the RBCC analysis tool and the effort to upgrade it from a Microsoft Excel spreadsheet to a design-oriented UNIX program in C suitable for integration into a multidisciplinary design optimization (MDO) framework.

  18. A conceptual design tool for RBCC engine performance analysis

    SciTech Connect

    Olds, J.R.; Saks, G.

    1997-01-01

    Future reusable launch vehicles will depend on new propulsion technologies to lower system operational costs while maintaining adequate performance. Recently, a number of vehicle systems utilizing rocket-based combined-cycle (RBCC) propulsion have been proposed as possible low-cost space launch solutions. Vehicles using RBCC propulsion have the potential to combine the best aspects of airbreathing propulsion (high average Isp) with the best aspects of rocket propulsion (high propellant bulk density and engine T/W). Proper conceptual assessment of each proposed vehicle will require computer-based tools that allow for quick and cheap, yet sufficiently accurate disciplinary analyses. At Georgia Tech, a spreadsheet-based tool has been developed that uses quasi-1D flow analysis with component efficiencies to parametrically model RBCC engine performance in ejector, fan-ramjet, ramjet and pure rocket modes. The technique is similar to an earlier RBCC modeling technique developed by the Marquardt Corporation in the mid-1960{close_quote}s. For a given sea-level static thrust requirement, the current tool generates engine weight and size data, as well as Isp and thrust data vs. altitude and Mach number. The latter is output in tabular form for use in a trajectory optimization program. This paper reviews the current state of the RBCC analysis tool and the effort to upgrade it from a Microsoft Excel spreadsheet to a design-oriented UNIX program in C suitable for integration into a multidisciplinary design optimization (MDO) framework. {copyright} {ital 1997 American Institute of Physics.}

  19. A Distributed, Parallel Visualization and Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2007-12-01

    VisIt is an interactive parallel visualization and graphical analysis tool for viewing scientific date on UNIX and PC platforms. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images for presentations. VisIt contains a rich set of visualization features so that you can view your data in a variety of ways. It can be used to visualize scalar and vector fields defined on two- and three-more » dimensional (2D and 3D) structured and unstructured meshes. VisIt was designed to handle very large data set sizes in the terascale range and yet can also handle small data sets in the kilobyte range.« less

  20. Multi-Mission Power Analysis Tool

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2011-01-01

    Multi-Mission Power Analysis Tool (MMPAT) Version 2 simulates spacecraft power generation, use, and storage in order to support spacecraft design, mission planning, and spacecraft operations. It can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. A user-friendly GUI (graphical user interface) makes it easy to use. Multiple deployments allow use on the desktop, in batch mode, or as a callable library. It includes detailed models of solar arrays, radioisotope thermoelectric generators, nickel-hydrogen and lithium-ion batteries, and various load types. There is built-in flexibility through user-designed state models and table-driven parameters.

  1. BASE: Bayesian Astrometric and Spectroscopic Exoplanet Detection and Characterization Tool

    NASA Astrophysics Data System (ADS)

    Schulze-Hartung, Tim

    2012-08-01

    BASE is a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The tool fulfills two major tasks of exoplanet science, namely the detection of exoplanets and the characterization of their orbits. BASE was developed to provide the possibility of an integrated Bayesian analysis of stellar astrometric and Doppler-spectroscopic measurements with respect to their binary or planetary companions’ signals, correctly treating the astrometric measurement uncertainties and allowing to explore the whole parameter space without the need for informative prior constraints. The tool automatically diagnoses convergence of its Markov chain Monte Carlo (MCMC[2]) sampler to the posterior and regularly outputs status information. For orbit characterization, BASE delivers important results such as the probability densities and correlations of model parameters and derived quantities. BASE is a highly configurable command-line tool developed in Fortran 2008 and compiled with GFortran. Options can be used to control the program’s behaviour and supply information such as the stellar mass or prior information. Any option can be supplied in a configuration file and/or on the command line.

  2. Virtual Tool Mark Generation for Efficient Striation Analysis

    SciTech Connect

    Ekstrand, Laura; Zhang, Song; Grieve, Taylor; Chumbley, L Scott; Kreiser, M James

    2014-02-16

    This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley et al. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguished known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within ±5–10°. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.

  3. Built Environment Analysis Tool: April 2013

    SciTech Connect

    Porter, C.

    2013-05-01

    This documentation describes the tool development. It was created to evaluate the effects of built environment scenarios on transportation energy and greenhouse gas (GHG) emissions. This documentation also provides guidance on how to apply the tool.

  4. Knickpoint finder: A software tool that improves neotectonic analysis

    NASA Astrophysics Data System (ADS)

    Queiroz, G. L.; Salamuni, E.; Nascimento, E. R.

    2015-03-01

    This work presents a new software tool for morphometric analysis of drainage networks based on the methods of Hack (1973) and Etchebehere et al. (2004). This tool is applicable to studies of morphotectonics and neotectonics. The software used a digital elevation model (DEM) to identify the relief breakpoints along drainage profiles (knickpoints). The program was coded in Python for use on the ArcGIS platform and is called Knickpoint Finder. A study area was selected to test and evaluate the software's ability to analyze and identify neotectonic morphostructures based on the morphology of the terrain. For an assessment of its validity, we chose an area of the James River basin, which covers most of the Piedmont area of Virginia (USA), which is an area of constant intraplate seismicity and non-orogenic active tectonics and exhibits a relatively homogeneous geodesic surface currently being altered by the seismogenic features of the region. After using the tool in the chosen area, we found that the knickpoint locations are associated with the geologic structures, epicenters of recent earthquakes, and drainages with rectilinear anomalies. The regional analysis demanded the use of a spatial representation of the data after processing using Knickpoint Finder. The results were satisfactory in terms of the correlation of dense areas of knickpoints with active lineaments and the rapidity of the identification of deformed areas. Therefore, this software tool may be considered useful in neotectonic analyses of large areas and may be applied to any area where there is DEM coverage.

  5. Biomedical tools based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Saba, Anna R.; Castillo, Paula M.; Fantechi, Elvira; Sangregorio, Claudio; Lascialfari, Alessandro; Sbarbati, Andrea; Casu, Alberto; Falqui, Andrea; Casula, Maria F.

    2013-02-01

    Magnetic and superparamagnetic colloids represent a versatile platform for the design of functional nanostructures which may act as effective tools for biomedicine, being active in cancer therapy, tissue imaging and magnetic separation. The structural, morphological and hence magnetic features of the magnetic nanoparticles must be tuned for optimal perfomance in a given application. In this work, iron oxide nanocrystals have been prepared as prospective heat mediators in magnetic fluid hyperthermia therapy. A procedure based on the partial oxidation of iron (II) precursors in water based media has been adopted and the synthesis outcome has been investigated by X-Ray diffraction and Transmission electron microscopy. It was found that by adjusting the synthetic parameters (mainly the oxidation rate) magnetic iron oxide nanocrystals with cubic and cuboctahedral shape and average size 50 nm were obtained. The nanocrystals were tested as hyperthermic mediators through Specific Absorption Rate (SAR) measurements. The samples act as heat mediators, being able to increase the temperature from physiological temperature to the temperatures used for magnetic hyperthermia by short exposure to an alternative magnetic field and exhibit a reproducible temperature kinetic behavior.

  6. FEAT - FAILURE ENVIRONMENT ANALYSIS TOOL (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Pack, G.

    1994-01-01

    The Failure Environment Analysis Tool, FEAT, enables people to see and better understand the effects of failures in a system. FEAT uses digraph models to determine what will happen to a system if a set of failure events occurs and to identify the possible causes of a selected set of failures. Failures can be user-selected from either engineering schematic or digraph model graphics, and the effects or potential causes of the failures will be color highlighted on the same schematic or model graphic. As a design tool, FEAT helps design reviewers understand exactly what redundancies have been built into a system and where weaknesses need to be protected or designed out. A properly developed digraph will reflect how a system functionally degrades as failures accumulate. FEAT is also useful in operations, where it can help identify causes of failures after they occur. Finally, FEAT is valuable both in conceptual development and as a training aid, since digraphs can identify weaknesses in scenarios as well as hardware. Digraphs models for use with FEAT are generally built with the Digraph Editor, a Macintosh-based application which is distributed with FEAT. The Digraph Editor was developed specifically with the needs of FEAT users in mind and offers several time-saving features. It includes an icon toolbox of components required in a digraph model and a menu of functions for manipulating these components. It also offers FEAT users a convenient way to attach a formatted textual description to each digraph node. FEAT needs these node descriptions in order to recognize nodes and propagate failures within the digraph. FEAT users store their node descriptions in modelling tables using any word processing or spreadsheet package capable of saving data to an ASCII text file. From within the Digraph Editor they can then interactively attach a properly formatted textual description to each node in a digraph. Once descriptions are attached to them, a selected set of nodes can be

  7. FEAT - FAILURE ENVIRONMENT ANALYSIS TOOL (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Pack, G.

    1994-01-01

    The Failure Environment Analysis Tool, FEAT, enables people to see and better understand the effects of failures in a system. FEAT uses digraph models to determine what will happen to a system if a set of failure events occurs and to identify the possible causes of a selected set of failures. Failures can be user-selected from either engineering schematic or digraph model graphics, and the effects or potential causes of the failures will be color highlighted on the same schematic or model graphic. As a design tool, FEAT helps design reviewers understand exactly what redundancies have been built into a system and where weaknesses need to be protected or designed out. A properly developed digraph will reflect how a system functionally degrades as failures accumulate. FEAT is also useful in operations, where it can help identify causes of failures after they occur. Finally, FEAT is valuable both in conceptual development and as a training aid, since digraphs can identify weaknesses in scenarios as well as hardware. Digraphs models for use with FEAT are generally built with the Digraph Editor, a Macintosh-based application which is distributed with FEAT. The Digraph Editor was developed specifically with the needs of FEAT users in mind and offers several time-saving features. It includes an icon toolbox of components required in a digraph model and a menu of functions for manipulating these components. It also offers FEAT users a convenient way to attach a formatted textual description to each digraph node. FEAT needs these node descriptions in order to recognize nodes and propagate failures within the digraph. FEAT users store their node descriptions in modelling tables using any word processing or spreadsheet package capable of saving data to an ASCII text file. From within the Digraph Editor they can then interactively attach a properly formatted textual description to each node in a digraph. Once descriptions are attached to them, a selected set of nodes can be

  8. WhichGenes: a web-based tool for gathering, building, storing and exporting gene sets with application in gene set enrichment analysis

    PubMed Central

    Glez-Peña, Daniel; Gómez-López, Gonzalo; Pisano, David G.; Fdez-Riverola, Florentino

    2009-01-01

    WhichGenes is a web-based interactive gene set building tool offering a very simple interface to extract always-updated gene lists from multiple databases and unstructured biological data sources. While the user can specify new gene sets of interest by following a simple four-step wizard, the tool is able to run several queries in parallel. Every time a new set is generated, it is automatically added to the private gene-set cart and the user is notified by an e-mail containing a direct link to the new set stored in the server. WhichGenes provides functionalities to edit, delete and rename existing sets as well as the capability of generating new ones by combining previous existing sets (intersection, union and difference operators). The user can export his sets configuring the output format and selecting among multiple gene identifiers. In addition to the user-friendly environment, WhichGenes allows programmers to access its functionalities in a programmatic way through a Representational State Transfer web service. WhichGenes front-end is freely available at http://www.whichgenes.org/, WhichGenes API is accessible at http://www.whichgenes.org/api/. PMID:19406925

  9. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  10. ISHM Decision Analysis Tool: Operations Concept

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The state-of-the-practice Shuttle caution and warning system warns the crew of conditions that may create a hazard to orbiter operations and/or crew. Depending on the severity of the alarm, the crew is alerted with a combination of sirens, tones, annunciator lights, or fault messages. The combination of anomalies (and hence alarms) indicates the problem. Even with much training, determining what problem a particular combination represents is not trivial. In many situations, an automated diagnosis system can help the crew more easily determine an underlying root cause. Due to limitations of diagnosis systems,however, it is not always possible to explain a set of alarms with a single root cause. Rather, the system generates a set of hypotheses that the crew can select from. The ISHM Decision Analysis Tool (IDAT) assists with this task. It presents the crew relevant information that could help them resolve the ambiguity of multiple root causes and determine a method for mitigating the problem. IDAT follows graphical user interface design guidelines and incorporates a decision analysis system. I describe both of these aspects.

  11. Numerical Uncertainty Quantification for Radiation Analysis Tools

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke; Blattnig, Steve; Clowdsley, Martha

    2007-01-01

    Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure. The question, then, is what is the number of thicknesses that is needed to get an accurate result. So convergence testing is performed to quantify the uncertainty associated with interpolating over different shield thickness spatial grids.

  12. Volumetric measurements of pulmonary nodules: variability in automated analysis tools

    NASA Astrophysics Data System (ADS)

    Juluru, Krishna; Kim, Woojin; Boonn, William; King, Tara; Siddiqui, Khan; Siegel, Eliot

    2007-03-01

    Over the past decade, several computerized tools have been developed for detection of lung nodules and for providing volumetric analysis. Incidentally detected lung nodules have traditionally been followed over time by measurements of their axial dimensions on CT scans to ensure stability or document progression. A recently published article by the Fleischner Society offers guidelines on the management of incidentally detected nodules based on size criteria. For this reason, differences in measurements obtained by automated tools from various vendors may have significant implications on management, yet the degree of variability in these measurements is not well understood. The goal of this study is to quantify the differences in nodule maximum diameter and volume among different automated analysis software. Using a dataset of lung scans obtained with both "ultra-low" and conventional doses, we identified a subset of nodules in each of five size-based categories. Using automated analysis tools provided by three different vendors, we obtained size and volumetric measurements on these nodules, and compared these data using descriptive as well as ANOVA and t-test analysis. Results showed significant differences in nodule maximum diameter measurements among the various automated lung nodule analysis tools but no significant differences in nodule volume measurements. These data suggest that when using automated commercial software, volume measurements may be a more reliable marker of tumor progression than maximum diameter. The data also suggest that volumetric nodule measurements may be relatively reproducible among various commercial workstations, in contrast to the variability documented when performing human mark-ups, as is seen in the LIDC (lung imaging database consortium) study.

  13. Solar Array Verification Analysis Tool (SAVANT) Developed

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Long, KIenwyn J.; Curtis, Henry B.; Gardner, Barbara; Davis, Victoria; Messenger, Scott; Walters, Robert

    1999-01-01

    Modeling solar cell performance for a specific radiation environment to obtain the end-of-life photovoltaic array performance has become both increasingly important and, with the rapid advent of new types of cell technology, more difficult. For large constellations of satellites, a few percent difference in the lifetime prediction can have an enormous economic impact. The tool described here automates the assessment of solar array on-orbit end-of-life performance and assists in the development and design of ground test protocols for different solar cell designs. Once established, these protocols can be used to calculate on-orbit end-of-life performance from ground test results. The Solar Array Verification Analysis Tool (SAVANT) utilizes the radiation environment from the Environment Work Bench (EWB) model developed by the NASA Lewis Research Center s Photovoltaic and Space Environmental Effects Branch in conjunction with Maxwell Technologies. It then modifies and combines this information with the displacement damage model proposed by Summers et al. (ref. 1) of the Naval Research Laboratory to determine solar cell performance during the course of a given mission. The resulting predictions can then be compared with flight data. The Environment WorkBench (ref. 2) uses the NASA AE8 (electron) and AP8 (proton) models of the radiation belts to calculate the trapped radiation flux. These fluxes are integrated over the defined spacecraft orbit for the duration of the mission to obtain the total omnidirectional fluence spectra. Components such as the solar cell coverglass, adhesive, and antireflective coatings can slow and attenuate the particle fluence reaching the solar cell. In SAVANT, a continuous slowing down approximation is used to model this effect.

  14. Tool Use of Experienced Learners in Computer-Based Learning Environments: Can Tools Be Beneficial?

    ERIC Educational Resources Information Center

    Juarez Collazo, Norma A.; Corradi, David; Elen, Jan; Clarebout, Geraldine

    2014-01-01

    Research has documented the use of tools in computer-based learning environments as problematic, that is, learners do not use the tools and when they do, they tend to do it suboptimally. This study attempts to disentangle cause and effect of this suboptimal tool use for experienced learners. More specifically, learner variables (metacognitive and…

  15. PyRAT - python radiography analysis tool (u)

    SciTech Connect

    Temple, Brian A; Buescher, Kevin L; Armstrong, Jerawan C

    2011-01-14

    PyRAT is a radiography analysis tool used to reconstruction images of unknown 1-0 objects. The tool is written in Python and developed for use on LINUX and Windows platforms. The tool is capable of performing nonlinear inversions of the images with minimal manual interaction in the optimization process. The tool utilizes the NOMAD mixed variable optimization tool to perform the optimization.

  16. Computer-Based Cognitive Tools: Description and Design.

    ERIC Educational Resources Information Center

    Kennedy, David; McNaught, Carmel

    With computers, tangible tools are represented by the hardware (e.g., the central processing unit, scanners, and video display unit), while intangible tools are represented by the software. There is a special category of computer-based software tools (CBSTs) that have the potential to mediate cognitive processes--computer-based cognitive tools…

  17. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures

    PubMed Central

    Patton, Niall; Aslam, Tariq; MacGillivray, Thomas; Pattie, Alison; Deary, Ian J; Dhillon, Baljean

    2005-01-01

    The retinal and cerebral microvasculatures share many morphological and physiological properties. Assessment of the cerebral microvasculature requires highly specialized and expensive techniques. The potential for using non-invasive clinical assessment of the retinal microvasculature as a marker of the state of the cerebrovasculature offers clear advantages, owing to the ease with which the retinal vasculature can be directly visualized in vivo and photographed due to its essential two-dimensional nature. The use of retinal digital image analysis is becoming increasingly common, and offers new techniques to analyse different aspects of retinal vascular topography, including retinal vascular widths, geometrical attributes at vessel bifurcations and vessel tracking. Being predominantly automated and objective, these techniques offer an exciting opportunity to study the potential to identify retinal microvascular abnormalities as markers of cerebrovascular pathology. In this review, we describe the anatomical and physiological homology between the retinal and cerebral microvasculatures. We review the evidence that retinal microvascular changes occur in cerebrovascular disease and review current retinal image analysis tools that may allow us to use different aspects of the retinal microvasculature as potential markers for the state of the cerebral microvasculature. PMID:15817102

  18. The Development of a Specific and Sensitive LC-MS-Based Method for the Detection and Quantification of Hydroperoxy- and Hydroxydocosahexaenoic Acids as a Tool for Lipidomic Analysis

    PubMed Central

    Derogis, Priscilla B. M. C.; Freitas, Florêncio P.; Marques, Anna S. F.; Cunha, Daniela; Appolinário, Patricia P.; de Paula, Fernando; Lourenço, Tiago C.; Murgu, Michael; Di Mascio, Paolo; Medeiros, Marisa H. G.; Miyamoto, Sayuri

    2013-01-01

    Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid that is highly enriched in the brain, and the oxidation products of DHA are present or increased during neurodegenerative disease progression. The characterization of the oxidation products of DHA is critical to understanding the roles that these products play in the development of such diseases. In this study, we developed a sensitive and specific analytical tool for the detection and quantification of twelve major DHA hydroperoxide (HpDoHE) and hydroxide (HDoHE) isomers (isomers at positions 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19 and 20) in biological systems. In this study, HpDoHE were synthesized by photooxidation, and the corresponding hydroxides were obtained by reduction with NaBH4. The isolated isomers were characterized by LC-MS/MS, and unique and specific fragment ions were chosen to construct a selected reaction monitoring (SRM) method for the targeted quantitative analysis of each HpDoHE and HDoHE isomer. The detection limits for the LC-MS/MS-SRM assay were 1−670 pg for HpDoHE and 0.5−8.5 pg for HDoHE injected onto a column. Using this method, it was possible to detect the basal levels of HDoHE isomers in both rat plasma and brain samples. Therefore, the developed LC-MS/MS-SRM can be used as an important tool to identify and quantify the hydro(pero)xy derivatives of DHA in biological system and may be helpful for the oxidative lipidomic studies. PMID:24204871

  19. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie; Nimbalkar, Sachin U; Cox, Daryl

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  20. Multi-Spacecraft Analysis with Generic Visualization Tools

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Vela, L.; Gonzalez, C.; Jeffers, S.

    2010-12-01

    To handle the needs of scientists today and in the future, software tools are going to have to take better advantage of the currently available hardware. Specifically, computing power, memory, and disk space have become cheaper, while bandwidth has become more expensive due to the explosion of online applications. To overcome these limitations, we have enhanced our Southwest Data Display and Analysis System (SDDAS) to take better advantage of the hardware by utilizing threads and data caching. Furthermore, the system was enhanced to support a framework for adding data formats and data visualization methods without costly rewrites. Visualization tools can speed analysis of many common scientific tasks and we will present a suite of tools that encompass the entire process of retrieving data from multiple data stores to common visualizations of the data. The goals for the end user are ease of use and interactivity with the data and the resulting plots. The data can be simultaneously plotted in a variety of formats and/or time and spatial resolutions. The software will allow one to slice and separate data to achieve other visualizations. Furthermore, one can interact with the data using the GUI or through an embedded language based on the Lua scripting language. The data presented will be primarily from the Cluster and Mars Express missions; however, the tools are data type agnostic and can be used for virtually any type of data.

