Science.gov

Sample records for analytical laboratory rtal

  1. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  2. Road transportable analytical laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1996-12-31

    Remediation of DOE contaminated areas requires extensive sampling and analysis. Reliable, road transportable, fully independent laboratory systems that could perform on-site a full range of analyses meeting high levels of quality assurance and control, would accelerate and thereby reduce the cost of cleanup and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping, and manpower associated with sample shipments. Goals of RTAL are to meet the needs of DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. The system consists of a set of individual laboratory modules deployable independently or together, to meet specific site needs: radioanalytical lab, organic chemical analysis lab, inorganic chemical analysis lab, aquatic biomonitoring lab, field analytical lab, robotics base station, decontamination/sample screening module, and operations control center. Goal of this integrated system is a sample throughput of 20 samples/day, providing a full range of accurate analyses on each sample within 16 h (after sample preparation), compared with the 45- day turnaround time in commercial laboratories. A prototype RTAL consisting of 5 modules was built and demonstrated at Fernald(FEMP)`s OU-1 Waste Pits, during the 1st-3rd quarters of FY96 (including the `96 Blizzard). All performance and operational goals were met or exceeded: as many as 50 sample analyses/day were achieved, depending on the procedure, sample turnaround times were 50-67% less than FEMP`s best times, and RTAL costs were projected to be 30% less than FEMP costs for large volume analyses in fixed laboratories.

  3. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    SciTech Connect

    1998-10-01

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations.

  4. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-04-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. The goal of the Road Transportable Analytical Laboratory (RTAL) project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soils, ground water and surface waters. This document describes the requirements for such a laboratory.

  5. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-12-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  6. Road Transportable Analytical Laboratory (RTAL) system: Volume I. Final report

    SciTech Connect

    Finger, S.M.; De Avila, J.C.; Keith, V.F.

    1996-08-01

    This report describes a portable laboratory system for the analysis of soils, ground water, and surface waters for the detection and quantification of hazardous materials, organics, and radioactive contaminants. The goal of the Road Transportable Analytical Laboratory (RTAL) is a sample throughput of 20 samples per day, providing a full range of analysis on each sample within 16 hours of preparation with high accuracy.

  7. Road Transportable Analytical Laboratory (RTAL) system: Volume III, Appendices C through J. Final report

    SciTech Connect

    Finger, S.M.; De Avila, J.C.; Keith, V.F.

    1996-08-01

    The Road Transportable Analytical Laboratory (RTAL) provides a portabler laboratory for the analysis of soils, ground water, and surface water. This report presents data from a soils sample TCLP VOA and SVOA report, aqueous sample RCRA metals report, soils sample total and isotopic uranium report, SVOA sample analytical performance report, and and RCRA metal sample analytical performance report.

  8. Road Transportable Analytical Laboratory (RTAL) system. Quarterly report, November 1995--January 1996

    SciTech Connect

    1996-12-31

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs. After evaluating the needs of the DOE field activities and investigating alternative system designs, the modules included in the RTAL are: radioanalytical laboratory; organic chemical analysis laboratory; inorganic chemical analysis laboratory; aquatic biomonitoring laboratory; field analytical laboratory; robotics base station; decontamination/sample screening module; operations control center; and protected living quarters. The goal of the integrated laboratory system is a sample throughput of 20 samples per day, providing a full range of analyses on each sample within 16 hours (after sample preparation) with high accuracy and high quality assurance. The RTAL will provide the DOE with very significant savings in terms of both cost and time. This will accelerate and improve the efficiency of clean-up and remediation operations throughout the DOE complex. At the same time, the system will provide full protection for operating personnel and sensitive analytical equipment against the environmental extremes and hazards encountered at DOE sites.

  9. Road transportable analytical laboratory (RTAL) system. Quarterly report, August--October 1995

    SciTech Connect

    1995-11-01

    Goal is the development and demonstration of a system to meet DOE needs for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. The system consists of a set of individual laboratory modules. This report documents progress on Phase II, which is a transition to Maturity Level 5, Full-Scale Demonstration.

  10. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  11. Road Transportable Analytical (RTAL) laboratory system. Quarterly report, February 1995--April 1995

    SciTech Connect

    1995-05-01

    US Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. The major types of contamination found at the various sites have been summarized in the `Environmental Restoration and Management Five Year Plan` and, except for radionuclides (at most locations) and high explosives (at a few locations), are representative of the types of wastes found at many industrial facilities. The DOE faces additional unique challenges in cleaning up this contamination. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, many times wastes were stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas.

  12. Road Transportable Analytical Laboratory (RTAL) system. Quarterly report, May--July 1995

    SciTech Connect

    1995-08-01

    Goal is to develop and demonstrate a system for rapid, accurate analysis of hazardous and radioactive contaminants in soil, groundwater, and surface waters. Goal throughput is 20 samples per day, within 16 hours on each sample (after sample preparation). Purpose is to improve the efficiency of cleanup and remediation throughout the DOE complex. During this period, the tasks on prototype system construction and on-site prototype demonstration were worked on; progress is reported.

  13. Analytical laboratory quality audits

    SciTech Connect

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  14. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  15. Laboratory Workhorse: The Analytical Balance.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    1979-01-01

    This report explains the importance of various analytical balances in the water or wastewater laboratory. Stressed is the proper procedure for utilizing the equipment as well as the mechanics involved in its operation. (CS)

  16. Automation and quality in analytical laboratories

    SciTech Connect

    Valcarcel, M.; Rios, A.

    1994-05-01

    After a brief introduction to the generic aspects of automation in analytical laboratories, the different approaches to quality in analytical chemistry are presented and discussed to establish the following different facets emerging from the combination of quality and automation: automated analytical control of quality of products and systems; quality control of automated chemical analysis; and improvement of capital (accuracy and representativeness), basic (sensitivity, precision, and selectivity), and complementary (rapidity, cost, and personnel factors) analytical features. Several examples are presented to demonstrate the importance of this marriage of convenience in present and future analytical chemistry. 7 refs., 4 figs.

  17. Analytical laboratory quality control charting

    SciTech Connect

    O'Bryan, Ervin F.

    2001-06-11

    In life the importance of setting goals is stressed. The desired end result must be envisioned to chart a path and determine indicators to provide feedback on the process. Quality does not happen by accident but is achieved through a constant process of setting goals, process development, monitoring process indicators, fine tuning the process, and achieving results. These goals are to be focused and clearly measurable. In industry and life the setting of goals with clear process indicators is often difficult because of the variable end result and scarcity of measurements. Laboratories are fortunate in that they have a plethora of measurements with known or desired end results (controls) to monitor the process and give instantaneous feedback on quality. A key quality tool used by the laboratory to monitor and evaluate the lab processes is control charting. When properly utilized Quality Control (QC) Charts allow labs to be proactive in addressing problems rather than reactive. Several methods are available for control charting and some are listed in the references/information sources. The content for this paper is based on the control-charting program utilized at the Department of Energy's Fernald site. This control-charting program has specific areas of emphasis, simple charts, trend analyses, and effective follow-up.

  18. 77 FR 16551 - Standards for Private Laboratory Analytical Packages and Introduction to Laboratory Related...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... HUMAN SERVICES Food and Drug Administration Standards for Private Laboratory Analytical Packages and Introduction to Laboratory Related Portions of the Food Modernization Safety Act for Private Laboratory... Administration (FDA) is announcing two meetings entitled ``Standards for Private Laboratory Analytical...

  19. Wageningen Evaluating Programmes for Analytical Laboratories (WEPAL).

    PubMed

    van Dijk, D; Houba, V J

    1999-03-01

    The paper describes three of the Wageningen Evaluating Programmes for Analytical Laboratories (WEPAL). These include the analyses of numerous compounds and elements and different parameters such as inorganic chemical composition, organic matter, polycyclic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides, some herbicides, heavy metals, particle size, and so on in soil, sediment, compost, manure, and sludge. One programme includes the analysis of inorganic chemical composition, nutritional values, and selected vitamins and amino acids in plant samples. Finally, the paper describes how the results are reported and statistically evaluated. PMID:10457652

  20. Clinical laboratory analytics: Challenges and promise for an emerging discipline.

    PubMed

    Shirts, Brian H; Jackson, Brian R; Baird, Geoffrey S; Baron, Jason M; Clements, Bryan; Grisson, Ricky; Hauser, Ronald George; Taylor, Julie R; Terrazas, Enrique; Brimhall, Brad

    2015-01-01

    The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the "big data" clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed. PMID:25774320

  1. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    PubMed Central

    Shirts, Brian H.; Jackson, Brian R.; Baird, Geoffrey S.; Baron, Jason M.; Clements, Bryan; Grisson, Ricky; Hauser, Ronald George; Taylor, Julie R.; Terrazas, Enrique; Brimhall, Brad

    2015-01-01

    The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and “meaningful use.” The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the “big data” clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed. PMID:25774320

  2. Guide to Savannah River Laboratory Analytical Services Group

    SciTech Connect

    Not Available

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  3. Analytical Chemistry Laboratory: Progress report for FY 1988

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  4. Analytical Chemistry Laboratory progress report for FY 1991

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  5. Analytical Chemistry Laboratory progress report for FY 1985

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  6. SINGLE-LABORATORY EVALUATION OF OSMIUM ANALYTICAL METHODS

    EPA Science Inventory

    The results of a single-laboratory study of osmium analytical methods are described. The methods studied include direct-aspiration atomic absorption spectroscopy (EPA Method 7550), furnace atomic absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy ...

  7. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    SciTech Connect

    Not Available

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  8. 15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL LABORATORY. THE LAB ANALYZED SAMPLES FOR PLUTONIUM, AMERICIUM, URANIUM, NEPTUNIUM, AND OTHER RADIOACTIVE ISOTOPES. (9/25/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  9. Analytical Chemistry Laboratory progress report for FY 1998.

    SciTech Connect

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  10. Analytical Chemistry Laboratory progress report for FY 1999

    SciTech Connect

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  11. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  12. Analytical Chemistry Laboratory, progress report for FY 1993

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  13. Idaho National Engineering Laboratory analytical services performance evaluation plan

    SciTech Connect

    Connolly, J.M.; Sailer, S.J.; Anderson, D.A.

    1994-03-01

    The Idaho National Engineering Laboratory`s (INEL`s) Sample Management Office (SMO) conducts a Performance Evaluation Program that ensures that data of known quality are supplied by the analytical. chemistry service organizations with which the INEL contracts. The Analytical Services Performance Evaluation Plan documents the routine monitoring and assessment of suppliers conducted by the SMO, and it describes the procedures that are followed to ensure that suppliers meet all appropriate requirements. Because high-quality analytical support is vital to the success of DOE Environmental Management programs at the INEL, the performance of organizations providing these services must be routinely monitored and assessed. Analytical disciplines for which performance is monitored include metals, organics, radiochemical, and miscellaneous classical analysis methods.

  14. Analytical chemistry laboratory. Progress report for FY 1997

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  15. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  16. Analytical evaluation of laboratories wishing to perform environmental characterization studies

    SciTech Connect

    Lauenstein, G.G.; Cantillo, A.Y.

    1997-07-01

    Laboratories competing to analyze bivalve mollusks under contract to the National Oceanic and Atmospheric Administration`s Mussel Watch Project were required to undergo analytical tests of their ability to quantify environmental contaminants as part of the contract evaluation process. During the 1989 selection process laboratories that appeared to qualify on the basis of their written proposals were provided a gravimetrically prepared solution with unknown quantities of an undefined number of organic contaminants that are regularly quantified for the Mussel Watch Project. In 1994, competing laboratories were once again tested but this time using matrix materials for the quantification of both trace elements and organic contaminants. Three laboratory groups participated in the exercises. For the 1989 gravimetrically prepared solutions, all participating laboratories were able to identify the contaminants present and in all but two cases were able to report values to within {+-}25% of the known values. In 1994, all laboratories were within the acceptance criteria for the quantification of trace elements in the homogenate sample. Analytical laboratory testing is an important first step to ensure that environmental characterization studies are successful.

  17. Statement of work for analytical services provided to Westinghouse Hanford Company by the Pacific Northwest National Laboratory analytical chemistry laboratory

    SciTech Connect

    Perry, J.K., Westinghouse Hanford

    1996-05-24

    The purpose of this Statement of Work is to establish laboratory analytical criteria and requirements associated with radioactive airborne emissions measurements. The criteria and requirements in this document apply to airborne emissions measurement activities funded by WHC managed facilities in the 300 and 400 areas.

  18. USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.

    1997-01-01

    The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.

  19. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  20. Seeding the Physical and Analytical Laboratory Curriculum with Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Reutt-Robey, Janice; Blough, Neil; Rebbert, Richard

    1999-02-01

    For the past five years, the Department of Chemistry and Biochemistry at the University of Maryland at College Park has worked to modernize all facets of the undergraduate laboratory experience. Students in the first-year biochemistry laboratory now utilize modern techniques in biochemistry and molecular biology to isolate and characterize the bacterial enzyme alkaline phosphatase. Organic chemistry laboratories are now conducted exclusively with microware. New laboratory-intensive introductory chemistry courses have been developed for out chemistry majors. This Highlight describes innovations in three upper-division laboratories, Physical Chemistry Laboratories I and II and Instrumental Methods of Analysis. Beyond serving as an experimental practicum, an important goal of these laboratories is that students begin to gain an appreciation for the power of chemical measurements to probe the properties of more complex chemical systems. Since physical and analytical methods are increasingly applied to biochemical systems in research, in industrial processes, and in health and environmental regulation, it is appropriate to introduce experiments involving biochemical, environmental, and materials systems to these upper-division laboratories.

  1. Analytical Chemistry Laboratory progress report for FY 1984

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  2. Automating the analytical laboratory via the Chemical Analysis Automation paradigm

    SciTech Connect

    Hollen, R.; Rzeszutko, C.

    1997-10-01

    To address the need for standardization within the analytical chemistry laboratories of the nation, the Chemical Analysis Automation (CAA) program within the US Department of Energy, Office of Science and Technology`s Robotic Technology Development Program is developing laboratory sample analysis systems that will automate the environmental chemical laboratories. The current laboratory automation paradigm consists of islands-of-automation that do not integrate into a system architecture. Thus, today the chemist must perform most aspects of environmental analysis manually using instrumentation that generally cannot communicate with other devices in the laboratory. CAA is working towards a standardized and modular approach to laboratory automation based upon the Standard Analysis Method (SAM) architecture. Each SAM system automates a complete chemical method. The building block of a SAM is known as the Standard Laboratory Module (SLM). The SLM, either hardware or software, automates a subprotocol of an analysis method and can operate as a standalone or as a unit within a SAM. The CAA concept allows the chemist to easily assemble an automated analysis system, from sample extraction through data interpretation, using standardized SLMs without the worry of hardware or software incompatibility or the necessity of generating complicated control programs. A Task Sequence Controller (TSC) software program schedules and monitors the individual tasks to be performed by each SLM configured within a SAM. The chemist interfaces with the operation of the TSC through the Human Computer Interface (HCI), a logical, icon-driven graphical user interface. The CAA paradigm has successfully been applied in automating EPA SW-846 Methods 3541/3620/8081 for the analysis of PCBs in a soil matrix utilizing commercially available equipment in tandem with SLMs constructed by CAA.

