Science.gov

Sample records for analysis-hydride generation-gas phase

  1. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  2. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  3. Construction of power-generating gas turbine units with the use of efficient thermal schemes

    NASA Astrophysics Data System (ADS)

    Ermolenko, D. I.; Gusev, A. A.; Zhuravlev, Yu. I.; Lesnichenko, A. Ya.; Tsai, S. S.

    2008-08-01

    The design features of GTE-30 and GTE-50 power-generating gas turbines, the basic thermal circuit of a PGU-90 (150) combined-cycle plant, and a layout solution for a cogeneration station built around a gas-turbine unit are considered.

  4. Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Spelbring, Chris; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling. In addition, the next generation gas trap will essentially be a 'dropin" design such that no modifications to the ITCS pump package assembly (PPA) will be required, and the implementation of the new design will not affect changes to the ITCS operational conditions, interfaces, or software. This paper will present the initial membrane module design and development work which has included (1) a trade study among several conceptual designs, (2) performance modeling of a hydrophobic-only design, and (3) small-scale development test data for the hydrophobic-only design. Testing has shown that the hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal.

  5. Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.

  6. Phases and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gitterman, Moshe

    2014-09-01

    In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...

  7. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    SciTech Connect

    Unknown

    2001-12-05

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

  8. Moon Phases

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    When teaching Moon phases, the focus seems to be on the sequence of Moon phases and, in some grade levels, how Moon phases occur. Either focus can sometimes be a challenge, especially without the use of models and observations of the Moon. In this month's column, the author describes some of the lessons that he uses to teach the phases of the Moon…

  9. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  10. Venus Phasing.

    ERIC Educational Resources Information Center

    Riddle, Bob

    1997-01-01

    Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)

  11. Phase Won.

    ERIC Educational Resources Information Center

    Kocher, Erik

    2003-01-01

    Describes ten steps involved in successful renovation of a college recreation center. They are as follows: hire the right architect, be realistic about costs, devise a plan, do a mental walk through, approach the renovation in phases, communicate to users, expect lost revenue and displacement issues, continue to communicate with architects and…

  12. Transition of Bery Phase and Pancharatnam Phase and Phase Change

    NASA Astrophysics Data System (ADS)

    Fu, Guolan; Pan, Hui; Wang, Zisheng

    2016-07-01

    Berry Phase and time-dependent Pancharatnam phase are investigated for nuclear spin polarization in a liquid by a rotation magnetic field, where two-state mixture effect is exactly included in the geometric phases. We find that when the system of nuclear spin polarization is in the unpolarized state, the transitive phenomena of both Berry phase and Pancharatnam phase are taken place. For the polarized system, in contrast, such a transition is not taken place. It is obvious that the transitions of geometric phase correspond to the phase change of physical system.

  13. Unfolding wrapped phase

    NASA Astrophysics Data System (ADS)

    Treviño-Palacios, Carlos Gerardo

    2015-11-01

    Phase unwrapping is the final step in phase extraction methods, which consists of recovering the correct phase from the wrapped phase by removing 2π discontinuities. The difference between the correct phase and the wrapped phase is the phase wrapping map. A new method for phase unwrapping is presented by identifying the phase wrapping map as a sequence of binary valued intermediate wrapping maps and iteratively removing them producing the correct phase by phase-wrapped unfolding. A path-following algorithm is presented to exemplify the phase wrapped unfolding method.

  14. Four-phase differential phase shift resolver

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.; Wallingford, W. M.

    1973-01-01

    Two systems have been developed to resolve phase uncertainty without transmitting reference signals. In both methods signal is impressed on carrier as differential, rather than absolute, phase shift. At the receiver four-phase demodulation and logic process unambiguously resolves differential phase shift of input carrier.

  15. New-generation gas turbine helping brewery lighten energy costs

    SciTech Connect

    Brezonick, M.

    1994-10-01

    In nearly any manufacturing industry, the loss of electrical power can have a severe impact on the manufacturing process. The case of Labatt's Ontario Breweries in particular, the loss of electrical service puts a crimp in the brewmaster's art by forcing the company to dump large quantities of it's Labatt's Blue. To solve the problem, the company has installed a gas-turbine-drive cogeneration system to guard against brownout. The new 501-KB7 was developed from the well-established 501-KB5 turbine. It has improved power output over the 501-KB7 design, up from 4025 to 5225 kw, a higher 13.5:1 pressure ratio, and a 32% increased in airflow (20.4 kg/s). The Labatt's installation which became operational in 1993 reduced the Breweries energy cost because of 501-KB7 turbine's higher energy output. 3 figs.

  16. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  17. Phase Coexistence in a Dynamic Phase Diagram.

    PubMed

    Gentile, Luigi; Coppola, Luigi; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf

    2015-08-01

    Metastability and phase coexistence are important concepts in colloidal science. Typically, the phase diagram of colloidal systems is considered at the equilibrium without the presence of an external field. However, several studies have reported phase transition under mechanical deformation. The reason behind phase coexistence under shear flow is not fully understood. Here, multilamellar vesicle (MLV)-to-sponge (L3 ) and MLV-to-Lα transitions upon increasing temperature are detected using flow small-angle neutron scattering techniques. Coexistence of Lα and MLV phases at 40 °C under shear flow is detected by using flow NMR spectroscopy. The unusual rheological behavior observed by studying the lamellar phase of a non-ionic surfactant is explained using (2) H NMR and diffusion flow NMR spectroscopy with the coexistence of planar lamellar-multilamellar vesicles. Moreover, a dynamic phase diagram over a wide range of temperatures is proposed. PMID:26083451

  18. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    SciTech Connect

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan; Easter, Richard C.; Beranek, Josef; Zaveri, Rahul A.; Fast, Jerome D.

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwind of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.

  19. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  20. Non-equilibrium phases and phase diagrams

    SciTech Connect

    Massalski, T.B.; Rizzo, H.F.

    1988-03-01

    In this paper we consider the degree of usefulness of the phase diagram and the related thermodynamics in predicting and understanding the formation of metastable phases during quenching, or during low-temperature solid-state interdiffusion, or during co-deposition. Recent research has demonstrated that many of such metastable phases are formed because the more stable intermediate phases that are favored thermodynamically are nevertheless bypassed kinetically. The kinetic elimination of intermediate phases provides conditions where a metastable equilibrium can be established at low temperatures between the supercooled liquid and the terminal solid solutions, leading to metastable partitioned two-phase regions. Alternatively, the range of the metastable phases may be governed by the T/sub 0/ principle related to the crossover of the respective free energy curves, or may be controlled mainly by kinetic considerations. Which particular thermodynamic conditions apply appears to depend on the initial form of the phase diagram and the specific technique used. The occurrence of massive transformations also is discussed. 34 refs., 10 figs.

  1. Map-likelihood phasing

    PubMed Central

    Terwilliger, Thomas C.

    2001-01-01

    The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ▶), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2Fo − Fc or σA-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density. PMID:11717488

  2. CrowdPhase: crowdsourcing the phase problem.

    PubMed

    Jorda, Julien; Sawaya, Michael R; Yeates, Todd O

    2014-06-01

    The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as `crowdsourcing'. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of `individuals', each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing. PMID:24914965

  3. CrowdPhase: crowdsourcing the phase problem

    PubMed Central

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-01-01

    The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing. PMID:24914965

  4. Propagating phase interface with intermediate interfacial phase: Phase field approach

    NASA Astrophysics Data System (ADS)

    Momeni, Kasra; Levitas, Valery I.

    2014-05-01

    An advanced three-phase phase field approach (PFA) is suggested for a nonequilibrium phase interface that contains an intermediate phase, in particular, a solid-solid interface with a nanometer-sized intermediate melt (IM). A thermodynamic potential in the polar order parameters is developed that satisfies all thermodynamic equilibrium and stability conditions. The special form of the gradient energy allowed us to include the interaction of two solid-melt interfaces via an intermediate melt and obtain a well-posed problem and mesh-independent solutions. It is proved that for stationary 1D solutions to two Ginzburg-Landau equations for three phases, the local energy at each point is equal to the gradient energy. Simulations are performed for β ↔δ phase transformations (PTs) via IM in an HMX energetic material. The obtained energy IM width dependence is described by generalized force-balance models for short- and long-range interaction forces between interfaces but not far from the melting temperature. A force-balance model is developed that describes phase field results even 100 K below the melting temperature. The effects of the ratios of width and energies of solid-solid and solid-melt interfaces, temperature, and the parameter characterizing interaction of two solid-melt interfaces, on the structure, width, energy of the IM and interface velocity are determined by finite element method. Depending on parameters, the IM may appear by continuous or discontinuous barrierless disordering or via critical nucleus due to thermal fluctuations. The IM may appear during heating and persist during cooling at temperatures well below than it follows from sharp-interface approach. On the other hand, for some parameters when IM is expected, it does not form, producing an IM-free gap. The developed PFA represents a quite general three-phase model and can be extended to other physical phenomena, such as martensitic PTs, surface-induced premelting and PTs, premelting

  5. Simplified phase detector

    NASA Technical Reports Server (NTRS)

    Hershey, L. M.

    1979-01-01

    Tanlick sine-wave phase detector gives dc output voltage nearly proportional to phase difference between oscillator signal and reference signal. Device may be used for systems in which signal-to-noise ratio is high.

  6. Digital quadrature phase detection

    DOEpatents

    Smith, J.A.; Johnson, J.A.

    1992-05-26

    A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.

  7. Digital quadrature phase detection

    DOEpatents

    Smith, James A.; Johnson, John A.

    1992-01-01

    A system for detecting the phase of a frequency of phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2.pi. when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2.pi. when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention.

  8. Phase jitter in a differential phase experiment.

    NASA Technical Reports Server (NTRS)

    Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.

    1973-01-01

    Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.

  9. Perceptions about Moon Phases.

    ERIC Educational Resources Information Center

    Rider, Steven

    2002-01-01

    Presents research on different techniques to determine the level of understanding among middle school students regarding the phases of the moon. Quotes student responses to provide some insight into students' level of understanding of general knowledge about the moon, moon phases, and modeling the phases. Presents implications for teachers. (KHR)

  10. Acute phase reaction and acute phase proteins*

    PubMed Central

    Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J.

    2005-01-01

    A review of the systemic acute phase reaction with major cytokines involved, and the hepatic metabolic changes, negative and positive acute phase proteins (APPs) with function and associated pathology is given. It appears that APPs represent appropriate analytes for assessment of animal health. Whereas they represent non-specific markers as biological effect reactants, they can be used for assessing nutritional deficits and reactive processes, especially when positive and negative acute phase variables are combined in an index. When such acute phase index is applied to separate healthy animals from animals with some disease, much better results are obtained than with single analytes and statistically acceptable results for culling individual animals may be reached. Unfortunately at present no cheap, comprehensive and easy to use system is available for assessing various acute phase proteins in serum or blood samples at the same time. Protein microarray or fluid phase microchip technology may satisfy this need; and permit simultaneous analysis of numerous analytes in the same small volume sample and enable integration of information derived from systemic reactivity and nutrition with disease specific variables. Applying such technology may help to solve health problems in various countries not only in animal husbandry but also in human populations. PMID:16252337

  11. Phase microscope imaging in phase space

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Mehta, Shalin B.

    2016-03-01

    Imaging in a bright field or phase contrast microscope is partially coherent. We have found that the image can be conveniently considered and modeled in terms of the Wigner distribution function (WDF) of the object transmission. The WDF of the object has a simple physical interpretation for the case of a slowly varying object. Basically, the image intensity is the spatial marginal of the spatial convolution of the object WDF with the phase space imager kernel (PSIkernel), a rotated version of the transmission cross-coefficient. The PSI-kernel can be regarded as a partially-coherent generalization of the point spread function. This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.

  12. PHASE DIFFERENTIAL INDICATING CIRCUIT

    DOEpatents

    Kirsten, F.A.

    1962-01-01

    An electronic circuit for totalizing the net phase difference between two alternating current signals is designed which responds to both increasing and decreasing phase changes. A phase comparator provldes an output pulse for each 360 deg of phase difference occurring, there being a negative pulse for phase shtft in one direction and a positive pulse for a phase shift in the opposite direction. A counting circuit utilizing glow discharge tubes receives the negative and positive pulses at a single input terminal and provides a running net total, pulses of one polarity dded and pulses of the opposite polarity being subtracted. The glow discharge tubes may be decaded to increase the total count capacity. (AEC)

  13. Gymnastics in Phase Space

    SciTech Connect

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  14. Noncommutative Anandan quantum phase

    NASA Astrophysics Data System (ADS)

    Passos, E.; Ribeiro, L. R.; Furtado, C.; Nascimento, J. R.

    2007-07-01

    In this work, we study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses permanent magnetic and electric dipole moments, in the presence of external electric and magnetic fields. We use the Foldy-Wouthuysen transformation of the Dirac spinor with a nonminimal coupling to obtain the nonrelativistic limit. In this limit, we study the noncommutative quantum dynamics and obtain the noncommutative Anandan geometric phase. We analyze the situation where the magnetic dipole moment of the particle is zero, and we obtain the noncommutative version of the He-McKellar-Wilkens effect. We demonstrate that this phase in the noncommutative case is a geometric dispersive phase. We also investigate this geometric phase by considering the noncommutativity in the phase space, and the Anandan phase is obtained.

  15. Crystal phase identification

    DOEpatents

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  16. Phase Holograms In PMMA

    NASA Technical Reports Server (NTRS)

    Maker, Paul D.; Muller, Richard E.

    1994-01-01

    Complex, computer-generated phase holograms written in thin films of poly(methyl methacrylate) (PMMA) by process of electron-beam exposure followed by chemical development. Spatial variations of phase delay in holograms quasi-continuous, as distinquished from stepwise as in binary phase holograms made by integrated-circuit fabrication. Holograms more precise than binary holograms. Greater continuity and precision results in decreased scattering loss and increased imaging efficiency.

  17. Holographic magnetic phase transition

    SciTech Connect

    Lifschytz, Gilad; Lippert, Matthew

    2009-09-15

    We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4- and D8-branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

  18. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  19. Phase detection of chaos.

    PubMed

    Follmann, Rosangela; Macau, Elbert E N; Rosa, Epaminondas

    2011-01-01

    A technique, first introduced in the context of pseudoperiodic sound waves, is here applied to the problem of detecting the phase of phase coherent and also phase noncoherent chaotic oscillators. The approach is based on finding sinusoidal fits to segments of the signal, therefore obtaining, for each segment, an appropriate frequency from which a phase can be derived. Central to the method is a judicious choice for the size of a sliding window and for the frequency range, as well as for the window advancing step. The approach is robust against moderate noise levels and three cases are presented for demonstrating the applicability of the method. PMID:21405762

  20. Phase Contrast Imaging

    SciTech Connect

    Menk, Ralf Hendrik

    2008-11-13

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1

  1. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  2. Templated blue phases.

    PubMed

    Ravnik, Miha; Fukuda, Jun-ichi

    2015-11-21

    Cholesteric blue phases of a chiral liquid crystal are interesting examples of self-organised three-dimensional nanostructures formed by soft matter. Recently it was demonstrated that a polymer matrix introduced by photopolymerization inside a bulk blue phase not only stabilises the host blue phase significantly, but also serves as a template for blue phase ordering. We show with numerical modelling that the transfer of the orientational order of the blue phase to the surfaces of the polymer matrix, together with the resulting surface anchoring, can account for the templating behaviour of the polymer matrix inducing the blue phase ordering of an achiral nematic liquid crystal. Furthermore, tailoring the anchoring conditions of the polymer matrix surfaces can bring about orientational ordering different from those of bulk blue phases, including an intertwined complex of the polymer matrix and topological line defects of orientational order. Optical Kerr response of templated blue phases is explored, finding large Kerr constants in the range of K = 2-10 × 10(-9) m V(-2) and notable dependence on the surface anchoring strength. More generally, the presented numerical approach is aimed to clarify the role and actions of templating polymer matrices in complex chiral nematic fluids, and further to help design novel template-based materials from chiral liquid crystals. PMID:26412643

  3. Demonstrating Phase Changes.

    ERIC Educational Resources Information Center

    Rohr, Walter

    1995-01-01

    Presents two experiments that demonstrate phase changes. The first experiment explores phase changes of carbon dioxide using powdered dry ice sealed in a piece of clear plastic tubing. The second experiment demonstrates an equilibrium process in which a crystal grows in equilibrium with its saturated solution. (PVD)

  4. Simulation of phase structures

    SciTech Connect

    Lawson, J.

    1995-04-20

    This memo outlines a procedure developed by the author to extract information from phase measurements and produce a simulated phase structure for use in modeling optical systems, including characteristic optics for the Beamlet and NIF laser systems. The report includes an IDL program listing.

  5. Lunar Phases Planisphere

    ERIC Educational Resources Information Center

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  6. UPVG phase 2 report

    SciTech Connect

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  7. Low distortion automatic phase control circuit. [voltage controlled phase shifter

    NASA Technical Reports Server (NTRS)

    Hauge, G.; Pederson, C. W. (Inventor)

    1974-01-01

    A voltage controlled phase shifter is rendered substantially harmonic distortion free over a large dynamic input range by employing two oppositely poled, equally biased varactor diodes as the voltage controlled elements which adjust the phase shift. Control voltages which affect the bias of both diodes equally are used to adjust the phase shift without increasing distortion. A feedback stabilized phase shifter is rendered substantially frequency independent by employing a phase detector to control the phase shift of the voltage controlled phase shifter.

  8. Source Wavelet Phase Extraction

    NASA Astrophysics Data System (ADS)

    Naghadeh, Diako Hariri; Morley, Christopher Keith

    2016-06-01

    Extraction of propagation wavelet phase from seismic data can be conducted using first, second, third and fourth-order statistics. Three new methods are introduced, which are: (1) Combination of different moments, (2) Windowed continuous wavelet transform and (3) Maximum correlation with cosine function. To compare different methods synthetic data with and without noise were chosen. Results show that first, second and third order statistics are not able to preserve wavelet phase. Kurtosis can preserve propagation wavelet phase but signal-to-noise ratio can affect the extracted phase using this method. So for data set with low signal-to-noise ratio, it will be unstable. Using a combination of different moments to extract the phase is more robust than applying kurtosis. The improvement occurs because zero phase wavelets with reverse polarities have equal maximum kurtosis values hence the correct wavelet polarity cannot be identified. Zero-phase wavelets with reverse polarities have minimum and maximum values for a combination of different-moments method. These properties enable the technique to handle a finite data segment and to choose the correct wavelet polarity. Also, the existence of different moments can decrease sensitivity to outliers. A windowed continuous wavelet transform is more sensitive to signal-to-noise ratio than the combination of different-moments method, also if the scale for the wavelet is incorrect it will encounter with more problems to extract phase. When the effects of frequency bandwidth, signal-to-noise ratio and analyzing window length are considered, the results of extracting phase information from data without and with noise demonstrate that combination of different-moments is superior to the other methods introduced here.

  9. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  10. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    SciTech Connect

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

  11. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  12. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  13. Coaxial phased array antenna

    NASA Astrophysics Data System (ADS)

    Ellis, H., Jr.

    1980-08-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  14. Coaxial phased array antenna

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr. (Inventor)

    1980-01-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  15. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  16. Geometry and Moon Phases.

    ERIC Educational Resources Information Center

    Thompson, Kenneth W.; Harrell, Marvin E.

    1997-01-01

    Describes an activity, designed to comply with the National Science Education Standards, that integrates science and mathematics concepts. Mathematical modeling of the moon's phases is employed to show students the role of mathematics in describing scientific phenomena. (DKM)

  17. Digital Receiver Phase Meter

    NASA Technical Reports Server (NTRS)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  18. Efficient Bayesian Phase Estimation

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Granade, Chris

    2016-07-01

    We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms existing iterative phase estimation algorithms such as Kitaev's method.

  19. Efficient Bayesian Phase Estimation.

    PubMed

    Wiebe, Nathan; Granade, Chris

    2016-07-01

    We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms existing iterative phase estimation algorithms such as Kitaev's method. PMID:27419551

  20. Phased array antenna control

    NASA Technical Reports Server (NTRS)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  1. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  2. Quantum phase of inflation

    NASA Astrophysics Data System (ADS)

    Berera, Arjun; Rangarajan, Raghavan

    2013-02-01

    Inflation models can have an early phase of inflation where the evolution of the inflaton is driven by quantum fluctuations before entering the phase driven by the slope of the scalar field potential. For a Coleman-Weinberg potential this quantum phase lasts 107-8 e-foldings. A long period of fluctuation driven growth of the inflation field can possibly take the inflaton past ϕ*, the value of the field where our current horizon scale crosses the horizon; alternatively, even if the field does not cross ϕ*, the inflaton could have high kinetic energy at the end of this phase. Therefore, we study these issues in the context of different models of inflation. In scenarios where cosmological relevant scales leave during the quantum phase, we obtain large curvature perturbations of O(10). We also apply our results to quadratic curvaton models and to quintessence models. In curvaton models we find that inflation must last longer than required to solve the horizon problem, that the curvaton models are incompatible with small field inflation models, and that there may be too large non-Gaussianity. A new phase of thermal fluctuation driven inflation is proposed, in which during inflation the inflaton evolution is governed by fluctuations from a sustained thermal radiation bath rather than by a scalar field potential.

  3. Electron Holography: phases matter.

    PubMed

    Lichte, Hannes

    2013-06-01

    Essentially, all optics is wave optics, be it with light, X-rays, neutrons or electrons. The information transfer from the object to the image can only be understood in terms of waves given by amplitude and phase. However, phases are difficult to measure: for slowly oscillating waves such as sound or low-frequency electromagnetic waves, phases can be measured directly; for high frequencies this has to be done by heterodyne detection, i.e. superposition with a reference and averaging over time. In optics, this is called interferometry. Because interference is mostly very difficult to achieve, phases have often been considered 'hidden variables' seemingly pulling the strings from backstage, only visible by their action on the image intensity. This was almost the case in conventional Electron Microscopy with the phase differences introduced by an object. However, in the face of the urgent questions from solid state physics and materials science, these phases have to be determined precisely, because they encode the most dominant object properties, such as charge distributions and electromagnetic fields. After more than six decades of very patient advancement, electron interferometry and holography offer unprecedented analytical facilities down to an atomic scale. Akira Tonomura has prominently contributed to the present state. PMID:23620338

  4. Compressed sensing phase retrieval with phase diversity

    NASA Astrophysics Data System (ADS)

    Qin, Shun; Hu, Xinqi; Qin, Qiong

    2014-01-01

    The compressed sensing (CS) theory shows that sparse signal can be reconstructed accurately with some randomly observed measurements that are much fewer than what traditional method requires. Since it takes structure of signals into consideration, it has many advantages in the structured signals process. With CS, measuring can be speeded up and the cost of hardware can be decreased significantly. However, it faces great challenge in the amplitude-only measurement. In this article, we study the magnitude-only compressed sensing phase retrieval (CSPR) problem, and propose a practical recovery algorithm. In our algorithm, we introduce the powerful Hybrid-Input-Output algorithm with phase diversity to make our algorithm robust and efficient. A relaxed ℓ0 norm constrain is also introduced to help PR find a sparse solution with fewer measurements, which is demonstrated to be essential and effective to CSPR. We finally successfully apply it into complex-valued object recovery in THz imaging. The numerical results show that the proposed algorithm can recover the object pretty well with fewer measurements than what PR traditionally requires.

  5. Phased array ghost elimination.

    PubMed

    Kellman, Peter; McVeigh, Elliot R

    2006-05-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme

  6. Combustion 2000: Phase II

    SciTech Connect

    Unknown

    1999-11-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%; NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard); coal providing {ge} 65% of heat input; all solid wastes benign; and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This Phase, Phase 2, had as its initial objective the development of a complete design base for the construction and operation of a HIPPS prototype plant to be constructed in Phase 3. As part of a descoping initiative, the Phase 3 program has been eliminated and work related to the commercial plant design has been ended. The rescoped program retained a program of engineering research and development focusing on high temperature heat exchangers, e.g. HITAF development (Task 2); a rescoped Task 6 that is pertinent to Vision 21 objectives and focuses on advanced cycle analysis and optimization, integration of gas turbines into complex cycles, and repowering designs; and preparation of the Phase 2 Technical Report (Task 8). This rescoped program deleted all subsystem testing (Tasks 3, 4,and 5) and the development of a site-specific engineering design and test plan for the HIPPS prototype plant (Task 7). Work reported herein is from: Task 2.1 HITAF Combustors; Task 2.2 HITAF Air Heaters; and Task 6 HIPPS Commercial Plant Design Update.

  7. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  8. On phase reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Min

    This thesis focuses on the mathematical analysis of the optical phase reconstruction problem. Phase information of light waves has played an important role in many optical applications. However, the phase function of a light wave cannot be measured directly. In 1983, Teague proposed the idea of an intensity senor for measuring phase functions of light waves. It uses an elliptic partial differential equation called the Transport of Intensity Equation (TIE), which relates intensity to the phase function of a light wave. Teague's study was followed by Roddier and others. When intensity decreases to zero at the boundary, the equation has singularity since the diffusion coefficient vanishes. In 1996, Gureyev and Nugent claimed that no boundary conditions are needed for getting a unique solution of the TIE in this singular case. We present in this thesis the theoretical analysis of the necessity of boundary conditions for solving the TIE. A hybrid theoretical-numerical boundary condition is also derived for solving the TIE numerically in the case of vanishing intensity at the boundary. Numerical tests and optical simulations over discs verified the potency of this theoretical-numerical hybrid boundary condition and the algorithm. Another approach studied is the Weighted Least Action Principle (WLAP), which is proposed by Rubinstein and Wolansky in the year 2004. The WLAP states a variational principle for finding the light rays mapping between two planes using the intensity profiles on the planes, and it writes the problem of phase reconstruction in the functional form. Minimizing the associated functional, we obtain the ray mapping of the light wave in question. The phase function can be derived from the optimized ray mapping. A numerical algorithm was designed to carry out the process. Simulations and tests are reported to show the feasibility of the methods proposed.

  9. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  10. EUCLIDES: first phase completed!

    NASA Astrophysics Data System (ADS)

    Benschop, Jos P.; Dinger, Udo; Ockwell, David C.

    2000-07-01

    The Extreme UV Concept Lithography Development System (EUCLIDES) program headed by ASM Lithography (ASML), partnered with Carl Zeiss and Oxford Instruments is evaluating EUV lithography for its viability at resolutions of 70 nm and below. From August 1998 through February 2000 the first phase was done. In this phase, the core technologies necessary to demonstrate the technical solutions for the list of possible EUV lithography 'showstoppers' have been developed. This includes: (1) Mirror substrates, (2) High reflectivity multi- layer coatings, (3) Resist outgassing reduction schemes, (4) Vacuum stages. A synchrotron source design was developed to compare synchrotron sources with plasma sources. The consortium also investigated the total system architecture to make sure the system concept meets the requirements of the semiconductor industry at an acceptable cost of ownership. In this paper, an overview of the program objectives is given, followed by an overview of highlights obtained by the various program partners and subcontractors throughout the first phase. Finally, the European partner's plan for the next phase is shown (working in close collaboration with other international consortia). This next phase will eventually lead to EUVL production tools.