  1. Systematic Omics Analysis Review (SOAR) tool to support risk assessment.

    PubMed

    McConnell, Emma R; Bell, Shannon M; Cote, Ila; Wang, Rong-Lin; Perkins, Edward J; Garcia-Reyero, Natàlia; Gong, Ping; Burgoon, Lyle D

    2014-01-01

    Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment. PMID:25531884

  2. Systematic Omics Analysis Review (SOAR) Tool to Support Risk Assessment

    PubMed Central

    McConnell, Emma R.; Bell, Shannon M.; Cote, Ila; Wang, Rong-Lin; Perkins, Edward J.; Garcia-Reyero, Natàlia; Gong, Ping; Burgoon, Lyle D.

    2014-01-01

    Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment. PMID:25531884

  3. Applying AI tools to operational space environmental analysis

    NASA Technical Reports Server (NTRS)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  4. Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE; Version 1.0): web-based tools to assess the impact of sea level rise in south Florida

    USGS Publications Warehouse

    Hearn, Paul; Strong, David; Swain, Eric; Decker, Jeremy

    2013-01-01

    South Florida's Greater Everglades area is particularly vulnerable to sea level rise, due to its rich endowment of animal and plant species and its heavily populated urban areas along the coast. Rising sea levels are expected to have substantial impacts on inland flooding, the depth and extent of surge from coastal storms, the degradation of water supplies by saltwater intrusion, and the integrity of plant and animal habitats. Planners and managers responsible for mitigating these impacts require advanced tools to help them more effectively identify areas at risk. The U.S. Geological Survey's (USGS) Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE) Web site has been developed to address these needs by providing more convenient access to projections from models that forecast the effects of sea level rise on surface water and groundwater, the extent of surge and resulting economic losses from coastal storms, and the distribution of habitats. IMMAGE not only provides an advanced geographic information system (GIS) interface to support decision making, but also includes topic-based modules that explain and illustrate key concepts for nontechnical users. The purpose of this report is to familiarize both technical and nontechnical users with the IMMAGE Web site and its various applications.

  5. Reliability-Based Electronics Shielding Design Tools

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.

    2007-01-01

    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.

  6. TA-DA: A TOOL FOR ASTROPHYSICAL DATA ANALYSIS

    SciTech Connect

    Da Rio, Nicola; Robberto, Massimo

    2012-12-01

    We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as a pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.

  7. Scalable analysis tools for sensitivity analysis and UQ (3160) results.

    SciTech Connect

    Karelitz, David B.; Ice, Lisa G.; Thompson, David C.; Bennett, Janine C.; Fabian, Nathan; Scott, W. Alan; Moreland, Kenneth D.

    2009-09-01

    The 9/30/2009 ASC Level 2 Scalable Analysis Tools for Sensitivity Analysis and UQ (Milestone 3160) contains feature recognition capability required by the user community for certain verification and validation tasks focused around sensitivity analysis and uncertainty quantification (UQ). These feature recognition capabilities include crater detection, characterization, and analysis from CTH simulation data; the ability to call fragment and crater identification code from within a CTH simulation; and the ability to output fragments in a geometric format that includes data values over the fragments. The feature recognition capabilities were tested extensively on sample and actual simulations. In addition, a number of stretch criteria were met including the ability to visualize CTH tracer particles and the ability to visualize output from within an S3D simulation.

  8. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    NASA Technical Reports Server (NTRS)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  9. Exploratory data analysis as a tool for similarity assessment and clustering of chiral polysaccharide-based systems used to separate pharmaceuticals in supercritical fluid chromatography.

    PubMed

    De Klerck, Katrijn; Vander Heyden, Yvan; Mangelings, Debby

    2014-01-24

    In the search for appropriate chromatographic conditions to separate enantiomers, screening strategies are often applied because achieving chiral separations is tedious. These screenings aim to find relatively fast suitable separation conditions. However, the definition of these screenings mostly relies on years of expertise or on the labour- and time-intensive investigation of a broad range of chiral stationary- and mobile phases. A large amount of data is generated using either approach. In this study, the obtained data are investigated in a systematic manner and (dis)similar systems are searched for. For this case study, 48 chromatographic systems were characterized by the enantioresolutions of 29 racemates. Exploratory data analysis was performed by means of projection pursuit, revealing the different enantioselective patterns of the chromatographic systems. To quantify the (dis)similarity, correlation coefficients and Euclidean distances were calculated. These results were visualized in colour maps to allow investigating the degree of (dis)similarity between the systems. These maps proved to be a helpful tool in the selection of dissimilar/orthogonal chromatographic conditions. Hierarchical-cluster-analysis dendrograms were constructed next to evaluate the clustering of similar systems, i.e. with an equivalent enantioselectivity. Screening sequences were extracted and compared with the initial, defined by direct data interpretation. In a final section, selection of dissimilar systems was done by means of the Kennard and Stone algorithm. The systems selected by the applied techniques did not necessarily perform better than the selection by direct data interpretation. Nevertheless, high cumulative success rates are achieved for the selected combinations, due to the broad enantioselectivity, the high individual success rates and the complementarity of the chiral selectors. PMID:24394150

  10. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-2 analysis model

    NASA Astrophysics Data System (ADS)

    Adams, David; Calafiura, Paolo; Delsart, Pierre-Antoine; Elsing, Markus; Farrell, Steven; Koeneke, Karsten; Krasznahorkay, Attila; Krumnack, Nils; Lancon, Eric; Lavrijsen, Wim; Laycock, Paul; Lei, Xiaowen; Strandberg, Sara; Verkerke, Wouter; Vivarelli, Iacopo; Woudstra, Martin

    2015-12-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This paper will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  11. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  12. SATRAT: Staphylococcus aureus transcript regulatory network analysis tool

    PubMed Central

    Nagarajan, Vijayaraj; Elasri, Mohamed O.

    2015-01-01

    Staphylococcus aureus is a commensal organism that primarily colonizes the nose of healthy individuals. S. aureus causes a spectrum of infections that range from skin and soft-tissue infections to fatal invasive diseases. S. aureus uses a large number of virulence factors that are regulated in a coordinated fashion. The complex regulatory mechanisms have been investigated in numerous high-throughput experiments. Access to this data is critical to studying this pathogen. Previously, we developed a compilation of microarray experimental data to enable researchers to search, browse, compare, and contrast transcript profiles. We have substantially updated this database and have built a novel exploratory tool—SATRAT—the S. aureus transcript regulatory network analysis tool, based on the updated database. This tool is capable of performing deep searches using a query and generating an interactive regulatory network based on associations among the regulators of any query gene. We believe this integrated regulatory network analysis tool would help researchers explore the missing links and identify novel pathways that regulate virulence in S. aureus. Also, the data model and the network generation code used to build this resource is open sourced, enabling researchers to build similar resources for other bacterial systems. PMID:25653902

  13. ProMAT: protein microarray analysis tool

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Varnum, Susan M.; Anderson, Kevin K.; Bollinger, Nikki; Zangar, Richard C.

    2006-04-04

    Summary: ProMAT is a software tool for statistically analyzing data from ELISA microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code. Availability: ProMAT is available at http://www.pnl.gov/statistics/ProMAT. ProMAT requires Java version 1.5.0 and R version 1.9.1 (or more recent versions) which are distributed with the tool.

  14. Ball Bearing Analysis with the ORBIS Tool

    NASA Technical Reports Server (NTRS)

    Halpin, Jacob D.

    2016-01-01

    Ball bearing design is critical to the success of aerospace mechanisms. Key bearing performance parameters, such as load capability, stiffness, torque, and life all depend on accurate determination of the internal load distribution. Hence, a good analytical bearing tool that provides both comprehensive capabilities and reliable results becomes a significant asset to the engineer. This paper introduces the ORBIS bearing tool. A discussion of key modeling assumptions and a technical overview is provided. Numerous validation studies and case studies using the ORBIS tool are presented. All results suggest the ORBIS code closely correlates to predictions on bearing internal load distributions, stiffness, deflection and stresses.

  15. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  16. Tools for Knowledge Analysis, Synthesis, and Sharing

    NASA Astrophysics Data System (ADS)

    Medland, Michael B.

    2007-04-01

    Change and complexity are creating a need for increasing levels of literacy in science and technology. Presently, we are beginning to provide students with clear contexts in which to learn, including clearly written text, visual displays and maps, and more effective instruction. We are also beginning to give students tools that promote their own literacy by helping them to interact with the learning context. These tools include peer-group skills as well as strategies to analyze text and to indicate comprehension by way of text summaries and concept maps. Even with these tools, more appears to be needed. Disparate backgrounds and languages interfere with the comprehension and the sharing of knowledge. To meet this need, two new tools are proposed. The first tool fractures language ontologically, giving all learners who use it a language to talk about what has, and what has not, been uttered in text or talk about the world. The second fractures language epistemologically, giving those involved in working with text or on the world around them a way to talk about what they have done and what remains to be done. Together, these tools operate as a two- tiered knowledge representation of knowledge. This representation promotes both an individual meta-cognitive and a social meta-cognitive approach to what is known and to what is not known, both ontologically and epistemologically. Two hypotheses guide the presentation: If the tools are taught during early childhood, children will be prepared to master science and technology content. If the tools are used by both students and those who design and deliver instruction, the learning of such content will be accelerated.

  17. Coastal Online Analysis and Synthesis Tool 2.0 (COAST)

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Navard, Andrew R.; Nguyen, Beth T.

    2009-01-01

    The Coastal Online Assessment and Synthesis Tool (COAST) 3D geobrowser has been developed to integrate disparate coastal datasets from NASA and other sources into a desktop tool that provides new data visualization and analysis capabilities for coastal researchers, managers, and residents. It is built upon the widely used NASA-developed open source World Wind geobrowser from NASA Ames (Patrick Hogan et al.) .Net and C# version is used for development. It is leveraged off of World Wind community shared code samples and COAST 2.0 enhancement direction is based on Coastal science community feedback and needs assessment (GOMA). The main objective is to empower the user to bring more user-meaningful data into multi-layered, multi-temporal spatial context.

  18. GATB: Genome Assembly & Analysis Tool Box

    PubMed Central

    Drezen, Erwan; Rizk, Guillaume; Chikhi, Rayan; Deltel, Charles; Lemaitre, Claire; Peterlongo, Pierre; Lavenier, Dominique

    2014-01-01

    Motivation: Efficient and fast next-generation sequencing (NGS) algorithms are essential to analyze the terabytes of data generated by the NGS machines. A serious bottleneck can be the design of such algorithms, as they require sophisticated data structures and advanced hardware implementation. Results: We propose an open-source library dedicated to genome assembly and analysis to fasten the process of developing efficient software. The library is based on a recent optimized de-Bruijn graph implementation allowing complex genomes to be processed on desktop computers using fast algorithms with low memory footprints. Availability and implementation: The GATB library is written in C++ and is available at the following Web site http://gatb.inria.fr under the A-GPL license. Contact: lavenier@irisa.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24990603

  19. MTK: An AI tool for model-based reasoning

    NASA Technical Reports Server (NTRS)

    Erickson, William K.; Schwartz, Mary R.

    1987-01-01

    A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames Research Center is to apply model-based representation and reasoning techniques in a knowledge-based system that will provide monitoring, fault diagnosis, control and trend analysis of the space station Thermal Management System (TMS). A number of issues raised during the development of the first prototype system inspired the design and construction of a model-based reasoning tool called MTK, which was used in the building of the second prototype. These issues are outlined, along with examples from the thermal system to highlight the motivating factors behind them. An overview of the capabilities of MTK is given.

  20. VMPLOT: A versatile analysis tool for mission operations

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.

    1993-01-01

    VMPLOT is a versatile analysis tool designed by the Magellan Spacecraft Team to graphically display engineering data used to support mission operations. While there is nothing revolutionary or innovative about graphical data analysis tools, VMPLOT has some distinguishing features that set it apart from other custom or commercially available software packages. These features include the ability to utilize time in a Universal Time Coordinated (UTC) or Spacecraft Clock (SCLK) format as an enumerated data type, the ability to automatically scale both axes based on the data to be displayed (including time), the ability to combine data from different files, and the ability to utilize the program either interactively or in batch mode, thereby enhancing automation. Another important feature of VMPLOT not visible to the user is the software engineering philosophies utilized. A layered approach was used to isolate program functionality to different layers. This was done to increase program portability to different platforms and to ease maintenance and enhancements due to changing requirements. The functionality of the unique features of VMPLOT as well as highlighting the algorithms that make these features possible are described. The software engineering philosophies used in the creation of the software tool are also summarized.

  1. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    Energy Science and Technology Software Center (ESTSC)

    2015-10-20

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals.more » SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position. This is key to evaluating a facet as suitable for a specific solar application. SOFAST reports the measurements of the facet as detailed surface normal location in a format suitable for ray tracing optical analysis codes. SOFAST also reports summary information as to the facet fitted shape (monomial) and error parameters. Useful plots of the error distribution are also presented.« less

  2. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    SciTech Connect

    Andraka, Charles E.

    2015-10-20

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals. SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position. This is key to evaluating a facet as suitable for a specific solar application. SOFAST reports the measurements of the facet as detailed surface normal location in a format suitable for ray tracing optical analysis codes. SOFAST also reports summary information as to the facet fitted shape (monomial) and error parameters. Useful plots of the error distribution are also presented.

  3. Integrated Turbopump Thermo-Mechanical Design and Analysis Tools

    NASA Astrophysics Data System (ADS)

    Platt, Mike

    2002-07-01

    This viewgraph presentation provides information on the thermo-mechanical design and analysis tools used to control the steady and transient thermo-mechanical effects which drive life, reliability, and cost. The thermo-mechanical analysis tools provide upfront design capability by effectively leveraging existing component design tools to analyze and control: fits, clearance, preload; cooling requirements; stress levels, LCF (low cycle fatigue) limits, and HCF (high cycle fatigue) margin.

  4. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.

    PubMed

    Knoerzer, Markus; Szydzik, Crispin; Tovar-Lopez, Francisco Javier; Tang, Xinke; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-02-01

    Dielectrophoresis is a widely used means of manipulating suspended particles within microfluidic systems. In order to efficiently design such systems for a desired application, various numerical methods exist that enable particle trajectory plotting in two or three dimensions based on the interplay of hydrodynamic and dielectrophoretic forces. While various models are described in the literature, few are capable of modeling interactions between particles as well as their surrounding environment as these interactions are complex, multifaceted, and computationally expensive to the point of being prohibitive when considering a large number of particles. In this paper, we present a numerical model designed to enable spatial analysis of the physical effects exerted upon particles within microfluidic systems employing dielectrophoresis. The model presents a means of approximating the effects of the presence of large numbers of particles through dynamically adjusting hydrodynamic drag force based on particle density, thereby introducing a measure of emulated particle-particle and particle-liquid interactions. This model is referred to as "dynamic drag force based on iterative density mapping." The resultant numerical model is used to simulate and predict particle trajectory and velocity profiles within a microfluidic system incorporating curved dielectrophoretic microelectrodes. The simulated data are compared favorably with experimental data gathered using microparticle image velocimetry, and is contrasted against simulated data generated using traditional "effective moment Stokes-drag method," showing more accurate particle velocity profiles for areas of high particle density. PMID:26643028

  5. EpViX: A cloud-based tool for epitope reactivity analysis and epitope virtual crossmatching to identify low immunologic risk donors for sensitized recipients.

    PubMed

    Anunciação, Fernando Antonio Costa; Sousa, Luiz Claudio Demes da Mata; da Silva, Adalberto Socorro; Marroquim, Mário Sérgio Coelho; Coelho, Antônio Gilberto Borges; Willcox, Glauco Henrique; de Andrade, João Marcelo Medeiros; Corrêa, Bruno de Melo; Guimarães, Elisabeth Lima; do Monte, Semiramis Jamil Hadad

    2015-11-01

    One of the challenges facing solid organ transplantation programs globally is the identification of low immunological risk donors for sensitized recipients by HLA allele genotype. Because recognition of donor HLA alleles by host antibodies is at the core of organ rejection, the objective of this work was to develop a new version of the EpHLA software, named EpViX, which uses an HLAMatchmaker algorithm and performs automated epitope virtual crossmatching at the initiation of the organ donation process. EpViX is a free, web-based application developed for use over the internet on a tablet, smartphone or computer. This program was developed using the Ruby programming language and the Ruby-on-Rails framework. To improve the user experience, the EpViX software interface was developed based on the best human–computer interface practices. To simplify epitope analysis and virtual crossmatching, the program was integrated with important available web-based resources, such as OPTN, IMGT/HLA and the International HLA Epitope Registry. We successfully developed a program that allows people to work collaboratively and effectively during the donation process by accurately predicting negative crossmatches, saving time and other resources. PMID:26531328

  6. Ganalyzer: A Tool for Automatic Galaxy Image Analysis

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  7. GANALYZER: A TOOL FOR AUTOMATIC GALAXY IMAGE ANALYSIS

    SciTech Connect

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze {approx}10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  8. General Mission Analysis Tool (GMAT) User's Guide (Draft)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    4The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system. This document is a draft of the users guide for the tool. Included in the guide is information about Configuring Objects/Resources, Object Fields: Quick Look-up Tables, and Commands and Events.

  9. A Multidimensional Analysis Tool for Visualizing Online Interactions

    ERIC Educational Resources Information Center

    Kim, Minjeong; Lee, Eunchul

    2012-01-01

    This study proposes and verifies the performance of an analysis tool for visualizing online interactions. A review of the most widely used methods for analyzing online interactions, including quantitative analysis, content analysis, and social network analysis methods, indicates these analysis methods have some limitations resulting from their…

  10. Tool Use and Performance: Relationships between Tool- and Learner-Related Characteristics in a Computer-Based Learning Environment

    ERIC Educational Resources Information Center

    Juarez-Collazo, Norma A.; Elen, Jan; Clarebout, Geraldine

    2013-01-01

    It is still unclear on what and how tool and learner characteristics influence tool use and consequently performance in computer-based learning environments (CBLEs). This study examines the relationships between tool-related characteristics (tool presentation: non-/embedded tool and instructional cues: non-/explained tool functionality) and…

  11. Design and Application of the Exploration Maintainability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Terry, Michelle; Crillo, William; Goodliff, Kandyce; Maxwell, Andrew

    2012-01-01

    requirements to support those activities. Using a Monte Carlo approach, the tool simulates potential failures in defined systems, based on established component reliabilities, and then evaluates the capability of the crew to repair those failures given a defined store of spares and maintenance items. Statistical analysis of Monte Carlo runs provides probabilistic estimates of overall mission safety and reliability. This paper will describe the operation of the EMAT, including historical data sources used to populate the model, simulation processes, and outputs. Analysis results are provided for a candidate exploration system, including baseline estimates of required sparing mass and volume. Sensitivity analysis regarding the effectiveness of proposed strategies to reduce mass and volume requirements and improve mission reliability is included in these results.

  12. Finite-element-based design tool for smart composite structures

    NASA Astrophysics Data System (ADS)

    Koko, Tamunoiyala S.; Orisamolu, Irewole R.; Smith, Malcolm J.; Akpan, Unyime O.

    1997-06-01

    This paper presents an integrated finite element-control methodology for the design/analysis of smart composite structures. The method forms part of an effort to develop an integrated computational tool that includes finite element modeling; control algorithms; and deterministic, fuzzy and probabilistic optimization and integrity assessment of the structures and control systems. The finite element analysis is based on a 20 node thermopiezoelectric composite element for modeling the composite structure with surface bonded piezoelectric sensors and actuators; and control is based on the linear quadratic regulator and the independent modal space control methods. The method has been implemented in a computer code called SMARTCOM. Several example problems have been used to verify various aspects of the formulations and the analysis results from the present study compare well against other numerical or experimental results. Being based on the finite element method, the present formation can be conveniently used for the analysis and design of smart composite structures with complex geometrical configurations and loadings.

  13. Development of Regional Excel-Based Stormwater/Nutrient BMP Optimization Tool (Opti-Tool)

    EPA Science Inventory

    During 2014, EPA Region 1 contracted with Tetra Tech, Inc. to work with a regional technical Advisory Committee to develop an Excel-based stormwater/nutrient BMP optimization tool (Opti-Tool) using regional precipitation data and regionally calibrated BMP performance data from UN...

  14. Defining the Performance Parameters of a Rapid Screening Tool for FMR1 CGG-Repeat Expansions Based on Direct Triplet-Primed PCR and Melt Curve Analysis.

    PubMed

    Rajan-Babu, Indhu-Shree; Lian, Mulias; Tran, Anh H; Dang, Truong T; Le, Huong T-M; Thanh, Minh N; Lee, Caroline G; Chong, Samuel S

    2016-09-01

    Population-based screening for CGG-repeat expansions in the fragile X mental retardation 1 (FMR1) gene that cause fragile X syndrome can now be performed more cost-effectively and simply by combining direct triplet-primed PCR (dTP-PCR) with melting curve analysis (MCA). We have now performed a detailed technical validation to define the operational parameters for achieving robust and reliable performance of the FMR1 dTP-PCR MCA assay. We compared the assay's performance on 2 real-time PCR platforms and determined its analytic sensitivity and specificity. We also assessed the assay's performance on DNA isolated from different sources, the effect of differences in CGG-repeat length and AGG-interruption pattern on melt peak temperature (Tm), and the effect of common substances found in DNA solutions on Tms. The assay performed well in distinguishing normal from expansion-carrying samples. The assay had detection sensitivity down to 1 ng and an analytical specificity beyond 150 ng. In addition to peripheral blood DNA, analysis could also be performed on DNA from saliva, buccal swabs, and dried blood spots. Salt increased Tms, glycogen contamination had minimal effect, whereas AGG interruptions lowered Tms. The FMR1 dTP-PCR MCA screening assay is highly sensitive and specific, performs well using DNA from different sources, and is robust and reproducible when reagent concentrations are maintained across all tested samples. PMID:27375073

  15. Tools for Knowledge Analysis, Synthesis, and Sharing

    ERIC Educational Resources Information Center

    Medland, Michael B.