  3. Refurbishment of an Analytical Laboratory Hot Cell Facility

    SciTech Connect

    Rosenberg, K.E.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1996-08-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. To place the facility in compliance with current regulations, all penetrations within the facility were sealed, the ventilation system was redesigned, upgraded and replaced, the master-slave manipulators were replaced, the hot cell windows were removed, refurbished, and reinstalled, all hot cell utilities were replaced, a lead-shielded glovebox housing an Inductive Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO{sub 2} fire suppression system and other ALHC support equipment were installed.

  4. CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Feldman, S.; Collins, S.

    2005-01-01

    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract.

  5. TRUEX processing of plutonium analytical solutions at Argonne National Laboratory

    SciTech Connect

    Chamberlain, D.B.; Conner, C.; Hutter, J.C.; Leonard, R.A.; Wygmans, D.G.; Vandegrift, G.F.

    1995-12-31

    The TRUEX (TRansUranic EXtraction) solvent extraction process was developed at Argonne National Laboratory (ANL) for the Department of Energy. A TRUEX demonstration completed at ANL involved the processing of analytical and experimental waste generated there and at the New Brunswick Laboratory. A 20-stage centrifugal contactor was used to recover plutonium, americium, and uranium from the waste. Approximately 84 g of plutonium, 18 g of uranium, and 0.2 g of americium were recovered from about 118 liters of solution during four process runs. Alpha decontamination factors as high as 65,000 were attained, which was especially important because it allowed the disposal of the process raffinate as a low-level waste. The recovered plutonium and uranium were converted to oxide; the recovered americium solution was concentrated by evaporation to approximately 100 ml. The flowsheet and operational procedures were modified to overcome process difficulties. These difficulties included the presence of complexants in the feed, solvent degradation, plutonium precipitation, and inadequate decontamination factors during startup. This paper will discuss details of the experimental effort.

  6. The European Network of Analytical and Experimental Laboratories for Geosciences

    NASA Astrophysics Data System (ADS)

    Freda, Carmela; Funiciello, Francesca; Meredith, Phil; Sagnotti, Leonardo; Scarlato, Piergiorgio; Troll, Valentin R.; Willingshofer, Ernst

    2013-04-01

    Integrating Earth Sciences infrastructures in Europe is the mission of the European Plate Observing System (EPOS).The integration of European analytical, experimental, and analogue laboratories plays a key role in this context and is the task of the EPOS Working Group 6 (WG6). Despite the presence in Europe of high performance infrastructures dedicated to geosciences, there is still limited collaboration in sharing facilities and best practices. The EPOS WG6 aims to overcome this limitation by pushing towards national and trans-national coordination, efficient use of current laboratory infrastructures, and future aggregation of facilities not yet included. This will be attained through the creation of common access and interoperability policies to foster and simplify personnel mobility. The EPOS ambition is to orchestrate European laboratory infrastructures with diverse, complementary tasks and competences into a single, but geographically distributed, infrastructure for rock physics, palaeomagnetism, analytical and experimental petrology and volcanology, and tectonic modeling. The WG6 is presently organizing its thematic core services within the EPOS distributed research infrastructure with the goal of joining the other EPOS communities (geologists, seismologists, volcanologists, etc...) and stakeholders (engineers, risk managers and other geosciences investigators) to: 1) develop tools and services to enhance visitor programs that will mutually benefit visitors and hosts (transnational access); 2) improve support and training activities to make facilities equally accessible to students, young researchers, and experienced users (training and dissemination); 3) collaborate in sharing technological and scientific know-how (transfer of knowledge); 4) optimize interoperability of distributed instrumentation by standardizing data collection, archive, and quality control standards (data preservation and interoperability); 5) implement a unified e-Infrastructure for data

  7. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  8. U.S. Geological Survey Standard Reference Sample Project: Performance Evaluation of Analytical Laboratories

    USGS Publications Warehouse

    Long, H. Keith; Daddow, Richard L.; Farrar, Jerry W.

    1998-01-01

    Since 1962, the U.S. Geological Survey (USGS) has operated the Standard Reference Sample Project to evaluate the performance of USGS, cooperator, and contractor analytical laboratories that analyze chemical constituents of environmental samples. The laboratories are evaluated by using performance evaluation samples, called Standard Reference Samples (SRSs). SRSs are submitted to laboratories semi-annually for round-robin laboratory performance comparison purposes. Currently, approximately 100 laboratories are evaluated for their analytical performance on six SRSs for inorganic and nutrient constituents. As part of the SRS Project, a surplus of homogeneous, stable SRSs is maintained for purchase by USGS offices and participating laboratories for use in continuing quality-assurance and quality-control activities. Statistical evaluation of the laboratories results provides information to compare the analytical performance of the laboratories and to determine possible analytical deficiences and problems. SRS results also provide information on the bias and variability of different analytical methods used in the SRS analyses.

  9. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    SciTech Connect

    Greulich, K.A.; Gray, C.E.

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  11. INTEGRATING BIOANALYTICAL CAPABILITY IN AN ENVIRONMENTAL ANALYTICAL LABORATORY

    EPA Science Inventory

    The product is a book chapter which is an introductory and summary chapter for the reference work "Immunoassays and Other Bianalytical Techniques" to be published by CRC Press, Taylor and Francis Books. The chapter provides analytical chemists information on new techni...

  12. Contributions of Analytical Chemistry to the Clinical Laboratory.

    ERIC Educational Resources Information Center

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  13. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  14. An expanded safeguards role for the DOE safeguards analytical laboratory

    SciTech Connect

    Bingham, C.D.

    1986-01-01

    The New Brunswick Laboratory (NBL) is a Government-owned, Government-operated (GOGO) laboratory, with the mission to provide and maintain a nuclear material measurements and standards laboratory. The functional responsibilities of NBL serve as a technical response to the statutory responsibility of the Department of Energy (DOE) to assure the safeguarding of nuclear materials. In the execution of its mission, NBL carries out activities in six safeguards-related programs: measurement development, measurement evaluation, measurement services, safeguards assessment, reference and calibration materials and site-specific assistance. These program activities have been implemented by NBL for many years; their relative emphases, however, have been changed recently to address the priorities defined by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP). As a consequence, NBL operations are in the ''mainstream'' of domestic safeguards activities. This expanded safeguards role for NBL is discussed in this paper.

  15. Optimization of analytical laboratory work using computer networking and databasing

    SciTech Connect

    Upp, D.L.; Metcalf, R.A.

    1996-06-01

    The Health Physics Analysis Laboratory (HPAL) performs around 600,000 analyses for radioactive nuclides each year at Los Alamos National Laboratory (LANL). Analysis matrices vary from nasal swipes, air filters, work area swipes, liquids, to the bottoms of shoes and cat litter. HPAL uses 8 liquid scintillation counters, 8 gas proportional counters, and 9 high purity germanium detectors in 5 laboratories to perform these analyses. HPAL has developed a computer network between the labs and software to produce analysis results. The software and hardware package includes barcode sample tracking, log-in, chain of custody, analysis calculations, analysis result printing, and utility programs. All data are written to a database, mirrored on a central server, and eventually written to CD-ROM to provide for online historical results. This system has greatly reduced the work required to provide for analysis results as well as improving the quality of the work performed.

  16. ANALYTICAL CAPABILITY - ISOTOPE HYDROLOGY LABORATORY (WATER QUALITY MANAGEMENT BRANCH, WATER SUPPLY AND WATER RESOURCES DIVISION, NRMRL)

    EPA Science Inventory

    The mission of NRMRL's Water Supply and Water Resources Division's Isotope Hydrology Laboratory is to resolve environmental hydrology problems through research and application of naturally occurring isotopes.Analytical capabilities at IHL include light stable isotope radio mass...

  17. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    ERIC Educational Resources Information Center

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  18. HANDBOOK FOR ANALYTICAL QUALITY CONTROL IN WATER AND WASTEWATER LABORATORIES

    EPA Science Inventory

    This handbook is addressed to laboratory directors, leaders of field investigations, and other personnel who bear responsibility for water and wastewater data. Subject matter of the handbook is concerned primarily with quality control (QC) for chemical and biological tests and me...

  19. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  20. Merging Old and New: An Instrumentation-Based Introductory Analytical Laboratory

    ERIC Educational Resources Information Center

    Jensen, Mark B.

    2015-01-01

    An instrumentation-based laboratory curriculum combining traditional unknown analyses with student-designed projects has been developed for an introductory analytical chemistry course. In the first half of the course, students develop laboratory skills and instrumental proficiency by rotating through six different instruments performing…

  1. Validation of analytical breast cancer microarray analysis in medical laboratory.

    PubMed

    Darweesh, Amal Said; Louka, Manal Louis; Hana, Maha; Rashad, Shaymaa; El-Shinawi, Mohamed; Sharaf-Eldin, Ahmed; Kassim, Samar Kamal

    2014-10-01

    A previously reported microarray data analysis by RISS algorithm on breast cancer showed over-expression of the growth factor receptor (Grb7) and it also highlighted Tweety (TTYH1) gene to be under expressed in breast cancer for the first time. Our aim was to validate the results obtained from the microarray analysis with respect to these genes. Also, the relationship between their expression and the different prognostic indicators was addressed. RNA was extracted from the breast tissue of 30 patients with primary malignant breast cancer. Control samples from the same patients were harvested at a distance of ≥5 cm from the tumour. Semi-quantitative RT-PCR analysis was done on all samples. There was a significant difference between the malignant and control tissues as regards Grb7 expression. It was significantly related to the presence of lymph node metastasis, stage and histological grade of the malignant tumours. There was a significant inverse relation between expression of Grb7 and expression of both oestrogen and progesterone receptors. Grb7 was found to be significantly related to the biological classification of breast cancer. TTYH1 was not expressed in either the malignant or the control samples. The RISS by our group algorithm developed was laboratory validated for Grb7, but not for TTYH1. The newly developed software tool needs to be improved. PMID:25182704

  2. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    ERIC Educational Resources Information Center

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  3. Pre-analytical factors affecting the results of laboratory blood analyses in farm animal veterinary diagnostics.

    PubMed

    Humann-Ziehank, E; Ganter, M

    2012-07-01

    The quality of the laboratory diagnostic approach in farm animals can be severely affected by pre-analytical factors of variation. They induce increase/decrease of biochemical and hematological analyte concentrations and, as a consequence, they may cause unsuitable conclusions and decisions for animal health management and research projects. The pre-analytical period covers the preparation of sampling, the sampling procedure itself, as well as all specimen handling until the beginning of the specific laboratory analysis. Pre-analytical factors may have either an animal-related or a technique-related background. Animal-related factors cover daytime/season, meals/fasting, age, gender, altitude, drugs/anesthesia, physical exercise/stress or coinfection. Technique-related factors are the choice of the tube including serum v. plasma, effects of anticoagulants/gel separators, the anticoagulant/blood ratio, the blood collection procedure itself, specimen handling, contamination, labeling, storage and serum/plasma separation, transportation of the specimen, as well as sample preparation before analysis in the laboratory. It is essential to have proper knowledge about the importance and source of pre-analytical factors to alter the entire diagnostic process. Utmost efforts should be made to minimize controllable factors. Analytical results have to be evaluated with care considering that pre-analytical factors of variation are possible causes of misinterpretation. PMID:23031472

  4. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES&H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27.

  5. Environmental Analytical Sciences: An automation analysis and description of current laboratory procedures

    SciTech Connect

    Stuckemeyer, S.R.

    1990-05-07

    Environmental Analytical Sciences (EAS) is a state certified laboratory that analyzes potentially hazardous waste, generated by Lawrence Livermore National Laboratory programs. State laws require that hazardous waste be disposed of within 90 days. Chemistry and Materials Science expects the number of incoming samples to increase rapidly and EAS must be prepared to analyze them in a timely fashion. This report documents an analysis of Environmental Analytical Sciences, which is located in Buildings 222 and 226. It describes pertinent EAS procedures and recommends ways of automating EAS sample preparation, sample analysis, raw data acquisition and test results archiving. 10 figs., 4 tabs.

  6. CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory (MSL '09)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chiprera, S. J.; Vaniman, D. T.

    2005-01-01

    An important goal of the Mars Science Laboratory (MSL 09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown.

  7. CONTRACT LABORATORY PROGRAM DRAFT STATEMENT OF WORK FOR LOW CONCENTRATION INORGANIC ANALYTES IN WATER, ILC03.1

    EPA Science Inventory

    This document constitutes the technical and contractual framework for commercial environmental testing laboratories to apply analytical methods for the preparation, detection and quantitation of 23 inorganic target analytes and cyanide in low concentration groundwater and drinkin...

  8. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    SciTech Connect

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  9. Useful measures and models for analytical quality management in medical laboratories.

    PubMed

    Westgard, James O

    2016-02-01

    The 2014 Milan Conference "Defining analytical performance goals 15 years after the Stockholm Conference" initiated a new discussion of issues concerning goals for precision, trueness or bias, total analytical error (TAE), and measurement uncertainty (MU). Goal-setting models are critical for analytical quality management, along with error models, quality-assessment models, quality-planning models, as well as comprehensive models for quality management systems. There are also critical underlying issues, such as an emphasis on MU to the possible exclusion of TAE and a corresponding preference for separate precision and bias goals instead of a combined total error goal. This opinion recommends careful consideration of the differences in the concepts of accuracy and traceability and the appropriateness of different measures, particularly TAE as a measure of accuracy and MU as a measure of traceability. TAE is essential to manage quality within a medical laboratory and MU and trueness are essential to achieve comparability of results across laboratories. With this perspective, laboratory scientists can better understand the many measures and models needed for analytical quality management and assess their usefulness for practical applications in medical laboratories. PMID:26426893

  10. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  11. Analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    An analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator with permanent magnet fluxbiasing is presented. An AMCD consists of a spinning annular rim which is suspended by a noncontacting linear electromagnetic spin motor. The actuator is treated as a lumped-parameter electromechanical system in the development of the model.

  12. A Laboratory Exercise to Demonstrate the Theory and Practice of Analytical Sampling

    ERIC Educational Resources Information Center

    Logue, Brian A.; Youso, Stephanie L.