  11. Phasing rectangular apertures.

    PubMed

    Baker, K L; Homoelle, D; Utterback, E; Jones, S M

    2009-10-26

    Several techniques have been developed to phase apertures in the context of astronomical telescopes with segmented mirrors. Phasing multiple apertures, however, is important in a wide range of optical applications. The application of primary interest in this paper is the phasing of multiple short pulse laser beams for fast ignition fusion experiments. In this paper analytic expressions are derived for parameters such as the far-field distribution, a line-integrated form of the far-field distribution that could be fit to measured data, enclosed energy or energy-in-a-bucket and center-of-mass that can then be used to phase two rectangular apertures. Experimental data is taken with a MEMS device to simulate the two apertures and comparisons are made between the analytic parameters and those derived from the measurements. Two methods, fitting the measured far-field distribution to the theoretical distribution and measuring the ensquared energy in the far-field, produced overall phase variance between the 100 measurements of less than 0.005 rad(2) or an RMS displacement of less than 12 nm. PMID:19997175

  12. Two-phase flow

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1986-01-01

    An experimental program to characterize the spray from candidate nozzles for icing-cloud simulation is discussed. One canidate nozzle, which is currently used for icing research, has been characterized for flow and drop size. The median-volume diameter (MVD) from this air-assist nozzle is compared with correlations in the literature. The new experimental spray facility is discussed, and the drop-size instruments are discussed in detail. Since there is no absolute standard for drop-size measurements and there are other limitations, such as drop -size range and velocity range, several instruments are used and results are compared. A two-phase model was developed at Pennsylvania State University. The model uses the k-epsilon model of turbulence in the continous phase. Three methods for treating the discrete phase are used: (1) a locally homogeneous flow (LHF) model, (2) a deterministic separated flow (DSF) model, and (3) a stochastic separated flow (SSF) model. In the LHF model both phases have the same velocity and temperature at each point. The DSF model provides interphase transport but ignores the effects of turbulent fluctuations. In the SSF model the drops interact with turbulent eddies whose properties are determined by the k-epsilon turbulence model. The two-phase flow model has been extended to include the effects of evaporation and combustion.

  13. Single-phase to three-phase power conversion interface

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Wang, Yung-Shan; Jou, Hurng-Liahng; Lu, Wei-Tso

    2016-07-01

    This study proposes a single-phase to three-phase power conversion interface which converts the power from a single-phase utility to three-phase power for a three-phase load. The proposed single-phase to three-phase power conversion interface comprises a bridge-type switch set, a set of three-phase inductors, a transformer set and a set of three-phase capacitors. A current-mode control controls the switching of bridge-type switch set, to generate a set of nonzero-sequence (NZS) currents and a set of zero-sequence (ZS) currents. The transformer set is used to decouple the NZS currents and the ZS currents. The NZS currents are used to generate a high-quality three-phase voltage that supplies power to a three-phase load. The ZS currents flow to the single-phase utility so that the utility current is sinusoidal and in phase with the utility voltage. Accordingly, only a bridge-type switch set is used in the single-phase to three-phase power conversion interface to simply the power circuit. A prototype is developed and tested to verify the performance of the proposed single-phase to three-phase power conversion interface.

  14. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  15. Controllable tomography phase microscopy

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-03-01

    Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample's refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.

  16. Phase insensitive acoustoelectric transducer

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1978-01-01

    Conventional ultrasonic transducers transform acoustic waves into electrical signals preserving phase and amplitude information. When the acoustic wavelength is significantly smaller than the transducer diameter, severe phase modulation of the electrical signal can occur. This results in anomalous attenuation measurements, background noise in nondestructive evaluation, and in general complicates data interpretation. This article describes and evaluates a phase-insensitive transducer based on the acoustoelectric effect. Theory of operation of the acoustoelectric transducer (AET) is discussed, and some optimization procedures outlined for its use. Directivity data for the AET are contrasted with a conventional piezoelectric transducer. In addition, transmission scanning data of phantom flaws in metal plates are presented for both transducers and demonstrate a significant improvement in resolution with the AET.

  17. Electroweak Phase Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Wayne

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles, and completes at a temperature where the order parameter, _ {T}, is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially sensitive function of T. In very minimal extensions of the standard model it is quite easy to increase T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal extensions of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state = 246 GeV unstable. The requirement that the state = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field. Semi-classical reasoning suggests that, when a particle receives a contribution to its mass from the vacuum expectation value of a scalar, under certain conditions, the ground state of particle number one contains a 'dimple' or shallow scalar field condensate around the particle. We argue that this is not the case. A careful analysis, taking into account quantum mechanics, shows that the semi-classical approximation is a poor one. We find that there are no energetically favored one-particle dimple solutions for perturbative couplings.

  18. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  19. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  20. Compressive phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Maia, F.; MacDowell, A.; Marchesini, S.; Padmore, H. A.; Parkinson, D. Y.; Pien, J.; Schirotzek, A.; Yang, C.

    2010-08-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  1. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  2. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  3. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  4. Compressive Phase Contrast Tomography

    SciTech Connect

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  5. GAS PHASE EXPOSURE HISTORY DERIVED FROM MATERIAL PHASE CONCENTRATION PROFILES USING SOLID PHASE MICRO-EXTRACTION

    EPA Science Inventory

    EPA Identifier: F8P31059
    Title: Gas Phase Exposure History Derived from Material Phase Concentration Profiles Using Solid Phase Micro-Extraction
    Fellow (Principal Investigator): Jonathan Lewis McKinney
    Institution: University of Missouri - ...

  6. Phase interpolation circuits using frequency multiplication for phased arrays

    NASA Technical Reports Server (NTRS)

    Caron, P. R.; Mailloux, R. J.

    1970-01-01

    Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system.

  7. Suppressing phase errors from vibration in phase-shifting interferometry

    SciTech Connect

    Deck, Leslie L.

    2009-07-10

    A general method for reducing the influence of vibrations in phase-shifting interferometry corrects the surface phase map through a spectral analysis of a ''phase-error pattern,'' a plot of the interference intensity versus the measured phase, for each phase-shifted image. The method is computationally fast, applicable to any phase-shifting algorithm and interferometer geometry, has few restrictions on surface shape, and unlike spatial Fourier methods, high density spatial carrier fringes are not required, although at least a fringe of phase departure is recommended. Over a 100x reduction in vibrationally induced surface distortion is achieved for small amplitude vibrations on real data.

  8. Soviet phase conjugation research

    SciTech Connect

    Fisher, R.A.; Boyd, R.W.; Klein, M.B.; Kurnit, N.A.; Milonni, P.W.; Rockwell, D.A.; Yeh, P.

    1990-09-01

    Optical phase conjugation is a Soviet-discovered technique that applies nonlinear optical effects to automatically manipulate laser beams while automatically correcting for arbitrary distortions. Optical phase conjugation can aid in providing improved configurations for average-power and high-peak-power laser systems; it can provide nearly automatic pointing and tracking laser systems; and it can provide many other practical applications (both military and nonmilitary). Here it is important to note that 100- to 1000-watt systems are also of significant importance, not just ultra-high-energy or high-power lasers designed to do significant structural damage at significant distances. One class of phase conjugation techniques, namely, stimulated Brillouin scattering, along with its four-wave mixing counterpart, Brillioun-enhanced four-wave mixing, has been the hallmark of the Soviet effort -- with nearly all contributions (both theoretical and experimental) arising from the Soviet Union. Both stimulated Brillouin scattering and Brillouin-enhanced four-wave mixing arise from the same electrostrictive nonlinearity, where the presence of a gradient in the optical intensity produces a force on the fluid. Scientists in the United States started studying optical phase conjugation approximately five years after Soviet scientists, and initially concentrated on areas quite different from those of Soviet emphasis.

  9. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  10. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  11. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  12. Temperature stabilized phase detector

    NASA Technical Reports Server (NTRS)

    Lo, Y.

    1981-01-01

    The construction, tests, and performance of a temperature stabilized phase detector are discussed. It has a frequency stability of 5 parts in 10 to the 16th power at 100 MHz, with a temperature step of 20 C (15 to 35 C).

  13. Apodized Phase Mask Coronagraphs

    NASA Astrophysics Data System (ADS)

    Carlotti, Alexis

    2013-01-01

    Among the optical instruments proposed to detect and characterize exoplanets, phase masks coronagraphs offer very small inner working angles. Designed for off-axis telescopes, their performance is greatly reduced when used with centrally obstructed apertures such as those of the Palomar telescope, the very large telescope, or the James Webb space telescope. However, a clear circular aperture is not the only pupil shape for which a phase mask coronagraph can work properly. In fact, for a given centrally obstructed aperture, we show that it is possible to compute optimal apodizers that help achieve stellar extinction levels similar to those obtained in the ideal case of an off-axis telescope. Trade-offs exist between these levels, the transmission of the apodizer, and the area covered by the Lyot stop. We detail the Fourier optics formalism that makes these optimizations possible, as well as a few examples of shaped pupils. Some are designed for a four-quadrants phase mask, and some others for a vortex phase mask. We also offer a comparison with a coronagraph solely composed of a shaped pupil.

  14. SSIP Phase I Roadmap

    ERIC Educational Resources Information Center

    Vinh, Megan; Lucas, Anne; Taylor, Cornelia; Kelley, Grace; Kasprzak, Christina

    2014-01-01

    This roadmap provides a description of the activities involved in the development of the State Systemic Improvement Plan (SSIP) (SPP/APR Indicators C11 and B17) due to the Office of Special Education Programs (OSEP) on April 1, 2015. The roadmap is intended to support states with completing Phase I of the SSIP process. This document provides…

  15. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  16. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  17. Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Bikkannavar, Siddarayappa; Cohen, David; Green, Joseph J.; Lou, John; Ohara, Catherine; Redding, David; Shi, Fang

    2008-01-01

    Adaptive MGS Phase Retrieval software uses the Modified Gerchberg-Saxton (MGS) algorithm, an image-based sensing method that can turn any focal plane science instrument into a wavefront sensor, avoiding the need to use external metrology equipment. Knowledge of the wavefront enables intelligent control of active optical systems.

  18. Fun with Phase Changes

    ERIC Educational Resources Information Center

    Purvis, David

    2006-01-01

    A lot of good elementary science involves studying solids, liquids, and gases, and some inquiry-based activities that are easy to set up and do. In this article, the author presents activities pertaining to simple phase change. Using water as the example, these activities introduce upper-grade students to the idea of the arrangement of molecules…

  19. Semiconductor Laser Phased Array

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1985-01-01

    Oscillations synchronized and modulated individually for beam steering. Phased array of GaAs infrared lasers put out powerful electronically-steerable coherent beam. Fabricated as integrated circuit on GaAs chip, new device particularly suited to optical communications, optical data processing and optical detection and ranging systems.

  20. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  1. Mentoring Phases and Outcomes.

    ERIC Educational Resources Information Center

    Chao, Georgia T.

    1997-01-01

    Data from 178 proteges supported Kram's model of mentoring phases: initiation, cultivation, separation, and redefinition. Data from 82 current and 69 former proteges were compared to those from 93 who were never mentored. Mentees had better career outcomes, organizational socialization, and job satisfaction; those not mentored had slightly higher…

  2. Introduction to phasing

    PubMed Central

    Taylor, Garry L.

    2010-01-01

    When collecting X-ray diffraction data from a crystal, we measure the intensities of the diffracted waves scattered from a series of planes that we can imagine slicing through the crystal in all directions. From these intensities we derive the amplitudes of the scattered waves, but in the experiment we lose the phase information; that is, how we offset these waves when we add them together to reconstruct an image of our molecule. This is generally known as the ‘phase problem’. We can only derive the phases from some knowledge of the molecular structure. In small-molecule crystallography, some basic assumptions about atomicity give rise to relationships between the amplitudes from which phase information can be extracted. In protein crystallography, these ab initio methods can only be used in the rare cases in which there are data to at least 1.2 Å resolution. For the majority of cases in protein crystallography phases are derived either by using the atomic coordinates of a structurally similar protein (molecular replacement) or by finding the positions of heavy atoms that are intrinsic to the protein or that have been added (methods such as MIR, MIRAS, SIR, SIRAS, MAD, SAD or com­binations of these). The pioneering work of Perutz, Kendrew, Blow, Crick and others developed the methods of isomorphous replacement: adding electron-dense atoms to the protein without disturbing the protein structure. Nowadays, methods from small-molecule crystallography can be used to find the heavy-atom substructure and the phases for the whole protein can be bootstrapped from this prior knowledge. More recently, improved X-ray sources, detectors and software have led to the routine use of anomalous scattering to obtain phase information from either incorporated selenium or intrinsic sulfurs. In the best cases, only a single set of X-ray data (SAD) is required to provide the positions of the anomalous scatters, which together with density-modification procedures can reveal

  3. Phase Operator and Phase State in Thermo Field Dynamics

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Jiang, Nian-Quan

    We extend the Susskind-Glogower phase operator and phase state in quantum optics to thermo field dynamics (TFD). Based on the thermo entangled state representation, we introduce thermo excitation and de-excitation operators with which the phase operator and phase state in TFD can be constructed. The phase state treated as a limiting case of a new SU(1, 1) coherent states is also exhibited.

  4. Phase II Final Report

    SciTech Connect

    Schuknecht, Nate; White, David; Hoste, Graeme

    2014-09-11

    The SkyTrough DSP will advance the state-of-the-art in parabolic troughs for utility applications, with a larger aperture, higher operating temperature, and lower cost. The goal of this project was to develop a parabolic trough collector that enables solar electricity generation in the 2020 marketplace for a 216MWe nameplate baseload power plant. This plant requires an LCOE of 9¢/kWhe, given a capacity factor of 75%, a fossil fuel limit of 15%, a fossil fuel cost of $6.75/MMBtu, $25.00/kWht thermal storage cost, and a domestic installation corresponding to Daggett, CA. The result of our optimization was a trough design of larger aperture and operating temperature than has been fielded in large, utility scale parabolic trough applications: 7.6m width x 150m SCA length (1,118m2 aperture), with four 90mm diameter × 4.7m receivers per mirror module and an operating temperature of 500°C. The results from physical modeling in the System Advisory Model indicate that, for a capacity factor of 75%: The LCOE will be 8.87¢/kWhe. SkyFuel examined the design of almost every parabolic trough component from a perspective of load and performance at aperture areas from 500 to 2,900m2. Aperture-dependent design was combined with fixed quotations for similar parts from the commercialized SkyTrough product, and established an installed cost of $130/m2 in 2020. This project was conducted in two phases. Phase I was a preliminary design, culminating in an optimum trough size and further improvement of an advanced polymeric reflective material. This phase was completed in October of 2011. Phase II has been the detailed engineering design and component testing, which culminated in the fabrication and testing of a single mirror module. Phase II is complete, and this document presents a summary of the comprehensive work.

  5. Multicomponent three-phase equilibria

    SciTech Connect

    Ho, C.K.

    1995-06-01

    This paper presents the relations that describe thermodynamic equilibrium in a three-phase system. Multiple components, including air, water, and oil components, are considered in three phases: (1) aqueous, (2) oil, and (3) gas. Primary variables are specified for each of seven possible phase combinations. These primary variables are then used to determine the necessary secondary variables to completely describe the system. Criteria are also developed to check the stability of each phase configuration and determine possible transitions from one phase configuration to another phase configuration via phase appearances and disappearances.

  6. Noisy quantum phase communication channels

    NASA Astrophysics Data System (ADS)

    Teklu, Berihu; Trapani, Jacopo; Olivares, Stefano; Paris, Matteo G. A.

    2015-06-01

    We address quantum phase channels, i.e communication schemes where information is encoded in the phase-shift imposed to a given signal, and analyze their performances in the presence of phase diffusion. We evaluate mutual information for coherent and phase-coherent signals, and for both ideal and realistic phase receivers. We show that coherent signals offer better performances than phase-coherent ones, and that realistic phase channels are effective ones in the relevant regime of low energy and large alphabets.

  7. Phase-field modeling of multi-phase solidification

    NASA Astrophysics Data System (ADS)

    Nestler, Britta; Wheeler, Adam A.

    2002-08-01

    A phase-field model for a general class of multi-phase metallic alloys is now proposed which describes both multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  8. Phase calibration generator

    NASA Technical Reports Server (NTRS)

    Sigman, E. H.

    1988-01-01

    A phase calibration system was developed for the Deep Space Stations to generate reference microwave comb tones which are mixed in with signals received by the antenna. These reference tones are used to remove drifts of the station's receiving system from the detected data. This phase calibration system includes a cable stabilizer which transfers a 20 MHz reference signal from the control room to the antenna cone. The cable stabilizer compensates for delay changes in the long cable which connects its control room subassembly to its antenna cone subassembly in such a way that the 20 MHz is transferred to the cone with no significant degradation of the hydrogen maser atomic clock stability. The 20 MHz reference is used by the comb generator and is also available for use as a reference for receiver LO's in the cone.

  9. Phase-Measuring System

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1986-01-01

    System developed and used at Langley Research Center measures phase between two signals of same frequency or between two signals, one of which is harmonic multiple of other. Simple and inexpensive device combines digital and analog components to give accurate phase measurements. One signal at frequency f fed to pulse shaper, produces negative pulse at time t4. Pulse applied to control input of sample-and-hold module 1. Second signal, at frequency nf, fed to zero-crossover amplifier, producing square wave at time t. Signal drives first one-shot producing narrow negative pulse at t1. Signal then drives second one-shot producing narrow positive pulse at time t2. This pulse used to turn on solid-state switch and reset integrator circuit to zero.

  10. High power phase shifter

    SciTech Connect

    Foster, B.; Gonin, I.; Khabiboulline, T.; Makarov, A.; Solyak, N.; Terechkine, I.; Wildman, D.; /Fermilab

    2005-05-01

    One of the approaches to power distribution system of a superconducting proton linac under discussion at FNAL requires development of a fast-action, megawatt-range phase shifter. Using a couple of this kind of devices with a waveguide hybrid junction can allow independent control of phase and amplitude of RF power at the input of each superconducting cavity, which will result in significant saving in number of klystrons and modulators required for the accelerator. A prototype of a waveguide version of the shifter that uses Yttrium-Iron Garnet (YIG) blocks was developed and tested. This report presents design concept of the device, and main results of simulation and proof-of-principle tests.

  11. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  12. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  13. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  14. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  15. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  16. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  17. Measurement by phase severance

    SciTech Connect

    Noyes, H.P.

    1987-03-01

    It is claimed that the measurement process is more accurately described by ''quasi-local phase severance'' than by ''wave function collapse''. The approach starts from the observation that the usual route to quantum mechanics starting from the Hamilton-Jacobi equations throws away half the degrees of freedom, namely, the classical initial state parameters. To overcome this difficulty, the full set of Hamilton-Jacobi equations is interpreted as operator equations acting on a state vector. The measurement theory presented is based on the conventional S-matrix boundary condition of N/sub A/ free particles in the distant past and N/sub B/ free particles in the distant future and taking the usual free particle wave functions, multiplied by phase factors.

  18. Emergence and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Sikkema, Arnold

    2006-05-01

    Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.

  19. Phase space quantum mechanics

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Domański, Ziemowit

    2012-02-01

    This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic

  20. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  1. Solid phase extraction membrane

    SciTech Connect

    Carlson, Kurt C; Langer, Roger L

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  2. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  3. Photoinduced phase transitions.

    PubMed

    Bennemann, K H

    2011-02-23

    Optically induced ultrafast electronic excitations with sufficiently long lifetimes may cause strong effects on phase transitions like structural and nonmetal→metal ones and on supercooling, supersaturation, etc. Examples are the transitions diamond→graphite, graphite→graphene, non-metal→metal, solid→liquid and vapor→liquid, solid. Photoinduced formation of graphene and water condensation of saturated or supersaturated vapor due to increased bonding amongst water molecules are of particular interest. These nonequilibrium transitions are an ultrafast response, on a few hundred fs time scale, to the fast low to large energy electronic excitations. The energy of the photons is converted into electronic energy via electronic excitations changing the cohesive energy. This changes the chemical potential controlling the phase transition. In view of the advances in laser optics photon induced transitions are expected to become an active area in nonequilibrium physics and phase transition dynamics. Conservation laws like energy or angular momentum conservation control the time during which the transitions occur. Since the photon induced effects result from weakening or strengthening of the bonding between the atoms or molecules transitions like solid/liquid, etc can be shifted in both directions. Photoinduced transitions will be discussed from a unified point of view. PMID:21411879

  4. Phases, phase equilibria, and phase rules in low-dimensional systems

    SciTech Connect

    Frolov, T.; Mishin, Y.

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.

  5. Phases, phase equilibria, and phase rules in low-dimensional systems.

    PubMed

    Frolov, T; Mishin, Y

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality. PMID:26233156

  6. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  7. Monoclinic phases arising across thermal inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Gu, Yijia; Xue, Fei; Lei, Shiming; Lummen, Tom T. A.; Wang, Jianjun; Gopalan, Venkatraman; Chen, Long-Qing

    2014-07-01

    Thermotropic phase boundaries (TPBs), as thermal analogs of morphotropic phase boundaries (MPBs), are associated with the thermal inter-ferroelectric phase transitions. Similar to an MPB, a TPB exhibits a characteristically flattened energy profile which favors polarization rotation, thus giving rise to a structurally bridging low-symmetry phase. We report on the kinetic process of thermal inter-ferroelectric phase transitions in BaTiO3 and KNbO3 using the phase-field method. The domain structures are found to play key roles in stabilizing the monoclinic phase. In simple domain structures, the monoclinic phase is a transient phase and cannot be stabilized into its neighboring phase regimes. However, by introducing structural inhomogeneity (orthogonal in-plane domain twins), we found that the monoclinic phase can be stabilized over a range of over 100 K across the transition. As a result, the piezoelectric properties are enhanced due to the stabilized monoclinic phase. In addition to the emergence of new piezoelectric components with monoclinic symmetry, most of the original components present in the tetragonal symmetry also show substantial enhancement with the rotation of polarization.

  8. VRA Modeling, phase 1

    NASA Technical Reports Server (NTRS)

    Kindt, Louis M.; Mullins, Michael E.; Hand, David W.; Kline, Andrew A.

    1995-01-01

    The destruction of organic contaminants in waste water for closed systems, such as that of Space Station, is crucial due to the need for recycling the waste water. A co-current upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. The objective of this study is to develop a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate. To validate this model, a bench scale reactor has been tested at Michigan Technological University at elevated pressures (50-83 psig,) and a temperature range of 200 to 290 F. Feeds consisting of five dilute solutions of ethanol (approx. 10 ppm), chlorobenzene (approx. 20 ppb), formaldehyde (approx. 100 ppb), dimethyl sulfoxide (DMSO approx. 300 ppb), and urea (approx. 20 ppm) in water were tested individually with an oxygen mass flow rate of 0.009 lb/h. The results from these individual tests were used to develop the kinetic parameter inputs necessary for the computer model. The computer simulated results are compared to the experimental data obtained for all 5 components run in a mixture on the differential test column for a range of reactor contact times.

  9. Quantum phase magnification

    NASA Astrophysics Data System (ADS)

    Hosten, O.; Krishnakumar, R.; Engelsen, N. J.; Kasevich, M. A.

    2016-06-01

    Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit.

  10. FNAS phase partitions

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M.

    1993-01-01

    Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.

  11. Athena: Assessment Phase Activities

    NASA Astrophysics Data System (ADS)

    Lumb, David; Ayre, Mark

    2015-09-01

    The Athena mission concept has been proposed by the community in response to science themes of the Hot and Energetic Universe. Unlike other, competitive, mission selection exercises this "Large" class observatory mission has essentially been pre-selected. Nevertheless it has to be demonstrated that Athena meets the programmatic constraints of 1Bn euro cost cap, and a readiness level appropriate for formal mission adoption by the end 2019. This should be confirmed through a Phase A study conducted with two parallel industry activities. We describe the technical and programmatic content of these and latest progress in space and ground segment definition.

  12. Autonomous Phase Retrieval Calibration

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Chien, Steve A.; Castano, Rebecca; Gaines, Daniel M.; Doubleday, Joshua R.; Schoolcraft, Josua B.; Oyake, Amalaye; Vaughs, Ashton G.; Torgerson, Jordan L.

    2011-01-01

    The Palomar Adaptive Optics System actively corrects for changing aberrations in light due to atmospheric turbulence. However, the underlying internal static error is unknown and uncorrected by this process. The dedicated wavefront sensor device necessarily lies along a different path than the science camera, and, therefore, doesn't measure the true errors along the path leading to the final detected imagery. This is a standard problem in adaptive optics (AO) called "non-common path error." The Autonomous Phase Retrieval Calibration (APRC) software suite performs automated sensing and correction iterations to calibrate the Palomar AO system to levels that were previously unreachable.

  13. Quantum phase magnification.

    PubMed

    Hosten, O; Krishnakumar, R; Engelsen, N J; Kasevich, M A

    2016-06-24

    Quantum metrology exploits entangled states of particles to improve sensing precision beyond the limit achievable with uncorrelated particles. All previous methods required detection noise levels below this standard quantum limit to realize the benefits of the intrinsic sensitivity provided by these states. We experimentally demonstrate a widely applicable method for entanglement-enhanced measurements without low-noise detection. The method involves an intermediate quantum phase magnification step that eases implementation complexity. We used it to perform squeezed-state metrology 8 decibels below the standard quantum limit with a detection system that has a noise floor 10 decibels above the standard quantum limit. PMID:27339982

  14. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  15. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  16. Frequency discriminator/phase detector

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  17. Microcellular foams via phase separation

    SciTech Connect

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm/sup 3/ and cell sizes of 30..mu..m or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure.

  18. Stationary phase analysis of generalized cubic phase mask wavefront coding

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Dong, Liquan; Zhao, Yuejin; Hui, Mei; Jia, Wei

    2013-07-01

    The modified generalized cubic phase mask (GCPM) has recently been applied in wavefront coding systems including infrared imaging and microscopy. In this paper, the stationary phase method is employed to analyze the GCPM characteristics. The SPA of the modulation transfer function (MTF) under misfocus aberration is derived for a wavefront coding system with a GCPM. The approximation corresponds with the Fast Fourier Transform (FFT) approach. On the basis of this approximation, we compare the characteristics of GCPM and cubic phase masks (CPM). A GCPM design approach based on stationary phase approximation is presented which helps to determine the initial parameter of phase mask, significantly decreasing the computational time required for numerical simulation.

  19. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  20. Process for phase separation

    DOEpatents

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  1. Nonlinear phased array imaging

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  2. A cosmic superfluid phase

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    The universe may have undergone a superfluid-like phase during its evolution, resulting from the injection of nontopological charge into the spontaneously broken vacuum. In the presence of vortices this charge is identified with angular momentum. This leads to turbulent domains on the scale of the correlation length. By restoring the symmetry at low temperatures, the vortices dissociate and push the charges to the boundaries of these domains. The model can be scaled (phenomenologically) to very low energies, it can be incorporated in a late time phase transition and form large scale structure in the boundary layers of the correlation volumes. The novel feature of the model lies in the fact that the dark matter is endowed with coherent motion. The possibilities of identifying this flow around superfluid vortices with the observed large scale bulk motion is discussed. If this identification is possible, then the definite prediction can be made that a more extended map of peculiar velocities would have to reveal large scale circulations in the flow pattern.