    2007-01-01

    Change and complexity are creating a need for increasing levels of literacy in science and technology. Presently, we are beginning to provide students with clear contexts in which to learn, including clearly written text, visual displays and maps, and more effective instruction. We are also beginning to give students tools that promote their own…

  16. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  17. Distributed design tools: Mapping targeted design tools onto a Web-based distributed architecture for high-performance computing

    SciTech Connect

    Holmes, V.P.; Linebarger, J.M.; Miller, D.J.; Poore, C.A.

    1999-11-30

    Design Tools use a Web-based Java interface to guide a product designer through the design-to-analysis cycle for a specific, well-constrained design problem. When these Design Tools are mapped onto a Web-based distributed architecture for high-performance computing, the result is a family of Distributed Design Tools (DDTs). The software components that enable this mapping consist of a Task Sequencer, a generic Script Execution Service, and the storage of both data and metadata in an active, object-oriented database called the Product Database Operator (PDO). The benefits of DDTs include improved security, reliability, scalability (in both problem size and computing hardware), robustness, and reusability. In addition, access to the PDO unlocks its wide range of services for distributed components, such as lookup and launch capability, persistent shared memory for communication between cooperating services, state management, event notification, and archival of design-to-analysis session data.

  18. DUK - A Fast and Efficient Kmer Based Sequence Matching Tool

    SciTech Connect

    Li, Mingkun; Copeland, Alex; Han, James

    2011-03-21

    A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmer hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.

  19. Networking Sensor Observations, Forecast Models & Data Analysis Tools

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Roberts, G.; Sullivan, D.; Dibner, P. C.; Husar, R. B.

    2009-12-01

    This presentation explores the interaction between sensor webs and forecast models and data analysis processes within service oriented architectures (SOA). Earth observation data from surface monitors and satellite sensors and output from earth science models are increasingly available through open interfaces that adhere to web standards, such as the OGC Web Coverage Service (WCS), OGC Sensor Observation Service (SOS), OGC Web Processing Service (WPS), SOAP-Web Services Description Language (WSDL), or RESTful web services. We examine the implementation of these standards from the perspective of forecast models and analysis tools. Interoperable interfaces for model inputs, outputs, and settings are defined with the purpose of connecting them with data access services in service oriented frameworks. We review current best practices in modular modeling, such as OpenMI and ESMF/Mapl, and examine the applicability of those practices to service oriented sensor webs. In particular, we apply sensor-model-analysis interfaces within the context of wildfire smoke analysis and forecasting scenario used in the recent GEOSS Architecture Implementation Pilot. Fire locations derived from satellites and surface observations and reconciled through a US Forest Service SOAP web service are used to initialize a CALPUFF smoke forecast model. The results of the smoke forecast model are served through an OGC WCS interface that is accessed from an analysis tool that extract areas of high particulate matter concentrations and a data comparison tool that compares the forecasted smoke with Unattended Aerial System (UAS) collected imagery and satellite-derived aerosol indices. An OGC WPS that calculates population statistics based on polygon areas is used with the extract area of high particulate matter to derive information on the population expected to be impacted by smoke from the wildfires. We described the process for enabling the fire location, smoke forecast, smoke observation, and

  20. Affordable, web-based surgical skill training and evaluation tool.

    PubMed

    Islam, Gazi; Kahol, Kanav; Li, Baoxin; Smith, Marshall; Patel, Vimla L

    2016-02-01

    Advances in the medical field have increased the need to incorporate modern techniques into surgical resident training and surgical skills learning. To facilitate this integration, one approach that has gained credibility is the incorporation of simulator based training to supplement traditional training programs. However, existing implementations of these training methods still require the constant presence of a competent surgeon to assess the surgical dexterity of the trainee, which limits the evaluation methods and relies on subjective evaluation. This research proposes an efficient, effective, and economic video-based skill assessment technique for minimally invasive surgery (MIS). It analyzes a surgeon's hand and surgical tool movements and detects features like smoothness, efficiency, and preciseness. The system is capable of providing both real time on-screen feedback and a performance score at the end of the surgery. Finally, we present a web-based tool where surgeons can securely upload MIS training videos and receive evaluation scores and an analysis of trainees' performance trends over time. PMID:26556643

  1. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  2. Development of wavelet analysis tools for turbulence

    NASA Technical Reports Server (NTRS)

    Bertelrud, A.; Erlebacher, G.; Dussouillez, PH.; Liandrat, M. P.; Liandrat, J.; Bailly, F. Moret; Tchamitchian, PH.

    1992-01-01

    Presented here is the general framework and the initial results of a joint effort to derive novel research tools and easy to use software to analyze and model turbulence and transition. Given here is a brief review of the issues, a summary of some basic properties of wavelets, and preliminary results. Technical aspects of the implementation, the physical conclusions reached at this time, and current developments are discussed.

  3. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  4. Operations other than war: Requirements for analysis tools research report

    SciTech Connect

    Hartley, D.S. III

    1996-12-01

    This report documents the research effort to determine the requirements for new or improved analysis tools to support decisions at the strategic and operational levels for military Operations Other than War (OOTW). The work was performed for the Commander in Chief, U.S. Pacific Command (USCINCPAC). The data collection was based on workshops attended by experts in OOTWs: analysis personnel from each of the Combatant Commands, the Services, the Office of the Secretary of Defense (OSD), the Joint Staff, and other knowledgeable personnel. Further data were gathered from other workshops and conferences and from the literature. The results of this research begin with the creation of a taxonomy of OOTWs: categories of operations, attributes of operations, and tasks requiring analytical support. The tasks are connected to the Joint Staff`s Universal Joint Task List (UJTL). Historical OOTWs are analyzed to produce frequency distributions by category and responsible CINC. The analysis products are synthesized into a list of requirements for analytical tools and definitions of the requirements. The report concludes with a timeline or roadmap for satisfying the requirements.

  5. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  6. Risk analysis systems for veterinary biologicals: a regulator's tool box.

    PubMed

    Osborne, C G; McElvaine, M D; Ahl, A S; Glosser, J W

    1995-12-01

    Recent advances in biology and technology have significantly improved our ability to produce veterinary biologicals of high purity, efficacy and safety, virtually anywhere in the world. At the same time, increasing trade and comprehensive trade agreements, such as the Uruguay Round of the General Agreement on Tariffs and Trade (GATT: now the World Trade Organisation [WTO]), have put pressure on governments to use scientific principles in the regulation of trade for a wide range of products, including veterinary biologicals. In many cases, however, nations have been reluctant to allow the movement of veterinary biologicals, due to the perceived threat of importing an exotic disease. This paper discusses the history of risk analysis as a decision support tool and provides examples of how this tool may be used in a science-based regulatory system for veterinary biologicals. A wide variety of tools are described, including qualitative, semi-quantitative and quantitative methods, most with a long history of use in engineering and the health and environmental sciences. PMID:8639961

  7. Improved seismic data analysis tool in hydrogeophysical applications

    NASA Astrophysics Data System (ADS)

    Scholtz, P.

    2003-04-01

    To study the near-surface environment several geophysical measurement techniques exist. Seismic methods are widely and successfully used to aid the solution of different geological tasks. Unfortunately the financial background of environmental related efforts are limited, hence it is vital to get the most information out of our geophysical field data. Hydrogeological investigations require special accuracy and resolution from the applied seismic methods. A dispersion analysis tool will be presented, which is insensitive to inaccuracies, works under noisy conditions and can separate close arrivals. We show a wavelet transformation based method, where the choice of the appropriate basic wavelet improves the quality of the results. Applying this analysis technique to the inversion of frequency-velocity functions of wave guiding sequences or in mapping inhomogeneities of the near-surface by group traveltime tomography will yield to more reliable physical parameters needed by hydrogeologists.

  8. PyRAT (python radiography analysis tool): overview

    SciTech Connect

    Armstrong, Jerawan C; Temple, Brian A; Buescher, Kevin L

    2011-01-14

    PyRAT was developed as a quantitative tool for robustly characterizing objects from radiographs to solve problems such as the hybrid nonlinear inverse problem. The optimization software library that was used is the nonsmooth optimization by MADS algorithm (NOMAD). Some of PyRAT's features are: (1) hybrid nonlinear inverse problem with calculated x-ray spectrum and detector response; (2) optimization based inversion approach with goal of identifying unknown object configurations - MVO problem; (3) using functionalities of Python libraries for radiographic image processing and analysis; (4) using the Tikhonov regularization method of linear inverse problem to recover partial information of object configurations; (5) using a priori knowledge of problem solutions to define feasible region and discrete neighbor for the MVO problem - initial data analysis + material library {yields} a priori knowledge; and (6) using the NOMAD (C++ version) software in the object.

  9. The Lagrangian analysis tool LAGRANTO - version 2.0

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Wernli, H.

    2015-02-01

    Lagrangian trajectories are widely used in the atmospheric sciences, for instance to identify flow structures in extratropical cyclones (e.g., warm conveyor belts) and long-range transport pathways of moisture and trace substances. Here a new version of the Lagrangian analysis tool LAGRANTO (Wernli and Davies, 1997) is introduced, which offers considerably enhanced functionalities: (i) trajectory starting positions can be described easily based on different geometrical and/or meteorological conditions; e.g., equidistantly spaced within a prescribed region and on a stack of pressure (or isentropic) levels; (ii) a versatile selection of trajectories is offered based on single or combined criteria; these criteria are passed to LAGRANTO with a simple command language (e.g., "GT:PV:2" readily translates into a selection of all trajectories with potential vorticity (PV) greater than 2 PVU); and (iii) full versions are available for global ECMWF and regional COSMO data; core functionality is also provided for the regional WRF and UM models, and for the global 20th Century Reanalysis data set. The intuitive application of LAGRANTO is first presented for the identification of a warm conveyor belt in the North Atlantic. A further case study then shows how LAGRANTO is used to quasi-operationally diagnose stratosphere-troposphere exchange events over Europe. Whereas these example rely on the ECMWF version, the COSMO version and input fields with 7 km horizontal resolution are needed to adequately resolve the rather complex flow structure associated with orographic blocking due to the Alps. Finally, an example of backward trajectories presents the tool's application in source-receptor analysis studies. The new distribution of LAGRANTO is publicly available and includes simple tools, e.g., to visualize and merge trajectories. Furthermore, a detailed user guide exists, which describes all LAGRANTO capabilities.

  10. The LAGRANTO Lagrangian analysis tool - version 2.0

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Wernli, H.

    2015-08-01

    Lagrangian trajectories are widely used in the atmospheric sciences, for instance to identify flow structures in extratropical cyclones (e.g., warm conveyor belts) and long-range transport pathways of moisture and trace substances. Here a new version of the Lagrangian analysis tool LAGRANTO (Wernli and Davies, 1997) is introduced, which offers considerably enhanced functionalities. Trajectory starting positions can be defined easily and flexibly based on different geometrical and/or meteorological conditions, e.g., equidistantly spaced within a prescribed region and on a stack of pressure (or isentropic) levels. After the computation of the trajectories, a versatile selection of trajectories is offered based on single or combined criteria. These criteria are passed to LAGRANTO with a simple command language (e.g., "GT:PV:2" readily translates into a selection of all trajectories with potential vorticity, PV, greater than 2 PVU; 1 PVU = 10-6 K m2 kg-1 s-1). Full versions of this new version of LAGRANTO are available for global ECMWF and regional COSMO data, and core functionality is provided for the regional WRF and MetUM models and the global 20th Century Reanalysis data set. The paper first presents the intuitive application of LAGRANTO for the identification of a warm conveyor belt in the North Atlantic. A further case study then shows how LAGRANTO can be used to quasi-operationally diagnose stratosphere-troposphere exchange events. Whereas these examples rely on the ECMWF version, the COSMO version and input fields with 7 km horizontal resolution serve to resolve the rather complex flow structure associated with orographic blocking due to the Alps, as shown in a third example. A final example illustrates the tool's application in source-receptor analysis studies. The new distribution of LAGRANTO is publicly available and includes auxiliary tools, e.g., to visualize trajectories. A detailed user guide describes all LAGRANTO capabilities.

  11. Abstract Interfaces for Data Analysis - Component Architecture for Data Analysis Tools

    SciTech Connect

    Barrand, Guy

    2002-08-20

    The fast turnover of software technologies, in particular in the domain of interactivity (covering user interface and visualization), makes it difficult for a small group of people to produce complete and polished software-tools before the underlying technologies make them obsolete. At the HepVis '99 workshop, a working group has been formed to improve the production of software tools for data analysis in HENP. Beside promoting a distributed development organization, one goal of the group is to systematically design a set of abstract interfaces based on using modern OO analysis and OO design techniques. An initial domain analysis has come up with several categories (components) found in typical data analysis tools: Histograms, Ntuples, Functions, Vectors, Fitter, Plotter, Analyzer and Controller. Special emphasis was put on reducing the couplings between the categories to a minimum, thus optimizing re-use and maintainability of any component individually. The interfaces have been defined in Java and C++ and implementations exist in the form of libraries and tools using C++ (Anaphe/Lizard, OpenScientist) and Java (Java Analysis Studio). A special implementation aims at accessing the Java libraries (through their Abstract Interfaces) from C++. This paper gives an overview of the architecture and design of the various components for data analysis as discussed in AIDA.

  12. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  13. Image analysis tools and emerging algorithms for expression proteomics

    PubMed Central

    English, Jane A.; Lisacek, Frederique; Morris, Jeffrey S.; Yang, Guang-Zhong; Dunn, Michael J.

    2012-01-01

    Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2-D Gel Electrophoresis (2-DE) technique of protein separation, and by first covering signal analysis for Mass Spectrometry (MS), we also explain the current image analysis workflow for the emerging high-throughput ‘shotgun’ proteomics platform of Liquid Chromatography coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whilst existing commercial and academic packages and their workflows are described from both a user’s and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot-centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image-based alignment and differential analysis in 2-DE, Bayesian peak mixture models and functional mixed modelling in MS, and group-wise consensus alignment methods for LC/MS. PMID:21046614

  14. A Methodology for Integrating Computer-Based Learning Tools in Science Curricula

    ERIC Educational Resources Information Center

    Papadouris, Nicos; Constantinou, Constantinos P.

    2009-01-01

    This paper demonstrates a methodology for effectively integrating computer-based learning tools in science teaching and learning. This methodology provides a means of systematic analysis to identify the capabilities of particular software tools and to formulate a series of competencies relevant to physical science that could be developed by means…

  15. SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Castro-Neves, Margarida; Draper, Peter W.

    2014-02-01

    SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

  16. AOP Knowledge Base/Wiki Tool Set

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin Is...

  17. Design of a novel biomedical signal processing and analysis tool for functional neuroimaging.

    PubMed

    Kaçar, Sezgin; Sakoğlu, Ünal

    2016-03-01

    In this paper, a MATLAB-based graphical user interface (GUI) software tool for general biomedical signal processing and analysis of functional neuroimaging data is introduced. Specifically, electroencephalography (EEG) and electrocardiography (ECG) signals can be processed and analyzed by the developed tool, which incorporates commonly used temporal and frequency analysis methods. In addition to common methods, the tool also provides non-linear chaos analysis with Lyapunov exponents and entropies; multivariate analysis with principal and independent component analyses; and pattern classification with discriminant analysis. This tool can also be utilized for training in biomedical engineering education. This easy-to-use and easy-to-learn, intuitive tool is described in detail in this paper. PMID:26679001

  18. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  19. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2013-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Preliminary results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  20. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  1. Making Culturally Responsive Mathematics Teaching Explicit: A Lesson Analysis Tool

    ERIC Educational Resources Information Center

    Aguirre, Julia M.; Zavala, Maria del Rosario

    2013-01-01

    In the United States, there is a need for pedagogical tools that help teachers develop essential pedagogical content knowledge and practices to meet the mathematical education needs of a growing culturally and linguistically diverse student population. In this article, we introduce an innovative lesson analysis tool that focuses on integrating…

  2. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool

    PubMed Central

    Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi

    2016-01-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405

  3. A web-based irrigation scheduling tool for Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased reliance on supplemental irrigation has begun to deplete the alluvial aquifer in Mississippi. To alleviate nonproductive over-use of groundwater resources, we have developed a web-based irrigation scheduling tool. The Mississippi Irrigation Scheduling Tool (MIST) uses a water balance appro...

  4. Evaluating the Usability of Web-Based Learning Tools.

    ERIC Educational Resources Information Center

    Storey, M. -A.; Phillips, B.; Maczewski, M.; Wang, M.

    2002-01-01

    Discusses Web-based learning tools and reports results from a study at the University of Victoria that compared and evaluated two commercially available learning tools. Considers usability issues and discusses navigation, customization, student management, content creation, and students' perceptions. (Author/LRW)

  5. Fabric-based systems: model, tools, applications.

    SciTech Connect

    Wolinski, C.; Gokhale, M.; McCabe, K. P.

    2003-01-01

    A Fabric Based System is a parameterized cellular architecture in which an array of computing cells communicates with an embedded processor through a global memory . This architecture is customizable to different classes of applications by funtional unit, interconnect, and memory parameters, and can be instantiated efficiently on platform FPGAs . In previous work, we have demonstrated the advantage of reconfigurable fabrics for image and signal processing applications . Recently, we have build a Fabric Generator, a Java-based toolset that greatly accelerates construction of the fabrics presented in. A module-generation library is used to define, instantiate, and interconnect cells' datapaths . FG generates customized sequencers for individual cells or collections of cells . We describe the Fabric-Based System model, the FG toolset, and concrete realizations offabric architectures generated by FG on the Altera Excalibur ARM that can deliver 4.5 GigaMACs/s (8/16 bit data, Multiply-Accumulate) .

  6. HISTORICAL ANALYSIS OF ECOLOGICAL EFFECTS: A USEFUL EDUCATIONAL TOOL

    EPA Science Inventory

    An historical analysis that presents the ecological consequences of development can be a valuable educational tool for citizens, students, and environmental managers. In highly impacted areas, the cumulative impacts of multiple stressors can result in complex environmental condit...

  7. Analysis tools for turbulence studies at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Burns, C.; Shehata, S.; White, A. E.; Cziegler, I.; Dominguez, A.; Terry, J. L.; Pace, D. C.

    2010-11-01

    A new suite of analysis tools written in IDL is being developed to support experimental investigation of turbulence at Alcator C-Mod. The tools include GUIs for spectral analysis (coherence, cross-phase and bicoherence) and characteristic frequency calculations. A user-friendly interface for the GENRAY code, to facilitate in-between shot ray-tracing analysis, is also being developed. The spectral analysis tool is being used to analyze data from existing edge turbulence diagnostics, such as the O-mode correlation reflectometer and Gas Puff Imaging, during I-mode, ITB and EDA H-mode plasmas. GENRAY and the characteristic frequency tool are being used to study diagnostic accessibility limits set by wave propagation and refraction for X-mode Doppler Backscattering and Correlation Electron Cyclotron Emission (CECE) systems that are being planned for core turbulence studies at Alcator C-Mod.

  8. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  9. Tools4miRs – one place to gather all the tools for miRNA analysis

    PubMed Central

    Lukasik, Anna; Wójcikowski, Maciej; Zielenkiewicz, Piotr

    2016-01-01

    Summary: MiRNAs are short, non-coding molecules that negatively regulate gene expression and thereby play several important roles in living organisms. Dozens of computational methods for miRNA-related research have been developed, which greatly differ in various aspects. The substantial availability of difficult-to-compare approaches makes it challenging for the user to select a proper tool and prompts the need for a solution that will collect and categorize all the methods. Here, we present tools4miRs, the first platform that gathers currently more than 160 methods for broadly defined miRNA analysis. The collected tools are classified into several general and more detailed categories in which the users can additionally filter the available methods according to their specific research needs, capabilities and preferences. Tools4miRs is also a web-based target prediction meta-server that incorporates user-designated target prediction methods into the analysis of user-provided data. Availability and Implementation: Tools4miRs is implemented in Python using Django and is freely available at tools4mirs.org. Contact: piotr@ibb.waw.pl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153626

  10. Automated tools for the generation of performance-based training

    SciTech Connect

    Trainor, M.S.; Fries, J.

    1990-01-01

    The field of educational technology is not a new one, but the emphasis in the past has been on the use of technologies for the delivery of instruction and tests. This paper explores the application of technology to the development of performance-based instruction and to the analyses leading up to the development of the instruction. Several technologies are discussed, with specific software packages described. The purpose of these technologies is to streamline the instructional analysis and design process, using the computer for its strengths to aid the human-in-the-loop. Currently, the process is all accomplished manually. Applying automated tools to the process frees the humans from some of the tedium involved so that they can be dedicated to the more complex aspects of the process. 12 refs.

  11. Analysis and computer tools for separation processes involving nonideal mixtures

    SciTech Connect

    Lucia, A.

    1992-05-01

    The objectives of this research, were to continue to further both the theoretical understanding of and the development of computer tools (algorithms) for separation processes involving nonideal mixtures. These objectives were divided into three interrelated major areas -- the mathematical analysis of the number of steady-state solutions to multistage separation processes, the numerical analysis of general, related fixed-point methods, and the development and implementation of computer tools for process simulation.

  12. Agent Based Modeling as an Educational Tool

    NASA Astrophysics Data System (ADS)

    Fuller, J. H.; Johnson, R.; Castillo, V.

    2012-12-01

    Motivation is a key element in high school education. One way to improve motivation and provide content, while helping address critical thinking and problem solving skills, is to have students build and study agent based models in the classroom. This activity visually connects concepts with their applied mathematical representation. "Engaging students in constructing models may provide a bridge between frequently disconnected conceptual and mathematical forms of knowledge." (Levy and Wilensky, 2011) We wanted to discover the feasibility of implementing a model based curriculum in the classroom given current and anticipated core and content standards.; Simulation using California GIS data ; Simulation of high school student lunch popularity using aerial photograph on top of terrain value map.