    2010-01-01

    In analytical chemistry classes, the importance of gathering a proper sample for analysis of bulk materials is often addressed only briefly or not at all. Although a number of classroom and laboratory exercises have been developed to illustrate factors that impact error introduced by sampling, they generally do not demonstrate the main goal of…

  13. Laboratory Research in Catalysis: Coordinating Undergraduate Analytical, Organic, and Physical Chemistry

    ERIC Educational Resources Information Center

    Rondini, Jo-Ann; And Others

    1975-01-01

    Describes a laboratory experiment designed to merge the concepts and techniques of the analytical-organic-physical subdivisions and introduce the student to a decision-making situation. Presents a discussion of the use of the experiment in attaining these goals and provides typical data obtained by students. (GS)

  14. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  15. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  16. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  17. 76 FR 77909 - Protection of Stratospheric Ozone: Extension of the Laboratory and Analytical Use Exemption for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Protocol on Substances that Deplete the Ozone Layer. The exemption allows the production and import of... science of ozone layer depletion, and other related topics. SUPPLEMENTARY INFORMATION: Section 553(d) of... Laboratory and Analytical Use Exemption The Montreal Protocol on Substances that Deplete the Ozone...

  18. Automating the Analytical Laboratories Section, Lewis Research Center, National Aeronautics and Space Administration: A feasibility study

    NASA Technical Reports Server (NTRS)

    Boyle, W. G.; Barton, G. W.

    1979-01-01

    The feasibility of computerized automation of the Analytical Laboratories Section at NASA's Lewis Research Center was considered. Since that laboratory's duties are not routine, the automation goals were set with that in mind. Four instruments were selected as the most likely automation candidates: an atomic absorption spectrophotometer, an emission spectrometer, an X-ray fluorescence spectrometer, and an X-ray diffraction unit. Two options for computer automation were described: a time-shared central computer and a system with microcomputers for each instrument connected to a central computer. A third option, presented for future planning, expands the microcomputer version. Costs and benefits for each option were considered. It was concluded that the microcomputer version best fits the goals and duties of the laboratory and that such an automted system is needed to meet the laboratory's future requirements.

  19. Report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    SciTech Connect

    Not Available

    1994-11-30

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report.

  20. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    ERIC Educational Resources Information Center

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  1. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. PMID:25752808

  2. Analytical progresses of the International Olympic Committee and World Anti-Doping Agency Olympic laboratories.

    PubMed

    Georgakopoulos, Costas; Saugy, Martial; Giraud, Sylvain; Robinson, Neil; Alsayrafi, Mohammed

    2012-07-01

    The Summer Olympic Games constitute the biggest concentration of human sports and activities in a particular place and time since 776 BCE, when the written history of the Olympic Games in Olympia began. Summer and Winter Olympic anti-doping laboratories, accredited by the International Olympic Committee in the past and the World Anti-Doping Agency in the present times, acquire worldwide interest to apply all new analytical advancements in the fight against doping in sports, hoping that this major human event will not become dirty by association with this negative phenomenon. This article summarizes the new analytical progresses, technologies and knowledge used by the Olympic laboratories, which for the vast majority of them are, eventually, incorporated into routine anti-doping analysis. PMID:22831472

  3. Computerized real-time quality control program for analytical chemistry laboratories

    SciTech Connect

    Dill, M.S.; Floyd, M.A.; Morrow, R.W.

    1985-10-01

    A unique computer program has been developed for complete quality control/quality assurance of the operation and statistical control of the testing in the analytical laboratory. The system operates similar to a scanner on a production line with effective checkpoints and furnishes immediate feedback by automatically generated mail messages to appropriate personnel when any non-conformance is encountered. Corrective action is required by the technician prior to proceeding with the analysis.

  4. Evaluation of the International Atomic Energy Agency (IAEA) Safeguards Analytical Laboratory quality assurance program

    SciTech Connect

    Pietri, C.E.; Bracey, J.T.

    1985-02-01

    Destructive analysis is used by the International Atomic Energy Agency (IAEA) through its Safeguards Analytical Laboratory (SAL) to verify, in part, the inventory of nuclear materials at nuclear facilities. The reliability and quality of these meassurements must be assured in a systematic manner. The Division of Safeguards Evaluation, IAEA, required assistance in developing and implementing the quality assurance measures for the analytical procedures used in the destructive analysis of these safeguards samples. To meet these needs an ISPO POTAS Task D.53 was instituted in which consultants would review with IAEA staff the procedures used (or proposed) at SAL for the destructive analysis of safeguards samples and the statistical evaluation of the resulting measurement data at Headquarters. The procedures included analytical methods, qualtiy control measures, and the treatment of data from these activities. Based on this review, modifications to the system, if required, would be recommended which would provide routine assurance to management that these procedures are functioning properly to achieve safeguards objectives. In the course of this review, the sample handling procedures, measurement control activities, analytical methods, reference materials, calibration procedures, statistical analysis of data, and data management system were studied and evaluated. The degree to which SAL (as a total system) achieved laboratory quality assurance was assessed by comparison to accepted standards of quality assurance. 22 refs., 1 fig.

  5. Analytical Laboratory Science on the 2009 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.

    2005-01-01

    The Odyssey Missions orbital maps of near surface ice abundance using neutron spectroscopy (Boynton et al., 2002), the Mars Exploration Rover s confirmation of aqueous processing (Squyres et al., 2004), and the Mars Express detailed infrared maps of specific mineral types that were likely formed in aqueous environments (Bibring et al., 2005) have dramatically expanded our tool set for understanding of aqueous processes on Mars. The 2009 Mars Science Laboratory is designed to extend the "follow the water" crosscutting theme of the Mars Exploration Program toward an even more detailed exploration of habitability - the potential of the Mars environment to support life. The next steps in understanding the habitability of Mars are a more detailed in situ analysis of the chemical state of elements such as C, H, O, N, S, P, Ca, and Fe that are essential for terrestrial life. Of particular interest are experiments that establish definitive mineralogy for a wider range of compounds and those that implement a more comprehensive and sensitive search for organic molecules both in the atmosphere and in surface or near surface rocks, soils, and fines. The recent reports of atmospheric methane in the Martian atmosphere make the organics exploration even more compelling. The substantial mass and power resources of MSL combined with its mobility and powerful sample acquisition and processing tools will enable it to locate a variety of near-surface samples and analyze these in some detail. NASA is presently considering the possibility of landing a second MSL rover in 2011.

  6. The validation of analytical methods for drug substances and drug products in UK pharmaceutical laboratories.

    PubMed

    Clarke, G S

    1994-05-01

    Results of a survey on method validation of analytical procedures used in the testing of drug substances and finished products, of most major research based pharmaceutical companies with laboratories in the UK, are presented. The results indicate that although method validation shows an essential similarity in different laboratories (in particular, chromatographic assay methods are validated in a similar manner in most laboratories), there is much diversity in the detailed application of validation parameters. Testing procedures for drug substances are broadly similar to finished products. Many laboratories validate methods at clinical trial stage to the same extent and detail as at the marketing authorization application (MAA)/new drug application (NDA) submission stage, however, only a small minority of laboratories apply the same criteria to methodology at pre-clinical trial stage. Extensive details of method validation parameters are included in the summary tables of this survey, together with details of the median response given for the validation of the most extensively applied methods. These median response details could be useful in suggesting a harmonized approach to method validation as applied by UK pharmaceutical laboratories. These guidelines would extend beyond the recommendations made to date by regulatory authorities and pharmacopoeias in that minimum requirements for each method validation parameter, e.g. number of replicates, range and tolerance, could be harmonized, both between laboratories and also in Product Licence submissions. PMID:7948185

  7. [Quality Management and Quality Specifications of Laboratory Tests in Clinical Studies--Challenges in Pre-Analytical Processes in Clinical Laboratories].

    PubMed

    Ishibashi, Midori

    2015-01-01

    The cost, speed, and quality are the three important factors recently indicated by the Ministry of Health, Labour and Welfare (MHLW) for the purpose of accelerating clinical studies. Based on this background, the importance of laboratory tests is increasing, especially in the evaluation of clinical study participants' entry and safety, and drug efficacy. To assure the quality of laboratory tests, providing high-quality laboratory tests is mandatory. For providing adequate quality assurance in laboratory tests, quality control in the three fields of pre-analytical, analytical, and post-analytical processes is extremely important. There are, however, no detailed written requirements concerning specimen collection, handling, preparation, storage, and shipping. Most laboratory tests for clinical studies are performed onsite in a local laboratory; however, a part of laboratory tests is done in offsite central laboratories after specimen shipping. As factors affecting laboratory tests, individual and inter-individual variations are well-known. Besides these factors, standardizing the factors of specimen collection, handling, preparation, storage, and shipping, may improve and maintain the high quality of clinical studies in general. Furthermore, the analytical method, units, and reference interval are also important factors. It is concluded that, to overcome the problems derived from pre-analytical processes, it is necessary to standardize specimen handling in a broad sense. PMID:26524888

  8. Development of analytical methodologies to assess recalcitrant pesticide bioremediation in biobeds at laboratory scale.

    PubMed

    Rivero, Anisleidy; Niell, Silvina; Cerdeiras, M Pía; Heinzen, Horacio; Cesio, María Verónica

    2016-06-01

    To assess recalcitrant pesticide bioremediation it is necessary to gradually increase the complexity of the biological system used in order to design an effective biobed assembly. Each step towards this effective biobed design needs a suitable, validated analytical methodology that allows a correct evaluation of the dissipation and bioconvertion. Low recovery yielding methods could give a false idea of a successful biodegradation process. To address this situation, different methods were developed and validated for the simultaneous determination of endosulfan, its main three metabolites, and chlorpyrifos in increasingly complex matrices where the bioconvertor basidiomycete Abortiporus biennis could grow. The matrices were culture media, bran, and finally a laboratory biomix composed of bran, peat and soil. The methodology for the analysis of the first evaluated matrix has already been reported. The methodologies developed for the other two systems are presented in this work. The targeted analytes were extracted from fungi growing over bran in semisolid media YNB (Yeast Nitrogen Based) with acetonitrile using shaker assisted extraction, The salting-out step was performed with MgSO4 and NaCl, and the extracts analyzed by GC-ECD. The best methodology was fully validated for all the evaluated analytes at 1 and 25mgkg(-1) yielding recoveries between 72% and 109% and RSDs <11% in all cases. The application of this methodology proved that A. biennis is able to dissipate 94% of endosulfan and 87% of chlorpyrifos after 90 days. Having assessed that A. biennis growing over bran can metabolize the studied pesticides, the next step faced was the development and validation of an analytical procedure to evaluate the analytes in a laboratory scale biobed composed of 50% of bran, 25% of peat and 25% of soil together with fungal micelium. From the different procedures assayed, only ultrasound assisted extraction with ethyl acetate allowed recoveries between 80% and 110% with RSDs

  9. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  10. An analytical chemistry laboratory's experiences under Department of Energy Order 5633. 3 - a status report

    SciTech Connect

    Bingham, C.D.

    1989-11-01

    The U.S. Department of Energy (DOE) order 5633.3, Control and Accountability of Nuclear Materials, initiated substantial changes to the requirements for operations involving nuclear materials. In the opinion of this author, the two most significant changes are the clarification of and the increased emphasis on the concept of graded safeguards and the implementation of performance requirements. Graded safeguards recognizes that some materials are more attractive than others to potential adversary actions and, thus, should be afforded a higher level of integrated safeguards effort. An analytical chemistry laboratory, such as the New Brunswick Laboratory (NBL), typically has a small total inventory of special nuclear materials compared to, for example, a production or manufacturing facility. The NBL has a laboratory information management system (LIMS) that not only provides the sample identification and tracking but also incorporates the essential features of MC A required of NBL operations. As a consequence of order 5633.3, NBL had to modify LIMS to accommodate material attractiveness information for the logging process, to reflect changes in the attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness codes.

  11. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  12. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    SciTech Connect

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  13. Pre-trial inter-laboratory analytical validation of the FOCUS4 personalised therapy trial

    PubMed Central

    Richman, Susan D; Adams, Richard; Quirke, Phil; Butler, Rachel; Hemmings, Gemma; Chambers, Phil; Roberts, Helen; James, Michelle D; Wozniak, Sue; Bathia, Riya; Pugh, Cheryl; Maughan, Timothy; Jasani, Bharat

    2016-01-01

    Introduction Molecular characterisation of tumours is increasing personalisation of cancer therapy, tailored to an individual and their cancer. FOCUS4 is a molecularly stratified clinical trial for patients with advanced colorectal cancer. During an initial 16-week period of standard first-line chemotherapy, tumour tissue will undergo several molecular assays, with the results used for cohort allocation, then randomisation. Laboratories in Leeds and Cardiff will perform the molecular testing. The results of a rigorous pre-trial inter-laboratory analytical validation are presented and discussed. Methods Wales Cancer Bank supplied FFPE tumour blocks from 97 mCRC patients with consent for use in further research. Both laboratories processed each sample according to an agreed definitive FOCUS4 laboratory protocol, reporting results directly to the MRC Trial Management Group for independent cross-referencing. Results Pyrosequencing analysis of mutation status at KRAS codons12/13/61/146, NRAS codons12/13/61, BRAF codon600 and PIK3CA codons542/545/546/1047, generated highly concordant results. Two samples gave discrepant results; in one a PIK3CA mutation was detected only in Leeds, and in the other, a PIK3CA mutation was only detected in Cardiff. pTEN and mismatch repair (MMR) protein expression was assessed by immunohistochemistry (IHC) resulting in 6/97 discordant results for pTEN and 5/388 for MMR, resolved upon joint review. Tumour heterogeneity was likely responsible for pyrosequencing discrepancies. The presence of signet-ring cells, necrosis, mucin, edge-effects and over-counterstaining influenced IHC discrepancies. Conclusions Pre-trial assay analytical validation is essential to ensure appropriate selection of patients for targeted therapies. This is feasible for both mutation testing and immunohistochemical assays and must be built into the workup of such trials. Trial registration number ISRCTN90061564. PMID:26350752

  14. Laboratory Techniques in Geology: Embedding Analytical Methods into the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Baedke, S. J.; Johnson, E. A.; Kearns, L. E.; Mazza, S. E.; Gazel, E.

    2014-12-01

    Paid summer REU experiences successfully engage undergraduate students in research and encourage them to continue to graduate school and scientific careers. However these programs only accommodate a limited number of students due to funding constraints, faculty time commitments, and limited access to needed instrumentation. At JMU, the Department of Geology and Environmental Science has embedded undergraduate research into the curriculum. Each student fulfilling a BS in Geology or a BA in Earth Science completes 3 credits of research, including a 1-credit course on scientific communication, 2 credits of research or internship, followed by a presentation of that research. Our department has successfully acquired many analytical instruments and now has an XRD, SEM/EDS, FTIR, handheld Raman, AA, ion chromatograph, and an IRMS. To give as many students as possible an overview to the scientific uses and operation methods for these instruments, we revived a laboratory methods course that includes theory and practical use of instrumentation at JMU, plus XRF sample preparation and analysis training at Virginia Tech during a 1-day field trip. In addition to practical training, projects included analytical concepts such as evaluating analytical vs. natural uncertainty, determining error on multiple measurements, signal-to-noise ratio, and evaluating data quality. State funding through the 4-VA program helped pay for analytical supplies and support for students to complete research projects over the summer or during the next academic year using instrumentation from the course. This course exemplifies an alternative path to broadening participation in undergraduate research and creating stronger partnerships between PUI's and research universities.