  3. Phase calibration target for quantitative phase imaging with ptychography.

    PubMed

    Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J

    2016-04-01

    Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers. PMID:27137054

  4. Phase Detector For Rectangular Waveforms

    NASA Technical Reports Server (NTRS)

    Dischert, Robert A.; Walter, James M.

    1993-01-01

    Phase detector for use with phase-locked-loops, servocontrol, and other electronic circuits designed to avoid disadvantages of other phase detectors. Used with both intermittent and continuous input signals. Circuit offers several advantages; reference signals continuous, burst of few pulses, or single pulse. Circuit "coasts" in absence of reference signal. Generates no steady-state output waveform at lock which makes filtering easier.

  5. Phase-change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  6. Phase detector for three-phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.

  7. Phase coexistence far from equilibrium

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald

    2016-04-01

    Investigation of simple far-from-equilibrium systems exhibiting phase separation leads to the conclusion that phase coexistence is not well defined in this context. This is because the properties of the coexisting nonequilibrium systems depend on how they are placed in contact, as verified in the driven lattice gas with attractive interactions, and in the two-temperature lattice gas, under (a) weak global exchange between uniform systems, and (b) phase-separated (nonuniform) systems. Thus, far from equilibrium, the notions of universality of phase coexistence (i.e., independence of how systems exchange particles and/or energy), and of phases with intrinsic properties (independent of their environment) are lost.

  8. Phase chaos in coupled oscillators.

    PubMed

    Popovych, Oleksandr V; Maistrenko, Yuri L; Tass, Peter A

    2005-06-01

    A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems. PMID:16089804

  9. Phase chaos in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Popovych, Oleksandr V.; Maistrenko, Yuri L.; Tass, Peter A.

    2005-06-01

    A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rössler systems.

  10. Geometric phase shifting digital holography.

    PubMed

    Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko

    2016-06-01

    A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method. PMID:27244436

  11. Phasing a segmented telescope

    NASA Astrophysics Data System (ADS)

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N.

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors.

  12. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  13. Options Study - Phase II

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  14. Phasing a segmented telescope.

    PubMed

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors. PMID:25768631

  15. Infrared metamaterial phase holograms

    NASA Astrophysics Data System (ADS)

    Larouche, Stéphane; Tsai, Yu-Ju; Tyler, Talmage; Jokerst, Nan M.; Smith, David R.

    2012-05-01

    As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 μm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components.

  16. Time domain phase measuring apparatus

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S. (Inventor)

    1978-01-01

    The phase and/or period stability of a device is determined by connecting the device in one orthogonal arm of a phase detector having a mixer. In the other arm is an adjustable, variable phase shift device. The output of the mixer is fed through an active low pass filter to derive a DC voltage indicative of the phase shift. The variable phase device is adjusted so that the DC voltage will nullify the phase shift of the tested device under normal conditions. The DC voltage level is converted into a time interval indicative of the phase change of the tested device by determining when the level equals the amplitude of a low frequency ramp voltage. The interval between adjacent equality points can be measured or the period between a reference point on the ramp voltage and the quality be measured.

  17. Phase Coarsening in Thin Films

    NASA Astrophysics Data System (ADS)

    Wang, K. G.; Glicksman, M. E.

    2015-08-01

    Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a `screened' phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.

  18. Simulation of Mission Phases

    NASA Technical Reports Server (NTRS)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  19. Phase-shifting point diffraction interferometer phase grating designs

    DOEpatents

    Naulleau, Patrick

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  20. Phased Array Feeds

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  1. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  2. Impulsive phase transport

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Bely-Dubau, Francoise; Brown, John C.; Dulk, George A.; Emslie, A. Gordon; Enome, Shinzo; Gabriel, Alan H.; Kundu, Mukul R.; Melrose, Donald; Neidig, Donald F.

    1986-01-01

    The transport of nonthermal electrons is explored. The thick-target electron beam model, in which electrons are presumed to be accelerated in the corona and typically thermalized primarily in the chromosphere and photosphere, is supported by observations throughout the electromagnetic spectrum. At the highest energies, the anisotropy of gamma-ray emission above 10 MeV clearly indicates that these photons are emitted by anisotropically-directed particles. The timing of this high-energy gamma-radiation with respect to lower-energy hard X-radiation implies that the energetic particles have short life-times. For collisional energy loss, this means that they are stopped in the chromosphere or below. Stereoscopic (two-spacecraft) observations at hard X-ray energies (up to 350 keV) imply that these lower-energy (but certainly nonthermal) electrons are also stopped deep in the chromosphere. Hard X-ray images show that, in spatially resolved flares whose radiation consists of impulsive bursts, the impulsive phase starts with X-radiation that comes mostly from the foot-points of coronal loops whose coronal component is outlined by microwaves.

  3. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  4. Phase contrast without phase plates and phase rings--optical solutions for improved imaging of phase structures.

    PubMed

    Piper, Timm; Piper, Jörg

    2013-10-01

    Using the optical methods described, phase specimens can be observed with a modified light microscope in enhanced clarity, purified from typical artifacts which are apparent in standard phase contrast illumination. In particular, haloing and shade-off are absent, lateral and vertical resolution are maximized and the image quality remains constant even in problematic preparations which cannot be well examined in normal phase contrast, such as specimens beyond a critical thickness or covered by obliquely situated cover slips. The background brightness and thus the range of contrast can be continuously modulated and specimens can be illuminated in concentric-peripheral, axial or paraxial light. Additional contrast effects can be achieved by spectral color separation. Normal glass or mirror lenses can be used; they do not need to be fitted with a phase plate or a phase ring. The methods described should be of general interest for all disciplines using phase microscopy. PMID:23913620

  5. Phase-Oriented Gear Systems

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    2007-01-01

    Phase-oriented gear systems are differential planetary transmissions in which each planet gear has two sets of unequal numbers of teeth indexed at prescribed relative angles (phases). The figure illustrates an application of the phase-oriented gearing concept to a relatively simple speed-reducing differential planetary transmission that includes a sun gear, an idler gear, three identical planet gears, a ground internal ring gear, and an output internal ring gear. Typically, the ground internal ring gear and output internal ring gear have different numbers of teeth, giving rise to a progressive and periodic phase shift between the corresponding pairs of teeth engaged by each successive planet gear. To accommodate this phase shift, it is necessary to introduce a compensating phase shift between the ground-gear-engaging and output-gearengaging sections of each planet gear. This is done by individually orienting each planet gear

  6. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  7. Oscillatory phase shapes syllable perception.

    PubMed

    Ten Oever, Sanne; Sack, Alexander T

    2015-12-29

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  8. Theory of antiferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Tolédano, Pierre; Guennou, Mael

    2016-07-01

    At variance with structural ferroic phase transitions which give rise to macroscopic tensors coupled to macroscopic fields, criteria defining antiferroelectric (AFE) phase transitions are still under discussion due to the absence of specific symmetry properties characterizing their existence. They are recognized by the proximity of a ferroelectric (FE) phase induced under applied electric field, with a double hysteresis loop relating the induced polarization to the electric field and a typical anomaly of the dielectric permittivity. Here, we show that there exist indeed symmetry criteria defining AFE transitions. They relate the local symmetry of the polar crystallographic sites emerging at an AFE phase transition with the macroscopic symmetry of the AFE phase. The dielectric properties of AFE transitions are deduced from a Landau theoretical model in which ferroelectric and ferrielectric phases are shown to stabilize as the result of specific symmetry-allowed couplings of the AFE order parameter with the field-induced polarization.

  9. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  10. Digitally controlled distributed phase shifter

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1992-12-31

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one of two discrete bias voltages. The application of the discrete bias voltages change the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  11. Phase structure of soliton molecules

    SciTech Connect

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F.

    2007-06-15

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  12. Phase structure of soliton molecules

    NASA Astrophysics Data System (ADS)

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Böhm, M.; Mitschke, F.

    2007-06-01

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E -fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  13. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  14. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  15. Topological phases of eternal inflation

    SciTech Connect

    Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard

    2010-06-15

    ''Eternal inflation'' is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki's classification, these phases can be characterized by the topology of the percolating structures in the inflating, 'white', region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a 'Census Taker', a hypothetical observer inside the noninflating, 'black', region. We discuss three phases that we call 'black island', 'tubular', and 'white island'. The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an 'aborted' phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.

  16. Logistics planning for phased programs.

    NASA Technical Reports Server (NTRS)

    Cook, W. H.

    1973-01-01

    It is pointed out that the proper and early integration of logistics planning into the phased program planning process will drastically reduce these logistics costs. Phased project planning is a phased approach to the planning, approval, and conduct of major research and development activity. A progressive build-up of knowledge of all aspects of the program is provided. Elements of logistics are discussed together with aspects of integrated logistics support, logistics program planning, and logistics activities for phased programs. Continuing logistics support can only be assured if there is a comprehensive sequential listing of all logistics activities tied to the program schedule and a real-time inventory of assets.

  17. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  18. Phase characteristics of electromagnetic stirring

    SciTech Connect

    Fujisaki, Keisuke; Ueyama, Takatsugu; Takahashi, Keiichi; Satoh, Shouji

    1997-09-01

    Electromagnetic stirring is used at billet molds as well as at slab mold, to get high quality steel at continuous casting in steel making plant. In order to get the same electromagnetic force in each billet mold and thus the same quality, phase characteristics of electromagnetic stirring is investigated. From the calculation result, it is found that the relative phase at which the difference of the electromagnetic torque in each mold becomes the smallest is 0 or 240 deg. To apply the phase characteristics of the EMS to the quality control, the authors propose the dynamic phase control system by two inverters to get the high quality in the surface crack.

  19. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  20. Method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  1. Invalid phase values removal method for absolute phase recovery.

    PubMed

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-01-10

    A novel approach is presented for more effectively removing invalid phase values in absolute phase recovery. The approach is based on a detailed study involving the types and cases of invalid phase values. Meanwhile, some commonalities of the existing removal algorithms also are thoroughly analyzed. It is well known that rough absolute phase and fringe order maps can very easily be obtained by temporal phase unwrapping techniques. After carefully analyzing the components and fringe order distribution of the rough fringe order map, the proposed method chiefly adopts an entirely new strategy to refine a pure fringe order map. The strategy consists of three parts: (1) the square of an image gradient, (2) subregion areas of the binary image, and (3) image decomposition and composition. In combination with the pure fringe order map and a removal criterion, the invalid phase values can be identified and filtered out from the rough absolute phase map. This new strategy not only gets rid of the limitations of traditional removal methods but also has a two-fold function. The paper also offers different metrics from the experiment to evaluate the quality of the final absolute phase. In contrast with other removal methods, experimental results have verified the feasibility, effectiveness, and superiority of the proposed method. PMID:26835776

  2. Quantitative Phase Microscopy: how to make phase data meaningful.

    PubMed

    Goldstein, Goldie; Creath, Katherine

    2014-03-12

    The continued development of hardware and associated image processing techniques for quantitative phase microscopy has allowed superior phase data to be acquired that readily shows dynamic optical volume changes and enables particle tracking. Recent efforts have focused on tying phase data and associated metrics to cell morphology. One challenge in measuring biological objects using interferometrically obtained phase information is achieving consistent phase unwrapping and -dimensions and correct for temporal discrepanices using a temporal unwrapping procedure. The residual background shape due to mean value fluctuations and residual tilts can be removed automatically using a simple object characterization algorithm. Once the phase data are processed consistently, it is then possible to characterize biological samples such as myocytes and myoblasts in terms of their size, texture and optical volume and track those features dynamically. By observing optical volume dynamically it is possible to determine the presence of objects such as vesicles within myoblasts even when they are co-located with other objects. Quantitative phase microscopy provides a label-free mechanism to characterize living cells and their morphology in dynamic environments, however it is critical to connect the measured phase to important biological function for this measurement modality to prove useful to a broader scientific community. In order to do so, results must be highly consistent and require little to no user manipulation to achieve high quality nynerical results that can be combined with other imaging modalities. PMID:25309099

  3. PHASE CHANGE LIQUIDS

    SciTech Connect

    Susan S. Sorini; John F. Schabron

    2006-03-01

    Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

  4. Adaptive Phase Delay Generator

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence

    2013-01-01

    There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.

  5. Topology in Ordered Phases

    NASA Astrophysics Data System (ADS)

    Tanda, Satoshi; Matsuyama, Toyoki; Oda, Migaku; Asano, Yasuhiro; Yakubo, Kousuke

    2006-08-01

    .]. Nanofibers of hydrogen storage alloy / I. Saita ... [et al.]. Synthesis of stable icosahedral quasicrystals in Zn-Sc based alloys and their magnetic properties / S. Kashimoto and T. Ishimasa. One-armed spiral wave excited by eam pressure in accretion disks in Be/X-Ray binaries / K. Hayasaki and A. T. Okazaki -- IV. Topological defects and excitations. Topological excitations in the ground state of charge density wave systems / P. Monceau. Soliton transport in nanoscale charge-density-wave systems / K. Inagaki, T. Toshima and S. Tanda. Topological defects in triplet superconductors UPt3, Sr[symbol]RuO[symbol], etc. / K. Maki ... [et al.]. Microscopic structure of vortices in type II superconductors / K. Machida ... [et al.]. Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors / J. Mesot. Energy dissipation at nano-scale topological defects of high-Tc superconductors: microwave study / A. Maeda. Pressure induced topological phase transition in the heavy Fermion compound CeAl[symbol] / H. Miyagawa ... [et al.]. Explanation for the unusual orientation of LSCO square vortex lattice in terms of nodal superconductivity / M. Oda. Local electronic states in Bi[symbol]Sr[symbol]CaCu[symbol]O[symbol] / A. Hashimoto ... [et al.] -- V. Topology in quantum phenomena. Topological vortex formation in a Bose-Einstein condensate of alkali-metal atoms / M. Nakahara. Quantum phase transition of [symbol]He confined in nano-porous media / K. Shirahama, K. Yamamoto and Y. Shibayama. A new mean-field theory for Bose-Einstein condensates / T. Kita. Spin current in topological cristals / Y. Asano. Antiferromagnetic defects in non-magnetic hidden order of the heavy-electron system URu[symbol]Si[symbol] / H. Amitsuka, K. Tenya and M. Yokoyama. Magnetic-field dependences of thermodynamic quantities in the vortex state of Type-II superconductors / K. Watanabe, T. Kita and M. Arai. Three-magnon-mediated nuclear spin relaxation in quantum ferrimagnets of topological

  6. Phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  7. Phase-locked loop with controlled phase slippage

    DOEpatents

    Mestha, L.K.

    1994-03-29

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency is described. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem. 10 figures.

  8. Phase-locked loop with controlled phase slippage

    SciTech Connect

    Mestha, Lingappa K.

    1994-01-01

    A system for synchronizing a first subsystem controlled by a changing frequency sweeping from a first frequency to a second frequency, with a second subsystem operating at a steady state second frequency. Trip plan parameters are calculated in advance to determine the phase relationship between the frequencies of the first subsystem and second subsystem in order to obtain synchronism at the end of the frequency sweep of the first subsystem. During the time in which the frequency of the first subsystem is sweeping from the first frequency to the second frequency, the phase locked system compares the actual phase difference with the trip plan phase difference and incrementally changes the sweep frequency in a manner so that phase lock is achieved when the first subsystem reaches a frequency substantially identical to that of the second subsystem.

  9. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  10. USArray Regional Phase Analysis

    NASA Astrophysics Data System (ADS)

    Buehler, J. S.; Shearer, P. M.

    2014-12-01

    The regional Pn and Sn phases, which are typically described as headwaves that propagate in the uppermost mantle, are sensitive to heterogeneities in the mantle lid and complement other seismic studies with poorer vertical resolution at this depth. We have experimented with a variety of approaches to image the velocity structure and anisotropy in the western U.S., starting with separate Pn and Sn time-term tomographies, but also localized cross-correlation and stacking approaches that benefit from the regular USArray station arrangement. Later we combined the data sets for joint Pn-Sn inversions and the resulting Vp/Vs maps provide further insight into the nature of the seismic anomalies. Now that USArray has reached the east coast, we are updating our models to include the cumulative station footprint. The sparser source distribution in the eastern U.S., and the resulting longer ray paths, provide new challenges and justify the inclusion of additional parameters that account for the velocity gradient in the mantle lid. Our results show generally higher Pn velocities in the eastern U.S., but we observe patches of lower velocities around the New Madrid seismic zone and below the eastern Appalachians. We find that the Pn fast axes generally do not agree with SKS splitting orientations, suggesting significant vertical changes in anisotropy in the upper mantle. For example, the circular pattern of the fast polarization direction of SKS in the western U.S. is much less pronounced in the Pn results, and in the eastern U.S. the dominant Pn fast direction is approximately north-south, whereas the SKS fast polarizations are oriented roughly parallel to the absolute plate motion direction. Since Pn and Sn travel through the crust, they can provide additional information on crustal thickness. In several regions our results and estimates from receiver function studies are inconsistent. For example, beneath the Colorado Plateau our crustal thickness estimates are about 35-40 km

  11. Three phase downhole separator process

    DOEpatents

    Cognata, Louis John

    2008-06-24

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  12. 78 FR 33911 - Phased Retirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ...The Office of Personnel Management (OPM) is proposing to implement phased retirement, a new human resources tool that allows full-time employees to work a part-time schedule while beginning to draw retirement benefits. Section 100121 of the ``Moving Ahead for Progress in the 21st Century Act,'' or ``MAP-21,'' authorizes phased retirement under the Civil Service Retirement System and the......

  13. Four-quadrant phase detector

    NASA Technical Reports Server (NTRS)

    Manus, E. A.; Wiley, H. P.

    1977-01-01

    Phase detection circuit functions over full 360 degrees covering all four quadrants, and gives linear output that is proportional to phase difference. In addition, its output has single polarity; thus it is compatible with logic circuitry without need for additional processing.

  14. Phase Transitions for Suspension Flows

    NASA Astrophysics Data System (ADS)

    Iommi, Godofredo; Jordan, Thomas

    2013-06-01

    This paper is devoted to studying the thermodynamic formalism for suspension flows defined over countable alphabets. We are mostly interested in the regularity properties of the pressure function. We establish conditions for the pressure function to be real analytic or to exhibit a phase transition. We also construct an example of a potential for which the pressure has countably many phase transitions.

  15. Phase unwrapping via graph cuts.

    PubMed

    Bioucas-Dias, José M; Valadão, Gonçalo

    2007-03-01

    Phase unwrapping is the inference of absolute phase from modulo-2pi phase. This paper introduces a new energy minimization framework for phase unwrapping. The considered objective functions are first-order Markov random fields. We provide an exact energy minimization algorithm, whenever the corresponding clique potentials are convex, namely for the phase unwrapping classical Lp norm, with p > or = 1. Its complexity is KT (n, 3n), where K is the length of the absolute phase domain measured in 2pi units and T (n, m) is the complexity of a max-flow computation in a graph with n nodes and m edges. For nonconvex clique potentials, often used owing to their discontinuity preserving ability, we face an NP-hard problem for which we devise an approximate solution. Both algorithms solve integer optimization problems by computing a sequence of binary optimizations, each one solved by graph cut techniques. Accordingly, we name the two algorithms PUMA, for phase unwrappping max-flow/min-cut. A set of experimental results illustrates the effectiveness of the proposed approach and its competitiveness in comparison with state-of-the-art phase unwrapping algorithms. PMID:17357730

  16. Phased Retirement: The European Experience.

    ERIC Educational Resources Information Center

    Swank, Constance

    This report provides United States corporate and union policymakers with practical information on one alternative work pattern for older employees--phased retirement--from European colleagues who already have implemented or negotiated specific phasing programs. An introduction provides details on the collection of information from companies in…

  17. Phase width reduction project summary

    SciTech Connect

    Clark, D.J.; Xie, Z.Q.; McMahan, M. A.

    1999-11-01

    The purpose of the phase width reduction project, 1993--96, was to reduce the phase width of the 88-Inch Cyclotron beam on target from 5--10 ns to 1--2 ns for certain experiments, such as Gammasphere, which use time-of-flight identification. Since reducing the phase width also reduces beam intensity, tuning should be done to also optimize the transmission. The Multi-turn Collimator slits in the cyclotron center region were used to collimate the early turns radially, thus reducing the phase width from about 5 ns to 1--2 ns FWHM for a Gammasphere beam. The effect of the slits on phase width was verified with a Fast Faraday Cup and with particle and gamma-ray detectors in the external beamline.

  18. Phase-sensitive flow cytometer

    SciTech Connect

    Steinkamp, J.A.

    1992-12-31

    This report describes phase-sensitive flow cytometer (FCM) which provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  19. Phase comparator apparatus and method

    DOEpatents

    Coffield, Frederick E.

    1987-01-01

    The phase change to be measured is multiply measured at artificially incred and decreased values and then averaged to result in greater accuracy. Delayed versions of the reference and input signals are compared in dual channels to the undelayed input signal and the undelayed reference signal, respectively. Resulting time-lengthened and time-shortened phase measurement signals from the dual comparator channels are algebraically combined to provide an analog output signal having an average magnitude accurately proportional to the true phase difference between the undelayed reference and the undelayed input signals. Increased linearity/reproducibility results where relatively high frequency signals (e.g., up to 70 MHz or more) are to be phase compared. An optional voltage clamp on the comparator channel outputs further improves linearity/reproducibility where very small phase differences are being measured.

  20. Two-phase nickel aluminides

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Vedula, K.; Shabel, B. S.

    1987-01-01

    The as-extruded microstructures of two alloys in the two phase field consisting of Ni3Al and NiAl in the Ni-Al phase diagram exhibit fibrous morphology and consist of Ll(2) Ni3Al and B2 NiAl. These as-extruded microstructures can be modified dramatically by suitable heat treatments. Martensite plus NiAl or martensite plus Ni3Al microstructures are obtained upon quenching from 1523 K. Aging of martensite at 873 K results in the recently identified phase Ni5Al, whereas aging at 1123 K reverts the microstructures to Ni3Al plus NiAl. The microstructures with predominantly martensite of Ni5Al3 phases are brittle in tension at room temperature. The latter microstructure does not deform plastically even in compression at room temperature. However, some promise of room temperature tensile ductility is indicated by the Ni3Al plus NiAl phase mixtures.

  1. Phase stable RF transport system

    DOEpatents

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  2. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  3. Phase-sensitive flow cytometer

    DOEpatents

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  4. Phase Contrast Imaging in Neonates

    PubMed Central

    Zhong, Kai; Ernst, Thomas; Buchthal, Steve; Speck, Oliver; Anderson, Lynn; Chang, Linda

    2011-01-01

    Magnetic resonance phase images can yield superior gray and white matter contrast compared to conventional magnitude images. However, the underlying contrast mechanisms are not yet fully understood. Previous studies have been limited to high field acquisitions in adult volunteers and patients. In this study, phase imaging in the neonatal brain is demonstrated for the first time. Compared to adults, phase differences between gray and white matter are significantly reduced but not inverted in neonates with little myelination and iron deposits in their brains. The remaining phase difference between the neonatal and adult brains may be due to different macromolecule concentration in the unmyelinated brain of the neonates and thus different frequency due to water macromolecule exchange. Additionally, the susceptibility contrast from brain myelination can be separately studied in neonates during brain development. Therefore, magnetic resonance phase imaging is suggested as a novel tool to study neonatal brain development and pathologies in neonates. PMID:21232619

  5. Planar infrared binary phase reflectarray.

    PubMed

    Ginn, James; Lail, Brian; Alda, Javier; Boreman, Glenn

    2008-04-15

    A reflective, binary phase reflectarray is demonstrated in the infrared, at a wavelength of 10.6 microm. The unique aspect of this work, at this frequency band, is that the specific desired phase shift is achieved using an array of subwavelength metallic patches on top of a ground-plane-backed dielectric stand-off layer. This is an alternative to the usual method of constructing a reflective Fresnel zone plate by means of a given thickness of dielectric. This initial demonstration of the reflectarray approach at infrared is significant in that there is inherent flexibility to create a range of phase shifts by varying the dimensions of the patches. This will allow for a multilevel phase distribution, or even a continuous variation of phase, across an optical surface with only two-dimensional lithography, avoiding the need for dielectric height variations. PMID:18414530

  6. Differentiation method for phase recovery

    NASA Astrophysics Data System (ADS)

    Özcan, Meriç

    2015-03-01

    Here we consider a derivative based method for phase recovery and demonstrate a numerical method that can be described as differentiate and cross multiply operation to obtain the phase gradient. This method uses quadrature phase data that is in sine and cosine form, which is a natural outcome many interferometric measurements including that of digital holographic reconstruction. Since the differentiation is performed on trigonometric functions which are discrete, it is shown that the method of differentiation and the sampling rate are important considerations especially for the noise corrupt signals. The method is initially developed for 1D phase signals, and then later extended to 2D. Noise performance of the method is also investigated, and it is shown that for extremely noisy signals the method can be adapted to an iteration routine which recovers the phase successfully. We present simulations and the experimental results which show the validity of the approach.

  7. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  8. {sup 129}I Interlaboratory comparison: phase I and phase II

    SciTech Connect

    Caffee, M W; Roberts, M L

    1999-09-30

    An interlaboratory comparison exercise for {sup 129}I was organized and conducted. Nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, 11 samples were measured. The suite of samples contained both synthetic ''standard type'' materials (i.e., AgI) and environmental materials. The isotopic {sup 129}I/{sup 127}I ratios of the samples varied from 10{sup {minus}8} to 10{sup {minus}14}. In this phase, each laboratory was responsible for its own chemical preparation of the samples. In Phase I, the {sup 129}I AMS measurements for prepared AgI were in good agreement. However, large discrepancies were seen in {sup 129}I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I {sup 129}I intercomparison, a subsequent study was conducted. In Phase II of the {sup 129}I intercomparison, three separate laboratories prepared AgI from two environmental samples (IAEA 375 soil and maples leaves). Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then re-distributed to the participating {sup 129}I AMS facilities and {sup 129}I/{sup 127}I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  9. Quantitative phase imaging using grating-based quadrature phase interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei

    2007-02-01

    In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.

  10. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  11. Inhomogeneous phase shifting: an algorithm for nonconstant phase displacements

    SciTech Connect

    Tellez-Quinones, Alejandro; Malacara-Doblado, Daniel

    2010-11-10

    In this work, we have developed a different algorithm than the classical one on phase-shifting interferometry. These algorithms typically use constant or homogeneous phase displacements and they can be quite accurate and insensitive to detuning, taking appropriate weight factors in the formula to recover the wrapped phase. However, these algorithms have not been considered with variable or inhomogeneous displacements. We have generalized these formulas and obtained some expressions for an implementation with variable displacements and ways to get partially insensitive algorithms with respect to these arbitrary error shifts.