  13. Capabilities of the analysis tools of the IMPEx infrastructure

    NASA Astrophysics Data System (ADS)

    Génot, V.; Khodachenko, M. L.; Kallio, E. J.; Topf, F.; Al-Ubaidi, T.; Gangloff, M.; Budnik, E.; Bouchemit, M.; Renard, B.; Bourel, N.; Penou, E.; André, N.; Modolo, R.; Hess, S.; Schmidt, W.; Alexeev, I. I.; Belenkaya, E. S.

    2012-09-01

    The EU-FP7 Project "Integrated Medium for Planetary Exploration" was established as a result of scientific collaboration between institutions across Europe and is working on the integration of a set of interactive data analysis and modeling tools in the field of space plasma and planetary physics. According to [1] these tools are comprised of AMDA, Clweb and 3DView from the data analysis and visualisation sector as well as Hybrid/MHD and Paraboloid magnetospheric models from the simulation sector. This presentation focuses on how these various tools will access observational and modeled data and display them in innovative and interactive ways.

  14. Design and Analysis Tool for External-Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2012-01-01

    A computational tool named SUPIN has been developed to design and analyze external-compression supersonic inlets for aircraft at cruise speeds from Mach 1.6 to 2.0. The inlet types available include the axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced Busemann inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flowfield is divided into parts to provide a framework for the geometry and aerodynamic modeling and the parts are defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick analysis. SUPIN provides inlet geometry in the form of coordinates and surface grids useable by grid generation methods for higher-fidelity computational fluid dynamics (CFD) analysis. SUPIN is demonstrated through a series of design studies and CFD analyses were performed to verify some of the analysis results.

  15. Redesigning Instruction through Web-based Course Authoring Tools.

    ERIC Educational Resources Information Center

    Dabbagh, Nada H.; Schmitt, Jeff

    1998-01-01

    Examines the pedagogical implications of redesigning instruction for Web-based delivery through a case study of an undergraduate computer science course. Initially designed for a traditional learning environment, this course transformed to a Web-based course using WebCT, a Web-based course authoring tool. Discusses the specific features of WebCT.…

  16. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2011-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  17. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2013-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very difficult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The first version of this tool was a serial code and the current version is a parallel code, which has greatly increased the analysis capabilities. This paper describes the new implementation of this analysis tool on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  18. Application of the ORIGEN Fallout Analysis Tool and the DELFIC Fallout Planning Tool to National Technical Nuclear Forensics

    SciTech Connect

    Jodoin, Vincent J; Lee, Ronald W; Peplow, Douglas E.; Lefebvre, Jordan P

    2011-01-01

    The objective of this project was to provide a robust fallout analysis and planning tool for the National Technical Nuclear Forensics interagency ground sample collection team. Their application called for a fast-running, portable mission-planning tool for use in response to emerging improvised nuclear device (IND) post-detonation situations. The project met those goals by research and development of models to predict the physical, chemical, and radiological properties of fallout debris. ORNL has developed new graphical user interfaces for two existing codes, the Oak Ridge Isotope Generation (ORIGEN) code and the Defense Land Fallout Interpretive Code (DELFIC). ORIGEN is a validated, radionuclide production and decay code that has been implemented into the Fallout Analysis Tool to predict the fallout source term nuclide inventory after the detonation of an IND. DELFIC is a validated, physics-based, research reference fallout prediction software package. It has been implemented into the Fallout Planning Tool and is used to predict the fractionated isotope concentrations in fallout, particle sizes, fractionation ratios, dose rate, and integrated dose over the planned collection routes - information vital to ensure quality samples for nuclear forensic analysis while predicting dose to the sample collectors. DELFIC contains a particle activity module, which models the radiochemical fractionation of the elements in a cooling fireball as they condense into and onto particles to predict the fractionated activity size distribution for a given scenario. This provides the most detailed physics-based characterization of the fallout source term phenomenology available in an operational fallout model.

  19. RCytoscape: tools for exploratory network analysis

    PubMed Central

    2013-01-01

    Background Biomolecular pathways and networks are dynamic and complex, and the perturbations to them which cause disease are often multiple, heterogeneous and contingent. Pathway and network visualizations, rendered on a computer or published on paper, however, tend to be static, lacking in detail, and ill-equipped to explore the variety and quantities of data available today, and the complex causes we seek to understand. Results RCytoscape integrates R (an open-ended programming environment rich in statistical power and data-handling facilities) and Cytoscape (powerful network visualization and analysis software). RCytoscape extends Cytoscape's functionality beyond what is possible with the Cytoscape graphical user interface. To illustrate the power of RCytoscape, a portion of the Glioblastoma multiforme (GBM) data set from the Cancer Genome Atlas (TCGA) is examined. Network visualization reveals previously unreported patterns in the data suggesting heterogeneous signaling mechanisms active in GBM Proneural tumors, with possible clinical relevance. Conclusions Progress in bioinformatics and computational biology depends upon exploratory and confirmatory data analysis, upon inference, and upon modeling. These activities will eventually permit the prediction and control of complex biological systems. Network visualizations -- molecular maps -- created from an open-ended programming environment rich in statistical power and data-handling facilities, such as RCytoscape, will play an essential role in this progression. PMID:23837656

  20. Tools for developing a quality management program: proactive tools (process mapping, value stream mapping, fault tree analysis, and failure mode and effects analysis).

    PubMed

    Rath, Frank

    2008-01-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings. PMID:18406925

  1. Tools for Developing a Quality Management Program: Proactive Tools (Process Mapping, Value Stream Mapping, Fault Tree Analysis, and Failure Mode and Effects Analysis)

    SciTech Connect

    Rath, Frank

    2008-05-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.

  2. Analysis and specification tools in relation to the APSE

    NASA Technical Reports Server (NTRS)

    Hendricks, John W.

    1986-01-01

    Ada and the Ada Programming Support Environment (APSE) specifically address the phases of the system/software life cycle which follow after the user's problem was translated into system and software development specifications. The waterfall model of the life cycle identifies the analysis and requirements definition phases as preceeding program design and coding. Since Ada is a programming language and the APSE is a programming support environment, they are primarily targeted to support program (code) development, tecting, and maintenance. The use of Ada based or Ada related specification languages (SLs) and program design languages (PDLs) can extend the use of Ada back into the software design phases of the life cycle. Recall that the standardization of the APSE as a programming support environment is only now happening after many years of evolutionary experience with diverse sets of programming support tools. Restricting consideration to one, or even a few chosen specification and design tools, could be a real mistake for an organization or a major project such as the Space Station, which will need to deal with an increasingly complex level of system problems. To require that everything be Ada-like, be implemented in Ada, run directly under the APSE, and fit into a rigid waterfall model of the life cycle would turn a promising support environment into a straight jacket for progress.

  3. Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace.

    PubMed

    Qu, Kun; Garamszegi, Sara; Wu, Felix; Thorvaldsdottir, Helga; Liefeld, Ted; Ocana, Marco; Borges-Rivera, Diego; Pochet, Nathalie; Robinson, James T; Demchak, Barry; Hull, Tim; Ben-Artzi, Gil; Blankenberg, Daniel; Barber, Galt P; Lee, Brian T; Kuhn, Robert M; Nekrutenko, Anton; Segal, Eran; Ideker, Trey; Reich, Michael; Regev, Aviv; Chang, Howard Y; Mesirov, Jill P

    2016-03-01

    Complex biomedical analyses require the use of multiple software tools in concert and remain challenging for much of the biomedical research community. We introduce GenomeSpace (http://www.genomespace.org), a cloud-based, cooperative community resource that currently supports the streamlined interaction of 20 bioinformatics tools and data resources. To facilitate integrative analysis by non-programmers, it offers a growing set of 'recipes', short workflows to guide investigators through high-utility analysis tasks. PMID:26780094

  4. Serial concept maps: tools for concept analysis.

    PubMed

    All, Anita C; Huycke, LaRae I

    2007-05-01

    Nursing theory challenges students to think abstractly and is often a difficult introduction to graduate study. Traditionally, concept analysis is useful in facilitating this abstract thinking. Concept maps are a way to visualize an individual's knowledge about a specific topic. Serial concept maps express the sequential evolution of a student's perceptions of a selected concept. Maps reveal individual differences in learning and perceptions, as well as progress in understanding the concept. Relationships are assessed and suggestions are made during serial mapping, which actively engages the students and faculty in dialogue that leads to increased understanding of the link between nursing theory and practice. Serial concept mapping lends itself well to both online and traditional classroom environments. PMID:17547345

  5. New tools for the analysis and design of building envelopes

    SciTech Connect

    Papamichael, K.; Winkelmann, F.C.; Buhl, W.F.; Chauvet, H.

    1994-08-01

    We describe the integrated development of PowerDOE, a new version of the DOE-2 building energy analysis program, and the Building Design Advisor (BDA), a multimedia-based design tool that assists building designers with the concurrent consideration of multiple design solutions with respect to multiple design criteria. PowerDOE has a windows-based Graphical User Interface (GUI) that makes it easier to use than DOE-2, while retaining DOE-2`s calculation power and accuracy. BDA, with a similar GUI, is designed to link to multiple analytical models and databases. In its first release it is linked to PowerDOE and a Daylighting Analysis Module, as well as to a Case Studies Database and a Schematic Graphic Editor. These allow building designers to set performance goals and address key building envelope parameters from the initial, schematic phases of building design to the detailed specification of building components and systems required by PowerDOE. The consideration of the thermal performance of building envelopes through PowerDOE and BDA is integrated with non-thermal envelope performance aspects, such as daylighting, as well as with the performance of non-envelope building components and systems, such as electric lighting and HVAC. Future versions of BDA will support links to CAD and electronic product catalogs, as well as provide context-dependent design advice to improve performance.

  6. [Factor Analysis: Principles to Evaluate Measurement Tools for Mental Health].

    PubMed

    Campo-Arias, Adalberto; Herazo, Edwin; Oviedo, Heidi Celina

    2012-09-01

    The validation of a measurement tool in mental health is a complex process that usually starts by estimating reliability, to later approach its validity. Factor analysis is a way to know the number of dimensions, domains or factors of a measuring tool, generally related to the construct validity of the scale. The analysis could be exploratory or confirmatory, and helps in the selection of the items with better performance. For an acceptable factor analysis, it is necessary to follow some steps and recommendations, conduct some statistical tests, and rely on a proper sample of participants. PMID:26572119

  7. Development of data analysis tool for combat system integration

    NASA Astrophysics Data System (ADS)

    Shin, Seung-Chun; Shin, Jong-Gye; Oh, Dae-Kyun

    2013-03-01

    System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT) for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

  8. Vulnerability assessment using two complementary analysis tools

    SciTech Connect

    Paulus, W.K.

    1993-07-01

    To analyze the vulnerability of nuclear materials to theft or sabotage, Department of Energy facilities have been using, since 1989, a computer program called ASSESS, Analytic System and Software for Evaluation of Safeguards and Security. During the past year Sandia National Laboratories has begun using an additional program, SEES, Security Exercise Evaluation Simulation, enhancing the picture of vulnerability beyond what either program achieves alone. Assess analyzes all possible paths of attack on a target and, assuming that an attack occurs, ranks them by the probability that a response force of adequate size can interrupt the attack before theft or sabotage is accomplished. A Neutralization module pits, collectively, a security force against the interrupted adversary force in a fire fight and calculates the probability that the adversaries are defeated. SEES examines a single scenario and simulates in detail the interactions among all combatants. its output includes shots fired between shooter and target, and the hits and kills. Whereas ASSESS gives breadth of analysis, expressed statistically and performed relatively quickly, SEES adds depth of detail, modeling tactical behavior. ASSESS finds scenarios that exploit the greatest weakness of a facility. SEES explores these scenarios to demonstrate in detail how various tactics to nullify the attack might work out. Without ASSESS to find the facility weakness, it is difficult to focus SEES objectively on scenarios worth analyzing. Without SEES to simulate the details of response vs. adversary interaction, it is not possible to test tactical assumptions and hypotheses. Using both programs together, vulnerability analyses achieve both breadth and depth.

  9. Vulnerability assessment using two complementary analysis tools

    SciTech Connect

    Paulus, W.K.

    1993-07-01

    To analyze the vulnerability of nuclear materials to theft or sabotage, Department of Energy facilities have been using, since 1989, a computer program called ASSESS, Analytic System and Software for Evaluation of Safeguards and Security. During the past year Sandia National Laboratories has began using an additional program, SEES, Security Exercise Evaluation Simulation, enhancing the picture of vulnerability beyond what either program achieves alone. ASSESS analyzes all possible paths of attack on a target and, assuming that an attack occurs, ranks them by the probability that a response force of adequate size can interrupt the attack before theft or sabotage is accomplished. A Neutralization module pits, collectively, a security force against the interrupted adversary force in a fire fight and calculates the probability that the adversaries are defeated. SEES examines a single scenario and simulates in detail the interactions among all combatants. Its output includes shots fired between shooter and target, and the hits and kills. Whereas ASSESS gives breadth of analysis, expressed statistically and performed relatively quickly, SEES adds depth of detail, modeling tactical behavior. ASSESS finds scenarios that exploit the greatest weaknesses of a facility. SEES explores these scenarios to demonstrate in detail how various tactics to nullify the attack might work out. Without ASSESS to find the facility weaknesses, it is difficult to focus SEES objectively on scenarios worth analyzing. Without SEES to simulate the details of response vs. adversary interaction, it is not possible to test tactical assumptions and hypotheses. Using both programs together, vulnerability analyses achieve both breadth and depth.

  10. SAGE Research Methods Datasets: A Data Analysis Educational Tool.

    PubMed

    Vardell, Emily

    2016-01-01

    SAGE Research Methods Datasets (SRMD) is an educational tool designed to offer users the opportunity to obtain hands-on experience with data analysis. Users can search for and browse authentic datasets by method, discipline, and data type. Each of the datasets are supplemented with educational material on the research method and clear guidelines for how to approach data analysis. PMID:27391182

  11. System-of-Systems Technology-Portfolio-Analysis Tool

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel; Mankins, John; Feingold, Harvey; Johnson, Wayne

    2012-01-01

    Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers.

  12. Lagrangian analysis. Modern tool of the dynamics of solids

    NASA Astrophysics Data System (ADS)

    Cagnoux, J.; Chartagnac, P.; Hereil, P.; Perez, M.; Seaman, L.

    Explosive metal-working, material synthesis under shock loading, terminal ballistics, and explosive rock-blasting, are some of the civil and military fields of activity that call for a wider knowledge about the behavior of materials subjected to strong dynamic pressures. It is in these fields that Lagrangian analysis methods, the subject of this work, prove to be a useful investigative tool for the physicist. Lagrangian analysis was developed around 1970 by Fowles and Williams. The idea is based on the integration of the conservation equations of mechanics using stress or particle velocity records obtained by means of transducers placed in the path of a stress wave. In this way, all the kinematical and mechanical quantities contained in the conservation equations are obtained. In the first chapter the authors introduce the mathematical tools used to analyze plane and spherical one-dimensional motions. For plane motion, they describe the mathematical analysis methods pertinent to the three regimes of wave propagation encountered : the non-attenuating unsteady wave, the simple wave, and the attenuating unsteady wave. In each of these regimes, cases are treated for which either stress or particle velocity records are initially available. The authors insist that one or the other groups of data (stress and particle velocity) are sufficient to integrate the conservation equations in the case of the plane motion when both groups of data are necessary in the case of the spherical motion. However, in spite of this additional difficulty, Lagrangian analysis of the spherical motion remains particularly interesting for the physicist because it allows access to the behavior of the material under deformation processes other than that imposed by plane one-dimensional motion. The methods expounded in the first chapter are based on Lagrangian measurement of particle velocity and stress in relation to time in a material compressed by a plane or spherical dilatational wave. The

  13. Commercial pharmacogenetic-based decision-support tools in psychiatry.

    PubMed

    Bousman, Chad A; Hopwood, Malcolm

    2016-06-01

    Despite a compendium of pharmacotherapies available for treating psychiatric illnesses, suboptimal response to these therapies is typical and thought to be in part a result of genetic variation. This notion has sparked a personalised psychiatry movement, which has in turn led to the development of several commercial pharmacogenetic-based decision support tools marketed to psychiatrists as an alternative to typical, trial-and-error, prescribing. However, there is considerable uncertainty about the validity and usefulness of these tools and whether there is sufficient evidence to support their adoption. In this Personal View, we provide an introduction to these tools and assess their potential usefulness in psychiatry practice. We conclude with clinical considerations and development strategies for improving future pharmacogenetic-based decision support tools for clinical use. PMID:27133546

  14. ART-Ada: An Ada-based expert system tool

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel; Allen, Bradley P.

    1991-01-01

    The Department of Defense mandate to standardize on Ada as the language for software systems development has resulted in increased interest in making expert systems technology readily available in Ada environments. NASA's Space Station Freedom is an example of the large Ada software development projects that will require expert systems in the 1990's. Another large scale application that can benefit from Ada based expert system tool technology is the Pilot's Associate (PA) expert system project for military combat aircraft. Automated Reasoning Tool (ART) Ada, an Ada Expert system tool is described. ART-Ada allow applications of a C-based expert system tool called ART-IM to be deployed in various Ada environments. ART-Ada is being used to implement several prototype expert systems for NASA's Space Station Freedom Program and the U.S. Air Force.

  15. ART-Ada: An Ada-based expert system tool

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel; Allen, Bradley P.

    1990-01-01

    The Department of Defense mandate to standardize on Ada as the language for software systems development has resulted in an increased interest in making expert systems technology readily available in Ada environments. NASA's Space Station Freedom is an example of the large Ada software development projects that will require expert systems in the 1990's. Another large scale application that can benefit from Ada based expert system tool technology is the Pilot's Associate (PA) expert system project for military combat aircraft. The Automated Reasoning Tool-Ada (ART-Ada), an Ada expert system tool, is explained. ART-Ada allows applications of a C-based expert system tool called ART-IM to be deployed in various Ada environments. ART-Ada is being used to implement several prototype expert systems for NASA's Space Station Freedom program and the U.S. Air Force.

  16. Development of a climate data analysis tool (CDAT)

    SciTech Connect

    Marlais, S.M.

    1997-09-01

    The Climate Data Analysis Tool (CDAT) is designed to provide the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at Lawrence Livermore National Laboratory, California, with the capabilities needed to analyze model data with little effort on the part of the scientist, while performing complex mathematical calculations, and graphically displaying the results. This computer software will meet the demanding need of climate scientists by providing the necessary tools to diagnose, validate, and intercompare large observational and global climate model datasets.

  17. Risk Reduction and Training using Simulation Based Tools - 12180

    SciTech Connect

    Hall, Irin P.

    2012-07-01

    Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and S based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition

  18. A Semi-Automated Functional Test Data Analysis Tool

    SciTech Connect

    Xu, Peng; Haves, Philip; Kim, Moosung

    2005-05-01

    The growing interest in commissioning is creating a demand that will increasingly be met by mechanical contractors and less experienced commissioning agents. They will need tools to help them perform commissioning effectively and efficiently. The widespread availability of standardized procedures, accessible in the field, will allow commissioning to be specified with greater certainty as to what will be delivered, enhancing the acceptance and credibility of commissioning. In response, a functional test data analysis tool is being developed to analyze the data collected during functional tests for air-handling units. The functional test data analysis tool is designed to analyze test data, assess performance of the unit under test and identify the likely causes of the failure. The tool has a convenient user interface to facilitate manual entry of measurements made during a test. A graphical display shows the measured performance versus the expected performance, highlighting significant differences that indicate the unit is not able to pass the test. The tool is described as semiautomated because the measured data need to be entered manually, instead of being passed from the building control system automatically. However, the data analysis and visualization are fully automated. The tool is designed to be used by commissioning providers conducting functional tests as part of either new building commissioning or retro-commissioning, as well as building owners and operators interested in conducting routine tests periodically to check the performance of their HVAC systems.

  19. Laser Capture Microdissection Revisited as a Tool for Transcriptomic Analysis: Application of an Excel-Based qPCR Preparation Software (PREXCEL-Q)

    PubMed Central

    Sow, Fatoumata B.; Gallup, Jack M.; Sacco, Randy E.; Ackermann, Mark R.

    2009-01-01

    The ability to reliably analyze cellular and molecular profiles of normal or diseased tissues is frequently complicated by the inherent heterogeneous nature of tissues. Laser Capture Microdissection (LCM) is an innovative technique that allows the isolation and enrichment of pure subpopulations of cells from tissues under direct microscopic examination. Material obtained by LCM can be used for downstream assays including gene microarrays, western blotting, cDNA library generation and DNA genotyping. We describe a series of LCM protocols for cell collection, RNA extraction and qPCR gene expression analysis. Using reagents we helped develop commercially, we focus on two LCM approaches: laser cutting and laser capture. Reagent calculations have been pre-determined for 10 samples using the new PREXCEL-Q assay development and project management software. One can expect the entire procedure for laser cutting coupled to qPCR to take approximately 12.5-15 h, and laser capture coupled to qPCR to take approximately 13.5-17.5 h. PMID:20556230

  20. An integrated data analysis tool for improving measurements on the MST RFP

    SciTech Connect

    Reusch, L. M. Galante, M. E.; Johnson, J. R.; McGarry, M. B.; Den Hartog, D. J.; Franz, P.; Stephens, H. D.