  15. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  16. ELISA and GC-MS as Teaching Tools in the Undergraduate Environmental Analytical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Wilson, Ruth I.; Mathers, Dan T.; Mabury, Scott A.; Jorgensen, Greg M.

    2000-12-01

    An undergraduate experiment for the analysis of potential water pollutants is described. Students are exposed to two complementary techniques, ELISA and GC-MS, for the analysis of a water sample containing atrazine, desethylatrazine, and simazine. Atrazine was chosen as the target analyte because of its wide usage in North America and its utility for students to predict environmental degradation products. The water sample is concentrated using solid-phase extraction for GC-MS, or diluted and analyzed using a competitive ELISA test kit for atrazine. The nature of the water sample is such that students generally find that ELISA gives an artificially high value for the concentration of atrazine. Students gain an appreciation for problems associated with measuring pollutants in the aqueous environment: sensitivity, accuracy, precision, and ease of analysis. This undergraduate laboratory provides an opportunity for students to learn several new analysis and sample preparation techniques and to critically evaluate these methods in terms of when they are most useful.

  17. Education: a microfluidic platform for university-level analytical chemistry laboratories.

    PubMed

    Greener, Jesse; Tumarkin, Ethan; Debono, Michael; Dicks, Andrew P; Kumacheva, Eugenia

    2012-02-21

    We demonstrate continuous flow acid-base titration reactions as an educational microfluidic platform for undergraduate and graduate analytical chemistry courses. A series of equations were developed for controlling and predicting the results of acid-base neutralisation reactions conducted in a microfluidic format, including the combinations of (i) a strong base and a strong acid, (ii) a strong base and a weak acid, and (iii) a strong base and a multiprotic acid. Microfluidic titrations yielded excellent repeatability. The small experimental footprint is advantageous in crowded teaching laboratories, and it offers limited waste and exposure to potentially hazardous acids and bases. This platform will help promote the utilisation of microfluidics at an earlier stage of students' careers. PMID:22237720

  18. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    SciTech Connect

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-02-27

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  19. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory

    NASA Astrophysics Data System (ADS)

    Cancilla, Devon A.

    2001-12-01

    Environmental chemists face difficult challenges related to generating, interpreting, and communicating complex chemical data in a manner understandable by nonchemists. For this reason, it is essential that environmental chemistry students develop the skills necessary not only to collect and interpret complex data sets, but also to communicate their findings in a credible manner in nonscientific forums. Key to this requirement is an understanding of the quality assurance/quality control (QA/QC) elements used to support specific findings. This paper describes the development of a problem-based undergraduate environmental analytical chemistry laboratory and its integration with an undergraduate environmental law course. The course is designed to introduce students to the principles of performance-based analytical methods and the use of environmental indicators to perform environmental assessments. Conducting a series of chemical and toxicological tests, chemistry students perform an environmental assessment on the watershed of the mythical City of Rowan. Law students use these assessments to develop legal arguments under both the Safe Drinking Water Act and the Clean Water Act.

  20. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples. This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for eachmethod and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental samples.

  1. Use of artificial intelligence in analytical systems for the clinical laboratory.

    PubMed

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784

  2. Toward a quality guide to facilitate the transference of analytical methods from research to testing laboratories: a case study.

    PubMed

    Bisetty, Krisnha; Gumede, Njabulo Joyfull; Escuder-Gilabert, Laura; Sagrado, Salvador

    2009-01-01

    At present, there is no single viewpoint that defines QA strategies in analytical chemistry. On the other hand, there are no unique protocols defining a set of analytical tasks and decision criteria to be performed during the method development phase (e.g., by a single research laboratory) in order to facilitate the transference to the testing laboratories intending to adapt, validate, and routinely use this method. This study proposes general criteria, a priori valid for any developed method, recommended as a provisional quality guide containing the minimum internal tasks necessary to publish new analytical method results. As an application, the selection of some basic internal quality tasks and the corresponding accepted criteria are adapted to a concrete case study: indirect differential pulse polarographic determination of nitrate in water samples according to European Commission requisites. Extra tasks to be performed by testing laboratories are also outlined. PMID:20166601

  3. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  4. 40 CFR Appendix G to Subpart A of... - UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical Uses G Appendix G to Subpart A of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production...

  5. 40 CFR Appendix G to Subpart A of... - UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical Uses G Appendix G to Subpart A of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production...

  6. Analysis of the Essential Nutrient Strontium in Marine Aquariums by Atomic Absorption Spectroscopy: An Undergraduate Analytical Chemistry Laboratory Exercise

    NASA Astrophysics Data System (ADS)

    Gilles de Pelichy, Laurent D.; Adam, Carl; Smith, Eugene T.

    1997-10-01

    An undergraduate atomic absorption spectroscopy (AAS) laboratory experiment is presented involving the analysis of the essential nutrient strontium in a real-life sample, sea water. The quantitative analysis of strontium in sea water is a problem well suited for an undergraduate analytical chemistry laboratory. Sea water contains numerous components which prevent the direct quantitative determination of strontium. Students learn first hand about the role of interferences in analytical measurements, and about the method of standard addition which is used to minimize these effects. This laboratory exercise also introduces undergraduate students to practical problems associated with AAS. We encourage students as a part of this experiment to collect and analyze marine water samples from local pet shops.

  7. Appendices to report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    SciTech Connect

    Not Available

    1994-11-30

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report.

  8. Translating diagnostic assays from the laboratory to the clinic: analytical and clinical metrics for device development and evaluation.

    PubMed

    Borysiak, Mark D; Thompson, Matthew J; Posner, Jonathan D

    2016-04-21

    As lab-on-a-chip health diagnostic technologies mature, there is a push to translate them from the laboratory to the clinic. For these diagnostics to achieve maximum impact on patient care, scientists and engineers developing the tests should understand the analytical and clinical statistical metrics that determine the efficacy of the test. Appreciating and using these metrics will benefit test developers by providing consistent measures to evaluate analytical and clinical test performance, as well as guide the design of tests that will most benefit clinicians and patients. This paper is broken into four sections that discuss metrics related to general stages of development including: (1) laboratory assay development (analytical sensitivity, limit of detection, analytical selectivity, and trueness/precision), (2) pre-clinical development (diagnostic sensitivity, diagnostic specificity, clinical cutoffs, and receiver-operator curves), (3) clinical use (prevalence, predictive values, and likelihood ratios), and (4) case studies from existing clinical data for tests relevant to the lab-on-a-chip community (HIV, group A strep, and chlamydia). Each section contains definitions of recommended statistical measures, as well as examples demonstrating the importance of these metrics at various stages of the development process. Increasing the use of these metrics in lab-on-a-chip research will improve the rigor of diagnostic performance reporting and provide a better understanding of how to design tests that will ultimately meet clinical needs. PMID:27043204

  9. EVALUATION OF BENTHIC MACROINVERTEBRATE BIOMASS METHODOLOGY. PART 1. LABORATORY ANALYTICAL METHODS

    EPA Science Inventory

    Evaluation of analytical methods employed for wet weight (live or preserved samples) of benthic marcoinvertebrates reveals that centrifugation at 140 x gravity for one minute yields constant biomass estimates. Duration of specimen exposure in ethanol, formalin, and formol (formal...

  10. A Spectrophotometric Study of the Permanganate-Oxalate Reaction: An Analytical Laboratory Experiment

    ERIC Educational Resources Information Center

    Kalbus, Gene E.; Lieu, Van T.; Kalbus, Lee H.

    2004-01-01

    The spectrophotometric method assists in the study of potassium permanganate-oxalate reaction. Basic analytical techniques and rules are implemented in the experiment, which can also include the examination of other compounds oxidized by permanganate.

  11. Pre-analytical errors management in the clinical laboratory: a five-year study

    PubMed Central

    Giménez-Marín, Angeles; Rivas-Ruiz, Francisco; Pérez-Hidalgo, Maria del Mar; Molina-Mendoza, Pedro

    2014-01-01

    Introduction: This study describes quality indicators for the pre-analytical process, grouping errors according to patient risk as critical or major, and assesses their evaluation over a five-year period. Materials and methods: A descriptive study was made of the temporal evolution of quality indicators, with a study population of 751,441 analytical requests made during the period 2007–2011. The Runs Test for randomness was calculated to assess changes in the trend of the series, and the degree of control over the process was estimated by the Six Sigma scale. Results: The overall rate of critical pre-analytical errors was 0.047%, with a Six Sigma value of 4.9. The total rate of sampling errors in the study period was 13.54% (P = 0.003). The highest rates were found for the indicators “haemolysed sample” (8.76%), “urine sample not submitted” (1.66%) and “clotted sample” (1.41%), with Six Sigma values of 3.7, 3.7 and 2.9, respectively. Conclusions: The magnitude of pre-analytical errors was accurately valued. While processes that triggered critical errors are well controlled, the results obtained for those regarding specimen collection are borderline unacceptable; this is particularly so for the indicator “haemolysed sample”. PMID:24969918

  12. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  13. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    PubMed

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories. PMID:7889593

  14. Determination of Caffeine in Beverages by Capillary Zone Electrophoresis: An Experiment for the Undergraduate Analytical Laboratory

    NASA Astrophysics Data System (ADS)

    Conte, Eric D.; Barry, Eugene F.; Rubinstein, Harry

    1996-12-01

    Certain individuals may be sensitive to specific compounds in comsumer products. It is important to quantify these analytes in food products in order to monitor their intake. Caffeine is one such compound. Determination of caffeine in beverages by spectrophotometric procedures requires an extraction procedure, which can prove time-consuming. Although the corresponding determination by HPLC allows for a direct injection, capillary zone electrophoresis provides several advantages such as extremely low solvent consumption, smaller sample volume requirements, and improved sensitivity.

  15. Meta-Analytic Synthesis of Studies Conducted at Marzano Research Laboratory on Instructional Strategies

    ERIC Educational Resources Information Center

    Haystead, Mark W.; Marzano, Robert J.

    2009-01-01

    This is a summary of 300 plus studies from Marzano Research Laboratory (MRL) on instructional strategies. This report synthesizes a series of action research projects conducted between the fall of 2004 and the spring of 2009. The data used for analysis can be found in MRL's Action Research Meta-Analysis Database. Appended are: (1) Instructions for…

  16. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    ERIC Educational Resources Information Center

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  17. Determination of Calcium in Dietary Supplements: Statistical Comparison of Methods in the Analytical Laboratory

    ERIC Educational Resources Information Center

    Garvey, Sarah L.; Shahmohammadi, Golbon; McLain, Derek R.; Dietz, Mark L.

    2015-01-01

    A laboratory experiment is described in which students compare two methods for the determination of the calcium content of commercial dietary supplement tablets. In a two-week sequence, the sample tablets are first analyzed via complexometric titration with ethylenediaminetetraacetic acid and then, following ion exchange of the calcium ion present…

  18. A study of the Perkin-Elmer laboratory robotic system for analytical sample preparation

    SciTech Connect

    Hartenstein, S.D.; Delmastro, J.R.

    1988-09-01

    The purpose of this study was to evaluate the abilities of a Perkin-Elmer (PE) robotic system in performing complex analytical sample preparation procedures. Until this time, reports have been written describing the physical capabilities of the robotic arm marketed by PE and the use of this arm in a pick-and-place application at the Idaho Chemical Processing Plant (ICPP). Since the robotic arm is only capable of handling and transporting objects, the ability of the PE system is dependent upon the performance capabilities of the auxiliary devices marketed with the arm. 2 refs., 2 figs., 1 tab.

  19. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    NASA Astrophysics Data System (ADS)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p < 0.001) compared to that of the students in the comparison group. PBL was shown to have a positive effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  20. Towards a green analytical laboratory: microextraction techniques as a useful tool for the monitoring of polluted soils

    NASA Astrophysics Data System (ADS)

    Lopez-Garcia, Ignacio; Viñas, Pilar; Campillo, Natalia; Hernandez Cordoba, Manuel; Perez Sirvent, Carmen

    2016-04-01

    Microextraction techniques are a valuable tool at the analytical laboratory since they allow sensitive measurements of pollutants to be carried out by means of easily available instrumentation. There is a large number of such procedures involving miniaturized liquid-liquid or liquid-solid extractions with the common denominator of using very low amounts (only a few microliters) or even none of organic solvents. Since minimal amounts of reagents are involved, and the generation of residues is consequently minimized, the approach falls within the concept of Green Analytical Chemistry. This general methodology is useful both for inorganic and organic pollutants. Thus, low amounts of metallic ions can be measured without the need of using ICP-MS since this instrument can be replaced by a simple AAS spectrometer which is commonly present in any laboratory and involves low acquisition and maintenance costs. When dealing with organic pollutants, the microextracts obtained can be introduced into liquid or gas chromatographs equipped with common detectors and there is no need for the most sophisticated and expensive mass spectrometers. This communication reports an overview of the advantages of such a methodology, and gives examples for the determination of some particular contaminants in soil and water samples The authors are grateful to the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15) for financial support

  1. Tank 103, 219-S Facility at 222-S Laboratory, analytical results for the final report

    SciTech Connect

    Fuller, R.K.

    1998-06-18

    This is the final report for the polychlorinated biphenyls analysis of Tank-103 (TK-103) in the 219-S Facility at 222-S Laboratory. Twenty 1-liter bottles (Sample numbers S98SO00074 through S98SO00093) were received from TK-103 during two sampling events, on May 5 and May 7, 1998. The samples were centrifuged to separate the solids and liquids. The centrifuged sludge was analyzed for PCBs as Aroclor mixtures. The results are discussed on page 6. The sample breakdown diagram (Page 114) provides a cross-reference of sample identification of the bulk samples to the laboratory identification number for the solids. The request for sample analysis (RSA) form is provided as Page 117. The raw data is presented on Page 43. Sample Description, Handling, and Preparation Twenty samples were received in the laboratory in 1-Liter bottles. The first 8 samples were received on May 5, 1998. There were insufficient solids to perform the requested PCB analysis and 12 additional samples were collected and received on May 7, 1998. Breakdown and sub sampling was performed on May 8, 1998. Sample number S98SO00084 was lost due to a broken bottle. Nineteen samples were centrifuged and the solids were collected in 8 centrifuge cones. After the last sample was processed, the solids were consolidated into 2 centrifuge cones. The first cone contained 9.7 grams of solid and 13.0 grams was collected in the second cone. The wet sludge from the first centrifuge cone was submitted to the laboratory for PCB analysis (sample number S98SO00102). The other sample portion (S98SO00103) was retained for possible additional analyses.

  2. Audit of construction of an environmental, safety, and health analytical laboratory at the Pantex Plant

    SciTech Connect

    1995-10-01

    This document is a report from the Office of the Inspector General, US DOE. The report evaluates the need for the construction of an Environmental, Safety, and Health Laboratory at the Pantex Plant and if this project is the most cost effective manner in which to meet mission needs. It was found that: (1) mission needs were being met with existing facilities, (2) required evaluations of alternatives were not performed, (3) decisions were made based on out-dated justifications, and (4) the expenditure of $8.4M was unnecessary. As a result, it was recommended that funded be suspended until the need is clearly established.