  12. Double random phase encoding using phase reservation and compression

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2014-02-01

    In recent years, various studies have been conducted to illustrate the vulnerability of double random phase encoding (DRPE). In this paper, we propose a novel method via phase reservation and compression to enhance DRPE security. Only a compressed phase distribution is available in the CCD plane, and the amplitude component is not available or requested for optical decryption. Since only noise-like distributions can be obtained by using the correct security keys during optical decryption, a nonlinear correlation algorithm is further applied for authenticating the decrypted image. It is demonstrated that valid conditions for attack algorithms are broken and high security can be achieved for the DRPE system.

  13. Numerical Studies of Topological phases

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott

    The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30

  14. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect

    Megevand, Ariel; Sanchez, Alejandro D.

    2008-03-15

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  15. Phase shift estimation in interferograms with unknown phase step

    NASA Astrophysics Data System (ADS)

    Dalmau, Oscar; Rivera, Mariano; Gonzalez, Adonai

    2016-08-01

    We first present two closed formulas for computing the phase shift in interferograms with unknown phase step. These formulas obtain theoretically the exact phase step in fringe pattern without noise and only require the information in two pixels of the image. The previous formulas allows us to define a functional that yields an estimate of the phase step in interferograms corrupted by noise. In the experiment we use the standard Least Square formulation which also yields a closed formula, although the general formulation admits a robust potential. We provide two possible implementations of our approach, one in which the sites can be randomly selected and the other in which we can scan the whole image. The experiments show that the proposed algorithm presents the best results compared with state of the art algorithms.

  16. Phase unwrapping using discontinuity optimization

    SciTech Connect

    Flynn, T.J.

    1998-03-01

    In SAR interferometry, the periodicity of the phase must be removed using two-dimensional phase unwrapping. The goal of the procedure is to find a smooth surface in which large spatial phase differences, called discontinuities, are restricted to places where their presence is reasonable. The pioneering work of Goldstein et al. identified points of local unwrap inconsistency called residues, which must be connected by discontinuities. This paper presents an overview of recent work that treats phase unwrapping as a discrete optimization problem with the constraint that residues must be connected. Several algorithms use heuristic methods to reduce the total number of discontinuities. Constantini has introduced the weighted sum of discontinuity magnitudes as a criterion of unwrap error and shown how algorithms from optimization theory are used to minimize it. Pixels of low quality are given low weight to guide discontinuities away from smooth, high-quality regions. This method is generally robust, but if noise is severe it underestimates the steepness of slopes and the heights of peaks. This problem is mitigated by subtracting (modulo 2{pi}) a smooth estimate of the unwrapped phase from the data, then unwrapping the resulting residual phase. The unwrapped residual is added to the smooth estimate to produce the final unwrapped phase. The estimate can be computed by lowpass filtering of an existing unwrapped phase; this makes possible an iterative algorithm in which the result of each iteration provides the estimate for the next. An example illustrates the results of optimal discontinuity placement and the improvement from unwrapping of the residual phase.

  17. Phase transitions in disordered systems

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz Y.

    Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.

  18. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  19. Laparoscopic Radiofrequency Fibroid Ablation: Phase II and Phase III Results

    PubMed Central

    Pemueller, Rodolfo Robles; Garza Leal, José Gerardo; Abbott, Karen R.; Falls, Janice L.; Macer, James

    2014-01-01

    Background and Objectives: To review phase II and phase III treatments of symptomatic uterine fibroids (myomas) using laparoscopic radiofrequency volumetric thermal ablation (RFVTA). Methods: We performed a retrospective, multicenter clinical analysis of 206 consecutive cases of ultrasound-guided laparoscopic RFVTA of symptomatic myomas conducted on an outpatient basis under two phase II studies at 2 sites (n = 69) and one phase III study at 11 sites (n = 137). Descriptive and exploratory, general trend, and matched-pair analyses were applied. Results: From baseline to 12 months in the phase II study, the mean transformed symptom severity scores improved from 53.9 to 8.8 (P < .001) (n = 57), health-related quality-of-life scores improved from 48.5 to 92.0 (P < .001) (n = 57), and mean uterine volume decreased from 204.4 cm3 to 151.4 cm3 (P = .008) (n = 58). Patients missed a median of 4 days of work (range, 2–10 days). The rate of possible device-related adverse events was 1.4% (1 of 69). In the phase III study, approximately 98% of patients were assessed at 12 months, and their transformed symptom severity scores, health-related quality-of-life scores, mean decrease in uterine volume, and mean menstrual bleeding reduction were also significant. Patients in phase III missed a median of 5 days of work (range, 1–29 days). The rate of periprocedural device-related adverse events was 3.5% (5 of 137). Despite the enrollment requirement for patients in both phases to have completed childbearing, 4 pregnancies occurred within the first year after treatment. Conclusions: RFVTA does not require any uterine incisions and provides a uterine-sparing procedure with rapid recovery, significant reduction in uterine size, significant reduction or elimination of myoma symptoms, and significant improvement in quality of life. PMID:24960480

  20. Two-phase/two-phase heat exchanger analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    A capillary pumped loop (CPL) system with a condenser linked to a double two-phase heat exchanger is analyzed numerically to simulate the performance of the system from different starting conditions to a steady state condition based on a simplified model. Results of the investigation are compared with those of similar apparatus available in the Space Station applications of the CPL system with a double two-phase heat exchanger.

  1. Dynamic phase-shifting photoelasticity.

    PubMed

    Asundi, A; Tong, L; Boay, C G

    2001-08-01

    The application of phase-shifting photoelasticity to a real-time dynamic event involves simultaneous recording of the four phase-shifted images. Here an instrument, believed to be novel, is developed and described for this purpose. Use of a Multispec Imager is introduced into digital photoelasticity for the first time to our knowledge. This device enables splitting the optical energy of an object into four identical paths, thus permitting recording of the required four phase-shifted images. Experimental demonstration is provided for validation. PMID:18360395

  2. Berry's phase in rotating systems

    NASA Astrophysics Data System (ADS)

    Cui, Shi-Min; Xu, Hong-Hua

    1991-09-01

    It is shown that, in addition to the Aharonov-Bohm-like phase studied previously [M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984); Y. Aharakov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987); C. H. Tsai and D. Neilson, Phys. Rev. A 37, 619 (1988)], Berry's topological phase also appears for purely mechanical reasons in systems rotating at slowly-time-varying angular velocity about a fixed center. A possible experiment to probe this manifestation of Berry's phase is discussed.

  3. SNMR pulse sequence phase cycling

    DOEpatents

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  4. Machine learning phases of matter

    NASA Astrophysics Data System (ADS)

    Carrasquilla, Juan; Stoudenmire, Miles; Melko, Roger

    We show how the technology that allows automatic teller machines read hand-written digits in cheques can be used to encode and recognize phases of matter and phase transitions in many-body systems. In particular, we analyze the (quasi-)order-disorder transitions in the classical Ising and XY models. Furthermore, we successfully use machine learning to study classical Z2 gauge theories that have important technological application in the coming wave of quantum information technologies and whose phase transitions have no conventional order parameter.

  5. Phase-locked laser array

    NASA Technical Reports Server (NTRS)

    Botez, Dan (Inventor)

    1987-01-01

    A phase-locked laser array comprises a body of semiconductor material having means for defining a plurality of substantially parallel lasing zones which are spaced an effective distance apart so that the modes of the adjacent lasing zones are phase-locked to one another. One of the array electrodes comprises a plurality of electrical contacts to the body between the lasing zones. These contacts provide an enhanced current density profile and thus an increase in the gain in the regions between the lasing zones so that zero degree phase-shift operation between adjacent lasing zones is achievable.

  6. Berry phase in nonlinear systems

    SciTech Connect

    Liu, J.; Fu, L. B.

    2010-05-15

    The Berry phase acquired by an eigenstate that experienced a nonlinear adiabatic evolution is investigated thoroughly. The circuit integral of the Berry connection of the instantaneous eigenstate cannot account for the adiabatic geometric phase, while the Bogoliubov excitations around the eigenstates are found to be accumulated during the nonlinear adiabatic evolution and contribute a finite phase of geometric nature. A two-mode model is used to illustrate our theory. Our theory is applicable to Bose-Einstein condensate, nonlinear light propagation, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics.

  7. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  8. Multichannel Phase and Power Detector

    NASA Technical Reports Server (NTRS)

    Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy

    2006-01-01

    An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals

  9. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  10. 129I interlaboratory comparison: phase I and phase II results

    SciTech Connect

    Roberts, M.I.; Caffee, M.W.; Proctor, I.D.

    1997-07-01

    An interlaboratory comparison exercise for 129I was organized and conducted. A total of nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, a suite of 11 samples were measured. The suite of samples contained both synthetic `standard type` materials (i.e., AgI) and environmental materials. The isotopic 129I/127I ratios of the samples varied from 10`-8 to 10`-14. In this phase, each laboratory was responsible for its own chemical preparation of the environmental samples. The 129I AMS measurements obtained at different laboratories for prepared AgI were in good agreement. However, large discrepancies were seen in 129I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I intercomparison, a subsequent study was conducted. In Phase II of the comparison, AgI was prepared from two environmental samples (IAEA 375 soil and maples leaves) by three separate laboratories. Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then redistributed to the participating 129I AMS facilities and 129I/127I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  11. Experimental study of phase separation in dividing two phase flow

    SciTech Connect

    Qian Yong; Yang Zhilin; Xu Jijun

    1996-12-31

    Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separation phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.

  12. In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe–Cr–Ni alloys

    DOE PAGESBeta

    Tan, L.; Yang, Y.

    2015-11-01

    For an in situ phase transformation of the Chi (χ) phase to the Laves phase we observed in a Fe–Cr–Ni–Mo model alloy. The morphology, composition, and crystal structure of the χ and Laves phases, and their orientation relationship with the matrix austenite phase were investigated. The resulted Laves phase has larger lattice mismatch with the matrix phase than the χ phase, leading to the increase of local strain fields and the formation of dislocations. Moreover, this finding is helpful to understand the precipitation behavior of the intermetallic phases in the Mo-containing austenitic stainless steels.

  13. Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade

    NASA Technical Reports Server (NTRS)

    Giel, Paul W.; Bunker, Ronald S.; VanFossen, G. James; Boyle, Robert J.

    2000-01-01

    Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 129 deg of nominal turning and an axial chord of 137 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the design point of 628,000, -20%, +20%, and +40%. Three ideal exit pressure ratios were examined including the design point of 1.378, -10%, and +10%. Inlet incidence angles of 0 deg and +/-2 deg were also examined. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.

  14. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  15. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  16. Hadron-Quark Phase Transition

    SciTech Connect

    Cavagnoli, Rafael; Menezes, Debora P.; Providencia, Constanca

    2009-06-03

    In the present work we study the hadron-quarkphase transition with boson condensation by investigating the binodal surface and extending it to finite temperature in order to mimic the QCD phase diagram.

  17. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  18. Phase Change Material Heat Exchangers

    NASA Video Gallery

    NASA’s Game Changing Development is taking on a technologydevelopment and demonstration effort to design, build, and test the next generation of Phase Change Material Heat Exchangers (PCM HXs) on ...

  19. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  20. Gas-phase chemical dynamics

    SciTech Connect

    Weston, R.E. Jr.; Sears, T.J.; Preses, J.M.

    1993-12-01

    Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

  1. NHEXAS PHASE I MARYLAND STUDY

    EPA Science Inventory

    The National Human Exposure Assessment Survey (NHEXAS) is a federal interagency research effort coordinated by the Environmental Protection Agency (EPA), Office of Research and Development (ORD). Phase I consists of demonstration/scoping studies using probability-based sampling ...

  2. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  3. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  4. Fly Photoreceptors Encode Phase Congruency.

    PubMed

    Friederich, Uwe; Billings, Stephen A; Hardie, Roger C; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  5. NHEXAS PHASE I ARIZONA STUDY

    EPA Science Inventory

    The National Human Exposure Assessment Survey (NHEXAS) is a federal interagency research effort coordinated by the Environmental Protection Agency (EPA), Office of Research and Development (ORD). The objective of the NHEXAS Phase I Arizona study was to determine the distribution...

  6. Trends in phased array development

    NASA Astrophysics Data System (ADS)

    Schell, A. C.

    1986-03-01

    In the past 15 years, several outstanding phased arrays have been taken into service for functions involving defense applications. It is pointed out, however, that the impact of phased array technology on radar and communications antennas has been minor in comparison to the impact of solid-state technology on the other major subsystem, the signal processor. This situation is mainly related to cost considerations, and the scale of the commercial market involved. Attention is given to details regarding the economics of phased arrays, a possible key to improved solutions to phased array construction and operation, the employment of the techniques of photolithography in the fabrication of a transversely-developed array, the need for manufacturing techniques to incorporate magnetic or electroacoustic control devices into the array, problems of heat generation, small mm-wave arrays, questions of reliability, and integrated antennas.

  7. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  8. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  9. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  10. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    PubMed

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. PMID:26367463

  11. Phase relationship in three-phase composites which include a void phase

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Nelson, J. B.

    1976-01-01

    The paper shows the relationship among polymer, particles, and voids in a three-phase composite and how some of the properties of a composite may be changed by changing the proportions of the phases. The three-phase composite is an aggregate of microspheres bonded together with a small amount of polymer which may not form a continuous matrix. The void space (third phase) is obtained by limiting the amount of polymer which is mixed with the microspheres. A ternary phase diagram is used to show the proportional relationship among the three phases, with each apex representing a volume fraction of unity for a constituent while the side opposite the apex represents a volume fraction of zero for that constituent. The vertical dimension represents some composite property such as density or strength. The effect of composition on composite properties is shown by plotting them on a binary phase diagram which represents a perpendicular plane coincident with the 0.60 volume fraction microsphere line.

  12. Phased arrays 1985 symposium: Proceedings

    NASA Astrophysics Data System (ADS)

    Steyskal, H. P.

    1985-08-01

    The Phased Arrays '85 Symposium, sponsored by the Rome Air Development Center, the MITRE Corporation, and the University of Massachusetts, was held at the MITRE Corporation 15 to 18 October and reviewed the state-of-the-art of phased array antenna systems and of the technology for next generation systems. This report contains the full papers which were presented with clearance for unlimited distribution.

  13. Interfacial phase-change memory.

    PubMed

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-08-01

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds. PMID:21725305

  14. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  15. Reinforced ceramics employing discontinuous phases

    SciTech Connect

    Becher, P.F.

    1990-01-01

    The fracture toughness of ceramics can be improved by the incorporation of a variety of discontinuous reinforcing phases and microstructures. Observations of crack paths in these systems indicate that these reinforcing phases bridge the crack tip wake region. Recent developments in micromechanics toughening models applicable to such systems are discussed and compared with experimental observations. Because material parameters and microstructural characteristics are considered, the crack bridging models provide a means to optimize the toughening effects. 18 refs., 2 figs.

  16. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation. PMID:27517766

  17. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  18. Describing phase coexistence in systems with small phases

    NASA Astrophysics Data System (ADS)

    Lovett, R.

    2007-02-01

    Clusters of atoms can be studied in molecular beams and by computer simulation; 'liquid drops' provide elementary models for atomic nuclei and for the critical nuclei of nucleation theory. These clusters are often described in thermodynamic terms, but the behaviour of small clusters near a phase boundary is qualitatively different from the behaviour at a first order phase transition in idealized thermodynamics. In the idealized case the density and entropy show mathematically sharp discontinuities when the phase boundary is crossed. In large, but finite, systems, the phase boundaries become regions of state space wherein these properties vary rapidly but continuously. In small clusters with a large surface/volume ratio, however, the positive interfacial free energy makes it unlikely, even in states on phase boundaries, that a cluster will have a heterogeneous structure. What is actually seen in these states is a structure that fluctuates in time between homogeneous structures characteristic of the two sides of the phase boundary. That is, structural fluctuations are observed. Thermodynamics only predicts average properties; statistical mechanics is required to understand these fluctuations. Failure to distinguish thermodynamic properties and characterizations of fluctuations, particularly in the context of first order phase transitions, has led to suggestions that the classical rules for thermodynamic stability are violated in small systems and that classical thermodynamics provides an inconsistent description of these systems. Much of the confusion stems from taking statistical mechanical identifications of thermodynamic properties, explicitly developed for large systems, and applying them uncritically to small systems. There are no inconsistencies if thermodynamic properties are correctly identified and the distinction between thermodynamic properties and fluctuations is made clear.

  19. Phase variation of hadronic amplitudes

    SciTech Connect

    Dedonder, J.-P.; Gibbs, W. R.; Nuseirat, Mutazz

    2008-04-15

    The phase variation with angle of hadronic amplitudes is studied with a view to understanding the underlying physical quantities that control it and how well it can be determined in free space. We find that unitarity forces a moderately accurate determination of the phase in standard amplitude analyses but that the nucleon-nucleon analyses done to date do not give the phase variation needed to achieve a good representation of the data in multiple scattering calculations. Models are examined that suggest its behavior near forward angles is related to the radii of the real and absorptive parts of the interaction. The dependence of this phase on model parameters is such that if these radii are modified in the nuclear medium (in combination with the change due to the shift in energy of the effective amplitude in the medium) then the larger magnitudes of the phase needed to fit the data might be attainable but only for negative values of the phase variation parameter.

  20. Phase Diagrams of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  1. Higher-dimensional phase imaging

    NASA Astrophysics Data System (ADS)

    Huntley, Jonathan M.

    2010-04-01

    Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.

  2. Phase modulation in RF tag

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  3. Stochastic phase-change neurons

    NASA Astrophysics Data System (ADS)

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  4. Stochastic phase-change neurons.

    PubMed

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals. PMID:27183057

  5. KERNEL PHASE IN FIZEAU INTERFEROMETRY

    SciTech Connect

    Martinache, Frantz

    2010-11-20

    The detection of high contrast companions at small angular separation appears feasible in conventional direct images using the self-calibration properties of interferometric observable quantities. The friendly notion of closure phase, which is key to the recent observational successes of non-redundant aperture masking interferometry used with adaptive optics, appears to be one example of a wide family of observable quantities that are not contaminated by phase noise. In the high-Strehl regime, soon to be available thanks to the coming generation of extreme adaptive optics systems on ground-based telescopes, and already available from space, closure phase like information can be extracted from any direct image, even taken with a redundant aperture. These new phase-noise immune observable quantities, called kernel phases, are determined a priori from the knowledge of the geometry of the pupil only. Re-analysis of archive data acquired with the Hubble Space Telescope NICMOS instrument using this new kernel-phase algorithm demonstrates the power of the method as it clearly detects and locates with milliarcsecond precision a known companion to a star at angular separation less than the diffraction limit.

  6. Jahn-Teller solitons, structural phase transitions, and phase separation.

    PubMed

    Clougherty, Dennis P

    2006-02-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids. PMID:16486846

  7. Jahn-Teller Solitons, Structural Phase Transitions, and Phase Separation

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2006-02-01

    It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly attributed to phase separation in complex solids.

  8. Phases and phase transitions in the algebraic microscopic shell model

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Drumev, K. P.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  9. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    SciTech Connect

    Thacker, Timothy; Boroyevich, Dushan; Burgos, Rolando; Wang, Fei

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  10. The comfortable driving model revisited: traffic phases and phase transitions

    NASA Astrophysics Data System (ADS)

    Knorr, Florian; Schreckenberg, Michael

    2013-07-01

    We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast them with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner’s three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides ‘hard’ rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow to a wide moving jam often involves an intermediate transition: first from free flow to synchronized flow and then from synchronized flow to a wide moving jam. This is supported by the fact that the so-called F → S transition (from free flow to synchronized traffic) is much more likely than a direct F → J transition. The model under consideration has a functional relationship between traffic flow and traffic density. The fundamental hypothesis of the three-phase traffic theory, however, postulates that the steady states of synchronized flow occupy a two-dimensional region in the flow-density plane. Due to the obvious discrepancy between the model investigated here and the postulate of the three-phase traffic theory, the good agreement that we found could not be expected. For a more detailed analysis, we also studied vehicle dynamics at a microscopic level and provide a comparison of real detector data with simulated data of the identical highway segment.

  11. Phase Correction for GPS Antenna with Nonunique Phase Center

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Dobbins, Justin

    2005-01-01

    A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.

  12. Digital optical phase control in ridge-waveguide phase modulators

    SciTech Connect

    Vawter, G.A.; Hietala, V.M.; Kravitz, S.H. )

    1993-03-01

    The authors report a new digital optical phase modulation concept based on depletion-edge-translation p-n junction GaAs/AlGaAs ridge-waveguide modulators. Digital modulation is achieved by integrating in series several discrete waveguide modulators with lengths related by successive factors of two. To illustrate the concept, the authors fabricated and demonstrated a three-bit digital phase modulator with 45[degree] resolution. This structure represents the first photonic integrated circuit that performs direct digital-electronic to analog-optical conversion.

  13. Differential phase shift keyed signal resolver

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.; Wallingford, W. M. (Inventor)

    1974-01-01

    A differential phase shift keyed signal resolver resolves the differential phase shift in the incoming signal to determine the data content thereof overcoming phase uncertainty without requiring a transmitted reference signal.

  14. Tracking a phase-shift-keyed signal

    NASA Technical Reports Server (NTRS)

    Villarreal, S.; Lenett, S. D.; Kobayashi, H. S.; Pawlowski, J. F.

    1977-01-01

    In detector, phase shifter is used to generate negative phase shift opposing detected phase angle. This produces converted series sideband and component carrier, with residual carrier signal and converted series sideband and component carrier added together to produce tracking signal.

  15. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  16. Compact nanomechanical plasmonic phase modulators

    SciTech Connect

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; Lopez, D.; Blumberg, G.; Aksyuk, V. A.

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

  17. Optimal Electrodynamic Tether Phasing Maneuvers

    NASA Technical Reports Server (NTRS)

    Bitzer, Matthew S.; Hall, Christopher D.

    2007-01-01

    We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.

  18. Phase-sensitive flow cytometer

    SciTech Connect

    Steinkamp, J.A.; Martin, J.C.; Crissman, H.A. )

    1993-01-01

    A phase-sensitive flow cytometer has been developed that combines flow cytometry and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells. Stained cells are analyzed as they intersect an intensity-modulated (sinusoid) laser beam. Fluorescence is measured using only a collecting lens, a longpass filter, and a photomultiplier tube detector. Signals are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes. Results have demonstrated: (1) signal phase shift and amplitude demodulation on fluorospheres and PI-stained cells; (2) a detection threshold of 800-300 fluorescein molecules equivalence for excitation frequencies 10 to 30 MHz; (3) measurement precision of 1.5% on fluorospheres and 4.0% on Pi-stained cells; (4) the resolution of Pi and FITC signals based on differences in their lifetimes; and (5) the measurement of single decay lifetimes by the two-phase ratio method. The significance of this new technology is that the number of fluorochromes usable in multilabeling experiments will be increased; background interferences (autofluorescence, unbound dye, nonspecific staining, Raman scatter) will be eliminated; and fluorescence lifetime can be quantified to study the interaction of fluorochrome binding.

  19. High speed moire based phase retrieval method for quantitative phase imaging of thin objects without phase unwrapping or aberration compensation

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2016-01-01

    Phase retrieval composed of phase extracting and unwrapping is of great significance in different occasions, such as fringe projection based profilometry, quantitative interferometric microscopy and moire detections. Compared to phase extracting, phase unwrapping occupies most time consuming in phase retrieval, and it becomes an obstacle to realize real time measurements. In order to increase the calculation efficiency of phase retrieval as well as simplify its procedures, here, a high speed moire based phase retrieval method is proposed which is capable of calculating quantitative phase distributions without phase unwrapping or aberration compensation. We demonstrate the capability of the presented phase retrieval method by both theoretical analysis and experiments. It is believed that the proposed method will be useful in real time phase observations and measurements.

  20. Phase Transformations in Confined Nanosystems

    SciTech Connect

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  1. GPC and quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Glückstad, Jesper

    2016-03-01

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. We first show a very compact static light shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging (QPI).

  2. Griffiths Phases on Complex Networks

    NASA Astrophysics Data System (ADS)

    Muñoz, Miguel A.; Juhász, Róbert; Castellano, Claudio; Ódor, Géza

    2010-09-01

    Quenched disorder is known to play a relevant role in dynamical processes and phase transitions. Its effects on the dynamics of complex networks have hardly been studied. Aimed at filling this gap, we analyze the contact process, i.e., the simplest propagation model, with quenched disorder on complex networks. We find Griffiths phases and other rare-region effects, leading rather generically to anomalously slow (algebraic, logarithmic, …) relaxation, on Erdős-Rényi networks. Similar effects are predicted to exist for other topologies with a finite percolation threshold. More surprisingly, we find that Griffiths phases can also emerge in the absence of quenched disorder, as a consequence of topological heterogeneity in networks with finite topological dimension. These results have a broad spectrum of implications for propagation phenomena and other dynamical processes on networks.

  3. Phase preservation in musical signals

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V.; Eswaran, C.

    2005-04-01

    The intensity variations of the harmonics of musical instruments in the frequency domain can be interpreted to store phase information. The motivation for this arises by considering the similarity of the timbre of in- struments to that obtained through a diffraction model proposed here. The intensity modifications of an input spectrum of discrete frequencies of unit intensity into the known spectra of different musical instruments have been found to match that of known instruments. According to diffraction theory, the modifying envelope encodes phase information. By considering the similarity, it is proposed that musical instrument timbre store phase information. It is suggested that timbre itself could have diffraction origins. Specific examples of musical instruments are considered to illustrate this intepretation.

  4. SXLS Phase 2 vacuum system

    SciTech Connect

    Schuchman, J.C.; Chou, T.S.; Halama, H.; Hsieh, H.; Kim, T.; Pjerov, S.; Staicu, F.

    1991-01-01

    Phase 1 of the SXLS (Superconducting X-Ray Lithography Source) is described. It is a room temperature, racetrack-shaped electron storage ring, 8.5 meters in circumference. The Phase 2 design consists of replacing the two room temperature 180{degree} dipole magnets of Phase 1 with superconducting magnets. However, even though superconducting magnets are used, the vacuum chambers within them will operate at room temperature. The chambers are constructed as weldments and are made of INCONEL-625. They are bakeable to 150{degrees}C in-situ and incorporate nine photon beam ports. Each have built-in distributed sputter-ion pumps (DIP), non-evaporable getter (NEG) pumps, beam position monitors, and ion clearing electrodes. R D is underway to optimize the DIP, which much operate at 3.86 Tesla, and to develop a low photo yield coating or treatment for the internal surfaces of the chambers.

  5. Sub-Heisenberg phase uncertainties

    NASA Astrophysics Data System (ADS)

    Pezzé, Luca

    2013-12-01

    Phase shift estimation with uncertainty below the Heisenberg limit, ΔϕHL∝1/N¯T, where N¯T is the total average number of particles employed, is a mirage of linear quantum interferometry. Recently, Rivas and Luis, [New J. Phys.NJOPFM1367-263010.1088/1367-2630/14/9/093052 14, 093052 (2012)] proposed a scheme to achieve a phase uncertainty Δϕ∝1/N¯Tk, with k an arbitrary exponent. This sparked an intense debate in the literature which, ultimately, does not exclude the possibility to overcome ΔϕHL at specific phase values. Our numerical analysis of the Rivas and Luis proposal shows that sub-Heisenberg uncertainties are obtained only when the estimator is strongly biased. No violation of the Heisenberg limit is found after bias correction or when using a bias-free Bayesian analysis.