    2014-11-15

    Many plasma diagnostics contain complementary information. For example, the double-foil soft x-ray system (SXR) and the Thomson Scattering diagnostic (TS) on the Madison Symmetric Torus both measure electron temperature. The complementary information from these diagnostics can be combined using a systematic method based on integrated data analysis techniques, leading to more accurate and sensitive results. An integrated data analysis tool based on Bayesian probability theory was able to estimate electron temperatures that are consistent with both the SXR and TS diagnostics and more precise than either. A Markov Chain Monte Carlo analysis to increase the flexibility of the tool was implemented and benchmarked against a grid search method.

  1. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches

    NASA Astrophysics Data System (ADS)

    Cazzani, Antonio; Malagù, Marcello; Turco, Emilio

    2016-03-01

    We illustrate a numerical tool for analyzing plane arches such as those frequently used in historical masonry heritage. It is based on a refined elastic mechanical model derived from the isogeometric approach. In particular, geometry and displacements are modeled by means of non-uniform rational B-splines. After a brief introduction, outlining the basic assumptions of this approach and the corresponding modeling choices, several numerical applications to arches, which are typical of masonry structures, show the performance of this novel technique. These are discussed in detail to emphasize the advantage and potential developments of isogeometric analysis in the field of structural analysis of historical masonry buildings with complex geometries.

  2. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  3. Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace

    PubMed Central

    Thorvaldsdottir, Helga; Liefeld, Ted; Ocana, Marco; Borges-Rivera, Diego; Pochet, Nathalie; Robinson, James T.; Demchak, Barry; Hull, Tim; Ben-Artzi, Gil; Blankenberg, Daniel; Barber, Galt P.; Lee, Brian T.; Kuhn, Robert M.; Nekrutenko, Anton; Segal, Eran; Ideker, Trey; Reich, Michael; Regev, Aviv; Chang, Howard Y.; Mesirov, Jill P.

    2015-01-01

    Integrative analysis of multiple data types to address complex biomedical questions requires the use of multiple software tools in concert and remains an enormous challenge for most of the biomedical research community. Here we introduce GenomeSpace (http://www.genomespace.org), a cloud-based, cooperative community resource. Seeded as a collaboration of six of the most popular genomics analysis tools, GenomeSpace now supports the streamlined interaction of 20 bioinformatics tools and data resources. To facilitate the ability of non-programming users’ to leverage GenomeSpace in integrative analysis, it offers a growing set of ‘recipes’, short workflows involving a few tools and steps to guide investigators through high utility analysis tasks. PMID:26780094

  4. Online Analysis of Wind and Solar Part II: Transmission Tool

    SciTech Connect

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Subbarao, Krishnappa

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. The tool analyzes and displays the impacts of uncertainties in forecasts of loads and renewable generation on: (1) congestion, (2)voltage and transient stability margins, and (3)voltage reductions and reactive power margins. The impacts are analyzed in the base case and under user-specified contingencies.A prototype of the tool has been developed and implemented in software.

  5. Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)

    2002-01-01

    Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.

  6. TARGET - TASK ANALYSIS REPORT GENERATION TOOL, VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Ortiz, C. J.

    1994-01-01

    The Task Analysis Report Generation Tool, TARGET, is a graphical interface tool used to capture procedural knowledge and translate that knowledge into a hierarchical report. TARGET is based on VISTA, a knowledge acquisition tool developed by the Naval Systems Training Center. TARGET assists a programmer and/or task expert organize and understand the steps involved in accomplishing a task. The user can label individual steps in the task through a dialogue-box and get immediate graphical feedback for analysis. TARGET users can decompose tasks into basic action kernels or minimal steps to provide a clear picture of all basic actions needed to accomplish a job. This method allows the user to go back and critically examine the overall flow and makeup of the process. The user can switch between graphics (box flow diagrams) and text (task hierarchy) versions to more easily study the process being documented. As the practice of decomposition continues, tasks and their subtasks can be continually modified to more accurately reflect the user's procedures and rationale. This program is designed to help a programmer document an expert's task thus allowing the programmer to build an expert system which can help others perform the task. Flexibility is a key element of the system design and of the knowledge acquisition session. If the expert is not able to find time to work on the knowledge acquisition process with the program developer, the developer and subject matter expert may work in iterative sessions. TARGET is easy to use and is tailored to accommodate users ranging from the novice to the experienced expert systems builder. TARGET is written in C-language for IBM PC series and compatible computers running MS-DOS and Microsoft Windows version 3.0 or 3.1. No source code is supplied. The executable also requires 2Mb of RAM, a Microsoft compatible mouse, a VGA display and an 80286, 386 or 486 processor machine. The standard distribution medium for TARGET is one 5.25 inch 360K

  7. Immunoglobulin analysis tool: a novel tool for the analysis of human and mouse heavy and light chain transcripts.

    PubMed

    Rogosch, Tobias; Kerzel, Sebastian; Hoi, Kam Hon; Zhang, Zhixin; Maier, Rolf F; Ippolito, Gregory C; Zemlin, Michael

    2012-01-01

    Sequence analysis of immunoglobulin (Ig) heavy and light chain transcripts can refine categorization of B cell subpopulations and can shed light on the selective forces that act during immune responses or immune dysregulation, such as autoimmunity, allergy, and B cell malignancy. High-throughput sequencing yields Ig transcript collections of unprecedented size. The authoritative web-based IMGT/HighV-QUEST program is capable of analyzing large collections of transcripts and provides annotated output files to describe many key properties of Ig transcripts. However, additional processing of these flat files is required to create figures, or to facilitate analysis of additional features and comparisons between sequence sets. We present an easy-to-use Microsoft(®) Excel(®) based software, named Immunoglobulin Analysis Tool (IgAT), for the summary, interrogation, and further processing of IMGT/HighV-QUEST output files. IgAT generates descriptive statistics and high-quality figures for collections of murine or human Ig heavy or light chain transcripts ranging from 1 to 150,000 sequences. In addition to traditionally studied properties of Ig transcripts - such as the usage of germline gene segments, or the length and composition of the CDR-3 region - IgAT also uses published algorithms to calculate the probability of antigen selection based on somatic mutational patterns, the average hydrophobicity of the antigen-binding sites, and predictable structural properties of the CDR-H3 loop according to Shirai's H3-rules. These refined analyses provide in-depth information about the selective forces acting upon Ig repertoires and allow the statistical and graphical comparison of two or more sequence sets. IgAT is easy to use on any computer running Excel(®) 2003 or higher. Thus, IgAT is a useful tool to gain insights into the selective forces and functional properties of small to extremely large collections of Ig transcripts, thereby assisting a researcher to mine a data set

  8. Design and analysis tools for concurrent blackboard systems

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.

    1991-01-01

    A set of blackboard system design and analysis tools that consists of a knowledge source organizer, a knowledge source input/output connectivity analyzer, and a validated blackboard system simulation model is discussed. The author presents the structure and functionality of the knowledge source input/output connectivity analyzer. An example outlining the use of the analyzer to aid in the design of a concurrent tactical decision generator for air-to-air combat is presented. The blackboard system design and analysis tools were designed for generic blackboard systems and are application independent.

  9. Tools for Scientific Thinking: Microcomputer-Based Laboratories for the Naive Science Learner.

    ERIC Educational Resources Information Center

    Thornton, Ronald K.

    A promising new development in science education is the use of microcomputer-based laboratory tools that allow for student-directed data acquisition, display, and analysis. Microcomputer-based laboratories (MBL) make use of inexpensive microcomputer-connected probes to measure such physical quantities as temperature, position, and various…

  10. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  11. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  12. jSIPRO - analysis tool for magnetic resonance spectroscopic imaging.

    PubMed

    Jiru, Filip; Skoch, Antonin; Wagnerova, Dita; Dezortova, Monika; Hajek, Milan

    2013-10-01

    Magnetic resonance spectroscopic imaging (MRSI) involves a huge number of spectra to be processed and analyzed. Several tools enabling MRSI data processing have been developed and widely used. However, the processing programs primarily focus on sophisticated spectra processing and offer limited support for the analysis of the calculated spectroscopic maps. In this paper the jSIPRO (java Spectroscopic Imaging PROcessing) program is presented, which is a java-based graphical interface enabling post-processing, viewing, analysis and result reporting of MRSI data. Interactive graphical processing as well as protocol controlled batch processing are available in jSIPRO. jSIPRO does not contain a built-in fitting program. Instead, it makes use of fitting programs from third parties and manages the data flows. Currently, automatic spectra processing using LCModel, TARQUIN and jMRUI programs are supported. Concentration and error values, fitted spectra, metabolite images and various parametric maps can be viewed for each calculated dataset. Metabolite images can be exported in the DICOM format either for archiving purposes or for the use in neurosurgery navigation systems. PMID:23870172

  13. Parallel Analysis Tools for Ultra-Large Climate Data Sets

    NASA Astrophysics Data System (ADS)

    Jacob, Robert; Krishna, Jayesh; Xu, Xiabing; Mickelson, Sheri; Wilde, Mike; Peterson, Kara; Bochev, Pavel; Latham, Robert; Tautges, Tim; Brown, David; Brownrigg, Richard; Haley, Mary; Shea, Dennis; Huang, Wei; Middleton, Don; Schuchardt, Karen; Yin, Jian

    2013-04-01

    While climate models have used parallelism for several years, the post-processing tools are still mostly single-threaded applications and many are closed source. These tools are becoming a bottleneck in the production of new climate knowledge when they confront terabyte-sized output from high-resolution climate models. The ParVis project is using and creating Free and Open Source tools that bring data and task parallelism to climate model analysis to enable analysis of large climate data sets. ParVis is using the Swift task-parallel language to implement a diagnostic suite that generates over 600 plots of atmospheric quantities. ParVis has also created a Parallel Gridded Analysis Library (ParGAL) which implements many common climate analysis operations in a data-parallel fashion using the Message Passing Interface. ParGAL has in turn been built on sophisticated packages for describing grids in parallel (the Mesh Oriented database (MOAB), performing vector operations on arbitrary grids (Intrepid) and reading data in parallel (PnetCDF). ParGAL is being used to implement a parallel version of the NCAR Command Language (NCL) called ParNCL. ParNCL/ParCAL not only speeds up analysis of large datasets but also allows operations to be performed on native grids, eliminating the need to transform data to latitude-longitude grids. All of the tools ParVis is creating are available as free and open source software.

  14. Computational Tools for the Secondary Analysis of Metabolomics Experiments

    PubMed Central

    Booth, Sean C.; Weljie, Aalim M.; Turner, Raymond J.

    2013-01-01

    Metabolomics experiments have become commonplace in a wide variety of disciplines. By identifying and quantifying metabolites researchers can achieve a systems level understanding of metabolism. These studies produce vast swaths of data which are often only lightly interpreted due to the overwhelmingly large amount of variables that are measured. Recently, a number of computational tools have been developed which enable much deeper analysis of metabolomics data. These data have been difficult to interpret as understanding the connections between dozens of altered metabolites has often relied on the biochemical knowledge of researchers and their speculations. Modern biochemical databases provide information about the interconnectivity of metabolism which can be automatically polled using metabolomics secondary analysis tools. Starting with lists of altered metabolites, there are two main types of analysis: enrichment analysis computes which metabolic pathways have been significantly altered whereas metabolite mapping contextualizes the abundances and significances of measured metabolites into network visualizations. Many different tools have been developed for one or both of these applications. In this review the functionality and use of these software is discussed. Together these novel secondary analysis tools will enable metabolomics researchers to plumb the depths of their data and produce farther reaching biological conclusions than ever before. PMID:24688685

  15. Applications of a broad-spectrum tool for conservation and fisheries analysis: aquatic gap analysis

    USGS Publications Warehouse

    McKenna, James E.; Steen, Paul J.; Lyons, John; Stewart, Jana S.

    2009-01-01

    . Aquatic gap analysis naturally focuses on aquatic habitats. The analytical tools are largely based on specification of the species-habitat relations for the system and organism group of interest (Morrison et al. 2003; McKenna et al. 2006; Steen et al. 2006; Sowa et al. 2007). The Great Lakes Regional Aquatic Gap Analysis (GLGap) project focuses primarily on lotic habitat of the U.S. Great Lakes drainage basin and associated states and has been developed to address fish and fisheries issues. These tools are unique because they allow us to address problems at a range of scales from the region to the stream segment and include the ability to predict species specific occurrence or abundance for most of the fish species in the study area. The results and types of questions that can be addressed provide better global understanding of the ecological context within which specific natural resources fit (e.g., neighboring environments and resources, and large and small scale processes). The geographic analysis platform consists of broad and flexible geospatial tools (and associated data) with many potential applications. The objectives of this article are to provide a brief overview of GLGap methods and analysis tools, and demonstrate conservation and planning applications of those data and tools. Although there are many potential applications, we will highlight just three: (1) support for the Eastern Brook Trout Joint Venture (EBTJV), (2) Aquatic Life classification in Wisconsin, and (3) an educational tool that makes use of Google Earth (use of trade or product names does not imply endorsement by the U.S. Government) and Internet accessibility.

  16. Phonological assessment and analysis tools for Tagalog: Preliminary development.

    PubMed

    Chen, Rachelle Kay; Bernhardt, B May; Stemberger, Joseph P

    2016-01-01

    Information and assessment tools concerning Tagalog phonological development are minimally available. The current study thus sets out to develop elicitation and analysis tools for Tagalog. A picture elicitation task was designed with a warm-up, screener and two extension lists, one with more complex and one with simpler words. A nonlinear phonological analysis form was adapted from English (Bernhardt & Stemberger, 2000) to capture key characteristics of Tagalog. The tools were piloted on a primarily Tagalog-speaking 4-year-old boy living in a Canadian-English-speaking environment. The data provided initial guidance for revision of the elicitation tool (available at phonodevelopment.sites.olt.ubc.ca). The analysis provides preliminary observations about possible expectations for primarily Tagalog-speaking 4-year-olds in English-speaking environments: Lack of mastery for tap/trill 'r', and minor mismatches for vowels, /l/, /h/ and word stress. Further research is required in order to develop the tool into a norm-referenced instrument for Tagalog in both monolingual and multilingual environments. PMID:27096390

  17. IIS – Integrated Interactome System: A Web-Based Platform for the Annotation, Analysis and Visualization of Protein-Metabolite-Gene-Drug Interactions by Integrating a Variety of Data Sources and Tools

    PubMed Central

    Carazzolle, Marcelo Falsarella; de Carvalho, Lucas Miguel; Slepicka, Hugo Henrique; Vidal, Ramon Oliveira; Pereira, Gonçalo Amarante Guimarães; Kobarg, Jörg; Vaz Meirelles, Gabriela

    2014-01-01

    Background High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. Results We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. Conclusions We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS

  18. Evaluating the Utility of Web-Based Consumer Support Tools Using Rough Sets

    NASA Astrophysics Data System (ADS)

    Maciag, Timothy; Hepting, Daryl H.; Slezak, Dominik; Hilderman, Robert J.

    On the Web, many popular e-commerce sites provide consumers with decision support tools to assist them in their commerce-related decision-making. Many consumers will rank the utility of these tools quite highly. Data obtained from web usage mining analyses, which may provide knowledge about a user's online experiences, could help indicate the utility of these tools. This type of analysis could provide insight into whether provided tools are adequately assisting consumers in conducting their online shopping activities or if new or additional enhancements need consideration. Although some research in this regard has been described in previous literature, there is still much that can be done. The authors of this paper hypothesize that a measurement of consumer decision accuracy, i.e. a measurement preferences, could help indicate the utility of these tools. This paper describes a procedure developed towards this goal using elements of rough set theory. The authors evaluated the procedure using two support tools, one based on a tool developed by the US-EPA and the other developed by one of the authors called cogito. Results from the evaluation did provide interesting insights on the utility of both support tools. Although it was shown that the cogito tool obtained slightly higher decision accuracy, both tools could be improved from additional enhancements. Details of the procedure developed and results obtained from the evaluation will be provided. Opportunities for future work are also discussed.

  19. Tools-4-Metatool (T4M): online suite of web-tools to process stoichiometric network analysis data from Metatool.

    PubMed

    Xavier, Daniela; Vázquez, Sara; Higuera, Clara; Morán, Federico; Montero, Francisco

    2011-08-01

    Tools-4-Metatool (T4M) is a suite of web-tools, implemented in PERL, which analyses, parses, and manipulates files related to Metatool. Its main goal is to assist the work with Metatool. T4M has two major sets of tools: Analysis and Compare. Analysis visualizes the results of Metatool (convex basis, elementary flux modes, and enzyme subsets) and facilitates the study of metabolic networks. It is composed of five tools: MDigraph, MetaMatrix, CBGraph, EMGraph, and SortEM. Compare was developed to compare different Metatool results from different networks. This set consists of: Compara and ComparaSub which compare network subsets providing outputs in different formats and ComparaEM that seeks for identical elementary modes in two metabolic networks. The suite T4M also includes one script that generates Metatool input: CBasis2Metatool, based on a Metatool output file that is filtered by a list of convex basis' metabolites. Finally, the utility CheckMIn checks the consistency of the Metatool input file. T4M is available at http://solea.quim.ucm.es/t4m. PMID:21554926

  20. Seismic Canvas: Evolution as a Data Exploration and Analysis Tool

    NASA Astrophysics Data System (ADS)

    Kroeger, G. C.

    2015-12-01

    SeismicCanvas, originally developed as a prototype interactive waveform display and printing application for educational use has evolved to include significant data exploration and analysis functionality. The most recent version supports data import from a variety of standard file formats including SAC and mini-SEED, as well as search and download capabilities via IRIS/FDSN Web Services. Data processing tools now include removal of means and trends, interactive windowing, filtering, smoothing, tapering, resampling. Waveforms can be displayed in a free-form canvas or as a record section based on angular or great circle distance, azimuth or back azimuth. Integrated tau-p code allows the calculation and display of theoretical phase arrivals from a variety of radial Earth models. Waveforms can be aligned by absolute time, event time, picked or theoretical arrival times and can be stacked after alignment. Interactive measurements include means, amplitudes, time delays, ray parameters and apparent velocities. Interactive picking of an arbitrary list of seismic phases is supported. Bode plots of amplitude and phase spectra and spectrograms can be created from multiple seismograms or selected windows of seismograms. Direct printing is implemented on all supported platforms along with output of high-resolution pdf files. With these added capabilities, the application is now being used as a data exploration tool for research. Coded in C++ and using the cross-platform Qt framework, the most recent version is available as a 64-bit application for Windows 7-10, Mac OS X 10.6-10.11, and most distributions of Linux, and a 32-bit version for Windows XP and 7. With the latest improvements and refactoring of trace display classes, the 64-bit versions have been tested with over 250 million samples and remain responsive in interactive operations. The source code is available under a LPGLv3 license and both source and executables are available through the IRIS SeisCode repository.

  1. The ISOPHOT Interactive Analysis PIA, a Calibration and Scientific Analysis Tool

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Acosta-Pulido, J.; Heinrichsen, I.; Morris, H.; Tai, W.-M.

    ISOPHOT is one of the instruments on board the Infrared Space Observatory (ISO), launched in November 1995 by the European Space Agency. ISOPHOT Interactive Analysis, PIA, is a scientific and calibration data analysis tool for ISOPHOT data reduction. The PIA software was designed both as a tool for use by the instrument team for calibration of the PHT instrument during and after the ISO mission, and as an interactive tool for ISOPHOT data analysis by general observers. It has been jointly developed by the ESA Astrophysics Division (responsible for planning, direction, and execution) and scientific institutes forming the ISOPHOT consortium. PIA is entirely based on the Interactive Data Language IDL (IDL92). All the capabilities of input/output, processing, and visualization can be reached from window menus for all the different ISOPHOT sub-systems, in all levels of data reduction from digital raw data, coming from the ISO telemetry, to the final level of calibrated images, spectra, and multi-filter, multi-aperture photometry. In this article, we describe the structure of the package, putting special emphasis on the internal data organization and management.

  2. Micro-based fact collection tool user's manual

    NASA Technical Reports Server (NTRS)

    Mayer, Richard

    1988-01-01

    A procedure designed for use by an analyst to assist in the collection and organization of data gathered during the interview processes associated with system analysis and modeling task is described. The basic concept behind the development of this tool is that during the interview process an analyst is presented with assertions of facts by the domain expert. The analyst also makes observations of the domain. These facts need to be collected and preserved in such a way as to allow them to serve as the basis for a number of decision making processes throughout the system development process. This tool can be thought of as a computerization of the analysts's notebook.

  3. An Automated Data Analysis Tool for Livestock Market Data

    ERIC Educational Resources Information Center

    Williams, Galen S.; Raper, Kellie Curry

    2011-01-01

    This article describes an automated data analysis tool that allows Oklahoma Cooperative Extension Service educators to disseminate results in a timely manner. Primary data collected at Oklahoma Quality Beef Network (OQBN) certified calf auctions across the state results in a large amount of data per sale site. Sale summaries for an individual sale…

  4. An Online Image Analysis Tool for Science Education

    ERIC Educational Resources Information Center

    Raeside, L.; Busschots, B.; Waddington, S.; Keating, J. G.

    2008-01-01

    This paper describes an online image analysis tool developed as part of an iterative, user-centered development of an online Virtual Learning Environment (VLE) called the Education through Virtual Experience (EVE) Portal. The VLE provides a Web portal through which schoolchildren and their teachers create scientific proposals, retrieve images and…

  5. Recursive Frame Analysis: A Practitioner's Tool for Mapping Therapeutic Conversation

    ERIC Educational Resources Information Center

    Keeney, Hillary; Keeney, Bradford; Chenail, Ronald J.

    2012-01-01

    Recursive frame analysis (RFA), both a practical therapeutic tool and an advanced qualitative research method that maps the structure of therapeutic conversation, is introduced with a clinical case vignette. We present and illustrate a means of mapping metaphorical themes that contextualize the performance taking place in the room, recursively…

  6. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.