  3. Research and learning opportunities in a reactor-based nuclear analytical laboratory

    SciTech Connect

    Robinson, L. . Chemical and Analytical Sciences Div.); Brown, D.H. )

    1994-10-01

    Although considered by many to be a mature science, neutron activation analysis (NAA) continues to be a valuable tool in trace-element research applications. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and material science to name a few. Each stage of NAA provides opportunities to share numerous practical and fundamental scientific principles with high school teachers and students. This paper will present an overview of these opportunities and give a specific example from collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot.

  4. A comparison of the costs of treating wastes from a radio analytical laboratory

    SciTech Connect

    Moore, R.; Pole, S.B.

    1996-04-01

    The Radiological and Environmental Sciences Laboratory (RESL) is a government-owned, government-operated facility at the Idaho National Engineering Laboratory (INEL). RESL`s traditional strengths are in precise radionuclide analysis and dosimetry measurements. RESL generates small quantities of various types of waste. This study identified potential waste management options for a solvent extraction process waste stream and the cost differences resulting from either process changes, improved technology usage, or material substitutions or changes at RESL. Where possible, this report identifies changes that have resulted or may result in waste reduction and cost savings. DOE P2 directs the lab to review processes, evaluate waste practices, and estimate potential reductions in waste volumes and waste management costs. This study focused on selected processes, but the processes are illustrative of potential waste volume reductions and cost minimizations that may be achieved elsewhere at the INEL and throughout the DOE complex. In analyzing a waste disposal process, the authors allocated component costs to functional categories. These categories included the following: (1) operational costs, included waste generation and collection into a storage area; (2) administrative costs, including worker training, routine inspections, and reporting; and (3) disposal costs, including preparing the waste for shipment and disposing of it.

  5. Analytical laboratory and mobile sampling platform progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Stetzenbach, K.

    1995-12-01

    The purpose of this surveillance was to determine traceability of various pieces of the study to one another and to any standards that may be used; as well as record keeping quality, and the use of good laboratory practices. The specific goals of the surveillance were to assure that the scientific work be documented sufficiently that it could be continued by another scientist in the absence of the originator; and be repeated at another time with the same results. The results of the surveillance indicate that these goals are basically being met. Some concerns were raised by myself and were met with a positive attitude and eagerness to improve the study documentation. Actions required to improve the study record keeping and documentation are detailed in the Summary and listed in Corrective actions. A brief follow-up assessment will be scheduled to review the adequacy and effectiveness of the actions taken for this project.

  6. Development of Analytical Protocols For Organics and Isotopes Analysis on the 2009 MARS Science Laboratory.

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.

    2006-01-01

    The Mars Science Laboratory, under development for launch in 2009, is designed explore and quantitatively asses a local region on Mars as a potential habitat for present or past life. Its ambitious goals are to (1) assess the past or present biological potential of the target environment, (2) to characterize the geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The planned capabilities of the rover payload will enable a comprehensive search for organic molecules, a determination of definitive mineralogy of sampled rocks and fines, chemical and isotopic analysis of both atmospheric and solid samples, and precision isotope measurements of several volatile elements. A range of contact and remote surface and subsurface survey tools will establish context for these measurements and will facilitate sample identification and selection. The Sample Analysis at Mars (SAM) suite of MSL addresses several of the mission's core measurement goals. It includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. These instruments will be designed to analyze either atmospheric samples or gases extracted from solid phase samples such as rocks and fines. We will describe the range of measurement protocols under development and study by the SAM engineering and science teams for use on the surface of Mars.

  7. A comparison of analytical laboratory and optical in situ methods for the measurement of nitrate in north Florida water bodies

    NASA Astrophysics Data System (ADS)

    Rozin, A. G.; Clark, M. W.

    2013-12-01

    Assessing the impact of nutrient concentrations on aquatic ecosystems requires an in depth understanding of dynamic biogeochemical cycles that are often a challenge to monitor at the high spatial and temporal resolution necessary to understand these complex processes. Traditional sampling approaches involving discrete samples and laboratory analyses can be constrained by analytical costs, field time, and logistical details that can fail to accurately capture both spatial and temporal changes. Optical in situ instruments may provide the opportunity to continuously monitor a variety of water quality parameters at a high spatial or temporal resolution. This work explores the suitability of a Submersible Ultraviolet Nitrate Analyzer (SUNA), produced by Satlantic, to accurately assess in situ nitrate concentration in several freshwater systems in north Florida. The SUNA was deployed to measure nitrate at five different water bodies selected to represent a range of watershed land uses and water chemistry in the region. In situ nitrate measurements were compared to standard laboratory methods to evaluate the effectiveness of the SUNA's operation. Other optical sensors were used to measure the spectral properties of absorbance, fluorescence, and turbidity (scatter) in the same Florida water bodies. Data from these additional sensors were collected to quantify possible interferences that may affect SUNA performance. In addition, data from the SUNA and other sensors are being used to infer information about the quality and quantity of aqueous constituents besides nitrate. A better understanding of the capabilities and possible limitations of these relatively new analytical instruments will allow researchers to more effectively investigate biogeochemical processes and nutrient transport and enhance decision-making to protect our water bodies.

  8. A lunar-based analytical laboratory and contamination problems in analysis of Moon and Mars samples

    NASA Astrophysics Data System (ADS)

    Gehrke, Charles W.

    1997-07-01

    A summary follows of our experiences and techniques used in the analysis of samples from Apollo Missions 11 to 17. The studies were conducted at the Ames Research Center, Moffett Field, CA, the University of Missouri, Columbia, MO, and the University of Maryland, College Park, MD, 1969 - 1974. Our search was directed to water-extractable compounds with emphasis on amino acids. Gas chromatography, ion-exchange chromatography and gas chromatography combined with mass spectrometry were used for the analysis. It is our conclusion that amino acids are not present in the lunar regolith above the background levels of our investigation (ca. 1 - 3 ng/g). The scientific debate has become heated that primitive life existed on Mars 3.6 billion years ago as reported by the NASA-Stanford team led to David McKay. Mars is destined to receive humans early in the 21st Century, preceded by many international missions to Space Station Freedom and robotic missions to the Moon and Mars. First, we must `learn to live in space'. The Moon presents a base that provides the opportunities and challenges to assemble the international interdisciplinary intellectual scientific teams and partners with many disciplines to make the next step before human exploration of Mars and the search for evidence in Martian soil and samples returned to Earth laboratories. Our experiences learned in Moon analysis will be useful in Mars exploration and returned sample study. Sensitivity at the nanogram/gram level and selectivity of analysis are highly essential. As these figures show contamination of samples is a most serious problem. However with the use of ultraclean techniques in a 100 clean room contamination can be avoided. Our speck of dust, a tiny fragment of cigarette smoke, a particle of dandruff, a droplet of saliva, all can make your results questionable. In addition, the extraction of life molecules as amino acids from the Lunar samples was a difficult process and I am sure the same difficulties

  9. Stability of purgeable VOCs in water samples during pre-analytical holding. Part 2: Analyses by an EPA regional laboratory

    SciTech Connect

    West, O.R.; Bayne, C.K.; Siegrist, R.L.; Holden, W.L.; Bottrell, D.W.

    1997-03-01

    This study was undertaken to examine the hypothesis that prevalent and priority purgeable VOCs in properly preserved water samples are stable for at least 28 days. For the purposes of this study, VOCs were considered functionally stable if concentrations measured after 28 days did not change by more than 10% from the initial values. An extensive stability experiment was performed on freshly-collected surface water spiked with a suite of 44 purgeable VOCs. The spiked water was then distributed into multiple 40-mL VOC vials with 0.010-in Teflon-lined silicone septum caps prefilled with 250 mg of NaHSO{sub 4} (resulting pH of the water {approximately}2). The samples were sent to a commercial [Analytical Resources, Inc. (ARI)] and EPA (Region IV) laboratory where they were stored at 4 C. On 1, 8, 15, 22, 29, 36, and 71 days after sample preparation, analysts from ARI took 4 replicate samples out of storage and analyzed these samples for purgeable VOCs following EPA/SW846 8260A. A similar analysis schedule was followed by analysts at the EPA laboratory. This document contains the results from the EPA analyses; the ARI results are described in a separate report.

  10. ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA

    SciTech Connect

    Edwards, T.; Peeler, D.

    2014-10-28

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.

  11. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    SciTech Connect

    Edwards, T. B.; Peeler, D. K.

    2012-11-26

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  12. Analysis of environmental contamination resulting from catastrophic incidents: part 2. Building laboratory capability by selecting and developing analytical methodologies.

    PubMed

    Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba

    2014-11-01

    Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity

  13. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  14. Automation of the γ-ray spectroscopy counting system at the Dow Chemical Company Analytical Sciences Laboratory

    NASA Astrophysics Data System (ADS)

    Romick, J. D.; Rigot, W. L.; Morabito, P. L.; Quinn, T. J.; Kocher, C. W.; Duke, D. J.

    1994-12-01

    The neutron activation analysis group within the Analytical Sciences Laboratory analyzes 3000-5000 samples annually for a wide variety of analytes. Due to the high sample load, it is imperative that the gamma spectroscopy counting system be automated to maximize the efficiency of the system while ensuring the accuracy of the analyses. Using a Zymark robotic system, Compumotor drives, and DEC-based Canberra/Nuclear Data software we have automated sample changing, detector positioning, and data acquisition. Automation of these functions has resulted in a more consistent counting geometry, minimized crosstalk between samples, and accurate repositioning of the detectors for standardless quantitative analysis. The Zymark robotic system currently controls two detector systems, but is designed to control up to three independent detector systems. Canberra/Nuclear Data software, operating on a Microvax 3100, issues commands to the Zymark controller to change samples when spectral acquisition is complete. Once a new sample is in place, the robot sends a signal to the Microvax to begin data acquisition. Up to 40 samples, with sizes between 1 and 20 ml, can be accommodated using customized sample racks and sample holders. The location of the sample racks relative to the detectors has eliminated noticeable crosstalk between samples in the racks and samples being counted. The two HPGe detectors for each detector system sit on motorized platforms controlled by programmable Compumotor drives. Programmed function keys move the detectors in or out at fixed increments to optimize sample/detector geometry. The high resolution of the stepper motors enables accurate repositioning of detectors so that previously acquired standard spectra can be compared with samples activated and counted under identical conditions but at different times.

  15. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    ERIC Educational Resources Information Center

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  16. Determining 'age at death' for forensic purposes using human bone by a laboratory-based biomechanical analytical method.

    PubMed

    Zioupos, P; Williams, A; Christodoulou, G; Giles, R

    2014-05-01

    Determination of age-at-death (AAD) is an important and frequent requirement in contemporary forensic science and in the reconstruction of past populations and societies from their remains. Its estimation is relatively straightforward and accurate (±3yr) for immature skeletons by using morphological features and reference tables within the context of forensic anthropology. However, after skeletal maturity (>35yr) estimates become inaccurate, particularly in the legal context. In line with the general migration of all the forensic sciences from reliance upon empirical criteria to those which are more evidence-based, AAD determination should rely more-and-more upon more quantitative methods. We explore here whether well-known changes in the biomechanical properties of bone and the properties of bone matrix, which have been seen to change with age even after skeletal maturity in a traceable manner, can be used to provide a reliable estimate of AAD. This method charts a combination of physical characteristics some of which are measured at a macroscopic level (wet & dry apparent density, porosity, organic/mineral/water fractions, collagen thermal degradation properties, ash content) and others at the microscopic level (Ca/P ratios, osteonal and matrix microhardness, image analysis of sections). This method produced successful age estimates on a cohort of 12 donors of age 53-85yr (7 male, 5 female), where the age of the individual could be approximated within less than ±1yr. This represents a vastly improved level of accuracy than currently extant age estimation techniques. It also presents: (1) a greater level of reliability and objectivity as the results are not dependent on the experience and expertise of the observer, as is so often the case in forensic skeletal age estimation methods; (2) it is purely laboratory-based analytical technique which can be carried out by someone with technical skills and not the specialised forensic anthropology experience; (3) it can

  17. International proficiency testing of analytical laboratories for foods and feeds from 1990 to 1996: the experiences of the United Kingdom Food Analysis Performance Assessment Scheme.

    PubMed

    Key, P E; Patey, A L; Rowling, S; Wilbourn, A; Worner, F M

    1997-01-01

    The Food Analysis Performance Assessment Scheme (FAPAS) organized by a Secretariat of the UK Ministry of Agriculture, Fisheries, and Food has checked the proficiency of analytical laboratories for foods and feeds from 1990 to 1996. FAPAS was started for UK laboratories but was expanded worldwide at the request of analysts in other countries who did not have a home-based scheme. Thirteen thousand homogeneity-checked test materials were issued, covering a very wide range of analytes, including pesticides, toxins, veterinary drug residues, trace and nutritional elements, food colors, preservatives, sweeteners, alcohol congeners, fatty acids, nitrate, and proximate analysis. Participants returned 85% of requested data, and 47,000 z-score proficiency assessments were made, of which 81% were satisfactory. Evidence is presented of improvements in overall analytical ability with increased participation in proficiency testing in the areas of proximate analysis; organochlorine pesticide analysis; and lead, mercury, and acesulfame-K analyses. Little improvement was shown in other analytical areas such as calcium analysis. Overall accuracies for analysis of specific pesticides and specific trace elements in the circulated test materials were compared. PMID:9241851

  18. Analysis of Environmental Contamination resulting from Catastrophic Incidents: Part two: Building Laboratory Capability by Selecting and Developing Analytical Methodologies

    EPA Science Inventory

    Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...

  19. Authentic Learning Enviroment in Analytical Chemistry Using Cooperative Methods and Open-Ended Laboratories in Large Lecture Courses

    NASA Astrophysics Data System (ADS)

    Wright, John C.

    1996-09-01

    It is recognized that a need exists to move from the passive learning styles that have characterized chemistry courses to an active style in which students participate and assume responsibility for their learning (1 - 5). In addition, it is argued that course reform should be linked to authentic student achievement, so that students can actively experience the feelings of practicing professionals (6). Course experiments where such changes have been introduced have proven successful but the number of examples of such changes is limited in the higher level courses or courses with large enrollments (7 - 11). In this paper, a one-semester introductory analytical chemistry course is described that accomplishes this goal by the use of open-ended laboratories, cooperative learning, and spreadsheet programs. The course uses many of the ideas described by Walters (7). It is offered at the upperclass level to nonmajors and at the freshman level to students with solid chemistry backgrounds from high school. Typically there are 90 students, who are divided into 5 sections. A teaching assistant is assigned to each section. The course has two 4-hour laboratories and two or three lectures each week (depending on whether it is the upperclass or freshman course). The heart of the course changes is the use of open-ended laboratory experiments in the last half of the course. A sample group project is to have the students develop a mixture of acid-base indicators that can serve as a spectroscopic pH meter. These projects are enhanced by dividing the students into teams of four who take charge of all aspects of accomplishing the projects' goals. Since there are many skills required to make these projects work, the first half of the course is spent developing the individual conceptual, computational, laboratory, problem solving, and group skills so students are prepared for the last half. These changes have markedly improved the student attitudes towards each other and towards learning

  20. FastTrack to supercritical fluid chromatographic purification: Implementation of a walk-up analytical supercritical fluid chromatography/mass spectrometry screening system in the medicinal chemistry laboratory.