  6. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  7. Propeller speed and phase sensor

    NASA Technical Reports Server (NTRS)

    Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)

    1992-01-01

    A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.

  8. Renovating and Reconstructing in Phases--Specifying Phased Construction.

    ERIC Educational Resources Information Center

    Bunzick, John

    2002-01-01

    Discusses planning for phased school construction projects, including effects on occupancy (for example, construction adjacent to occupied space, construction procedure safety zones near occupied areas, and code-complying means of egress), effects on building systems (such as heating and cooling equipment and power distribution), and contract…

  9. Phase behaviour and phase separation kinetics measurement using acoustic arrays

    NASA Astrophysics Data System (ADS)

    Khammar, M.; Shaw, J. M.

    2011-10-01

    Speed of sound and acoustic wave attenuation are sensitive to fluid phase composition and to the presence of liquid-liquid interfaces. In this work, the use of an acoustic array comprising 64 elements as a non-intrusive sensor for liquid-liquid interface, phase separation kinetics measurement in bulk fluids, and local composition measurement in porous media is illustrated. Three benchmark examples: the phase behaviour of methanol + mixed hexanes and methanol + heptane mixtures at 25.0 °C and 1 bar, and Athabasca bitumen + heptane in a synthetic silica porous medium at 22.5 °C and 1 bar, illustrate the accuracy of liquid-liquid interface and potential research and industrial applications of the technique. Liquid-liquid interfaces can be detected independently using both speed of sound and acoustic wave attenuation measurements. The precision of the interface location measurement is 300 μm. As complete scans can be performed at a rate of 1 Hz, phase separation kinetics and diffusion of liquids within porous media are readily tracked. The technique is expected to find application where the fluids or porous media are opaque to visible light and where other imaging techniques are not readily applied, or are too costly. A current limitation is that the acoustic probes must be cooled to less than 315 K in order for them to operate.

  10. Color deflectometry for phase retrieval using phase-shifting methods

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Legarda-Saenz, Ricardo; Garcia-Torales, G.

    2015-01-01

    In this paper, we propose a technique based on a color fringe pattern used on deflectometry experiment. The advantages of using color fringe patterns together with phase shifting techniques on deflectometry experiment are presented. An experimental wavefront reconstruction of a progressive lens shows the accuracy and simplicity of these techniques used to process the deflection measurements.

  11. Aerothermal modeling program, phase 2

    NASA Technical Reports Server (NTRS)

    Mongia, H. C.; Patankar, S. V.; Murthy, S. N. B.; Sullivan, J. P.; Samuelsen, G. S.

    1985-01-01

    The main objectives of the Aerothermal Modeling Program, Phase 2 are: to develop an improved numerical scheme for incorporation in a 3-D combustor flow model; to conduct a benchmark quality experiment to study the interaction of a primary jet with a confined swirling crossflow and to assess current and advanced turbulence and scalar transport models; and to conduct experimental evaluation of the air swirler interaction with fuel injectors, assessments of current two-phase models, and verification the improved spray evaporation/dispersion models.

  12. Holographic approach to phase transitions

    SciTech Connect

    Franco, Sebastian; Garcia-Garcia, Antonio M.; Rodriguez-Gomez, Diego

    2010-02-15

    We provide a description of phase transitions at finite temperature in strongly coupled field theories using holography. For this purpose, we introduce a general class of gravity duals to superconducting theories that exhibit various types of phase transitions (first or second order with both mean and non-mean field behavior) as parameters in their Lagrangian are changed. Moreover the size and strength of the conductivity coherence peak can also be controlled. Our results suggest that certain parameters in the gravitational dual control the interactions responsible for binding the condensate and the magnitude of its fluctuations close to the transition.

  13. New Instrumentation for Phase Partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Cells and molecules can be purified by partitioning between the two immiscible liquid phases formed by aqueous solutions of poly/ethylene glycol and dextran. Such purification can be more selective, higher yielding, and less destructive to sensitive biological materials than other available techniques. Earth's gravitational field is a hindering factor as it causes sedimentation of particles to be purified and shear-induced particle randomization. The present proposal is directed toward developing new instrumentation for performing phase partitioning both on Earth and in microgravity.

  14. Generalized orthogonal wavelet phase reconstruction.

    PubMed

    Axtell, Travis W; Cristi, Roberto

    2013-05-01

    Phase reconstruction is used for feedback control in adaptive optics systems. To achieve performance metrics for high actuator density or with limited processing capabilities on spacecraft, a wavelet signal processing technique is advantageous. Previous derivations of this technique have been limited to the Haar wavelet. This paper derives the relationship and algorithms to reconstruct phase with O(n) computational complexity for wavelets with the orthogonal property. This has additional benefits for performance with noise in the measurements. We also provide details on how to handle the boundary condition for telescope apertures. PMID:23695316

  15. Phase behavior of methane haze.

    PubMed

    Signorell, R; Jetzki, M

    2007-01-01

    Methane aerosols play a fundamental role in the atmospheres of Neptune, Uranus, and Saturn's moon Titan as borne out by the recent Cassini-Huygens mission. Here we present the first study of the phase behavior of free methane aerosol particles combining collisional cooling with rapid-scan infrared spectroscopy in situ. We find fast (within minutes) phase transitions to crystalline states directly after particle formation and characteristic surface effects for nanometer-sized particles. From our results, we conclude that in atmospheric clouds solid methane particles are crystalline. PMID:17358473

  16. Phase dynamics in cerebral autoregulation.

    PubMed

    Latka, Miroslaw; Turalska, Malgorzata; Glaubic-Latka, Marta; Kolodziej, Waldemar; Latka, Dariusz; West, Bruce J

    2005-11-01

    Complex continuous wavelet transforms are used to study the dynamics of instantaneous phase difference delta phi between the fluctuations of arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) in a middle cerebral artery. For healthy individuals, this phase difference changes slowly over time and has an almost uniform distribution for the very low-frequency (0.02-0.07 Hz) part of the spectrum. We quantify phase dynamics with the help of the synchronization index gamma = (sin delta phi)2 + (cos delta phi)2 that may vary between 0 (uniform distribution of phase differences, so the time series are statistically independent of one another) and 1 (phase locking of ABP and CBFV, so the former drives the latter). For healthy individuals, the group-averaged index gamma has two distinct peaks, one at 0.11 Hz [gamma = 0.59 +/- 0.09] and another at 0.33 Hz (gamma = 0.55 +/- 0.17). In the very low-frequency range (0.02-0.07 Hz), phase difference variability is an inherent property of an intact autoregulation system. Consequently, the average value of the synchronization parameter in this part of the spectrum is equal to 0.13 +/- 0.03. The phase difference variability sheds new light on the nature of cerebral hemodynamics, which so far has been predominantly characterized with the help of the high-pass filter model. In this intrinsically stationary approach, based on the transfer function formalism, the efficient autoregulation is associated with the positive phase shift between oscillations of CBFV and ABP. However, the method is applicable only in the part of the spectrum (0.1-0.3 Hz) where the coherence of these signals is high. We point out that synchrony analysis through the use of wavelet transforms is more general and allows us to study nonstationary aspects of cerebral hemodynamics in the very low-frequency range where the physiological significance of autoregulation is most strongly pronounced. PMID:16024579

  17. Chemical Shift Induced Phase Errors in Phase Contrast MRI

    PubMed Central

    Middione, Matthew J.; Ennis, Daniel B.

    2012-01-01

    Phase contrast magnetic resonance imaging (PC-MRI) is subject to numerous sources of error, which decrease clinical confidence in the reported measures. This work outlines how stationary perivascular fat can impart a significant chemical shift induced PC-MRI measurement error using computational simulations, in vitro, and in vivo experiments. This chemical shift error does not subtract in phase difference processing, but can be minimized with proper parameter selection. The chemical shift induced phase errors largely depend on both the receiver bandwidth (BW) and the TE. Both theory and an in vivo comparison of the maximum difference in net forward flow between vessels with and without perivascular fat indicated that the effects of chemically shifted perivascular fat are minimized by the use of high BW (814 Hz/px) and an in-phase TE (HBW-TEIN). In healthy volunteers (N=10) HBW-TEIN significantly improves intrapatient net forward flow agreement compared to low BW (401 Hz/px) and a mid-phase TE as indicated by significantly decreased measurement biases and limits of agreement for the ascending aorta (1.8±0.5 mL vs. 6.4±2.8 mL, P=0.01), main pulmonary artery (2.0±0.9 mL vs. 11.9±5.8 mL, P=0.04), the left pulmonary artery (1.3±0.9 mL vs. 5.4±2.5 mL, P=0.003), and all vessels (1.7±0.8 mL vs. 7.2±4.4 mL, P=0.001). PMID:22488490

  18. Hydrodynamics and phases of flocks

    SciTech Connect

    Toner, John; Tu Yuhai . E-mail: yuhai@us.ibm.com; Ramaswamy, Sriram

    2005-07-01

    We review the past decade's theoretical and experimental studies of flocking: the collective, coherent motion of large numbers of self-propelled 'particles' (usually, but not always, living organisms). Like equilibrium condensed matter systems, flocks exhibit distinct 'phases' which can be classified by their symmetries. Indeed, the phases that have been theoretically studied to date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, liquid crystals). This analogy with equilibrium phases of matter continues in that all flocks in the same phase, regardless of their constituents, have the same 'hydrodynamic'-that is, long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium systems, due to the intrinsically nonequilibrium self-propulsion of the constituent 'organisms'. This difference between flocks and equilibrium systems is most dramatically manifested in the ability of the simplest phase of a flock, in which all the organisms are, on average moving in the same direction (we call this a 'ferromagnetic' flock; we also use the terms 'vector-ordered' and 'polar-ordered' for this situation) to exist even in two dimensions (i.e., creatures moving on a plane), in defiance of the well-known Mermin-Wagner theorem of equilibrium statistical mechanics, which states that a continuous symmetry (in this case, rotation invariance, or the ability of the flock to fly in any direction) can not be spontaneously broken in a two-dimensional system with only short-ranged interactions. The 'nematic' phase of flocks, in which all the creatures move preferentially, or are simply oriented preferentially, along the same axis, but with equal probability of moving in either direction, also differs dramatically from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows enormous number fluctuations, which

  19. Calibrating for Ionospheric Phase Delays

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1985-01-01

    Technique determines ionospheric phase delay on real-time universally applicable basis in terms of electrons per meter squared by coherently modulating two L-band carrier frequencies received from two Global Positioning System satelites. Two pseudorandom number sequences cross-correlated to derive delay time.

  20. New polymers for phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1981-01-01

    The synthesizing of several polyethylene glycols having crown ethers attached is reported. This work led to the identification of three new polymer types which promise to be more effective at selectively binding specific cell types. Work was completed on identification of chemical properties of the new polymer crowns and on development of new techniques for determination of polymer-phase composition.

  1. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  2. Temperature-Stabilized Phase Detector

    NASA Technical Reports Server (NTRS)

    Yeeman, L.

    1985-01-01

    Precise temperature stabilized phase detector for clock signal distribution maintains 100-MHz signal with stability of 5 parts in 10 to the 16th power even for step changes of 20 degrees C in ambient temperature. Stabilization achieved by heating unit to 45 degrees C and maintaining temperature through bridge circuit.

  3. A Truncated Waveguide Phase Shifter

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, D. T.; Henry, R.; Wollack, E. J.

    2011-01-01

    The design, fabrication and performance of a simple phase shifter based upon truncated circular and square waveguides is presented. An emphasis is placed upon validation of simple analytical formulae that describe the propagation properties of the structure. A test device is prototyped at approximately 40GHz; however, the concepts explored can be directly extended to millimeter and submillimeter applications.

  4. Phase multiplying electronic scanning array

    NASA Technical Reports Server (NTRS)

    Seaton, A. F.

    1969-01-01

    Scanning array was designed with properties of low RF loss and phase control. The array consists of a series of special waveguides, hybrids made up of two variable reactance branch arms for input signals, an edge slot for the difference port, and a sum arm for the unradiated signal.

  5. Rotor phases in compound semiconductors

    SciTech Connect

    Price, D.L.; Saboungi, M.L.; Howells, W.S.

    1994-11-01

    Quasi-elastic neutron scattering is used to study the disordering processes in two classes of semiconductor: I-IV Zintl compounds and the phosphorus-selenium system. Two alkali-metal-polyvalent metal Zintl compounds, CsPb and NaSn, exhibit a two-stage melting process with high-temperature solid phases characterized by rapid dynamical disorder. In CsPb this disorder is clearly associated with rapid reorientations of polyanions with the cations participating in the dynamical disorder on the same time scale. In NaSn the disorder is associated with fast reorientations of the polyanions closely coupled to a slower migration of the cations. The two high-temperature solid phases of the molecular crystal P{sub 4}Se{sub 3} are confirmed to be rotor phases with small but significant differences in the reorientational motions in the two phases. Zintl compounds are formed from an electropositive metal A and an electronegative metal on semimetal M. Electron transfer from A to M, along with directional bonding between the M-ions, leads to chemical behavior in these ions characteristic of elements to the right of M in the periodic table.

  6. Shock dynamics of phase diagrams

    SciTech Connect

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas–liquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: •A new generalisation of van der Waals equation of state. •Description of phase transitions in terms of shock dynamics of state curves. •Proof of the universality of equations of state for a general class of models. •Interpretation of triple points as confluence of classical shock waves. •Correspondence table between thermodynamics and nonlinear conservation laws.

  7. Phase-Elective English, 1970.

    ERIC Educational Resources Information Center

    Jefferson County Board of Education, Louisville, KY.

    These 40 elective courses, each phased according to one of five levels of difficulty and each comprising 12 weeks of study (a minimum of three courses being required of every student per academic year), offer an individualized program designed to realistically serve the immediate needs and future objectives of each student. Provided for each…

  8. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  9. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  10. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  11. Circadian phase relationships in monkeys

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Wekstein, D. R.

    1973-01-01

    Two adult male pigtail monkeys were placed in an isolated, soundproofed chamber (entered for cleaning only) for a period of six months, during which time their deep body temperatures T sub DB, telemetered from transmitters implanted in the abdominal cavity), fluid intake, urinary output (UV), urinary sodium and potassium were continuously monitored. During the first 3 1/2 months, lights (L) were turned on at 0000 hours, off at 1200 hours. Photoperiod phase was then delayed (light span prolonged) 6 hours to a new schedule: L on at 0600 hours, off at 1800 hours. Six weeks later, photoperiod phase was advanced 6 hours to return to the original schedule. Prior to shift, T sub DB typically began a steep rise 0-5 hours prior to L on, a steep fall 3-4 hours prior to L off, relative plateaus in between. Urinary Na typically peaks 2 hours prior to L off, has a minimum 2-4 hours prior to L on; K tends both to peak and show a minimum 2-8 hours earlier than Na; in contrast, UV peaks at L on, has a minimum 2-6 hours after L off. Upon delaying photoperiod phase, T sub DB shift was completed in 8 days. UV shifted more rapidly but tended to overshoot the new phase. Within 5 days, UV and K completed their shifts, although Na did not fully resynchronize within the 6 week period monitored.

  12. Backyard Astronomy: Observing Moon Phases.

    ERIC Educational Resources Information Center

    Brandou, Bob

    1997-01-01

    Presents an activity involving the observation of moon phases that can provide a one-on-one learning experience and stimulate interaction between a child and an adult family member. This activity can also be initiated by teachers and outcomes can be integrated into the classroom science curriculum. (JRH)

  13. Phase Transitions in Dipalmitoylphosphatidylcholine Monolayers.

    PubMed

    Zuo, Yi Y; Chen, Rimei; Wang, Xianju; Yang, Jinlong; Policova, Zdenka; Neumann, A Wilhelm

    2016-08-23

    A self-assembled phospholipid monolayer at an air-water interface is a well-defined model system for studying surface thermodynamics, membrane biophysics, thin-film materials, and colloidal soft matter. Here we report a study of two-dimensional phase transitions in the dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface using a newly developed methodology called constrained drop surfactometry (CDS). CDS is superior to the classical Langmuir balance in its capacity for rigorous temperature control and leak-proof environments, thus making it an ideal alternative to the Langmuir balance for studying lipid polymorphism. In addition, we have developed a novel Langmuir-Blodgett (LB) transfer technique that allows the direct transfer of lipid monolayers from the droplet surface under well-controlled conditions. This LB transfer technique permits the direct visualization of phase coexistence in the DPPC monolayer. With these technological advances, we found that the two-dimensional phase behavior of the DPPC monolayer is analogous to the three-dimensional phase transition of a pure substance. This study has implications in the fundamental understanding of surface thermodynamics as well as applications such as self-assembled monolayers and pulmonary surfactant biophysics. PMID:27479299

  14. Magnetic anisotropy of ferrosmectic phases

    NASA Astrophysics Data System (ADS)

    Ponsinet, Virginie; Fabre, Pascale; Veyssié, Madeleine; Cabanel, Régis

    1994-10-01

    A new anisotropic magnetic fluid, called ferrosmectic, is obtained when using a colloidal suspension of submicronic magnetic particles (ferrofluid), as a component in a smectic phase of fluid membranes. These lamellar phases present specific magnetic properties. The anisotropy of their magnetic susceptilities as a function of particles concentration is studied and interpreted : a microscopic mechanism involving a steric hindrance between particles and membranes is used to understand the experimental results. Un nouveau fluide magnétique anisotrope, appelé ferrosmectique, est obtenu lorsque nous utilisons un ferrofluide, c'est-à-dire une suspension colloïdale de particules magnétiques de taille inférieure au micron, comme composant dans la fabrication d'une phase smectique de membranes fluides. Ces phases adoptent des comportements spécifiques sous champ magnétique, et nous présentons ici une étude de l'anisotropie de leur susceptibilité magnétique en fonction de la concentration en particules. Nous interprétons les résultats obtenus par un mécanisme microscopique basé sur l'existence d'une gêne stérique entre membranes et particules.

  15. Receiver Would Control Phasing of a Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Dunn, Charles E.; Young, Lawrence E.

    2006-01-01

    In a proposed digital signal-processing technique, a radio receiver would control the phasing of a phased-array antenna to aim the peaks of the antenna radiation pattern toward desired signal sources while aiming the nulls of the pattern toward interfering signal sources. The technique was conceived for use in a Global Positioning System (GPS) receiver, for which the desired signal sources would be GPS satellites and typical interference sources would be terrestrial objects that cause multipath propagation. The technique could also be used to optimize reception in spread-spectrum cellular-telephone and military communication systems. During reception of radio signals in a conventional phased-array antenna system, received signals at their original carrier frequencies are phase-shifted, then combined by analog circuitry. The combination signal is then subjected to down-conversion and demodulation. In a system according to the proposed technique (see figure), the signal received by each antenna would be subjected to down-conversion, spread-spectrum demodulation, and correlation; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. Following analog down-conversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudorandum-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be

  16. Fourier Phase Domain Steganography: Phase Bin Encoding Via Interpolation

    NASA Astrophysics Data System (ADS)

    Rivas, Edward

    2007-04-01

    In recent years there has been an increased interest in audio steganography and watermarking. This is due primarily to two reasons. First, an acute need to improve our national security capabilities in light of terrorist and criminal activity has driven new ideas and experimentation. Secondly, the explosive proliferation of digital media has forced the music industry to rethink how they will protect their intellectual property. Various techniques have been implemented but the phase domain remains a fertile ground for improvement due to the relative robustness to many types of distortion and immunity to the Human Auditory System. A new method for embedding data in the phase domain of the Discrete Fourier Transform of an audio signal is proposed. Focus is given to robustness and low perceptibility, while maintaining a relatively high capacity rate of up to 172 bits/s.

  17. Phase Length Optical Phase-Locked-Loop Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor)

    1988-01-01

    The invention is a device that provides a high resolution measurement of the change in optical phase length from the device optical system source to an optical reflector. The invention consists of a optical phase locked loop that uses a laser beam as a carrier of an intensity modulated energy source. The novelty of the invention appears to lie in the overall combination of elements which provide high resolution without loss of wide dynamic range. The invention does not depend on coherent reflection from a target, and thus can measure targets that do not have special preparation or corner reflectors. The use of carrier modulation achieves high resolution without the problems of high speed pulse duration systems. Thus the invention has the advantages of simplicity, low cost, and small size without sacrificing resolution.

  18. Phase Errors and the Capture Effect

    SciTech Connect

    Blair, J., and Machorro, E.

    2011-11-01

    This slide-show presents analysis of spectrograms and the phase error of filtered noise in a signal. When the filtered noise is smaller than the signal amplitude, the phase error can never exceed 90{deg}, so the average phase error over many cycles is zero: this is called the capture effect because the largest signal captures the phase and frequency determination.

  19. Nonclassicality in phase-number uncertainty relations

    SciTech Connect

    Matia-Hernando, Paloma; Luis, Alfredo

    2011-12-15

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  20. Three-Phase Power Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Three-Phase Power-Factor Controller develops a control signal for each motor winding. As motor loading decreases, rms value of applied voltage is decreased by feedback-control circuit. Power consumption is therefore lower than in unregulated operation. Controller employs phase detector for each of three phases of delta-connected induction motor. Phase-difference sum is basis for control.

  1. Condensing, Two-Phase, Contact Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Oren, J. A.; Sauer, L. W.

    1988-01-01

    Two-phase heat exchanger continuously separates liquid and vapor phases of working fluid and positions liquid phase for efficient heat transfer. Designed for zero gravity. Principle is adapted to other phase-separation applications; for example, in thermodynamic cycles for solar-energy conversion.

  2. Simultaneous microemulsion-aqueous phase flooding process

    SciTech Connect

    Reed, R. L.

    1980-12-23

    A method of enhanced oil recovery is disclosed wherein an upper-phase or a middle-phase microemulsion and an immiscible aqueous phase are simultaneously injected into a subterranean formation. The viscosities of the injected phases are adjusted so that the aqueous phase/microemulsion viscosity ratio approximates the reservoir brine/oil viscosity ratio. The injection rates of the injected phases are such that similar oil, microemulsion and aqueous phase velocities are achieved in the reservoir. Oil is displaced to a production well and recovered.

  3. Nanostructures having crystalline and amorphous phases

    SciTech Connect

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  4. Linear phase distribution of acoustical vortices

    SciTech Connect

    Gao, Lu; Zheng, Haixiang; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2014-07-14

    Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.

  5. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr.; Cochran, H.D.; Leitnaker, J.M.

    1989-09-01

    In the safe handling and processing of uranium hexafluoride (UF{sub 6}), it is often desirable to calculate vapor composition and pressure from known liquid composition and temperature. Furthermore, the ability to use analyses of equilibrium vapor-phase samples to calculate liquid-phase compositions would be economically advantageous to the International Atomic Energy Agency (IAEA) in its international safeguards program and to uranium enrichment operators. The latter technique is projected to save the IAEA on the order of $1500 or more per sample. Either type of calculation could be performed with a multicomponent vapor-liquid equilibrium (VLE) model if this model were shown to apply to UF{sub 6} and its common impurities. This report is concerned with the distribution of four potential impurities in UF{sub 6} between liquid and vapor phases. The impurities are carbon dioxide, sulfur hexafluoride, chloryl fluoride, and Freon-114 (CClF{sub 2}CClF{sub 2}). There are no binary equilibrium data on the first three of these impurities; hence, the VLE calculations are based entirely on the thermodynamic properties of the pure components. There are two sets of binary equilibrium data for the system Freon-114-UF{sub 6} that are analyzed in terms of the model of Prausnitz et al. Calculations based on these data are compared with those based solely on the thermodynamic properties of pure Freon-114 and pure UF{sub 6}. 23 refs., 3 figs., 5 tabs.

  6. Griffiths phase and temporal effects in phase separated manganites

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.; Marchenko, M. A.

    2016-08-01

    Phenomenological description of relaxation phenomena in magnetic and transport properties of perovskite manganites has been presented. The approach is based on generalization of some hypotheses appropriate to the Preisach picture of magnetization process for half-metallic ferromagnets and on an assumption that in doped manganites the phase separated state exists near the magnetic ordering temperature. For systems with the percolation type of a ferromagnet-paramagnet transition, distinctive features in relaxation of magnetization and resistivity have been found. The relaxation is shown to be most pronounced near the transition temperature, and to be an approximately logarithmic function of time. The theoretical results replicate a broad spectrum of behavior observed experimentally on time dependence of magnetization and resistivity of CMR systems and allow a direct comparison with available experimental data. We propose an additional experimental test to distinguish between the percolation scenario of magnetic and transport transitions in doped manganites, and the ferromagnetic polaron picture. In particular, an anomalously slow relaxation to zero of the order parameter can be considered as a key feature of the Griffiths-like phase transition in doped manganites. It is also shown that a system with the Griffiths-like state will exhibit nonequilibrium aging and rejuvenation phenomena, which in many aspects resemble that of a spin glass. We hope that experimental observation of a set of time decay properties will provide a settlement of apparently conflicting results obtained for different characteristics of phase-separated manganites.

  7. Double reference pulsed phase locked loop

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1986-01-01

    A double reference pulse phase locked loop is described which measures the phase shift between tone burst signals initially derived from the same periodic signal source (voltage controlled oscillator) and delayed by different amounts because of two different paths. A first path is from the transducer to the surface of a sample and back. A second path is from the transducer to the opposite surface and back. A first pulse phase locked loop including a phase detector and a phase shifter forces the tone burst signal delayed by the second path in phase quadrature with the periodic signal source. A second pulse phase locked loop including a second phase detector forces the tone burst signals delayed by the first path into phase quadrature with the phase shifted periodic signal source.

  8. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  9. Phase-filed modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    SciTech Connect

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2008-11-12

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% ({+-}1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% ({+-}1%) retained austenite was measured.

  10. Nonadditive Mixed State Phases in Neutron Optics

    SciTech Connect

    Klepp, J.; Sponar, S.; Filipp, S.; Lettner, M.; Badurek, G.; Hasegawa, Y.

    2009-03-10

    In a neutron polarimetry experiment mixed neutron spin phases are determined. We consider evolutions leading to purely geometric, purely dynamical and combined phases. It is experimentally demonstrated that the sum of the geometric and dynamical phases--both obtained in separate measurements--is not equal to the associated total phase as obtained from a third measurement, unless the system is in a pure state. In this sense, mixed state phases are not additive.

  11. Phase control system concepts and simulations

    SciTech Connect

    Lindsay, V.C.

    1980-07-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  12. Quantitative phase imaging of arthropods

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  13. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  14. Phase transformations in engineering materials

    SciTech Connect

    Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.; Priesmeyer, H.G.

    1996-06-01

    Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement.

  15. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  16. Coherent phase argument for inflation

    SciTech Connect

    Scott Dodelson

    2004-03-17

    Cosmologists have developed a phenomenally successful picture of structure in the universe based on the idea that the universe expanded exponentially in its earliest moments. There are three pieces of evidence for this exponential expansion--inflation--from observations of anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is very similar to that predicted by generic inflation models. Second, the angular scale at which the first acoustic peak appears is consistent with the flat universe predicted by inflation. Here the author describes the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to account for the clear peak/trough structure observed by the WMAP satellite and its predecessors. The author also discusses alternatives to inflation that have been proposed recently and explain how they produce coherent phases.