    PubMed

    Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953

  7. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis

    PubMed Central

    Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953

  8. Validating a tool that explores factors influencing the adoption of principles of evidence-based practice.

    PubMed

    Al Hadid, Lourance A; Hasheesh, Mohammad Abu; Al Momani, Mohammad

    2011-12-01

    The adoption of principles of evidence-based practice in nursing education assists nursing graduates in improving their practice. Measuring factors that influence this adoption requires the use of a valid tool; however, few tools addressing these factors are available. This study measured the psychometric properties of a composite tool developed to assess factors influencing the adoption of the principles of evidence-based practice in nursing education. A descriptive, cross-sectional research design was used. A convenience, purposive sample of 85 nurse educators participated in this study. The Evidence-Based Nursing Education Questionnaire items were derived following a four-step approach: extensive literature review, thematic analysis of literature, expert opinion in the questionnaire items, and psychometric testing of the questionnaire. The psychometric properties indicated a valid and reliable tool. The resulting five factors include knowledge in educational principles and faculty practice. The questionnaire proved to be reliable and valid. PMID:21956260

  9. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology

    PubMed Central

    Grüning, Björn A.; Paszkiewicz, Konrad; Pritchard, Leighton

    2013-01-01

    The Galaxy Project offers the popular web browser-based platform Galaxy for running bioinformatics tools and constructing simple workflows. Here, we present a broad collection of additional Galaxy tools for large scale analysis of gene and protein sequences. The motivating research theme is the identification of specific genes of interest in a range of non-model organisms, and our central example is the identification and prediction of “effector” proteins produced by plant pathogens in order to manipulate their host plant. This functional annotation of a pathogen’s predicted capacity for virulence is a key step in translating sequence data into potential applications in plant pathology. This collection includes novel tools, and widely-used third-party tools such as NCBI BLAST+ wrapped for use within Galaxy. Individual bioinformatics software tools are typically available separately as standalone packages, or in online browser-based form. The Galaxy framework enables the user to combine these and other tools to automate organism scale analyses as workflows, without demanding familiarity with command line tools and scripting. Workflows created using Galaxy can be saved and are reusable, so may be distributed within and between research groups, facilitating the construction of a set of standardised, reusable bioinformatic protocols. The Galaxy tools and workflows described in this manuscript are open source and freely available from the Galaxy Tool Shed (http://usegalaxy.org/toolshed or http://toolshed.g2.bx.psu.edu). PMID:24109552

  10. MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models

    PubMed Central

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2016-01-01

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. This computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community. PMID:27536246

  11. MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models.

    PubMed

    Aurich, Maike K; Fleming, Ronan M T; Thiele, Ines

    2016-01-01

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. This computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community. PMID:27536246

  12. Atlas: a java-based tool for managing genotypes.

    PubMed

    Pérez-Enciso, E; García-Bernal, P G; Pérez-Enciso, M

    2005-01-01

    With the exponential increase in genotyping capability, it is fundamental to check data consistency and improve genotype management. Atlas is a Java-based application for managing genotypes that also provides a series of tools useful in traceability, parentage testing, and identification, as well as pedigree and marker visualization. PMID:16135705

  13. IBES: a tool for creating instructions based on event segmentation

    PubMed Central

    Mura, Katharina; Petersen, Nils; Huff, Markus; Ghose, Tandra

    2013-01-01

    Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, 20 participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, 10 and 12 participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool. PMID:24454296

  14. Intelligent control system based on ARM for lithography tool

    NASA Astrophysics Data System (ADS)

    Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan

    2014-08-01

    The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.

  15. Discovery and New Frontiers Project Budget Analysis Tool

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.

    2011-01-01

    The Discovery and New Frontiers (D&NF) programs are multi-project, uncoupled programs that currently comprise 13 missions in phases A through F. The ability to fly frequent science missions to explore the solar system is the primary measure of program success. The program office uses a Budget Analysis Tool to perform "what-if" analyses and compare mission scenarios to the current program budget, and rapidly forecast the programs ability to meet their launch rate requirements. The tool allows the user to specify the total mission cost (fixed year), mission development and operations profile by phase (percent total mission cost and duration), launch vehicle, and launch date for multiple missions. The tool automatically applies inflation and rolls up the total program costs (in real year dollars) for comparison against available program budget. Thus, the tool allows the user to rapidly and easily explore a variety of launch rates and analyze the effect of changes in future mission or launch vehicle costs, the differing development profiles or operational durations of a future mission, or a replan of a current mission on the overall program budget. Because the tool also reports average monthly costs for the specified mission profile, the development or operations cost profile can easily be validate against program experience for similar missions. While specifically designed for predicting overall program budgets for programs that develop and operate multiple missions concurrently, the basic concept of the tool (rolling up multiple, independently-budget lines) could easily be adapted to other applications.

  16. Advancing lighting and daylighting simulation: The transition from analysis to design aid tools

    SciTech Connect

    Hitchcock, R.J.

    1995-05-01

    This paper explores three significant software development requirements for making the transition from stand-alone lighting simulation/analysis tools to simulation-based design aid tools. These requirements include specialized lighting simulation engines, facilitated methods for creating detailed simulatable building descriptions, an automated techniques for providing lighting design guidance. Initial computer implementations meant to address each of these requirements are discussed to further elaborate these requirements and to illustrate work-in-progress.

  17. V-Lab{trademark}: Virtual laboratories -- The analysis tool for structural analysis of composite components

    SciTech Connect

    1999-07-01

    V-Lab{trademark}, an acronym for Virtual Laboratories, is a design and analysis tool for fiber-reinforced composite components. This program allows the user to perform analysis, numerical experimentation, and design prototyping using advanced composite stress and failure analysis tools. The software was designed to be intuitive and easy to use, even by designers who are not experts in composite materials or structural analysis. V-Lab{trademark} is the software tool every specialist in design engineering, structural analysis, research and development and repair needs to perform accurate, fast and economical analysis of composite components.

  18. Maintaining a Knowledge Base Using the MEDAS Knowledge Engineering Tools

    PubMed Central

    Naeymi-Rad, Frank; Evens, Martha; Koschmann, Timothy; Lee, Chui-Mei; Gudipati, Rao Y.C.; Kepic, Theresa; Rackow, Eric; Weil, Max Harry

    1985-01-01

    This paper describes the process by which a medical expert creates a new knowledge base for MEDAS, the Medical Emergency Decision Assistance System. It follows the expert physician step by step as a new disorder is entered along with its relevant symptoms. As the expanded knowledge base is tested, inconsistencies are detected, and corrections are made, showing at each step the available tools and giving an example of their use.

  19. A dataflow analysis tool for parallel processing of algorithms

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1993-01-01

    A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on a set of identical parallel processors. Typical applications include signal processing and control law problems. Graph analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool is shown to facilitate the application of the design process to a given problem.

  20. The Cube Analysis and Rendering Tool for Astronomy

    NASA Astrophysics Data System (ADS)

    Rosolowsky, E.; Kern, J.; Federl, P.; Jacobs, J.; Loveland, S.; Taylor, J.; Sivakoff, G.; Taylor, R.

    2015-09-01

    We present the design principles and current status of the Cube Analysis and Rendering Tool for Astronomy (CARTA). The CARTA project is designing a cube visualization tool for the Atacama Large Millimetre/submillimeter array. CARTA will join the domain-specific software already developed for millimetre-wave interferometry with sever-side visualization solution. This connection will enable archive-hosted exploration of three-dimensional data cubes. CARTA will also provide an indistinguishable desktop client. While such a goal is ambitious for a short project, the team is focusing on a well-developed framework which can readily accommodate community code development through plugins.

  1. Tool Support for Parametric Analysis of Large Software Simulation Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony

    2008-01-01

    The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.

  2. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  3. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  4. Bioelectrical impedance analysis: A new tool for assessing fish condition

    USGS Publications Warehouse

    Hartman, Kyle J.; Margraf, F. Joseph; Hafs, Andrew W.; Cox, M. Keith

    2015-01-01

    Bioelectrical impedance analysis (BIA) is commonly used in human health and nutrition fields but has only recently been considered as a potential tool for assessing fish condition. Once BIA is calibrated, it estimates fat/moisture levels and energy content without the need to kill fish. Despite the promise held by BIA, published studies have been divided on whether BIA can provide accurate estimates of body composition in fish. In cases where BIA was not successful, the models lacked the range of fat levels or sample sizes we determined were needed for model success (range of dry fat levels of 29%, n = 60, yielding an R2 of 0.8). Reduced range of fat levels requires an increased sample size to achieve that benchmark; therefore, standardization of methods is needed. Here we discuss standardized methods based on a decade of research, identify sources of error, discuss where BIA is headed, and suggest areas for future research.

  5. ADVISOR: a systems analysis tool for advanced vehicle modeling

    NASA Astrophysics Data System (ADS)

    Markel, T.; Brooker, A.; Hendricks, T.; Johnson, V.; Kelly, K.; Kramer, B.; O'Keefe, M.; Sprik, S.; Wipke, K.

    This paper provides an overview of Advanced Vehicle Simulator (ADVISOR)—the US Department of Energy's (DOE's) ADVISOR written in the MATLAB/Simulink environment and developed by the National Renewable Energy Laboratory. ADVISOR provides the vehicle engineering community with an easy-to-use, flexible, yet robust and supported analysis package for advanced vehicle modeling. It is primarily used to quantify the fuel economy, the performance, and the emissions of vehicles that use alternative technologies including fuel cells, batteries, electric motors, and internal combustion engines in hybrid (i.e. multiple power sources) configurations. It excels at quantifying the relative change that can be expected due to the implementation of technology compared to a baseline scenario. ADVISOR's capabilities and limitations are presented and the power source models that are included in ADVISOR are discussed. Finally, several applications of the tool are presented to highlight ADVISOR's functionality. The content of this paper is based on a presentation made at the 'Development of Advanced Battery Engineering Models' workshop held in Crystal City, Virginia in August 2001.

  6. Web-based tool for expert elicitation of the variogram

    NASA Astrophysics Data System (ADS)

    Truong, Phuong N.; Heuvelink, Gerard B. M.; Gosling, John Paul

    2013-02-01

    The variogram is the keystone of geostatistics. Estimation of the variogram is deficient and difficult when there are no or too few observations available due to budget constraints or physical and temporal obstacles. In such cases, expert knowledge can be an important source of information. Expert knowledge can also fulfil the increasing demand for an a priori variogram in Bayesian geostatistics and spatial sampling optimization. Formal expert elicitation provides a sound scientific basis to reliably and consistently extract knowledge from experts. In this study, we aimed at applying existing statistical expert elicitation techniques to extract the variogram of a regionalized variable that is assumed to have either a multivariate normal or lognormal spatial probability distribution from expert knowledge. To achieve this, we developed an elicitation protocol and implemented it as a web-based tool to facilitate the elicitation of beliefs from multiple experts. Our protocol has two main rounds: elicitation of the marginal probability distribution and elicitation of the variogram. The web-based tool has three main components: a web interface for expert elicitation and feedback; a component for statistical computation and mathematical pooling of multiple experts' knowledge; and a database management component. Results from a test case study show that the protocol is adequate and that the online elicitation tool functions satisfactorily. The web-based tool is free to use and supports scientists to conveniently elicit the variogram of spatial random variables from experts. The source code is available from the journal FTP site under the GNU General Public License.

  7. X-ray imaging plate performance investigation based on a Monte Carlo simulation tool

    NASA Astrophysics Data System (ADS)

    Yao, M.; Duvauchelle, Ph.; Kaftandjian, V.; Peterzol-Parmentier, A.; Schumm, A.

    2015-01-01

    Computed radiography (CR) based on imaging plate (IP) technology represents a potential replacement technique for traditional film-based industrial radiography. For investigating the IP performance especially at high energies, a Monte Carlo simulation tool based on PENELOPE has been developed. This tool tracks separately direct and secondary radiations, and monitors the behavior of different particles. The simulation output provides 3D distribution of deposited energy in IP and evaluation of radiation spectrum propagation allowing us to visualize the behavior of different particles and the influence of different elements. A detailed analysis, on the spectral and spatial responses of IP at different energies up to MeV, has been performed.

  8. Suspension array technology: new tools for gene and protein analysis.

    PubMed

    Nolan, J P; Mandy, F F

    2001-11-01

    Flow cytometry has long been a key tool in the analysis of lymphocytes and other cells, owing to its ability to make quantitative, homogeneous, multiparameter measurements of particles. New developments in illumination sources, digital signal processing and microsphere chemistry are driving the development of flow cytometry in new areas of biomedical research. In particular. the maturation of approaches to perform highly parallel analyses using suspension arrays of microspheres with different morphospectral features is making flow cytometry an important tool in protein and genetic analysis. In this paper, we review the development of suspension array technology (SAT), current applications in protein and genomic analysis, and the prospects for this platform in a variety of large scale screening applications. PMID:11838973

  9. Tools for Large-Scale Mobile Malware Analysis

    SciTech Connect

    Bierma, Michael

    2014-01-01

    Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000 Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.

  10. SMART: Statistical Metabolomics Analysis-An R Tool.

    PubMed

    Liang, Yu-Jen; Lin, Yu-Ting; Chen, Chia-Wei; Lin, Chien-Wei; Chao, Kun-Mao; Pan, Wen-Harn; Yang, Hsin-Chou

    2016-06-21

    Metabolomics data provide unprecedented opportunities to decipher metabolic mechanisms by analyzing hundreds to thousands of metabolites. Data quality concerns and complex batch effects in metabolomics must be appropriately addressed through statistical analysis. This study developed an integrated analysis tool for metabolomics studies to streamline the complete analysis flow from initial data preprocessing to downstream association analysis. We developed Statistical Metabolomics Analysis-An R Tool (SMART), which can analyze input files with different formats, visually represent various types of data features, implement peak alignment and annotation, conduct quality control for samples and peaks, explore batch effects, and perform association analysis. A pharmacometabolomics study of antihypertensive medication was conducted and data were analyzed using SMART. Neuromedin N was identified as a metabolite significantly associated with angiotensin-converting-enzyme inhibitors in our metabolome-wide association analysis (p = 1.56 × 10(-4) in an analysis of covariance (ANCOVA) with an adjustment for unknown latent groups and p = 1.02 × 10(-4) in an ANCOVA with an adjustment for hidden substructures). This endogenous neuropeptide is highly related to neurotensin and neuromedin U, which are involved in blood pressure regulation and smooth muscle contraction. The SMART software, a user guide, and example data can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/metabolomics/SMART.htm . PMID:27248514

  11. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis

    SciTech Connect

    Lamarche, Brian L.; Crowell, Kevin L.; Jaitly, Navdeep; Petyuk, Vladislav A.; Shah, Anuj R.; Polpitiya, Ashoka D.; Sandoval, John D.; Kiebel, Gary R.; Monroe, Matthew E.; Callister, Stephen J.; Metz, Thomas O.; Anderson, Gordon A.; Smith, Richard D.

    2013-02-12

    MultiAlign is a free software tool that aligns multiple liquid chromatography-mass spectrometry datasets to one another by clustering mass and LC elution features across datasets. Applicable to both label-free proteomics and metabolomics comparative analyses, the software can be operated in several modes. Clustered features can be matched to a reference database to identify analytes, used to generate abundance profiles, linked to tandem mass spectra based on parent precursor masses, and culled for targeted liquid chromatography-tandem mass spectrometric analysis. MultiAlign is also capable of tandem mass spectral clustering to describe proteome structure and find similarity in subsequent sample runs.

  12. Field Quality Analysis as a Tool to Monitor Magnet Production

    SciTech Connect

    Gupta, R.; Anerella, M.; Cozzolino, J.; Fisher, D.; Ghosh, A.; Jain, A.; Sampson, W.; Schmalzle, J.; Thompson, P.; Wanderer, P.; Willen, E.

    1997-10-18

    Field harmonics offer a powerful tool to examine the mechanical structure of accelerator magnets. A large deviation from the nominal values suggests a mechanical defect. Magnets with such defects are likely to have a poor quench performance. Similarly, a trend suggests a wear in tooling or a gradual change in the magnet assem-bly or in the size of a component. This paper presents the use of the field quality as a tool to monitor the magnet production of the Relativistic Heavy Ion Collider (RHIC). Several examples are briefly described. Field quality analysis can also rule out a suspected geometric error if it can not be supported by the symmetry and the magnitude of the measured harmonics.

  13. Multi Sector Planning Tools for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mainini, Matthew; Brasil, Connie

    2010-01-01

    This paper discusses a suite of multi sector planning tools for trajectory-based operations that were developed and evaluated in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The toolset included tools for traffic load and complexity assessment as well as trajectory planning and coordination. The situation assessment tools included an integrated suite of interactive traffic displays, load tables, load graphs, and dynamic aircraft filters. The planning toolset allowed for single and multi aircraft trajectory planning and data communication-based coordination of trajectories between operators. Also newly introduced was a real-time computation of sector complexity into the toolset that operators could use in lieu of aircraft count to better estimate and manage sector workload, especially in situations with convective weather. The tools were used during a joint NASA/FAA multi sector planner simulation in the AOL in 2009 that had multiple objectives with the assessment of the effectiveness of the tools being one of them. Current air traffic control operators who were experienced as area supervisors and traffic management coordinators used the tools throughout the simulation and provided their usefulness and usability ratings in post simulation questionnaires. This paper presents these subjective assessments as well as the actual usage data that was collected during the simulation. The toolset was rated very useful and usable overall. Many elements received high scores by the operators and were used frequently and successfully. Other functions were not used at all, but various requests for new functions and capabilities were received that could be added to the toolset.

  14. Reliability estimation for cutting tools based on logistic regression model using vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Baojia; Chen, Xuefeng; Li, Bing; He, Zhengjia; Cao, Hongrui; Cai, Gaigai

    2011-10-01

    As an important part of CNC machine, the reliability of cutting tools influences the whole manufacturing effectiveness and stability of equipment. The present study proposes a novel reliability estimation approach to the cutting tools based on logistic regression model by using vibration signals. The operation condition information of the CNC machine is incorporated into reliability analysis to reflect the product time-varying characteristics. The proposed approach is superior to other degradation estimation methods in that it does not necessitate any assumption about degradation paths and probability density functions of condition parameters. The three steps of new reliability estimation approach for cutting tools are as follows. First, on-line vibration signals of cutting tools are measured during the manufacturing process. Second, wavelet packet (WP) transform is employed to decompose the original signals and correlation analysis is employed to find out the feature frequency bands which indicate tool wear. Third, correlation analysis is also used to select the salient feature parameters which are composed of feature band energy, energy entropy and time-domain features. Finally, reliability estimation is carried out based on logistic regression model. The approach has been validated on a NC lathe. Under different failure threshold, the reliability and failure time of the cutting tools are all estimated accurately. The positive results show the plausibility and effectiveness of the proposed approach, which can facilitate machine performance and reliability estimation.

  15. AVISPA: a web tool for the prediction and analysis of alternative splicing.

    PubMed

    Barash, Yoseph; Vaquero-Garcia, Jorge; González-Vallinas, Juan; Xiong, Hui Yuan; Gao, Weijun; Lee, Leo J; Frey, Brendan J

    2013-01-01

    Transcriptome complexity and its relation to numerous diseases underpins the need to predict in silico splice variants and the regulatory elements that affect them. Building upon our recently described splicing code, we developed AVISPA, a Galaxy-based web tool for splicing prediction and analysis. Given an exon and its proximal sequence, the tool predicts whether the exon is alternatively spliced, displays tissue-dependent splicing patterns, and whether it has associated regulatory elements. We assess AVISPA's accuracy on an independent dataset of tissue-dependent exons, and illustrate how the tool can be applied to analyze a gene of interest. AVISPA is available at http://avispa.biociphers.org. PMID:24156756

  16. A measuring tool for tree-rings analysis

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena

    2013-04-01

    A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).

  17. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect

    Valmianski, Ilya Monton, Carlos; Schuller, Ivan K.

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  18. MISR Data Visualization and Analysis Using the hdfscan Tool

    NASA Astrophysics Data System (ADS)

    Crean, K. A.; Diner, D. J.; Banerjee, P. K.

    2001-05-01

    A new software tool called hdfscan is available to display and analyze data formatted using the HDF-EOS grid and swath interfaces, as well as the native HDF SDS, vdata, vgroup, and raster interfaces. The hdfscan tool can display data in both image and textual form, and can also display attributes, metadata, annotations, file structure, projection information, and simple data statistics. hdfscan also includes a data editing capability. In addition, the tool contains unique features to aid in the interpretation of data from the Multi-angle Imaging SpectroRadiometer (MISR) instrument, which currently flies aboard NASA's Terra spacecraft. These features include the ability to unscale and unpack MISR data fields; the ability to display MISR data flag values according to their interpreted values as well as their raw values; and knowledge of special MISR fill values. MISR measures upwelling radiance from Earth in 4 spectral bands corresponding to blue, green, red, and near-infrared wavelengths, at each of 9 view angles including the nadir (vertical) direction plus 26.1, 45.6, 60.0, and 70.5 degrees forward and aftward of nadir. Data products derived from MISR measurements aim at improving our understanding of the Earth's environment and climate. The hdfscan tool runs in one of two modes, as selected by the user: command-line mode, or via a graphical user interface (GUI). This provides a user with flexibility in using the tool for either batch mode processing or interactive analysis. This presentation will describe features and functionalities of the hdfscan tool. The user interface will be shown, and menu options will be explained. Information on how to obtain the tool will be provided.

  19. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Astrophysics Data System (ADS)

    Doyle, Monica M.; O'Neil, Daniel A.; Christensen, Carissa B.