    PubMed

    Aurigemma, Christine; Farrell, William

    2010-09-24

    Medicinal chemists often depend on analytical instrumentation for reaction monitoring and product confirmation at all stages of pharmaceutical discovery and development. To obtain pure compounds for biological assays, the removal of side products and final compounds through purification is often necessary. Prior to purification, chemists often utilize open-access analytical LC/MS instruments because mass confirmation is fast and reliable, and the chromatographic separation of most sample constituents is sufficient. Supercritical fluid chromatography (SFC) is often used as an orthogonal technique to HPLC or when isolation of the free base of a compound is desired. In laboratories where SFC is the predominant technique for analysis and purification of compounds, a reasonable approach for quickly determining suitable purification conditions is to screen the sample against different columns. This can be a bottleneck to the purification process. To commission SFC for open-access use, a walk-up analytical SFC/MS screening system was implemented in the medicinal chemistry laboratory. Each sample is automatically screened through six column/method conditions, and on-demand data processing occurs for the chromatographers after each screening method is complete. This paper highlights the "FastTrack" approach to expediting samples through purification. PMID:20728893

  1. A reference interval study for common biochemical analytes in Eastern Turkey: a comparison of a reference population with laboratory data mining

    PubMed Central

    Bakan, Ebubekir; Polat, Harun; Ozarda, Yesim; Ozturk, Nurinnisa; Baygutalp, Nurcan Kilic; Umudum, Fatma Zuhal; Bakan, Nuri

    2016-01-01

    Introduction The aim of this study was to define the reference intervals (RIs) in a Turkish population living in Northeast Turkey (Erzurum) for 34 analytes using direct and indirect methods. In the present study, the regional RIs obtained were compared with other RI studies, primarily the nationwide study performed in Turkey. Materials and methods For the direct method, 435 blood samples were collected from a healthy group of females (N = 218) and males (N = 217) aged between 18 and 65 years. The sera were analysed in Ataturk University hospital laboratory using Roche reagents and analysers for 34 analytes. The data from 1,366,948 records were used to calculate the indirect RIs using a modified Bhattacharya method. Results Significant gender-related differences were observed for 17 analytes. There were also some apparent differences between RIs derived from indirect and direct methods particularly in some analytes (e.g. gamma-glutamyltransferase, creatine kinase, LDL-cholesterol and iron). The RIs derived with the direct method for some, but not all, of the analytes were generally comparable with the RIs reported in the nationwide study and other previous studies in Turkey.There were large differences between RIs derived by the direct method and the expected values shown in the kit insert (e.g. aspartate aminotransferase, total-cholesterol, HDL-cholesterol, and vitamin B12). Conclusions These data provide region-specific RIs for 34 analytes determined by the direct and indirect methods. The observed differences in RIs between previous studies could be related to nutritional status and environmental factors. PMID:27346966

  2. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    SciTech Connect

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  3. Enzymatic Spectrophotometric Reaction Rate Determination of Glucose in Fruit Drinks and Carbonated Beverages. An Analytical Chemistry Laboratory Experiment for Food Science-Oriented Students

    NASA Astrophysics Data System (ADS)

    Vasilarou, Argyro-Maria G.; Georgiou, Constantinos A.

    2000-10-01

    The glucose oxidase-horseradish peroxidase coupled reaction using phenol and 4-aminoantipyrine is used for the kinetic determination of glucose in drinks and beverages. This laboratory experiment demonstrates the implementation of reaction rate kinetic methods of analysis, the use of enzymes as selective analytical reagents for the determination of substrates, the kinetic masking of ascorbic acid interference, and the analysis of glucose in drinks and beverages. The method is optimized for student use in the temperature range of 18-28 °C and can be used in low-budget laboratories equipped with an inexpensive visible photometer. The mixed enzyme-chromogen solution that is used is stable for two months. Precision ranged from 5.1 to 12% RSD for analyses conducted during a period of two months by 48 students.

  4. A Multi-State Factor-Analytic and Psychometric Meta-Analysis of Agricultural Mechanics Laboratory Management Competencies

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2012-01-01

    For more than 20 years, the 50 agricultural mechanics laboratory management competencies identified by Johnson and Schumacher in 1989 have served as the basis for numerous needs assessments of secondary agriculture teachers. This study reevaluated Johnson and Schumacher's instrument, as modified by Saucier, Schumacher, Funkenbusch, Terry, and…

  5. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  6. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  7. Quantitative Evaluation of Possible Errors Induced by Using Simplified Analytical Solutions to the Laboratory In-Diffusion Test

    SciTech Connect

    Nakajima, H.; Takeda, M.; Zhang, M.; Hiratsuka, T.

    2007-07-01

    Laboratory diffusion test has been widely used for characterizing the diffusive and adsorptive properties of synthetic, geological and geotechnical materials in many scientific fields and engineering practices. Although many types of laboratory diffusion test are currently available, different methods have different advantages and disadvantages. An overview of conventional test methods has recently been performed by Zhang and Takeda et al. (WM06) and rigorous solutions to the laboratory through-diffusion tests were developed and discussions on how to select an appropriate test method, design optimum test conditions and determine data sampling for the through-diffusion tests were performed by Takeda and Zhang et al. (WM06). In addition, theoretical evaluation of possible errors which may be caused by using simplified boundary conditions for developing solutions to the laboratory through-diffusion tests were quantitatively examined by Zhang and Takeda (WM05). As a new part of the systematic study, rigorous solutions to the laboratory in-diffusion test, with emphasis on the decreasing source concentration in-diffusion test, are further derived and illustrated in this paper. The new solutions are then used to exam possible errors which may be induced by using simplified solution in interpreting the in-diffusion test data, or data analyses. The theoretical examinations in this study found that the errors in determining the transport properties for a test specimen depend on both test condition and test duration. The conditions and/or applicability of using the simplified solutions are then clarified and illustrated through a series of theoretical simulations. The theories and approaches presented in this paper may offer practical considerations for effective implementations of an in-diffusion test and for proper interpretation of the test results. They can also be used to assess the quality of, or analyze the potential errors in existing data when citing them from

  8. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  9. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    SciTech Connect

    Agbede, R.O.; Bochan, A.J.; Clements, J.L.

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  10. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    SciTech Connect

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  11. Analytical sedimentology

    SciTech Connect

    Lewis, D.W. . Dept. of Geology); McConchie, D.M. . Centre for Coastal Management)

    1994-01-01

    Both a self instruction manual and a cookbook'' guide to field and laboratory analytical procedures, this book provides an essential reference for non-specialists. With a minimum of mathematics and virtually no theory, it introduces practitioners to easy, inexpensive options for sample collection and preparation, data acquisition, analytic protocols, result interpretation and verification techniques. This step-by-step guide considers the advantages and limitations of different procedures, discusses safety and troubleshooting, and explains support skills like mapping, photography and report writing. It also offers managers, off-site engineers and others using sediments data a quick course in commissioning studies and making the most of the reports. This manual will answer the growing needs of practitioners in the field, either alone or accompanied by Practical Sedimentology, which surveys the science of sedimentology and provides a basic overview of the principles behind the applications.

  12. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    USGS Publications Warehouse

    Briggs, Martin; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, Jr., John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  13. Dual-domain mass-transfer parameters from electrical hysteresis: Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-10-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  14. Clinical and laboratory characteristics of patients with thyroid diseases with and without alanine aminotransferase levels above the upper tertile - Cross-sectional analytical study.

    PubMed

    Silva, Nathanael de Oliveira E; Ronsoni, Marcelo Fernando; Colombo, Bruno da Silveira; Corrêa, Carina Gabriela; Hatanaka, Simone Aiko; Canalli, Maria Heloisa Büsi da Silva; Schiavon, Leonardo de Lucca; Narciso-Schiavon, Janaína Luz

    2016-04-01

    Objective Thyroid disease affects 6.6% of the general population. The liver is fundamental in metabolizing thyroid hormones, and hepatocytes are often affected in thyroid disease. We aimed to compare clinical and laboratory parameters among thyroid disease patients with alanine aminotransferase (ALT) levels above vs. below the upper tertile. Subjects and methods A retrospective cross-sectional analytical study was conducted in the endocrinology clinic at Polydoro Ernani de São Thiago University Hospital. Patients with thyroid disease between August 2012 and January 2014 were included in the study. Clinical and laboratory parameters were collected from medical records. Results One hundred patients were included, of which 14.0% were male, with a mean age of 49.1 ± 14.4 years. ALT levels ranged from 9 to 90 U/L, and the ALT upper tertile was defined as 0,64 times the upper normal limit (xUNL). Patients with ALT levels above the upper tertile exhibited a higher proportion of systemic arterial hypertension (SAH), a higher mean abdominal circumference and a higher frequency of elevated TSH levels than did patients with ALT levels below the upper tertile. In multivariate analysis, ALT ≥ 0.64 (xUNL) was independently associated with abdominal circumference (odds ratio [OR] = 0.087, 95% confidence interval [CI] 0012-0167, P = 0.022). ALT (xUNL) correlated positively with total cholesterol (r = 0.213, P = 0.042). Conclusions In patients with thyroid diseases, it was observed that those with ALT above the upper tertile are associated with abdominal circumference and ALT levels correlate with total cholesterol. PMID:26331222

  15. Validated analytical data summary report for White Oak Creek Watershed remedial investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-09-01

    CDM Federal Programs Corporation (CDM Federal) was tasked by the Environmental Restoration Program of Lockheed Martin Energy Systems Inc. (Energy Systems), to collect supplemental surface soil data for the remedial investigation/feasibility study (RI/FS) for the White Oak Creek (WOC) watershed. The WOC watershed RI/FS is being conducted to define a remediation approach for complying with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Oak Ridge National Laboratory (ORNL). The data generated from these supplemental sampling activities will be incorporated into the RUFS to aid decision makers and stakeholders with the selection of remedial alternatives and establish remediation goals for the WOC watershed. A series of Data Quality Objective (DQO) meetings were held in February 1996 to determine data needs for the WOC watershed RI/FS. The meetings were attended by representatives from the Tennessee Department of Environment and Conservation, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and contractors to DOE. During the DQO meetings, it was determined that the human health risk associated with exposure to radionuclides was high enough to establish a baseline for action; however, it was also determined that the impacts associated with other analytes (mainly metals) were insufficient for determining the baseline ecological risk. Based on this premise, it was determined that additional sampling would be required at four of the Waste Area Groupings (WAGs) included in the WOC watershed to fulfill this data gap.

  16. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  17. Waste management and technologies analytical database project for Los Alamos National Laboratory/Department of Energy. Final report, June 7, 1993--June 15, 1994

    SciTech Connect

    1995-04-17

    The Waste Management and Technologies Analytical Database System (WMTADS) supported by the Department of Energy`s (DOE) Office of Environmental Management (EM), Office of Technology Development (EM-50), was developed and based at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, to collect, identify, organize, track, update, and maintain information related to existing/available/developing and planned technologies to characterize, treat, and handle mixed, hazardous and radioactive waste for storage and disposal in support of EM strategies and goals and to focus area projects. WMTADS was developed as a centralized source of on-line information regarding technologies for environmental management processes that can be accessed by a computer, modem, phone line, and communications software through a Local Area Network (LAN), and server connectivity on the Internet, the world`s largest computer network, and with file transfer protocol (FTP) can also be used to globally transfer files from the server to the user`s computer through Internet and World Wide Web (WWW) using Mosaic.

  18. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  19. Nicotine Metabolite Ratio (3-hydroxycotinine/cotinine) in Plasma and Urine by Different Analytical Methods and Laboratories: Implications for Clinical Implementation

    PubMed Central

    Tanner, Julie-Anne; Novalen, Maria; Jatlow, Peter; Huestis, Marilyn A.; Murphy, Sharon E.; Kaprio, Jaakko; Kankaanpää, Aino; Galanti, Laurence; Stefan, Cristiana; George, Tony P.; Benowitz, Neal L.; Lerman, Caryn; Tyndale, Rachel F.

    2015-01-01

    Background The highly genetically variable enzyme CYP2A6 metabolizes nicotine to cotinine (COT) and COT to trans-3′-hydroxycotinine (3HC). The nicotine metabolite ratio (NMR, 3HC/COT) is commonly used as a biomarker of CYP2A6 enzymatic activity, rate of nicotine metabolism, and total nicotine clearance; NMR is associated with numerous smoking phenotypes, including smoking cessation. Our objective was to investigate the impact of different measurement methods, at different sites, on plasma and urinary NMR measures from ad libitum smokers. Methods Plasma (n=35) and urine (n=35) samples were sent to eight different laboratories, which employed similar and different methods of COT and 3HC measurements to derive the NMR. We used Bland-Altman analysis to assess agreement, and Pearson correlations to evaluate associations, between NMR measured by different methods. Results Measures of plasma NMR were in strong agreement between methods according to Bland-Altman analysis (ratios 0.82–1.16) and were highly correlated (all Pearson r>0.96, P<0.0001). Measures of urinary NMR were in relatively weaker agreement (ratios 0.62–1.71) and less strongly correlated (Pearson r values of 0.66–0.98, P<0.0001) between different methods. Plasma and urinary COT and 3HC concentrations, while weaker than NMR, also showed good agreement in plasma, which was better than in urine, as was observed for NMR. Conclusions Plasma is a very reliable biological source for the determination of NMR, robust to differences in these analytical protocols or assessment site. Impact Together this indicates a reduced need for differential interpretation of plasma NMR results based on the approach used, allowing for direct comparison of different studies. PMID:26014804

  20. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  1. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  2. Analytical Instrument Obsolescence Examined.

    ERIC Educational Resources Information Center

    Haggin, Joseph

    1982-01-01

    The threat of instrument obsolescence and tight federal budgets have conspired to threaten the existence of research analytical laboratories. Despite these and other handicaps most existing laboratories expect to keep operating in support of basic research, though there may be serious penalties in the future unless funds are forthcoming. (Author)

  3. Analytical Services Management System

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standardmore » chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.« less

  4. Analytical Services Management System

    SciTech Connect

    Church, Shane; Nigbor, Mike; Hillman, Daniel

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standard chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.

  5. APPLICATION OF NON-PARAMETRIC STATISTICS TO EVALUATE THE COMPARABILITY OF ANALYTICAL DATA FROM TWO U. S. GEOLOGICAL SURVEY WATER-QUALITY LABORATORIES.

    USGS Publications Warehouse

    Peart, Dale B.; Friedman, Linda C.