  17. Brain Performance versus Phase Transitions

    NASA Astrophysics Data System (ADS)

    Torres, Joaquín J.; Marro, J.

    2015-07-01

    We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.

  18. Liquid Phase Miscibility Gap Materials

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Markworth, A. J.

    1985-01-01

    The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.

  19. Two-phase potential flow

    NASA Technical Reports Server (NTRS)

    Wallis, Graham B.

    1989-01-01

    Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.

  20. Fiber bundle phase conjugate mirror

    SciTech Connect

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  1. Deep space LADAR, phase 1

    NASA Astrophysics Data System (ADS)

    Frey, Randy W.; Rawlins, Greg; Zepkin, Neil; Bohlin, John

    1989-03-01

    A pseudo-ranging laser radar (PRLADAR) concept is proposed to provide extended range capability to tracking LADAR systems meeting the long-range requirements of SDI mission scenarios such as the SIE midcourse program. The project will investigate the payoff of several transmitter modulation techniques and a feasibility demonstration using a breadboard implementation of a new receiver concept called the Phase Multiplexed Correlator (PMC) will be accomplished. The PRLADAR concept has specific application to spaceborne LADAR tracking missions where increased CNR/SNR performance gained by the proposed technique may reduce the laser power and/or optical aperture requirement for a given mission. The reduction in power/aperture has similar cost reduction advantages in commercial ranging applications. A successful Phase 1 program will lay the groundwork for a quick reaction upgrade to the AMOS/LASE system in support of near term SIE measurement objectives.

  2. Agent review phase one report.

    SciTech Connect

    Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

    2009-12-01

    This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

  3. Quantitative phase imaging of arthropods

    PubMed Central

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  4. Phase comparator apparatus and method

    DOEpatents

    Coffield, F.E.

    1985-02-01

    This invention finds especially useful application for interferometer measurements made in plasma fusion devices (e.g., for measuring the line integral of electron density in the plasma). Such interferometers typically use very high intermediate frequencies (e.g., on the order of 10 to 70 MHz) and therefore the phase comparison circuitry should be a high speed circuit with a linear transfer characteristic so as to accurately differentiate between small fractions of interference fringes.

  5. Final Report: Sensorpedia Phase 3

    SciTech Connect

    Gorman, Bryan L; Resseguie, David R

    2011-02-01

    This report is a summary of the Oak Ridge National Laboratory s (ORNL s) Phase 3 development of Sensorpedia, a sensor information sharing platform. Sensorpedia is ORNL s Wikipedia for Sensors. The overall goal of Sensorpedia is to enable global scale sensor information sharing for scientific research, national security and defense, public health and safety, emergency preparedness and response, and general community awareness and outreach.

  6. Disposal phase experimental program plan

    SciTech Connect

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  7. Improved Phase-Lock Detector

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1982-01-01

    Single detection channel is used alternately by in-phase (I) and quadrature (Q) signals, under control of a dither switch. By eliminating errors caused by unbalance of the I and Q channels, this dither-balanced detector reduces false locking. Can be used to improve detection probability and reduce false alarm probability for any loop that must acquire signal with low signal-to-noise ratio.

  8. Multicolor Holography With Phase Shifting

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1996-01-01

    Prototype apparatus constructed to test feasibility of two-color holographic interferometric scheme in which data for reconstructing holographic wavefront obtained with help of phase-shifting technique. Provides two sets of data needed to solve equations for effects of temperature and concentration. Concept extended to holography at three or more wavelengths to measure three or more phenomena associated with significant variations in index of refraction

  9. TDRSS telecommunications study, phase 2

    NASA Technical Reports Server (NTRS)

    Cahn, C. R.

    1974-01-01

    Providing an extension to parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS), this phase considers candidate modulation waveforms which could meet the shuttle telecommunications requirements and also be compatible with the TDRSS single access S-band service. In addition, it considers the feasibility of modifying a single access S-band user transponder for operation with conventional STDN signals emanating from remotely located ground stations.

  10. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  11. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  12. Phase-preserved optical elevator

    PubMed Central

    Luo, Yuan; Zhang, Baile; Han, Tiancheng; Chen, Zhi; Duan, Yubo; Chu, Chia-Wei; Barbastathis, George; Qiu, Cheng Wei

    2013-01-01

    The unique superiority of transformation optics devices designed from coordinate transformation is their capability of recovering both ray trajectory and optical path length in light manipulation. However, very few experiments have been done so far to verify this dual-recovery property from viewpoints of both ray trajectory and optical path length simultaneously. The experimental difficulties arise from the fact that most previous optical transformation optics devices only work at the nano-scale; the lack of intercomparison between data from both optical path length and ray trajectory measurement in these experiments obscured the fact that the ray path was subject to a subwavelength lateral shift that was otherwise not easily perceivable and, instead, was pointed out theoretically [B. Zhang et al. Phys. Rev. Lett. 104, 233903, (2010)]. Here, we use a simple macroscopic transformation optics device of phase-preserved optical elevator, which is a typical birefringent optical phenomenon that can virtually lift an optical image by a macroscopic distance, to demonstrate decisively the unique optical path length preservation property of transformation optics. The recovery of ray trajectory is first determined with no lateral shift in the reflected ray. The phase preservation is then verified with incoherent white-light interferometry without ambiguity and phase unwrapping. PMID:23546046

  13. Phase Curves of Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole K.; de Wit, Julien; Laughlin, Gregory P.; Knutson, Heather

    2016-01-01

    Nearly 15% of the known exoplanet population have significantly eccentric orbits (e > 0.25). Systems with planets on highly eccentric orbits provide natural laboratories to test theories of orbital evolution, tidal forcing, and atmospheric response. The two best studied eccentric exoplanets are HAT-P-2b (e~0.5) and HD 80606 b (e~0.9). Both of these eccentric planets have full or partial orbit phase curve observations taken with the 3.6, 4.5, and 8.0 micron channels of the Spitzer IRAC instrument. These phase-curve observations of HAT-P-2b and HD 80606 b have given us important insights into atmospheric radiative timescales, planetary rotation rates and orbital evolution, and planet-star tidal interactions. Here I will overview the key results from the Spitzer observational campaigns for HAT-P-2b and HD 80606 b and look toward the future of phase curve observations of eccentric exoplanets in the era of JWST.

  14. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  15. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  16. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  17. Symmetry in finite phase plane

    NASA Astrophysics Data System (ADS)

    Zak, J.

    2010-03-01

    The known symmetries in one-dimensional systems are inversion and translations. These symmetries persist in finite phase plane, but a novel symmetry arises in view of the discrete nature of the coordinate xi and the momentum pi : xi and pi can undergo permutations. Thus, if xi assumes M discrete values, i = 0, 1,2,..., M - 1, a permutation will change the order of the set x0,x1,..., xM-1 into a new ordered set. Such a symmetry element does not exist for a continuous x-coordinate in an infinite phase plane. Thus, in a finite phase plane, translations can be replaced by permutations. This is also true for the inversion operator. The new permutation symmetry has been used for the construction of conjugate representations and for the splitting of the M-dimensional vector space into independent subspaces. This splitting is exhaustive in the sense that if M = iMi with Mi being prime numbers, the M-dimensional space splits into M1,M2,...Mn-dimensional independent subspaces. It is shown that following this splitting one can design new potentials with appropriate constants of motion. A related problem is the Weyl-Heisenberg group in the M-dimensional space which turns into a direct product of its subgroups in the Mi-dimensional subspaces. As an example we consider the case of M = 8.

  18. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  19. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  20. Metastable Phases in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  1. Three Phase Primary Science. Phase Three Evaluation. Interim Report. Research Report No. 24.

    ERIC Educational Resources Information Center

    Wilson, Michael

    This evaluation report is concerned with Phase 3 of the Three Phase Primary Science (TPPS) course piloted in Papua, New Guinea, primary schools in 1969 and which was to be taught in all primary schools in 1973. Phase 1 is a series of activities; Phase 2, a series of simple experiments for the pupils. Phase 3 is a series of more formal experiments…

  2. 40 CFR 73.10 - Initial allocations for phase I and phase II.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Initial allocations for phase I and phase II. 73.10 Section 73.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Allocations § 73.10 Initial allocations for phase I and phase II. (a) Phase...

  3. Quantum phases and dynamics of geometric phase in a quantum spin chain under linear quench

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Basu, B.

    2012-12-01

    We study the quantum phases of anisotropic XY spin chain in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behavior of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.

  4. Pressure-induced phase transition in pentacene

    NASA Astrophysics Data System (ADS)

    Farina, L.; Brillante, A.; Della Valle, R. G.; Venuti, E.; Amboage, M.; Syassen, K.

    2003-07-01

    We have recently studied two solid phases of bulk pentacene (polymorphs H and C) by means of lattice phonon Raman spectroscopy. The assignment, previously based on lattice dynamics calculations alone, is now verified by X-ray diffraction measurements, conclusively confirming the existence of both polymorphs. Furthermore, Raman phonon spectra indicate a pressure-induced phase transition where the polymorph C (lower density phase) transforms to the H form (higher density phase). The onset pressure for the phase transition is only 0.2 GPa. The phase change is irreversible.

  5. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W.

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  6. Analysis of cardiac fibrillation using phase mapping.

    PubMed

    Clayton, Richard H; Nash, Martyn P

    2015-03-01

    The sequence of myocardial electrical activation during fibrillation is complex and changes with each cycle. Phase analysis represents the electrical activation-recovery process as an angle. Lines of equal phase converge at a phase singularity at the center of rotation of a reentrant wave, and the identification of reentry and tracking of reentrant wavefronts can be automated. We examine the basic ideas behind phase analysis. With the exciting prospect of using phase analysis of atrial electrograms to guide ablation in the human heart, we highlight several recent developments in preprocessing electrograms so that phase can be estimated reliably. PMID:25784022

  7. Two-phase flow research. Phase I. Two-phase nozzle research. Final report

    SciTech Connect

    Toner, S.J.

    1981-07-01

    An investigation of energy transfer in two-phase nozzles was conducted. Experimental performance of converging-diverging nozzles operating on air-water mixtures is presented for a wide range of parameters. Thrust measurements characterized the performance and photographic documentation was used to visually observe the off-design regimes. Thirty-six nozzle configurations were tested to determine the effects of convergence angle, area ratio, and nozzle length. In addition, the pressure ratio and mass flowrate ratio were varied to experimentally map off-design performance. The test results indicate the effects of wall friction and infer temperature and velocity differences between phases and the effect on nozzle performance. The major conclusions reached were: the slip ratio between the phases, gas velocity to liquid velocity, is shown to be below about 4 or 5, and, in most of the test cases run, was estimated to between about 1-1/2 to 2-1/2; in all cases except the free-jet the mass )

  8. Phase diagrams for the blue phases of highly chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Bowling, Miriam B.; Collings, Peter J.; Booth, Christopher J.; Goodby, John W.

    1993-11-01

    Polarizing microscopy and optical-activity measurements are used to determine the phase diagram for the blue phases of chiral-racemic mixtures of terephthaloyloxy-bis-4-(2'-methylbutyl) benzoate. Contrary to an earlier report, it is the second blue phase (BP II) rather than the first blue phase (BP I) that is not stable relative to the other blue phases at high chirality. With this development, all phase diagrams for the blue phases reported to date have the same topology. Using similar data for two other highly chiral systems, it is found that a simple scaling of the temperature and chiral-fraction axes produces phase diagrams in quantitative agreement with the present results. Thus, in spite of differences in molecular structure, the number of chiral centers, and phase-transition temperatures, these three systems possess remarkably similar phase diagrams and lend evidence for a universal phase diagram for the blue phases.

  9. Simulation of Anti-Galloping Effects of Phase-to-Phase Spacers in Transmission Line

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Qun; Chen, Hua-Ling; Liu, Bin; Liu, Cao-Lan; Sun, Na; Yang, Jia-Lun

    Currently, the application of phase-to-phase spacers can effectively prevent and control line faults caused by conductor galloping and is one of the most effective methods to prevent galloping of transmission lines. The installation layout scheme of phase-to-phase spacers directly affects the anti-galloping effect. Moreover, the common empirical formula can not accurately assess the anti-galloping effect of phase-to-phase spacers. In this paper, the nonlinear finite element method is employed to establish an accurate analysis model of phase-to-phase spacers for conductors. And the anti-galloping effects of phase-to-phase spacers installed in different ways are analyzed, with the aim of providing an effective method for the installation of phase-to-phase spacers used in practical transmission lines.

  10. Unified framework of topological phases with symmetry

    NASA Astrophysics Data System (ADS)

    Gu, Yuxiang; Hung, Ling-Yan; Wan, Yidun

    2014-12-01

    In topological phases in 2 +1 dimensions, anyons fall into representations of quantum group symmetries. As proposed in our work [Hung and Wan, Int. J. Mod. Phys. B 28, 1450172 (2014), 10.1142/S0217979214501720], the physics of a symmetry enriched phase can be extracted by the mathematics of (hidden) quantum group symmetry breaking of a "parent phase." This offers a unified framework and classification of the symmetry enriched (topological) phases, including symmetry protected trivial phases as well. In this paper, we extend our investigation to the case where the "parent" phases are non-Abelian topological phases. We show explicitly how one can obtain the topological data and symmetry transformations of the symmetry enriched phases from that of the "parent" non-Abelian phase. Two examples are computed: (1) the Ising×Ising¯ phase breaks into the Z2 toric code with Z2 global symmetry; (2) the SU (2) 8 phase breaks into the chiral Fibonacci × Fibonacci phase with a Z2 symmetry, a first non-Abelian example of symmetry enriched topological phase beyond the gauge-theory construction.

  11. A novel phase shifting structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Singh, Veena; Dubey, Vishesh; Ahmad, Azeem; Singh, Gyanendra; Mehta, D. S.

    2016-03-01

    This paper describes a new and novel phase shifting technique for qualitative as well as quantitative measurement in microscopy. We have developed a phase shifting device which is robust, inexpensive and involves no mechanical movement. In this method, phase shifting is implemented using LED array, beam splitters and defocused projection of Ronchi grating. The light from the LEDs are made incident on the beam splitters at spatially different locations. Due to variation in the geometrical distances of LEDs from the Ronchi grating and by sequentially illuminating the grating by switching on one LED at a time the phase shifted grating patterns are generated. The phase shifted structured patterns are projected onto the sample using microscopic objective lens. The phase shifted deformed patterns are recorded by a CCD camera. The initial alignment of the setup involves a simple procedure for the calibration for equal fringe width and intensity such that the phase shifted fringes are at equal phase difference. Three frame phase shifting algorithm is employed for the reconstruction of the phase map. The method described here is fully automated so that the phase shifted images are recorded just by switching of LEDs and has been used for the shape measurement of microscopic industrial objects. The analysis of the phase shifted images provides qualitative as well as quantitative information about the sample. Thus, the method is simple, robust and low cost compared to PZT devices commonly employed for phase shifting.

  12. Nonequilibrium dynamics of phase transitions

    NASA Astrophysics Data System (ADS)

    Gagne, Carmen Jeanne

    2001-11-01

    Phase transitions occur in such diverse and important systems as ferromagnets, liquid crystals and the early Universe. The dynamics of phase transitions such as these have been studied for decades, but the analytical models still need a great deal of improvement before they can adequately describe all time stages and regions under the coexistence curve. Numerical studies can supplement these analytical theories, but they need to accurately describe the continuum equations that they are intended to solve. This thesis describes a method for removing the lattice- spacing and renormalization-mass dependence of Langevin simulations of phase mixing in (2 + 1)-dimensional asymmetric Ginzburg-Landau models with short-ranged interactions. Also, the spread in the order parameter near the critical value of the control parameter due to critical slowing down is used to more accurately determine this value of the control parameter in these simulations. In addition, a new method is proposed for quantifying the departure from equilibrium. The method explores the behavior of the rate of change of the momentum-integrated structure function, ΔStot( t), as it evolves in time. As an illustration, we examine a (1 + 1)-dimensional model of a stochastic Ginzburg-Landau model at varying cooling rates. We show that ΔStot(t) displays a peak which scales with cooling time-scale as t1/2q in the over-damped limit and t1/3q in the underdamped limit. The peak amplitude was found to scale with cooling time-scale as t6/5q in all viscosities studied.

  13. Phase 1 research program overview

    NASA Technical Reports Server (NTRS)

    Uri, J. J.; Lebedev, O. N.

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. c2001 AIAA. Published by Elsevier Science Ltd.

  14. Phase 1 research program overview.

    PubMed

    Uri, J J; Lebedev, O N

    2001-01-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success. PMID:11858276

  15. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  16. Phase 1 research program overview

    NASA Astrophysics Data System (ADS)

    Uri, JohnJ.; Lebedev, OlegN.

    2001-03-01

    The Phase 1 research program was unprecedented in its scope and ambitious in its objectives. The National Aeronautics and Space Administration committed to conducting a multidisciplinary long-duration research program on a platform whose capabilities were not well known, not to mention belonging to another country. For the United States, it provided the first opportunity to conduct research in a long-duration space flight environment since the Skylab program in the 1970's. Multiple technical as well as cultural challenges were successfully overcome through the dedicated efforts of a relatively small cadre of individuals. The program developed processes to successfully plan, train for and execute research in a long-duration environment, with significant differences identified from short-duration space flight science operations. Between August 1994 and June 1998, thousands of kilograms of research hardware was prepared and launched to Mir, and thousands of kilograms of hardware and data products were returned to Earth. More than 150 Principal Investigators from eight countries were involved in the program in seven major research disciplines: Advanced Technology; Earth Sciences; Fundamental Biology; Human Life Sciences; International Space Station Risk Mitigation; Microgravity; and Space Sciences. Approximately 75 long-duration investigations were completed on Mir, with additional investigations performed on the Shuttle flights that docked with Mir. The flight phase included the participation of seven US astronauts and 20 Russian cosmonauts. The successful completion of the Phase 1 research program not only resulted in high quality science return but also in numerous lessons learned to make the ISS experience more productive. The cooperation developed during the program was instrumental in its success.

  17. Classical analog of quantum phase

    SciTech Connect

    Ord, G.N.

    1992-07-01

    A modified version of the Feynman relativistic chessboard model (FCM) is investigated in which the paths involved are spirals in the space-time. Portions of the paths in which the particle`s proper time is reversed are interpreted in terms of antiparticles. With this intepretation the particle-antiparticle field produced by such trajectories provides a classical analog of the phase associated with particle paths in the unmodified FCM. It is shwon that in the nonrelativistic limit the resulting kernel is the correct Dirac propagator and that particle-antiparticle symmetry is in this case responsible for quantum interference. 7 refs., 3 figs.

  18. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  19. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  20. Reliability in the design phase

    SciTech Connect

    Siahpush, A.S.; Hills, S.W.; Pham, H.; Majumdar, D.

    1991-12-01

    A study was performed to determine the common methods and tools that are available to calculated or predict a system`s reliability. A literature review and software survey are included. The desired product of this developmental work is a tool for the system designer to use in the early design phase so that the final design will achieve the desired system reliability without lengthy testing and rework. Three computer programs were written which provide the first attempt at fulfilling this need. The programs are described and a case study is presented for each one. This is a continuing effort which will be furthered in FY-1992. 10 refs.

  1. Reliability in the design phase

    SciTech Connect

    Siahpush, A.S.; Hills, S.W.; Pham, H. ); Majumdar, D. )

    1991-12-01

    A study was performed to determine the common methods and tools that are available to calculated or predict a system's reliability. A literature review and software survey are included. The desired product of this developmental work is a tool for the system designer to use in the early design phase so that the final design will achieve the desired system reliability without lengthy testing and rework. Three computer programs were written which provide the first attempt at fulfilling this need. The programs are described and a case study is presented for each one. This is a continuing effort which will be furthered in FY-1992. 10 refs.

  2. Phase-covariant quantum benchmarks

    SciTech Connect

    Calsamiglia, J.; Aspachs, M.; Munoz-Tapia, R.; Bagan, E.

    2009-05-15

    We give a quantum benchmark for teleportation and quantum storage experiments suited for pure and mixed test states. The benchmark is based on the average fidelity over a family of phase-covariant states and certifies that an experiment cannot be emulated by a classical setup, i.e., by a measure-and-prepare scheme. We give an analytical solution for qubits, which shows important differences with standard state estimation approach, and compute the value of the benchmark for coherent and squeezed states, both pure and mixed.

  3. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 - 8 hour Extravehicular Activities (EVAs) in a clean, controlled ISS environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 - 8 hour traditional EVAs or 576 - 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of ISS-based tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center Crew and Thermal Systems Division to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected at periodic intervals throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a

  4. ZBLAN Fiber Phase B Study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1997-01-01

    A Phase B feasibility study will be performed for the study of the effects of microgravity on the preform processing and fiber pulling of ZBLAN optical glass. Continuing from the positive results achieved in the fiber annealing experiments in 20 second intervals at 0.001 g on the KC-135 and the 5 minute experiments on the SPAR rocket, experiments will continue to work towards design of a fiber sting to initiate fiber pulling operations in space. Anticipated results include less homogeneous nucleation than ground-based annealed fibers. Infrared Fiber Systems and Galileo are the participating industrial investigators.

  5. Chopper-stabilized phase detector

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.

    1978-01-01

    Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.

  6. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  7. Predictive thermodynamics for condensed phases.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2005-10-01

    Thermodynamic information is central to assessment of the stability and reactivity of materials. However, because of both the demanding nature of experimental thermodynamics and the virtually unlimited number of conceivable compounds, experimental data is often unavailable or, for hypothetical materials, necessarily impossible to obtain. We describe simple procedures for thermodynamic prediction for condensed phases, both ionic and organic covalent, principally via formula unit volumes (or density); our volume-based approach (VBT) provides a new thermodynamic tool for such assessment. These methods, being independent of detailed knowledge of crystal structures, are applicable to liquids and amorphous materials as well as to crystalline solids. Examples of their use are provided. PMID:16172676

  8. Phase Change Fabrics Control Temperature

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  9. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2011-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the

  10. Phase conjugated slab laser designator

    SciTech Connect

    Chandra, S.; Paul, J.L.

    1989-06-06

    A laser designator is described comprising a laser pump means; a high power phase conjugated slab laser amplifier formed of GSGG:Cr:Nd as a lasing material on one side of the pump means; a low power rod shaped laser oscillator on the opposite side of the pump means; and a first plurality of optical reflecting and refracting means for directing and shaping a laser beam which surrounds the pump means and passes through the rod and slab; and a telescope means coupled to the beam to direct it to a distant target.

  11. Airborne electronically steerable phased array

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  12. Solid phase microextraction field kit

    DOEpatents

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  13. Automatic contrast phase estimation in CT volumes.

    PubMed

    Sofka, Michal; Wu, Dijia; Sühling, Michael; Liu, David; Tietjen, Christian; Soza, Grzegorz; Zhou, S Kevin

    2011-01-01

    We propose an automatic algorithm for phase labeling that relies on the intensity changes in anatomical regions due to the contrast agent propagation. The regions (specified by aorta, vena cava, liver, and kidneys) are first detected by a robust learning-based discriminative algorithm. The intensities inside each region are then used in multi-class LogitBoost classifiers to independently estimate the contrast phase. Each classifier forms a node in a decision tree which is used to obtain the final phase label. Combining independent classification from multiple regions in a tree has the advantage when one of the region detectors fail or when the phase training example database is imbalanced. We show on a dataset of 1016 volumes that the system correctly classifies native phase in 96.2% of the cases, hepatic dominant phase (92.2%), hepatic venous phase (96.7%), and equilibrium phase (86.4%) in 7 seconds on average. PMID:22003696

  14. Antenna-array, phase quadrature tracking system

    NASA Technical Reports Server (NTRS)

    Cubley, H. D.

    1970-01-01

    Phase relationship between input signals appearing on widely-spaced parallel connected antenna elements in array is automatically adjusted in phase quadrature tracking system. Compact and lightweight design permit use in wide variety of airborne communications networks.

  15. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  16. Phase diagrams of bosonic ABn chains

    NASA Astrophysics Data System (ADS)

    Cruz, G. J.; Franco, R.; Silva-Valencia, J.

    2016-04-01

    The A B N - 1 chain is a system that consists of repeating a unit cell with N sites where between the A and B sites there is an energy difference of λ. We considered bosons in these special lattices and took into account the kinetic energy, the local two-body interaction, and the inhomogenous local energy in the Hamiltonian. We found the charge density wave (CDW) and superfluid and Mott insulator phases, and constructed the phase diagram for N = 2 and 3 at the thermodynamic limit. The system exhibited insulator phases for densities ρ = α/ N, with α being an integer. We obtained that superfluid regions separate the insulator phases for densities larger than one. For any N value, we found that for integer densities ρ, the system exhibits ρ + 1 insulator phases, a Mott insulator phase, and ρ CDW phases. For non-integer densities larger than one, several CDW phases appear.

  17. Constant-amplitude, frequency- independent phase shifter

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1971-01-01

    Electronic circuit using operational amplifiers provides output with constant phase shift amplitude, with respect to sinusoidal input, over wide range of frequencies. New circuit includes field effect transistor, Q, operational amplifiers, A1 and A2, and phase detector.

  18. Phase Detector for Power-Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1984-01-01

    Positive feedback assures reliable switching. Three Phase Power Factor Controller includes three phase detectors, each produces rectangular waves of duration approximately equal to lag time between line voltage and motor current.

  19. Polarized gravitational waves from cosmological phase transitions

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard; Kahniashvili, Tina

    2015-08-01

    We estimate the degree of circular polarization for the gravitational waves generated during the electroweak and QCD phase transitions from the kinetic and magnetic helicity generated by bubble collisions during those cosmological phase transitions.

  20. Space shuttle phase B study plan

    NASA Technical Reports Server (NTRS)

    Hello, B.

    1971-01-01

    Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.

  1. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  2. Information Display System for Atypical Flight Phase

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris J. (Inventor); Rosenthal, Loren J. (Inventor); Lynch, Robert E. (Inventor); Chidester, Thomas R. (Inventor); Prothero, Gary L. (Inventor); Andrei, Adi (Inventor); Romanowski, Timothy P. (Inventor); Robin, Daniel E. (Inventor); Prothero, Jason W. (Inventor)

    2007-01-01

    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase.

  3. Phase transition dynamics and gravitational waves

    SciTech Connect

    Megevand, Ariel

    2009-04-20

    During a first-order phase transition, gravitational radiation is generated either by bubble collisions or by turbulence. For phase transitions which took place at the electroweak scale and beyond, the signal is expected to be within the sensitivity range of planned interferometers such as LISA or BBO. We review the generation of gravitational waves in a first-order phase transition and discuss the dependence of the spectrum on the dynamics of the phase transition.

  4. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  5. Catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  6. Infrared phased-array sensor

    NASA Astrophysics Data System (ADS)

    Slovick, Brian A.; Bean, Jeffrey A.; Florence, Lou A.; Boreman, Glenn D.