    2005-02-01

    Forecasting technology capabilities requires a tool and a process for capturing state-of-the-art technology metrics and estimates for future metrics. A decision support tool, known as the Advanced Technology Lifecycle Analysis System (ATLAS), contains a Technology Tool Box (TTB) database designed to accomplish this goal. Sections of this database correspond to a Work Breakdown Structure (WBS) developed by NASA's Exploration Systems Research and Technology (ESRT) Program. These sections cover the waterfront of technologies required for human and robotic space exploration. Records in each section include technology performance, operations, and programmatic metrics. Timeframes in the database provide metric values for the state of the art (Timeframe 0) and forecasts for timeframes that correspond to spiral development milestones in NASA's Exploration Systems Mission Directorate (ESMD) development strategy. Collecting and vetting data for the TTB will involve technologists from across the agency, the aerospace industry and academia. Technologists will have opportunities to submit technology metrics and forecasts to the TTB development team. Semi-annual forums will facilitate discussions about the basis of forecast estimates. As the tool and process mature, the TTB will serve as a powerful communication and decision support tool for the ESRT program.

  20. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.

    PubMed

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  1. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    PubMed Central

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  2. Tools for Administration of a UNIX-Based Network

    NASA Technical Reports Server (NTRS)

    LeClaire, Stephen; Farrar, Edward

    2004-01-01

    Several computer programs have been developed to enable efficient administration of a large, heterogeneous, UNIX-based computing and communication network that includes a variety of computers connected to a variety of subnetworks. One program provides secure software tools for administrators to create, modify, lock, and delete accounts of specific users. This program also provides tools for users to change their UNIX passwords and log-in shells. These tools check for errors. Another program comprises a client and a server component that, together, provide a secure mechanism to create, modify, and query quota levels on a network file system (NFS) mounted by use of the VERITAS File SystemJ software. The client software resides on an internal secure computer with a secure Web interface; one can gain access to the client software from any authorized computer capable of running web-browser software. The server software resides on a UNIX computer configured with the VERITAS software system. Directories where VERITAS quotas are applied are NFS-mounted. Another program is a Web-based, client/server Internet Protocol (IP) address tool that facilitates maintenance lookup of information about IP addresses for a network of computers.

  3. The Tracking Meteogram, an AWIPS II Tool for Time-Series Analysis

    NASA Technical Reports Server (NTRS)

    Burks, Jason Eric; Sperow, Ken

    2015-01-01

    A new tool has been developed for the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) II through collaboration between NASA's Short-term Prediction Research and Transition (SPoRT) and the NWS Meteorological Development Laboratory (MDL). Referred to as the "Tracking Meteogram", the tool aids NWS forecasters in assessing meteorological parameters associated with moving phenomena. The tool aids forecasters in severe weather situations by providing valuable satellite and radar derived trends such as cloud top cooling rates, radial velocity couplets, reflectivity, and information from ground-based lightning networks. The Tracking Meteogram tool also aids in synoptic and mesoscale analysis by tracking parameters such as the deepening of surface low pressure systems, changes in surface or upper air temperature, and other properties. The tool provides a valuable new functionality and demonstrates the flexibility and extensibility of the NWS AWIPS II architecture. In 2014, the operational impact of the tool was formally evaluated through participation in the NOAA/NWS Operations Proving Ground (OPG), a risk reduction activity to assess performance and operational impact of new forecasting concepts, tools, and applications. Performance of the Tracking Meteogram Tool during the OPG assessment confirmed that it will be a valuable asset to the operational forecasters. This presentation reviews development of the Tracking Meteogram tool, performance and feedback acquired during the OPG activity, and future goals for continued support and extension to other application areas.

  4. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  5. Social dataset analysis and mapping tools for Risk Perception: resilience, people preparation and communication tools

    NASA Astrophysics Data System (ADS)

    Peters-Guarin, Graciela; Garcia, Carolina; Frigerio, Simone

    2010-05-01

    Perception has been identified as resource and part of the resilience of a community to disasters. Risk perception, if present, may determine the potential damage a household or community experience. Different levels of risk perception and preparedness can influence directly people's susceptibility and the way they might react in case of an emergency caused by natural hazards. In spite of the profuse literature about risk perception, works to spatially portray this feature are really scarce. The spatial relationship to danger or hazard is being recognised as an important factor of the risk equation; it can be used as a powerful tool either for better knowledge or for operational reasons (e.g. management of preventive information). Risk perception and people's awareness when displayed in a spatial format can be useful for several actors in the risk management arena. Local authorities and civil protection can better address educational activities to increase the preparation of particularly vulnerable groups of clusters of households within a community. It can also be useful for the emergency personal in order to optimally direct the actions in case of an emergency. In the framework of the Marie Curie Research Project, a Community Based Early Warning System (CBEWS) it's been developed in the Mountain Community Valtellina of Tirano, northern Italy. This community has been continuously exposed to different mass movements and floods, in particular, a large event in 1987 which affected a large portion of the valley and left 58 dead. The actual emergency plan for the study area is composed by a real time, highly detailed, decision support system. This emergency plan contains detailed instructions for the rapid deployment of civil protection and other emergency personal in case of emergency, for risk scenarios previously defined. Especially in case of a large event, where timely reaction is crucial for reducing casualties, it is important for those in charge of emergency

  6. Mining Student Data Captured from a Web-Based Tutoring Tool: Initial Exploration and Results

    ERIC Educational Resources Information Center

    Merceron, Agathe; Yacef, Kalina

    2004-01-01

    In this article we describe the initial investigations that we have conducted on student data collected from a web-based tutoring tool. We have used some data mining techniques such as association rule and symbolic data analysis, as well as traditional SQL queries to gain further insight on the students' learning and deduce information to improve…

  7. Space mission scenario development and performance analysis tool

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David

    2004-01-01

    This paper discusses a new and innovative approach for a rapid spacecraft multi-disciplinary performance analysis using a tool called the Mission Scenario Development Workbench (MSDW). To meet the needs of new classes of space missions, analysis tools with proven models were developed and integrated into a framework to enable rapid trades and analyses between spacecraft designs and operational scenarios during the formulation phase of a mission. Generally speaking, spacecraft resources are highly constrained on deep space missions and this approach makes it possible to maximize the use of existing resources to attain the best possible science return. This approach also has the potential benefit of reducing the risk of costly design changes made later in the design cycle necessary to meet the mission requirements by understanding system design sensitivities early and adding appropriate margins. This paper will describe the approach used by the Mars Science Laboratory Project to accomplish this result.

  8. Microsystem design framework based on tool adaptations and library developments

    NASA Astrophysics Data System (ADS)

    Karam, Jean Michel; Courtois, Bernard; Rencz, Marta; Poppe, Andras; Szekely, Vladimir

    1996-09-01

    Besides foundry facilities, Computer-Aided Design (CAD) tools are also required to move microsystems from research prototypes to an industrial market. This paper describes a Computer-Aided-Design Framework for microsystems, based on selected existing software packages adapted and extended for microsystem technology, assembled with libraries where models are available in the form of standard cells described at different levels (symbolic, system/behavioral, layout). In microelectronics, CAD has already attained a highly sophisticated and professional level, where complete fabrication sequences are simulated and the device and system operation is completely tested before manufacturing. In comparison, the art of microsystem design and modelling is still in its infancy. However, at least for the numerical simulation of the operation of single microsystem components, such as mechanical resonators, thermo-elements, elastic diaphragms, reliable simulation tools are available. For the different engineering disciplines (like electronics, mechanics, optics, etc) a lot of CAD-tools for the design, simulation and verification of specific devices are available, but there is no CAD-environment within which we could perform a (micro-)system simulation due to the different nature of the devices. In general there are two different approaches to overcome this limitation: the first possibility would be to develop a new framework tailored for microsystem-engineering. The second approach, much more realistic, would be to use the existing CAD-tools which contain the most promising features, and to extend these tools so that they can be used for the simulation and verification of microsystems and of the devices involved. These tools are assembled with libraries in a microsystem design environment allowing a continuous design flow. The approach is driven by the wish to make microsystems accessible to a large community of people, including SMEs and non-specialized academic institutions.

  9. Integrating Web-based GIS and image processing tools for environmental monitoring and natural resource management

    NASA Astrophysics Data System (ADS)

    Tsou, Ming-Hsiang

    The combined powers of Web-based geographic information systems (GIS) and on-line remote sensing tools can significantly reduce the high cost and labor associated with environmental monitoring and natural resource management. This paper introduces an integrated Web-based GIS architecture by combining three levels of geographic information services (GIServices): data archive, information display, and spatial analysis. A prototype Web site, WGAT (Web-based GIS and Analytic Tools), has been developed to provide easy access of geospatial information and to facilitate Web-based image analysis and change detection capabilities for natural resource managers and regional park rangers. The Web-based integration framework emphasizes user-oriented services, distributed network environments, metadata standards, communication protocols, client/server computation, and ubiquitous access.

  10. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; Briscoe, B. J.; Celentano, A.; Chung, S.-U.; D'Angelo, A.; De Vita, R.; Döring, M.; Dudek, J.; Eidelman, S.; Fegan, S.; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, D. I.; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, D. G.; Ketzer, B.; Klein, F. J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, V.; McKinnon, B.; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, A.; Salgado, C.; Santopinto, E.; Sarantsev, A. V.; Sato, T.; Schlüter, T.; [Silva]da Silva, M. L. L.; Stankovic, I.; Strakovsky, I.; Szczepaniak, A.; Vassallo, A.; Walford, N. K.; Watts, D. P.; Zana, L.

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.

  11. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    DOE PAGESBeta

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; et al

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopymore » in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.« less

  12. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    SciTech Connect

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, Derek; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, David G.; Ketzer, B.; Klein, Franz J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, Vincent; McKinnon, Brian; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, Alessandro; Salgado, Carlos; Santopinto, E.; Sarantsev, Andrey V.; Sato, Toru; Schlüter, T.; da Silva, M. L.L.; Stankovic, I.; Strakovsky, Igor; Szczepaniak, Adam; Vassallo, A.; Walford, Natalie K.; Watts, Daniel P.

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.

  13. Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base

    NASA Technical Reports Server (NTRS)

    Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.

  14. SMART (Shop floor Modeling, Analysis and Reporting Tool Project

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.; Garcia, Maretys L.; Mendoza, Alicia C.; Molina, Louis A.; Correa, Daisy; Wint, Steve; Doice, Gregorie; Reyes, M. Florencia

    1999-01-01

    This document presents summarizes the design and prototype of the Shop floor Modeling, Analysis, and Reporting Tool (S.M.A.R.T.) A detailed description of it is found on the full documentation given to the NASA liaison. This documentation is also found on the A.R.I.S.E. Center web site, under a projected directory. Only authorized users can gain access to this site.

  15. Internet MEMS design tools based on component technology

    NASA Astrophysics Data System (ADS)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  16. On the next generation of reliability analysis tools

    NASA Technical Reports Server (NTRS)

    Babcock, Philip S., IV; Leong, Frank; Gai, Eli

    1987-01-01

    The current generation of reliability analysis tools concentrates on improving the efficiency of the description and solution of the fault-handling processes and providing a solution algorithm for the full system model. The tools have improved user efficiency in these areas to the extent that the problem of constructing the fault-occurrence model is now the major analysis bottleneck. For the next generation of reliability tools, it is proposed that techniques be developed to improve the efficiency of the fault-occurrence model generation and input. Further, the goal is to provide an environment permitting a user to provide a top-down design description of the system from which a Markov reliability model is automatically constructed. Thus, the user is relieved of the tedious and error-prone process of model construction, permitting an efficient exploration of the design space, and an independent validation of the system's operation is obtained. An additional benefit of automating the model construction process is the opportunity to reduce the specialized knowledge required. Hence, the user need only be an expert in the system he is analyzing; the expertise in reliability analysis techniques is supplied.

  17. Aerospace Power Systems Design and Analysis (APSDA) Tool

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  18. Parachute system design, analysis, and simulation tool. Status report

    SciTech Connect

    Sundberg, W.D.; McBride, D.D.; Gwinn, K.W.; Waye, D.E.; Hailey, C.E.

    1992-12-31

    For over twenty years designers at Sandia National Laboratories have developed various parachute simulation codes to model deployment, inflation, loading, trajectories, aircraft downwash and line sail. In addition to these codes, material property data bases have been acquired. Recently we have initiated project to integrate these codes and data bases into a single software tool entitled SPARSYS (Sandia PARachute SYstem Simulation). We have constructed a graphical user interface as the driver and framework for SPARSYS. In this paper we present a status report on SPARSYS describing progress in developing and incorporating independent modules, in developing an integrated trajectory package, and in developing a materials data base including high-rate-of-strain data.

  19. Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...

  20. Analysis of Java Client/Server and Web Programming Tools for Development of Educational Systems.

    ERIC Educational Resources Information Center

    Muldner, Tomasz

    This paper provides an analysis of old and new programming tools for development of client/server programs, particularly World Wide Web-based programs. The focus is on development of educational systems that use interactive shared workspaces to provide portable and expandable solutions. The paper begins with a short description of relevant terms.…

  1. The OCLC/AMIGOS Collection Analysis CD: A Unique Tool for Collection Evaluation and Development.

    ERIC Educational Resources Information Center

    Joy, Albert H.

    1992-01-01

    Describes the OCLC/AMIGOS Collection Analysis CD (CACD), a microcomputer-based tool for the evaluation and development of library collections. CACD applications are discussed, including preparation of statistical reports, accreditation and grant support, budget preparation, verification of collection development policy goals, and cooperative…

  2. ISAC: A tool for aeroservoelastic modeling and analysis

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood Tiffany

    1993-01-01

    The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  3. Federal metering data analysis needs and existing tools

    SciTech Connect

    Henderson, Jordan W.; Fowler, Kimberly M.

    2015-07-01

    Agencies have been working to improve their metering data collection, management, and analysis efforts over the last decade (since EPAct 2005) and will continue to address these challenges as new requirements and data needs come into place. Unfortunately there is no “one-size-fits-all” solution. As agencies continue to expand their capabilities to use metered consumption data to reducing resource use and improve operations, the hope is that shared knowledge will empower others to follow suit. This paper discusses the Federal metering data analysis needs and some existing tools.

  4. A Web-Based Validation Tool for GEWEX

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Gibson, S.; Heckert, E.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Stubenrauch, C.; Kinne, S. A.; Ackerman, S. A.; Baum, B. A.; Chepfer, H.; Di Girolamo, L.; Heidinger, A. K.; Getzewich, B. J.; Guignard, A.; Maddux, B. C.; Menzel, W. P.; Platnick, S. E.; Poulsen, C.; Raschke, E. A.; Riedi, J.; Rossow, W. B.; Sayer, A. M.; Walther, A.; Winker, D. M.

    2011-12-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud assessment was initiated by the GEWEX Radiation Panel (GRP) in 2005 to evaluate the variability of available, global, long-term cloud data products. Since then, eleven cloud data records have been established from various instruments, mostly onboard polar orbiting satellites. Cloud properties under study include cloud amount, cloud pressure, cloud temperature, cloud infrared (IR) emissivity and visible (VIS) optical thickness, cloud thermodynamic phase, as well as bulk microphysical properties. The volume of data and variations in parameters, spatial, and temporal resolution for the different datasets constitute a significant challenge for understanding the differences and the value of having more than one dataset. To address this issue, this paper presents a NASA Langley web-based tool to facilitate comparisons among the different cloud data sets. With this tool, the operator can choose to view numeric or graphic presentations to allow comparison between products. Multiple records are displayed in time series graphs, global maps, or zonal plots. The tool has been made flexible so that additional teams can easily add their data sets to the record selection list for use in their own analyses. This tool has possible applications to other climate and weather datasets.

  5. Aquifer characterization through an integrated GIS-based tool

    NASA Astrophysics Data System (ADS)

    Criollo, Rotman; Velasco, Violeta; Vázquez-Suñé, Enric; Serrano-Juan, Alejandro; Alcaraz, Mar; García-Gil, Alejandro

    2016-04-01

    Hydraulic parameters of the subsurface (transmissivity, hydraulic conductivity, storativity and specific storage) are important to achieve hydrogeological studies such as environmental impact assessments, water resources evaluations or groundwater contamination remediation, among others. There are several methods to determine aquifer parameters but pumping test is the most commonly used method to obtain them and generally leads to reliable hydraulic parameters. These parameters and other hydraulic data available for integration into the hydrogeological studies (which currently are supported by groundwater numerical models) usually has a very diverse origin and format and, therefore, a chance of bias in the interpretations. Consequently, it becomes necessary to have effective instruments that facilitate the pre-process, the visualization, the analysis and the validation (e.g. graphical analysis techniques) of this great amount of data. To achieve this in a clear and understandable manner, the GIS environment is a useful instrument. We developed a software to analyze pumping tests in a GIS platform environment to support the hydraulic parameterization of groundwater flow and transport models. This novel platform provides a package of tools for collecting, managing, analyzing, processing and interpreting data derived from pumping tests in a GIS environment. Additionally, within the GIS platform, it is possible to process the hydraulic parameters obtained from the pumping test and to create spatial distribution maps, perform geostatistical analysis and export the information to an external software platform. These tools have been applied in the metropolitan area of Barcelona (Spain) to tests out and improve their usefulness in hydrogeological analysis.

  6. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging

    PubMed Central

    Roethke, Matthias C.; Kuru, Timur H.; Mueller-Wolf, Maya B.; Agterhuis, Erik; Edler, Christopher; Hohenfellner, Markus; Schlemmer, Heinz-Peter; Hadaschik, Boris A.

    2016-01-01

    Objective To evaluate the diagnostic performance of an automated analysis tool for the assessment of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) of the prostate. Methods A fully automated analysis tool was used for a retrospective analysis of mpMRI sets (T2-weighted, T1-weighted dynamic contrast-enhanced, and diffusion-weighted sequences). The software provided a malignancy prediction value for each image pixel, defined as Malignancy Attention Index (MAI) that can be depicted as a colour map overlay on the original images. The malignancy maps were compared to histopathology derived from a combination of MRI-targeted and systematic transperineal MRI/TRUS-fusion biopsies. Results In total, mpMRI data of 45 patients were evaluated. With a sensitivity of 85.7% (with 95% CI of 65.4–95.0), a specificity of 87.5% (with 95% CI of 69.0–95.7) and a diagnostic accuracy of 86.7% (with 95% CI of 73.8–93.8) for detection of prostate cancer, the automated analysis results corresponded well with the reported diagnostic accuracies by human readers based on the PI-RADS system in the current literature. Conclusion The study revealed comparable diagnostic accuracies for the detection of prostate cancer of a user-independent MAI-based automated analysis tool and PI-RADS-scoring-based human reader analysis of mpMRI. Thus, the analysis tool could serve as a detection support system for less experienced readers. The results of the study also suggest the potential of MAI-based analysis for advanced lesion assessments, such as cancer extent and staging prediction. PMID:27454770

  7. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  8. A computer-based tool for generation of progress notes.

    PubMed Central

    Campbell, K. E.; Wieckert, K.; Fagan, L. M.; Musen, M. A.

    1993-01-01

    IVORY, a computer-based tool that uses clinical findings as the basic unit for composing progress notes, generates progress notes more efficiently than does a character-based word processor. IVORY's clinical findings are contained within a structured vocabulary that we developed to support generation of both prose progress notes and SNOMED III codes. Observational studies of physician participation in the development of IVORY's structured vocabulary have helped us to identify areas where changes are required before IVORY will be acceptable for routine clinical use. PMID:8130479

  9. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  10. Computational Modeling, Formal Analysis, and Tools for Systems Biology

    PubMed Central

    Bartocci, Ezio; Lió, Pietro

    2016-01-01

    As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science. PMID:26795950

  11. Using bioinformatics tools for the sequence analysis of immunoglobulins and T cell receptors.

    PubMed

    Lefranc, Marie-Paule

    2006-03-01

    The huge potential repertoire of 10(12) immunoglobulins and 10(12) T cell receptors per individual results from complex mechanisms of combinatorial diversity between the variable (V), diversity (D), and junction (J) genes, nucleotide deletions and insertions (N-diversity) at the junctions and, for the immunoglobulins, somatic hypermutations. The accurate analysis of rearranged immunoglobulin and T cell receptor sequences, and the annotation of the junctions, therefore represent a huge challenge. The IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts, were the prerequisites for the implementation of the IMGT/V-QUEST and IMGT/JunctionAnalysis tools. IMGT/V-QUEST analyzes germline V and rearranged V-J or V-D-J nucleotide sequences. IMGT/JunctionAnalysis is the first tool that automatically analyzes the complex junctions in detail. These interactive tools are easy to use and freely available on the Web (http://imgt.cines.fr), either separately or integrated. PMID:18432961

  12. Circulating microRNA-based screening tool for breast cancer

    PubMed Central

    Boukerroucha, Meriem; Fasquelle, Corinne; Thiry, Jérôme; Bovy, Nicolas; Struman, Ingrid; Geurts, Pierre; Collignon, Joëlle; Schroeder, Hélène; Kridelka, Frédéric; Lifrange, Eric; Jossa, Véronique

    2016-01-01

    Circulating microRNAs (miRNAs) are increasingly recognized as powerful biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels were measured to be used as an alternative screening procedure to mammography for breast cancer diagnosis. A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A diagnostic model was designed based on the expression of 8 miRNAs measured first in a profiling cohort composed of 41 primary breast cancers and 45 controls, and further validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors. A receiver operating characteristic curve derived from the 8-miRNA random forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy of the diagnostic tool remained unchanged considering age and tumor stage. The miRNA signature correctly identified patients with metastatic breast cancer. The use of the classification model on cohorts of patients with breast cancers in remission and with gynecologic cancers yielded prediction distributions similar to that of the control group. Using a multivariate supervised learning method and a set of 8 circulating miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer. PMID:26734993

  13. An Infrastructure for UML-Based Code Generation Tools

    NASA Astrophysics Data System (ADS)

    Wehrmeister, Marco A.; Freitas, Edison P.; Pereira, Carlos E.