    1984-01-01

    The U. S. Geological Survey operates two water-quality laboratories. The quality of data produced by each laboratory is judged primarily from an evaluation of the data obtained from the analysis of reference samples. Quality-assurance reports that contain an analysis of the results obtained from chemical analysis of these reference materials by the two laboratories are prepared quarterly, and annual summaries of the data are published. The procedures that are used to determine whether a laboratory shows an overall lack of precision or bias involve the application of binomial distributions to the data.

  6. Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing

    ERIC Educational Resources Information Center

    Moraes, Edgar P.; da Silva, Nilbert S. A.; de Morais, Camilo de L. M.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2014-01-01

    The flame test is a classical analytical method that is often used to teach students how to identify specific metals. However, some universities in developing countries have difficulties acquiring the sophisticated instrumentation needed to demonstrate how to identify and quantify metals. In this context, a method was developed based on the flame…

  7. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    ERIC Educational Resources Information Center

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  8. Principles of analytical validation of next-generation sequencing based mutational analysis for hematologic neoplasms in a CLIA-certified laboratory.

    PubMed

    Kanagal-Shamanna, Rashmi; Singh, Rajesh R; Routbort, Mark J; Patel, Keyur P; Medeiros, L Jeffrey; Luthra, Rajyalakshmi

    2016-04-01

    Targeted therapy based on mutational profiles is the current standard of practice for the management of patients with hematologic malignancies. Next-generation sequencing (NGS)- based analysis has been adopted by clinical laboratories for high-throughput mutational profiling of myeloid and lymphoid neoplasms. The technology is fairly novel and complex, hence both validation and test implementation in a CLIA-certified laboratory differ substantially from traditional sequencing platforms. Recently, organizations such as the American College of Medical Genetics, Centers for Disease Control and Prevention and College of American Pathologists have published principles and guidelines for NGS test development to ensure standardization of testing across institutions. Summarized here are the recommendations from these organizations as they pertain to targeted NGS-based testing of hematologic malignancies ('liquid tumors'), with particular emphasis on myeloid neoplasms. PMID:26765348

  9. Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: current analytical procedures at the university of vienna geochemistry activation analysis laboratory.

    PubMed

    Mader, Dieter; Koeberl, Christian

    2009-12-01

    The Instrumental Neutron Activation Analysis Gamma Spectroscopy Laboratory at the Department of Lithospheric Research, University of Vienna, has been upgraded in the year 2006. This paper describes the sample preparation, new instrumentation and data evaluation for hundreds of rock samples of two terrestrial impact structures. The measurement and data evaluation are done by using Genie 2000 and a custom-made batch software for the used analysis sequences. PMID:19481467

  10. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques.

    PubMed

    Svarcová, Silvie; Cermáková, Zdeňka; Hradilová, Janka; Bezdička, Petr; Hradil, David

    2014-11-11

    An unambiguous identification of pigments in paint layers of works of art forms a substantial part of the description of a painting technique, which is essential for the evaluation of the work of art including determination of the period and/or region of its creation as well as its attribution to a workshop or an author. Copper pigments represent a significant group of materials used in historic paintings. Because of their substantial diversity and, on the other hand, similarity, their identification and differentiation is a challenging task. An analytical procedure for unambiguous determination of both mineral-type (azurite, malachite, posnjakite, atacamite, etc.) and verdigris-type (copper acetates) copper pigments in the paint layers is presented, including light microscopy under VIS and UV light, electron microscopy with elemental microanalysis, Fourier transformed infrared micro-spectroscopy (micro-FTIR), and X-ray powder micro-diffraction (micro-XRD). Micro-Raman measurements were largely hindered by fluorescence. The choice of the analytical methods meets the contemporary requirement of a detailed description of various components in heterogeneous and minute samples of paint layers without their destruction. It is beneficial to use the combination of phase sensitive methods such as micro-FTIR and micro-XRD, because it allows the identification of both mineral-type and verdigris-type copper pigments in one paint layer. In addition, preliminary results concerning the study of the loss of crystallinity of verdigris-type pigments in proteinaceous binding media and the effect of lead white and lead tin yellow as highly absorbing matrix on verdigris identification in paint layers are reported. PMID:24892529

  11. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques

    NASA Astrophysics Data System (ADS)

    Švarcová, Silvie; Čermáková, Zdeňka; Hradilová, Janka; Bezdička, Petr; Hradil, David

    2014-11-01

    An unambiguous identification of pigments in paint layers of works of art forms a substantial part of the description of a painting technique, which is essential for the evaluation of the work of art including determination of the period and/or region of its creation as well as its attribution to a workshop or an author. Copper pigments represent a significant group of materials used in historic paintings. Because of their substantial diversity and, on the other hand, similarity, their identification and differentiation is a challenging task. An analytical procedure for unambiguous determination of both mineral-type (azurite, malachite, posnjakite, atacamite, etc.) and verdigris-type (copper acetates) copper pigments in the paint layers is presented, including light microscopy under VIS and UV light, electron microscopy with elemental microanalysis, Fourier transformed infrared micro-spectroscopy (micro-FTIR), and X-ray powder micro-diffraction (micro-XRD). Micro-Raman measurements were largely hindered by fluorescence. The choice of the analytical methods meets the contemporary requirement of a detailed description of various components in heterogeneous and minute samples of paint layers without their destruction. It is beneficial to use the combination of phase sensitive methods such as micro-FTIR and micro-XRD, because it allows the identification of both mineral-type and verdigris-type copper pigments in one paint layer. In addition, preliminary results concerning the study of the loss of crystallinity of verdigris-type pigments in proteinaceous binding media and the effect of lead white and lead tin yellow as highly absorbing matrix on verdigris identification in paint layers are reported.

  12. Analytical capabilities of laboratory, benchtop and handheld X-ray fluorescence systems for detection of metals in aqueous samples pre-concentrated with solid-phase extraction disks

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Hidalgo, M.; Queralt, I.; Van Meel, K.; Fontàs, C.

    2012-01-01

    We aimed to achieve improved instrumental sensitivity and detection limits for the analysis of several elements (Cu, Ni, Zn, Pb and Cd) in aqueous samples with energy dispersive X-ray fluorescence spectrometry (EDXRF). The metals were pre-concentrated from aqueous solutions using commercially available organic-based solid-phase extraction (SPE) disks functionalized with iminodiacetate groups. These thin-layer organic materials provide an ideal support for XRF analysis. The elements were collected on the SPE extraction disks using a simple filtration procedure (starting with 1 L of aqueous sample) that allows direct XRF measurements to be performed in the field (in situ). We evaluated the analytical possibilities and drawbacks of using this pre-concentration procedure in combination with the following XRF configurations: a handheld unit, a benchtop EDXRF system and a high-energy polarized-beam EDXRF instrument (HE-P-EDXRF). Using the HE-P-EDXRF system, the detection limits for all metals were more than one order of magnitude lower than those attained using handheld and benchtop EDXRF instrumentation. For the detection of metal concentrations higher than ~ 20 μg/L, however, handheld or benchtop systems remain a very good option due to their extreme simplicity of operation and low-cost, compact design. We demonstrate the application of these methodologies, using the three equipment systems, to the analysis of trace concentrations of metals in different types of aqueous samples, including tap water and waste water.

  13. Analytical testing

    NASA Technical Reports Server (NTRS)

    Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.

    1981-01-01

    Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.

  14. Analytical performance of a highly sensitive C-reactive protein-based immunoassay and the effects of laboratory variables on levels of protein in blood.

    PubMed

    Aziz, Najib; Fahey, John L; Detels, Roger; Butch, Anthony W

    2003-07-01

    C-reactive protein (CRP) is an acute-phase reactant whose levels increase in response to a variety of inflammatory stimuli. Elevated levels in serum are observed after trauma, tissue necrosis, infection, surgery, and myocardial infarction and are associated with an increased risk of cardiovascular disease. CRP levels are also elevated in noninflammatory states, such as obesity, sleep disturbances, depression, chronic fatigue, aging, and physical inactivity. In this study, the performance of a highly sensitive CRP enzyme immunoassay was evaluated, along with common laboratory variables (specimen type, processing time, and storage conditions) that may influence measured blood concentrations of CRP. The measurement range of the assay was from 0.4 to 50 microg/liter. Total imprecision (coefficient of variation) ranged from 8.1 to 11.4%. CRP levels obtained with the enzyme immunoassay were highly correlated with those obtained with an automated immunonephelometric assay. Comparable results were obtained for plasma (heparin and EDTA treated) and serum samples, and levels were unaffected by delays in sample processing and storage temperature. CRP levels were also unaffected by up to seven freeze-thaw cycles. The median CRP concentration in healthy adults was determined to be 0.94 mg/liter, with a 95% working reference interval of 0 to 6.9 mg/liter. In view of these data, we recommend that serial serum or plasma samples for CRP should be stored at 4 degrees C for short periods of time or at -70 degrees C for longer periods and tested within the same run to minimize interassay variability. PMID:12853400

  15. Quantification and human health risk assessment of by-products of photo catalytic oxidation of ethylbenzene, xylene and toluene in indoor air of analytical laboratories.

    PubMed

    Dhada, Indramani; Sharma, Mukesh; Nagar, Pavan Kumar

    2016-10-01

    The by-products of TiO2-based photocatalytic oxidation (PCO) of ethylbenze, p,m-xylene, o-xylene and toluene (EXT) in vapour phase and those adsorbed on the catalyst surface (solid phase) were identified and quantified on GC/GC-MS. A factor was developed in terms of μg of by-product produced per mg of EXT removed per sq-meter surface area of catalyst for estimating the mass of by-products produced. The by-products quantified were: acetone, hexane, cyclohexane, benzene, crotonaldehyde, toulene, 1,4-benzoquinone, benzaldehyde, phenol, benzylalcohol, cresol, hydroquinone and benzoic acid. The by-products accounted for 2.3-4.2% of the total mass of EXT treated. For treating concentrations of 220μg/m(3) (ethylbenzene), 260μg/m(3) (p,m-xylene), 260μg/m(3) (o-xylene) and 320μg/m(3) (toluene), at a flow rate of 7L/min for 12h in a laboratory of volume 195m(3), the estimated cancer risks of by-products to the occupants were 1.51×10(-6), 1.06×10(-6), 4.69×10(-7), and 1.58×10(-9) respectively. The overall hazard index (HI) of the by-products for EXT was of the order 10(-4); which is much less than desired level of 1.0. The estimated risks were within the acceptable level. This study has also suggested the photocatalytic degradation pathways for EX which are through formation of toluene. PMID:27208611

  16. Analytical Microscopy

    SciTech Connect

    Not Available

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  17. Analytical Searching.

    ERIC Educational Resources Information Center

    Pappas, Marjorie L.

    1995-01-01

    Discusses analytical searching, a process that enables searchers of electronic resources to develop a planned strategy by combining words or phrases with Boolean operators. Defines simple and complex searching, and describes search strategies developed with Boolean logic and truncation. Provides guidelines for teaching students analytical…

  18. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The analytical methods used by the Science and Technology Division laboratories to perform voluntary analyses for...

  19. 7 CFR 98.4 - Analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture....4 Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to perform analyses of meat, meat food products and MRE's are listed as follows: (1) Official Methods...

  20. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The analytical methods used by the Science and Technology Division laboratories to perform voluntary analyses for...

  1. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The analytical methods used by the Science and Technology Division laboratories to perform voluntary analyses for...

  2. 7 CFR 94.103 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The analytical methods used by the Science and Technology Division laboratories to perform voluntary analyses for...

  3. Expert Systems for the Analytical Laboratory.

    ERIC Educational Resources Information Center

    de Monchy, Allan R.; And Others

    1988-01-01

    Discusses two computer problem solving programs: rule-based expert systems and decision analysis expert systems. Explores the application of expert systems to automated chemical analyses. Presents six factors to consider before using expert systems. (MVL)

  4. Dark Field Microscopy for Analytical Laboratory Courses

    ERIC Educational Resources Information Center

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  5. Dark Field Microscopy for Analytical Laboratory Courses

    SciTech Connect

    Augspurger, Ashley E; Stender, Anthony S; Marchuk, Kyle; Greenbowe, Thomas J; Fang, Ning

    2014-06-10

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  6. 42 CFR 493.1250 - Condition: Analytic systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Analytic systems. 493.1250 Section 493... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing Analytic Systems § 493.1250 Condition: Analytic systems. Each laboratory that performs nonwaived testing must...

  7. Enterprise analytics.

    SciTech Connect

    Spomer, Judith E.

    2010-09-01

    Ranking search results is a thorny issue for enterprise search. Search engines rank results using a variety of sophisticated algorithms, but users still complain that search can't ever seem to find anything useful or relevant! The challenge is to provide results that are ranked according to the users definition of relevancy. Sandia National Laboratories has enhanced its commercial search engine to discover user preferences, re-ranking results accordingly. Immediate positive impact was achieved by modeling historical data consisting of user queries and subsequent result clicks. New data is incorporated into the model daily. An important benefit is that results improve naturally and automatically over time as a function of user actions. This session presents the method employed, how it was integrated with the search engine,metrics illustrating the subsequent improvement to the users search experience, and plans for implementation with Sandia's FAST for SharePoint 2010 search engine.

  8. Product identification techniques used as training aids for analytical chemists

    NASA Technical Reports Server (NTRS)

    Grillo, J. P.

    1968-01-01

    Laboratory staff assistants are trained to use data and observations of routine product analyses performed by experienced analytical chemists when analyzing compounds for potential toxic hazards. Commercial products are used as examples in teaching the analytical approach to unknowns.

  9. Analytical and Radiochemistry for Nuclear Forensics

    SciTech Connect

    Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott; Podlesak, David; Tandon, Lav

    2015-05-26

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  10. Analytical and test equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of innovations in testing and measuring technology for both the laboratory and industry. Topics discussed include spectrometers, radiometers, and descriptions of analytical and test equipment in several areas including thermodynamics, fluid flow, electronics, and materials testing.

  11. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1994-10-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste.

  12. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... necessary field samples and making hydrologic field measurements and analytical laboratory determinations by acceptable hydrologic, geologic, or analytical methods in accordance with the requirements of §§ 780.21,...

  13. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    DOE R&D Accomplishments Database

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  14. Procedures For Microbial-Ecology Laboratory

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Microbial Ecology Laboratory Procedures Manual provides concise and well-defined instructions on routine technical procedures to be followed in microbiological laboratory to ensure safety, analytical control, and validity of results.

  15. Analytics for Education

    ERIC Educational Resources Information Center

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  16. Let's Talk... Analytics

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  17. Emphasizing Mineral Chemistry in an Analytical Chemistry Unit.

    ERIC Educational Resources Information Center

    Dunn, Jeffrey G.; And Others

    1995-01-01

    Describes an analytical chemistry unit in the second year of the chemistry degree course at Curtin University that was designed to reflect the numerous employment opportunities for chemistry graduates in the mineral processing industries and private analytical laboratories. Presents the lecture syllabus, the laboratory course description, and…

  18. 42 CFR 493.1289 - Standard: Analytic systems quality assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Analytic systems quality assessment. 493... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing Analytic Systems § 493.1289 Standard: Analytic systems quality assessment. (a)...