    2011-06-01

    Metal-oxide-metal (MOM) tunnel diode detectors when integrated with phased-array antennas provide determination of the angle of arrival and degree of coherence of received infrared radiation. Angle-of-arrival measurements are made with a pair of dipole antennas coupled to a MOM diode through a coplanar strip transmission line. The direction of maximum angular response is altered by varying the position of the MOM diode along the transmission line connecting the antenna elements. Phased-array antennas can also be used to measure the degree of coherence of a partially coherent infrared field. With a two-element array, the degree of coherence is a measure of the correlation of electric fields received by the antennas as a function of the element separation. Antenna-coupled MOM diode devices are fabricated using electron beam lithography and thin-film deposition through a resist shadow mask. Measurements at 10.6 μm are substantiated by electromagnetic simulations and compared to analytic results.

  7. Availability program: Phase I report

    SciTech Connect

    Thomson, S.L.; Dabiri, A.; Keeton, D.C.; Riemer, B.W.; Waganer, L.M.

    1985-05-01

    An Availability Working Group was formed within the Office of Fusion Energy in March 1984 to consider the establishment of an availability program for magnetic fusion. The scope of this program is defined to include the development of (1) a comprehensive data base, (2) empirical correlations, and (3) analytical methods for application to fusion facilities and devices. The long-term goal of the availability program is to develop a validated, integrated methodology that will provide (1) projections of plant availability and (2) input to design decisions on maintainability and system reliability requirements. The Phase I study group was commissioned to assess the status of work in progress that is relevant to the availability program. The scope of Phase I included surveys of existing data and data collection programs at operating fusion research facilities, the assessment of existing computer models to calculate system availability, and the review of methods to predict and correlate data on component failure and maintenance. The results of these investigations are reported to the Availability Working Group in this document.

  8. Liquid-phase combinatorial synthesis.

    PubMed Central

    Han, H; Wolfe, M M; Brenner, S; Janda, K D

    1995-01-01

    A concept termed liquid-phase combinatorial synthesis (LPCS) is described. The central feature of this methodology is that it combines the advantages that classic organic synthesis in solution offers with those that solid-phase synthesis can provide, through the application of a linear homogeneous polymer. To validate this concept two libraries were prepared, one of peptide and the second of nonpeptide origin. The peptide-based library was synthesized by a recursive deconvolution strategy [Erb, E., Janda, K. D. & Brenner, S. (1994) Proc. Natl. Acad. Sci. USA 91, 11422-11426] and several ligands were found within this library to bind a monoclonal antibody elicited against beta-endorphin. The non-peptide molecules synthesized were arylsulfonamides, a class of compounds of known clinical bactericidal efficacy. The results indicate that the reaction scope of LPCS should be general, and its value to multiple, high-throughput screening assays could be of particular merit, since multimilligram quantities of each library member can readily be attained. PMID:7541541

  9. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  10. High stability buffered phase comparator

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1984-01-01

    A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.

  11. Phase coexistence in proton glass

    SciTech Connect

    Schmidt, V.H.; Trybula, Z.; Pinto, N.J.; Shapiro, S.M.

    1996-11-01

    Proton glasses are crystals of composition M{sub 1{minus}x}(NW{sub 4}){sub x}W{sub 2}AO{sub 4}, where M = K,Rb, W = H,D, A = P,As. For x = 0 there is a ferroelectric (FE) transition, while for x = 1 there is an antiferroelectric (AFE) transition. In both cases, the transition is from a paraelectric (PE) state of tetragonal structure with dynamically disordered hydrogen bonds to an ordered state of orthorhombic structure. For an intermediate x range there is no transition, but the hydrogen rearrangements slow down, and eventually display nonergodic behavior characteristic of glasses. The authors and other have shown from spontaneous polarization, dielectric permittivity, nuclear magnetic resonance, and neutron diffraction experiments that for smaller x there is coexistence of ferroelectric and paraelectric phases, and for larger x there is coexistence of antiferroelectric and paraelectric phases. The authors present a method for analytically describing this coexistence, and the degree to which this coexistence is spatial or temporal.

  12. Modeling of intermediate phase growth

    SciTech Connect

    Umantsev, A.

    2007-01-15

    We introduced a continuum method for modeling of intermediate phase growth and numerically simulated three common experimental situations relevant to the physical metallurgy of soldering: growth of intermetallic compound layer from an unlimited amount of liquid and solid solders and growth of the compound from limited amounts of liquid solder. We found qualitative agreements with the experimental regimes of growth in all cases. For instance, the layer expands in both directions with respect to the base line when it grows from solid solder, and grows into the copper phase when the solder is molten. The quantitative agreement with the sharp-interface approximation was also achieved in these cases. In the cases of limited amounts of liquid solder we found the point of turnaround when the compound/solder boundary changed the direction of its motion. Although such behavior had been previously observed experimentally, the simulations revealed important information: the turnaround occurs approximately at the time of complete saturation of solder with copper. This result allows us to conclude that coarsening of the intermetallic compound structure starts only after the solder is practically saturated with copper.

  13. Assessing Cloud-Phase Conditions.

    NASA Astrophysics Data System (ADS)

    Cober, Stewart G.; Isaac, George A.; Korolev, Alexei V.; Strapp, J. Walter

    2001-11-01

    In situ microphysics measurements made during the First and Third Canadian Freezing Drizzle Experiments (CFDE I and III, respectively) have been used to assess the relative responses to ice and liquid hydrometeors for several common instruments. These included the Rosemount icing detector, 2D-C monoscale and 2D-C grayscale probes, forward-scattering spectrometer probes (FSSP) on three measurement ranges, Nevzorov liquid water content (LWC) and total water content probes, and King LWC probes. The Nevzorov LWC and King LWC probes responded to between 5% and 30% of the ice water content, with an average response of approximately 20%. The average FSSP measurements of droplet spectra were dominated by ice particles for sizes greater than 35 m, independent of the measurement range used, when the ice-crystal concentrations exceeded approximately 1 L1. In contrast, the FSSP measurements of the droplet spectra less than 30 m appeared free of ice-crystal contamination, independent of the ice-crystal concentrations observed. Glaciated cloud conditions always had FSSP-measured median volume diameters greater than 30 m and particle concentrations less than 15 cm3, whereas similar measurements in entirely liquid-phase clouds were observed less than 4% of the time. Images of drops greater than or equal to 125 m in diameter, which were collected in warm clouds greater than 0°C, were used to calibrate geometric criteria, which were, in turn, used to segregate 2D images into circular and noncircular categories. It is shown that, on average, between 5% and 40% of ice crystals greater than or equal to 125 m in diameter will be classified as circular, depending on the particle size, with the percentage decreasing with increasing particle size. In liquid-phase clouds, between 85% and 95% of the 2D images will be correctly classified as circular for all particle sizes. At temperatures less than 4°C, a Rosemount icing-detector threshold of 2 mV s1, corresponding to a maximum LWC of 0

  14. Phase stability in metallic multilayers

    NASA Astrophysics Data System (ADS)

    Genc, Arda

    this problem has been solved by the correction of the spherical aberration of the microscope using a set of non-round lenses and consequently the information limit in an aberration corrected microscope (<0.1nm) has been pushed beyond an uncorrected microscope (˜0.13nm). In 2007, such a corrector system in the probe-forming lens of a Scanning TEM microscope was successfully installed at The Ohio State University. The preliminary results from this microscope were presented in the content of this work where we have studied the microscope and performed first hand experiments. Finally we have addressed the phase stability in Cu/Nb and Ti/Nb nanoscale metallic multilayers by extensive use of these advance characterization techniques and tools. At reduced layer thickness (<2nm) the change in fcc to bcc phase in Cu and hcp to bcc phase in Ti were experimentally confirmed using X-ray diffraction electron diffraction and electron imaging techniques along the plan-view and cross-section directions. These structural transformations were often referred to as being thermodynamic in nature and a classical thermodynamical model explains and predicts the formation of such pseudomorphic phases through the competition of volumetric and interfacial free energy variables. We have investigated both the structural and chemical changes in the Cu/Nb and Ti/Nb nanoscale metallic mutilayers as a function of length scale in order to understand and predict the phase stability. The important constituents: volumetric free energy and interfacial energy changes were experimentally derived considering the chemistry and structure of the multilayers and competition between these thermodynamic terms well explains the observed structural changes in nanoscale metallic multilayers.

  15. Coplanar waveguide fed phased array antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Ponchak, George E.; Lee, R. Q.; Fernandez, N. S.

    1990-01-01

    A K-band four element linear phased array was designed and tested. Coplanar waveguide (CPW) is used for the microwave distribution system. A CPW to twin strip transition is used to interface with the printed dipole antennas. MMIC phased shifters are used for phase control.

  16. Geology of the Phase II System

    SciTech Connect

    Laney, R.; Laughlin, A. William

    1980-11-19

    This is a report on the analysis of EE-2 cuttings and thin sections, geologic characterization of the Phase II system, comparison with Phase 1, and geologic speculations and recommendations concerning Phase II. The EE-2 litholog has been included in the pocket.

  17. Control of phased-array antennas

    NASA Astrophysics Data System (ADS)

    Samoilenko, V. I.; Shishov, Iu. A.

    Principles and algorithms for the control of phased arrays are described. Particular consideration is given to algorithms for the control of phase distribution, adaptive arrays, beam-steerable arrays, the design of phase shifters, the compensation of beam-pointing errors, and the calibration of high-gain antenna pointing.

  18. Continuously variable voltage-controlled phase shifter

    NASA Technical Reports Server (NTRS)

    Johns, C. E.

    1970-01-01

    Phase shifter circuit adjusts the phase relationship between a locally generated reference frequency and a received RF signal applied to a phase-coherent detector. It is small enough to be integrated into a receiver subassembly and operates on command from remote control panels.

  19. 32 CFR 651.49 - Preliminary phase.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (c) Identify the lead and cooperating agency, if already determined (40 CFR 1501.5 and 1501.6). (d... 32 National Defense 4 2013-07-01 2013-07-01 false Preliminary phase. 651.49 Section 651.49... Preliminary phase. In the preliminary phase, the proponent agency or office identifies, as early as...

  20. 32 CFR 651.49 - Preliminary phase.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (c) Identify the lead and cooperating agency, if already determined (40 CFR 1501.5 and 1501.6). (d... 32 National Defense 4 2010-07-01 2010-07-01 true Preliminary phase. 651.49 Section 651.49 National... Preliminary phase. In the preliminary phase, the proponent agency or office identifies, as early as...

  1. 32 CFR 651.49 - Preliminary phase.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (c) Identify the lead and cooperating agency, if already determined (40 CFR 1501.5 and 1501.6). (d... 32 National Defense 4 2012-07-01 2011-07-01 true Preliminary phase. 651.49 Section 651.49 National... Preliminary phase. In the preliminary phase, the proponent agency or office identifies, as early as...

  2. 32 CFR 651.49 - Preliminary phase.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (c) Identify the lead and cooperating agency, if already determined (40 CFR 1501.5 and 1501.6). (d... 32 National Defense 4 2014-07-01 2013-07-01 true Preliminary phase. 651.49 Section 651.49 National... Preliminary phase. In the preliminary phase, the proponent agency or office identifies, as early as...

  3. Centrifuge workers study. Phase II, completion report

    SciTech Connect

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  4. A general formalism for phase space calculations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  5. 45 CFR 800.104 - Phased expansion.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-facilitated SHOP must be consistent with the requirements for QHP issuers specified in 45 CFR 156.200(g). (2... 45 Public Welfare 3 2014-10-01 2014-10-01 false Phased expansion. 800.104 Section 800.104 Public... PROGRAM Multi-State Plan Program Issuer Requirements § 800.104 Phased expansion. (a) Phase-in. OPM...

  6. 45 CFR 800.104 - Phased expansion.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-facilitated SHOP must be consistent with the requirements for QHP issuers specified in 45 CFR 156.200(g). (2... 45 Public Welfare 3 2013-10-01 2013-10-01 false Phased expansion. 800.104 Section 800.104 Public... PROGRAM Multi-State Plan Program Issuer Requirements § 800.104 Phased expansion. (a) Phase-in. OPM...

  7. Phase recovery based on quadratic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Quan Bing; Ge, Xiao Juan; Cheng, Ya Dong; Ni, Na

    2014-11-01

    Most of the information of optical wavefront is encoded in the phase which includes more details of the object. Conventional optical measuring apparatus is relatively easy to record the intensity of light, but can not measure the phase of light directly. Thus it is important to recovery the phase from the intensity measurements of the object. In recent years, the methods based on quadratic programming such as PhaseLift and PhaseCut can recover the phase of general signal exactly for overdetermined system. To retrieve the phase of sparse signal, the Compressive Phase Retrieval (CPR) algorithm combines the l1-minimization in Compressive Sensing (CS) with low-rank matrix completion problem in PhaseLift, but the result is unsatisfied. This paper focus on the recovery of the phase of sparse signal and propose a new method called the Compressive Phase Cut Retrieval (CPCR) by combining the CPR algorithm with the PhaseCut algorithm. To ensure the sparsity of the recovered signal, we use CPR method to solve a semi-definite programming problem firstly. Then apply linear transformation to the recovered signal, and set the phase of the result as the initial value of the PhaseCut problem. We use TFOCS (a library of Matlab-files) to implement the proposed CPCR algorithm in order to improve the recovered results of the CPR algorithm. Experimental results show that the proposed method can improve the accuracy of the CPR algorithm, and overcome the shortcoming of the PhaseCut method that it can not recover the sparse signal effectively.

  8. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  9. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  10. The geometric phase in quantum physics

    SciTech Connect

    Bohm, A.

    1993-03-01

    After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase.

  11. Lipid Bilayers: Clusters, Domains and Phases

    PubMed Central

    Ackerman, David G.; Feigenson, Gerald W.

    2015-01-01

    In this chapter we discuss the complex mixing behavior of plasma membrane lipids. To do so, we first introduce the plasma membrane and membrane mixtures often used to model its complexity. We then discuss the nature of lipid phase behavior in bilayers and the distinction between these phases and other manifestations of nonrandom mixing found in one-phase mixtures, such as clusters, micelles, and microemulsions. Finally, we demonstrate the applicability of Gibbs phase diagrams to the study of increasingly complex model membrane systems, with a focus on phase coexistence, morphology and their implications for the cell plasma membrane. PMID:25658342

  12. Work and quantum phase transitions: quantum latency.

    PubMed

    Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J

    2014-06-01

    We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models. PMID:25019721

  13. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  14. Boost-phase discrimination research

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Feiereisen, William J.

    1993-01-01

    The final report describes the combined work of the Computational Chemistry and Aerothermodynamics branches within the Thermosciences Division at NASA Ames Research Center directed at understanding the signatures of shock-heated air. Considerable progress was made in determining accurate transition probabilities for the important band systems of NO that account for much of the emission in the ultraviolet region. Research carried out under this project showed that in order to reproduce the observed radiation from the bow shock region of missiles in their boost phase it is necessary to include the Burnett terms in the constituent equation, account for the non-Boltzmann energy distribution, correctly model the NO formation and rotational excitation process, and use accurate transition probabilities for the NO band systems. This work resulted in significant improvements in the computer code NEQAIR that models both the radiation and fluid dynamics in the shock region.

  15. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  16. Marker-free phase nanoscopy

    NASA Astrophysics Data System (ADS)

    Cotte, Yann; Toy, Fatih; Jourdain, Pascal; Pavillon, Nicolas; Boss, Daniel; Magistretti, Pierre; Marquet, Pierre; Depeursinge, Christian

    2013-02-01

    We introduce a microscopic method that determines quantitative optical properties beyond the optical diffraction limit and allows direct imaging of unstained living biological specimens. In established holographic microscopy, complex fields are measured using interferometric detection, allowing diffraction-limited phase measurements. Here, we show that non-invasive optical nanoscopy can achieve a lateral resolution of 90 nm by using a quasi-2π-holographic detection scheme and complex deconvolution. We record holograms from different illumination directions on the sample plane and observe subwavelength tomographic variations of the specimen. Nanoscale apertures serve to calibrate the tomographic reconstruction and to characterize the imaging system by means of the coherent transfer function. This gives rise to realistic inverse filtering and guarantees true complex field reconstruction. The observations are shown for nanoscopic porous cell frustule (diatoms), for the direct study of bacteria (Escherichia coli), and for a time-lapse approach to explore the dynamics of living dendritic spines (neurones).

  17. Phase holograms in dichromated gelatin.

    PubMed

    Shankoff, T A

    1968-10-01

    The gelatin-dichromate photosensitive system has been shown to be very efficient as a recording medium for both two- and three-dimensional holographic gratings. Upon development, as much as 33% of incident reading light is diffracted into the first order for the unmodulated thin phase gratings and 95% for the thick holograms. The material can record a grating spacing at least as small as 2600 A, and gives reconstructions comparable with those obtained in 649F film. The air-gelatin index differential of 0.54 is considered responsible for the high diffracted powers found. Exposures vary from 3 mJ to 150 mJ at 4880 A. Certain films have speeds within two orders of magnitude of 649F holographic film. PMID:20068941

  18. Ultramicrowave communications system, phase 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Communications system design was completed and reviewed. Minor changes were made in order to make it more cost effective and to increase design flexibility. System design activities identified the techniques and procedures to generate and monitor high data rate test signals. Differential bi-phase demodulation is the proposed method for this system. The mockup and packaging designs were performed, and component layout and interconnection constraints were determined, as well as design drawings for dummy parts of the system. The possibility of adding a low cost option to the transceiver system was studied. The communications program has the advantage that new technology signal processing devices can be readily interfaced with the existing radio frequency subsystem to produce a short range radar.

  19. Heliogyro Preliminary Design, Phase 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    There are 12 blades in the Heliogyro design, and each blade is envisioned to be 8 meters in width and 7,500 meters in length. The blades are expected to be composed primarily of a thin membrane constructed of material such as Kapton film with an aluminum reflective coating on one side and an infrared emissive coating on the other. The present Phase 2 Final Report covers work done on the following six topics: (1) Design and analysis of a stowable circular lattice batten for the Heliogyro blade. (2) Design and analysis of a biaxially tensioned blade panel. (3) Definition of a research program for micrometeoroid damage to tendons. (4) A conceptual design for a flight test model of the Heliogyro. (5) Definition of modifications to the NASTRAN computer program required to provide improved analysis of the Heliogyro. (6) A User's Manual covering applications of NASTRAN to the Heliogyro.

  20. Hierarchical condensation near phase equilibrium

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Yushchenko, O. V.; Borisyuk, V. N.; Zhilenko, T. I.; Kosminska, Yu. O.; Perekrestov, V. I.

    2012-06-01

    A novel mechanism of new phase formation is studied both experimentally and theoretically in the example of quasi-equilibrium stationary condensation in an ion-plasma sputterer. Copper condensates are obtained to demonstrate that a specific network structure is formed as a result of self-assembly in the course of deposition. The fractal pattern related is inherent in the phenomena of diffusion limited aggregation. Condensate nuclei are shown to form statistical ensemble of hierarchically subordinated objects distributed in ultrametric space. The Langevin equation and the Fokker-Planck equation related are found to describe stationary distribution of thermodynamic potential variations at condensation. Time dependence of the formation probability of branching structures is found to clarify the experimental situation.

  1. Two-phase viscoelastic jetting

    SciTech Connect

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  2. VESTA Project: Phase 0 report

    NASA Technical Reports Server (NTRS)

    Perret, A.

    1986-01-01

    This report presents the results of technical studies conducted at CNES/PMF/APS between October 1984 and September 1985 on the VESTA project. These preliminary studies were conducted to establish mission feasibility in terms ofthe trajectory and the scientific objectives, and to determine the type of interfaces which will be required with the Soviets and to measure the magnitude of French participation. A joint French-Soviet report recommends that the project enter phase A, and was approved by CNES and INTERCOSMOS in September, 1985. The mission analysis is made for a mid-1991 launch, and a development schedule for an end-1992 launch is suggested. The decision to postpone the mission was made during the course of the study.

  3. Rate processes in gas phase

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1983-01-01

    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies for reaction. The effect of cross section function shape and of excited state contributions to reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved.

  4. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  5. Out-of-phase PELDOR

    NASA Astrophysics Data System (ADS)

    Marko, Andriy; Denysenkov, Vasyl; Prisner, Thomas F.

    2013-10-01

    Pulsed electron-electron double resonance (PELDOR) is a method frequently used to determine the structure of bio-macromolecule on a nanometre scale. Usually PELDOR experiments are carried out in the high-temperature limit, when the Boltzmann population of spins oriented parallel and antiparallel to the external magnetic field are almost equal. Also the well-developed theories describing PELDOR apply to this case. However, the high-temperature conditions are no more fulfilled for experiments done in a high magnetic field (above 6 T) and at low temperatures (below 5 K), when the Zeeman interaction energy of an electron spin becomes comparable with thermal energy ?. In this work we demonstrate that PELDOR signals measured at these conditions differ from the usual PELDOR signals. Additional to the standard in-phase component the PELDOR signal at low temperature and high magnetic field also contains an out-of-phase component that disappears in the high-temperature limit. This means that we observe not only the modulation of the refocused transverse magnetisation along a single axis in the rotating coordinate system but rather its precession in the x-y plane with a dipolar frequency. Here, we provide a quantitative explanation as well as a detailed analysis of the spin magnetisation dynamics under such conditions based on density matrix formalism. Understanding the PELDOR phenomena in high field and at low temperatures offers a tool to separate intra from intermolecular interactions, which might be extremely helpful and important for applications to biomolecules with a high degree of conformational flexibility.

  6. Machine Phase Fullerene Nanotechnology: 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  7. Phase II metabolism of benzene.

    PubMed Central

    Schrenk, D; Orzechowski, A; Schwarz, L R; Snyder, R; Burchell, B; Ingelman-Sundberg, M; Bock, K W

    1996-01-01

    The hepatic metabolism of benzene is thought to be a prerequisite for its bony marrow toxicity. However, the complete pattern of benzene metabolites formed in the liver and their role in bone marrow toxicity are not fully understood. Therefore, benzene metabolism was studied in isolated rodent hepatocytes. Rat hepatocytes released benzene-1,2-dihydrodiol, hydroquinone (HQ), catechol (CT), phenol (PH), trans-trans-muconic acid, and a number of phase II metabolites such as PH sulfate and PH glucuronide. Pretreatment of animals with 3-methylcholantrene (3-MC) markedly increased PH glucuronide formation while PH sulfate formation was decreased. Likewise, V79 cells transfected with the 3-MC-inducible rat UGT1.6 cDNA showed a considerable rate of PH and HQ glucuronidation. In addition to inducing glucuronidation of phenols, 3-MC treatment (reported to protect rats from the myelotoxicity of benzene) resulted in a decrease of hepatic CYP2E1. In contrast, pretreatment of rats with the CYP2E1-inducer isopropanol strongly enhanced benzene metabolism and the formation of phenolic metabolites. Mouse hepatocytes formed much higher amounts of HQ than rat hepatocytes and considerable amounts of 1,2,4-trihydroxybenzene (THB) sulfate and HQ sulfate. In conclusion, the protective effect of 3-MC in rats is probably due to a shift from the labile PH sulfate to the more stable PH glucuronide, and to a decrease in hepatic CYP2E1. The higher susceptibility of mice toward benzene may be related to the high rate of formation of the myelotoxic metabolite HQ and the semistable phase II metabolites HQ sulfate and THB sulfate. Images Figure 4. PMID:9118891

  8. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  9. Predicting phase behavior in multicomponent mixtures.

    PubMed

    Jacobs, William M; Frenkel, Daan

    2013-07-14

    Mixtures with a large number of components can undergo phase transitions of a hybrid character, with both condensation and demixing contributions. We describe a robust Monte Carlo simulation method for calculating phase coexistence in multicomponent mixtures. We use this approach to study the phase behavior of lattice models of multicomponent mixtures with strongly varying pair interactions. Such a system can be thought of as a simplified model of the cytosol, with both specific and nonspecific interactions. We show that mapping a multicomponent mixture onto an approximately equivalent one-component system yields both upper and lower bounds on the maximum solute volume fraction of a stable, homogeneous phase. By following the minimum excess-free-energy path from the dilute phase free-energy minimum, we predict the difference in composition between the condensed and dilute phases at the boundary of the homogeneous phase. We find that this "direction" of phase separation rarely aligns with the dominant direction of density fluctuations in the dilute phase. We also show that demixing transitions tend to lower the maximum solute volume fraction at which the homogeneous phase is stable. By considering statistical ensembles of mixtures with random interactions, we show that the demixing contribution to phase separation is self-averaging and dependent only on the mean and variance of the distribution of interactions. PMID:23862930

  10. Upgrades for GERDA Phase II

    NASA Astrophysics Data System (ADS)

    Heisel, Mark

    2014-09-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20ν <= 2 . 1 .1025 yr (90% C.L.), after an exposure of 21 . 6 kg .yr. The result refutes an earlier claim of discovery with high probability. The background index of 1 .10-2 cts/(keV .kg .yr) is lower by about one order of magnitude compared to previous experiments. At present the experiment is being upgraded to Phase II. The aim is to collect an exposure of 100kg .yr and further reduce the background by another order of magnitude to a level of <=10-3 cts/(keV .kg .yr). The detector mass will be increased by ~20 kg of new Broad Energy Germanium (BEGe) detectors from enriched 76Ge, which exhibit superior pulse shape discrimination and hence background rejection power. Low mass detector holders, cold front-end electronics, contacting and cabling schemes are redesigned for ultra low mass and radiopurity. In addition, a retractable liquid argon veto will be installed to efficiently suppress background events that induce scintillation in the liquid argon. A hybrid solution of photomultiplier tubes and silicon photomultipliers coupled to scintillating fibres was chosen. This talk gives an account of the results and these challenging modifications to meet our design goals. The Germanium Detector Array (GERDA

  11. Development of novel max phase composites

    NASA Astrophysics Data System (ADS)

    Hammann, Thomas Jacob

    The Mn+1AXn (MAX) phases are thermodynamically stable nanolaminates which display unusual, and in some cases unique, properties. There currently exist over 60 MAX phases in the literature. These phases are named because they possess a Mn+1AXn chemistry, where n is equal to 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is carbon and/or nitrogen. MAX phases are layered hexagonal (space group D4 6h-P63/mmc) with two formula units per unit cell. The MAX phase material group has high damage tolerance, thermal shock resistance, resistant to creep, lubricious, readily machinable, and has Vickers hardness values of 2-8 GPa which is anomalously soft for transitional metal carbides and nitrides. Some of the MAX phases are also oxidation resistant. The properties of the MAX phases make them very appealing to scientists and engineers for many different structural applications.

  12. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  13. Collective phase description of oscillatory convection

    SciTech Connect

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-15

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  14. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  15. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  16. Two-phase and three-phase liquid-phase microextraction of hydrochlorothiazide and triamterene in urine samples.