    The use of Model-Driven Engineering (MDE) techniques in the domain of distributed embedded real-time systems are gain importance in order to cope with the increasing design complexity of such systems. This paper discusses an infrastructure created to build GenERTiCA, a flexible tool that supports a MDE approach, which uses aspect-oriented concepts to handle non-functional requirements from embedded and real-time systems domain. GenERTiCA generates source code from UML models, and also performs weaving of aspects, which have been specified within the UML model. Additionally, this paper discusses the Distributed Embedded Real-Time Compact Specification (DERCS), a PIM created to support UML-based code generation tools. Some heuristics to transform UML models into DERCS, which have been implemented in GenERTiCA, are also discussed.

  14. An overview of the web-based Google Earth coincident imaging tool

    USGS Publications Warehouse

    Chander, Gyanesh; Kilough, B.; Gowda, S.

    2010-01-01

    The Committee on Earth Observing Satellites (CEOS) Visualization Environment (COVE) tool is a browser-based application that leverages Google Earth web to display satellite sensor coverage areas. The analysis tool can also be used to identify near simultaneous surface observation locations for two or more satellites. The National Aeronautics and Space Administration (NASA) CEOS System Engineering Office (SEO) worked with the CEOS Working Group on Calibration and Validation (WGCV) to develop the COVE tool. The CEOS member organizations are currently operating and planning hundreds of Earth Observation (EO) satellites. Standard cross-comparison exercises between multiple sensors to compare near-simultaneous surface observations and to identify corresponding image pairs are time-consuming and labor-intensive. COVE is a suite of tools that have been developed to make such tasks easier.

  15. Performance evaluation tools for nuclear based interrogation techniques — an application of the PFNA technology

    NASA Astrophysics Data System (ADS)

    Feinstein, R. L.; Keeley, D. A.; Bendahan, J.

    1995-02-01

    To facilitate the design and tuning of the Pulsed Fast Neutron Analysis (PFNA) system, under development for non-intrusive inspection of large cargo containers, Science Applications International Corporation (SAIC) has developed and utilized a family of computational tools to encapsulate the essential physics and system characteristics and to serve as a framework for hardware and software trade-off studies. One such tool is the PFNASIM code, a physics based, end-to-end simulator of the entire PFNA technology that maps the atomic densities of any material container to the observed γ-ray counts in each detector. Another tool is the PFNA Performance Evaluation Tool (PFNAPET) that utilizes estimation theory and the output of PFNASIM to predict the minimum error in estimated atomic densities inside the container. These two codes are described and an example of performance evaluation on a cargo container is included.

  16. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  17. Protocol analysis as a tool for behavior analysis

    PubMed Central

    Austin, John; Delaney, Peter F.

    1998-01-01

    The study of thinking is made difficult by the fact that many of the relevant stimuli and responses are not apparent. Although the use of verbal reports has a long history in psychology, it is only recently that Ericsson and Simon's (1993) book on verbal reports explicated the conditions under which such reports may be reliable and valid. We review some studies in behavior analysis and cognitive psychology that have used talk-aloud reporting. We review particular methods for collecting reliable and valid verbal reports using the “talk-aloud” method as well as discuss alternatives to the talk-aloud procedure that are effective under different task conditions, such as the use of reports after completion of very rapid task performances. We specifically caution against the practice of asking subjects to reflect on the causes of their own behavior and the less frequently discussed problems associated with providing inappropriate social stimulation to participants during experimental sessions. PMID:22477126

  18. Computational Tools for Parsimony Phylogenetic Analysis of Omics Data.

    PubMed

    Salazar, Jose; Amri, Hakima; Noursi, David; Abu-Asab, Mones

    2015-08-01

    High-throughput assays from genomics, proteomics, metabolomics, and next generation sequencing produce massive omics datasets that are challenging to analyze in biological or clinical contexts. Thus far, there is no publicly available program for converting quantitative omics data into input formats to be used in off-the-shelf robust phylogenetic programs. To the best of our knowledge, this is the first report on creation of two Windows-based programs, OmicsTract and SynpExtractor, to address this gap. We note, as a way of introduction and development of these programs, that one particularly useful bioinformatics inferential modeling is the phylogenetic cladogram. Cladograms are multidimensional tools that show the relatedness between subgroups of healthy and diseased individuals and the latter's shared aberrations; they also reveal some characteristics of a disease that would not otherwise be apparent by other analytical methods. The OmicsTract and SynpExtractor were written for the respective tasks of (1) accommodating advanced phylogenetic parsimony analysis (through standard programs of MIX [from PHYLIP] and TNT), and (2) extracting shared aberrations at the cladogram nodes. OmicsTract converts comma-delimited data tables through assigning each data point into a binary value ("0" for normal states and "1" for abnormal states) then outputs the converted data tables into the proper input file formats for MIX or with embedded commands for TNT. SynapExtractor uses outfiles from MIX and TNT to extract the shared aberrations of each node of the cladogram, matching them with identifying labels from the dataset and exporting them into a comma-delimited file. Labels may be gene identifiers in gene-expression datasets or m/z values in mass spectrometry datasets. By automating these steps, OmicsTract and SynpExtractor offer a veritable opportunity for rapid and standardized phylogenetic analyses of omics data; their model can also be extended to next generation sequencing

  19. Designing Tools for Reflection on Problem-Based Instruction and Problem-Based Instructional Design

    ERIC Educational Resources Information Center

    Keefer, Matthew W.; Hui, Diane; RuffusDoerr, Amy Marie

    2009-01-01

    The objective of this research project into teacher education was to document the collaborative development and refection on teachers' tools in a problem-based learning (PBL) program. These results were then used to design materials and formats for the transmission of this teaching knowledge to less-experienced PBL teachers. The tools were…

  20. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  1. Can Interactive Web-based CAD Tools Improve the Learning of Engineering Drawing? A Case Study

    NASA Astrophysics Data System (ADS)

    Pando Cerra, Pablo; Suárez González, Jesús M.; Busto Parra, Bernardo; Rodríguez Ortiz, Diana; Álvarez Peñín, Pedro I.

    2014-06-01

    Many current Web-based learning environments facilitate the theoretical teaching of a subject but this may not be sufficient for those disciplines that require a significant use of graphic mechanisms to resolve problems. This research study looks at the use of an environment that can help students learn engineering drawing with Web-based CAD tools, including a self-correction component. A comparative study of 121 students was carried out. The students were divided into two experimental groups using Web-based interactive CAD tools and into two control groups using traditional learning tools. A statistical analysis of all the samples was carried out in order to study student behavior during the research and the effectiveness of these self-study tools in the learning process. The results showed that a greater number of students in the experimental groups passed the test and improved their test scores. Therefore, the use Web-based graphic interactive tools to learn engineering drawing can be considered a significant improvement in the teaching of this kind of academic discipline.

  2. Knowledge-acquisition tools for medical knowledge-based systems.

    PubMed

    Lanzola, G; Quaglini, S; Stefanelli, M

    1995-03-01

    Knowledge-based systems (KBS) have been proposed to solve a large variety of medical problems. A strategic issue for KBS development and maintenance are the efforts required for both knowledge engineers and domain experts. The proposed solution is building efficient knowledge acquisition (KA) tools. This paper presents a set of KA tools we are developing within a European Project called GAMES II. They have been designed after the formulation of an epistemological model of medical reasoning. The main goal is that of developing a computational framework which allows knowledge engineers and domain experts to interact cooperatively in developing a medical KBS. To this aim, a set of reusable software components is highly recommended. Their design was facilitated by the development of a methodology for KBS construction. It views this process as comprising two activities: the tailoring of the epistemological model to the specific medical task to be executed and the subsequent translation of this model into a computational architecture so that the connections between computational structures and their knowledge level counterparts are maintained. The KA tools we developed are illustrated taking examples from the behavior of a KBS we are building for the management of children with acute myeloid leukemia. PMID:9082135

  3. PACS project management utilizing web-based tools

    NASA Astrophysics Data System (ADS)

    Patel, Sunil; Levin, Brad; Gac, Robert J., Jr.; Harding, Douglas, Jr.; Chacko, Anna K.; Radvany, Martin; Romlein, John R.

    2000-05-01

    As Picture Archiving and Communications Systems (PACS) implementations become more widespread, the management of deploying large, multi-facility PACS will become a more frequent occurrence. The tools and usability of the World Wide Web to disseminate project management information obviates time, distance, participant availability, and data format constraints, allowing for the effective collection and dissemination of PACS planning, implementation information, for a potentially limitless number of concurrent PACS sites. This paper will speak to tools, such as (1) a topic specific discussion board, (2) a 'restricted' Intranet, within a 'project' Intranet. We will also discuss project specific methods currently in use in a leading edge, regional PACS implementation concerning the sharing of project schedules, physical drawings, images of implementations, site-specific data, point of contacts lists, project milestones, and a general project overview. The individual benefits realized for the end user from each tool will also be covered. These details will be presented, balanced with a spotlight on communication as a critical component of any project management undertaking. Using today's technology, the web arguably provides the most cost and resource effective vehicle to facilitate the broad based, interactive sharing of project information.

  4. A Smartphone-Based Tool for Assessing Parkinsonian Hand Tremor.

    PubMed

    Kostikis, N; Hristu-Varsakelis, D; Arnaoutoglou, M; Kotsavasiloglou, C

    2015-11-01

    The aim of this study is to propose a practical smartphone-based tool to accurately assess upper limb tremor in Parkinson's disease (PD) patients. The tool uses signals from the phone's accelerometer and gyroscope (as the phone is held or mounted on a subject's hand) to compute a set of metrics which can be used to quantify a patient's tremor symptoms. In a small-scale clinical study with 25 PD patients and 20 age-matched healthy volunteers, we combined our metrics with machine learning techniques to correctly classify 82% of the patients and 90% of the healthy volunteers, which is high compared to similar studies. The proposed method could be effective in assisting physicians in the clinic, or to remotely evaluate the patient's condition and communicate the results to the physician. Our tool is low cost, platform independent, noninvasive, and requires no expertise to use. It is also well matched to the standard clinical examination for PD and can keep the patient "connected" to his physician on a daily basis. Finally, it can facilitate the creation of anonymous profiles for PD patients, aiding further research on the effectiveness of medication or other overlooked aspects of patients' lives. PMID:26302523

  5. The Smooth Decomposition as a nonlinear modal analysis tool

    NASA Astrophysics Data System (ADS)

    Bellizzi, Sergio; Sampaio, Rubens

    2015-12-01

    The Smooth Decomposition (SD) is a statistical analysis technique for finding structures in an ensemble of spatially distributed data such that the vector directions not only keep the maximum possible variance but also the motions, along the vector directions, are as smooth in time as possible. In this paper, the notion of the dual smooth modes is introduced and used in the framework of oblique projection to expand a random response of a system. The dual modes define a tool that transforms the SD in an efficient modal analysis tool. The main properties of the SD are discussed and some new optimality properties of the expansion are deduced. The parameters of the SD give access to modal parameters of a linear system (mode shapes, resonance frequencies and modal energy participations). In case of nonlinear systems, a richer picture of the evolution of the modes versus energy can be obtained analyzing the responses under several excitation levels. This novel analysis of a nonlinear system is illustrated by an example.

  6. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  7. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  8. Building validation tools for knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Stachowitz, R. A.; Chang, C. L.; Stock, T. S.; Combs, J. B.

    1987-01-01

    The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification.

  9. Image and Data-analysis Tools For Paleoclimatic Reconstructions

    NASA Astrophysics Data System (ADS)

    Pozzi, M.

    It comes here proposed a directory of instruments and computer science resources chosen in order to resolve the problematic ones that regard the paleoclimatic recon- structions. They will come discussed in particular the following points: 1) Numerical analysis of paleo-data (fossils abundances, species analyses, isotopic signals, chemical-physical parameters, biological data): a) statistical analyses (uni- variate, diversity, rarefaction, correlation, ANOVA, F and T tests, Chi^2) b) multidi- mensional analyses (principal components, corrispondence, cluster analysis, seriation, discriminant, autocorrelation, spectral analysis) neural analyses (backpropagation net, kohonen feature map, hopfield net genetic algorithms) 2) Graphical analysis (visu- alization tools) of paleo-data (quantitative and qualitative fossils abundances, species analyses, isotopic signals, chemical-physical parameters): a) 2-D data analyses (graph, histogram, ternary, survivorship) b) 3-D data analyses (direct volume rendering, iso- surfaces, segmentation, surface reconstruction, surface simplification,generation of tetrahedral grids). 3) Quantitative and qualitative digital image analysis (macro and microfossils image analysis, Scanning Electron Microscope. and Optical Polarized Microscope images capture and analysis, morphometric data analysis, 3-D reconstruc- tions): a) 2D image analysis (correction of image defects, enhancement of image de- tail, converting texture and directionality to grey scale or colour differences, visual enhancement using pseudo-colour, pseudo-3D, thresholding of image features, binary image processing, measurements, stereological measurements, measuring features on a white background) b) 3D image analysis (basic stereological procedures, two dimen- sional structures; area fraction from the point count, volume fraction from the point count, three dimensional structures: surface area and the line intercept count, three dimensional microstructures; line length and the

  10. A POST ANALYSIS OF A PREVENTIVE AND CHRONIC HEALTHCARE TOOL.

    PubMed

    Borrayo, Brooke D; O'Lawrence, Henry

    2016-01-01

    This study uses the data set from Kaiser Permanente to examine the post implementation of a preventive and chronic care that utilizes clinical information system, delivery system design, and clinical decision support to maximize the office visit. The analysis suggests a significant positive relationship between frequency of utilization rates to address preventive and chronic care gaps. There is no implication of a significant positive relationship with the successfully captured rate, which satisfies closing the care gap within 45 days. The use of the preventive care tool will assist members in satisfying the preventive care gap, cervical cancer screening, within 45 days of the encounter. PMID:27483973

  11. CFD Methods and Tools for Multi-Element Airfoil Analysis

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; George, Michael W. (Technical Monitor)

    1995-01-01

    This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.

  12. A mobile data collection tool for workflow analysis.

    PubMed

    Moss, Jacqueline; Berner, Eta S; Savell, Kathy

    2007-01-01

    Faulty exchange and impaired access to clinical information is a major contributing factor to the incidence of medical error and occurrence of adverse events. Traditional methods utilized for systems analysis and information technology design fail to capture the nature of information use in highly dynamic healthcare environments. This paper describes a study designed to identify information task components in a cardiovascular intensive care unit and the development of an observational data collection tool to characterize the use of information in this environment. Direct observation can be a time-consuming process and without easy to use, reliable and valid methods of documentation, may not be reproducible across observers or settings. The following attributes were found to be necessary components for the characterization of information tasks in this setting: purpose, action, role, target, mode, and duration. The identified information task components were incorporated into the design of an electronic data collection tool to allow coding of information tasks. The reliability and validity of this tool in practice is discussed and an illustration of observational data output is provided. PMID:17911676

  13. SAVANT: Solar Array Verification and Analysis Tool Demonstrated

    NASA Technical Reports Server (NTRS)

    Chock, Ricaurte

    2000-01-01

    The photovoltaics (PV) industry is now being held to strict specifications, such as end-oflife power requirements, that force them to overengineer their products to avoid contractual penalties. Such overengineering has been the only reliable way to meet such specifications. Unfortunately, it also results in a more costly process than is probably necessary. In our conversations with the PV industry, the issue of cost has been raised again and again. Consequently, the Photovoltaics and Space Environment Effects branch at the NASA Glenn Research Center at Lewis Field has been developing a software tool to address this problem. SAVANT, Glenn's tool for solar array verification and analysis is in the technology demonstration phase. Ongoing work has proven that more efficient and less costly PV designs should be possible by using SAVANT to predict the on-orbit life-cycle performance. The ultimate goal of the SAVANT project is to provide a user-friendly computer tool to predict PV on-orbit life-cycle performance. This should greatly simplify the tasks of scaling and designing the PV power component of any given flight or mission. By being able to predict how a particular PV article will perform, designers will be able to balance mission power requirements (both beginning-of-life and end-of-life) with survivability concerns such as power degradation due to radiation and/or contamination. Recent comparisons with actual flight data from the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) mission validate this approach.

  14. A Design and Performance Analysis Tool for Superconducting RF Systems

    NASA Astrophysics Data System (ADS)

    Schilcher, Th.; Simrock, S. N.; Merminga, L.; Wang, D. X.

    1997-05-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall plug power efficiency. Typical examples are CEBAF at Jefferson Lab and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper we describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyse the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise. An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse stucture and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feedforward can be added to further supress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented.

  15. A design and performance analysis tool for superconducting RF systems

    SciTech Connect

    T. Schilcher; S.N. Simrock; L. Merminga; D.X. Wang

    1997-05-01

    Superconducting rf systems are usually operated with continuous rf power or with rf pulse lengths exceeding 1 ms to maximize the overall wall plug power efficiency. Typical examples are CEBAF at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and the TESLA Test Facility at DESY. The long pulses allow for effective application of feedback to stabilize the accelerating field in presence of microphonics, Lorentz force detuning, and fluctuations of the beam current. In this paper the authors describe a set of tools to be used with MATLAB and SIMULINK, which allow to analyze the quality of field regulation for a given design. The tools include models for the cavities, the rf power source, the beam, sources of field perturbations, and the rf feedback system. The rf control relevant electrical and mechanical characteristics of the cavity are described in form of time-varying state space models. The power source is modeled as a current generator and includes saturation characteristics and noise.An arbitrary time structure can be imposed on the beam current to reflect a macro-pulse structure and bunch charge fluctuations. For rf feedback several schemes can be selected: Traditional amplitude and phase control as well as I/Q control. The choices for the feedback controller include analog or digital approaches and various choices of frequency response. Feed forward can be added to further suppress repetitive errors. The results of a performance analysis of the CEBAF and the TESLA Linac rf system using these tools are presented.

  16. Java Analysis Tools for Element Production Calculations in Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Lingerfelt, E.; Hix, W.; Guidry, M.; Smith, M.

    2002-12-01

    We are developing a set of extendable, cross-platform tools and interfaces using Java and vector graphic technologies such as SVG and SWF to facilitate element production calculations in computational astrophysics. The Java technologies are customizable and portable, and can be utilized as stand-alone applications or distributed across a network. These tools, which have broad applications in general scientific visualization, are currently being used to explore and analyze a large library of nuclear reaction rates and visualize results of explosive nucleosynthesis calculations with compact, high quality vector graphics. The facilities for reading and plotting nuclear reaction rates and their components from a network or library permit the user to easily include new rates and compare and adjust current ones. Sophisticated visualization and graphical analysis tools offer the ability to view results in an interactive, scalable vector graphics format, which leads to a dramatic (ten-fold) reduction in visualization file sizes while maintaining high visual quality and interactive control. ORNL Physics Division is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  17. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    SciTech Connect

    Neubauer, J.

    2014-12-01

    The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

  18. MetaNetVar: Pipeline for applying network analysis tools for genomic variants analysis

    PubMed Central

    Moyer, Eric; Hagenauer, Megan; Lesko, Matthew; Francis, Felix; Rodriguez, Oscar; Nagarajan, Vijayaraj; Huser, Vojtech; Busby, Ben

    2016-01-01

    Network analysis can make variant analysis better. There are existing tools like HotNet2 and dmGWAS that can provide various analytical methods. We developed a prototype of a pipeline called MetaNetVar that allows execution of multiple tools. The code is published at https://github.com/NCBI-Hackathons/Network_SNPs. A working prototype is published as an Amazon Machine Image - ami-4510312f . PMID:27158457

  19. An integrated data analysis tool for improving measurements on the MST RFP.

    PubMed

    Reusch, L M; Galante, M E; Franz, P; Johnson, J R; McGarry, M B; Stephens, H D; Den Hartog, D J

    2014-11-01

    Many plasma diagnostics contain complementary information. For example, the double-foil soft x-ray system (SXR) and the Thomson Scattering diagnostic (TS) on the Madison Symmetric Torus both measure electron temperature. The complementary information from these diagnostics can be combined using a systematic method based on integrated data analysis techniques, leading to more accurate and sensitive results. An integrated data analysis tool based on Bayesian probability theory was able to estimate electron temperatures that are consistent with both the SXR and TS diagnostics and more precise than either. A Markov Chain Monte Carlo analysis to increase the flexibility of the tool was implemented and benchmarked against a grid search method. PMID:25430257

  20. A software tool for automatic analysis of selected area diffraction patterns within Digital Micrograph™.

    PubMed

    Wu, C H; Reynolds, W T; Murayama, M

    2012-01-01

    A software package "SADP Tools" is developed as a complementary diffraction pattern analysis tool. The core program, called AutoSADP, is designed to facilitate automated measurements of d-spacing and interplaner angles from TEM selected area diffraction patterns (SADPs) of single crystals. The software uses iterative cross correlations to locate the forward scattered beam position and to find the coordinates of the diffraction spots. The newly developed algorithm is suitable for fully automated analysis and it works well with asymmetric diffraction patterns, off-zone axis patterns, patterns with streaks, and noisy patterns such as Fast Fourier transforms of high-resolution images. The AutoSADP tool runs as a macro for the Digital Micrograph program and can determine d-spacing values and interplanar angles based on the pixel ratio with an accuracy of better than about 2%. PMID:22079497