  19. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations...

  20. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations...

  1. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations...

  2. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations...

  3. Networked analytical sample management system

    SciTech Connect

    Kerrigan, W.J.; Spencer, W.A.

    1986-01-01

    Since 1982, the Savannah River Laboratory (SRL) has operated a computer-controlled analytical sample management system. The system, pogrammed in COBOL, runs on the site IBM 3081 mainframe computer. The system provides for the following subtasks: sample logging, analytical method assignment, worklist generation, cost accounting, and results reporting. Within these subtasks the system functions in a time-sharing mode. Communications between subtasks are done overnight in a batch mode. The system currently supports management of up to 3000 samples a month. Each sample requires, on average, three independent methods. Approximately 100 different analytical techniques are available for customized input of data. The laboratory has implemented extensive computer networking using Ethernet. Electronic mail, RS/1, and online literature searches are in place. Based on our experience with the existing sample management system, we have begun a project to develop a second generation system. The new system will utilize the panel designs developed for the present LIMS, incorporate more realtime features, and take advantage of the many commercial LIMS systems.

  4. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    SciTech Connect

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  5. Hanford transuranic analytical capability

    SciTech Connect

    McVey, C.B.

    1995-02-24

    With the current DOE focus on ER/WM programs, an increase in the quantity of waste samples that requires detailed analysis is forecasted. One of the prime areas of growth is the demand for DOE environmental protocol analyses of TRU waste samples. Currently there is no laboratory capacity to support analysis of TRU waste samples in excess of 200 nCi/gm. This study recommends that an interim solution be undertaken to provide these services. By adding two glove boxes in room 11A of 222S the interim waste analytical needs can be met for a period of four to five years or until a front end facility is erected at or near the 222-S facility. The yearly average of samples is projected to be approximately 600 samples. The figure has changed significantly due to budget changes and has been downgraded from 10,000 samples to the 600 level. Until these budget and sample projection changes become firmer, a long term option is not recommended at this time. A revision to this document is recommended by March 1996 to review the long term option and sample projections.

  6. LABORATORY MISCONDUCT - WHAT CAN HAPPEN TO YOU?

    EPA Science Inventory

    Contracted laboratories perform a vast number of routine and special analytical services that are the foundation of decisions upon which rests the fate of the environment. Guiding these laboratories in the generation of environmental data has been the analytical protocols and ...

  7. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  8. Visual Analytics Science and Technology

    SciTech Connect

    Wong, Pak C.

    2007-03-01

    It is an honor to welcome you to the first theme issue of information visualization (IVS) dedicated entirely to the study of visual analytics. It all started from the establishment of the U.S. Department of Homeland Security (DHS) sponsored National Visualization and Analytics Center™ (NVAC™) at the Pacific Northwest National Laboratory (PNNL) in 2004. In 2005, under the leadership of NVAC, a team of the world’s best and brightest multidisciplinary scholars coauthored its first research and development (R&D) agenda Illuminating the Path, which defines the study as “the science of analytical reasoning facilitated by interactive visual interfaces.” Among the most exciting, challenging, and educational events developed since then was the first IEEE Symposium on Visual Analytics Science and Technology (VAST) held in Baltimore, Maryland in October 2006. This theme issue features seven outstanding articles selected from the IEEE VAST proceedings and a commentary article contributed by Jim Thomas, the director of NVAC, on the status and progress of the center.

  9. Hanford analytical sample projections 1996--2001

    SciTech Connect

    Joyce, S.M.

    1996-06-26

    This document summarizes the biannual Hanford sample projections for fiscal years 1996 to 2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Analytical Services, Site Monitoring, and Industrial Hygiene. This information will be used by Hanford Analytical Services to assure that laboratories and resources are available and effectively utilized to meet these documented needs. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  10. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  11. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-02-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  12. 7 CFR 91.23 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Analytical methods. 91.23 Section 91.23 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION...

  13. 7 CFR 94.4 - Analytical methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Analytical methods. 94.4 Section 94.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS POULTRY AND EGG PRODUCTS Mandatory...

  14. 7 CFR 93.13 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Analytical methods. 93.13 Section 93.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS PROCESSED FRUITS AND VEGETABLES...

  15. Analytic Networks in Music Task Definition.

    ERIC Educational Resources Information Center

    Piper, Richard M.

    For a student to acquire the conceptual systems of a discipline, the designer must reflect that structure or analytic network in his curriculum. The four networks identified for music and used in the development of the Southwest Regional Laboratory (SWRL) Music Program are the variable-value, the whole-part, the process-stage, and the class-member…

  16. 40 CFR 141.89 - Analytical methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.89 Analytical methods. (a... 136 of this title. This need only be accomplished if the laboratory will be processing source...

  17. 7 CFR 94.4 - Analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.4 Section 94.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS POULTRY AND EGG PRODUCTS Mandatory...

  18. Analytical Methods for Trace Metals. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the theoretical concepts involved in the methods listed in the Federal Register as approved for determination of trace metals. Emphasis is on laboratory operations. This course is intended for chemists and technicians with little or no experience in analytical methods for trace metals. Students should have…

  19. Science Update: Analytical Chemistry.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  20. Analytical Chemistry in Industry.

    ERIC Educational Resources Information Center

    Kaiser, Mary A.; Ullman, Alan H.

    1988-01-01

    Clarifies the roles of a practicing analytical chemist in industry: quality control, methods and technique development, troubleshooting, research, and chemical analysis. Lists criteria for success in industry. (ML)

  1. Protein Laboratories in Single Location | Poster

    Cancer.gov

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  2. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  3. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  4. Use of Veterinary Records To Teach Laboratory Thinking Skills in Biology.

    ERIC Educational Resources Information Center

    Woolverton, Christopher J.

    1999-01-01

    Describes a laboratory protocol using clinical veterinary data that teaches the cognitive, analytical, communication, and interpersonal skills necessary for students in a biology core laboratory course. (WRM)

  5. Learning Analytics Considered Harmful

    ERIC Educational Resources Information Center

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  6. Process Analytical Chemistry.

    ERIC Educational Resources Information Center

    Callis, James B.; And Others

    1987-01-01

    Discusses process analytical chemistry as a discipline designed to supply quantitative and qualitative information about a chemical process. Encourages academic institutions to examine this field for employment opportunities for students. Describes the five areas of process analytical chemistry, including off-line, at-line, on-line, in-line, and…

  7. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  8. Validating Analytical Methods

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)

  9. Teaching the Analytical Life

    ERIC Educational Resources Information Center

    Jackson, Brian

    2010-01-01

    Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…

  10. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  11. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  12. Laboratory Tests

    MedlinePlus

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  13. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

    SciTech Connect

    Omenn, Gilbert; States, David J.; Adamski, Marcin; Blackwell, Thomas W.; Menon, Rajasree; Hermjakob, Henning; Apweiler, Rolf; Haab, Brian B.; Simpson, Richard; Eddes, James; Kapp, Eugene; Moritz, Rod; Chan, Daniel W.; Rai, Alex J.; Admon, Arie; Aebersold, Ruedi; Eng, Jimmy K.; Hancock, William S.; Hefta, Stanley A.; Meyer, Helmut; Paik, Young-Ki; Yoo, Jong-Shin; Ping, Peipei; Pounds, Joel G.; Adkins, Joshua N.; Qian, Xiaohong; Wang, Rong; Wasinger, Valerie; Wu, Chi Yue; Zhao, Xiaohang; Zeng, Rong; Archakov, Alexander; Tsugita, Akira; Beer, Ilan; Pandey, Akhilesh; Pisano, Michael; Andrews, Philip; Tammen, Harald; Speicher, David W.; Hanash, Samir M.

    2005-08-13

    HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan

  14. Instrumentation: Analytical Capabilities on Mars

    NASA Technical Reports Server (NTRS)

    Westall, Frances; Allen, Carl; Braiser, Martin; Farmer, Jack; Massell, Wulf; Agee, Carl B.; Steele, Andrew; Fortson, Russ

    1998-01-01

    Human exploration of Mars will consist of a series of long-term missions, with early missions focusing upon establishing the Mars base, and undertaking basic field reconnaissance. A capable laboratory on Mars is an essential element in the exploration strategy. Analytical equipment both in the field and in the laboratory serves to extend the senses of the crew and help them sharpen their sampling skills as they learn to recognize rocks in the field and understand their geologic context and significance. On-site sample analyses allow results to be incorporated into evolving surface exploration plans and strategies, which will be developing in real-time as we learn more about Mars. Early Mars missions will focus on reconnaissance EVAs to collect rock and soil samples, maximizing the amount of Mars material returned to Earth. Later missions will be increasingly devoted to both extensive field campaigns and laboratory analyses. The capabilities and equipment described below will be built up at the Mars base incrementally over many missions, with science payloads and investigative infrastructure being partitioned among launch opportunities. This discussion considers what we require to measure, observe, and explore on a new planetary territory. Alternatively, what do we need to know and how do we equip ourselves to provide ample capabilities to acquire these data? Suggestions follow describing specific instruments that we could use. Appendix 5 lists a strawman science instrument payload, and a feasibility study of equipment transportation into the field on pressurized or unpressurized rovers.

  15. Gatlinburg conference: barometer of progress in analytical chemistry

    SciTech Connect

    Shults, W.D.

    1981-01-01

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status.

  16. Quality assurance management plan special analytical support

    SciTech Connect

    Myers, M.L.

    1997-01-30

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy (DOE), WDOE or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  17. Enzymes in Analytical Chemistry.

    ERIC Educational Resources Information Center

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  18. Extreme Scale Visual Analytics

    SciTech Connect

    Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E

    2013-01-01

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  19. EPA's GLP compliance review of chemistry laboratories.

    PubMed

    Hill, D F

    1993-01-01

    The Good Laboratory Practice (GLP) Standards regulations do not provide specific requirements for the operation of a specimen analysis laboratory, such as a testing facility that performs pesticide residue analysis in support of a tolerance study. Thus, some judgment must be applied by a regulated analytical laboratory to assure compliance with GLP Standards regulations that were designed primarily for testing facilities that apply test substances to test systems. This presentation will provide some insight as to EPA's compliance approach, as well as identifying problem areas encountered in past inspections of analytical laboratories. PMID:8156226

  20. Hanford analytical sample projections FY 1996 - FY 2001. Revision 4

    SciTech Connect

    Joyce, S.M.

    1997-07-02

    This document summarizes the biannual Hanford sample projections for fiscal year 1997-2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Wastes Remediation Systems, Solid Wastes, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition to this revision, details on Laboratory scale technology (development), Sample management, and Data management activities were requested. This information will be used by the Hanford Analytical Services program and the Sample Management Working Group to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  1. Laboratory Building.

    SciTech Connect

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  2. Laboratory Microcomputing

    PubMed Central

    York, William B.

    1984-01-01

    Microcomputers will play a major role in the laboratory, not only in the calculation and interpretation of clinical test data, but also will have an increasing place of importance in the management of laboratory resources in the face of the transition from revenue generating to the cost center era. We will give you a glimpse of what can be accomplished with the management data already collected by many laboratories today when the data are processed into meaningful reports.

  3. OBLIQUE PHOTO OF NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. LABORATORY AND OFFICE BUILDING (CPP-602) APPEAR ON LEFT IN PHOTO. INL PHOTO NUMBER HD-22-2-2. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  5. Characterization of Analytical Reference Glass-1 (ARG-1)

    SciTech Connect

    Smith, G.L.

    1993-12-01

    High-level radioactive waste may be immobilized in borosilicate glass at the West Valley Demonstration Project, West Valley, New York, the Defense Waste Processing Facility (DWPF), Aiken, South Carolina, and the Hanford Waste Vitrification Project (HWVP), Richland, Washington. The vitrified waste form will be stored in stainless steel canisters before its eventual transfer to a geologic repository for long-term disposal. Waste Acceptance Product Specifications (WAPS) (DOE 1993), Section 1.1.2 requires that the waste form producers must report the measured chemical composition of the vitrified waste in their production records before disposal. Chemical analysis of glass waste forms is receiving increased attention due to qualification requirements of vitrified waste forms. The Pacific Northwest Laboratory (PNL) has been supporting the glass producers` analytical laboratories by a continuing program of multilaboratory analytical testing using interlaboratory ``round robin`` methods. At the PNL Materials Characterization Center Analytical Round Robin 4 workshop ``Analysis of Nuclear Waste Glass and Related Materials,`` January 16--17, 1990, Pleasanton, California, the meeting attendees decided that simulated nuclear waste analytical reference glasses were needed for use as analytical standards. Use of common standard analytical reference materials would allow the glass producers` analytical laboratories to calibrate procedures and instrumentation, to control laboratory performance and conduct self-appraisals, and to help qualify their various waste forms.

  6. Interaction between clinic and laboratory.

    PubMed

    Armstrong, Elina; Joutsi-Korhonen, Lotta; Lassila, Riitta

    2011-01-01

    Clinicians order laboratory tests to diagnose, monitor, and screen for diseases, to evaluate or confirm previously abnormal results and to develop prognoses. The rigorous quality assurance programs, large automated processes and economic constraints may induce direct challenges to tailored diagnosis. Clinicians will have to gain an understanding of the underlying principles of laboratory technologies without losing their ability to practice 'the art of medicine' at their primary focus - the patient. Specialized laboratory services and expertise play especially important roles in coagulation hematology. Assays are technically demanding and often based on functional properties of proteins, producing results that are far more than plain numbers. Interpretation of laboratory data poses many challenges, such as pre-analytical and patient-dependent factors, of which the laboratory is often not well informed, but which the clinicians are required to take into account. The laboratory scientist needs to understand the multiple clinical circumstances causing variance or interference in the laboratory results. Direct interaction between clinic and laboratory is needed. When laboratory-specific issues are uncertain to the clinician, the laboratory scientist should become the clinician's primary consultant. The better the education and knowledge of both directions, the better the outcome. Regular multidisciplinary rounds by the clinicians and the laboratory scientists are of great benefit. This interaction at its best fosters research and development by identifying new mechanisms and tools. PMID:21193109

  7. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  8. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    PubMed

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. PMID:26592608

  9. Advances in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.

    1991-01-01

    Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.

  10. Engineering Bioluminescent Proteins: Expanding their Analytical Potential

    PubMed Central

    Rowe, Laura; Dikici, Emre; Daunert, Sylvia

    2009-01-01

    Synopsis Bioluminescence has been observed in nature since the dawn of time, but now, scientists are harnessing it for analytical applications. Laura Rowe, Emre Dikici, and Sylvia Daunert of the University of Kentucky describe the origins of bioluminescent proteins and explore their uses in the modern chemistry laboratory. The cover features spectra of bioluminescent light superimposed on an image of jellyfish, which are a common source of bioluminescent proteins. Images courtesy of Emre Dikici and Shutterstock. PMID:19725502