    PubMed

    Ahmad Panahi, Homayon; Ejlali, Maryam; Chabouk, Monireh

    2016-07-01

    This paper reports the applicability of two-phase and three-phase hollow fiber based liquid-phase microextraction (HF-LPME) for the extraction of hydrochlorothiazide (HYD) and triamterene (TRM) from human urine. The HYD in two-phase HF-LPME is extracted from 24 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the TRM in three-phase HF-LPME is extracted from aqueous donor phase to organic phase and then back-extracted to the aqueous acceptor phase, which can be directly injected into HPLC for analysis. Under optimized conditions preconcentration factors of HYD and TRM were obtained as 128 and 239, respectively. The calibration curves were linear (R(2)  ≥ 0.995) in the concentration range of 1.0-100 µg/L for HYD and 2.0-100 µg/L for TRM. The limits of detection for HYD and TRM were 0.5 µg/L. The intra-day and inter-day RSD based on four replicates were obtained as ≤5.8 and ≤9.3%, respectively. The methods were successfully applied for determining the concentration of the drugs in urine samples. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26542449

  17. Three-Phase and Six-Phase AC at the Lab Bench

    ERIC Educational Resources Information Center

    Caplan, George M.

    2009-01-01

    Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…

  18. Some geometric properties of quantum phases and calculation of phase formulas

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    An introduction to several geometrical ideas which are of use to quantum mechanics is presented. The Aharonov-Anandan phase is introduced and without reference to any dynamical equation, this phase is formulated by defining an appropriate connection on a specific fiber bundle. The holonomy element gives the phase. By introducing another connection, the Pancharatnam phase formula is derived following a different procedure.

  19. Phase inversion emulsification: Current understanding and applications.

    PubMed

    Perazzo, A; Preziosi, V; Guido, S

    2015-08-01

    This review is addressed to the phase inversion process, which is not only a common, low-energy route to make stable emulsions for a variety of industrial products spanning from food to pharmaceuticals, but can also be an undesired effect in some applications, such as crude oil transportation in pipelines. Two main ways to induce phase inversion are described in the literature, i.e., phase inversion composition (PIC or catastrophic) and phase inversion temperature (PIT or transitional). In the former, starting from one phase (oil or water) with surfactants, the other phase is more or less gradually added until it reverts to the continuous phase. In PIT, phase inversion is driven by a temperature change without varying system composition. Given its industrial relevance and scientific challenge, phase inversion has been the subject of a number of papers in the literature, including extensive reviews. Due to the variety of applications and the complexity of the problem, most of the publications have been focused either on the phase behavior or the interfacial properties or the mixing process of the two phases. Although all these aspects are quite important in studying phase inversion and much progress has been done on this topic, a comprehensive picture is still lacking. In particular, the general mechanisms governing the inversion phenomenon have not been completely elucidated and quantitative predictions of the phase inversion point are limited to specific systems and experimental conditions. Here, we review the different approaches on phase inversion and highlight some related applications, including future and emerging perspectives. PMID:25632889

  20. Phase-diversity phase-sensitive amplification in fiber loop with polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2015-10-01

    In this paper, we propose a parametric amplification scheme based on phase-sensitive amplification in an optical fiber. The proposed system consists of a nonlinear fiber and a dispersive medium in a loop configuration with a polarization beam splitter, where phase-sensitive amplification occurs bi-directionally. The dispersive medium shifts the relative phase between signal and pump lights, due to which the amplified signal light is always obtained regardless of the signal input phase, i.e., a phase-diversity operation is achieved, while the output phase is digitized as in conventional phase-sensitive amplifiers.

  1. High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy.

    PubMed

    Yan, Yangzhi; Ding, Zhihua; Shen, Yi; Chen, Zhiyan; Zhao, Chen; Ni, Yang

    2013-11-01

    Spectral domain phase microscopy for high-sensitive and broad-dynamic-range quantitative phase imaging is presented. The phase retrieval is realized in the depth domain to maintain a high sensitivity, while the phase information obtained in the spectral domain is exploited to extend the dynamic range of optical path difference. Sensitivity advantage of phase retrieved in the depth domain over that in the spectral domain is thoroughly investigated. The performance of the proposed depth domain phase based approach is illustrated by phase imaging of a resolution target and an onion skin. PMID:24216799

  2. Experimental verification of phase retrieval of microbeads in high-speed phase imaging using digital holography

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu; Xia, Peng; Quan, Xiangyu; Nagahama, Naoya; Tanimoto, Shunsuke; Nitta, Kouichi; Awatsuji, Yasuhiro

    2016-06-01

    One of fast measurement systems of μm-size phase objects based on digital holographic microscope with transmission geometry is presented. For building a 3D inspection system of the phase objects, the improvement of recovered phase image is discussed. Under the CW laser illumination, the movement afterimage of phase object was observed. The phase object is recovered by deconvolution filter. Experimental and numerical evaluation are presented.

  3. Reversible nanodiamond-carbon onion phase transformations.

    PubMed

    Xiao, J; Ouyang, G; Liu, P; Wang, C X; Yang, G W

    2014-06-11

    Because of their considerable science and technical interest, nanodiamonds (3-5 nm) are often used as a model to study the phase transformation between graphite and diamond. Here we demonstrated that a reversible nanodiamond-carbon onion phase transformation can become true when laser irradiates colloidal suspensions of nanodiamonds at the ambient temperature and pressure. Nanodiamonds are first transformed to carbon onions driven by the laser-induced high temperature in which an intermediary bucky diamond phase is observed. Sequentially, carbon onions are transformed back to nanodiamonds driven by the laser-induced high temperature and high pressure from carbon onions as nanoscaled temperature and pressure cell upon the laser irradiation process in liquid. Similarly, the same bucky diamond phase serving as an intermediate phase is found during the carbon onion-to-nanodiamond transition. To have a clear insight into the unique phase transformation the thermodynamic approaches on the nanoscale were proposed to elucidate the reversible phase transformation of nanodiamond-to-carbon onion-to-nanodiamond via an intermediary bucky diamond phase upon the laser irradiation in liquid. This reversible transition reveals a series of phase transformations between diamond and carbon allotropes, such as carbon onion and bucky diamond, having a general insight into the basic physics involved in these phase transformations. These results give a clue to the root of meteoritic nanodiamonds that are commonly found in primitive meteorites but their origin is puzzling and offers one suitable approach for breaking controllable pathways between diamond and carbon allotropes. PMID:24823241

  4. Polymer stabilized and dispersed blue phases

    NASA Astrophysics Data System (ADS)

    Kemiklioglu, Emine

    Blue phase liquid crystal (BPLC) materials have potential for advanced applications of display material and technology based on their optical behaviors, such as field-induced birefringence and sub-millisecond response time, which is at least one order of magnitude faster than the present nematic liquid crystal based displays. Since blue phases appear in the narrow temperature range between the chiral nematic and the isotropic phases, there is a temperature range limitation for the application of blue phase liquid crystal. In this dissertation, we have developed blue phase liquid crystal materials with a wide temperature range and low driving voltage. The first goal was to develop wide-temperature range blue phase liquid crystal materials using several stabilization methods notably polymer stabilization, doping of carbon-nanotubes and bent-core molecules. The temperature range could be expanded more than 54°C via the polymer stabilization. The second goal was to explore the polymer dispersed blue phase liquid crystal combining the advantages of the polymer dispersion method and blue phase materials. Polymer encapsulated blue phase films showed a large Kerr constant, low switching voltage and fast response time. Moreover, the temperature range of encapsulated blue phase films were successfully expanded from 9°C to 54°C .

  5. Phase imaging in brain using SWIFT

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri Juhani; Garwood, Michael; Gröhn, Olli; Corum, Curtis Andrew

    2015-03-01

    The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.

  6. Array Phase Shifters: Theory and Technology

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  7. Phase transition model for community detection

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Lu, Rui; Jiao, Licheng; Liu, Fang; Yu, Xin; Wang, Da; Sun, Bo

    2013-03-01

    Motivated by social and biological interactions, a novel type of phase transition model is provided in order to investigate the emergence of the clustering phenomenon in networks. The model has two types of interactions: one is attractive and the other is repulsive. In each iteration, the phase of a node (or an agent) moves toward the average phase of its neighbors and moves away from the average phase of its non-neighbors. The velocities of the two types of phase transition are controlled by two parameters, respectively. It is found that the phase transition phenomenon is closely related to the topological structure of the underlying network, and thus can be applied to identify its communities and overlapping groups. By giving each node of the network a randomly generated initial phase and updating these phases by the phase transition model until they reach stability, one or two communities will be detected according to the nodes’ stable phases, confusable nodes are moved into a set named Of. By removing the detected communities and the nodes in Of, another one or two communities will be detected by an iteration of the algorithm, …. In this way, all communities and the overlapping nodes are detected. Simulations on both real-world networks and the LFR benchmark graphs have verified the efficiency of the proposed scheme.

  8. Active phase locking of thirty fiber channels using multilevel phase dithering method.

    PubMed

    Huang, Zhimeng; Tang, Xuan; Luo, Yongquan; Liu, Cangli; Li, Jianfeng; Zhang, Dayong; Wang, Xiaojun; Chen, Tunan; Han, Mei

    2016-03-01

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels is achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams. PMID:27036760

  9. Active phase locking of thirty fiber channels using multilevel phase dithering method

    NASA Astrophysics Data System (ADS)

    Huang, Zhimeng; Tang, Xuan; Luo, Yongquan; Liu, Cangli; Li, Jianfeng; Zhang, Dayong; Wang, Xiaojun; Chen, Tunan; Han, Mei

    2016-03-01

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels is achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.

  10. High phase order transmission demonstration. Final report

    SciTech Connect

    Krizauskas, E.; Landers, T.L.; Richeda, R.J.; Oppel, L.J.; Stewart, J.R.

    1997-12-01

    High-phase-order (HPO), or six-phase, transmission is an extension of line compaction that further increases the power transfer capability of a limited transmission line right-of-way. On July 1, 1992, the first commercially operated six-phase transmission line was energized as a tie line integrated into the New York State Electric and Gas (NYSEG) existing three-phase power system. Previous Empire State Electric Energy Research Corporation (ESEERCO) Project EP 88-23 reports detail the analytical framework and conceptual studies (Phase 1) and the detailed engineering and design/construction (Phase 2) that preceded the 1992 energization. After the six-phase line was constructed, a testing program verified the theoretical predictions of electrical effects due to six-phase construction. This Final Project Report details the results of the Phase 3 testing program and examines steady-state power frequency parameters, partial switching, corona effects, and field effects. In addition, this report details the results of two unplanned unstaged faults, and low-level staged faults. After one year of operation, results led to the identification of aspects that warranted additional study and evaluation. This report summarizes these additional investigations and evaluations of midspan spacers, off-the-shelf microprocessor-based relays for six-phase line protection, live line maintenance, possible standard six-phase station designs, and an economic evaluation of break-even distances for which six-phase is more economical than conventional double-circuit three-phase applications for line upgrades and new construction.

  11. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho

    1993-07-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar{mu}s/cm{sup 2}. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/{mu}s under a loading pressure rate of several Mbar/{mu}s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/{mu}s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/{mu}s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/{mu}s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  12. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho.

    1993-01-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar[mu]s/cm[sup 2]. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/[mu]s under a loading pressure rate of several Mbar/[mu]s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/[mu]s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/[mu]s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/[mu]s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  13. ERIS: preliminary design phase overview

    NASA Astrophysics Data System (ADS)

    Kuntschner, Harald; Jochum, Lieselotte; Amico, Paola; Dekker, Johannes K.; Kerber, Florian; Marchetti, Enrico; Accardo, Matteo; Brast, Roland; Brinkmann, Martin; Conzelmann, Ralf D.; Delabre, Bernard A.; Duchateau, Michel; Fedrigo, Enrico; Finger, Gert; Frank, Christoph; Rodriguez, Fernando G.; Klein, Barbara; Knudstrup, Jens; Le Louarn, Miska; Lundin, Lars; Modigliani, Andrea; Müller, Michael; Neeser, Mark; Tordo, Sebastien; Valenti, Elena; Eisenhauer, Frank; Sturm, Eckhard; Feuchtgruber, Helmut; George, Elisabeth M.; Hartl, Michael; Hofmann, Reiner; Huber, Heinrich; Plattner, Markus P.; Schubert, Josef; Tarantik, Karl; Wiezorrek, Erich; Meyer, Michael R.; Quanz, Sascha P.; Glauser, Adrian M.; Weisz, Harald; Esposito, Simone; Xompero, Marco; Agapito, Guido; Antichi, Jacopo; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Carbonaro, Luca; Cresci, Giovanni; Fini, Luca; Pinna, Enrico; Puglisi, Alfio T.; Quirós-Pacheco, Fernando; Riccardi, Armando; Di Rico, Gianluca; Arcidiacono, Carmelo; Dolci, Mauro

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1' patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the

  14. Mining the Observational Phase Space

    NASA Astrophysics Data System (ADS)

    Norris, Ray

    2012-09-01

    Experience has shown that many great discoveries in astronomy have been made, not by testing a hypothesis, but by observing the sky in an innovative way. The necessary conditions for this to take place are (a) a telescope observing an unexplored part of the observational phase space (frequency, resolution, time-domain, area of sky, etc), (b) an intelligent observer who understands the instrument sufficiently well to distinguish between artefact and discovery, (c) a prepared and enthusiastic mind ready to accommodate and interpret a new discovery. Next generation survey telescopes will easily satisfy (a), if only in terms of the numbers of objects surveyed. However, their petabytes of data, and arms-length access, may prevent an observer from satisfying (b) and (c). We can only hope that someone will eventually stumble across any unexpected phenomena in the data. However the impenetrable size of the database implies dark corners that will never be fully explored. Discoveries may remain undiscovered, forever. What is the alternative? Can we harness data-mining techniques to help the intelligent observer search for the unexpected? I believe we can, and indeed we must if we are to reap the full scientific benefit of next-generation survey telescopes.

  15. Viability of Dirac phase leptogenesis

    SciTech Connect

    Anisimov, Alexey; Blanchet, Steve; Di Bari, Pasquale E-mail: blanchet@mppmu.mpg.de

    2008-04-15

    We discuss the conditions for a non-vanishing Dirac phase {delta} and mixing angle {theta}{sub 13}, sources of CP violation in neutrino oscillations, to be uniquely responsible for the observed matter-antimatter asymmetry of the Universe through leptogenesis. We show that this scenario, that we call {delta}-leptogenesis, is viable when the degenerate limit for the heavy right-handed (RH) neutrino spectrum is considered. We derive an interesting joint condition on sin{theta}{sub 13} and the absolute neutrino mass scale that can be tested in future neutrino oscillation experiments. In the limit of the hierarchical heavy RH neutrino spectrum, we strengthen the previous result that {delta}-leptogenesis is only very marginally allowed, even when the production from the two heavier RH neutrinos is taken into account. An improved experimental upper bound on sin{theta}{sub 13} and/or an account of quantum kinetic effects could completely rule out this option in the future. Therefore, {delta}-leptogenesis can be also regarded as motivation for models with degenerate heavy neutrino spectrum.

  16. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  17. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  18. Quantum rewinding via phase estimation

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2015-03-01

    In cryptography, the notion of a zero-knowledge proof was introduced by Goldwasser, Micali, and Rackoff. An interactive proof system is said to be zero-knowledge if any verifier interacting with an honest prover learns nothing beyond the validity of the statement being proven. With recent advances in quantum information technologies, it has become interesting to ask if classical zero-knowledge proof systems remain secure against adversaries with quantum computers. The standard approach to show the zero-knowledge property involves constructing a simulator for a malicious verifier that can be rewinded to a previous step when the simulation fails. In the quantum setting, the simulator can be described by a quantum circuit that takes an arbitrary quantum state as auxiliary input but rewinding becomes a nontrivial issue. Watrous proposed a quantum rewinding technique in the case where the simulation's success probability is independent of the auxiliary input. Here I present a more general quantum rewinding scheme that employs the quantum phase estimation algorithm. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

  19. SYNCHEM feasibility report: Phase 1

    SciTech Connect

    Not Available

    1995-01-01

    Several Czech and US companies have entered into a development agreement for the purposes of determining the technical and economic feasibility and overall financeability of an integrated gasification combined cycle (IGCC) regional energy facility to be located adjacent to the Chemopetrol refinery in Litvinov, Czech Republic. The Project would use a feedstock comprised of coal supplied by Doly a upravny Komorany s.p. (DUK) coal mining company and mined from the Most/Litvinov area together with high sulfur residual oils from the Chemopetrol refinery. When gasified together with oxygen from an Air Products air separation plant, and based on an average yearly consumption of 2,100K metric tons per year of coal (as delivered) and 630K tonnes per year of oil, approximately 11 million normal cubic meters per day of syngas will be produced. At its current projected design capacity, when combusted in two General Electric advanced technology Frame 9FA gas turbines, the Project will produce approximately 690MW of electric power; 250 metric tons/hour of steam for process; and 135 thermal equivalent MW of district heat. The Feasibility Phase efforts described in this report indicate the real possibility for a successful and profitable IGCC Project for the Czech Republic. It is therefore incumbent upon all the Project Participants to review and evaluate the information contained herein such that a go/no-go decision can be reached by early next year.

  20. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  1. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  2. Pure Phase Solubility Limits: LANL

    SciTech Connect

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  3. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  4. The DARHT Phase 2 Linac

    NASA Astrophysics Data System (ADS)

    Rutkowski, Henry

    The second phase accelerator for the Dual Axis Hydrodynamic Test facility (DARHT) is designed to provide an electron beam pulse that is 2 microsec long, 2kA, and 20 MeV in particle energy. The injector provides 3.2 MeV so that the linac need only provide 16.8 MeV. The linac is made with two types of induction accelerator cells. The first block of 8 cells have a 14 in. beam pipe compared to 10 in. in the remaining 80 cells. The other principal difference is that the first 8 cells have reduced volt-sec in their induction cores as a result of a larger diameter beam pipe. The cells are designed for very reliable high voltage operation. The insulator is Mycalex. Results from prototype tests are given including results from solenoid measurements. Each cell contains a solenoid for beam transport and a set of x-y correction coils to reduce corkscrew motion. Details of tests to determine RF mode impedances relevant to BBU generation are given. Blocks of cells are separated by "intercells" some of which contain transport solenoids. The intercells provide vacuum pumping stations as well. Issues of alignment and installation are discussed.

  5. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  6. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  7. Surface metrology by phase contrast

    NASA Astrophysics Data System (ADS)

    Baker, Lionel R.

    1990-08-01

    Increasing use of electrooptical imaging and detection systems in thermography high density information storage laser instrumentation and X-ray optics has led to a pressing need for machinecompatible sensors for the measurement of surface texture. This paper reviews recent advances in the use of deterministic and parametric noncontact methods for texture measurement and justifies the need for objective simple and yet precise means for displaying the microfinish of a machined surface. The design of a simple two channel phase contrast microscope is described which can be calibrated by test pieces and used as a means for optimising the process parameters involved in the generation of high quality surfaces. Typical results obtained with this technique including dynamic range and ultimate sensitivity are discussed. 1 . NEED FOR SURFACE METROLOGY Surface quality has a direct influence on product acceptability in many different industries including those concerned with optoelectronics and engineering. The influence may be cosmetic as with paint finish on a motor car body or functional for example when excessive wear rates may occur in a bearing surface with inadequate oil retention. Since perfection can never be achieved and overspecification can be costly it is clearly necessary to be able to define thresholds of acceptance in relation to different situations. Such thresholds do of course require agreed methods of measurement with traceability to national standards. The current trends in surface metrology are towards higher

  8. Phase coherent transport in graphene

    NASA Astrophysics Data System (ADS)

    Morpurgo, Alberto

    2008-03-01

    The investigation of transport phenomena originating from quantum interference of electronic waves has proven to be a very effective probe of the electronic properties of conducting materials. Recent work has shown that this is also the case for graphene, a novel material consisting of an individual layer of carbon atoms, in which the electron dynamics is governed by the Dirac equation. After introducing the peculiar aspect of the low-energy electronic properties of graphene that are important to understand quantum interference in this material, I will present our experimental work. I will first discuss our study of Aharonov-Bohm conductance oscillations in graphene ring-shaped devices -which demonstrates directly the phase coherent nature of transport in graphene-, and emphasize an unusual dependence of the oscillation amplitude on the device conductance. Next I will touch upon the anomalous behavior of weak-localization observed in the experiments and compare it with our observations of supercurrent and superconducting proximity effect in graphene Josephson junctions. I will conclude by discussing the relevance of the two valleys in graphene for the understanding of quantum interference in this material.

  9. Gaseous phase coal surface modification

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  10. ALICE detector in construction phase

    NASA Astrophysics Data System (ADS)

    Peryt, Wiktor S.

    2005-09-01

    ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.

  11. Phase transformations in ternary monotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gröbner, Joachim; Schmid-Fetzer, Rainer

    2005-09-01

    Monotectic aluminum alloys are of interest for the development of new alloys for technological applications such as self-lubricating bearings. In contrast to the well-known binary phase diagrams, many of the ternary systems are not well established. Moreover, in a ternary monotectic alloy one may encounter the four-phase equilibrium L‧+L″+solid1+solid2, whereas in a binary system only a three-phase equilibrium L‧+L″+solid1 is possible. This opens a window for generating entirely new monotectic microstructures. The basis for such developments is the knowledge of the ternary phase diagrams and the conditions under which such four-phase reactions or different extensions of the binary monotectic reactions may form. This work presents a systematic classification of monotectic ternary aluminum alloys, illustrated by real systems. The study employs thermodynamic calculations of the ternary phase diagrams.

  12. Phase diagram of a single lane roundabout

    NASA Astrophysics Data System (ADS)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-03-01

    Using the cellular automata model, we numerically study the traffic dynamic in a single lane roundabout system of four entry/exit points. The boundaries are controlled by the injecting rates α1, α2 and the extracting rate β. Both the system with and without Splitter Islands of width Lsp are considered. The phase diagram in the (α1 , β) space and its variation with the roundabout size, Pagg (i.e. the probability of aggressive entry), and Pexit (i.e. the probability of preferential exit) are constructed. The results show that the phase diagram in both cases consists of three phases: free flow, congested and jammed. However, as Lsp increases the free flow phase enlarges while the congested and jammed ones shrink. On the other hand, the short sized roundabout shows better performance in the free flow phase while the large one is more optimal in the congested phase. The density profiles are also investigated.

  13. Coexisting Liquid Phases Underlie Nucleolar Subcompartments.

    PubMed

    Feric, Marina; Vaidya, Nilesh; Harmon, Tyler S; Mitrea, Diana M; Zhu, Lian; Richardson, Tiffany M; Kriwacki, Richard W; Pappu, Rohit V; Brangwynne, Clifford P

    2016-06-16

    The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP. PMID:27212236

  14. Phase Modulation of Photonic Band Gap Signal

    PubMed Central

    Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng

    2016-01-01

    We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849

  15. Thermochromic phase transitions in two aromatic tetrachlorocuprates

    NASA Astrophysics Data System (ADS)

    Mostafa, M. Fareed; Abdel-Kader, M. M.; Arafat, S. S.; Kandeel, E. M.

    1991-06-01

    Bis(para-toluidinium)2 tetrachlorocuprate and bis(para-chloroanilinium)2 tetrachlorocuprate crystallize in a perovskite-related layer structure. The former crystallizes in an orthorhombic unit cell with a = 6.911 Å, b = 7.052 Å and c = 33.182 Å. It undergoes a thermochromic first order phase transition from a yellow low temperature phase to a dark orange high temperature phase at T = 300 ± 3K with a 10° thermal hysteresis. The latter compound undergoes two thermochromic transitions expressed by the relation. Orange Phase (I) rightleftarrows294 K Yellow Phase (II) rightleftarrows214K Green Phase (III). Both compounds are ferromagnetic at low temperture with exchange interactions J/k = 17.5° and 20° for the two compounds respectively.

  16. One- and two-phase nozzle flows

    SciTech Connect

    Chang, I.S.

    1980-01-01

    A time-dependent technique, in conjunction with the boundary-fitted coordinates system, is applied to solve a gas-only one-phase flow and a fully-coupled, gas-particle two-phase flow inside nozzles with small throat radii of curvature, steep wall gradients, and submerged configurations. The emphasis of the study has been placed on one- and two-phase flow in the transonic region. Various particle sizes and particle mass fractions have been investigated in the two-phase flow. The salient features associated with the two-phase nozzle flow compared with those of the one-phase flow are illustrated through the calculations of the JPL nozzle, the Titan III solid rocket motor, and the submerged nozzle configuration found in the Inertial Upper Stage (IUS) solid rocket motor.

  17. Spin Effects in Bose-Glass Phases

    NASA Astrophysics Data System (ADS)

    Paganelli, S.; ŁaÇki, M.; Ahufinger, V.; Zakrzewski, J.; Sanpera, A.

    2011-12-01

    We study the mechanism of formation of Bose glass (BG) phases in the spin-1 Bose Hubbard model when diagonal disorder is introduced. To this aim, we analyze first the phase diagram in the zero-hopping limit, there disorder induces superposition between Mott insulator (MI) phases with different filling numbers. Then BG appears as a compressible but still insulating phase. The phase diagram for finite hopping is also calculated with the Gutzwiller approximation. The bosons' spin degree of freedom introduces another scattering channel in the two-body interaction modifying the stability of MI regions with respect to the action of disorder. This leads to some peculiar phenomena such as the creation of BG of singlets, for very strong spin correlation, or the disappearance of BG phase in some particular cases where fluctuations are not able to mix different MI regions.

  18. Rapid control of phase growth by nanoparticles

    PubMed Central

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Konishi, Hiromi; Jin, Song; Li, Xiao-Chun

    2014-01-01

    Effective control of phase growth under harsh conditions (such as high temperature, highly conductive liquids or high growth rate), where surfactants are unstable or ineffective, is still a long-standing challenge. Here we show a general approach for rapid control of diffusional growth through nanoparticle self-assembly on the fast-growing phase during cooling. After phase nucleation, the nanoparticles spontaneously assemble, within a few milliseconds, as a thin coating on the growing phase to block/limit diffusion, resulting in a uniformly dispersed phase orders of magnitude smaller than samples without nanoparticles. The effectiveness of this approach is demonstrated in both inorganic (immiscible alloy and eutectic alloy) and organic materials. Our approach overcomes the microstructure refinement limit set by the fast phase growth during cooling and breaks the inherent limitations of surfactants for growth control. Considering the growing availability of numerous types and sizes of nanoparticles, the nanoparticle-enabled growth control will find broad applications. PMID:24809454

  19. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  20. The CEBAF fiber optic phase reference system

    SciTech Connect

    Crawford, K.; Simrock, S.; Hovater, C.; Krycuk, A.

    1995-12-31

    The specified phase stability of the CEBAF RF distribution system is 2.9{degree} rms per linac. Stability is achieved through the use of a temperature and pressure regulated coaxial drive line. Purpose of the fiber optic phase reference system is to monitor the relative phase at the beginning and ending of this drive line, between linacs, injector and separator to determine drift due to ambient temperature fluctuations. The system utilizes an Ortel 1310 nm single mode laser driving Sumitumo optical fiber to distribute a reference signal at 1497 MHz. Phase of this reference signal is compared to the 1427 MHz (LO) and the 70 MHz (IF) via a 360{degree} phase detector. The detected information is then routed to the CEBAF control system for display with a specified resolution of {+-}0.2{degree} over a 20{degree} phase delta.